WorldWideScience

Sample records for models astm fatigue

  1. Advances in fatigue crack closure measurement and analysis: Second volume. ASTM special technical publication 1343

    Energy Technology Data Exchange (ETDEWEB)

    McClung, R.C.; Newman, J.C. Jr. [eds.

    1999-07-01

    The discovery of the phenomenon of plasticity-induced fatigue crack closure by Elber was truly a landmark event in the study of fatigue crack growth (FCG) and the development of practical engineering methods for fatigue life management. Subsequent research identified other contributing mechanisms for crack closure, including crack surface roughness and oxide debris. Fatigue crack closure is now understood to be an intrinsic feature of crack growth behavior that must be considered to understand or treat many FCG problems, although closure may not be an issue in all problems and does not always provide a complete explanation of crack growth behavior. As the thirtieth anniversary of the Elber discovery approached, the strong, continuing international interest in crack closure prompted the organization of another ASTM symposium. An international audience numbering over sixty-five persons heard thirty papers contributed by authors from twelve different countries, with more than half of the papers originating from outside the United States. This STP volume contains peer-reviewed manuscripts for twenty-seven of those presentations, plus one peer-reviewed paper that could not be presented at the symposium. Topics covered are: Fundamental Studies; Experimental Characterization of Closure; Load History Effects; Surface Roughness Effects; and Closure Effects on Crack Behavior. Separate abstracts were prepared for all 28 papers.

  2. Model of ASTM Flammability Test in Microgravity: Iron Rods

    Science.gov (United States)

    Steinberg, Theodore A; Stoltzfus, Joel M.; Fries, Joseph (Technical Monitor)

    2000-01-01

    There is extensive qualitative results from burning metallic materials in a NASA/ASTM flammability test system in normal gravity. However, this data was shown to be inconclusive for applications involving oxygen-enriched atmospheres under microgravity conditions by conducting tests using the 2.2-second Lewis Research Center (LeRC) Drop Tower. Data from neither type of test has been reduced to fundamental kinetic and dynamic systems parameters. This paper reports the initial model analysis for burning iron rods under microgravity conditions using data obtained at the LERC tower and modeling the burning system after ignition. Under the conditions of the test the burning mass regresses up the rod to be detached upon deceleration at the end of the drop. The model describes the burning system as a semi-batch, well-mixed reactor with product accumulation only. This model is consistent with the 2.0-second duration of the test. Transient temperature and pressure measurements are made on the chamber volume. The rod solid-liquid interface melting rate is obtained from film records. The model consists of a set of 17 non-linear, first-order differential equations which are solved using MATLAB. This analysis confirms that a first-order rate, in oxygen concentration, is consistent for the iron-oxygen kinetic reaction. An apparent activation energy of 246.8 kJ/mol is consistent for this model.

  3. CCR+: Metadata Based Extended Personal Health Record Data Model Interoperable with the ASTM CCR Standard.

    Science.gov (United States)

    Park, Yu Rang; Yoon, Young Jo; Jang, Tae Hun; Seo, Hwa Jeong; Kim, Ju Han

    2014-01-01

    Extension of the standard model while retaining compliance with it is a challenging issue because there is currently no method for semantically or syntactically verifying an extended data model. A metadata-based extended model, named CCR+, was designed and implemented to achieve interoperability between standard and extended models. Furthermore, a multilayered validation method was devised to validate the standard and extended models. The American Society for Testing and Materials (ASTM) Community Care Record (CCR) standard was selected to evaluate the CCR+ model; two CCR and one CCR+ XML files were evaluated. In total, 188 metadata were extracted from the ASTM CCR standard; these metadata are semantically interconnected and registered in the metadata registry. An extended-data-model-specific validation file was generated from these metadata. This file can be used in a smartphone application (Health Avatar CCR+) as a part of a multilayered validation. The new CCR+ model was successfully evaluated via a patient-centric exchange scenario involving multiple hospitals, with the results supporting both syntactic and semantic interoperability between the standard CCR and extended, CCR+, model. A feasible method for delivering an extended model that complies with the standard model is presented herein. There is a great need to extend static standard models such as the ASTM CCR in various domains: the methods presented here represent an important reference for achieving interoperability between standard and extended models.

  4. Fatigue modelling for gas nitriding

    Directory of Open Access Journals (Sweden)

    H. Weil

    2016-10-01

    Full Text Available The present study aims to develop an algorithm able to predict the fatigue lifetime of nitrided steels. Linear multi-axial fatigue criteria are used to take into account the gradients of mechanical properties provided by the nitriding process. Simulations on rotating bending fatigue specimens are made in order to test the nitrided surfaces. The fatigue model is applied to the cyclic loading of a gear from a simulation using the finite element software Ansys. Results show the positive contributions of nitriding on the fatigue strength

  5. Developing an ANN model to simulate ASTM C1012-95 test considering different cement types and different pozzolanic additives

    Directory of Open Access Journals (Sweden)

    O.A. Hodhod

    2013-04-01

    In this research a study is presented to build a model by ANN equivalent to ASTM C1012-95. The input parameter was obtained from 16 different mortars according to ASTM C1012-95. Plain Portland cement mortars, mortars with cement combined with fly ash (FA, and mortars with cement combined with slag (GGBFS were tested by using ASTM C1012-95. Four cements, two ratio of FA, and one GGBFS were obtained from the literature. ASTM C1012-95 modeling techniques can help us understand the influence of aggressive environments on the concrete performance more readily, faster, and accurately. Such an understanding improves the decision making process in every stage of construction and maintenance and will help in better administration of resources.

  6. Constitutive Model of ASTM A992 Steel at Elevated Temperature for Application in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Jinwoo; Engelhardt, Michael D.

    2014-01-01

    ASTM A992 is the most common grade of high strength steel used for building structures in the U. S. and considered to be applied in Korean nuclear power plant in an immediate future. This paper provides two constitutive models for high strength steel of ASTM A992 steel at elevated temperature to use in steel structures or steel building subjected to fire loads and thermal loads. One is the detailed full constitutive model and it has good agreements for every temperatures from room temperature to 1,000 .deg. C with increments of 100 .deg. C because it was developed using a best-fitting approach method with separated special zones; elastic, plastic plateau, strain-hardening and strain-softening regions. The curve-fitting results were helpful to derive the constitutive models of the stress-strain curves at room and elevated temperatures. The first of these models was developed for academia, and very closely fit the observed test data throughout the strain-hardening and softening zones. The second model was developed as a design model. Despite its simplicity (assumed bilinear stress-strain behavior), it captures the observed stress-strain behavior better than the Eurocode 3-1-2 provisions, most notably in terms of its predicted strain softening behavior and ultimate strains

  7. Peridynamic model for fatigue cracking.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew; Abe Askari (Boeing)

    2014-10-01

    The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the "remaining life" of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.

  8. Comparing the Methodologies in ASTM G198 Using Combined Hygrothermal-Corrosion Modeling

    Science.gov (United States)

    Samuel L. Zelinka

    2013-01-01

    ASTM G198, “Standard test method for determining the relative corrosion performance of driven fasteners in contact with treated wood,” was accepted by consensus and published in 2011. The method has two different exposure conditions for determining fastener corrosion performance in treated wood. The first method places the wood and embedded fasteners in a...

  9. Variable amplitude fatigue, modelling and testing

    International Nuclear Information System (INIS)

    Svensson, Thomas.

    1993-01-01

    Problems related to metal fatigue modelling and testing are here treated in four different papers. In the first paper different views of the subject are summarised in a literature survey. In the second paper a new model for fatigue life is investigated. Experimental results are established which are promising for further development of the mode. In the third paper a method is presented that generates a stochastic process, suitable to fatigue testing. The process is designed in order to resemble certain fatigue related features in service life processes. In the fourth paper fatigue problems in transport vibrations are treated

  10. Fatigue modeling of materials with complex microstructures

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2011-01-01

    with the phenomenological model of fatigue damage growth. As a result, the fatigue lifetime of materials with complex structures can be determined as a function of the parameters of their structures. As an example, the fatigue lifetimes of wood modeled as a cellular material with multilayered, fiber reinforced walls were...... determined for different parameters of wood microstructures. In so doing, 3D hierarchical finite element models of softwood, and a computational technique, including the repeating restart and model change procedures, have been employed to model the fatigue response of latewood....

  11. Study on Standard Fatigue Vehicle Load Model

    Science.gov (United States)

    Huang, H. Y.; Zhang, J. P.; Li, Y. H.

    2018-02-01

    Based on the measured data of truck from three artery expressways in Guangdong Province, the statistical analysis of truck weight was conducted according to axle number. The standard fatigue vehicle model applied to industrial areas in the middle and late was obtained, which adopted equivalence damage principle, Miner linear accumulation law, water discharge method and damage ratio theory. Compared with the fatigue vehicle model Specified by the current bridge design code, the proposed model has better applicability. It is of certain reference value for the fatigue design of bridge in China.

  12. Using statistical compatibility to derive advanced probabilistic fatigue models

    Czech Academy of Sciences Publication Activity Database

    Fernández-Canteli, A.; Castillo, E.; López-Aenlle, M.; Seitl, Stanislav

    2010-01-01

    Roč. 2, č. 1 (2010), s. 1131-1140 E-ISSN 1877-7058. [Fatigue 2010. Praha, 06.06.2010-11.06.2010] Institutional research plan: CEZ:AV0Z20410507 Keywords : Fatigue models * Statistical compatibility * Functional equations Subject RIV: JL - Materials Fatigue, Friction Mechanics

  13. Fatigue in fibromyalgia: a conceptual model informed by patient interviews

    DEFF Research Database (Denmark)

    Humphrey, Louise; Arbuckle, Rob; Mease, Philip

    2010-01-01

    Fatigue is increasingly recognized as an important symptom in fibromyalgia (FM). Unknown however is how fatigue is experienced by individuals in the context of FM. We conducted qualitative research in order to better understand aspects of fatigue that might be unique to FM as well as the impact...... it has on patients' lives. The data obtained informed the development of a conceptual model of fatigue in FM....

  14. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    Science.gov (United States)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-02-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  15. Construction Worker Fatigue Prediction Model Based on System Dynamic

    Directory of Open Access Journals (Sweden)

    Wahyu Adi Tri Joko

    2017-01-01

    Full Text Available Construction accident can be caused by internal and external factors such as worker fatigue and unsafe project environment. Tight schedule of construction project forcing construction worker to work overtime in long period. This situation leads to worker fatigue. This paper proposes a model to predict construction worker fatigue based on system dynamic (SD. System dynamic is used to represent correlation among internal and external factors and to simulate level of worker fatigue. To validate the model, 93 construction workers whom worked in a high rise building construction projects, were used as case study. The result shows that excessive workload, working elevation and age, are the main factors lead to construction worker fatigue. Simulation result also shows that these factors can increase worker fatigue level to 21.2% times compared to normal condition. Beside predicting worker fatigue level this model can also be used as early warning system to prevent construction worker accident

  16. Application of Response Surface Methodology for Modeling of Postweld Heat Treatment Process in a Pressure Vessel Steel ASTM A516 Grade 70.

    Science.gov (United States)

    Peasura, Prachya

    2015-01-01

    This research studied the application of the response surface methodology (RSM) and central composite design (CCD) experiment in mathematical model and optimizes postweld heat treatment (PWHT). The material of study is a pressure vessel steel ASTM A516 grade 70 that is used for gas metal arc welding. PWHT parameters examined in this study included PWHT temperatures and time. The resulting materials were examined using CCD experiment and the RSM to determine the resulting material tensile strength test, observed with optical microscopy and scanning electron microscopy. The experimental results show that using a full quadratic model with the proposed mathematical model is YTS = -285.521 + 15.706X1 + 2.514X2 - 0.004X1(2) - 0.001X2(2) - 0.029X1X2. Tensile strength parameters of PWHT were optimized PWHT time of 5.00 hr and PWHT temperature of 645.75°C. The results show that the PWHT time is the dominant mechanism used to modify the tensile strength compared to the PWHT temperatures. This phenomenon could be explained by the fact that pearlite can contribute to higher tensile strength. Pearlite has an intensity, which results in increased material tensile strength. The research described here can be used as material data on PWHT parameters for an ASTM A516 grade 70 weld.

  17. Stochastic modeling of thermal fatigue crack growth

    CERN Document Server

    Radu, Vasile

    2015-01-01

    The book describes a systematic stochastic modeling approach for assessing thermal-fatigue crack-growth in mixing tees, based on the power spectral density of temperature fluctuation at the inner pipe surface. It shows the development of a frequency-temperature response function in the framework of single-input, single-output (SISO) methodology from random noise/signal theory under sinusoidal input. The frequency response of stress intensity factor (SIF) is obtained by a polynomial fitting procedure of thermal stress profiles at various instants of time. The method, which takes into account the variability of material properties, and has been implemented in a real-world application, estimates the probabilities of failure by considering a limit state function and Monte Carlo analysis, which are based on the proposed stochastic model. Written in a comprehensive and accessible style, this book presents a new and effective method for assessing thermal fatigue crack, and it is intended as a concise and practice-or...

  18. Predicting fatigue crack initiation through image-based micromechanical modeling

    International Nuclear Information System (INIS)

    Cheong, K.-S.; Smillie, Matthew J.; Knowles, David M.

    2007-01-01

    The influence of individual grain orientation on early fatigue crack initiation in a four-point bend fatigue test was investigated numerically and experimentally. The 99.99% aluminium test sample was subjected to high cycle fatigue (HCF) and the top surface microstructure within the inner span of the sample was characterized using electron-beam backscattering diffraction (EBSD). Applying a finite-element submodelling approach, the microstructure was digitally reconstructed and refined studies carried out in regions where fatigue damage was observed. The constitutive behaviour of aluminium was described by a crystal plasticity model which considers the evolution of dislocations and accumulation of edge dislocation dipoles. Using an energy-based approach to quantify fatigue damage, the model correctly predicts regions in grains where early fatigue crack initiation was observed. The tendency for fatigue cracks to initiate in these grains appears to be strongly linked to the orientations of the grains relative to the direction of loading - grains less favourably aligned with respect to the loading direction appear more susceptible to fatigue crack initiation. The limitations of this modelling approach are also highlighted and discussed, as some grains predicted to initiate cracks did not show any visible signs of fatigue cracking in the same locations during testing

  19. Influence of Chromium-Cobalt-Molybdenum Alloy (ASTM F75 on Bone Ingrowth in an Experimental Animal Model

    Directory of Open Access Journals (Sweden)

    Jésica Zuchuat

    2017-12-01

    Full Text Available Cr-Co-Mo (ASTM F75 alloy has been used in the medical environment, but its use as a rigid barrier membrane for supporting bone augmentation therapies has not been extensively investigated. In the present study, Cr-Co-Mo membranes of different heights were placed in New Zealand white, male rabbit tibiae to assess the quality and volume of new bone formation, without the use of additional factors. Animals were euthanized at 20, 30, 40, and 60 days. Bone formation was observed in all of the cases, although the tibiae implanted with the standard membranes reached an augmentation of bone volume that agreed with the density values over the timecourse. In all cases, plasmatic exudate was found under the membrane and in contact with the new bone. Histological analysis indicated the presence of a large number of chondroblasts adjacent to the inner membrane surface in the first stages, and osteoblasts and osteocytes were observed under them. The bone formation was appositional. The Cr-Co-Mo alloy provides a scaffold with an adequate microenvironment for vertical bone volume augmentation, and the physical dimensions and disposition of the membrane itself influence the new bone formation.

  20. Validation of Fatigue Modeling Predictions in Aviation Operations

    Science.gov (United States)

    Gregory, Kevin; Martinez, Siera; Flynn-Evans, Erin

    2017-01-01

    Bio-mathematical fatigue models that predict levels of alertness and performance are one potential tool for use within integrated fatigue risk management approaches. A number of models have been developed that provide predictions based on acute and chronic sleep loss, circadian desynchronization, and sleep inertia. Some are publicly available and gaining traction in settings such as commercial aviation as a means of evaluating flight crew schedules for potential fatigue-related risks. Yet, most models have not been rigorously evaluated and independently validated for the operations to which they are being applied and many users are not fully aware of the limitations in which model results should be interpreted and applied.

  1. Bayesian inference model for fatigue life of laminated composites

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der; Berggreen, Christian

    2016-01-01

    A probabilistic model for estimating the fatigue life of laminated composite plates is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configurations. Model parameters are estimated by Bayesian inference....... The reference data used consists of constant-amplitude cycle test results for four laminates with different layup configurations. The paper describes the modeling techniques and the parameter estimation procedure, supported by an illustrative application....

  2. A motor unit-based model of muscle fatigue

    Science.gov (United States)

    2017-01-01

    Muscle fatigue is a temporary decline in the force and power capacity of skeletal muscle resulting from muscle activity. Because control of muscle is realized at the level of the motor unit (MU), it seems important to consider the physiological properties of motor units when attempting to understand and predict muscle fatigue. Therefore, we developed a phenomenological model of motor unit fatigue as a tractable means to predict muscle fatigue for a variety of tasks and to illustrate the individual contractile responses of MUs whose collective action determines the trajectory of changes in muscle force capacity during prolonged activity. An existing MU population model was used to simulate MU firing rates and isometric muscle forces and, to that model, we added fatigue-related changes in MU force, contraction time, and firing rate associated with sustained voluntary contractions. The model accurately estimated endurance times for sustained isometric contractions across a wide range of target levels. In addition, simulations were run for situations that have little experimental precedent to demonstrate the potential utility of the model to predict motor unit fatigue for more complicated, real-world applications. Moreover, the model provided insight into the complex orchestration of MU force contributions during fatigue, that would be unattainable with current experimental approaches. PMID:28574981

  3. A motor unit-based model of muscle fatigue.

    Directory of Open Access Journals (Sweden)

    Jim R Potvin

    2017-06-01

    Full Text Available Muscle fatigue is a temporary decline in the force and power capacity of skeletal muscle resulting from muscle activity. Because control of muscle is realized at the level of the motor unit (MU, it seems important to consider the physiological properties of motor units when attempting to understand and predict muscle fatigue. Therefore, we developed a phenomenological model of motor unit fatigue as a tractable means to predict muscle fatigue for a variety of tasks and to illustrate the individual contractile responses of MUs whose collective action determines the trajectory of changes in muscle force capacity during prolonged activity. An existing MU population model was used to simulate MU firing rates and isometric muscle forces and, to that model, we added fatigue-related changes in MU force, contraction time, and firing rate associated with sustained voluntary contractions. The model accurately estimated endurance times for sustained isometric contractions across a wide range of target levels. In addition, simulations were run for situations that have little experimental precedent to demonstrate the potential utility of the model to predict motor unit fatigue for more complicated, real-world applications. Moreover, the model provided insight into the complex orchestration of MU force contributions during fatigue, that would be unattainable with current experimental approaches.

  4. Physical and Model Uncertainty for Fatigue Design of Composite Material

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    The main aim of the present report is to establish stochastic models for the uncertainties related to fatigue design of composite materials. The uncertainties considered are the physical uncertainty related to the static and fatigue strength and the model uncertainty related to Miners rule...... for linear damage accumulation. Test data analyzed are taken from the Optimat database [1] which is public available. The composite material tested within the Optimat project is normally used for wind turbine blades....

  5. Modeling of the mechanical behavior of austenitic stainless steels under pure fatigue and fatigue relaxation loadings

    International Nuclear Information System (INIS)

    Hajjaji-Rachdi, Fatima

    2015-01-01

    Austenitic stainless steels are potential candidates for structural components of sodium-cooled fast neutron reactors. Many of these components will be subjected to cyclic loadings including long hold times (1 month) under creep or relaxation at high temperature. These hold times are unattainable experimentally. The aim of the present study is to propose mechanical models which take into account the involved mechanisms and their interactions during such complex loadings. First, an experimental study of the pure fatigue and fatigue-relaxation behavior of 316L(N) at 500 C has been carried out with very long hold times (10 h and 50 h) compared with the ones studied in literature. Tensile tests at 600 C with different applied strain rates have been undertaken in order to study the dynamic strain ageing phenomenon. Before focusing on more complex loadings, the mean field homogenization approach has been used to predict the mechanical behavior of different FCC metals and alloys under low cycle fatigue at room temperature. Both Hill-Hutchinson and Kroener models have been used. Next, a physically-based model based on dislocation densities has been developed and its parameters measured. The model allows predictions in a qualitative agreement with experimental data for tensile loadings. Finally, this model has been enriched to take into account visco-plasticity, dislocation climb and interaction between dislocations and solute atoms, which are influent during creep-fatigue or fatigue relaxation at high temperature. The proposed model uses three adjustable parameters only and allows rather accurate prediction of the behavior of 316L(N) steel under tensile loading and relaxation. (author) [fr

  6. Fatigue crack initiation in crystalline materials - experimental evidence and models

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Man, Jiří; Vystavěl, T.; Zouhar, Lukáš

    2007-01-01

    Roč. 345-346, - (2007), s. 379-382 ISSN 1013-9826. [International Conference on The Mechanical Behavior of Materials /10./. Busan , 27.05.2007-31.05.2007] R&D Projects: GA ČR GA106/06/1096; GA ČR GA101/07/1500 Institutional research plan: CEZ:AV0Z20410507 Keywords : fatigue * crack initiation * modeling Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.224, year: 2005

  7. 47 CFR 90.379 - ASTM E2213-03 DSRC Standard (ASTM-DSRC Standard).

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false ASTM E2213-03 DSRC Standard (ASTM-DSRC Standard... Communications Service (dsrcs) § 90.379 ASTM E2213-03 DSRC Standard (ASTM-DSRC Standard). Roadside Units... incorporated by reference: American Society for Testing and Materials (ASTM) E2213-03, “Standard Specification...

  8. The Cohesive Zone Model for Fatigue Crack Growth

    Directory of Open Access Journals (Sweden)

    Jinxiang Liu

    2013-01-01

    Full Text Available In the past decade, the cohesive zone model has been receiving increasing attention as a powerful tool for the simulation of fatigue crack growth. When applying cohesive zone model to fatigue fracture problem, three aspects should generally be taken into account, that is, unloading-reloading path, damage evolution during cyclic loading, and crack surface contact and friction behavior. This paper addresses the critical views of these aspects. Before that, the formulation of cohesive zone model and identification of cohesive zone model parameters and its numerical implementation have been reviewed.

  9. The application of an internal state variable model to the viscoplastic behavior of irradiated ASTM 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    McAnulty, Michael J., E-mail: mcanulmj@id.doe.gov [Department of Energy, 1955 Fremont Avenue, Idaho Falls, ID 83402 (United States); Potirniche, Gabriel P. [Mechanical Engineering Department, University of Idaho, Moscow, ID 83844 (United States); Tokuhiro, Akira [Mechanical Engineering Department, University of Idaho, Idaho Falls, ID 83402 (United States)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer An internal state variable approach is used to predict the plastic behavior of irradiated metals. Black-Right-Pointing-Pointer The model predicts uniaxial tensile test data for irradiated 304L stainless steel. Black-Right-Pointing-Pointer The model is implemented as a user-defined material subroutine in the finite element code ABAQUS. Black-Right-Pointing-Pointer Results are compared for the unirradiated and irradiated specimens loaded in uniaxial tension. - Abstract: Neutron irradiation of metals results in decreased fracture toughness, decreased ductility, increased yield strength and increased ductile-to-brittle transition temperature. Designers use the most limiting material properties throughout the reactor vessel lifetime to determine acceptable safety margins. To reduce analysis conservatism, a new model is proposed based on an internal state variable approach for the plastic behavior of unirradiated ductile materials to support its use for analyzing irradiated materials. The proposed modeling addresses low temperature irradiation of 304L stainless steel, and predicts uniaxial tensile test data of irradiated experimental specimens. The model was implemented as a user-defined material subroutine (UMAT) in the finite element software ABAQUS. Results are compared between the unirradiated and irradiated specimens subjected to tension tests.

  10. The application of an internal state variable model to the viscoplastic behavior of irradiated ASTM 304L stainless steel

    International Nuclear Information System (INIS)

    McAnulty, Michael J.; Potirniche, Gabriel P.; Tokuhiro, Akira

    2012-01-01

    Highlights: ► An internal state variable approach is used to predict the plastic behavior of irradiated metals. ► The model predicts uniaxial tensile test data for irradiated 304L stainless steel. ► The model is implemented as a user-defined material subroutine in the finite element code ABAQUS. ► Results are compared for the unirradiated and irradiated specimens loaded in uniaxial tension. - Abstract: Neutron irradiation of metals results in decreased fracture toughness, decreased ductility, increased yield strength and increased ductile-to-brittle transition temperature. Designers use the most limiting material properties throughout the reactor vessel lifetime to determine acceptable safety margins. To reduce analysis conservatism, a new model is proposed based on an internal state variable approach for the plastic behavior of unirradiated ductile materials to support its use for analyzing irradiated materials. The proposed modeling addresses low temperature irradiation of 304L stainless steel, and predicts uniaxial tensile test data of irradiated experimental specimens. The model was implemented as a user-defined material subroutine (UMAT) in the finite element software ABAQUS. Results are compared between the unirradiated and irradiated specimens subjected to tension tests.

  11. Mechanisms of in vivo muscle fatigue in humans: investigating age‐related fatigue resistance with a computational model

    Science.gov (United States)

    Callahan, Damien M.; Umberger, Brian R.

    2016-01-01

    Key points Muscle fatigue can be defined as the transient decrease in maximal force that occurs in response to muscle use. Fatigue develops because of a complex set of changes within the neuromuscular system that are difficult to evaluate simultaneously in humans.The skeletal muscle of older adults fatigues less than that of young adults during static contractions. The potential sources of this difference are multiple and intertwined.To evaluate the individual mechanisms of fatigue, we developed an integrative computational model based on neural, biochemical, morphological and physiological properties of human skeletal muscle.Our results indicate first that the model provides accurate predictions of fatigue and second that the age‐related resistance to fatigue is due largely to a lower reliance on glycolytic metabolism during contraction.This model should prove useful for generating hypotheses for future experimental studies into the mechanisms of muscle fatigue. Abstract During repeated or sustained muscle activation, force‐generating capacity becomes limited in a process referred to as fatigue. Multiple factors, including motor unit activation patterns, muscle fibre contractile properties and bioenergetic function, can impact force‐generating capacity and thus the potential to resist fatigue. Given that neuromuscular fatigue depends on interrelated factors, quantifying their independent effects on force‐generating capacity is not possible in vivo. Computational models can provide insight into complex systems in which multiple inputs determine discrete outputs. However, few computational models to date have investigated neuromuscular fatigue by incorporating the multiple levels of neuromuscular function known to impact human in vivo function. To address this limitation, we present a computational model that predicts neural activation, biomechanical forces, intracellular metabolic perturbations and, ultimately, fatigue during repeated isometric contractions

  12. Bayesian inference and model comparison for metallic fatigue data

    KAUST Repository

    Babuška, Ivo

    2016-02-23

    In this work, we present a statistical treatment of stress-life (S-N) data drawn from a collection of records of fatigue experiments that were performed on 75S-T6 aluminum alloys. Our main objective is to predict the fatigue life of materials by providing a systematic approach to model calibration, model selection and model ranking with reference to S-N data. To this purpose, we consider fatigue-limit models and random fatigue-limit models that are specially designed to allow the treatment of the run-outs (right-censored data). We first fit the models to the data by maximum likelihood methods and estimate the quantiles of the life distribution of the alloy specimen. To assess the robustness of the estimation of the quantile functions, we obtain bootstrap confidence bands by stratified resampling with respect to the cycle ratio. We then compare and rank the models by classical measures of fit based on information criteria. We also consider a Bayesian approach that provides, under the prior distribution of the model parameters selected by the user, their simulation-based posterior distributions. We implement and apply Bayesian model comparison methods, such as Bayes factor ranking and predictive information criteria based on cross-validation techniques under various a priori scenarios.

  13. Probabilistic Model for Fatigue Crack Growth in Welded Bridge Details

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard; Yalamas, Thierry

    2013-01-01

    In the present paper a probabilistic model for fatigue crack growth in welded steel details in road bridges is presented. The probabilistic model takes the influence of bending stresses in the joints into account. The bending stresses can either be introduced by e.g. misalignment or redistributio...

  14. Bayesian inference and model comparison for metallic fatigue data

    KAUST Repository

    Babuska, Ivo

    2016-01-06

    In this work, we present a statistical treatment of stress-life (S-N) data drawn from a collection of records of fatigue experiments that were performed on 75S-T6 aluminum alloys. Our main objective is to predict the fatigue life of materials by providing a systematic approach to model calibration, model selection and model ranking with reference to S-N data. To this purpose, we consider fatigue-limit models and random fatigue-limit models that are specially designed to allow the treatment of the run-outs (right-censored data). We first fit the models to the data by maximum likelihood methods and estimate the quantiles of the life distribution of the alloy specimen. We then compare and rank the models by classical measures of fit based on information criteria. We also consider a Bayesian approach that provides, under the prior distribution of the model parameters selected by the user, their simulation-based posterior distributions.

  15. Impact evaluation of rolling contact fatigue life models

    International Nuclear Information System (INIS)

    Choi, Young Sik; Yang, Xiaoping

    2012-01-01

    Since the accurate prediction of fatigue life has a significant value, many researchers have attempted to develop a reliable fatigue life model. Recently, rolling contact fatigue life models incorporating machining impact were developed. These models have contributed to a significant improvement in prediction accuracy as compared with earlier models, thus representing a major step forward in the modeling effort. This paper compares the prediction accuracy of these models with that of the prediction method in International Standards. When α is set to 0.25, the observed improvement of prediction accuracy as measured by variance of prediction errors due to these models over that due to prediction method in International Standards is statistically significant. Impact analyses of such improvement are conducted to illustrate its value. It is further noted that while difference was observed between the variance of prediction errors due to the crack initiation life model based on a dislocation model and that due to the crack initiation life model based on a local stress-life curve, the observed difference is not statistically significant

  16. Nonlinear ultrasound modelling and validation of fatigue damage

    Science.gov (United States)

    Fierro, G. P. Malfense; Ciampa, F.; Ginzburg, D.; Onder, E.; Meo, M.

    2015-05-01

    Nonlinear ultrasound techniques have shown greater sensitivity to microcracks and they can be used to detect structural damages at their early stages. However, there is still a lack of numerical models available in commercial finite element analysis (FEA) tools that are able to simulate the interaction of elastic waves with the materials nonlinear behaviour. In this study, a nonlinear constitutive material model was developed to predict the structural response under continuous harmonic excitation of a fatigued isotropic sample that showed anharmonic effects. Particularly, by means of Landau's theory and Kelvin tensorial representation, this model provided an understanding of the elastic nonlinear phenomena such as the second harmonic generation in three-dimensional solid media. The numerical scheme was implemented and evaluated using a commercially available FEA software LS-DYNA, and it showed a good numerical characterisation of the second harmonic amplitude generated by the damaged region known as the nonlinear response area (NRA). Since this process requires only the experimental second-order nonlinear parameter and rough damage size estimation as an input, it does not need any baseline testing with the undamaged structure or any dynamic modelling of the fatigue crack growth. To validate this numerical model, the second-order nonlinear parameter was experimentally evaluated at various points over the fatigue life of an aluminium (AA6082-T6) coupon and the crack propagation was measured using an optical microscope. A good correlation was achieved between the experimental set-up and the nonlinear constitutive model.

  17. High-cycle notch sensitivity of alloy steel ASTM A743 CA6NM used in hydrogenator turbine components

    Directory of Open Access Journals (Sweden)

    José Alexander Araújo

    2010-10-01

    Full Text Available The presence of notches and other stress concentrations in turbine blades and other notch hydraulic components is a current problem in engineering. It causes a reduction of endurance limit of material. In that sense, specimens of the ASTM A743 CA6NM alloy steel using in several hydrogenator turbine components was tested. The specimens were tested under uniaxial fatigue loading with a load ratio equal to -1, and the considered stress concentration factors, Kt, values, calculated with respect to net area, were 1.55, 2.04 and 2.42. In order to determine the fatigue limit for such notch type, a reduction data method by Dixon and Mood, Staircase method was used. This approach is based on the assumed target distribution of the fatigue limit. For such geometry at least 8 specimens were tested. In addition, the Peterson and Neuber’s notch fatigue factor were compared through fatigue notch reduction factor, Kf, obtained from experimental data. According to results obtained it was possible to conclude that the tested material is less sensitive to notches than the prediction of the Peterson and Neuber’s empirical models.

  18. Development of a Generic Creep-Fatigue Life Prediction Model

    Science.gov (United States)

    Goswami, Tarun

    2002-01-01

    The objective of this research proposal is to further compile creep-fatigue data of steel alloys and superalloys used in military aircraft engines and/or rocket engines and to develop a statistical multivariate equation. The newly derived model will be a probabilistic fit to all the data compiled from various sources. Attempts will be made to procure the creep-fatigue data from NASA Glenn Research Center and other sources to further develop life prediction models for specific alloy groups. In a previous effort [1-3], a bank of creep-fatigue data has been compiled and tabulated under a range of known test parameters. These test parameters are called independent variables, namely; total strain range, strain rate, hold time, and temperature. The present research attempts to use these variables to develop a multivariate equation, which will be a probabilistic equation fitting a large database. The data predicted by the new model will be analyzed using the normal distribution fits, the closer the predicted lives are with the experimental lives (normal line 1 to 1 fit) the better the prediction. This will be evaluated in terms of a coefficient of correlation, R 2 as well. A multivariate equation developed earlier [3] has the following form, where S, R, T, and H have specific meaning discussed later.

  19. Effect of Load Range on Probabilistic Fatigue Crack Growth Resistance in Flux Cored Arc Welded Api 2w GR. Steel

    Science.gov (United States)

    Kim, Seon-Jin; Sohn, Sang-Hoon; Sohn, Hye-Jeong

    The aim of this paper is to investigate the effects of the load range on the spatial variation of fatigue crack growth resistance in three different zones, WM, HAZ and BM for flux cored arc welded API 2W Gr. 50 steel using the stochastic model based on reliability theory. Experimental fatigue crack growth tests were performed on ASTM standard CT specimens. The results indicates that the load range has strong dependency on probabilistic fatigue crack growth for the three different zones WM, HAZ and BM, and also the spatial variation of fatigue crack growth resistance.

  20. The development of a model of fatigue in neuromuscular disorders: a longitudinal study.

    NARCIS (Netherlands)

    Kalkman, J.S.; Schillings, M.L.; Zwarts, M.J.; Engelen, B.G.M. van; Bleijenberg, G.

    2007-01-01

    BACKGROUND: Severe fatigue is reported by the majority of patients with three relatively common types of neuromuscular disorders. OBJECTIVE: This study aimed to identify predictors of fatigue in a longitudinal study and to develop a model of fatigue in patients with three neuromuscular disorders.

  1. An Analytical Model for Fatigue Life Prediction Based on Fracture Mechanics and Crack Closure

    DEFF Research Database (Denmark)

    Ibsø, Jan Behrend; Agerskov, Henning

    1996-01-01

    test specimens are compared with fatigue life predictions using a fracture mechanics approach. In the calculation of the fatigue life, the influence of the welding residual stresses and crack closure on the fatigue crack growth is considered. A description of the crack closure model for analytical...

  2. A multidimensional 'path analysis' model of factors explaining fatigue in rheumatoid arthritis

    NARCIS (Netherlands)

    Rongen-van Dartel, Sanne A. A.; Repping-Wuts, Han; Donders, Rogier; van Hoogmoed, Dewy; Knoop, Hans; Bleijenberg, Gijs; van Riel, Piet L. C. M.; Fransen, Jaap

    2016-01-01

    Fatigue is one of the most commonly reported symptoms in rheumatoid arthritis (RA). Many factors may play a causal role on fatigue in RA patients, but their contribution and interplay is barely understood. The objective was to develop a multidimensional model of factors that explain fatigue severity

  3. Validating and Verifying Biomathematical Models of Human Fatigue

    Science.gov (United States)

    Martinez, Siera Brooke; Quintero, Luis Ortiz; Flynn-Evans, Erin

    2015-01-01

    Airline pilots experience acute and chronic sleep deprivation, sleep inertia, and circadian desynchrony due to the need to schedule flight operations around the clock. This sleep loss and circadian desynchrony gives rise to cognitive impairments, reduced vigilance and inconsistent performance. Several biomathematical models, based principally on patterns observed in circadian rhythms and homeostatic drive, have been developed to predict a pilots levels of fatigue or alertness. These models allow for the Federal Aviation Administration (FAA) and commercial airlines to make decisions about pilot capabilities and flight schedules. Although these models have been validated in a laboratory setting, they have not been thoroughly tested in operational environments where uncontrolled factors, such as environmental sleep disrupters, caffeine use and napping, may impact actual pilot alertness and performance. We will compare the predictions of three prominent biomathematical fatigue models (McCauley Model, Harvard Model, and the privately-sold SAFTE-FAST Model) to actual measures of alertness and performance. We collected sleep logs, movement and light recordings, psychomotor vigilance task (PVT), and urinary melatonin (a marker of circadian phase) from 44 pilots in a short-haul commercial airline over one month. We will statistically compare with the model predictions to lapses on the PVT and circadian phase. We will calculate the sensitivity and specificity of each model prediction under different scheduling conditions. Our findings will aid operational decision-makers in determining the reliability of each model under real-world scheduling situations.

  4. Individualized Biomathematical Modeling of Fatigue and Performance

    Science.gov (United States)

    2008-05-29

    waking period are omitted in order to avoid confounds from sleep inertia. Gray bars indicate scheduled sleep periods . (b) Performance predictions...i.e., total sleep deprivation; black). Light gray areas indicate nocturnal sleep periods . In this illustration, the bifurcation point is set to...confounds from sleep inertia. Gray bars indicate scheduled sleep periods . (b) Corresponding performance predictions according to the new model

  5. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    Science.gov (United States)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong

    2016-03-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.

  6. Modeling Quasi-Static and Fatigue-Driven Delamination Migration

    Science.gov (United States)

    De Carvalho, N. V.; Ratcliffe, J. G.; Chen, B. Y.; Pinho, S. T.; Baiz, P. M.; Tay, T. E.

    2014-01-01

    An approach was proposed and assessed for the high-fidelity modeling of progressive damage and failure in composite materials. It combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. Delamination, matrix cracking, and migration were captured failure and migration criteria based on fracture mechanics. Quasi-static and fatigue loading were modeled within the same overall framework. The methodology proposed was illustrated by simulating the delamination migration test, showing good agreement with the available experimental data.

  7. Human performance modeling for system of systems analytics :soldier fatigue.

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Craig R.; Campbell, James E.; Miller, Dwight Peter

    2005-10-01

    The military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives as can be seen in the Department of Defense's (DoD) Defense Modeling and Simulation Office's (DMSO) Master Plan (DoD 5000.59-P 1995). To this goal, the military is currently spending millions of dollars on programs devoted to HPM in various military contexts. Examples include the Human Performance Modeling Integration (HPMI) program within the Air Force Research Laboratory, which focuses on integrating HPMs with constructive models of systems (e.g. cockpit simulations) and the Navy's Human Performance Center (HPC) established in September 2003. Nearly all of these initiatives focus on the interface between humans and a single system. This is insufficient in the era of highly complex network centric SoS. This report presents research and development in the area of HPM in a system-of-systems (SoS). Specifically, this report addresses modeling soldier fatigue and the potential impacts soldier fatigue can have on SoS performance.

  8. An Analytical Model for Fatigue Life Prediction Based on Fracture Mechanics and Crack Closure

    DEFF Research Database (Denmark)

    Ibsø, Jan Behrend; Agerskov, Henning

    1996-01-01

    test specimens are compared with fatigue life predictions using a fracture mechanics approach. In the calculation of the fatigue life, the influence of the welding residual stresses and crack closure on the fatigue crack growth is considered. A description of the crack closure model for analytical...... of the analytical fatigue lives. Both the analytical and experimental results obtained show that the Miner rule may give quite unconservative predictions of the fatigue life for the types of stochastic loading studied....... determination of the fatigue life is included. Furthermore, the results obtained in studies of the various parameters that have an influence on the fatigue life, are given. A very good agreement between experimental and analytical results is obtained, when the crack closure model is used in determination...

  9. Thermomechanical fatigue of Sn-37 wt.% Pb model solder joints

    International Nuclear Information System (INIS)

    Liu, X.W.; Plumbridge, W.J.

    2003-01-01

    The fatigue of Sn-37 wt.% Pb model solder joints has been investigated under thermomechanical and thermal cycling. Based upon an analysis of displacements during thermomechancial cycling, a model solder joint has been designed to simulate actual joints in electronic packages. The strain-stress relationship, characterised by hysteresis loops, was determined during cycling from 30 to 125 deg. C, and the stress-range monitored throughout. The number of cycles to failure, as defined by the fall in stress range, was correlated to strain range and strain energy. The strain hardening exponent, k, varied with the definition of failure and, when a stress-range drop of 50% was used, it was 0.46. Cracks were produced during pure thermal cycling without external strains applied. These arose due to the local strains caused by thermal expansion mismatches between the solder and Cu 6 Sn 5 intermetallic layer, between the phases of solder, and due to the anisotropy of the materials. The fatigue life under thermomechanical cycling was significantly inferior to that obtained in isothermal mechanical cycling. A factor contributing to this inferiority is the internal damage produced during temperature cycling

  10. Comparative Study of Fatigue Damage Models Using Different Number of Classes Combined with the Rainflow Method

    Directory of Open Access Journals (Sweden)

    S. Zengah

    2013-06-01

    Full Text Available Fatigue damage increases with applied load cycles in a cumulative manner. Fatigue damage models play a key role in life prediction of components and structures subjected to random loading. The aim of this paper is the examination of the performance of the “Damaged Stress Model”, proposed and validated, against other fatigue models under random loading before and after reconstruction of the load histories. To achieve this objective, some linear and nonlinear models proposed for fatigue life estimation and a batch of specimens made of 6082T6 aluminum alloy is subjected to random loading. The damage was cumulated by Miner’s rule, Damaged Stress Model (DSM, Henry model and Unified Theory (UT and random cycles were counted with a rain-flow algorithm. Experimental data on high-cycle fatigue by complex loading histories with different mean and amplitude stress values are analyzed for life calculation and model predictions are compared.

  11. ASTM reference radiologic digital image standards

    International Nuclear Information System (INIS)

    Wysnewski, R.; Wysnewski, D.

    1996-01-01

    ASTM Reference Radiographs have been essential in defining industry's material defect grade levels for many years. ASTM Reference Radiographs are used extensively as even the American Society for Metals Nondestructive Inspection and Quality Control Metals Handbook, Volume 11, eighth edition refers to ASTM Standard Reference Radiographs. The recently published E 1648 Standard Reference Radiographs for Examination of Aluminum Fusion Welds is a prime example of the on-going need for these references. To date, 14 Standard Reference Radiographs have been published to characterize material defects. Standard Reference Radiographs do not adequately address film-less radiologic methods. There are differences in mediums to content with. On a computer CRT defect indications appear differently when compared to indications viewed in a radiograph on a view box. Industry that uses non-film radiologic methods of inspection can be burdened with additional time and money developing internal standard reference radiologic images. These references may be deemed necessary for grading levels of product defects. Because there are no ASTM Standard Reference Radiologic data files for addressing this need in the industry, the authors of this paper suggested implementing a method for their creation under ASTM supervision. ASTM can assure continuity to those users making the transition from analog radiographic images to digital image data by swiftly addressing the requirements for reference digital image standards. The current status and possible future activities regarding a method to create digital data files is presented in this paper summary

  12. A review of fatigue crack propagation modelling techniques using FEM and XFEM

    Science.gov (United States)

    Rege, K.; Lemu, H. G.

    2017-12-01

    Fatigue is one of the main causes of failures in mechanical and structural systems. Offshore installations, in particular, are susceptible to fatigue failure due to their exposure to the combination of wind loads, wave loads and currents. In order to assess the safety of the components of these installations, the expected lifetime of the component needs to be estimated. The fatigue life is the sum of the number of loading cycles required for a fatigue crack to initiate, and the number of cycles required for the crack to propagate before sudden fracture occurs. Since analytical determination of the fatigue crack propagation life in real geometries is rarely viable, crack propagation problems are normally solved using some computational method. In this review the use of the finite element method (FEM) and the extended finite element method (XFEM) to model fatigue crack propagation is discussed. The basic techniques are presented, together with some of the recent developments.

  13. 46 CFR 163.003-3 - ASTM standard.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false ASTM standard. 163.003-3 Section 163.003-3 Shipping...: SPECIFICATIONS AND APPROVAL CONSTRUCTION Pilot Ladder § 163.003-3 ASTM standard. The following standard of the American Society for Testing and Materials (ASTM) is incorporated by reference into this subpart: ASTM D...

  14. Hybrid Model for Early Onset Prediction of Driver Fatigue with Observable Cues

    Directory of Open Access Journals (Sweden)

    Mingheng Zhang

    2014-01-01

    Full Text Available This paper presents a hybrid model for early onset prediction of driver fatigue, which is the major reason of severe traffic accidents. The proposed method divides the prediction problem into three stages, that is, SVM-based model for predicting the early onset driver fatigue state, GA-based model for optimizing the parameters in the SVM, and PCA-based model for reducing the dimensionality of the complex features datasets. The model and algorithm are illustrated with driving experiment data and comparison results also show that the hybrid method can generally provide a better performance for driver fatigue state prediction.

  15. Structural Fatigue in One-Crack Models with Arbitrary Inspection,

    Science.gov (United States)

    1979-04-01

    Fatigue. Ph.D. Thesis , University of London, April 1967. 2. Ford, D. G. The Development of the Theory of Structural Fatigue. Aeronautical Research...Aircraft Division 178 Military Aircraft Division 179 British Hovercraft Corporation Ltd. (E. Cowes) 180 Short Brothers & Harland 181 Westland

  16. Depression, Fatigue, and Pre-Sleep Arousal: A Mediation Model

    Science.gov (United States)

    Karlson, Cynthia W.; Stevens, Natalie R.; Olson, Christy A.; Hamilton, Nancy A.

    2010-01-01

    Fatigue is a common and debilitating symptom of clinical depression; however, the causes are not well understood. The present study was designed to test the hypotheses that subjective sleep, objective sleep, and arousal in the pre-sleep state would mediate the relationship between depression status and fatigue. Sleep, pre-sleep arousal, and…

  17. Probabilistic Fatigue Model for Reinforced Concrete Onshore Wind Turbine Foundations

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2013-01-01

    Reinforced Concrete Slab Foundation (RCSF) is the most common onshore wind turbine foundation type installed by the wind industry around the world. Fatigue cracks in a RCSF are an important issue to be considered by the designers. Causes and consequences of the cracks due to fatigue damage in RCSFs...

  18. Experimental Investigation and Stochastic Modelling of the Fatigue Behaviour of Welded Steel Joints

    DEFF Research Database (Denmark)

    Lassen, Tom

    The present report describes the fatigue behaviour of surface cracks in welded steel joints. Emphasis is laid on fracture mechanics modelling and the stochastic nature of the fatigue process. Various sources which may contribute to the observed scatter in time to crack initiation and time spent...

  19. Force estimation in fatigue condition using a muscle-twitch model during isometric finger contraction.

    Science.gov (United States)

    Na, Youngjin; Kim, Sangjoon J; Kim, Jung

    2017-12-01

    We propose a force estimation method in fatigue condition using a muscle-twitch model and surface electromyography (sEMG). The twitch model, which is an estimate of force by a single spike, was obtained from sEMG features and measured forces. Nine healthy subjects performed isometric index finger abduction until exhaustion for a series of dynamic contractions (0-20% MVC) to characterize the twitch model and static contractions (50% MVC) to induce muscle fatigue. Muscle fatigue was identified based on the changes of twitch model; the twitch peak decreased and the contraction time increased as muscle fatigue developed. Force estimation performance in non-fatigue and fatigue conditions was evaluated and its results were compared with that of a conventional method using the mean absolute value (MAV). In non-fatigue conditions, the performance of the proposed method (0.90 ± 0.05) and the MAV method (0.88 ± 0.06) were comparable. In fatigue conditions, the performance was significantly improved for the proposed method (0.87 ± 0.05) compared with the MAV (0.78 ± 0.09). Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. A multidimensional 'path analysis' model of factors explaining fatigue in rheumatoid arthritis

    NARCIS (Netherlands)

    Dartel, S.A.A. van; Repping-Wuts, H.; Donders, R.; Hoogmoed, D. van; Knoop, H.; Bleijenberg, G.; Riel, P.L.C.M. van; Fransen, J.

    2016-01-01

    OBJECTIVES: Fatigue is one of the most commonly reported symptoms in rheumatoid arthritis (RA). Many factors may play a causal role on fatigue in RA patients, but their contribution and interplay is barely understood. The objective was to develop a multidimensional model of factors that explain

  1. Fatigue of Chinese railway employees and its influential factors: Structural equation modelling.

    Science.gov (United States)

    Tsao, Liuxing; Chang, Jing; Ma, Liang

    2017-07-01

    Fatigue is an identifiable and preventable cause of accidents in transport operations. Regarding the railway sector, incident logs and simulation studies show that employee fatigue leads to lack of alertness, impaired performance, and occurrence of incidents. China has one of the largest rail systems in the world, and Chinese railway employees work under high fatigue risks; therefore, it is important to assess their fatigue level and find the major factors leading to fatigue. We designed a questionnaire that uses Multidimensional Fatigue Instrument (MFI-20), NASA-TLX and subjective rating of work overtime feelings to assess employee fatigue. The contribution of each influential factor of fatigue was analysed using structural equation modelling. In total, 297 employees from the rail maintenance department and 227 employees from the locomotive department returned valid responses. The average scores and standard deviations for the five subscales of MFI-20, namely General Fatigue, Physical Fatigue, Reduced Activity, Reduced Motivation, and Mental Fatigue, were 2.9 (0.8), 2.8 (0.8), 2.5 (0.8), 2.5 (0.7), and 2.4 (0.8) among the rail maintenance employees and 3.5 (0.8), 3.5 (0.7), 3.3 (0.7), 3.0 (0.6), and 3.1 (0.7), respectively, among the locomotive employees. The fatigue of the locomotive employees was influenced by feelings related to working overtime (standardized r = 0.22) and workload (standardized r = 0.27). The work overtime control and physical working environment significantly influenced subjective feelings (standardized r = -0.25 and 0.47, respectively), while improper work/rest rhythms and an adverse physical working environment significantly increased the workload (standardized r = 0.48 and 0.33, respectively). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Probabilistic Modelling of Fatigue Life of Composite Laminates Using Bayesian Inference

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der

    2014-01-01

    A probabilistic model for estimating the fatigue life of laminated composite plates subjected to constant-amplitude or variable-amplitude loading is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configurations....... Model parameters are estimated by Bayesian inference. The reference data used consists of constant-amplitude fatigue test results for a multi-directional laminate subjected to seven different load ratios. The paper describes the modelling techniques and the parameter estimation procedure, supported...

  3. Wind turbine fatigue damage evaluation based on a linear model and a spectral method

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Henriksen, Lars Christian; Hansen, Morten Hartvig

    2015-01-01

    presents a method to estimate wind turbine fatigue damage suited for optimization design applications. The method utilizes a high-order linear wind turbine model. The model comprehends a detailed description of the wind turbine and the controller. The fatigue is computed with a spectral method applied...... to power spectral densities of wind turbine sensor responses to turbulent wind. In this paper, the model is validated both in time domain and frequency domain with a nonlinear aeroservoelastic model. The approach is compared quantitatively against fatigue damage obtained from the power spectra of time...

  4. A Modified Fatigue Damage Model for High-Cycle Fatigue Life Prediction

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-01-01

    Full Text Available Based on the assumption of quasibrittle failure under high-cycle fatigue for the metal material, the damage constitutive equation and the modified damage evolution equation are obtained with continuum damage mechanics. Then, finite element method (FEM is used to describe the failure process of metal material. The increment of specimen’s life and damage state can be researched using damage mechanics-FEM. Finally, the lifetime of the specimen is got at the given stress level. The damage mechanics-FEM is inserted into ABAQUS with subroutine USDFLD and the Python language is used to simulate the fatigue process of titanium alloy specimens. The simulation results have a good agreement with the testing results under constant amplitude loading, which proves the accuracy of the method.

  5. Cusp catastrophe models for cognitive workload and fatigue in a verbally cued pictorial memory task.

    Science.gov (United States)

    Guastello, Stephen J; Boeh, Henry; Schimmels, Michael; Gorin, Hillary; Huschen, Samuel; Davis, Erin; Peters, Natalie E; Fabisch, Megan; Poston, Kirsten

    2012-10-01

    The aim of this study was to evaluate two cusp catastrophe models for cognitive workload and fatigue. They share similar cubic polynomial structures but derive from different underlying processes and contain variables that contribute to flexibility with respect to load and the ability to compensate for fatigue. Cognitive workload and fatigue both have a negative impact on performance and have been difficult to separate. Extended time on task can produce fatigue, but it can also produce a positive effect from learning or automaticity. In this two-part experiment, 129 undergraduates performed tasks involving spelling, arithmetic, memory, and visual search. The fatigue cusp for the central memory task was supported with the quantity of work performed and performance on an episodic memory task acting as the control parameters. There was a strong linear effect, however. The load manipulations for the central task were competition with another participant for rewards, incentive conditions, and time pressure. Results supported the workload cusp in which trait anxiety and the incentive manipulation acted as the control parameters. The cusps are generally better than linear models for analyzing workload and fatigue phenomena; practice effects can override fatigue. Future research should investigate multitasking and task sequencing issues, physical-cognitive task combinations, and a broader range of variables that contribute to flexibility with respect to load or compensate for fatigue. The new experimental medium and analytic strategy can be generalized to virtually any real-world cognitively demanding tasks. The particular results are generalizable to tasks involving visual search.

  6. Influence of dental restorations and mastication loadings on dentine fatigue behaviour: Image-based modelling approach.

    Science.gov (United States)

    Vukicevic, Arso M; Zelic, Ksenija; Jovicic, Gordana; Djuric, Marija; Filipovic, Nenad

    2015-05-01

    The aim of this study was to use Finite Element Analysis (FEA) to estimate the influence of various mastication loads and different tooth treatments (composite restoration and endodontic treatment) on dentine fatigue. The analysis of fatigue behaviour of human dentine in intact and composite restored teeth with root-canal-treatment using FEA and fatigue theory was performed. Dentine fatigue behaviour was analysed in three virtual models: intact, composite-restored and endodontically-treated tooth. Volumetric change during the polymerization of composite was modelled by thermal expansion in a heat transfer analysis. Low and high shrinkage stresses were obtained by varying the linear shrinkage of composite. Mastication forces were applied occlusally with the load of 100, 150 and 200N. Assuming one million cycles, Fatigue Failure Index (FFI) was determined using Goodman's criterion while residual fatigue lifetime assessment was performed using Paris-power law. The analysis of the Goodman diagram gave both maximal allowed crack size and maximal number of cycles for the given stress ratio. The size of cracks was measured on virtual models. For the given conditions, fatigue-failure is not likely to happen neither in the intact tooth nor in treated teeth with low shrinkage stress. In the cases of high shrinkage stress, crack length was much larger than the maximal allowed crack and failure occurred with 150 and 200N loads. The maximal allowed crack size was slightly lower in the tooth with root canal treatment which induced somewhat higher FFI than in the case of tooth with only composite restoration. Main factors that lead to dentine fatigue are levels of occlusal load and polymerization stress. However, root canal treatment has small influence on dentine fatigue. The methodology proposed in this study provides a new insight into the fatigue behaviour of teeth after dental treatments. Furthermore, it estimates maximal allowed crack size and maximal number of cycles for a

  7. Fatigue modelling according to the JCSS Probabilistic model code

    NARCIS (Netherlands)

    Vrouwenvelder, A.C.W.M.

    2007-01-01

    The Joint Committee on Structural Safety is working on a Model Code for full probabilistic design. The code consists out of three major parts: Basis of design, Load Models and Models for Material and Structural Properties. The code is intended as the operational counter part of codes like ISO,

  8. Modeling the effects of control systems of wind turbine fatigue life

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, K.G.; Laino, D.J. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-12-31

    In this study we look at the effect on fatigue life of two types of control systems. First, we investigate the Micon 65, an upwind, three bladed turbine with a simple yaw control system. Results indicate that increased fatigue damage to the blade root can be attributed to continuous operation at significant yaw error allowed by the control system. Next, we model a two-bladed teetered rotor turbine using three different control systems to adjust flap deflections. The first two limit peak power output, the third limits peak power and cyclic power output over the entire range of operation. Results for simulations conducted both with and without active control are compared to determine how active control affects fatigue life. Improvement in fatigue lifetimes were seen for all control schemes, with increasing fatigue lifetime corresponding to increased flap deflection activity. 13 refs., 6 figs., 2 tabs.

  9. Fatigue Modeling via Mammalian Auditory System for Prediction of Noise Induced Hearing Loss.

    Science.gov (United States)

    Sun, Pengfei; Qin, Jun; Campbell, Kathleen

    2015-01-01

    Noise induced hearing loss (NIHL) remains as a severe health problem worldwide. Existing noise metrics and modeling for evaluation of NIHL are limited on prediction of gradually developing NIHL (GDHL) caused by high-level occupational noise. In this study, we proposed two auditory fatigue based models, including equal velocity level (EVL) and complex velocity level (CVL), which combine the high-cycle fatigue theory with the mammalian auditory model, to predict GDHL. The mammalian auditory model is introduced by combining the transfer function of the external-middle ear and the triple-path nonlinear (TRNL) filter to obtain velocities of basilar membrane (BM) in cochlea. The high-cycle fatigue theory is based on the assumption that GDHL can be considered as a process of long-cycle mechanical fatigue failure of organ of Corti. Furthermore, a series of chinchilla experimental data are used to validate the effectiveness of the proposed fatigue models. The regression analysis results show that both proposed fatigue models have high corrections with four hearing loss indices. It indicates that the proposed models can accurately predict hearing loss in chinchilla. Results suggest that the CVL model is more accurate compared to the EVL model on prediction of the auditory risk of exposure to hazardous occupational noise.

  10. Fatigue Modeling via Mammalian Auditory System for Prediction of Noise Induced Hearing Loss

    Directory of Open Access Journals (Sweden)

    Pengfei Sun

    2015-01-01

    Full Text Available Noise induced hearing loss (NIHL remains as a severe health problem worldwide. Existing noise metrics and modeling for evaluation of NIHL are limited on prediction of gradually developing NIHL (GDHL caused by high-level occupational noise. In this study, we proposed two auditory fatigue based models, including equal velocity level (EVL and complex velocity level (CVL, which combine the high-cycle fatigue theory with the mammalian auditory model, to predict GDHL. The mammalian auditory model is introduced by combining the transfer function of the external-middle ear and the triple-path nonlinear (TRNL filter to obtain velocities of basilar membrane (BM in cochlea. The high-cycle fatigue theory is based on the assumption that GDHL can be considered as a process of long-cycle mechanical fatigue failure of organ of Corti. Furthermore, a series of chinchilla experimental data are used to validate the effectiveness of the proposed fatigue models. The regression analysis results show that both proposed fatigue models have high corrections with four hearing loss indices. It indicates that the proposed models can accurately predict hearing loss in chinchilla. Results suggest that the CVL model is more accurate compared to the EVL model on prediction of the auditory risk of exposure to hazardous occupational noise.

  11. ASTM Validates Air Pollution Test Methods

    Science.gov (United States)

    Chemical and Engineering News, 1973

    1973-01-01

    The American Society for Testing and Materials (ASTM) has validated six basic methods for measuring pollutants in ambient air as the first part of its Project Threshold. Aim of the project is to establish nationwide consistency in measuring pollutants; determining precision, accuracy and reproducibility of 35 standard measuring methods. (BL)

  12. Torsional fatigue model for limitorque type SMB/SB/SBD actuators for motor-operated valves

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, D.; Alvarez, P.D.; Kalsi, M.S. [Kalsi Engineering, Inc., Sugar Land, TX (United States)

    1996-12-01

    Kalsi Engineering, Inc. has recently developed a computer program to predict the torsional fatigue life of Limitorque Type SMB/SB/SBD actuators for motor-operated valves under given loading levels, including those that exceed the ratings. The development effort was an outgrowth of the {open_quote}Thrust Rating Increase{close_quote} test program. The fatigue model computes all pertinent stress components and their variations as a function of the loading ramp. The cumulative damage and fatigue life due to stress cycling is computed by use of a modification of Miner`s rule. Model predictions were validated against actual cyclic loading test results.

  13. Torsional fatigue model for limitorque type SMB/SB/SBD actuators for motor-operated valves

    International Nuclear Information System (INIS)

    Somogyi, D.; Alvarez, P.D.; Kalsi, M.S.

    1996-01-01

    Kalsi Engineering, Inc. has recently developed a computer program to predict the torsional fatigue life of Limitorque Type SMB/SB/SBD actuators for motor-operated valves under given loading levels, including those that exceed the ratings. The development effort was an outgrowth of the open-quote Thrust Rating Increase close-quote test program. The fatigue model computes all pertinent stress components and their variations as a function of the loading ramp. The cumulative damage and fatigue life due to stress cycling is computed by use of a modification of Miner's rule. Model predictions were validated against actual cyclic loading test results

  14. Multi-scale modelling of fatigue microcrack initiation

    International Nuclear Information System (INIS)

    Liu, Jia

    2013-01-01

    The thesis aims to improve the understanding and simulation of microcrack initiation induced by thermal fatigue and the induced crack network formation. The polycrystalline simulations allow the prediction of both macroscopic cyclic behavior and mean grain distributions of stress, plastic strain and number of cycles to microcrack initiation. Various aggregate meshes have been used, from the simplest ones using cubic grains up to a real 3D aggregate built thanks to many re-polishing and EBSD measurement sequences (Institut P', Poitiers). Tension-compression, cyclic shear and equi-biaxial loadings, with and without mean strain, have been considered. All the predictions are in qualitative agreement with many experimental observations obtained at various scales. The single crystal simulations allow us to predict the effect of slip localization in thin persistent slip bands (PSBs). Inside PSBs, vacancies are produced and annihilated because of cyclic dislocation interactions and may diffuse towards the surrounding matrix. This induces extrusion growth at the free surface of PSBs. Microcracking is modelled by cohesive zones located along the PSB - matrix interfaces. The predicted extrusion rates and numbers of cycles to microcrack initiation are in fair agreement with numerous experimental data concerning single and polycrystals, copper and 316L(N), under either air or inert environment. (author) [fr

  15. Two scale damage model and related numerical issues for thermo-mechanical high cycle fatigue

    International Nuclear Information System (INIS)

    Desmorat, R.; Kane, A.; Seyedi, M.; Sermage, J.P.

    2007-01-01

    On the idea that fatigue damage is localized at the microscopic scale, a scale smaller than the mesoscopic one of the Representative Volume Element (RVE), a three-dimensional two scale damage model has been proposed for High Cycle Fatigue applications. It is extended here to aniso-thermal cases and then to thermo-mechanical fatigue. The modeling consists in the micro-mechanics analysis of a weak micro-inclusion subjected to plasticity and damage embedded in an elastic meso-element (the RVE of continuum mechanics). The consideration of plasticity coupled with damage equations at micro-scale, altogether with Eshelby-Kroner localization law, allows to compute the value of microscopic damage up to failure for any kind of loading, 1D or 3D, cyclic or random, isothermal or aniso-thermal, mechanical, thermal or thermo-mechanical. A robust numerical scheme is proposed in order to make the computations fast. A post-processor for damage and fatigue (DAMAGE-2005) has been developed. It applies to complex thermo-mechanical loadings. Examples of the representation by the two scale damage model of physical phenomena related to High Cycle Fatigue are given such as the mean stress effect, the non-linear accumulation of damage. Examples of thermal and thermo-mechanical fatigue as well as complex applications on real size testing structure subjected to thermo-mechanical fatigue are detailed. (authors)

  16. An Investigation of High-Cycle Fatigue Models for Metallic Structures Exhibiting Snap-Through Response

    Science.gov (United States)

    Przekop, Adam; Rizzi, Stephen A.; Sweitzer, Karl A.

    2007-01-01

    A study is undertaken to develop a methodology for determining the suitability of various high-cycle fatigue models for metallic structures subjected to combined thermal-acoustic loadings. Two features of this problem differentiate it from the fatigue of structures subject to acoustic loading alone. Potentially large mean stresses associated with the thermally pre- and post-buckled states require models capable of handling those conditions. Snap-through motion between multiple post-buckled equilibrium positions introduces very high alternating stress. The thermal-acoustic time history response of a clamped aluminum beam structure with geometric and material nonlinearities is determined via numerical simulation. A cumulative damage model is employed using a rainflow cycle counting scheme and fatigue estimates are made for 2024-T3 aluminum using various non-zero mean fatigue models, including Walker, Morrow, Morrow with true fracture strength, and MMPDS. A baseline zero-mean model is additionally considered. It is shown that for this material, the Walker model produces the most conservative fatigue estimates when the stress response has a tensile mean introduced by geometric nonlinearity, but remains in the linear elastic range. However, when the loading level is sufficiently high to produce plasticity, the response becomes more fully reversed and the baseline, Morrow, and Morrow with true fracture strength models produce the most conservative fatigue estimates.

  17. Flight Attendant Work/Rest Patterns, Alertness, and Performance Assessment: Field Validation of Biomathematical Fatigue Modeling

    Science.gov (United States)

    2012-09-01

    several dynamic components such as a homeostatic sleep reservoir, circadian oscillator, and sleep inertia function (see Figure 1). Final cognitive...for example, via differences in sleep need, sleep inertia , or circadian phasing and amplitude. As we have seen in the present study and others...safety risks. The Sleep , Activity, Fatigue, and Task Effectiveness model (SAFTE; Hursh et al., 2004) is among the more mature fatigue models currently

  18. Toward a comprehensive, theoretical model of compassion fatigue: An integrative literature review.

    Science.gov (United States)

    Coetzee, Siedine K; Laschinger, Heather K S

    2018-03-01

    This study was an integrative literature review in relation to compassion fatigue models, appraising these models, and developing a comprehensive theoretical model of compassion fatigue. A systematic search on PubMed, EbscoHost (Academic Search Premier, E-Journals, Medline, PsycINFO, Health Source Nursing/Academic Edition, CINAHL, MasterFILE Premier and Health Source Consumer Edition), gray literature, and manual searches of included reference lists was conducted in 2016. The studies (n = 11) were analyzed, and the strengths and limitations of the compassion fatigue models identified. We further built on these models through the application of the conservation of resources theory and the social neuroscience of empathy. The compassion fatigue model shows that it is not empathy that puts nurses at risk of developing compassion fatigue, but rather a lack of resources, inadequate positive feedback, and the nurse's response to personal distress. By acting on these three aspects, the risk of developing compassion fatigue can be addressed, which could improve the retention of a compassionate and committed nurse workforce. © 2017 John Wiley & Sons Australia, Ltd.

  19. Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures

    Science.gov (United States)

    Tahir, Fraaz

    imaging analysis showed that the microstructural damage features (cracks and voids) are correlated with a new mechanical driving force parameter. The results from this image-based damage analysis were used to develop a phenomenological life-prediction methodology called the effective time fraction approach. Finally, the constitutive creep-fatigue response of the material at 950°C was modeled using a unified viscoplastic model coupled with a damage accumulation model. The simulation results were used to validate an energy-based constitutive life-prediction model, as a mechanistic model for potential component and structure level creep-fatigue analysis.

  20. Investigation on electromagnetic characteristics of modeling thermal fatigue cracks in numerical simulation by eddy current testing

    International Nuclear Information System (INIS)

    Wang, Jing; Yusa, Noritaka; Hashizume, Hidetoshi; Pan Hongliang; Kemppainen, Mika; Virkkuen, Iikka

    2012-01-01

    The present study discusses electromagnetic characteristics of modeling thermal fatigue crack in numerical simulation from view point of eddy current testing. Two thermal fatigue cracks introduced into SUS304 stainless steel plates are investigated. Eddy current signals are gathered by a differential plus point probe with several frequencies, 50 kHz, 100 kHz and 400 kHz. In the numerical simulation thermal fatigue crack is modeled as a region with constant width, true profile revealed by results of destructive testing, and uniform conductivity firstly. Further simulations are carried out to consider the possibility of variation of electromagnetic characteristics around the edge of crack. The results show that thermal fatigue cracks should be modeled as an almost nonconductive region no matter how the frequency is utilized. (author)

  1. Fatigue Modeling for Superelastic NiTi Considering Cyclic Deformation and Load Ratio Effects

    Science.gov (United States)

    Mahtabi, Mohammad J.; Shamsaei, Nima

    2017-09-01

    A cumulative energy-based damage model, called total fatigue toughness, is proposed for fatigue life prediction of superelastic NiTi alloys with various deformation responses (i.e., transformation stresses), which also accounts for the effects of mean strain and stress. Mechanical response of superelastic NiTi is highly sensitive to chemical composition, material processing, as well as operating temperature; therefore, significantly different deformation responses may be obtained for seemingly identical NiTi specimens. In this paper, a fatigue damage parameter is proposed that can be used for fatigue life prediction of superelastic NiTi alloys with different mechanical properties such as loading and unloading transformation stresses, modulus of elasticity, and austenite-to-martensite start and finish strains. Moreover, the model is capable of capturing the effects of tensile mean strain and stress on the fatigue behavior. Fatigue life predictions using the proposed damage parameter for specimens with different cyclic stress responses, tested at various strain ratios ( R ɛ = ɛ min /ɛ max) are shown to be in very good agreement with the experimentally observed fatigue lives.

  2. Novel Feature Modelling the Prediction and Detection of sEMG Muscle Fatigue towards an Automated Wearable System

    Directory of Open Access Journals (Sweden)

    Mohamed R. Al-Mulla

    2010-05-01

    Full Text Available Surface Electromyography (sEMG activity of the biceps muscle was recorded from ten subjects performing isometric contraction until fatigue. A novel feature (1D spectro_std was used to extract the feature that modeled three classes of fatigue, which enabled the prediction and detection of fatigue. Initial results of class separation were encouraging, discriminating between the three classes of fatigue, a longitudinal classification on Non-Fatigue and Transition-to-Fatigue shows 81.58% correct classification with accuracy 0.74 of correct predictions while the longitudinal classification on Transition-to-Fatigue and Fatigue showed lower average correct classification of 66.51% with a positive classification accuracy 0.73 of correct prediction. Comparison of the 1D spectro_std with other sEMG fatigue features on the same dataset show a significant improvement in classification, where results show a significant 20.58% (p < 0.01 improvement when using the 1D spectro_std to classify Non-Fatigue and Transition-to-Fatigue. In classifying Transition-to-Fatigue and Fatigue results also show a significant improvement over the other features giving 8.14% (p < 0.05 on average of all compared features.

  3. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, High-Cycle and Low-Cycle Mechanical Fatigue, Creep and Thermal Fatigue Effects

    Science.gov (United States)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.

  4. A model of rotationally-sampled wind turbulence for predicting fatigue loads in wind turbines

    Science.gov (United States)

    Spera, David A.

    1995-01-01

    Empirical equations are presented with which to model rotationally-sampled (R-S) turbulence for input to structural-dynamic computer codes and the calculation of wind turbine fatigue loads. These equations are derived from R-S turbulence data which were measured at the vertical-plane array in Clayton, New Mexico. For validation, the equations are applied to the calculation of cyclic flapwise blade loads for the NASA/DOE Mod-2 2.5-MW experimental HAWT's (horizontal-axis wind turbines), and the results compared to measured cyclic loads. Good correlation is achieved, indicating that the R-S turbulence model developed in this study contains the characteristics of the wind which produce many of the fatigue loads sustained by wind turbines. Empirical factors are included which permit the prediction of load levels at specified percentiles of occurrence, which is required for the generation of fatigue load spectra and the prediction of the fatigue lifetime of structures.

  5. On the influence of the environment on modeling the fatigue crack growth process

    International Nuclear Information System (INIS)

    Mc Evily, A.J.

    1987-01-01

    The effect of the environment at room and elevated temperature were considered with respect to the influence exerted on the basic mechanical aspects of the fatigue crack growth process. An experimental assessment of this influence was obtained by conducting fatigue crack growth tests both in air and vacuum and the results of such experiments are given. Topics considered include crack closure, short crack growth in notched and unnotched specimens, Mode II crack growth, and the effects of oxidation at elevated temperatures. It is shown that the basic mechanisms of fatigue crack growth can be greatly altered by the presence of oxide films at the fatigue crack tip. Modeling the mechanical aspects of the crack growth process is by itself a challenging task. In addition, the environmental considerations adds to the complexity of the modeling process. (Author)

  6. Numerical/phenomenological model for fatigue life prediction of hybrid laminates

    Science.gov (United States)

    Dadej, Konrad; Surowska, Barbara; Bieniaś, Jarosław

    2018-01-01

    In this article, the fatigue stress-cycle (S-N) curves of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) were investigated. Experimental fatigue tests were performed on unidirectional specimens and the S-N curves for GFRP and CFRP materials were determined. Obtained S-N curves were next described by phenomenological model (PM) based on mathematical function containing convexity and concavity ranges of stress-cycle curve. Based on the PM and numerical static analyses performed in ABAQUS/Standard on hybrid glass-carbon fiber reinforced polymer, the fatigue S-N curve was predicted for this material. Numerical/phenomenological model predictions were validated by experimental tests, where good agreement was obtained in the field of static tensile strength, shape of S-N curve and infinite fatigue life.

  7. Survey on damage mechanics models for fatigue life prediction

    NARCIS (Netherlands)

    Silitonga, S.; Maljaars, J.; Soetens, F.; Snijder, H.H.

    2013-01-01

    Engineering methods to predict the fatigue life of structures have been available since the beginning of the 20th century. However, a practical problem arises from complex loading conditions and a significant concern is the accuracy of the methods under variable amplitude loading. This paper

  8. Fatigue behavior and modeling of short fiber reinforced polymer composites

    Science.gov (United States)

    Mortazavian, Seyyedvahid

    This study investigates uniaxial fatigue behavior of two short glass fiber polymer composites including 30 wt% short glass fiber polybutylene terephthalate (PBT) and 35 wt% short glass fiber polyamide-6 (PA6) under a number of load and environmental conditions. The main objectives are to evaluate the behavior of these materials under monotonic and cyclic loadings and present fatigue life prediction methodologies to reduce their development expenses and time. The considered environmental effects include those of low and elevated temperatures as well as moisture (or water absorption) effect. Fatigue behavior is also explored under the action of nonzero mean stress (or R ratio) as well as various cyclic loading frequencies. Material anisotropy and geometrical discontinuity effects (i.e. stress concentration) are also considered in this study. Microscopic failure analysis is also performed, when necessary, to identify failure mechanisms. Tensile tests were performed in various mold flow directions and with two thicknesses at a range of temperatures and strain rates. A shell-core morphology resulting from orientation distribution of fibers influenced the degree of anisotropy. Tensile strength and elastic modulus nonlinearly decreased with specimen angle and Tsai-Hill criterion was found to correlate variation of these properties with the fiber orientation. Kinetics of water absorption was studied and found to follow the Fick's law. Tensile tests were performed at room temperature with specimens in the longitudinal and transverse directions and with various degrees of water absorption. Mathematical relations were developed to represent tensile properties as a function of water content. Mathematical relationships were developed to represent the stress-strain response, as well as tensile properties in terms of strain rate and temperature. Time-temperature superposition principle was also employed to superimpose the effect of temperature and strain rate on tensile strength

  9. Fatigue of thin walled tubes in copper alloy CuNi10

    DEFF Research Database (Denmark)

    Lambertsen, Søren Heide; Damkilde, Lars; Jepsen, Michael S.

    2016-01-01

    The current work concerns the investigation of the fatigue resistance of CuNi10 tubes, which are frequently used in heat exchangers of large ship engines. The lifetime performances of the exchanger tubes are greatly affected by the environmental conditions, where especially the temperature...... by means of the ASTM E739 guideline and one-sided tolerance limits factor method. The tests show good fatigue resistance and the risk for a failure is low in aspect to the case of a ship heat exchanger....... fluctuations and the harsh chloride environment cause fatigue and corrosion problems, respectively. A failure of the tubes will trigger an instantaneous shutdown of the engine. Thus, the paper will focus on a model for fatigue life estimation of the CuNi10 material. In the current case of a ship engine...

  10. Development of a probabilistic model for the prediction of fatigue life in the very high cycle fatigue (VHCF range based on inclusion population

    Directory of Open Access Journals (Sweden)

    Kolyshkin A.

    2014-06-01

    Full Text Available The VHCF behaviour of metallic materials containing microstructural defects such as non-metallic inclusions is determined by the size and distribution of the damage dominating defects. In the present paper, the size and location of about 60.000 inclusions measured on the longitudinal and transversal cross sections of AISI 304 sheet form a database for the probabilistic determination of failure-relevant inclusion distribution in fatigue specimens and their corresponding fatigue lifes. By applying the method of Murakami et al. the biggest measured inclusions were used in order to predict the size of failure-relevant inclusions in the fatigue specimens. The location of the crack initiating inclusions was defined based on the modeled inclusion population and the stress distribution in the fatigue specimen, using the probabilistic Monte Carlo framework. Reasonable agreement was obtained between modeling and experimental results.

  11. A Fatigue Life Prediction Model of Welded Joints under Combined Cyclic Loading

    Science.gov (United States)

    Goes, Keurrie C.; Camarao, Arnaldo F.; Pereira, Marcos Venicius S.; Ferreira Batalha, Gilmar

    2011-01-01

    A practical and robust methodology is developed to evaluate the fatigue life in seam welded joints when subjected to combined cyclic loading. The fatigue analysis was conducted in virtual environment. The FE stress results from each loading were imported to fatigue code FE-Fatigue and combined to perform the fatigue life prediction using the S x N (stress x life) method. The measurement or modelling of the residual stresses resulting from the welded process is not part of this work. However, the thermal and metallurgical effects, such as distortions and residual stresses, were considered indirectly through fatigue curves corrections in the samples investigated. A tube-plate specimen was submitted to combined cyclic loading (bending and torsion) with constant amplitude. The virtual durability analysis result was calibrated based on these laboratory tests and design codes such as BS7608 and Eurocode 3. The feasibility and application of the proposed numerical-experimental methodology and contributions for the technical development are discussed. Major challenges associated with this modelling and improvement proposals are finally presented.

  12. Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth.

    Science.gov (United States)

    Ausiello, Pietro; Franciosa, Pasquale; Martorelli, Massimo; Watts, David C

    2011-05-01

    In restored teeth, stresses at the tooth-restoration interface during masticatory processes may fracture the teeth or the restoration and cracks may grow and propagate. The aim was to apply numerical methodologies to simulate the behavior of a restored tooth and to evaluate fatigue lifetimes before crack failure. Using a CAD-FEM procedure and fatigue mechanic laws, the fatigue damage of a restored molar was numerically estimated. Tessellated surfaces of enamel and dentin were extracted by applying segmentation and classification algorithms, to sets of 2D image data. A user-friendly GUI, which enables selection and visualization of 3D tessellated surfaces, was developed in a MatLab(®) environment. The tooth-boundary surfaces of enamel and dentin were then created by sweeping operations through cross-sections. A class II MOD cavity preparation was then added into the 3D model and tetrahedral mesh elements were generated. Fatigue simulation was performed by combining a preliminary static FEA simulation with classical fatigue mechanical laws. Regions with the shortest fatigue-life were located around the fillets of the class II MOD cavity, where the static stress was highest. The described method can be successfully adopted to generate detailed 3D-FE models of molar teeth, with different cavities and restorative materials. This method could be quickly implemented for other dental or biomechanical applications. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Electrophysiology of Muscle Fatigue in Cardiopulmonary Resuscitation on Manikin Model.

    Science.gov (United States)

    Cobo-Vázquez, Carlos; De Blas, Gemma; García-Canas, Pablo; Del Carmen Gasco-García, María

    2018-01-01

    Cardiopulmonary resuscitation requires the provider to adopt positions that could be dangerous for his or her spine, specifically affecting the muscles and ligaments in the lumbar zone and the scapular spinal muscles. Increased fatigue caused by muscular activity during the resuscitation could produce a loss of quality and efficacy, resulting in compromising resuscitation. The aim of this study was to evaluate the maximum time a rescuer can perform uninterrupted chest compressions correctly without muscle fatigue. This pilot study was performed at Universidad Complutense de Madrid (Spain) with the population recruited following CONSORT 2010 guidelines. From the 25 volunteers, a total of 14 students were excluded because of kyphoscoliosis (4), lumbar muscle pain (1), anti-inflammatory treatment (3), or not reaching 80% of effective chest compressions during the test (6). Muscle activity at the high spinal and lumbar (L5) muscles was assessed using electromyography while students performed continuous chest compressions on a ResusciAnne manikin. The data from force exerted were analyzed according to side and muscle groups using Student's t test for paired samples. The influence of time, muscle group, and side was analyzed by multivariate analyses ( p ≤ .05). At 2 minutes, high spinal muscle activity (right: 50.82 ± 9.95; left: 57.27 ± 20.85 μV/ms) reached the highest values. Activity decreased at 5 and 15 minutes. At 2 minutes, L5 activity (right: 45.82 ± 9.09; left: 48.91 ± 10.02 μV/ms) reached the highest values. After 5 minutes and at 15 minutes, activity decreased. Fatigue occurred bilaterally and time was the most important factor. Fatigue began at 2 minutes. Rescuers exert muscular countervailing forces in order to maintain effective compressions. This imbalance of forces could determine the onset of poor posture, musculoskeletal pain, and long-term injuries in the rescuer.

  14. Experimental evidence and physical models of fatigue crack initiation

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Man, Jiří

    2016-01-01

    Roč. 91, OCT (2016), s. 294-303 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GA13-23652S; GA ČR GA13-32665S; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Crack initiation * Persistent slip band * Point defects * Extrusions * Intrusions Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.899, year: 2016

  15. Fatigue and Model Analysis of the CNC Cylindrical Grinder

    Directory of Open Access Journals (Sweden)

    Lin Jui-Chang

    2016-01-01

    Full Text Available The purpose of this study is to lower deviation of workpiece by meeting high stability and rigidity to prevent the resonance in producing procedure of the CNC universal cylindrical grinding machine. Using finite element analysis software ABAQUS in grinder machine tools for numerical simulation of several analyses for the following: structural rigidity analysis, optimized design, vibration frequency analysis and fatigue damage analysis. This work aims on state of the transmission of outer diameter spindle to proceed in stress and fatigue life analysis by FE-SAFE Subroutine. The max values of equivalent stress and average amount of displacement in structural rigidity analysis are 0.67(Mpa and 0.92(µm. Optimization design effectively reducing extreme value of stress, the largest decline of about 5.43%. Modal analysis compared with the experimental, the average error percentage was less than 10% of parts. The whole structure error does not exceed 3%. The fatigue life of approximately 1,193,988 times, estimates into real life time can use more than sixty years, from the viewpoint of structural strength, spindle has a good high breaking strength is designed to be safe.

  16. Crack Closure Effects on Fatigue Crack Propagation Rates: Application of a Proposed Theoretical Model

    Directory of Open Access Journals (Sweden)

    José A. F. O. Correia

    2016-01-01

    Full Text Available Structural design taking into account fatigue damage requires a thorough knowledge of the behaviour of materials. In addition to the monotonic behaviour of the materials, it is also important to assess their cyclic response and fatigue crack propagation behaviour under constant and variable amplitude loading. Materials whenever subjected to fatigue cracking may exhibit mean stress effects as well as crack closure effects. In this paper, a theoretical model based on the same initial assumptions of the analytical models proposed by Hudak and Davidson and Ellyin is proposed to estimate the influence of the crack closure effects. This proposal based further on Walker’s propagation law was applied to the P355NL1 steel using an inverse analysis (back-extrapolation of experimental fatigue crack propagation results. Based on this proposed model it is possible to estimate the crack opening stress intensity factor, Kop, the relationship between U=ΔKeff/ΔK quantity and the stress intensity factor, the crack length, and the stress ratio. This allows the evaluation of the influence of the crack closure effects for different stress ratio levels, in the fatigue crack propagation rates. Finally, a good agreement is found between the proposed theoretical model and the analytical models presented in the literature.

  17. Curcumin, a polyphenolic antioxidant, attenuates chronic fatigue syndrome in murine water immersion stress model.

    Science.gov (United States)

    Gupta, Amit; Vij, Garima; Sharma, Sameer; Tirkey, Naveen; Rishi, Praveen; Chopra, Kanwaljit

    2009-01-01

    Chronic fatigue syndrome, infection and oxidative stress are interrelated in epidemiological case studies. However, data demonstrating scientific validation of epidemiological claims regarding effectiveness of nutritional supplements for chronic fatigue syndrome are lacking. This study is designed to evaluate the effect of natural polyphenol, curcumin, in a mouse model of immunologically induced fatigue, where purified lipopolysaccharide (LPS) and Brucella abortus (BA) antigens were used as immunogens. The assessment of chronic fatigue syndrome was based on chronic water-immersion stress test for 10 min daily for 19 days and the immobility time was taken as the marker of fatigue. Mice challenged with LPS or BA for 19 days showed significant increase in the immobility time and hyperalgesia on day 19, as well as marked increase in serum tumor necrosis factor-alpha (TNF-alpha) levels. Concurrent treatment with curcumin resulted in significantly decreased immobility time as well as hyperalgesia. There was significant attenuation of oxidative stress as well as TNF-alpha levels. These findings strongly suggest that during immunological activation, there is significant increase in oxidative stress and curcumin can be a valuable option in the treatment of chronic fatigue syndrome.

  18. A simple model for fatigue crack growth in concrete applied to a hinge beam model

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe; Olesen, John Forbes

    2017-01-01

    In concrete structures, fatigue is one of the major causes of material deterioration. Repeated loads result in formation of cracks. Propagation of these cracks cause internal progressive damage within the concrete material which ultimately leads to failure. This paper presents a simplified general...... concept for non-linear analysis of concrete subjected to cyclic loading. The model is based on the fracture mechanics concepts of the fictitious crack model, considering a fiber of concrete material, and a simple energy based approach for estimating the bridging stress under cyclic loading. Further...

  19. Detection and Alert of muscle fatigue considering a Surface Electromyography Chaotic Model

    International Nuclear Information System (INIS)

    Herrera, V; Romero, J F; Amestegui, M

    2011-01-01

    This work propose a detection and alert algorithm for muscle fatigue in paraplegic patients undergoing electro-therapy sessions. The procedure is based on a mathematical chaotic model emulating physiological signals and Continuous Wavelet Transform (CWT). The chaotic model developed is based on a logistic map that provides suitable data accomplishing some physiological signal class patterns. The CWT was applied to signals generated by the model and the resulting vector was obtained through Total Wavelet Entropy (TWE). In this sense, the presented work propose a viable and practical alert and detection algorithm for muscle fatigue.

  20. Detection and Alert of muscle fatigue considering a Surface Electromyography Chaotic Model

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, V; Romero, J F [Engineering, Modeling and Applied Social Sciences Center, ABC Federal University, Santo Andr - SP (Brazil); Amestegui, M, E-mail: victoria.herrera@ufabc.edu.br [Engineering Faculty, Electronics Engineering, Universidad Mayor de San Andres, La Paz (Bolivia, Plurinational State of)

    2011-03-01

    This work propose a detection and alert algorithm for muscle fatigue in paraplegic patients undergoing electro-therapy sessions. The procedure is based on a mathematical chaotic model emulating physiological signals and Continuous Wavelet Transform (CWT). The chaotic model developed is based on a logistic map that provides suitable data accomplishing some physiological signal class patterns. The CWT was applied to signals generated by the model and the resulting vector was obtained through Total Wavelet Entropy (TWE). In this sense, the presented work propose a viable and practical alert and detection algorithm for muscle fatigue.

  1. Model-experiment dialog in low cycle fatigue of stainless steels

    International Nuclear Information System (INIS)

    Aubin, Veronique

    2008-01-01

    In this HDR report (accreditation to supervise research), the author first proposes a synthesis of her research activities in the study of the mechanical behaviour in low cycle fatigue (cyclic hardening, plasticity surfaces), of modelling of the fatigue mechanical behaviour (phenomenological modelling, modelling with scale change), of progressive deformation (experimental analysis, analysis and simulation of plasticity at the microstructure scale). The second part addresses other activities in the field of research (behaviour and damage characterization of an austenitic-ferritic stainless steel), publication and education supervising, teaching

  2. An analytical model which combines roughness- and plasticity- induced fatigue crack closure

    Science.gov (United States)

    Chen, Nong

    In this study an analytical PICC-RICC Model was developed to describe better the near-threshold fatigue behavior. The PICC-RICC Model was built upon a strip-yield type PICC model originally proposed by Newman and later modified by Hou and Lawrence. A zigzag crack growth path was introduced to simulate surface roughness. The two opposing crack surfaces were considered to be translated and thus mismatched by the mixed-mode displacements occurring near the deflected crack tip. The model is powerful and unique in that it combines the effects of RICC and PICC. Thus, the gradual transition from RICC to PICC dominated crack closure is handled naturally by this model. The influences of the geometrical features of the surface roughness, R-ratio and the cyclic load range on RICC were examined using the PICC-RICC Model. Near-threshold fatigue behavior of various materials was predicted. The effect of microstructure on the RICC level was studied. The predicted results compared favorably with experimental data. The fatigue notch size effect was investigated using the PICC-RICC model. The initial crack length (asb{i}) for propagation was estimated. The predicted notch fatigue strength compared favorably with the Initiation-Propagation (I-P) Model prediction and test data. The existence of a "worst case notch" previously postulated using the I-P Model was confirmed.

  3. Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions

    Science.gov (United States)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Sloss, Clayton

    2014-10-01

    Strain-controlled low-cycle fatigue (LCF) tests were conducted on ductile cast iron (DCI) at strain rates of 0.02, 0.002, and 0.0002/s in the temperature range from room temperature to 1073 K (800 °C). A constitutive-damage model was developed within the integrated creep-fatigue theory (ICFT) framework on the premise of strain decomposition into rate-independent plasticity and time-dependent creep. Four major damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement (IE), (iii) creep, and (iv) oxidation were considered in a nonlinear creep-fatigue interaction model which represents the overall damage accumulation process consisting of oxidation-assisted fatigue crack nucleation and propagation in coalescence with internally distributed damage ( e.g., IE and creep), leading to final fracture. The model was found to agree with the experimental observations of the complex DCI-LCF phenomena, for which the linear damage summation rule would fail.

  4. Creep-fatigue modelling in structural steels using empirical and constitutive creep methods implemented in a strip-yield model

    Science.gov (United States)

    Andrews, Benjamin J.

    The phenomena of creep and fatigue have each been thoroughly studied. More recently, attempts have been made to predict the damage evolution in engineering materials due to combined creep and fatigue loading, but these formulations have been strictly empirical and have not been used successfully outside of a narrow set of conditions. This work proposes a new creep-fatigue crack growth model based on constitutive creep equations (adjusted to experimental data) and Paris law fatigue crack growth. Predictions from this model are compared to experimental data in two steels: modified 9Cr-1Mo steel and AISI 316L stainless steel. Modified 9Cr-1Mo steel is a high-strength steel used in the construction of pressure vessels and piping for nuclear and conventional power plants, especially for high temperature applications. Creep-fatigue and pure creep experimental data from the literature are compared to model predictions, and they show good agreement. Material constants for the constitutive creep model are obtained for AISI 316L stainless steel, an alloy steel widely used for temperature and corrosion resistance for such components as exhaust manifolds, furnace parts, heat exchangers and jet engine parts. Model predictions are compared to pure creep experimental data, with satisfactory results. Assumptions and constraints inherent in the implementation of the present model are examined. They include: spatial discretization, similitude, plane stress constraint and linear elasticity. It is shown that the implementation of the present model had a non-trivial impact on the model solutions in 316L stainless steel, especially the spatial discretization. Based on these studies, the following conclusions are drawn: 1. The constitutive creep model consistently performs better than the Nikbin, Smith and Webster (NSW) model for predicting creep and creep-fatigue crack extension. 2. Given a database of uniaxial creep test data, a constitutive material model such as the one developed for

  5. Fatigue analysis of steel catenary risers based on a plasticity model

    Science.gov (United States)

    Dong, Yongqiang; Sun, Liping

    2015-03-01

    The most critical issue in the steel catenary riser design is to evaluate the fatigue damage in the touchdown zone accurately. Appropriate modeling of the riser-soil resistance in the touchdown zone can lead to significant cost reduction by optimizing design. This paper presents a plasticity model that can be applied to numerically simulate riser-soil interaction and evaluate dynamic responses and the fatigue damage of a steel catenary riser in the touchdown zone. Utilizing the model, numerous riser-soil elements are attached to the steel catenary riser finite elements, in which each simulates local foundation restraint along the riser touchdown zone. The riser-soil interaction plasticity model accounts for the behavior within an allowable combined loading surface. The model will be represented in this paper, allowing simple numerical implementation. More importantly, it can be incorporated within the structural analysis of a steel catenary riser with the finite element method. The applicability of the model is interpreted theoretically and the results are shown through application to an offshore 8.625″ steel catenary riser example. The fatigue analysis results of the liner elastic riser-soil model are also shown. According to the comparison results of the two models, the fatigue life analysis results of the plasticity framework are reasonable and the horizontal effects of the riser-soil interaction can be included.

  6. Probabilistic model for fatigue crack growth and fracture of welded joints in civil engineering structures

    NARCIS (Netherlands)

    Maljaars, J.; Steenbergen, H.M.G.M.; Vrouwenvelder, A.C.W.M.

    2012-01-01

    This paper presents a probabilistic assessment model for linear elastic fracture mechanics (LEFM). The model allows the determination of the failure probability of a structure subjected to fatigue loading. The distributions of the random variables for civil engineering structures are provided, and

  7. Viscoelastic and fatigue properties of model methacrylate-based dentin adhesives

    OpenAIRE

    Singh, Viraj; Misra, Anil; Marangos, Orestes; Park, Jonggu; Ye, Qiang; Kieweg, Sarah L.; Spencer, Paulette

    2010-01-01

    The objective of the current study is to characterize the viscoelastic and fatigue properties of model methacrylate-based dentin adhesives under dry and wet conditions. Static, creep, and fatigue tests were performed on cylindrical samples in a 3-point bending clamp. Static results showed that the apparent elastic modulus of the model adhesive varied from 2.56 to 3.53 GPa in the dry condition, and from 1.04 to 1.62 GPa in the wet condition, depending upon the rate of loading. Significant diff...

  8. Sensitivity Analysis of Fatigue Crack Growth Model for API Steels in Gaseous Hydrogen.

    Science.gov (United States)

    Amaro, Robert L; Rustagi, Neha; Drexler, Elizabeth S; Slifka, Andrew J

    2014-01-01

    A model to predict fatigue crack growth of API pipeline steels in high pressure gaseous hydrogen has been developed and is presented elsewhere. The model currently has several parameters that must be calibrated for each pipeline steel of interest. This work provides a sensitivity analysis of the model parameters in order to provide (a) insight to the underlying mathematical and mechanistic aspects of the model, and (b) guidance for model calibration of other API steels.

  9. Application of Steinberg vibration fatigue model for structural verification of space instruments

    Science.gov (United States)

    García, Andrés; Sorribes-Palmer, Félix; Alonso, Gustavo

    2018-01-01

    Electronic components in spaceships are subjected to vibration loads during the ascent phase of the launcher. It is important to verify by tests and analysis that all parts can survive in the most severe load cases. The purpose of this paper is to present the methodology and results of the application of the Steinberg's fatigue model to estimate the life of electronic components of the EPT-HET instrument for the Solar Orbiter space mission. A Nastran finite element model (FEM) of the EPT-HET instrument was created and used for the structural analysis. The methodology is based on the use of the FEM of the entire instrument to calculate the relative displacement RDSD and RMS values of the PCBs from random vibration analysis. These values are used to estimate the fatigue life of the most susceptible electronic components with the Steinberg's fatigue damage equation and the Miner's cumulative fatigue index. The estimations are calculated for two different configurations of the instrument and three different inputs in order to support the redesign process. Finally, these analytical results are contrasted with the inspections and the functional tests made after the vibration tests, concluding that this methodology can adequately predict the fatigue damage or survival of the electronic components.

  10. Visual fatigue modeling for stereoscopic video shot based on camera motion

    Science.gov (United States)

    Shi, Guozhong; Sang, Xinzhu; Yu, Xunbo; Liu, Yangdong; Liu, Jing

    2014-11-01

    As three-dimensional television (3-DTV) and 3-D movie become popular, the discomfort of visual feeling limits further applications of 3D display technology. The cause of visual discomfort from stereoscopic video conflicts between accommodation and convergence, excessive binocular parallax, fast motion of objects and so on. Here, a novel method for evaluating visual fatigue is demonstrated. Influence factors including spatial structure, motion scale and comfortable zone are analyzed. According to the human visual system (HVS), people only need to converge their eyes to the specific objects for static cameras and background. Relative motion should be considered for different camera conditions determining different factor coefficients and weights. Compared with the traditional visual fatigue prediction model, a novel visual fatigue predicting model is presented. Visual fatigue degree is predicted using multiple linear regression method combining with the subjective evaluation. Consequently, each factor can reflect the characteristics of the scene, and the total visual fatigue score can be indicated according to the proposed algorithm. Compared with conventional algorithms which ignored the status of the camera, our approach exhibits reliable performance in terms of correlation with subjective test results.

  11. Assessment of wrought ASTM F1058 cobalt alloy properties for permanent surgical implants.

    Science.gov (United States)

    Clerc, C O; Jedwab, M R; Mayer, D W; Thompson, P J; Stinson, J S

    1997-01-01

    The behavior of the ASTM F1058 wrought cobalt-chromium-nickel-molybdenum-iron alloy (commonly referred to as Elgiloy or Phynox) is evaluated in terms of mechanical properties, magnetic resonance imaging, corrosion resistance, and biocompatibility. The data found in the literature, the experimental corrosion and biocompatibility results presented in this article, and its long track record as an implant material demonstrate that the cobalt superalloy is an appropriate material for permanent surgical implants that require high yield strength and fatigue resistance combined with high elastic modulus, and that it can be safely imaged with magnetic resonance.

  12. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen [General Electric Global Research, Niskayuna, NY (United States)

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  13. Overview (this manuscript is an overview of an ASTM ...

    Science.gov (United States)

    The Symposium on Developing Consensus Standards for Measuring Chemical Emissions from Spray Polyurethane Foam (SPF) Insulation was held on April 30th and May 1, 2015. Sponsored by ASTM Committee D22 on Air Quality, the symposium was held in Anaheim, CA, in conjunction with the standards development meetings of the Committee. ASTM D22.05 is developing tools to answer fundamental questions: what is emitted from SPF, how long do the emissions persist, how does ventilation impact concentrations and potential exposures? How can we model these processes to address the multiplicity of products, applications, and environmental conditions that may impact exposure to emissions over the life cycle of the material? These are complex and interrelated questions that have challenged the indoor environments research community for many years. Objectives of Symposium: Standardized methods are needed to assess the potential impacts of SPF insulation products on indoor air quality, establish re-entry times for trade workers or re-occupancy times for building occupants after product installation and to evaluate post-occupancy ventilation. The objective of the symposium was to provide a forum for the exchange of ideas from SPF manufacturers, regulatory agencies, indoor air quality professionals, testing labs, air quality consultants, instrument vendors and other stakeholders. Following the presentations on the current status of measuring emissions from SPF insulation, participants di

  14. finite element model for predicting residual stresses in shielded

    African Journals Online (AJOL)

    eobe

    Diffractometer (XRD 6000). From the Finite Element Model Simulation, the transverse residual stress in the x ... Keywords: Residual stress, 3D FEM, Shielded manual metal arc welding, Low Carbon Steel (ASTM A36), X-Ray diffraction, degree of ..... I. ''Residual stress effects on fatigue life of welded structures using LEFM'',.

  15. Modeling Delamination in Postbuckled Composite Structures Under Static and Fatigue Loads

    Science.gov (United States)

    Bisagni, Chiara; Brambilla, Pietro; Bavila, Carlos G.

    2013-01-01

    The ability of the Abaqus progressive Virtual Crack Closure Technique (VCCT) to model delamination in composite structures was investigated for static, postbuckling, and fatigue loads. Preliminary evaluations were performed using simple Double Cantilever Beam (DCB) and Mixed-Mode Bending (MMB) specimens. The nodal release sequences that describe the propagation of the delamination front were investigated. The effect of using a sudden or a gradual nodal release was evaluated by considering meshes aligned with the crack front as well as misaligned meshes. Fatigue simulations were then performed using the Direct Cyclic Fatigue (DCF) algorithm. It was found that in specimens such as the DCB, which are characterized by a nearly linear response and a pure fracture mode, the algorithm correctly predicts the Paris Law rate of propagation. However, the Abaqus DCF algorithm does not consider different fatigue propagation laws in different fracture modes. Finally, skin/stiffener debonding was studied in an aircraft fuselage subcomponent in which debonding occurs deep into post-buckling deformation. VCCT was shown to be a robust tool for estimating the onset propagation. However, difficulties were found with the ability of the current implementation of the Abaqus progressive VCCT to predict delamination propagation within structures subjected to postbuckling deformations or fatigue loads.

  16. Probabilistic modeling of crack networks in thermal fatigue; Modelisation probabiliste de formation de reseaux de fissures de fatigue thermique

    Energy Technology Data Exchange (ETDEWEB)

    Malesys, N

    2007-11-15

    Thermal superficial crack networks have been detected in mixing zone of cooling system in nuclear power plants. Numerous experimental works have already been led to characterize initiation and propagation of these cracks. The random aspect of initiation led to propose a probabilistic model for the formation and propagation of crack networks in thermal fatigue. In a first part, uniaxial mechanical test were performed on smooth and slightly notched specimens in order to characterize the initiation of multiple cracks, their arrest due to obscuration and the coalescence phenomenon by recovery of amplification stress zones. In a second time, the probabilistic model was established under two assumptions: the continuous cracks initiation on surface, described by a Poisson point process law with threshold, and the shielding phenomenon which prohibits the initiation or the propagation of a crack if this one is in the relaxation stress zone of another existing crack. The crack propagation is assumed to follow a Paris' law based on the computation of stress intensity factors at the top and the bottom of crack. The evolution of multiaxial cracks on the surface can be followed thanks to three quantities: the shielding probability, comparable to a damage variable of the structure, the initiated crack density, representing the total number of cracks per unit surface which can be compared to experimental observations, and the propagating crack density, representing the number per unit surface of active cracks in the network. The crack sizes distribution is also computed by the model allowing an easier comparison with experimental results. (author)

  17. Health-aware Model Predictive Control of Wind Turbines using Fatigue Prognosis

    DEFF Research Database (Denmark)

    Sardi, Hector Eloy Sanchez; Escobet, Teressa; Puig, Vicenc

    2015-01-01

    Wind turbines components are subject to considerable fatigue due to extreme environmental conditions to which are exposed, especially those located offshore. Interest in the integration of control with fatigue load minimization has increased in recent years. The integration of a system health...... management module with the control provides a mechanism for the wind turbine to operate safely and optimize the trade-off between components life and energy production. The research presented in this paper explores the integration of model predictive control (MPC) with fatigue-based prognosis approach...... to minimize the damage of wind turbine components (the blades). The controller objective is modified by adding an extra criterion that takes into account the accumulated damage. The scheme is implemented and tested using a high fidelity simulator of a utility scale wind turbine....

  18. Experimental and modeling results of creep fatigue life of Inconel 617 and Haynes 230 at 850 C

    International Nuclear Information System (INIS)

    Chen, Xiang; Sokolov, Mikhail A.; Sham, Sam; Erdman, Donald L. III; Busby, Jeremy T.; Mo, Kun; Stubbins, James

    2013-01-01

    Creep fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure for both materials decreased under creep fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep fatigue life. The linear damage summation could predict the creep fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep fatigue life prediction results for both materials.

  19. Fatigue Characteristics of 3D Printed Acrylonitrile Butadiene Styrene (ABS)

    Science.gov (United States)

    Padzi, M. M.; Bazin, M. M.; Muhamad, W. M. W.

    2017-11-01

    Recently, the use of 3D printer technology has become significant to industries, especially when involving the new product development. 3D printing is a technology, which produces the 3D product or prototype using a layer-by-layer technique. However, there becomes less research on the mechanical performance of the 3D printed component. In the present work, fatigue characteristics of 3D printed specimen have been studied. Acrylonitrile butadiene styrene (ABS) has been chosen as a material research due to its wide applications. Two types of specimen used, which is the 3D printing and moulding specimens. Fused deposition modelling (FDM) technique was used to produce the specimens. The dog bone shape part was produced based on ASTM D638 standard and the tensile test has been carried out to get the mechanical properties. Fatigue test was carried out at 40%, 60% and 80% of the tensile strength. The moulded part shows higher fatigue cycles compared to 3D printed part for all loading percentages. Fatigue lives for 40%, 60% and 80%, were 911, 2645 and 26948 cycles, respectively. The results indicated that 3D printed part has a lower fatigue life, which may not suitable for industrial applications. However, the 3D printed part could be improved by using various parameters and may be introduced in low strength application.

  20. Implementation of fatigue model for unidirectional laminate based on finite element analysis: theory and practice

    Directory of Open Access Journals (Sweden)

    D. Carrella-Payan

    2016-10-01

    Full Text Available The aim of this study is to deal with the simulation of intralaminar fatigue damage in unidirectional composite under multi-axial and variable amplitude loadings. The variable amplitude and multi-axial loading is accounted for by using the damage hysteresis operator based on Brokate method [6]. The proposed damage model for fatigue is based on stiffness degradation laws from Van Paepegem combined with the ‘damage’ cycle jump approach extended to deal with unidirectional carbon fibres. The parameter identification method is here presented and parameter sensitivities are discussed. The initial static damage of the material is accounted for by using the Ladevèze damage model and the permanent shear strain accumulation based on Van Paepegem’s formulation. This approach is implemented into commercial software (Siemens PLM. The validation case is run on a bending test coupon (with arbitrary stacking sequence and load level in order to minimise the risk of inter-laminar damages. This intra-laminar fatigue damage model combined efficient methods with a low number of tests to identify the parameters of the stiffness degradation law, this overall procedure for fatigue life prediction is demonstrated to be cost efficient at industrial level. This work concludes on the next challenges to be addressed (validation tests, multiple-loadings validation, failure criteria, inter-laminar damages….

  1. Fatigue and Serviceability Limit State Model Basis for Assessment of Offshore Wind Energy Converters

    DEFF Research Database (Denmark)

    Thöns, Sebastian; Faber, M. H.; Rücker, W.

    2012-01-01

    and monitoring framework and will be applied for estab-lishing the "as designed and constructed" reliability as prior information for the assessment and the design of monitoring systems. The constitutive physical equations are introduced in combination with the fatigue and serviceability limit state requirements......This paper develops the models for the structural performance of the loading and probabilistic characterization for the fatigue and the serviceability limit states for the support structure of offshore wind energy converters. These models and a sensitivity study are part of a risk based assessment...... as the starting point for the development of the structural performance and loading models. With these models introduced in detail, several modeling aspects for both limit states are analyzed. This includes analyses of the influence on the hot spot stresses by applying a contact formulation for the pile guide...

  2. Experimental and Finite Element Modeling of Near-Threshold Fatigue Crack Growth for the K-Decreasing Test Method

    Science.gov (United States)

    Smith, Stephen W.; Seshadri, Banavara R.; Newman, John A.

    2015-01-01

    The experimental methods to determine near-threshold fatigue crack growth rate data are prescribed in ASTM standard E647. To produce near-threshold data at a constant stress ratio (R), the applied stress-intensity factor (K) is decreased as the crack grows based on a specified K-gradient. Consequently, as the fatigue crack growth rate threshold is approached and the crack tip opening displacement decreases, remote crack wake contact may occur due to the plastically deformed crack wake surfaces and shield the growing crack tip resulting in a reduced crack tip driving force and non-representative crack growth rate data. If such data are used to life a component, the evaluation could yield highly non-conservative predictions. Although this anomalous behavior has been shown to be affected by K-gradient, starting K level, residual stresses, environmental assisted cracking, specimen geometry, and material type, the specifications within the standard to avoid this effect are limited to a maximum fatigue crack growth rate and a suggestion for the K-gradient value. This paper provides parallel experimental and computational simulations for the K-decreasing method for two materials (an aluminum alloy, AA 2024-T3 and a titanium alloy, Ti 6-2-2-2-2) to aid in establishing clear understanding of appropriate testing requirements. These simulations investigate the effect of K-gradient, the maximum value of stress-intensity factor applied, and material type. A material independent term is developed to guide in the selection of appropriate test conditions for most engineering alloys. With the use of such a term, near-threshold fatigue crack growth rate tests can be performed at accelerated rates, near-threshold data can be acquired in days instead of weeks without having to establish testing criteria through trial and error, and these data can be acquired for most engineering materials, even those that are produced in relatively small product forms.

  3. Interfacial crack arrest in sandwich beams subjected to fatigue loading using a novel crack arresting device – Numerical modelling

    DEFF Research Database (Denmark)

    Martakos, G.; Andreasen, J.H.; Berggreen, Christian

    2017-01-01

    A novel crack arresting device is implemented in foam-cored composite sandwich beams and tested using the Sandwich Tear Test (STT) configuration. A finite element model of the setup is developed, and the predictions are correlated with observations and results from a recently conducted experimental...... fatigue test study. Based on a linear elastic fracture mechanics approach, the developed FE model is utilised to simulate crack propagation and arrest in foam-cored sandwich beam specimens subjected to fatigue loading conditions. The effect of the crack arresters on the fatigue life is analysed......, and the predictive results are subsequently compared with the observations from the previously conducted fatigue tests. The FE model predicts the energy release rate and the mode mixity based on the derived crack surface displacements, utilising algorithms for the prediction of accelerated fatigue crack growth...

  4. Risk factors and visual fatigue of baggage X-ray security screeners: a structural equation modelling analysis.

    Science.gov (United States)

    Yu, Rui-Feng; Yang, Lin-Dong; Wu, Xin

    2017-05-01

    This study identified the risk factors influencing visual fatigue in baggage X-ray security screeners and estimated the strength of correlations between those factors and visual fatigue using structural equation modelling approach. Two hundred and five X-ray security screeners participated in a questionnaire survey. The result showed that satisfaction with the VDT's physical features and the work environment conditions were negatively correlated with the intensity of visual fatigue, whereas job stress and job burnout had direct positive influences. The path coefficient between the image quality of VDT and visual fatigue was not significant. The total effects of job burnout, job stress, the VDT's physical features and the work environment conditions on visual fatigue were 0.471, 0.469, -0.268 and -0.251 respectively. These findings indicated that both extrinsic factors relating to VDT and workplace environment and psychological factors including job burnout and job stress should be considered in the workplace design and work organisation of security screening tasks to reduce screeners' visual fatigue. Practitioner Summary: This study identified the risk factors influencing visual fatigue in baggage X-ray security screeners and estimated the strength of correlations between those factors and visual fatigue. The findings were of great importance to the workplace design and the work organisation of security screening tasks to reduce screeners' visual fatigue.

  5. Annual Book of ASTM Standards, Part 23: Water; Atmospheric Analysis.

    Science.gov (United States)

    American Society for Testing and Materials, Philadelphia, PA.

    Standards for water and atmospheric analysis are compiled in this segment, Part 23, of the American Society for Testing and Materials (ASTM) annual book of standards. It contains all current formally approved ASTM standard and tentative test methods, definitions, recommended practices, proposed methods, classifications, and specifications. One…

  6. Computational Modeling to Predict Fatigue Behavior of NiTi Stents: What Do We Need?

    Science.gov (United States)

    Dordoni, Elena; Petrini, Lorenza; Wu, Wei; Migliavacca, Francesco; Dubini, Gabriele; Pennati, Giancarlo

    2015-01-01

    NiTi (nickel-titanium) stents are nowadays commonly used for the percutaneous treatment of peripheral arterial disease. However, their effectiveness is still debated in the clinical field. In fact a peculiar cyclic biomechanical environment is created before and after stent implantation, with the risk of device fatigue failure. An accurate study of the device fatigue behavior is of primary importance to ensure a successful stenting procedure. Regulatory authorities recognize the possibility of performing computational analyses instead of experimental tests for the assessment of medical devices. However, confidence in numerical methods is only possible after verification and validation of the models used. For the case of NiTi stents, mechanical properties are strongly dependent on the device dimensions and the whole treatments undergone during manufacturing process. Hence, special attention should be paid to the accuracy of the description of the device geometry and the material properties implementation into the numerical code, as well as to the definition of the fatigue limit. In this paper, a path for setting up an effective numerical model for NiTi stent fatigue assessment is proposed and the results of its application in a specific case study are illustrated. PMID:26011245

  7. Fatigue-stress relaxation behaviour of alloy 800: Microstructure and modeling

    International Nuclear Information System (INIS)

    Dumaz, P.; Terriez, J.M.; Regnard, C.; Robert, G.

    1985-01-01

    This paper deals with the results found by completing a study work aimed at giving due consideration to the variables controlling the microstructure variation in modeling the alloy 800 fatigue-stress relaxation behaviour along with their effect on the fracturing process. The related push-pull cycles were performed in forced strain condition and the relaxing operation was carried out with the material exhibiting its maximum tension strained condition. Microstructure investigations and behaviour modeling are presented. (orig./RF)

  8. Incorporation of caffeine into a quantitative model of fatigue and sleep.

    Science.gov (United States)

    Puckeridge, M; Fulcher, B D; Phillips, A J K; Robinson, P A

    2011-03-21

    A recent physiologically based model of human sleep is extended to incorporate the effects of caffeine on sleep-wake timing and fatigue. The model includes the sleep-active neurons of the hypothalamic ventrolateral preoptic area (VLPO), the wake-active monoaminergic brainstem populations (MA), their interactions with cholinergic/orexinergic (ACh/Orx) input to MA, and circadian and homeostatic drives. We model two effects of caffeine on the brain due to competitive antagonism of adenosine (Ad): (i) a reduction in the homeostatic drive and (ii) an increase in cholinergic activity. By comparing the model output to experimental data, constraints are determined on the parameters that describe the action of caffeine on the brain. In accord with experiment, the ranges of these parameters imply significant variability in caffeine sensitivity between individuals, with caffeine's effectiveness in reducing fatigue being highly dependent on an individual's tolerance, and past caffeine and sleep history. Although there are wide individual differences in caffeine sensitivity and thus in parameter values, once the model is calibrated for an individual it can be used to make quantitative predictions for that individual. A number of applications of the model are examined, using exemplar parameter values, including: (i) quantitative estimation of the sleep loss and the delay to sleep onset after taking caffeine for various doses and times; (ii) an analysis of the system's stable states showing that the wake state during sleep deprivation is stabilized after taking caffeine; and (iii) comparing model output successfully to experimental values of subjective fatigue reported in a total sleep deprivation study examining the reduction of fatigue with caffeine. This model provides a framework for quantitatively assessing optimal strategies for using caffeine, on an individual basis, to maintain performance during sleep deprivation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Catastrophe models for cognitive workload and fatigue in N-back tasks.

    Science.gov (United States)

    Guastello, Stephen J; Reiter, Katherine; Malon, Matthew; Timm, Paul; Shircel, Anton; Shaline, James

    2015-04-01

    N-back tasks place a heavy load on working memory, and thus make good candidates for studying cognitive workload and fatigue (CWLF). This study extended previous work on CWLF which separated the two phenomena with two cusp catastrophe models. Participants were 113 undergraduates who completed 2-back and 3-back tasks with both auditory and visual stimuli simultaneously. Task data were complemented by several measures hypothesized to be related to cognitive elasticity and compensatory abilities and the NASA TLX ratings of subjective workload. The adjusted R2 was .980 for the workload model, which indicated a highly accurate prediction with six bifurcation (elasticity versus rigidity) effects: algebra flexibility, TLX performance, effort, and frustration; and psychosocial measures of inflexibility and monitoring. There were also two cognitive load effects (asymmetry): 2 vs. 3-back and TLX temporal demands. The adjusted R2 was .454 for the fatigue model, which contained two bifurcation variables indicating the amount of work done, and algebra flexibility as the compensatory ability variable. Both cusp models were stronger than the next best linear alternative model. The study makes an important step forward by uncovering an apparently complete model for workload, finding the role of subjective workload in the context of performance dynamics, and finding CWLF dynamics in yet another type of memory-intensive task. The results were also consistent with the developing notion that performance deficits induced by workload and deficits induced by fatigue result from the impact of the task on the workspace and executive functions of working memory respectively.

  10. Modeling the Tensile Strength of Carbon Fiber - Reinforced Ceramic - Matrix Composites Under Multiple Fatigue Loading

    Science.gov (United States)

    Li, Longbiao

    2016-06-01

    An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.

  11. An EMG-driven biomechanical model that accounts for the decrease in moment generation capacity during a dynamic fatigued condition.

    Science.gov (United States)

    Rao, Guillaume; Berton, Eric; Amarantini, David; Vigouroux, Laurent; Buchanan, Thomas S

    2010-07-01

    Although it is well known that fatigue can greatly reduce muscle forces, it is not generally included in biomechanical models. The aim of the present study was to develop an electromyographic-driven (EMG-driven) biomechanical model to estimate the contributions of flexor and extensor muscle groups to the net joint moment during a nonisokinetic functional movement (squat exercise) performed in nonfatigued and in fatigued conditions. A methodology that aims at balancing the decreased muscle moment production capacity following fatigue was developed. During an isometric fatigue session, a linear regression was created linking the decrease in force production capacity of the muscle (normalized force/EMG ratio) to the EMG mean frequency. Using the decrease in mean frequency estimated through wavelet transforms between dynamic squats performed before and after the fatigue session as input to the previous linear regression, a coefficient accounting for the presence of fatigue in the quadriceps group was computed. This coefficient was used to constrain the moment production capacity of the fatigued muscle group within an EMG-driven optimization model dedicated to estimate the contributions of the knee flexor and extensor muscle groups to the net joint moment. During squats, our results showed significant increases in the EMG amplitudes with fatigue (+23.27% in average) while the outputs of the EMG-driven model were similar. The modifications of the EMG amplitudes following fatigue were successfully taken into account while estimating the contributions of the flexor and extensor muscle groups to the net joint moment. These results demonstrated that the new procedure was able to estimate the decrease in moment production capacity of the fatigued muscle group.

  12. Resilience of a FIT screening programme against screening fatigue: a modelling study

    Directory of Open Access Journals (Sweden)

    Marjolein J. E. Greuter

    2016-09-01

    Full Text Available Abstract Background Repeated participation is important in faecal immunochemical testing (FIT screening for colorectal cancer (CRC. However, a large number of screening invitations over time may lead to screening fatigue and consequently, decreased participation rates. We evaluated the impact of screening fatigue on overall screening programme effectiveness. Methods Using the ASCCA model, we simulated the Dutch CRC screening programme consisting of biennial FIT screening in individuals aged 55–75. We studied the resilience of the programme against heterogeneity in screening attendance and decrease in participation rate due to screening fatigue. Outcomes were reductions in CRC incidence and mortality compared to no screening. Results Assuming a homogenous 63 % participation, i.e., each round each individual was equally likely to attend screening, 30 years of screening reduced CRC incidence and mortality by 39 and 53 %, respectively, compared to no screening. When assuming clustered participation, i.e., three subgroups of individuals with a high (95 %, moderate (65 % and low (5 % participation rate, screening was less effective; reductions were 33 % for CRC incidence and 43 % for CRC mortality. Screening fatigue considerably reduced screening effectiveness; if individuals refrained from screening after three negative screens, model-predicted incidence reductions decreased to 25 and 18 % under homogenous and clustered participation, respectively. Figures were 34 and 25 % for mortality reduction. Conclusions Screening will substantially decrease CRC incidence and mortality. However, screening effectiveness can be seriously compromised if screening fatigue occurs. This warrants careful monitoring of individual screening behaviour and consideration of targeted invitation systems in individuals who have (repeatedly missed screening rounds.

  13. Experimental Investigation on the Fatigue Mechanical Properties of Intermittently Jointed Rock Models Under Cyclic Uniaxial Compression with Different Loading Parameters

    Science.gov (United States)

    Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng

    2018-01-01

    Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.

  14. Modelling of ultrasonic impact treatment (UIT of welded joints and its effect on fatigue strength

    Directory of Open Access Journals (Sweden)

    K.L. Yuan

    2015-10-01

    Full Text Available Ultrasonic impact treatment (UIT is a remarkable post-weld technique applying mechanical impacts in combination with ultrasound into the welded joints. In the present work, a 3D simulation method including welding simulation, numerical modelling of UIT-process and an evaluation of fatigue crack growth has been developed. In the FE model, the actual treatment conditions and local mechanical characteristics due to acoustic softening are set as input parameters. The plastic deformation and compressive stress layer are found to be more pronounced when acoustic softening takes place. The predicted internal residual stress distributions of welded joint before and after UIT are compared with experimental results, showing a fairly good agreement with each other. Finally, simulated results of fatigue crack growth in various residual stress fields are well compared with test results, so that the proposed model may provide an effective tool to simulate UIT-process in engineering structures.

  15. Fatigue Behavior and Modeling of Additively Manufactured Ti-6Al-4V Including Interlayer Time Interval Effects

    Science.gov (United States)

    Torries, Brian; Shamsaei, Nima

    2017-12-01

    The effects of different cooling rates, as achieved by varying the interlayer time interval, on the fatigue behavior of additively manufactured Ti-6Al-4V specimens were investigated and modeled via a microstructure-sensitive fatigue model. Comparisons are made between two sets of specimens fabricated via Laser Engineered Net Shaping (LENS™), with variance in interlayer time interval accomplished by depositing either one or two specimens per print operation. Fully reversed, strain-controlled fatigue tests were conducted, with fractography following specimen failure. A microstructure-sensitive fatigue model was calibrated to model the fatigue behavior of both sets of specimens and was found to be capable of correctly predicting the longer fatigue lives of the single-built specimens and the reduced scatter of the double-built specimens; all data points fell within the predicted upper and lower bounds of fatigue life. The time interval effects and the ability to be modeled are important to consider when producing test specimens that are smaller than the production part (i.e., property-performance relationships).

  16. A Continuum Damage Mechanics Model for the Static and Cyclic Fatigue of Cellular Composites

    Science.gov (United States)

    Huber, Otto

    2017-01-01

    The fatigue behavior of a cellular composite with an epoxy matrix and glass foam granules is analyzed and modeled by means of continuum damage mechanics. The investigated cellular composite is a particular type of composite foam, and is very similar to syntactic foams. In contrast to conventional syntactic foams constituted by hollow spherical particles (balloons), cellular glass, mineral, or metal place holders are combined with the matrix material (metal or polymer) in the case of cellular composites. A microstructural investigation of the damage behavior is performed using scanning electron microscopy. For the modeling of the fatigue behavior, the damage is separated into pure static and pure cyclic damage and described in terms of the stiffness loss of the material using damage models for cyclic and creep damage. Both models incorporate nonlinear accumulation and interaction of damage. A cycle jumping procedure is developed, which allows for a fast and accurate calculation of the damage evolution for constant load frequencies. The damage model is applied to examine the mean stress effect for cyclic fatigue and to investigate the frequency effect and the influence of the signal form in the case of static and cyclic damage interaction. The calculated lifetimes are in very good agreement with experimental results. PMID:28809806

  17. Energy, fatigue, or both? A bifactor modeling approach to the conceptualization and measurement of vitality.

    Science.gov (United States)

    Deng, Nina; Guyer, Rick; Ware, John E

    2015-01-01

    Vitality is an important domain reflecting both the physical and emotional components of health-related quality of life. Because of its complexity, it has been defined and measured both broadly and narrowly. We explored the dimensionality of a very comprehensive item bank hypothesized to measure vitality and its related concepts. Secondary analyses were conducted using the responses of 1,343 adults representative of the US general population to Internet-based surveys including 42 items compiled from multiple scales (e.g., SF-36 Vitality, PROMIS-Fatigue), covering a broad range of vitality-related content areas (energy, fatigue, and their interference with physical, mental, social activities, and quality of life). Exploratory and confirmatory factor models were evaluated independently using split-half samples. Bifactor model was used to assess the essential unidimensionality of the items, in comparison with traditional unidimensional, multidimensional, and hierarchical models. Method effects of a common scale or phrase were modeled via correlating errors. The exploratory factor analysis identified one dominant factor. The confirmatory factor analysis identified a best-fitting (CFI = 0.964, RMSEA = 0.084) bifactor model with one general (vitality) and two group (energy and fatigue) factors, explaining 69, 3, and 4 % of total variance. Correlating errors accounting for the method effects were important in identifying the substantive dimensionality of the items. The bifactor model proved to be useful for evaluating the dimensionality of a complex construct. Results supported conceptualizing and measuring vitality as a unidimensional energy-fatigue construct. We encourage future studies comparing practical implications of measures based on the broader and narrower conceptualizations of vitality.

  18. The Representation of Inflammatory Signals in the Brain – A Model for Subjective Fatigue in Multiple Sclerosis

    Science.gov (United States)

    Hanken, Katrin; Eling, Paul; Hildebrandt, Helmut

    2014-01-01

    In multiple sclerosis (MS) patients, fatigue is rated as one of the most common and disabling symptoms. However, the pathophysiology underlying this fatigue is not yet clear. Several lines of evidence suggest that immunological factors, such as elevated levels of pro-inflammatory cytokines, may contribute to subjective fatigue in MS patients. Pro-inflammatory cytokines represent primary mediators of immune-to-brain-communication, modulating changes in the neurophysiology of the central nervous system. Recently, we proposed a model arguing that fatigue in MS patients is a subjective feeling, which is related to inflammation. Moreover, it implies that fatigue can be measured behaviorally only by applying specific cognitive tasks related to alertness and vigilance. In the present review, we focus on the subjective feeling of MS-related fatigue. We examine the hypothesis that the subjective feeling of MS-related fatigue may be a variant of inflammation-induced sickness behavior, resulting from cytokine-mediated activity changes within brain areas involved in interoception and homeostasis including the insula, the anterior cingulate, and the hypothalamus. We first present studies demonstrating a relationship between pro-inflammatory cytokines and subjective fatigue in healthy individuals, in people with inflammatory disorders, and particularly in MS patients. Subsequently, we discuss studies analyzing the impact of anti-inflammatory treatment on fatigue. In the next part of this review, we present studies on the transmission and neural representation of inflammatory signals, with a special focus on possible neural concomitants of inflammation-induced fatigue. We also present two of our studies on the relationship between local gray and white matter atrophy and fatigue in MS patients. Finally, we discuss some implications of our findings and future perspectives. PMID:25566171

  19. The representation of inflammatory signals in the brain – a model for subjective fatigue in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Katrin eHanken

    2014-12-01

    Full Text Available In multiple sclerosis (MS patients, fatigue is rated as one of the most common and disabling symptoms. However, the pathophysiology underlying this fatigue is not yet clear. Several lines of evidence suggest that immunological factors, such as elevated levels of proinflammatory cytokines, may contribute to subjective fatigue in MS patients. Proinflammatory cytokines represent primary mediators of immune-to-brain-communication, modulating changes in the neurophysiology of the central nervous system. Recently, we proposed a model arguing that fatigue in MS patients is a subjective feeling which is related to inflammation. Moreover, it implies that fatigue can be measured behaviorally only by applying specific cognitive tasks related to alertness and vigilance. In the present review we focus on the subjective feeling of MS-related fatigue. We examine the hypothesis that the subjective feeling of MS-related fatigue may be a variant of inflammation-induced sickness behavior, resulting from cytokine-mediated activity changes within brain areas involved in interoception and homeostasis including the insula, the anterior cingulate and the hypothalamus. We first present studies demonstrating a relationship between proinflammatory cytokines and subjective fatigue in healthy individuals, in people with inflammatory disorders, and particularly in MS patients. Subsequently, we discuss studies analyzing the impact of anti-inflammatory treatment on fatigue. In the next part of this review we present studies on the transmission and neural representation of inflammatory signals, with a special focus on possible neural concomitants of inflammation-induced fatigue. We also present two of our studies on the relationship between local gray and white matter atrophy and fatigue in MS patients. Finally, we discuss some implications of our findings and future perspectives.

  20. Fatigue behaviour FEM modeling of deep groove ball bearing mounted in automotive alternator submitted to variable loading

    Directory of Open Access Journals (Sweden)

    Azianou Ayao. E.

    2014-06-01

    Full Text Available Ball bearings subsurface materials are subjected to rolling contact fatigue with multiaxial stress state during loading cycle. The complex operating conditions of automotive bearings are different from classic operating conditions their fatigue crack initiation predicted by standards can be seen underestimated. This work presents a numerical approach of ball bearings to evaluate its fatigue behaviour in order to predict the life. A preliminary study has been done to evaluate the load distribution in the bearings. The results are integrated in a numerical dynamic model to study the bearing material rolling fatigue behaviour in constant and variable loading cases. By using fatigue criteria and damage laws, the analysis of stress state in bearing material leads to life prediction or the number of cycles before crack initiations. These results are compared to current standard methods used for ball bearing life prediction.

  1. Usage of Parameterized Fatigue Spectra and Physics-Based Systems Engineering Models for Wind Turbine Component Sizing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Taylor; Guo, Yi; Veers, Paul; Dykes, Katherine; Damiani, Rick

    2016-01-26

    Software models that use design-level input variables and physics-based engineering analysis for estimating the mass and geometrical properties of components in large-scale machinery can be very useful for analyzing design trade-offs in complex systems. This study uses DriveSE, an OpenMDAO-based drivetrain model that uses stress and deflection criteria to size drivetrain components within a geared, upwind wind turbine. Because a full lifetime fatigue load spectrum can only be defined using computationally-expensive simulations in programs such as FAST, a parameterized fatigue loads spectrum that depends on wind conditions, rotor diameter, and turbine design life has been implemented. The parameterized fatigue spectrum is only used in this paper to demonstrate the proposed fatigue analysis approach. This paper details a three-part investigation of the parameterized approach and a comparison of the DriveSE model with and without fatigue analysis on the main shaft system. It compares loads from three turbines of varying size and determines if and when fatigue governs drivetrain sizing compared to extreme load-driven design. It also investigates the model's sensitivity to shaft material parameters. The intent of this paper is to demonstrate how fatigue considerations in addition to extreme loads can be brought into a system engineering optimization.

  2. Effect of fibre arrangement on the multiaxial fatigue of fibrous composites: a micromechanical computational model

    Directory of Open Access Journals (Sweden)

    Roberto Brighenti

    2015-10-01

    Full Text Available Structural components made of fibre-reinforced materials are frequently used in engineering applications. Fibre-reinforced composites are multiphase materials, and complex mechanical phenomena take place at limit conditions but also during normal service situations, especially under fatigue loading, causing a progressive deterioration and damage. Under repeated loading, the degradation mainly occurs in the matrix material and at the fibre-matrix interface, and such a degradation has to be quantified for design structural assessment purposes. To this end, damage mechanics and fracture mechanics theories can be suitably applied to examine such a problem. Damage concepts can be applied to the matrix mechanical characteristics and, by adopting a 3-D mixed mode fracture description of the fibre-matrix detachment, fatigue fracture mechanics concepts can be used to determine the progressive fibre debonding responsible for the loss of load bearing capacity of the reinforcing phase. In the present paper, a micromechanical model is used to evaluate the unixial or multiaxial fatigue behaviour of structures with equi-oriented or randomly distributed fibres. The spatial fibre arrangement is taken into account through a statistical description of their orientation angles for which a Gaussian-like distribution is assumed, whereas the mechanical effect of the fibres on the composite is accounted for by a homogenization approach aimed at obtaining the macroscopic elastic constants of the material. The composite material behaves as an isotropic one for randomly distributed fibres, while it is transversally isotropic for unidirectional fibres. The fibre arrangement in the structural component influences the fatigue life with respect to the biaxiality ratio for multiaxial constant amplitude fatigue loading. One representative parametric example is discussed.

  3. Understanding the Association of Fatigue With Other Symptoms of Fibromyalgia: Development of a Cluster Model.

    Science.gov (United States)

    Lukkahatai, Nada; Walitt, Brian; Espina, Alexandra; Gelio, Alves; Saligan, Leorey N

    2016-01-01

    To develop a symptoms cluster model that can describe factors of fibromyalgia syndrome (FMS) associated with fatigue severity as reported by the sample and to explore FMS clinical symptom subclusters based on varying symptom intensities. FMS individuals (n = 120, 82% ages 31-60 years, 90% women, 59% white) diagnosed with the 1990 or 2010 American College of Rheumatology diagnostic criteria were enrolled. Participants completed multiple validated self-report questionnaires to measure fatigue, pain, depression, anxiety, pain catastrophizing, daytime sleepiness, cognitive function, and FMS-related polysymptomatic distress. Cluster analysis using SPSS 19.0 and structural equation modeling using AMOS 17.0 were used. Final structural equation modeling the symptoms cluster model showed good fit and revealed that FMS fatigue was associated with widespread pain, symptoms severity, pain intensity, pain interference, cognitive dysfunction, catastrophizing, anxiety, and depression (χ(2)  = 121.72 (98df), P > 0.05, χ(2) /df = 1.242, comparative fit index = 0.982, root mean square error of approximation = 0.045). Two distinct clinical symptom subclusters emerged: subcluster 1 (78% of total subjects), defined by widespread pain, unrefreshed waking, and somatic symptoms, and subcluster 2 (22% of total subjects), defined by fatigue and cognitive dysfunction with pain being a less severe and less widespread occurrence. Overall, subcluster 1 had more intense symptoms than subcluster 2. FMS symptoms may be categorized into 2 clinical subclusters. These findings have implications for an illness whose diagnosis and management are symptom dependent. A longitudinal study capturing the variability in the symptom experience of FMS subjects is warranted. © 2016, American College of Rheumatology.

  4. A three-parameter model for fatigue crack growth data analysis

    Directory of Open Access Journals (Sweden)

    A. De Iorio

    2012-07-01

    Full Text Available A three-parameters model for the interpolation of fatigue crack propagation data is proposed. It has been validated by a Literature data set obtained by testing 180 M(T specimens under three different loading levels. In details, it is highlighted that the results of the analysis carried out by means of the proposed model are more smooth and clear than those obtainable using other methods or models. Also, the parameters of the model have been computed and some peculiarities have been picked out.

  5. Characterization of the Effects of Fatigue on the Central Nervous System (CNS) and Drug Therapies

    National Research Council Canada - National Science Library

    Mery, Laura

    2007-01-01

    .... The model focused on central fatigue. Central fatigue associated with sleep disruption may precede peripheral fatigue, and therefore may predict impaired performance earlier than peripheral fatigue...

  6. Stress and Fatigue Life Modeling of Cannon Breech Closures Including Effects of Material Strength and Residual Stress

    National Research Council Canada - National Science Library

    Underwood, John

    2000-01-01

    ...; overload residual stress. Modeling of applied and residual stresses at the location of the fatigue failure site is performed by elastic-plastic finite element analysis using ABAQUS and by solid...

  7. Statistical Models of Mean Stress and Water Environment Effects on the Fatigue Behavior of 304 Stainless Steel

    International Nuclear Information System (INIS)

    Leax, T.R.

    1999-01-01

    Recent research efforts have focused on characterizing the effects of light water reactor environments on the fatigue behavior of austenitic stainless steels. In conjunction with these experimental programs, there has been a significant effort at Argonne National Laboratory to develop statistical models for predicting the fatigue behavior of austenitic stainless steels in air and water environments at prototypical temperatures and loading rates. Some recent testing has also been concerned with the effect of mean stress on the fatigue behavior of 304 stainless steel in air. The ultimate goal of all these efforts is to allow development of fatigue design curves and design procedures that will assure adequate margin to fatigue crack initiation under prototypical operating conditions. In this paper, a best-fit strain-life curve for 304 stainless steel in air that takes into account the effect of mean stress is developed using the Smith-Watson-Topper equivalent strain parameter. A model for predicting the effect of water environments on fatigue life in both low and high oxygen water environments for a range of temperatures and loading rates is also described. Additional effort is required to develop the most appropriate way to develop a fatigue design curve from the mean stress and water effects models

  8. Low Cycle Fatigue Behaviour of DP Steels: Micromechanical Modelling vs. Validation

    Directory of Open Access Journals (Sweden)

    Ghazal Moeini

    2017-07-01

    Full Text Available This study aims to simulate the stabilised stress-strain hysteresis loop of dual phase (DP steel using micromechanical modelling. For this purpose, the investigation was conducted both experimentally and numerically. In the experimental part, the microstructure characterisation, monotonic tensile tests and low cycle fatigue tests were performed. In the numerical part, the representative volume element (RVE was employed to study the effect of the DP steel microstructure of the low cycle fatigue behavior of DP steel. A dislocation-density based model was utilised to identify the tensile behavior of ferrite and martensite. Then, by establishing a correlation between the monotonic and cyclic behavior of ferrite and martensite phases, the cyclic deformation properties of single phases were estimated. Accordingly, Chaboche kinematic hardening parameters were identified from the predicted cyclic curve of individual phases in DP steel. Finally, the predicted hysteresis loop from low cycle fatigue modelling was in very good agreement with the experimental one. The stabilised hysteresis loop of DP steel can be successfully predicted using the developed approach.

  9. Probabilistic Modeling and Simulation of Metal Fatigue Life Prediction

    National Research Council Canada - National Science Library

    Heffern, Thomas

    2002-01-01

    ...% FLE The work of this thesis was to investigate the probability distributions of test data taken for aluminum 7050-T745 1, and to attempt to develop a probability based model from the variation...

  10. Static and fatigue biomechanical properties of anterior thoracolumbar instrumentation systems. A synthetic testing model.

    Science.gov (United States)

    Kotani, Y; Cunningham, B W; Parker, L M; Kanayama, M; McAfee, P C

    1999-07-15

    A mechanical testing standard for anterior thoracolumbar instrumentation systems was introduced, using a synthetic model. Twelve recent instrumentation systems were tested in static and fatigue modes. To establish the testing standard for anterior thoracolumbar instrumentation systems using a synthetic model and to evaluate the static and fatigue biomechanical properties of 12 anterior thoracolumbar instrumentation systems. Although numerous studies have been performed to evaluate the biomechanics of anterior spinal instrumentation using a cadaveric or animal tissue, problems of specimen variation, lack of reproducibility, and inability to perform fatigue testing have been pointed out. In no studies has a precise synthetic testing standard for anterior thoracolumbar instrumentation systems been described. An ultra-high-molecular-weight polyethylene cylinder was designed according to the anatomic dimensions of the vertebral body. Two cylinders spanned by spinal instrumentation simulated a total corpectomy defect, and a compressive lateral bending load was applied. The instrumentation assembly was precisely standardized. The static destructive and fatigue tests up to 2 million cycles at three load levels were conducted, followed by the failure mode analysis. Twelve anterior instrumentation systems, consisting of five plate and seven rod systems were compared in stiffness, bending strength, and cycles to failure. Static and fatigue test parameters both demonstrated highly significant differences between devices. The stiffness ranged from 280.5 kN/m in the Synthes plate (Synthes, Paoli, PA) to 67.9 kN/m in the Z-plate ATL (SofamorDanek, Memphis, TN). The Synthes plate and Kaneda SR titanium (AcroMed, Cleveland, OH) formed the highest subset in bending strength of 1516.1 N and 1209.9 N, respectively, whereas the Z-plate showed the lowest value of 407.3 N. There were no substantial differences between plate and rod devices. In fatigue, only three systems: Synthes plate

  11. Simplified rotor load models and fatigue damage estimates for offshore wind turbines.

    Science.gov (United States)

    Muskulus, M

    2015-02-28

    The aim of rotor load models is to characterize and generate the thrust loads acting on an offshore wind turbine. Ideally, the rotor simulation can be replaced by time series from a model with a few parameters and state variables only. Such models are used extensively in control system design and, as a potentially new application area, structural optimization of support structures. Different rotor load models are here evaluated for a jacket support structure in terms of fatigue lifetimes of relevant structural variables. All models were found to be lacking in accuracy, with differences of more than 20% in fatigue load estimates. The most accurate models were the use of an effective thrust coefficient determined from a regression analysis of dynamic thrust loads, and a novel stochastic model in state-space form. The stochastic model explicitly models the quasi-periodic components obtained from rotational sampling of turbulent fluctuations. Its state variables follow a mean-reverting Ornstein-Uhlenbeck process. Although promising, more work is needed on how to determine the parameters of the stochastic model and before accurate lifetime predictions can be obtained without comprehensive rotor simulations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Study of cumulative fatigue damage detection for used parts with nonlinear output frequency response functions based on NARMAX modelling

    Science.gov (United States)

    Huang, Honglan; Mao, Hanying; Mao, Hanling; Zheng, Weixue; Huang, Zhenfeng; Li, Xinxin; Wang, Xianghong

    2017-12-01

    Cumulative fatigue damage detection for used parts plays a key role in the process of remanufacturing engineering and is related to the service safety of the remanufactured parts. In light of the nonlinear properties of used parts caused by cumulative fatigue damage, the based nonlinear output frequency response functions detection approach offers a breakthrough to solve this key problem. First, a modified PSO-adaptive lasso algorithm is introduced to improve the accuracy of the NARMAX model under impulse hammer excitation, and then, an effective new algorithm is derived to estimate the nonlinear output frequency response functions under rectangular pulse excitation, and a based nonlinear output frequency response functions index is introduced to detect the cumulative fatigue damage in used parts. Then, a novel damage detection approach that integrates the NARMAX model and the rectangular pulse is proposed for nonlinear output frequency response functions identification and cumulative fatigue damage detection of used parts. Finally, experimental studies of fatigued plate specimens and used connecting rod parts are conducted to verify the validity of the novel approach. The obtained results reveal that the new approach can detect cumulative fatigue damages of used parts effectively and efficiently and that the various values of the based nonlinear output frequency response functions index can be used to detect the different fatigue damages or working time. Since the proposed new approach can extract nonlinear properties of systems by only a single excitation of the inspected system, it shows great promise for use in remanufacturing engineering applications.

  13. Modeling of thermo-mechanical fatigue and damage in shape memory alloy axial actuators

    Science.gov (United States)

    Wheeler, Robert W.; Hartl, Darren J.; Chemisky, Yves; Lagoudas, Dimitris C.

    2015-04-01

    The aerospace, automotive, and energy industries have seen the potential benefits of using shape memory alloys (SMAs) as solid state actuators. Thus far, however, these actuators are generally limited to non-critical components or over-designed due to a lack of understanding regarding how SMAs undergo thermomechanical or actuation fatigue and the inability to accurately predict failure in an actuator during use. The purpose of this study was to characterize the actuation fatigue response of Nickel-Titanium-Hafnium (NiTiHf) axial actuators and, in turn, use this characterization to predict failure and monitor damage in dogbone actuators undergoing various thermomechanical loading paths. Calibration data was collected from constant load, full cycle tests ranging from 200-600MPa. Subsequently, actuator lifetimes were predicted for four additional loading paths. These loading paths consisted of linearly varying load with full transformation (300-500MPa) and step loads which transition from zero stress to 300-400MPa at various martensitic volume fractions. Thermal cycling was achieved via resistive heating and convective cooling and was controlled via a state machine developed in LabVIEW. A previously developed fatigue damage model, which is formulated such that the damage accumulation rate is general in terms of its dependence on current and local stress and actuation strain states, was utilized. This form allows the model to be utilized for specimens undergoing complex loading paths. Agreement between experiments and simulations is discussed.

  14. Mechanism-Based Modeling for Low Cycle Fatigue of Cast Austenitic Steel

    Science.gov (United States)

    Wu, Xijia; Quan, Guangchun; Sloss, Clayton

    2017-09-01

    A mechanism-based approach—the integrated creep-fatigue theory (ICFT)—is used to model low cycle fatigue behavior of 1.4848 cast austenitic steel over the temperature range from room temperature (RT) to 1173 K (900 °C) and the strain rate range from of 2 × 10-4 to 2 × 10-2 s-1. The ICFT formulates the material's constitutive equation based on the physical strain decomposition into mechanism strains, and the associated damage accumulation consisting of crack nucleation and propagation in coalescence with internally distributed damage. At room temperature, the material behavior is controlled by plasticity, resulting in a rate-independent and cyclically stable behavior. The material exhibits significant cyclic hardening at intermediate temperatures, 673 K to 873 K (400 °C to 600 °C), with negative strain rate sensitivity, due to dynamic strain aging. At high temperatures >1073 K (800 °C), time-dependent deformation is manifested with positive rate sensitivity as commonly seen in metallic materials at high temperature. The ICFT quantitatively delineates the contribution of each mechanism in damage accumulation, and predicts the fatigue life as a result of synergistic interaction of the above identified mechanisms. The model descriptions agree well with the experimental and fractographic observations.

  15. The Fracture Mechanical Markov Chain Fatigue Model Compared with Empirical Data

    DEFF Research Database (Denmark)

    Gansted, L.; Brincker, Rune; Hansen, Lars Pilegaard

    The applicability of the FMF-model (Fracture Mechanical Markov Chain Fatigue Model) introduced in Gansted, L., R. Brincker and L. Pilegaard Hansen (1991) is tested by simulations and compared with empirical data. Two sets of data have been used, the Virkler data (aluminium alloy) and data...... established at the Laboratory of Structural Engineering at Aalborg University, the AUC-data, (mild steel). The model, which is based on the assumption, that the crack propagation process can be described by a discrete Space Markov theory, is applicable to constant as well as random loading. It is shown...

  16. 76 FR 2056 - Incorporation of Revised ASTM Standards That Provide Flexibility in the Use of Alternatives to...

    Science.gov (United States)

    2011-01-12

    ... a first step, incorporating these current standards comprises only a small percentage of the ASTM... using either ASTM D-2709-88 or ASTM D-1796-83 (Reapproved 1990), ash content using ASTM D-482-87...

  17. Fatigue strength reduction model: RANDOM3 and RANDOM4 user manual. Appendix 2: Development of advanced methodologies for probabilistic constitutive relationships of material strength models

    Science.gov (United States)

    Boyce, Lola; Lovelace, Thomas B.

    1989-01-01

    FORTRAN programs RANDOM3 and RANDOM4 are documented in the form of a user's manual. Both programs are based on fatigue strength reduction, using a probabilistic constitutive model. The programs predict the random lifetime of an engine component to reach a given fatigue strength. The theoretical backgrounds, input data instructions, and sample problems illustrating the use of the programs are included.

  18. Coarsening of the Sn-Pb Solder Microstructure in Constitutive Model-Based Predictions of Solder Joint Thermal Mechanical Fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Vianco, P.T.; Burchett, S.N.; Neilsen, M.K.; Rejent, J.A.; Frear, D.R.

    1999-04-12

    Thermal mechanical fatigue (TMF) is an important damage mechanism for solder joints exposed to cyclic temperature environments. Predicting the service reliability of solder joints exposed to such conditions requires two knowledge bases: first, the extent of fatigue damage incurred by the solder microstructure leading up to fatigue crack initiation, must be quantified in both time and space domains. Secondly, fatigue crack initiation and growth must be predicted since this metric determines, explicitly, the loss of solder joint functionality as it pertains to its mechanical fastening as well as electrical continuity roles. This paper will describe recent progress in a research effort to establish a microstructurally-based, constitutive model that predicts TMF deformation to 63Sn-37Pb solder in electronic solder joints up to the crack initiation step. The model is implemented using a finite element setting; therefore, the effects of both global and local thermal expansion mismatch conditions in the joint that would arise from temperature cycling.

  19. Modelling and Laboratory Studies on the Adhesion Fatigue Performance for Thin-Film Asphalt and Aggregate System

    Directory of Open Access Journals (Sweden)

    Dongsheng Wang

    2014-01-01

    Full Text Available Adhesion between asphalt and aggregate plays an important role in the performance of asphalt mixtures. A low-frequency adhesion fatigue test was proposed in this paper to study the effect of environment on the asphalt-aggregate adhesion system. The stress-based fatigue model had been utilized to describe the fatigue behavior of thin-film asphalt and aggregate system. The factors influencing the adhesion fatigue performance were also investigated. Experiment results show that asphalt has more important effect on the adhesion performance comparing with aggregate. Basalt, which is regarded as hydrophobic aggregates with low silica content, has better adhesion performance to asphalt binder when compared with granite. The effects of aging on the adhesion fatigue performance are different for PG64-22 and rubber asphalt. Long-term aging is found to reduce the adhesion fatigue lives for rubber asphalt and aggregate system, while the effect of long-term aging for aggregate and PG64-22 binder system is positive. Generally the increased stress amplitude and test temperature could induce greater damage and lead to less fatigue lives for adhesion test system.

  20. Failure of thermal barrier coatings under thermal and mechanical fatigue loading. Microstructural observations and modelling aspects

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, Haakan

    2004-09-01

    Industrial and air-borne gas turbine hot components suffer from creep, oxidation, corrosion and microstructural degradation if not shielded from the hot and aggressive combustion gases. Two major strategies commercially available are adopted; film cooling by pressurised air and application of protective coatings. Protective coatings form a slow-growing oxide that protects from oxidation and corrosion. By application of a thermal insulator, a thermal barrier coating, the material will be protected from high temperature through good insulation properties of the coating system. If thermal barrier coatings are to be used in situations where capabilities and possibilities for inspections are limited, better knowledge of the fatigue properties of the coatings is also needed. Therefore development of a reliable fatigue life model is needed. The present work aims at serving as a basis from which a general physically founded thermal barrier coating life model can be formulated. The effects of exposure to high temperatures and mechanical loads on thermal barrier coatings under service like conditions have been investigated in the present thesis. Emphasis is put on the coupling between materials science and solid mechanics approaches in order to establish a better knowledge concerning degradation mechanisms and fatigue life issues than what is common if only one discipline is explored. Investigations of material exposed to isothermal oxidation and thermal cyclic fatigue were performed on plasma-sprayed systems with NiCoCrAlY or NiCrAlY bond coats and yttria partially stabilised zirconia top coats. It has been shown that the thermally grown oxide that will form upon high temperature exposure influences the failure behaviour. If the oxide is composed mainly of alumina, the fatigue properties are good since the adhesion between the ceramic top coat and the metallic bond coat is good. This is also shown in a comparison between different plasma sprayed thermal barrier coating

  1. An Analytical Model for Fatigue Crack Propagation Prediction with Overload Effect

    Directory of Open Access Journals (Sweden)

    Shan Jiang

    2014-01-01

    Full Text Available In this paper a theoretical model was developed to predict the fatigue crack growth behavior under the constant amplitude loading with single overload. In the proposed model, crack growth retardation was accounted for by using crack closure and plastic zone. The virtual crack annealing model modified by Bauschinger effect was used to calculate the crack closure level in the outside of retardation effect region. And the Dugdale plastic zone model was employed to estimate the size of retardation effect region. A sophisticated equation was developed to calculate the crack closure variation during the retardation area. Model validation was performed in D16 aluminum alloy and 350WT steel specimens subjected to constant amplitude load with single or multiple overloads. The predictions of the proposed model were contrasted with experimental data, and fairly good agreements were observed.

  2. Determination of CTOD C in Fibre Metal Laminates by ASTM and Schwalbe Methods

    Directory of Open Access Journals (Sweden)

    E.M. Castrodeza

    2002-06-01

    Full Text Available Fibre Metal Laminates (FMLs have arisen as a demand of the aeronautical industry to use thin sheets with high resistance to fatigue crack growth, high damage tolerance, corrosion resistance and high specific strength. Considering these requirements, FMLs are an advantageous choice when compared to metal alloys currently used. In order to employ FMLs in aircraft structures, designers must hold a deep knowledge of a wide set of their properties including fracture toughness. The aim of this work was to evaluate the available methodologies to measure fracture toughness at instability (CTOD C in unidirectional fibre metal laminates reinforced with aramid fibres (ARALL®. To achieve this, tests were performed to obtain traditional and Schwalbe CTODs by using experimental ASTM based techniques, especially adapted to these laminates. Results achieved point out that Schwalbe method is more appropriate and also that there are differences between both CTOD parameters.

  3. 3D characterization and modeling of low cycle fatigue damage mechanisms at high temperature in a cast aluminum alloy

    International Nuclear Information System (INIS)

    Dezecot, Sebastien; Maurel, Vincent; Buffiere, Jean-Yves; Szmytka, Fabien; Koster, Alain

    2017-01-01

    Synchrotron X-ray tomography was used to monitor damage evolution in three dimensions during in situ Low Cycle Fatigue (LCF) tests at high temperature (250 °C) for an industrial material. The studied material is an AlSi7Cu3Mg aluminum alloy (close to ASTM A319) produced by Lost Foam Casting (LFC), a process which generates coarse microstructures but is nevertheless used for engine parts by the automotive industry. The volume analysis (3D images) has shown that cracks are extremely sensitive to microstructural features: coarse pores and hard particles of the eutectic regions are critical regarding respectively the main crack initiation and the crack growth. Finite Elements (FE) simulations, performed on meshes directly generated from 3D volumes and containing only pores, have revealed that mechanical fields also play a major role on the crack behavior. Initiation sites corresponded to areas of maximum inelastic strain while the crack path was globally correlated to high stress triaxiality and inelastic strain fields.

  4. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    Science.gov (United States)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  5. Micro-scale testing and micromechanical modelling for high cycle fatigue of CoCr stent material.

    Science.gov (United States)

    Sweeney, C A; O'Brien, B; Dunne, F P E; McHugh, P E; Leen, S B

    2015-06-01

    This paper presents a framework of experimental testing and crystal plasticity micromechanics for high cycle fatigue (HCF) of micro-scale L605 CoCr stent material. Micro-scale specimens, representative of stent struts, are manufactured via laser micro-machining and electro-polishing from biomedical grade CoCr alloy foil. Crystal plasticity models of the micro-specimens are developed using a length scale-dependent, strain-gradient constitutive model and a phenomenological (power-law) constitutive model, calibrated from monotonic and cyclic plasticity test data. Experimental microstructural characterisation of the grain morphology and precipitate distributions is used as input for the polycrystalline finite element (FE) morphologies. Two microstructure-sensitive fatigue indicator parameters are applied, using local and non-local (grain-averaged) implementations, for the phenomenological and length scale-dependent models, respectively, to predict fatigue crack initiation (FCI) in the HCF experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. An Analytical Model for Fatigue Life Prediction Based on Fracture Mechanics and Crack Closure

    DEFF Research Database (Denmark)

    Ibsø, Jan Behrend; Agerskov, Henning

    1996-01-01

    Fatigue in steel structures subjected to stochastic loading is studied. Of special interest is the problem of fatigue damage accumulation and in this connection, a comparison between experimental results and results obtained using fracture mechanics. Fatigue test results obtained for welded plate...

  7. Formulation and Validation of Multidisciplinary Design Problem on Wear and Fatigue Life of Lead Screw Actuators

    Directory of Open Access Journals (Sweden)

    Krishna Meruva

    2013-01-01

    Full Text Available Multidisciplinary design optimization has been widely applied in the optimization of large-scale complex system and also in the design and optimization of components, which are involved in multidisciplinary behaviors. The wear and fatigue life of lead screw actuators is a typical multidisciplinary problem. The wear behaviors of actuators closely relate to many factors such as loads, lubrications, materials properties, surface properties, pressures, and temperature. Therefore, the wear and fatigue life of actuators cannot be modeled without a simultaneous consideration of solid mechanics, fluid dynamics, contact mechanics, and thermal dynamics. In this paper, the wear and fatigue life of a lead screw actuator is modeled and validated. Firstly, the theory of asperity contact and Archard’s model of sliding wear are applied to estimate the amount of wear under certain circumstances. Secondly, a test platform is developed based on a standard ASTM test protocol, and the wear phenomenon at the ball-on-flat sliding is measured to validate the developed wear model. Thirdly, finite element analysis is conducted using Nastran to assess the contact stresses in the lead screw and nut assembly model. The estimated data from the three sources are finally merged to formulate a mathematical model in predicting the wear and fatigue life for the optimization of lead screw actuators.

  8. An effective continuum damage mechanics model for creep-fatigue life assessment of a steam turbine rotor

    International Nuclear Information System (INIS)

    JianPing, Jing; Guang, Meng; Yi, Sun; SongBo, Xia

    2003-01-01

    A nonlinear Continuum Damage Mechanics model is proposed to assess the creep-fatigue life of a steam turbine rotor, in which the effects of complex multiaxial stress and the coupling of fatigue and creep are taken into account. The nonlinear evolution of damage is also considered. The model is applied to a 600 MW steam turbine under a practical start-stop operation. The results are compared with those from the linear accumulation theory that is dominant in life assessment of steam turbine rotors at present. The comparison show that the nonlinear continuum damage mechanics model describes the accumulation and development of damage better than the linear accumulation theory

  9. ASTM Standards for Reactor Dosimetry and Pressure Vessel Surveillance

    International Nuclear Information System (INIS)

    GRIFFIN, PATRICK J.

    1999-01-01

    The ASTM standards provide guidance and instruction on how to field and interpret reactor dosimetry. They provide a roadmap towards understanding the current ''state-of-the-art'' in reactor dosimetry, as reflected by the technical community. The consensus basis to the ASTM standards assures the user of an unbiased presentation of technical procedures and interpretations of the measurements. Some insight into the types of standards and the way in which they are organized can assist one in using them in an expeditious manner. Two example are presented to help orient new users to the breadth and interrelationship between the ASTM nuclear metrology standards. One example involves the testing of a new ''widget'' to verify the radiation hardness. The second example involves quantifying the radiation damage at a pressure vessel critical weld location through surveillance dosimetry and calculation

  10. ASTM Standards for Reactor Dosimetry and Pressure Vessel Surveillance

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN, PATRICK J.

    1999-09-14

    The ASTM standards provide guidance and instruction on how to field and interpret reactor dosimetry. They provide a roadmap towards understanding the current ''state-of-the-art'' in reactor dosimetry, as reflected by the technical community. The consensus basis to the ASTM standards assures the user of an unbiased presentation of technical procedures and interpretations of the measurements. Some insight into the types of standards and the way in which they are organized can assist one in using them in an expeditious manner. Two example are presented to help orient new users to the breadth and interrelationship between the ASTM nuclear metrology standards. One example involves the testing of a new ''widget'' to verify the radiation hardness. The second example involves quantifying the radiation damage at a pressure vessel critical weld location through surveillance dosimetry and calculation.

  11. Model-Based Fatigue Prognosis of Fiber-Reinforced Laminates Exhibiting Concurrent Damage Mechanisms

    Science.gov (United States)

    Corbetta, M.; Sbarufatti, C.; Saxena, A.; Giglio, M.; Goebel, K.

    2016-01-01

    Prognostics of large composite structures is a topic of increasing interest in the field of structural health monitoring for aerospace, civil, and mechanical systems. Along with recent advancements in real-time structural health data acquisition and processing for damage detection and characterization, model-based stochastic methods for life prediction are showing promising results in the literature. Among various model-based approaches, particle-filtering algorithms are particularly capable in coping with uncertainties associated with the process. These include uncertainties about information on the damage extent and the inherent uncertainties of the damage propagation process. Some efforts have shown successful applications of particle filtering-based frameworks for predicting the matrix crack evolution and structural stiffness degradation caused by repetitive fatigue loads. Effects of other damage modes such as delamination, however, are not incorporated in these works. It is well established that delamination and matrix cracks not only co-exist in most laminate structures during the fatigue degradation process but also affect each other's progression. Furthermore, delamination significantly alters the stress-state in the laminates and accelerates the material degradation leading to catastrophic failure. Therefore, the work presented herein proposes a particle filtering-based framework for predicting a structure's remaining useful life with consideration of multiple co-existing damage-mechanisms. The framework uses an energy-based model from the composite modeling literature. The multiple damage-mode model has been shown to suitably estimate the energy release rate of cross-ply laminates as affected by matrix cracks and delamination modes. The model is also able to estimate the reduction in stiffness of the damaged laminate. This information is then used in the algorithms for life prediction capabilities. First, a brief summary of the energy-based damage model

  12. Neural network fatigue life prediction in steel i-beams using mathematically modeled acoustic emission data

    Science.gov (United States)

    Selvadorai, Prathikshen N.

    The purpose of this research is to predict fatigue cracking in metal beams using mathematically modeled acoustic emission (AE) data. The AE data was collected from nine samples of steel Ibeam that were subjected to three-point bending caused by cyclic loading. The data gathered during these tests were filtered in order to remove long duration hits, multiple hit data, and obvious outliers. Based on the duration, energy, amplitude, and average frequency of the AE hits, the filtered data were classified into the various failure mechanisms of metals using NeuralWorksRTM Professional II/Plus software based self-organizing map (SOM) neural network. The parameters from mathematically modeled AE failure mechanism data were used to predict plastic deformation data. Amplitude data from classified plastic deformation data is mathematically modeled herein using bounded Johnson distributions and Weibull distribution. A backpropagation neural network (BPNN) is generated using MATLABRTM. This BPNN is able to predict the number of cycles that ultimately cause the steel I-beams to fail via five different models of plastic deformation data. These five models are data without any mathematical modeling and four which are mathematically modeled using three methods of bounded Johnson distribution (Slifker and Shapiro, Mage and Linearization) and Weibull distribution. Currently, the best method is the Linearization method that has prediction error not more than 17%. Multiple linear regression (MLR) analysis is also performed on the four sets of mathematically modeled plastic deformation data as named above using the bounded Johnson and Weibull shape parameters. The MLR gives the best prediction for the Linearized method which has a prediction error not more than 2%. The final conclusion made is that both BPNN and MLR are excellent tools for accurate fatigue life cycle prediction.

  13. Modeling of fatigue crack induced nonlinear ultrasonics using a highly parallelized explicit local interaction simulation approach

    Science.gov (United States)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2016-04-01

    This paper presents a parallelized modeling technique for the efficient simulation of nonlinear ultrasonics introduced by the wave interaction with fatigue cracks. The elastodynamic wave equations with contact effects are formulated using an explicit Local Interaction Simulation Approach (LISA). The LISA formulation is extended to capture the contact-impact phenomena during the wave damage interaction based on the penalty method. A Coulomb friction model is integrated into the computation procedure to capture the stick-slip contact shear motion. The LISA procedure is coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized supercomputing on powerful graphic cards. Both the explicit contact formulation and the parallel feature facilitates LISA's superb computational efficiency over the conventional finite element method (FEM). The theoretical formulations based on the penalty method is introduced and a guideline for the proper choice of the contact stiffness is given. The convergence behavior of the solution under various contact stiffness values is examined. A numerical benchmark problem is used to investigate the new LISA formulation and results are compared with a conventional contact finite element solution. Various nonlinear ultrasonic phenomena are successfully captured using this contact LISA formulation, including the generation of nonlinear higher harmonic responses. Nonlinear mode conversion of guided waves at fatigue cracks is also studied.

  14. Study of creep-fatigue behavior in a 1000 MW rotor using a phenomenological lifetime model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nailong; Wang, Weizhe; Jiang, Jishen; Liu, Yingzheng [School of Mechanical Engineering, Shanghai (China)

    2017-02-15

    In this study, the phenomenological lifetime model was applied to part of an ultra-supercritical steam turbine rotor model to predict its lifetime as a post processing of the finite element method. To validate the accuracy and adaptation of the post processing program, stress strain hysteresis loops of a cylinderal model under service-like load cycle conditions in cycle N = 1 and 300 were constructed, and the comparison of the results with experimental data on the same cylinderal specimen showed them to be satisfactory. The temperature and von Mises stress distributions of the rotor during a startup-running-shutdown-natural cool process were numerically studied using ABAQUS and the damage caused by the interaction of creep and fatigue was subsequently computed and discussed. It was found that the maximum damage appeared at the inlet notch zone, with the blade groove areas and the front notch areas also suffering a large damage amplitude.

  15. Psychosocial factors, musculoskeletal disorders and work-related fatigue amongst nurses in Brunei: structural equation model approach.

    Science.gov (United States)

    Abdul Rahman, Hanif; Abdul-Mumin, Khadizah; Naing, Lin

    2017-09-01

    Psychosocial factors, musculoskeletal disorders and work-related fatigue have adverse effects on individual nurses and place a substantial financial burden on health care. Evidence of an association has been reported in the literature, but no theoretical explanation has been published to date. To explore and develop a structural model to provide a theoretical explanation for this relationship. A cross-sectional study using data from 201 valid samples of emergency and critical care nurses across public hospitals in Brunei was performed via self-administered questionnaire. The structural equation model was assessed using partial least squares analysis. A valid and robust structural model was constructed. This revealed that 61.5% of the variance in chronic fatigue could be explained by psychosocial factors and musculoskeletal disorders pathways. Among the psychosocial factors, work-family conflict was identified as a key mediator for progression of musculoskeletal problems and subsequent fatigue through stress and burnout. This report provides a novel theoretical contribution to understanding the relationship between psychosocial factors, musculoskeletal disorders and work-related fatigue. These preliminary results may be useful for future studies on the development of work-related fatigue and musculoskeletal disorders, particularly the central role of work-family conflict. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Variable amplitude fatigue analysis using surrogate models and exact XFEM reanalysis

    Science.gov (United States)

    Pais, Matthew Jon

    Fatigue crack growth occurs as the result of repeated cyclic loading well below the stress levels which typically would cause failure. The number of cycles to failure for high-cycle fatigue is commonly of the order of 10 4--108 cycles to failure. Fatigue is characterized by a differential equation which gives the crack growth rate as a function of material properties and the stress intensity factor. Analytical relationships for the stress intensity factor are limited to simple geometries. A numerical method is commonly used to find the stress intensity factor for a given geometry under certain loading. The use of kriging to assist higher-order approximations is introduced. Here stress intensity factor data is fit using a surrogate. This surrogate is used to extrapolate for the purpose of integration, which enables larger step sizes to be taken without a loss in accuracy for the solution of the governing differential equation. Furthermore, it was observed that for the extended finite element method a small portion of the global stiffness matrix is changed as a result of crack growth. It is possible to use this small portion to save on both the assembly and solution of the resulting system of linear equations. This results in savings in both the assembly and factorization of the stiffness matrix for repeated simulations reducing the computational cost associated with numerical fatigue crack growth. The use of the XFEM reanalysis algorithm allow for the analysis of nonproportional mixed-mode variable amplitude loading upon an airplane wing to be considered. An airplane wing box was analyzed using AbaqusRTM. The Abaqus RTM stress solution was used in coordination with airplane flight data provided by the Air Force Research Laboratory. This stress history is converted into a cyclic loading history through the use of the rainflow counting method. The resulting analysis is one where approximately 30,000 cycles elapse. Due to the non-proportional loading, each cycle must

  17. Numerical simulation of fatigue crack growth rate and crack retardation due to an overload using a cohesive zone model

    NARCIS (Netherlands)

    Silitonga, S.; Maljaars, J.; Soetens, F.; Snijder, H.H.

    2014-01-01

    In this work, a numerical method is pursued based on a cohesive zone model (CZM). The method is aimed at simulating fatigue crack growth as well as crack growth retardation due to an overload. In this cohesive zone model, the degradation of the material strength is represented by a variation of the

  18. Job stress, fatigue, and job dissatisfaction in Dutch lorry drivers: towards an occupation specific model of job demands and control

    NARCIS (Netherlands)

    Croon, E.M. de; Blonk, R.W.B.; Zwart, B.C.H. de; Frings-Dresen, M.H.W.; Broersen, J.P.J.

    2002-01-01

    Building on Karasek's model of job demands and control (JD-C model), this study examined the effects of job control, quantitative workload, and two occupation specific job demands on fatigue and job dissatisfaction in Dutch lorry drivers. From 1181 lorry drivers self reported information was

  19. Job stress, fatigue, and job dissatisfaction in Dutch lorry drivers: towards an occupation specific model of job demands and control

    NARCIS (Netherlands)

    de Croon, E. M.; Blonk, R. W. B.; de Zwart, B. C. H.; Frings-Dresen, M. H. W.; Broersen, J. P. J.

    2002-01-01

    Objectives: Building on Karasek's model of job demands and control (JD-C model), this study examined the effects of job control, quantitative workload, and two occupation specific job demands (physical demands and supervisor demands) on fatigue and job dissatisfaction in Dutch lorry drivers.

  20. Physical activity and fatigue in breast cancer survivors: a panel model examining the role of self-efficacy and depression.

    Science.gov (United States)

    Phillips, Siobhan M; McAuley, Edward

    2013-05-01

    Physical activity is associated with reductions in fatigue in breast cancer survivors. However, mechanisms underlying this relationship are not well-understood. The purpose of this study was to longitudinally test a model examining the role of self-efficacy and depression as potential mediators of the relationship between physical activity and fatigue in a sample of breast cancer survivors using both self-report and objective measures of physical activity. All participants (N = 1,527) completed self-report measures of physical activity, self-efficacy, depression, and fatigue at baseline and 6 months. A subsample was randomly selected to wear an accelerometer at both time points. It was hypothesized that physical activity indirectly influences fatigue via self-efficacy and depression. Relationships among model constructs were examined over the 6-month period using panel analysis within a covariance modeling framework. The hypothesized model provided a good model-data fit (χ(2) = 599.66, df = 105, P ≤ 0.001; CFI = 0.96; SRMR = 0.02) in the full sample when controlling for covariates. At baseline, physical activity indirectly influenced fatigue via self-efficacy and depression. These relationships were also supported across time. In addition, the majority of the hypothesized relationships were supported in the subsample with accelerometer data (χ(2) = 387.48, df = 147, P ≤ 0.001, CFI = 0.94, SRMR = 0.04). This study provides evidence to suggest the relationship between physical activity and fatigue in breast cancer survivors may be mediated by more proximal, modifiable outcomes of physical activity participation. Recommendations are made relative to future applications and research concerning these relationships.

  1. Chronic fatigue syndrome and personality: a case-control study using the Alternative Five Factor Model.

    Science.gov (United States)

    Sáez-Francàs, Naia; Valero, Sergi; Calvo, Natalia; Gomà-I-Freixanet, Montserrat; Alegre, José; de Sevilla, Tomás Fernández; Casas, Miquel

    2014-05-30

    Neuroticism is the personality dimension most frequently associated with chronic fatigue syndrome (CFS). Most studies have also shown that CFS patients are less extraverted than non-CFS patients, but results have been inconsistent, possibly because the facets of the extraversion dimension have not been separately analyzed. This study has the following aims: to assess the personality profile of adults with CFS using the Alternative Five-Factor Model (AFFM), which considers Activity and Sociability as two separate factors of Extraversion, and to test the discriminant validity of a measure of the AFFM, the Zuckerman-Kuhlman Personality Questionnaire, in differentiating CFS subjects from normal-range matched controls. The CFS sample consisted of 132 consecutive patients referred for persistent fatigue or pain to the Department of Medicine of a university hospital. These were compared with 132 matched normal population controls. Significantly lower levels of Activity and significantly higher levels of Neuroticism-Anxiety best discriminated CFS patients from controls. The results are consistent with existing data on the relationship between Neuroticism and CFS, and clarify the relationship between Extraversion and CFS by providing new data on the relationship of Activity to CFS. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Evaluation of protective effect of Aegle marmelos Corr. in an animal model of chronic fatigue syndrome.

    Science.gov (United States)

    Lalremruta, Vanphawng; Prasanna, Gurunath S

    2012-05-01

    To evaluate ethanolic extract of leaves of Aegle marmelos in an experimental animal model of chronic fatigue syndrome for potential therapeutic benefit. Age/weight-matched female Wistar albino rats were grouped into five groups. (Group I- V) (n = 8). Group I served as naïve control and II served as stress control. Except for group I animals, other group animals were subjected to forced swimming every day for 15 minutes to induce a state of chronic fatigue and simultaneously treated with ethanolic extract of Aegle marmelos (EEAM) 150 and 250 mg/kg b.w. and Imipramine (20 mg.kg b.w.), respectively. Duration of immobility, anxiety level and locomotor activity were assessed on day 1, 7, 14 and 21 followed by biochemical estimation of oxidative biomarkers at the end of the study. Treatment with EEAM (150 and 250 mg/kg b.w.) resulted in a statistically significant and dose dependent reduction (P immobility, reduction in anxiety and increase in locomotor activity. Dose dependent and significant reduction in LPO level and increase in CAT and SOD was observed in extract treated animals. The results are suggestive of potential protective effect of A. marmelos against experimentally induced CFS.

  3. Modelling of pavement materials on steel decks using the five-point bending test: Thermo mechanical evolution and fatigue damage

    International Nuclear Information System (INIS)

    Arnaud, L; Houel, A

    2010-01-01

    This paper deals with the modelling of wearing courses on steel orthotropic decks such as the Millau viaduct in France. This is of great importance when dealing with durability: due to the softness of such a support, the pavement is subjected to considerable strains that may generate top-down cracks in the layer at right angles of the orthotropic plate stiffeners and shear cracks at the interface between pavement and steel. Therefore, a five-point bending fatigue test was developed and improved since 2003 at the ENTPE laboratory, to test different asphalt concrete mixes. This study aims at modelling the mechanical behavior of the wearing course throughout the fatigue test by a finite element method (Comsol Multiphysics software). Each material - steel, sealing sheet, asphalt concrete layer - is considered and modelled. The modelling of asphalt concrete is complex since it is a heterogeneous material, a viscoelastic medium and it thermosensitive. The actual characteristics of the asphalt concrete (thermo physical parameter and viscoelastic complex modulus) are determined experimentally on cylindrical cores. Moreover, a damage law based on Miner's damage is included in the model. The modelling of the fatigue test leads to encouraging results. Finally, results from the model are compared to the experimental data obtained from the five-point bending fatigue test device. The experimental data are very consistent with the numerical simulation.

  4. Job stress, fatigue, and job dissatisfaction in Dutch lorry drivers: towards an occupation specific model of job demands and control.

    Science.gov (United States)

    de Croon, E M; Blonk, R W B; de Zwart, B C H; Frings-Dresen, M H W; Broersen, J P J

    2002-06-01

    Building on Karasek's model of job demands and control (JD-C model), this study examined the effects of job control, quantitative workload, and two occupation specific job demands (physical demands and supervisor demands) on fatigue and job dissatisfaction in Dutch lorry drivers. From 1181 lorry drivers (adjusted response 63%) self reported information was gathered by questionnaire on the independent variables (job control, quantitative workload, physical demands, and supervisor demands) and the dependent variables (fatigue and job dissatisfaction). Stepwise multiple regression analyses were performed to examine the main effects of job demands and job control and the interaction effect between job control and job demands on fatigue and job dissatisfaction. The inclusion of physical and supervisor demands in the JD-C model explained a significant amount of variance in fatigue (3%) and job dissatisfaction (7%) over and above job control and quantitative workload. Moreover, in accordance with Karasek's interaction hypothesis, job control buffered the positive relation between quantitative workload and job dissatisfaction. Despite methodological limitations, the results suggest that the inclusion of (occupation) specific job control and job demand measures is a fruitful elaboration of the JD-C model. The occupation specific JD-C model gives occupational stress researchers better insight into the relation between the psychosocial work environment and wellbeing. Moreover, the occupation specific JD-C model may give practitioners more concrete and useful information about risk factors in the psychosocial work environment. Therefore, this model may provide points of departure for effective stress reducing interventions at work.

  5. Third metacarpal condylar fatigue fractures in equine athletes occur within previously modelled subchondral bone.

    Science.gov (United States)

    Whitton, R Christopher; Trope, Gareth D; Ghasem-Zadeh, Ali; Anderson, Garry A; Parkin, Timothy D H; Mackie, Eleanor J; Seeman, Ego

    2010-10-01

    Bone modelling and remodelling reduce the risk of fatigue fractures; the former by adapting bone to its loading circumstances, the latter by replacing fatigued bone. Remodelling transiently increases porosity because of the normal delay in onset of the formation phase of the remodelling sequence. Protracted intense loading suppresses remodelling leaving modelling as the only means of maintaining bone strength. We therefore hypothesized that race horses with fatigue fractures of the distal third metacarpal bone (MC3) will have reduced porosity associated with suppressed remodelling while continued adaptive modelling will result in higher volume fraction (BV/TV) at this site. Using high resolution peripheral quantitative computed tomography (HR-pQCT), we measured the distal aspect of the MC3 obtained at postmortem from 13 thoroughbred race horses with condylar fractures of the MC3 (cases), 8 horses without fractures (training controls), 14 horses with a fracture at another site (fractured controls) and 9 horses resting from training (resting controls). Porosity of the subchondral bone of MC3 was lower in cases than resting controls (12±1.4% vs. 18±1.6%, P=0.017) although areas of focal porosity were observed adjacent to fractures in 6/13 horses. BV/TV of the distal metacarpal epiphysis tended to be higher in horses with condylar fractures (0.79±0.015) than training controls (0.74±0.019, P=0.070), but also higher in controls with a fracture elsewhere (0.79±0.014) than the training controls (0.74±0.019, P=0.040). BV/TV was higher in horses over three years of age than those aged two or three years (0.79±0.01 vs. 0.74±0.01, P=0.016). All metacarpal condylar fractures occurred within focal areas of high BV/TV. We infer that intense training in equine athletes suppresses remodelling of third metacarpal subchondral bone limiting damage repair while modelling increases regional bone volume in an attempt to minimise local stresses but may fail to offset bone

  6. HACCP: Integrating Science and Management through ASTM Standards

    Science.gov (United States)

    From a technical perspective, hazard analysis-critical control point (HACCP) evaluation may be considered a risk management tool suited to a wide range of applications. As one outcome of a symposium convened by American Society for Testing and Materials (ASTM) in August, 2005, th...

  7. Fatigue life prediction in composites using progressive damage modelling under block and spectrum loading

    DEFF Research Database (Denmark)

    Passipoularidis, Vaggelis; Philippidis, T.P.; Brøndsted, Povl

    2010-01-01

    series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a Wind Turbine Rotor....... In general, FADAS performs well in predicting life under both spectral and block loading fatigue....

  8. 76 FR 63658 - Notice Pursuant to the National Cooperative Research and Production Act of 1993; ASTM International

    Science.gov (United States)

    2011-10-13

    ... Cooperative Research and Production Act of 1993; ASTM International Notice is hereby given that, on August 31....C. 4301 et seq. (``the Act''), ASTM International (``ASTM'') has filed written notifications.... Specifically, ASTM has provided an updated list of current, ongoing ASTM standards activities originating...

  9. Fatigue lifetime investigations on aluminium 2024 under two stage cyclic loading by means of experiments and three microstructural models

    International Nuclear Information System (INIS)

    Burkart, K.; Schleicher, M.; Jansen, C.; Bomas, H.; Mayr, P.

    2000-01-01

    The aim of this work is to achieve information about the development of fatigue failure in the aluminium alloy 2024. The attention was focused on short fatigue cracks under cyclic loading and the occurring load sequence effects on lifetime under two-level cyclic loading. Following the experiments, a revision of three different microstructural crack growth models, which were found in the literature, was made. Based on the data of constant-level cyclic loading, predictions of two-level cyclic loading behaviour were made and compared with the experimentally measured crack propagation rates and reached lifetimes. (orig.) [de

  10. Simulation Methods for High-Cycle Fatigue-Driven Delamination using Cohesive Zone Models - Fundamental Behavior and Benchmark Studies

    DEFF Research Database (Denmark)

    Bak, Brian Lau Verndal; Lindgaard, Esben; Turon, A.

    2015-01-01

    A novel computational method for simulating fatigue-driven delamination cracks in composite laminated structures under cyclic loading based on a cohesive zone model [2] and new benchmark studies with four other comparable methods [3-6] are presented. The benchmark studies describe and compare the...

  11. A novel approach towards fatigue damage prognostics of composite materials utilizing SHM data and stochastic degradation modeling

    NARCIS (Netherlands)

    Loutas, T.; Eleftheroglou, N.

    2016-01-01

    A prognostic framework is proposed in order to estimate the remaining useful life of composite materials under fatigue loading based on acoustic emission data and a sophisticated Non Homogenous Hidden Semi Markov Model. Bayesian neural networks are also utilized as an alternative machine learning

  12. The Identification of Fatigue Resistant and Fatigue Susceptible Individuals

    Science.gov (United States)

    2008-05-01

    normalized and compared 38 to normalized SAFTE predictions. See text for details. Figure 3 Fatigue plots for fatigue susceptible vs. fatigue...has 5 seconds to press the button to get points for successful signal detections. Lower tones are given with greater frequency and responses to...address the first question, and we use predictions of the Sleep Activity Fatigue Task Effectiveness, or SAFTE model (Hursh, Redmond, Johnson, Thorne

  13. System-Level Heat Transfer Analysis, Thermal- Mechanical Cyclic Stress Analysis, and Environmental Fatigue Modeling of a Two-Loop Pressurized Water Reactor. A Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Soppet, William [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-03

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in April 2015 under the work package for environmentally assisted fatigue under DOE's Light Water Reactor Sustainability program. In this report, updates are discussed related to a system level preliminary finite element model of a two-loop pressurized water reactor (PWR). Based on this model, system-level heat transfer analysis and subsequent thermal-mechanical stress analysis were performed for typical design-basis thermal-mechanical fatigue cycles. The in-air fatigue lives of components, such as the hot and cold legs, were estimated on the basis of stress analysis results, ASME in-air fatigue life estimation criteria, and fatigue design curves. Furthermore, environmental correction factors and associated PWR environment fatigue lives for the hot and cold legs were estimated by using estimated stress and strain histories and the approach described in NUREG-6909. The discussed models and results are very preliminary. Further advancement of the discussed model is required for more accurate life prediction of reactor components. This report only presents the work related to finite element modelling activities. However, in between multiple tensile and fatigue tests were conducted. The related experimental results will be presented in the year-end report.

  14. The representation of inflammatory signals in the brain: A model for subjective fatigue in multiple sclerosis

    NARCIS (Netherlands)

    Hanken, K.; Eling, P.A.T.M.; Hildebrandt, H.

    2014-01-01

    In multiple sclerosis (MS) patients, fatigue is rated as one of the most common and disabling symptoms. However, the pathophysiology underlying this fatigue is not yet clear. Several lines of evidence suggest that immunological factors, such as elevated levels of pro-inflammatory cytokines, may

  15. Implementation of creep-fatigue model into finite-element code to assess cooled turbine blade.

    CSIR Research Space (South Africa)

    Dedekind, MO

    1994-01-01

    Full Text Available Turbine blades which are designed with airfoil cooling are subject to thermo-mechanical fatigue as well as creep damage. These problems arise due to thermal cycling and high operating temperatures in service. An implementation of fatigue and creep...

  16. Resilience of a FIT screening programme against screening fatigue: a modelling study

    NARCIS (Netherlands)

    Greuter, Marjolein J. E.; Berkhof, Johannes; Canfell, Karen; Lew, Jie-Bin; Dekker, Evelien; Coupé, Veerle M. H.

    2016-01-01

    Repeated participation is important in faecal immunochemical testing (FIT) screening for colorectal cancer (CRC). However, a large number of screening invitations over time may lead to screening fatigue and consequently, decreased participation rates. We evaluated the impact of screening fatigue on

  17. Protective effect of epigallocatechin gallate in murine water-immersion stress model of chronic fatigue syndrome.

    Science.gov (United States)

    Sachdeva, Anand Kamal; Kuhad, Anurag; Tiwari, Vinod; Arora, Vipin; Chopra, Kanwaljit

    2010-06-01

    Chronic fatigue syndrome (CFS) is a specific clinical condition that characterizes unexplained disabling fatigue. In the present study, chronic fatigue was produced in mice by subjecting them to forced swim inside a rectangular jar of specific dimensions for 6 min. daily for 15 days. Epigallocatechin gallate (EGCG; 25, 50 and 100 mg/kg, p.o.) was administered daily 30 min. before forced swim session. Immobility period and post-swim fatigue was assessed on alternate days. On the 16th day, after assessment of various behavioural parameters, mice were killed to harvest the brain, spleen and thymus. There was significant increase in oxidative-nitrosative stress and tumour necrosis factor-alpha levels in the brain of mice subjected to water-immersion stress as compared with naive group. These behavioural and biochemical alterations were restored after chronic treatment with EGCG. The present study points out that EGCG could be of therapeutic potential in the treatment of chronic fatigue.

  18. A study on multi-axial fatigue model based on structural stress

    International Nuclear Information System (INIS)

    Kim, Cheol; Kim, Jong Sung; Jin, Tae Eun; Dong, P.

    2004-01-01

    In nuclear components, cyclic loadings that cause complex states of stress are common. Through a reference review, four sources of the multi-axial fatigue data were collected from LBF, University of Illinois, EPRI, and TWI. All these tests were conducted using tube to flange specimens with a circumferential fillet welds. The loading conditions were mostly bending/ torsion combinations, except that TWI used tension/ torsion combinations. None of fatigue correlation parameters have been demonstrated to be satisfactory in correlating the multi-axial fatigue data outside of their own. In this paper, we proposed the characterizing multi-axial fatigue behavior in terms of the structural stress methods by using some of the well-known multi-axial fatigue data available in the references

  19. Time and frequency domain models for multiaxial fatigue life estimation under random loading

    Directory of Open Access Journals (Sweden)

    Andrea Carpinteri

    2015-07-01

    Full Text Available Engineering structures and components are often subjected to random fatigue loading produced, for example, by wind turbulences, marine waves and vibrations. The methods available in the literature for fatigue assessment under random loading are formulated in time domain or, alternatively, in frequency domain. The former methods require the knowledge of the loading time history, and a large number of experimental tests/numerical simulations is needed to obtain statistically reliable results. The latter methods are generally more advantageous with respect to the time domain ones, allowing a rapid fatigue damage evaluation. In the present paper, a multiaxial criterion formulated in the frequency-domain is presented to estimate the fatigue lives of smooth metallic structures subjected to combined bending and torsion random loading. A comparison in terms of fatigue life prediction by employing a time domain methods, previously proposed by the authors, is also performed.

  20. Crack modelling: A novel technique for the prediction of fatigue failure in the presence of stress concentrations

    Science.gov (United States)

    Taylor, D.

    1997-07-01

    Finite element (FE) analysis and other computational methods have developed rapidly in recent years, allowing accurate predictions of elastic stresses in components of complex geometry. However, the prediction of fatigue failure in these components is still a non-trivial problem; one reason for this is the difficulty of assessing stress concentrations and regions of high stress-gradient. This paper describes a new technique, called "crack modelling", which addresses the problem through a modification of linear-elastic fracture mechanics (LEFM). LEFM is designed to deal with cracks in nominally elastic stress fields, using elastic analysis to derive a characteristic stress intensity, K or, for cyclic loading, a range Δ K. This methodology is modified in two ways. Firstly it is shown that LEFM can be extended to predict the fatigue behaviour of bodies containing notches of standard geometry, instead of cracks. Secondly, FE analysis is used in conjunction with a modelling exercise in order to extend the method to include bodies of arbitrary shape subjected to any set of loads. The method was first tested using standard notch geometries (blunt and sharp notches in beams), where accurate predictions of fatigue limit could be achieved. It was then applied to an industrial problem, giving a prediction of high-cycle fatigue behaviour for an automotive crankshaft. The method requires only simple mechanical-property data (the material fatigue limit and stress-intensity threshold) and uses only linear-elastic FE modelling. It allows fracture mechanics theory to be used without the need to specifically model the presence of a crack and uses far-field elastic stresses to infer behaviour in the region of a stress concentration.

  1. Verification of the ASTM G-124 Purge Equation

    Science.gov (United States)

    Robbins, Katherine E.; Davis, Samuel Eddie

    2009-01-01

    ASTM G-124 seeks to evaluate combustion characteristics of metals in high-purity (greater than 99%) oxygen atmospheres. ASTM G-124 provides the following equation to determine the minimum number of purges required to reach this level of purity in a test chamber: n = -4/log10(Pa/Ph), where "n" is the total number of purge cycles required, Ph is the absolute pressure used for the purge on each cycle and Pa is the atmospheric pressure or the vent pressure. The origin of this equation is not known and has been the source of frequent questions as to its accuracy and reliability. This paper shows the derivation of the G-124 purge equation, and experimentally explores the equation to determine if it accurately predicts the number of cycles required.

  2. Fatigue Monitoring Tool for Airline Operators (FMT

    Directory of Open Access Journals (Sweden)

    Gislason Sigurdur Hrafn

    2017-12-01

    Full Text Available A Fatigue Monitoring Tool (FMT model was constructed for an operational airline in order to manage the fatigue levels of their crews in accordance with Fatigue Risk Management System (FRMS practices. This article describes the implementation of the Fatigue Monitoring Tool model and the airline’s aims to put the recent scientific findings on aviation fatigue into practical use. The model consists of proxy points allotted to various duties and rest periods.

  3. 76 FR 34252 - Notice Pursuant to the National Cooperative Research and Production Act of 1993; ASTM...

    Science.gov (United States)

    2011-06-13

    ... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993; ASTM... Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), ASTM International Standards (``ASTM'') has filed written notifications simultaneously with the Attorney General and the...

  4. 77 FR 34069 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM...

    Science.gov (United States)

    2012-06-08

    ... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--ASTM... Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), ASTM International (``ASTM'') has filed written notifications simultaneously with the Attorney General and the Federal Trade...

  5. 47 CFR 95.1509 - ASTM E2213-03 DSRC Standard.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false ASTM E2213-03 DSRC Standard. 95.1509 Section 95... ASTM E2213-03 DSRC Standard. On-Board Units operating in the 5850-5925 MHz band shall comply with the... Materials (ASTM) E2213-03, Standard Specification for Telecommunications and Information Exchange Between...

  6. 76 FR 12370 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM...

    Science.gov (United States)

    2011-03-07

    ... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--ASTM... National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), ASTM International Standards (``ASTM'') has filed written notifications simultaneously with the Attorney General and...

  7. 77 FR 61786 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM...

    Science.gov (United States)

    2012-10-11

    ... Production Act of 1993--ASTM International Standards Notice is hereby given that, on September 10, 2012, pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), ASTM International (``ASTM'') has filed written notifications simultaneously with...

  8. 78 FR 1884 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM...

    Science.gov (United States)

    2013-01-09

    ... Production Act of 1993--ASTM International Standards Notice is hereby given that, on December 12, 2012, pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), ASTM International (``ASTM'') has filed written notifications simultaneously with...

  9. 78 FR 64248 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM...

    Science.gov (United States)

    2013-10-28

    ... Production Act of 1993--ASTM International Standards Notice is hereby given that, on September 16, 2013, pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), ASTM International (``ASTM'') has filed written notifications simultaneously with...

  10. 78 FR 14836 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM...

    Science.gov (United States)

    2013-03-07

    ... Production Act of 1993--ASTM International Standards Notice is hereby given that, on February 11, 2013, pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), ASTM International (``ASTM'') has filed written notifications simultaneously with...

  11. 78 FR 35646 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM...

    Science.gov (United States)

    2013-06-13

    ... Production Act of 1993--ASTM International Standards Notice is hereby given that, on May 10, 2013, pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), ASTM International (``ASTM'') has filed written notifications simultaneously with...

  12. An Automated Safe-to-Mate (ASTM) Tester

    Science.gov (United States)

    Nguyen, Phuc; Scott, Michelle; Leung, Alan; Lin, Michael; Johnson, Thomas

    2013-01-01

    Safe-to-mate testing is a common hardware safety practice where impedance measurements are made on unpowered hardware to verify isolation, continuity, or impedance between pins of an interface connector. A computer-based instrumentation solution has been developed to resolve issues. The ASTM is connected to the circuit under test, and can then quickly, safely, and reliably safe-to-mate the entire connector, or even multiple connectors, at the same time.

  13. Fatigue Reliability of Offshore Wind Turbine Systems

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2012-01-01

    Optimization of the design of offshore wind turbine substructures with respect to fatigue loads is an important issue in offshore wind energy. A stochastic model is developed for assessing the fatigue failure reliability. This model can be used for direct probabilistic design and for calibration...... of appropriate partial safety factors / fatigue design factors (FDF) for steel substructures of offshore wind turbines (OWTs). The fatigue life is modeled by the SN approach. Design and limit state equations are established based on the accumulated fatigue damage. The acceptable reliability level for optimal...... fatigue design of OWTs is discussed and results for reliability assessment of typical fatigue critical design of offshore steel support structures are presented....

  14. Effect of additional holes on transient thermal fatigue life of gas turbine casing

    Directory of Open Access Journals (Sweden)

    H. Bazvandi

    2017-10-01

    Full Text Available Gas turbines casings are susceptible to cracking at the edge of eccentric pin hole, which is the most likely position for crack initiation and propagation. This paper describes the improvement of transient thermal fatigue crack propagation life of gas turbines casings through the application of additional holes. The crack position and direction was determined using non-destructive tests. A series of finite element patterns were developed and tested in ASTM-A395 elastic perfectly-plastic ductile cast iron. The effect of arrangement of additional holes on transient thermal fatigue behavior of gas turbines casings containing hole edge cracks was investigated. ABAQUS finite element package and Zencrack fracture mechanics code were used for modeling. The effect of the reduction of transient thermal stress distribution around the eccentric pin hole on the transient thermal fatigue crack propagation life of the gas turbines casings was discussed. The result shows that transient thermal fatigue crack propagation life could be extended by applying additional holes of larger diameter and decreased by increasing the vertical distance, angle, and distance between the eccentric pin hole and the additional holes. The results from the numerical predictions were compared with experimental data.

  15. Fatigue crack initiation in nickel-based superalloys studied by microstructure-based FE modeling and scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    Fried M.

    2014-01-01

    Full Text Available In this work stage I crack initiation in polycrystalline nickel-based superalloys is investigated by analyzing anisotropic mechanical properties, local stress concentrations and plastic deformation on the microstructural length scale. The grain structure in the gauge section of fatigue specimens was characterized by EBSD. Based on the measured data, a microstructure-based FE model could be established to simulate the strain and stress distribution in the specimens during the first loading cycle of a fatigue test. The results were in fairly good agreement with experimentally measured local strains. Furthermore, the onset of plastic deformation was predicted by identifying shear stress maxima in the microstructure, presumably leading to activation of slip systems. Measurement of plastic deformation and observation of slip traces in the respective regions of the microstructure confirmed the predicted slip activity. The close relation between micro-plasticity, formation of slip traces and stage I crack initiation was demonstrated by SEM surface analyses of fatigued specimens and an in-situ fatigue test in a large chamber SEM.

  16. Implementation of internal model based control and individual pitch control to reduce fatigue loads and tower vibrations in wind turbines

    Science.gov (United States)

    Mohammadi, Ebrahim; Fadaeinedjad, Roohollah; Moschopoulos, Gerry

    2018-05-01

    Vibration control and fatigue loads reduction are important issues in large-scale wind turbines. Identifying the vibration frequencies and tuning dampers and controllers at these frequencies are major concerns in many control methods. In this paper, an internal model control (IMC) method with an adaptive algorithm is implemented to first identify the vibration frequency of the wind turbine tower and then to cancel the vibration signal. Standard individual pitch control (IPC) is also implemented to compare the performance of the controllers in term of fatigue loads reduction. Finally, the performance of the system when both controllers are implemented together is evaluated. Simulation results demonstrate that using only IMC or IPC alone has advantages and can reduce fatigue loads on specific components. IMC can identify and suppress tower vibrations in both fore-aft and side-to-side directions, whereas, IPC can reduce fatigue loads on blades, shaft and yaw bearings. When both IMC and IPC are implemented together, the advantages of both controllers can be used. The aforementioned analysis and comparisons were not studied in literature and this study fills this gap. FAST, AreoDyn and Simulink are used to simulate the mechanical, aerodynamic and electrical aspects of wind turbine.

  17. Application of ASTM E-1559 Apparatus to Study H2O Desorption

    Science.gov (United States)

    Woronowicz, Michael; Perry, Radford, III; Meadows, George A.

    2015-01-01

    The NASA James Webb Space Telescope project identified a need to measure water vapor desorption from cryogenic surfaces in order to validate predictions of spacecraft design performance. A review of available scientific literature indicated no such measurements had been reported below 131 K. Contamination control personnel at NASA Goddard Space Flight Center recognized the possibility they readily possessed the means to collect these measurements at lower temperatures using an existing apparatus commonly employed for making outgassing observations. This presentation will relate how the ASTM E-1559 Molekit apparatus was used without physical modification to measure water vapor sublimation down to 120 K and compare this data to existing equilibrium vapor pressure models.

  18. Perineal neuromuscular fatigue.

    Science.gov (United States)

    Deffieux, X; Hubeaux, K; Damphousse, M; Raibaut, P; Sheikh Ismael, S; Thoumie, P; Amarenco, G; Lapeyre, E; Jousse, M

    2006-07-01

    The physiology of urinary continence during stress is complex and the role of passive and active mechanisms remains unclear. Coughing leads to a contraction of urethral rhabdomyosphincter and pelvic floor muscles leading to a positive urethro-vesical gradient and continence. Neuromuscular fatigue can involve all striated muscles, including rhabdomyosphincter, peri-urethral and pelvic floor muscles. This article reviews results of studies assessing perineal muscular fatigue in urinary incontinence. A systematic review of the literature (Medline, Pascal and Embase) with use of the MESH keywords fatigue, stress, urinary incontinence, pelvic floor, urethra, urethral pressure, and muscle. Animal models have shown that the pelvic muscles (iliococcygeus and pubococcygeous) exhibit more neuromuscular fatigue than classical skeletal striated muscles (i.e. soleus muscle). Although the human external urethral sphincter is considered to be a highly fatigue-resistant muscle with its high proportion of slow muscle fibers, repeated coughing seems to lead to decreased urethral pressure in numerous women affected with stress urinary incontinence. In this case, "urethral fatigue" might be a possibility. Although few studies have focused on perineal muscular fatigue, such increased fatigue in pelvic floor muscles may play a role in the pathophysiologic features of stress urinary incontinence in women.

  19. Prediction of Cyclic Fatigue Life of Nickel-Titanium Rotary Files by Virtual Modeling and Finite Elements Analysis.

    Science.gov (United States)

    Scattina, Alessandro; Alovisi, Mario; Paolino, Davide Salvatore; Pasqualini, Damiano; Scotti, Nicola; Chiandussi, Giorgio; Berutti, Elio

    2015-11-01

    The finite element method (FEM) has been proposed as a method to analyze stress distribution in nickel-titanium (NiTi) rotary instruments but has not been assessed as a method of predicting the number of cycles to failure (NCF). The objective of this study was to predict NCF and failure location of NiTi rotary instruments by FEM virtual simulation of an experimental nonstatic fatigue test. ProTaper Next (PTN) X1, X2, and X3 files (Dentsply Maillefer, Baillagues, Switzerland) (n = 20 each) were tested to failure using a customized fatigue testing device. The device and file geometries were replicated with computer-aided design software. Computer-aided design geometries (geometric model) were imported and discretized (numeric model). The typical material model of an M-Wire alloy was applied. The numeric model of the device and file geometries were exported for finite element analysis (FEA). Multiaxial random fatigue methodology was used to analyze stress history and predict instrument life. Experimental data from PTN X2 and X3 were used for virtual model tuning through a reverse engineering approach to optimize material mechanical properties. Tuned material parameters were used to predict the average NCF and failure locations of PTN X1 by FEA; t tests were used to compare FEA and experimental findings (P Virtual design, testing, and analysis of file geometries could save considerable time and resources during instrument development. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Extreme Environment Damage Index and Accumulation Model for CMC Laminate Fatigue Life Prediction, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Materials Research & Design (MR&D) is proposing in the SBIR Phase II an effort to develop a tool for predicting the fatigue life of C/SiC composite...

  1. Carbon nanotube reinforced hybrid composites: Computational modeling of environmental fatigue and usability for wind blades

    DEFF Research Database (Denmark)

    Dai, Gaoming; Mishnaevsky, Leon

    2015-01-01

    The potential of advanced carbon/glass hybrid reinforced composites with secondary carbon nanotube reinforcement for wind energy applications is investigated here with the use of computational experiments. Fatigue behavior of hybrid as well as glass and carbon fiber reinforced composites...... with the secondary CNT reinforcements (especially, aligned tubes) present superior fatigue performances than those without reinforcements, also under combined environmental and cyclic mechanical loading. This effect is stronger for carbon composites, than for hybrid and glass composites....

  2. Fatigue approach for addressing environmental effects in fatigue usage calculation

    International Nuclear Information System (INIS)

    Wilhelm, Paul; Rudolph, Juergen; Steinmann, Paul

    2015-01-01

    Laboratory tests consider simple trapezoidal, triangle, and sinusoidal signals. However, actual plant components are characterized by complex loading patterns and periods of holds. Fatigue tests in water environment show, that the damage from a realistic strain variation or the presence of hold-times within cyclic loading results in an environmental reduction factor (Fen) only half that of a simple waveform. This study proposes a new fatigue approach for addressing environmental effects in fatigue usage calculation for class 1 boiler and pressure vessel reactor components. The currently accepted method of fatigue assessment has been used as a base model and all cycles, which have been comparable with realistic fatigue tests, have been excluded from the code-based fatigue calculation and evaluated directly with the test data. The results presented show that the engineering approach can successfully be integrated in the code-based fatigue assessment. The cumulative usage factor can be reduced considerably.

  3. Fatigue technology assessment and strategies for fatigue avoidance in marine structures. Appendices

    Science.gov (United States)

    Capanoglu, Cuneyt C.

    This report provides an up-to-date assessment of fatigue technology, directed specifically toward the marine industry. A comprehensive overview of fatigue analysis and design, a global review of fatigue including rules and regulations and current practices, and a fatigue analysis and design criteria are provided as a general guideline to fatigue assessment. A detailed discussion of all fatigue parameters is grouped under three analysis blocks: fatigue stress model, covering environmental forces, structure response and loading, stress response amplitude operations (RAO's) and hot-spot stresses; fatigue stress history model covering long-term distribution of environmental loading; and fatigue resistance of structures and damage assessment methodologies. The analyses and design parameters that affect fatigue assessment are discussed together with uncertainties and research gaps, to provide a basis for developing strategies for fatigue avoidance. Additional in-depth discussions of wave environment, stress concentration factors, etc. are presented in the appendixes. Assessment of fatigue technology, fatigue stress models, fatigue stress history models, fatigue resistance, fatigue parameters, and fatigue avoidance strategies.

  4. A Self-Adaptive Dynamic Recognition Model for Fatigue Driving Based on Multi-Source Information and Two Levels of Fusion

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-09-01

    Full Text Available To improve the effectiveness and robustness of fatigue driving recognition, a self-adaptive dynamic recognition model is proposed that incorporates information from multiple sources and involves two sequential levels of fusion, constructed at the feature level and the decision level. Compared with existing models, the proposed model introduces a dynamic basic probability assignment (BPA to the decision-level fusion such that the weight of each feature source can change dynamically with the real-time fatigue feature measurements. Further, the proposed model can combine the fatigue state at the previous time step in the decision-level fusion to improve the robustness of the fatigue driving recognition. An improved correction strategy of the BPA is also proposed to accommodate the decision conflict caused by external disturbances. Results from field experiments demonstrate that the effectiveness and robustness of the proposed model are better than those of models based on a single fatigue feature and/or single-source information fusion, especially when the most effective fatigue features are used in the proposed model.

  5. Seafarer fatigue

    DEFF Research Database (Denmark)

    Jepsen, Jørgen Riis; Zhao, Zhiwei; van Leeuwen, Wessel M. A.

    2015-01-01

    Background: The consequences of fatigue for the health and safety of seafarers has caused concern in the industry and among academics, and indicates the importance of further research into risk factors and preventive interventions at sea. This review gives an overview of the key issues relating...... to seafarer fatigue. Materials and methods: A literature study was conducted aiming to collect publications that address risk factors for fatigue, short-term and long-term consequences for health and safety, and options for fatigue mitigation at sea. Due to the limited number of publications that deals...

  6. Fatigue crack growth model RANDOM2 user manual. Appendix 1: Development of advanced methodologies for probabilistic constitutive relationships of material strength models

    Science.gov (United States)

    Boyce, Lola; Lovelace, Thomas B.

    1989-01-01

    FORTRAN program RANDOM2 is presented in the form of a user's manual. RANDOM2 is based on fracture mechanics using a probabilistic fatigue crack growth model. It predicts the random lifetime of an engine component to reach a given crack size. Details of the theoretical background, input data instructions, and a sample problem illustrating the use of the program are included.

  7. Evaluation of Fatigue Life Reliability of Steering Knuckle Using Pearson Parametric Distribution Model

    Directory of Open Access Journals (Sweden)

    E. A. Azrulhisham

    2010-01-01

    Full Text Available Steering module is a part of automotive suspension system which provides a means for an accurate vehicle placement and stability control. Components such as steering knuckle are subjected to fatigue failures due to cyclic loads arising from various driving conditions. This paper intends to give a description of a method used in the fatigue life reliability evaluation of the knuckle used in a passenger car steering system. An accurate representation of Belgian pave service loads in terms of response-time history signal was obtained from accredited test track using road load data acquisition. The acquired service load data was replicated on durability test rig and the SN method was used to estimate the fatigue life. A Pearson system was developed to evaluate the predicted fatigue life reliability by considering the variations in material properties. Considering random loads experiences by the steering knuckle, it is found that shortest life appears to be in the vertical load direction with the lowest fatigue life reliability between 14000–16000 cycles. Taking into account the inconsistency of the material properties, the proposed method is capable of providing the probability of failure of mass-produced parts.

  8. Cancer-related fatigue in breast cancer patients after surgery: a multicomponent model using partial least squares-path modeling.

    Science.gov (United States)

    Bortolon, Catherine; Krikorian, Alicia; Carayol, Marion; Brouillet, Denis; Romieu, Gilles; Ninot, Gregory

    2014-04-01

    The aim of this study is to examine factors contributing to cancer-related fatigue (CRF) in breast cancer patients who have undergone surgery. Sixty women (mean age: 50.0) completed self-rated questionnaires assessing components of CRF, muscular and cognitive functions. Also, physiological and subjective data were gathered. Data were analyzed using partial least squares variance-based structural equation modeling in order to examine factors contributing to CRF after breast surgery. The tested model was robust in terms of its measurement quality (reliability and validity). According to the structural model results, emotional distress (β = 0.59; p accounting for 61% of the explained variance. Also, emotional distress (β = 0.41; p accounted for 41% of the explained variance. However, the relationship between low physical function and CRF was weak and nonsignificant (β = 0.01; p > 0.05). Emotional distress, altered vigilance capacity, and pain are associated with CRF in postsurgical breast cancer. In addition, emotional distress and pain are related to diminished physical function, which, in turn, has no significant impact on CRF. The current model should be examined in subsequent phases of the treatment (chemotherapy and/or radiotherapy) when side effects are more pronounced and may lead to increased intensity of CRF and low physical function. Copyright © 2013 John Wiley & Sons, Ltd.

  9. 75 FR 30440 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM International

    Science.gov (United States)

    2010-06-01

    ... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--ASTM... Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), ASTM International (``ASTM... actual damages under specified circumstances. Specifically, ASTM has provided an updated list of current...

  10. Dynamic optimization of stimulation frequency to reduce isometric muscle fatigue using a modified Hill-Huxley model.

    Science.gov (United States)

    Doll, Brian D; Kirsch, Nicholas A; Bao, Xuefeng; Dicianno, Brad E; Sharma, Nitin

    2017-08-18

    Optimal frequency modulation during functional electrical stimulation (FES) may minimize or delay the onset of FES-induced muscle fatigue. An offline dynamic optimization method, constrained to a modified Hill-Huxley model, was used to determine the minimum number of pulses that would maintain a constant desired isometric contraction force. Six able-bodied participants were recruited for the experiments, and their quadriceps muscles were stimulated while they sat on a leg extension machine. The force-time (F-T) integrals and peak forces after the pulse train was delivered were found to be statistically significantly greater than the force-time integrals and peak forces obtained after a constant frequency train was delivered. Experimental results indicated that the optimized pulse trains induced lower levels of muscle fatigue compared with constant frequency pulse trains. This could have a potential advantage over current FES methods that often choose a constant frequency stimulation train. Muscle Nerve, 2017. © 2017 Wiley Periodicals, Inc.

  11. Fatigue evaluation algorithms: Review

    Energy Technology Data Exchange (ETDEWEB)

    Passipoularidis, V.A.; Broendsted, P.

    2009-11-15

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Puck, to model the degradation caused by failure events in ply level. Residual strength is incorporated as fatigue damage accumulation metric. Once the typical fatigue and static properties of the constitutive ply are determined,the performance of an arbitrary lay-up under uniaxial and/or multiaxial load time series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a wind turbine rotor blade construction. Two versions of the algorithm, the one using single-step and the other using incremental application of each load cycle (in case of ply failure) are implemented and compared. Simulation results confirm the ability of the algorithm to take into account load sequence effects. In general, FADAS performs well in predicting life under both spectral and block loading fatigue. (author)

  12. Laser induced damage in optical materials: 7th ASTM symposium.

    Science.gov (United States)

    Glass, A J; Guenther, A H

    1976-06-01

    The Seventh ERDA-ASTM-ONR-NBS Symposium on Laser Induced Damage in Optical Materials was held at the National Bureau of Standards in Boulder, Colorado, on 29-31 July 1975. These Symposia are held as part of the activities in ASTM Subcommittee II on Lasers and Laser Materials, which is charged with the responsibilities of formulating standards and test procedures for laser materials, components, and devices. The Chairman of Subcommittee II is Haynes Lee, of Owens-Illinois, Inc. Co-chairmen for the Damage Symposia are Arthur Guenther of the Air Force Weapons Laboratory and Alexander J. Glass of Law-rence Livermore Laboratory. Over 150 attendees at the Symposium heard forty-five papers on topics relating fabrication procedures to laser induced damage in optical materials; on metal mirrors; in ir window materials; the multipulse, wavelength, and pulse length dependence of damage thresholds; damage in dielectric films and at exposed surfaces; as well as theoretical discussions on avalanche ionization and multiphoton processes of importance at shorter wavelengths. Of particular importance were the scaling relations developed from several parametric studies relating fundamental properties (refractive index, surface roughness etc.) to the damage threshold. This year many of the extrinsic influences tending to reduce a materials damage resistance were isolated such that measures of their egregious nature could be quantified. Much still needs to be accomplished to improve processing and fabrication procedures to allow a measurable approach to a materials intrinsic strength to be demonstrated.

  13. Unified approach for estimating the probabilistic design S-N curves of three commonly used fatigue stress-life models

    International Nuclear Information System (INIS)

    Zhao Yongxiang; Wang Jinnuo; Gao Qing

    2001-01-01

    A unified approach, referred to as general maximum likelihood method, is presented for estimating probabilistic design S-N curves and their confidence bounds of the three commonly used fatigue stress-life models, namely three parameter, Langer and Basquin. The curves are described by a general form of mean and standard deviation S-N curves of the logarithm of fatigue life. Different from existent methods, i.e., the conventional method and the classical maximum likelihood method,present approach considers the statistical characteristics of whole test data. The parameters of the mean curve is firstly estimated by least square method and then, the parameters of the standard deviation curve is evaluated by mathematical programming method to be agreement with the maximum likelihood principle. Fit effects of the curves are assessed by fitted relation coefficient, total fitted standard error and the confidence bounds. Application to the virtual stress amplitude-crack initiation life data of a nuclear engineering material, Chinese 1Cr18Ni9Ti stainless steel pipe-weld metal, has indicated the validity of the approach to the S-N data where both S and N show the character of random variable. Practices to the two states of S-N data of Chinese 45 carbon steel notched specimens (k t = 2.0) have indicated the validity of present approach to the test results obtained respectively from group fatigue test and from maximum likelihood fatigue test. At the practices, it was revealed that in general the fit is best for the three-parameter model,slightly inferior for the Langer relation and poor for the Basquin equation. Relative to the existent methods, present approach has better fit. In addition, the possible non-conservative predictions of the existent methods, which are resulted from the influence of local statistical characteristics of the data, are also overcome by present approach

  14. Deformation and fatigue of tough 3D printed elastomer scaffolds processed by fused deposition modeling and continuous liquid interface production.

    Science.gov (United States)

    Miller, Andrew T; Safranski, David L; Wood, Catherine; Guldberg, Robert E; Gall, Ken

    2017-11-01

    Polyurethane (PU) based elastomers continue to gain popularity in a variety of biomedical applications as compliant implant materials. In parallel, advancements in additive manufacturing continue to provide new opportunities for biomedical applications by enabling the creation of more complex architectures for tissue scaffolding and patient specific implants. The purpose of this study was to examine the effects of printed architecture on the monotonic and cyclic mechanical behavior of elastomeric PUs and to compare the structure-property relationship across two different printing approaches. We examined the tensile fatigue of notched specimens, 3D crosshatch scaffolds, and two 3D spherical pore architectures in a physically crosslinked polycarbonate urethane (PCU) printed via fused deposition modeling (FDM) as well as a photo-cured, chemically-crosslinked, elastomeric PU printed via continuous liquid interface production (CLIP). Both elastomers were relatively tolerant of 3D geometrical features as compared to stiffer synthetic implant materials such as PEEK and titanium. PCU and crosslinked PU samples with 3D porous structures demonstrated a reduced tensile failure stress as expected without a significant effect on tensile failure strain. PCU crosshatch samples demonstrated similar performance in strain-based tensile fatigue as solid controls; however, when plotted against stress amplitude and adjusted by porosity, it was clear that the architecture had an impact on performance. Square shaped notches or pores in crosslinked PU appeared to have a modest effect on strain-based tensile fatigue while circular shaped notches and pores had little impact relative to smooth samples. When plotted against stress amplitude, any differences in fatigue performance were small or not statistically significant for crosslinked PU samples. Despite the slight difference in local architecture and tolerances, crosslinked PU solid samples were found to perform on par with PCU solid

  15. MODELING ENERGY EXPENDITURE AND OXYGEN CONSUMPTION IN HUMAN EXPOSURE MODELS: ACCOUNTING FOR FATIGUE AND EPOC

    Science.gov (United States)

    Human exposure and dose models often require a quantification of oxygen consumption for a simulated individual. Oxygen consumption is dependent on the modeled Individual's physical activity level as described in an activity diary. Activity level is quantified via standardized val...

  16. Modelling of Lamb wave interaction with open and closed fatigue cracks for damage detection

    International Nuclear Information System (INIS)

    Lee, B C; Staszewski, W J

    2010-01-01

    Lamb waves are the most widely used guided ultrasonic waves for structural damage detection. Lamb wave propagation in complex structures is very complicated due to multiple reflections and mode conversion at geometrical and material features. Numerical simulations can significantly ease wave propagation analysis for damage detection. The local interaction simulation approach is used for Lamb wave interaction with fatigues cracks in an aluminium plate. The results, investigated for various crack lengths, are validated experimentally. The study shows that Lamb wave amplitude and arrival time are different for fully open and closed fatigue cracks. As a result damage detection sensitivity could be affected.

  17. A probabilistic physics-of-failure model for prognostic health management of structures subject to pitting and corrosion-fatigue

    International Nuclear Information System (INIS)

    Chookah, M.; Nuhi, M.; Modarres, M.

    2011-01-01

    A combined probabilistic physics-of-failure-based model for pitting and corrosion-fatigue degradation mechanisms is proposed to estimate the reliability of structures and to perform prognosis and health management. A mechanistic superposition model for corrosion-fatigue mechanism was used as a benchmark model to propose the simple model. The proposed model describes the degradation of the structures as a function of physical and critical environmental stresses, such as amplitude and frequency of mechanical loads (for example caused by the internal piping pressure) and the concentration of corrosive chemical agents. The parameters of the proposed model are represented by the probability density functions and estimated through a Bayesian approach based on the data taken from the experiments performed as part of this research. For demonstrating applications, the proposed model provides prognostic information about the reliability of aging of structures and is helpful in developing inspection and replacement strategies. - Highlights: ► We model an inventory system under static–dynamic uncertainty strategy. ► The demand is stochastic and non-stationary. ► The optimal ordering policy is proven to be a base stock policy. ► A solution algorithm for finding an optimal solution is provided. ► Two heuristics developed produce high quality solutions and scale-up efficiently.

  18. Systematic Approach to Design Tailor Made Fuel Blends That Meets ASTM Standards

    DEFF Research Database (Denmark)

    Intikhab, S.; Kalakul, Sawitree; H., Choudhury

    2015-01-01

    blends [1]. The main architecture in MINLP has four structures viz., (i) problem definition (ii) property model identification (iii) mixture blend design and (iv) model-based verification. These structures are further subdivided in to sub-problems and a decomposition based solution approach was adopted...... point, vapor pressure, and heat content were determined using analytical instruments according to their respective American Society for Testing and Materials (ASTM) standards. Most of the properties complied well with the industry standards. However, model gasoline had a comparatively low RVP....... On the other hand, model diesel had a significantly higher cloud point and pour point than what is recommended. This deviation will have an impact on the cold flow properties of the fuels. For both fuels, different additives along with their composition have also been determined using the same computational...

  19. Exfoliation Corrosion and Pitting Corrosion and Their Role in Fatigue Predictive Modeling: State-of-the-Art Review

    Directory of Open Access Journals (Sweden)

    David W. Hoeppner

    2012-01-01

    Full Text Available Intergranular attack (IG and exfoliation corrosion (EC have a detrimental impact on the structural integrity of aircraft structures of all types. Understanding the mechanisms and methods for dealing with these processes and with corrosion in general has been and is critical to the safety of critical components of aircraft. Discussion of cases where IG attack and exfoliation caused issues in structural integrity in aircraft in operational fleets is presented herein along with a much more detailed presentation of the issues involved in dealing with corrosion of aircraft. Issues of corrosion and fatigue related to the structural integrity of aging aircraft are introduced herein. Mechanisms of pitting nucleation are discussed which include adsorption-induced, ion migration-penetration, and chemicomechanical film breakdown theories. In addition, pitting corrosion (PC fatigue models are presented as well as a critical assessment of their application to aircraft structures and materials. Finally environmental effects on short crack behavior of materials are discussed, and a compilation of definitions related to corrosion and fatigue are presented.

  20. Evaluation of Instrumentation for Measuring Undissolved Water in Aviation Turbine Fuels per ASTM D3240

    Science.gov (United States)

    2015-11-05

    Undissolved Water in Aviation Turbine Fuels per ASTM D3240 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Joel Schmitigal...water) in Aviation Turbine Fuels per ASTM D3240 15. SUBJECT TERMS fuel, JP-8, aviation fuel, contamination, free water, undissolved water, Aqua-Glo 16...in Aviation Turbine Fuels per ASTM D3240 November 2015 UNCLASSIFIED UNCLASSIFIED Joel Schmitigal 27372 UNCLASSIFIED NOTICES Disclaimers The

  1. Atomistic modeling of nanowires, small-scale fatigue damage in cast magnesium, and materials for MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Martin L. [Univ. of Colorado, Boulder, CO (United States); Talmage, Mellisa J. [Univ. of Colorado, Boulder, CO (United States); McDowell, David L. [Georgia Inst. of Technology, Atlanta, GA (United States); West, Neil [Univ. of Colorado, Boulder, CO (United States); Gullett, Philip Michael [Mississippi State Univ., Mississippi State, MS (United States); Miller, David C. [Univ. of Colorado, Boulder, CO (United States); Spark, Kevin [Univ. of Colorado, Boulder, CO (United States); Diao, Jiankuai [Univ. of Colorado, Boulder, CO (United States); Horstemeyer, Mark F. [Mississippi State Univ., Mississippi State, MS (United States); Zimmerman, Jonathan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gall, K. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2006-10-01

    titled 'Atomistic Modeling of Nanowires, Small-scale Fatigue Damage in Cast Magnesium, and Materials for MEMS'. This project supported a strategic partnership between Sandia National Laboratories and the University of Colorado at Boulder by providing funding for the lead author, Ken Gall, and his students, while he was a member of the University of Colorado faculty.

  2. Utilizing AE data and stochastic modelling towards fatigue damage diagnostics and prognostics of composites

    NARCIS (Netherlands)

    Loutas, T.; Eleftheroglou, N.

    2016-01-01

    The procedure of damage accumulation in composite materials, especially during fatigue loading, is a complex phenomenon which depends on a number of parameters such as ply orientation, material properties, geometrical non-linearities etc. Towards condition based health monitoring and decision

  3. Global Fatigue Life Modelling of Steel Half-pipes Bolted Connections

    NARCIS (Netherlands)

    Jovašević, S.; Correia, J. A F O; Pavlovic, M.; Rebelo, C.; De Jesus, A. M P; Veljkovic, M.; Simoes da Silva, L

    2016-01-01

    A steel hybrid structural solution for onshore wind turbine towers was proposed in the European project SHOWTIME. This solution is used in the lattice structure for the lower portion of the tower. Recently, a procedure for fatigue life estimation of steel half-pipes bolted connections applied in

  4. A new phase field model for material fatigue in an oscillating elastoplastic beam

    Czech Academy of Sciences Publication Activity Database

    Eleuteri, M.; Kopfová, J.; Krejčí, Pavel

    2015-01-01

    Roč. 35, č. 6 (2015), s. 2465-2495 ISSN 1078-0947 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : hysteresis * fatigue * phase transition Subject RIV: BA - General Mathematics Impact factor: 1.127, year: 2015 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=10680

  5. Impact of Higher Fidelity Models on Simulation of Active Aerodynamic Load Control For Fatigue Damage Reduction

    NARCIS (Netherlands)

    Resor, B.; Wilson, D.; Berg, D.; Berg, J.; Barlas, T.; Van Wingerden, J.W.; Van Kuik, G.A.M.

    2010-01-01

    Active aerodynamic load control of wind turbine blades is being investigated by the wind energy research community and shows great promise, especially for reduction of turbine fatigue damage in blades and nearby components. For much of this work, full system aeroelastic codes have been used to

  6. Numerical simulation of stable fatigue crack growth rate using a cohesive zone model

    NARCIS (Netherlands)

    Silitonga, S.; Maljaars, J.; Soetens, F.; Snijder, H.H.

    2012-01-01

    Predicting the remaining fatigue life of a structure with crack(s) is generally conducted by the fracture mechanics method. This method is aimed at predicting the crack growth and final fracture due to fluctuating loads. The crack growth curve required for these calculations is constructed on the

  7. A model for the training effects in swimming demonstrates a strong relationship between parasympathetic activity, performance and index of fatigue.

    Directory of Open Access Journals (Sweden)

    Sébastien Chalencon

    Full Text Available Competitive swimming as a physical activity results in changes to the activity level of the autonomic nervous system (ANS. However, the precise relationship between ANS activity, fatigue and sports performance remains contentious. To address this problem and build a model to support a consistent relationship, data were gathered from national and regional swimmers during two 30 consecutive-week training periods. Nocturnal ANS activity was measured weekly and quantified through wavelet transform analysis of the recorded heart rate variability. Performance was then measured through a subsequent morning 400 meters freestyle time-trial. A model was proposed where indices of fatigue were computed using Banister's two antagonistic component model of fatigue and adaptation applied to both the ANS activity and the performance. This demonstrated that a logarithmic relationship existed between performance and ANS activity for each subject. There was a high degree of model fit between the measured and calculated performance (R(2=0.84±0.14,p<0.01 and the measured and calculated High Frequency (HF power of the ANS activity (R(2=0.79±0.07, p<0.01. During the taper periods, improvements in measured performance and measured HF were strongly related. In the model, variations in performance were related to significant reductions in the level of 'Negative Influences' rather than increases in 'Positive Influences'. Furthermore, the delay needed to return to the initial performance level was highly correlated to the delay required to return to the initial HF power level (p<0.01. The delay required to reach peak performance was highly correlated to the delay required to reach the maximal level of HF power (p=0.02. Building the ANS/performance identity of a subject, including the time to peak HF, may help predict the maximal performance that could be obtained at a given time.

  8. Modification of ASTM Standard E1681 on Environmental Cracking to Include Bolt-Load Specimen Testing

    National Research Council Canada - National Science Library

    Underwood, Jean D. M

    1997-01-01

    Benet Laboratories experience with environmental cracking of cannon components has been combined with the technical expertise of various participants at ASTM technical meetings and symposia to develop...

  9. Complex network models reveal correlations among network metrics, exercise intensity and role of body changes in the fatigue process.

    Science.gov (United States)

    Pereira, Vanessa Helena; Gama, Maria Carolina Traina; Sousa, Filipe Antônio Barros; Lewis, Theodore Gyle; Gobatto, Claudio Alexandre; Manchado-Gobatto, Fúlvia Barros

    2015-05-21

    The aims of the present study were analyze the fatigue process at distinct intensity efforts and to investigate its occurrence as interactions at distinct body changes during exercise, using complex network models. For this, participants were submitted to four different running intensities until exhaustion, accomplished in a non-motorized treadmill using a tethered system. The intensities were selected according to critical power model. Mechanical (force, peak power, mean power, velocity and work) and physiological related parameters (heart rate, blood lactate, time until peak blood lactate concentration (lactate time), lean mass, anaerobic and aerobic capacities) and IPAQ score were obtained during exercises and it was used to construction of four complex network models. Such models have both, theoretical and mathematical value, and enables us to perceive new insights that go beyond conventional analysis. From these, we ranked the influences of each node at the fatigue process. Our results shows that nodes, links and network metrics are sensibility according to increase of efforts intensities, been the velocity a key factor to exercise maintenance at models/intensities 1 and 2 (higher time efforts) and force and power at models 3 and 4, highlighting mechanical variables in the exhaustion occurrence and even training prescription applications.

  10. Complex network models reveal correlations among network metrics, exercise intensity and role of body changes in the fatigue process

    Science.gov (United States)

    Pereira, Vanessa Helena; Gama, Maria Carolina Traina; Sousa, Filipe Antônio Barros; Lewis, Theodore Gyle; Gobatto, Claudio Alexandre; Manchado-Gobatto, Fúlvia Barros

    2015-05-01

    The aims of the present study were analyze the fatigue process at distinct intensity efforts and to investigate its occurrence as interactions at distinct body changes during exercise, using complex network models. For this, participants were submitted to four different running intensities until exhaustion, accomplished in a non-motorized treadmill using a tethered system. The intensities were selected according to critical power model. Mechanical (force, peak power, mean power, velocity and work) and physiological related parameters (heart rate, blood lactate, time until peak blood lactate concentration (lactate time), lean mass, anaerobic and aerobic capacities) and IPAQ score were obtained during exercises and it was used to construction of four complex network models. Such models have both, theoretical and mathematical value, and enables us to perceive new insights that go beyond conventional analysis. From these, we ranked the influences of each node at the fatigue process. Our results shows that nodes, links and network metrics are sensibility according to increase of efforts intensities, been the velocity a key factor to exercise maintenance at models/intensities 1 and 2 (higher time efforts) and force and power at models 3 and 4, highlighting mechanical variables in the exhaustion occurrence and even training prescription applications.

  11. In vitro fatigue tests and in silico finite element analysis of dental implants with different fixture/abutment joint types using computer-aided design models.

    Science.gov (United States)

    Yamaguchi, Satoshi; Yamanishi, Yasufumi; Machado, Lucas S; Matsumoto, Shuji; Tovar, Nick; Coelho, Paulo G; Thompson, Van P; Imazato, Satoshi

    2018-01-01

    The aim of this study was to evaluate fatigue resistance of dental fixtures with two different fixture-abutment connections by in vitro fatigue testing and in silico three-dimensional finite element analysis (3D FEA) using original computer-aided design (CAD) models. Dental implant fixtures with external connection (EX) or internal connection (IN) abutments were fabricated from original CAD models using grade IV titanium and step-stress accelerated life testing was performed. Fatigue cycles and loads were assessed by Weibull analysis, and fatigue cracking was observed by micro-computed tomography and a stereomicroscope with high dynamic range software. Using the same CAD models, displacement vectors of implant components were also analyzed by 3D FEA. Angles of the fractured line occurring at fixture platforms in vitro and of displacement vectors corresponding to the fractured line in silico were compared by two-way ANOVA. Fatigue testing showed significantly greater reliability for IN than EX (psilico. In silico displacement vectors in the implant fixture are insightful for geometric development of dental implants to reduce complex interactions leading to fatigue failure. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  12. Uncertainty on Fatigue Damage Accumulation for Composite Materials

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented.......In the present paper stochastic models for fatigue damage accumulation for composite materials are presented based on public available constant and variable amplitude fatigue tests. The methods used for estimating the SN-curve and accumulated fatigue damage are presented....

  13. Interpreting the ASTM 'content standard for digital geospatial metadata'

    Science.gov (United States)

    Nebert, Douglas D.

    1996-01-01

    ASTM and the Federal Geographic Data Committee have developed a content standard for spatial metadata to facilitate documentation, discovery, and retrieval of digital spatial data using vendor-independent terminology. Spatial metadata elements are identifiable quality and content characteristics of a data set that can be tied to a geographic location or area. Several Office of Management and Budget Circulars and initiatives have been issued that specify improved cataloguing of and accessibility to federal data holdings. An Executive Order further requires the use of the metadata content standard to document digital spatial data sets. Collection and reporting of spatial metadata for field investigations performed for the federal government is an anticipated requirement. This paper provides an overview of the draft spatial metadata content standard and a description of how the standard could be applied to investigations collecting spatially-referenced field data.

  14. A Simulation of Low and High Cycle Fatigue Failure Effects for Metal Matrix Composites Based on Innovative J₂-Flow Elastoplasticity Model.

    Science.gov (United States)

    Wang, Zhaoling; Xiao, Heng

    2017-09-24

    New elastoplastic J 2 -flow constitutive equations at finite deformations are proposed for the purpose of simulating the fatigue failure behavior for metal matrix composites. A new, direct approach is established in a two-fold sense of unification. Namely, both low and high cycle fatigue failure effects of metal matrix composites may be simultaneously simulated for various cases of the weight percentage of reinforcing particles. Novel results are presented in four respects. First, both the yield condition and the loading-unloading conditions in a usual sense need not be involved but may be automatically incorporated into inherent features of the proposed constitutive equations; second, low-to-high cycle fatigue failure effects may be directly represented by a simple condition for asymptotic loss of the material strength, without involving any additional damage-like variables; third, both high and low cycle fatigue failure effects need not be separately treated but may be automatically derived as model predictions with a unified criterion for critical failure states, without assuming any ad hoc failure criteria; and, finally, explicit expressions for each incorporated model parameter changing with the weight percentage of reinforcing particles may be obtainable directly from appropriate test data. Numerical examples are presented for medium-to-high cycle fatigue failure effects and for complicated duplex effects from low to high cycle fatigue failure effects. Simulation results are in good agreement with experimental data.

  15. IMPROVEMENT OF FATIGUE STRENGTH OF TIN BABBITT BY REINFORCING WITH NANO ILMENITE

    Directory of Open Access Journals (Sweden)

    M. V. S. BABU

    2017-08-01

    Full Text Available Tin Babbitt is an idle journal bearing material, its fatigue strength limits and its usage. To enhance its fatigue strength, in this paper a Tin Babbitt metal matrix is reinforced with nano Ilmenite. The metal matrix nanocomposite was fabricated by using ultrasonic assisted stir casting technique. ASTM standards in statistical planning for fatigue testing were employed in planning the fatigue tests. Fatigue tests were conducted at three stress levels, i.e., 0.9 UTS, 0.7 UTS and 0.5 UTS. Tests were conducted on a rotating-beam type fatigue testing machine. It was observed that the nano Ilmenite reinforcement enhanced the fatigue strength of Tin Babbitt.

  16. Multi-Axial Damage Index and Accumulation Model for Predicting Fatigue Life of CMC Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The fatigue life of CMCs must be well characterized for the safe and reliable use of these materials as integrated TPS components. Existing fatigue life prediction...

  17. A study on fatigue crack growth in dual phase martensitic steel in air

    Indian Academy of Sciences (India)

    Dual phase (DP) steel was intercritically annealed at different temperatures from fully martensitic state to achieve martensite plus ferrite, microstructures with martensite contents in the range of 32 to 76%. Fatigue crack growth (FCG) and fracture toughness tests were carried out as per ASTM standards E 647 and E 399, ...

  18. 78 FR 13243 - Updates to Standards Incorporated by Reference; Reapproved ASTM Standards; Technical Amendment

    Science.gov (United States)

    2013-02-27

    ...). We also are standardizing usage of ASTM's name, which was formerly the American Society for Testing... Characteristics of Plastic Film 2009)[egr]1. and Sheeting. Standard Specification for F682-82a F682-82a 46 56.01-2... regulated public. The Coast Guard is also standardizing usage of the name ``ASTM International,'' formerly...

  19. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  20. Possible role of oxidative stress and immunological activation in mouse model of chronic fatigue syndrome and its attenuation by olive extract.

    Science.gov (United States)

    Gupta, Amit; Vij, Garima; Chopra, Kanwaljit

    2010-09-14

    Various putative theories involved in the development of chronic fatigue syndrome revolve around the role of stress, infection and oxidative stress. Scientific evidence highlighting the protective role of nutritional supplements in chronic fatigue syndrome is lacking. Based on these assumptions, the present study was designed to evaluate the effect of olive extract in a mouse model of immunologically-induced fatigue, wherein purified lipopolysaccharide (LPS) and Brucella abortus (BA) antigen were used as immunogens. The assessment of chronic fatigue syndrome was based on immobility period during chronic water-immersion stress test for 10 min daily. The stress-induced hyperalgesia was measured by tail withdrawal latency. Mice challenged with LPS or BA for 19 days showed significant increase in the immobility time, hyperalgesia and oxidative stress on the 19th day. Serum tumor necrosis factor-alpha (TNF-α) levels were also markedly increased with LPS or BA challenge. Concurrent treatment with olive extract resulted in a significant decrease in the immobility time as well as hyperalgesia. There was significant attenuation of oxidative stress as well as serum TNF-α levels. The results of the present study strongly indicate the role of oxidative stress and immunological activation in the pathophysiology of chronic fatigue syndrome and highlight the valuable role of olive extract in combating chronic fatigue syndrome. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. [Auditory fatigue].

    Science.gov (United States)

    Sanjuán Juaristi, Julio; Sanjuán Martínez-Conde, Mar

    2015-01-01

    Given the relevance of possible hearing losses due to sound overloads and the short list of references of objective procedures for their study, we provide a technique that gives precise data about the audiometric profile and recruitment factor. Our objectives were to determine peripheral fatigue, through the cochlear microphonic response to sound pressure overload stimuli, as well as to measure recovery time, establishing parameters for differentiation with regard to current psychoacoustic and clinical studies. We used specific instruments for the study of cochlear microphonic response, plus a function generator that provided us with stimuli of different intensities and harmonic components. In Wistar rats, we first measured the normal microphonic response and then the effect of auditory fatigue on it. Using a 60dB pure tone acoustic stimulation, we obtained a microphonic response at 20dB. We then caused fatigue with 100dB of the same frequency, reaching a loss of approximately 11dB after 15minutes; after that, the deterioration slowed and did not exceed 15dB. By means of complex random tone maskers or white noise, no fatigue was caused to the sensory receptors, not even at levels of 100dB and over an hour of overstimulation. No fatigue was observed in terms of sensory receptors. Deterioration of peripheral perception through intense overstimulation may be due to biochemical changes of desensitisation due to exhaustion. Auditory fatigue in subjective clinical trials presumably affects supracochlear sections. The auditory fatigue tests found are not in line with those obtained subjectively in clinical and psychoacoustic trials. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  2. Rationale and feasibility study of a mechanical model for the testing of material fatigue in metal ureteral stents.

    Science.gov (United States)

    Bafaloukas, Nikos; Birch, Malcom; Buchholz, Noor

    2008-02-01

    Stents are used abundantly to maintain ureteral patency. The majority are plastic tubes that adjust easily to upper urinary-tract motion. Recently, a coiled-wire lumenless stent was introduced (ZebraStent, Neo Medical, Munich, Germany) to facilitate expulsion of stone fragments after lithotripsy. Its metal core is composed of Nitinol, with the soft J ends being of titanium. The thin shape considerably increases the extraluminal space. The ZebraStent stretches the ureter and also provides a surface for the fragments to glide along. In our 18-month experience with the ZebraStent, two of them fractured along the shaft. We sought to learn whether this complication resulted from a defect in stent design or from material fatigue secondary to constant movement. Our model is powered by an electric motor that produces a constant displacement similar to stent movements in vivo. The whole ZebraStent is embedded in a 37 degrees C waterbath to simulate physiological conditions within the ureter. We used an average displacement of 16 mm. The average frequency of ventilatory-cycle simulation was 20 times that in vivo, allowing us to collect data in a shorter time. All 10 stents broke within the proximal Nitinol shaft at the equivalent of 4 to 6 months (125-179 days). Our preliminary results show that all stents break after the equivalent of 4 or more months. The fact that this occurs in the homogenous proximal Nitinol shaft rather than at the welding point between the shaft and the titanium curl implies that breakage is secondary to material fatigue and not design error. Extensive testing is under way to confirm material fatigue as the cause of breakage. We hope to determine a safe dwelling time for these stents, which at the moment should not exceed 3 months.

  3. Ginsenoside Rb1 improves energy metabolism in the skeletal muscle of an animal model of postoperative fatigue syndrome.

    Science.gov (United States)

    Tan, Shan-Jun; Li, Ning; Zhou, Feng; Dong, Qian-Tong; Zhang, Xiao-Dong; Chen, Bi-Cheng; Yu, Zhen

    2014-10-01

    Postoperative fatigue syndrome (POFS) is a common clinical complication followed by almost every major abdominal surgery. Ginsenoside Rb1 (GRb1), a principle ginsenoside in ginseng, could exert a potent anti-fatigue effect on POFS. However, the mechanism is still unknown. Previous studies revealed that alterations in the energy metabolism in the skeletal muscle may play a vital role in the development and progression of fatigue. In the present study, we investigate the effect of GRb1 on energy metabolism in the skeletal muscle of a rat model of POFS induced by major small intestinal resection. GRb1 (10 mg/kg) was intraperitoneally administrated once daily for 1, 3, 7, and 10 d from the operation day, respectively. The locomotor activity was recorded every day, and total food intake was calculated starting from 24 h after surgery. After GRb1 treatment was completed, blood and skeletal muscle were sampled. The level of blood glucose was determined by an automatic biochemical analyzer. The content of adenosine triphosphate (ATP) in skeletal muscle was determined by high-performance liquid chromatography. The activity of energy metabolic enzymes Na(+)-K(+)-ATPase, pyruvate kinase, and succinate dehydrogenase (SDH) was assessed by commercially available kits. The results revealed that GRb1 could increase locomotor activity of POFS rats and significantly increase their total food intake postoperatively (P muscle of POFS rats (P muscle of POFS rats was enhanced by GRb1 (P 0.05). These results suggest that GRb1 may improve skeletal muscle energy metabolism in POFS, and the underlying mechanism may be associated with an increase in the content of ATP and an enhancement in the activity of energy metabolic enzymes such as Na(+)-K(+)-ATPase ATPase and SDH in the skeletal muscle. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Effect of Face-to-face Education, Problem-based Learning, and Goldstein Systematic Training Model on Quality of Life and Fatigue among Caregivers of Patients with Diabetes.

    Science.gov (United States)

    Masoudi, Reza; Soleimani, Mohammad Ali; Yaghoobzadeh, Ameneh; Baraz, Shahram; Hakim, Ashrafalsadat; Chan, Yiong H

    2017-01-01

    Education is a fundamental component for patients with diabetes to achieve good glycemic control. In addition, selecting the appropriate method of education is one of the most effective factors in the quality of life. The present study aimed to evaluate the effect of face-to-face education, problem-based learning, and Goldstein systematic training model on the quality of life (QOL) and fatigue among caregivers of patients with diabetes. This randomized clinical trial was conducted in Hajar Hospital (Shahrekord, Iran) in 2012. The study subjects consisted of 105 family caregivers of patients with diabetes. The participants were randomly assigned to three intervention groups (35 caregivers in each group). For each group, 5-h training sessions were held separately. QOL and fatigue were evaluated immediately before and after the intervention, and after 1, 2, 3, and 4 months of intervention. There was a significant increase in QOL for all the three groups. Both the problem-based learning and the Goldstein method showed desirable QOL improvement over time. The desired educational intervention for fatigue reduction during the 4-month post-intervention period was the Goldstein method. A significant reduction was observed in fatigue in all three groups after the intervention ( P problem-based learning and Goldstein systematic training model improve the QOL of caregivers of patients with diabetes. In addition, the Goldstein systematic training model had the greatest effect on the reduction of fatigue within 4 months of the intervention.

  5. SCC and Corrosion Fatigue characterization of a Ti-6Al-4V alloy in a corrosive environment – experiments and numerical models

    Directory of Open Access Journals (Sweden)

    S. Baragetti

    2014-10-01

    Full Text Available In the present article, a review of the complete characterization in different aggressive media of a Ti-6Al-4V titanium alloy, performed by the Structural Mechanics Laboratory of the University of Bergamo, is presented. The light alloy has been investigated in terms of corrosion fatigue, by axial fatigue testing (R = 0.1 of smooth and notched flat dogbone specimens in laboratory air, 3.5% wt. NaCl–water mixture and methanol–water mixture at different concentrations. The first corrosive medium reproduced a marine environment, while the latter was used as a reference aggressive environment. Results showed that a certain corrosion fatigue resistance is found in a salt water medium, while the methanol environment caused a significant drop – from 23% to 55% in terms of limiting stress reduction – of the fatigue resistance of the Ti-6Al-4V alloy, even for a solution containing 5% of methanol. A Stress Corrosion Cracking (SCC experimental campaign at different methanol concentrations has been conducted over slightly notched dog-bone specimens (Kt = 1.18, to characterize the corrosion resistance of the alloy under quasi-static load conditions. Finally, crack propagation models have been implemented to predict the crack propagation rates for smooth specimens, by using Paris, Walker and Kato-Deng-Inoue-Takatsu propagation formulae. The different outcomes from the forecasting numerical models were compared with experimental results, proposing modeling procedures for the numerical simulation of fatigue behavior of a Ti-6Al-4V alloy.

  6. Fatigue life prediction in composites

    CSIR Research Space (South Africa)

    Huston, RJ

    1994-01-01

    Full Text Available epoxy were used to test residual strength and residual stiffness models. Further fatigue tests were carried out under spectrum loading so that the results could be correlated with the cumulative damage predicted by the residual strength model....

  7. Laser induced damage in optical materials: ninth ASTM symposium.

    Science.gov (United States)

    Glass, A J; Guenther, A H

    1978-08-01

    The Ninth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 4-6 October 1977. The symposium was under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy (formerly ERDA), and the Office of Naval Research. About 185 scientists attended, including representatives of the United Kingdom, France, Canada, Australia, Union of South Africa, and the Soviet Union. The Symposium was divided into sessions concerning Laser Windows and Materials, Mirrors and Surfaces, Thin Films, Laser Glass and Glass Lasers, and Fundamental Mechanisms. As in previous years, the emphasis of the papers was directed toward new frontiers and new developments. Particular emphasis was given to materials for use from 10.6 microm to the uv region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength were also discussed. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons. The Tenth Annual Symposium is scheduled for 12-14 September 1978 at the National Bureau of Standards, Boulder, Colorado.

  8. Laser-induced damage in optical materials: sixteenth ASTM symposium.

    Science.gov (United States)

    Bennett, H E; Guenther, A H; Milam, D; Newnam, B E

    1987-03-01

    The Sixteenth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, CO, 15-17 Oct. 1984. The Symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy, the Office of Naval Research, and the Air Force Office of Scientific Research. Approximately 180 scientists attended the Symposium, including representatives from England, France, The Netherlands, Scotland, and West Germany. The Symposium was divided into sessions concerning Materials and Measurements, Mirrors and Surfaces, Thin Films, and Fundamental Mechanisms. As in previous years, the emphasis of the papers presented at the Symposium was directed toward new frontiers and new developments. Particular emphasis was given to materials for high-power apparatus. The wavelength range of prime interest was from 10.6,microm to the UV region. Highlights included surface characterization, thin-film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. Harold E. Bennett of the U.S. Naval Weapons Center, Arthur H. Guenther of the U.S. Air Force Weapons Laboratory, David Milam of the Lawrence Livermore National Laboratory, and Brian E. Newnam of the Los Alamos National Laboratory were cochairmen of the Symposium.

  9. Fatigue Analysis of Large-scale Wind turbine

    Directory of Open Access Journals (Sweden)

    Zhu Yongli

    2017-01-01

    Full Text Available The paper does research on top flange fatigue damage of large-scale wind turbine generator. It establishes finite element model of top flange connection system with finite element analysis software MSC. Marc/Mentat, analyzes its fatigue strain, implements load simulation of flange fatigue working condition with Bladed software, acquires flange fatigue load spectrum with rain-flow counting method, finally, it realizes fatigue analysis of top flange with fatigue analysis software MSC. Fatigue and Palmgren-Miner linear cumulative damage theory. The analysis result indicates that its result provides new thinking for flange fatigue analysis of large-scale wind turbine generator, and possesses some practical engineering value.

  10. Fatigue Model for the Structural Integrity Evaluation Applied to a Wind Turbine Concrete Shaft, Considering Corrosion and Freeze and Thaw Degradation

    DEFF Research Database (Denmark)

    Saucedo-Mora, Luis; Thöns, Sebastian

    2017-01-01

    Fatigue is one of the principal damage mechanisms in a slender concrete structure under cyclic loads. And needs to be calculated locally through all the structure, considering the lading conditions and the particularities of concrete. The model presented here is capable to account for the fatigue...... damage in a probabilistic way, relating the annual loading conditions for each point and the degradation processes with a probability of failure. The methodology is as well capable to model the effect of a repair and control the structural integrity using the monitored data....

  11. Fatigue damage assessment of electric roads based on probabilistic load models

    Science.gov (United States)

    Ceravolo, R.; Miraglia, G.; Surace, C.

    2017-05-01

    The electro-mobility is becoming an increasingly present reality in recent years. The most important drawback of this technology is known to be limited battery autonomy. In an attempt to overcome this problem, for specific studies and testing, a number of roads have been implemented with coil systems in order to transfer power to electric vehicles, as described in this article. While on the one hand this could solve the problem of charging, on the other hand the introduction of a technology within an existing infrastructure could result in further structural issues. Since little or no information on the possible structural effect of the introduction of a charging system in the road is currently available, this study has focused on the long-term fatigue analysis of an electric road infrastructure in which an inductive wireless charging system has been introduced into the road structure. To perform the fatigue analysis, a recursive procedure defined within a probabilistic framework was developed and applied to a benchmark case study. The results obtained from the analysis represent an initial database for the definition of strategies and protocols for the monitoring, maintenance and operations of future electric roads infrastructures.

  12. Melatonin supplementation plus exercise behavior ameliorate insulin resistance, hypertension and fatigue in a rat model of type 2 diabetes mellitus.

    Science.gov (United States)

    Rahman, Md Mahbubur; Kwon, Han-Sol; Kim, Myung-Jin; Go, Hyeon-Kyu; Oak, Min-Ho; Kim, Do-Hyung

    2017-08-01

    The objective was to investigate the effects of melatonin and exercise on insulin resistance (IR), hypertension and fatigue syndrome in a rat model of type 2 diabetes mellitus (T2DM). Rats were divided into 5 groups namely normal control (NC), T2DM control group (DC), diabetes plus exercise (DE), diabetes plus oral melatonin supplement (DM) and diabetes plus melatonin and exercise (DME) groups. Melatonin was administered orally 5mg/kg twice daily and 40min swimming/day 5days/week were regimented after diabetes induction. Blood pressure, fasting blood glucose, insulin, IR, serum leptin, lipid profiles, inflammatory cytokines, lipid peroxidation increased significantly (Pmelatonin ameliorated markedly hypertension, IR, biochemical alteration induced by diabetes and significantly increased exercise performance (PMelatonin supplementation in combination with exercise behavior may ameliorate IR, hypertension and exercise performance or fatigue possibly by improving antioxidative activities, hyperlipidemia, inflammatory cytokines via up-regulation of GLUT4, PGC-1 α and mitochondrial biogenesis in T2DM rats. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Chronic fatigue syndrome: Harvey and Wessely's (biopsychosocial model versus a bio(psychosocial model based on inflammatory and oxidative and nitrosative stress pathways

    Directory of Open Access Journals (Sweden)

    Twisk Frank NM

    2010-06-01

    Full Text Available Abstract Background In a recently published paper, Harvey and Wessely put forward a 'biopsychosocial' explanatory model for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS, which is proposed to be applicable to (chronic fatigue even when apparent medical causes are present. Methods Here, we review the model proposed by Harvey and Wessely, which is the rationale for behaviourally oriented interventions, such as cognitive behaviour therapy (CBT and graded exercise therapy (GET, and compare this model with a biological model, in which inflammatory, immune, oxidative and nitrosative (IO&NS pathways are key elements. Discussion Although human and animal studies have established that the pathophysiology of ME/CFS includes IO&NS pathways, these abnormalities are not included in the model proposed by Harvey and Wessely. Activation of IO&NS pathways is known to induce fatigue and somatic (F&S symptoms and can be induced or maintained by viral and bacterial infections, physical and psychosocial stressors, or organic disorders such as (autoimmune disorders. Studies have shown that ME/CFS and major depression are both clinical manifestations of shared IO&NS pathways, and that both disorders can be discriminated by specific symptoms and unshared or differentiating pathways. Interventions with CBT/GET are potentially harmful for many patients with ME/CFS, since the underlying pathophysiological abnormalities may be intensified by physical stressors. Conclusions In contrast to Harvey and Wessely's (biopsychosocial model for ME/CFS a bio(psychosocial model based upon IO&NS abnormalities is likely more appropriate to this complex disorder. In clinical practice, we suggest physicians should also explore the IO&NS pathophysiology by applying laboratory tests that examine the pathways involved.

  14. How SEIPS can be used as a model for macroergonomic approach in subunit healthcare (Case study: The nurse perception of fatigue in surgery ward unit)

    Science.gov (United States)

    Iftadi, Irwan; Astuti, Rahmaniyah Dwi; Pristiyana, Ardian Ade

    2017-11-01

    Occupational fatigue in healthcare nurses, which has multifaceted issues, is associated with decreased patient safety and the quality of nursing care. The aim of this study was to investigate the nurses fatigue problem in sub-unit healthcare based on their perceptual experience. Interviews were conducted and analyzed utilizing a direct qualitative content analysis approach using NVivo Software and guided by Model of System Engineering Initiative for Patient Safety (SEIPS). The findings of this research were a steering on what nurses perceive as contributing and preventing to fatigue which are likewise arranged in SEIPS model. It was shown that a macro ergonomic approach is valuable for understanding complexities of work systems, even though it is a small unit organization.

  15. 76 FR 1459 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM International

    Science.gov (United States)

    2011-01-10

    ... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM... Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), ASTM International (``ASTM'') has filed written notifications simultaneously with the Attorney General and the Federal Trade...

  16. 77 FR 1085 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM International

    Science.gov (United States)

    2012-01-09

    ... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--ASTM... Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), ASTM International (``ASTM'') has filed written notifications simultaneously with the Attorney General and the Federal Trade...

  17. 75 FR 11196 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM International

    Science.gov (United States)

    2010-03-10

    ... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--ASTM... Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), ASTM International (``ASTM'') has filed written notifications simultaneously with the Attorney General and the Federal Trade...

  18. 75 FR 65657 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM International

    Science.gov (United States)

    2010-10-26

    ... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--ASTM... Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), ASTM International (``ASTM'') has filed written notifications simultaneously with the Attorney General and the Federal Trade...

  19. Sources of Confusion in the Determination of ASTM Repetitive Member Factors for the Allowable Properties of Wood Products

    Science.gov (United States)

    S. Verrill; D. Kretschmann

    2012-01-01

    It is generally accepted that there should be an upward repetitive member allowable property adjustment. ASTM D245 (2011c) and ASTM D1990 (2011b) specify a 1.15 factor for allowable bending stress. This factor is also listed in ASTM D6555 (2011a, Table 1). In this technical note, sources of confusion regarding appropriate repetitive member factors are identified. This...

  20. 77 FR 14046 - Amended Notice Pursuant to the National Cooperative Research and Production Act of 1993-ASTM...

    Science.gov (United States)

    2012-03-08

    ... Research and Production Act of 1993--ASTM International Standards Notice is hereby given that, on February 10, 2012, pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), ASTM International Standards (``ASTM'') has filed written...

  1. 76 FR 78614 - Welded ASTM A-312 Stainless Steel Pipe From South Korea and Taiwan: Continuation of Antidumping...

    Science.gov (United States)

    2011-12-19

    ... International Trade Administration Welded ASTM A-312 Stainless Steel Pipe From South Korea and Taiwan... welded ASTM A-312 stainless steel pipe from South Korea (Korea) and Taiwan would likely lead to.... See Welded ASTM A-312 Stainless Steel Pipe From South Korea and Taiwan: Final Results of Expedited...

  2. Hydrogen embrittlement of ASTM A 203 D nuclear structural steel

    International Nuclear Information System (INIS)

    Chakravartty, J.K.; Prasad, G.E.; Sinha, T.K.; Asundi, M.K.

    1986-01-01

    The influence of hydrogen on the mechanical properties of ASTM A 203 D nuclear structural steel has been studied by tension, bend and delayed-failure tests at room temperature. While the tension tests of hydrogen charged unnotched specimens reveal no change in ultimate strength and ductility, the effect of hydrogen is manifested in notched specimens (tensile and bend) as a decrease in ultimate strength (maximum load in bend test) and ductility; the effect increases with increasing hydrogen content. It is observed that for a given hydrogen concentration, the decrease in bend ductility is remarkably large compared to that in tensile ductility. Hydrogen charging does not cause any delayed-failure upto 200 h under an applied tensile stress, 0.85 times the notch tensile strength. However delayed failure occurs in hydrogen charged bend samples in less than 10 h under an applied bending load of about 0.80 times of the uncharged maximum load. Fractographs of hydrogen charged unnotched specimens show ductile dimple fracture, while those of notched tension and bend specimens under hydrogen-charged conditions show a mixture of ductile dimple and quasi-cleavage cracking. The proportion of quasi-cleavage cracking increases with increasing hydrogen content and this fracture mode is more predominant in bend specimens. The changes in tensile properties and fracture modes can reasonably be explained by existing theories of hydrogen embrittlement. An attempt is made to explain the significant difference in the embrittlement susceptibility of bend and tensile specimens in the light of difference in triaxiality and plastic zone size near the notch tip. (orig.)

  3. Laser induced damage in optical materials: twelfth ASTM symposium.

    Science.gov (United States)

    Bennett, H E; Glass, A J; Guenther, A H; Newnam, B

    1981-09-01

    The twelfth annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 30 Sept.-l Oct., 1980. The symposium was held under the auspices of ASTM Committee F-l, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Projects Agency, the Department of Energy, the Office of Naval Research, and the Air Force Office of Scientific research. Over 150 scientists attended the symposium, including representatives of the United Kingdom, France, Japan, and West Germany. The symposium was divided into sessions concerning materials and measurements, mirrors and surfaces, thin films, and finally fundamental mechanisms. As in previous years, the emphasis of the papers presented at the symposium was directed toward new frontiers and new developments. Particular emphasis was given to materials for high power systems. The wavelength range of prime interest was from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was discussed in detail. Harold E. Bennett of the Naval Weapons Center, Alexander J. Glass of the Lawrence Livermore National Laboratory, Arthur H. Guenther of the Air Force Weapons Laboratory, and Brian E. Newnam of the Los Alamos National Laboratory were cochairmen of the symposium. The thirteenth annual symposium is scheduled for 17-18 Nov. 1981 at the National Bureau of Standards, Boulder, Colorado.

  4. Laser induced damage in optical materials: eleventh ASTM symposium.

    Science.gov (United States)

    Bennett, H E; Glass, A J; Guenther, A H; Newnam, B

    1980-07-15

    The eleventh Symposium on Optical Materials for High-Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 30-31 October 1979. The symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Projects Agency, the Department of Energy, and the Office of Naval Research. About 150 scientists attended the symposium, including representatives of the United Kingdom, France, Canada, Japan, West Germany, and Denmark. The symposium was divided into sessions concerning transparent optical materials and the measurement of their properties, mirrors and surfaces, thin film characteristics, thin film damage, considerations for high-power systems, and finally theory and breakdown. As in previous years, the emphasis of the papers presented at the symposium was directed toward new frontiers and new developments. Particular emphasis was given to materials for high-power apparatus. The wavelength range of prime interest was from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was discussed in detail. Harold E. Bennett of the Naval Weapons Center, Alexander J. Glass of the Lawrence Livermore Laboratory, Arthur H. Guenther of the Air Force Weapons Laboratory, and Brian E. Newnam of the Los Alamos Scientific Laboratory were cochairpersons. The twelfth annual symposium is scheduled for 30 September-1 October 1980 at the National Bureau of Standards, Boulder, Colorado.

  5. Fatigue (PDQ)

    Science.gov (United States)

    ... can lessen the patient's quality of life and self-esteem . Getting help with fatigue may prevent some of ... National Institutes of Health FOLLOW US Facebook Twitter Instagram YouTube Google+ LinkedIn GovDelivery RSS CONTACT INFORMATION Contact ...

  6. A discrete element model for damage and fracture of geomaterials under fatigue loading

    Science.gov (United States)

    Gao, Xiaofeng; Koval, Georg; Chazallon, Cyrille

    2017-06-01

    Failure processes in geomaterials (concrete, asphalt concrete, masonry, etc.) under fatigue loading (repeated moving loads, cycles of temperature, etc.) are responsible for most of the dysfunctions in pavements, brick structures, etc. In the beginning of the lifetime of a structure, the material presents only inner defects (micro cracks, voids, etc.). Due to the effect of the cyclic loading, these small defects tend to grow in size and quantity which damage the material, reducing its stiffness. With a relatively high number of cycles, these growing micro cracks become large cracks, which characterizes the fracture behavior. From a theoretical point of view, both mechanisms are treated differently. Fracture is usually described locally, with the propagation of cracks defined by the energy release rate at the crack tip; damage is usually associated to non-local approaches. In the present work, damage and fracture mechanics are combined in a local discrete element approach.

  7. Guide to ASTM test methods for the analysis of coal and coke

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Kishore Nadkarni (ed.)

    2008-07-01

    The guide includes brief descriptions of all 56 ASTM test methods that cover the physical, chemical, and spectroscopic analytical techniques to qualitatively and quantitatively identify over 40 chemical and physical properties of coal, coke, their products, and by-products.

  8. Fatigue behavior of Ilizarov frame versus tibial interlocking nail in a comminuted tibial fracture model: a biomechanical study

    Directory of Open Access Journals (Sweden)

    Stahel Philip F

    2006-12-01

    Full Text Available Abstract Background Treatment options for comminuted tibial shaft fractures include plating, intramedullary nailing, and external fixation. No biomechanical comparison between an interlocking tibia nail with external fixation by an Ilizarov frame has been reported to date. In the present study, we compared the fatigue behaviour of Ilizarov frames to interlocking intramedullary nails in a comminuted tibial fracture model under a combined loading of axial compression, bending and torsion. Our goal was to determine the biomechanical characteristics, stability and durability for each device over a clinically relevant three month testing period. The study hypothesis was that differences in the mechanical properties may account for differing clinical results and provide information applicable to clinical decision making for comminuted tibia shaft fractures. Methods In this biomechanical study, 12 composite tibial bone models with a comminuted fracture and a 25 mm diaphyseal gap were investigated. Of these, six models were stabilized with a 180-mm four-ring Ilizarov frame, and six models were minimally reamed and stabilized with a 10 mm statically locked Russell-Taylor Delta™ tibial nail. After measuring the pre-fatigue axial compression bending and torsion stiffness, each model was loaded under a sinusoidal cyclic combined loading of axial compression (2.8/28 lbf; 12.46/124.6 N and torque (1.7/17 lbf-in; 0.19/1.92 Nm at a frequency of 3 Hz. The test was performed until failure (implant breakage or ≥ 5° angulations and/or 2 cm shortening occurred or until 252,000 cycles were completed, which corresponds to approximately three months testing period. Results In all 12 models, both the Ilizarov frame and the interlocking tibia nail were able to maintain fracture stability of the tibial defect and to complete the full 252,000 cycles during the entire study period of three months. A significantly higher stiffness to axial compression and torsion was

  9. Mode II Interlaminar Fracture Toughness and Fatigue Characterization of a Graphite Epoxy Composite Material

    Science.gov (United States)

    O'Brien, T. Kevin; Johnston, William M.; Toland, Gregory J.

    2010-01-01

    Mode II interlaminar fracture toughness and delamination onset and growth characterization data were generated for IM7/8552 graphite epoxy composite materials from two suppliers for use in fracture mechanics analyses. Both the fracture toughness testing and the fatigue testing were conducted using the End-notched Flexure (ENF) test. The ENF test for mode II fracture toughness is currently under review by ASTM as a potential standard test method. This current draft ASTM protocol was used as a guide to conduct the tests on the IM7/8552 material. This report summarizes the test approach, methods, procedures and results of this characterization effort.

  10. Modeling of creep-fatigue interaction of zirconium {alpha} under cyclic loading at 200 C; Modelisation du comportement et de l`endommagement en fatigue-fluage du zirconium {alpha} a 200C

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, C.

    1996-04-01

    The present work deals with mechanical behaviour of zirconium alpha at 200 deg. C and crack initiation prediction methods, particularly when loading conditions lead to interaction of fatigue and creep phenomena. A classical approach used to study interaction between cyclic effects and constant loading effects does not give easy understanding of experimental results. Therefore, a new approach has been developed, which allow to determine a number of cycles for crack initiation for complex structures under large loading conditions. To study influence of fatigue and creep interaction on crack initiation, a model was chosen, using a scalar variable, giving representation of the material deterioration state. The model uses a non linear cumulating effect between the damage corresponding to cyclic loads and the damage correlated to time influence. The model belongs to uncoupled approaches between damage and behaviour, which is described here by a two inelastic deformations model. This mechanical behaviour model is chosen because it allows distinction between a plastic and a viscous part in inelastic flow. Cyclic damage is function of stress amplitude and mean stress. For the peculiar sensitivity of the material to creep, a special parameter bas been defined to be critical toward creep damage. It is the kinematic term associated to state variables describing this type of hardening in the viscous mechanism. (author).

  11. Fatigue Strength of Titanium Risers - Defect Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Babalola, Olusegun Tunde

    2001-07-01

    This study is centred on assessment of the fatigue strength of titanium fusion welds for deep-water riser's applications. Deep-water risers are subjected to significant fatigue loading. Relevant fatigue data for titanium fusion welds are very scarce. Hence there is a need for fatigue data and life prediction models for such weldments. The study has covered three topics: Fatigue testing, Fractography and defect assessment, and Fracture Mechanics modelling of fatigue crack growth. Two series of welded grade of titanium consisting of 14 specimens in each series were fatigue tested under constant amplitude loading. Prior to fatigue testing, strain gauge measurements of some specimens was conducted to enable the definition of stress range in the fatigue assessment procedure. The results were compared with finite solid element analysis and related to fatigue stresses in a riser pipe wall. Distribution and geometry of internal and surface defects both in the as-welded and in the post-weld machined conditions were assessed using fractography. This served as a tool to determine the fatigue initiation point in the welds. Fracture mechanics was applied to model fatigue strength of titanium welds with initiation from weld defects. Two different stress intensity factor formulations for embedded eccentrically placed cracks were used for analysis of elliptical cracks with the major axis parallel and close to one of the free surfaces. The methods were combined to give a satisfactory model for crack growth analysis. The model analyses crack growth of elliptical and semi-elliptical cracks in two directions, with updating of the crack geometry. Fatigue strength assessment was conducted using two crack growth models, the Paris-Erdogan relation with no threshold and the Donahue et al. relation with an implied threshold. The model was validated against experimental data, with a discussion on the choice of crack growth model. (author)

  12. Nonlinear piezoelectric effects—towards physics-based computational modelling of micro-cracking, fatigue, and switching

    Science.gov (United States)

    Menzel, A.; Utzinger, J.; Arockiarajan, A.

    2008-07-01

    Piezoelectric ceramics—as one widely commercialised group of smart materials—exhibit a great potential for various engineering applications. Their high-frequency capabilities are in particular attractive for actuator and sensor devices, which nowadays are present in daily-life-technologies such as cellular phones, fuel injection systems, and so forth. At high loading levels however, severely nonlinear behaviour of these materials is observed which, from the control point of view, must be further investigated in order to be able to precisely account for such effects within the design of intelligent systems. The reasons for these nonlinearities are manifold and, even investigated within the last decades, not fully understood. Nevertheless, two important sources for these observations are so-called micro-cracking, together with fatigue phenomena, as well as switching or rather phase transformations. Accordingly, the main goal of this contribution is to study these effects by means of developing related constitutive models that can be embedded into iterative algorithmic schemes such as the finite element method. One the one hand, the grain-structure of a piezoceramic specimen will be modelled via the direct incorporation of the grain-boundaries as so-called interface elements. The underlying cohesive-like constitutive law of this layer includes both degrees of freedom of the surrounding bulk material—or rather the jumps in these fields—namely displacements and the electric potential. Based on the resulting traction-separation-type relations, micro-cracking is directly accounted for on this microlevel. Moreover, the constitutive law of the interfacial layer is supplemented by additional variables that enable the formulation of fatigue under cyclic loading conditions. On the other hand, phase transformations—modelled in terms of an energy-based switching criterion—are discussed and embedded into an iterative finite element context. Symmetry relations of the

  13. A Study of the Protective Effect of Triticum aestivum L. in an Experimental Animal Model of Chronic Fatigue Syndrome.

    Science.gov (United States)

    Borah, Mukundam; Sarma, Phulen; Das, Swarnamoni

    2014-10-01

    Oxidative stress plays a major role in the pathogenesis of chronic fatigue syndrome (CFS). Keeping in view the proven antioxidant activity of Triticum aestivum L., this study has been undertaken to explore the potential therapeutic benefit of this plant in the treatment of CFS. To study the protective effect of the ethanolic extract of the leaves of Triticum aestivum (EETA) in an experimental mice model of CFS. Five groups of albino mice (20-25 g) were selected for the study, with five animals in each group. Group A served as the naïve control and Group B served as the stressed control. Groups C and D received EETA (100 mg/kg and 200 mg/kg b.w.). Group E received imipramine (20 mg/kg b.w.). Except for Group A, mice in each group were forced to swim 6 min each for 7 days to induce a state of chronic fatigue. Duration of immobility was measured on every alternate day. After 7 days, various behavioral tests (mirror chamber and elevated plus maize test for anxiety, open field test for locomotor activity) and biochemical estimations (malondialdehyde [MDA] and catalase activity) in mice brain were performed. Forced swimming in the stressed group resulted in a significant increase in immobility period, decrease in locomotor activity and elevated anxiety level. The brain homogenate showed significantly increased MDA and decreased catalase levels. The extract-treated groups showed significantly (P < 0.05) improved locomotor activity, decreased anxiety level, elevated catalase levels and reduction of MDA. The study confirms the protective effects of EETA in CFS.

  14. An overview of fatigue

    International Nuclear Information System (INIS)

    Mc Evily, A.J.

    1987-01-01

    Four topics are briefly discussed in this paper: fatigue crack initiation and growth in a nickel-base superalloy single crystal, the environment effect on near-threshold fatigue crack growth behaviour, the role of crack closure in load-interaction effects in fatigue crack growth, and the nature of creep-fatigue interactions, if any, during fatigue crack growth. (Author)

  15. Evaluation of the C Model for Addressing Short Fatigue Crack Growth

    National Research Council Canada - National Science Library

    Walker, K. F; Hu, W

    2008-01-01

    .... This report evaluates the C* model using experimental data from the open literature. For comparison, two other models, the El Haddad model and the FASTRAN model, were also evaluated for their capability in dealing with the same problem...

  16. 3D-FE Modeling of 316 SS under Strain-Controlled Fatigue Loading and CFD Simulation of PWR Surge Line

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Barua, Bipul [Argonne National Lab. (ANL), Argonne, IL (United States); Listwan, Joseph [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    In financial year 2017, we are focusing on developing a mechanistic fatigue model of surge line pipes for pressurized water reactors (PWRs). To that end, we plan to perform the following tasks: (1) conduct stress- and strain-controlled fatigue testing of surge-line base metal such as 316 stainless steel (SS) under constant, variable, and random fatigue loading, (2) develop cyclic plasticity material models of 316 SS, (3) develop one-dimensional (1D) analytical or closed-form model to validate the material models and to understand the mechanics associated with 316 SS cyclic hardening and/or softening, (4) develop three-dimensional (3D) finite element (FE) models with implementation of evolutionary cyclic plasticity, and (5) develop computational fluid dynamics (CFD) model for thermal stratification, thermal-mechanical stress, and fatigue of example reactor components, such as a PWR surge line under plant heat-up, cool-down, and normal operation with/without grid-load-following. This semi-annual progress report presents the work completed on the above tasks for a 316 SS laboratory-scale specimen subjected to strain-controlled cyclic loading with constant, variable, and random amplitude. This is the first time that the accurate 3D-FE modeling of the specimen for its entire fatigue life, including the hardening and softening behavior, has been achieved. We anticipate that this work will pave the way for the development of a fully mechanistic-computer model that can be used for fatigue evaluation of safety-critical metallic components, which are traditionally evaluated by heavy reliance on time-consuming and costly test-based approaches. This basic research will not only help the nuclear reactor industry for fatigue evaluation of reactor components in a cost effective and less time-consuming way, but will also help other safety-related industries, such as aerospace, which is heavily dependent on test-based approaches, where a single full-scale fatigue test can cost

  17. Fatigue Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...... of the natural period, damping ratio, current, stress Spectrum and parameters describing the fatigue strength. Further, soil damping is shown to be significant for the Mono-tower....

  18. Effect of face-to-face education, problem-based learning, and goldstein systematic training model on quality of life and fatigue among caregivers of patients with diabetes

    Directory of Open Access Journals (Sweden)

    Reza Masoudi

    2017-01-01

    Full Text Available Background: Education is a fundamental component for patients with diabetes to achieve good glycemic control. In addition, selecting the appropriate method of education is one of the most effective factors in the quality of life. The present study aimed to evaluate the effect of face-to-face education, problem-based learning, and Goldstein systematic training model on the quality of life (QOL and fatigue among caregivers of patients with diabetes. Materials and Methods: This randomized clinical trial was conducted in Hajar Hospital (Shahrekord, Iran in 2012. The study subjects consisted of 105 family caregivers of patients with diabetes. The participants were randomly assigned to three intervention groups (35 caregivers in each group. For each group, 5-h training sessions were held separately. QOL and fatigue were evaluated immediately before and after the intervention, and after 1, 2, 3, and 4 months of intervention. Results: There was a significant increase in QOL for all the three groups. Both the problem-based learning and the Goldstein method showed desirable QOL improvement over time. The desired educational intervention for fatigue reduction during the 4-month post-intervention period was the Goldstein method. A significant reduction was observed in fatigue in all three groups after the intervention (P < 0.001. Conclusions: The results of the present study illustrated that the problem-based learning and Goldstein systematic training model improve the QOL of caregivers of patients with diabetes. In addition, the Goldstein systematic training model had the greatest effect on the reduction of fatigue within 4 months of the intervention.

  19. Side Effects: Fatigue

    Science.gov (United States)

    Fatigue is a common side effect of many cancer treatments such as chemotherapy, radiation therapy, immunotherapy, and surgery. Anemia and pain can also cause fatigue. Learn about symptoms and way to manage fatigue.

  20. Concept development of "compassion fatigue" in clinical nurses: Application of Schwartz-Barcott and Kim's hybrid model

    Directory of Open Access Journals (Sweden)

    Mahdieh Sabery

    2017-06-01

    Full Text Available Compassion fatigue is not a new concept in nursing; yet, it is not well known and there is no fixed clear definition of the term. The ambiguity surrounding how to define compassion fatigue has challenged its measurement and evaluation. Thus, any attempt to determine attributes of this underdeveloped concept and studying it in a new socio-cultural context requires concept development. The purpose of this study is to clarify the concept of compassion fatigue through concept development and to produce a vivid and tentative definition of this concept in clinical practice. Concept development was conducted using a three-step hybrid concept analysis including theoretical, fieldwork, and final analysis phases according to Schwartz-Barcott and Kim's method. We reviewed and analyzed 48 articles that met the inclusion criteria. Following, the first author conducted 13 interviews with clinical nurses followed by an inductive content analysis. Finally, a comprehensive definition of compassion fatigue in nurses was attained. Compassion fatigue in nurses can be explained as a cumulative and progressive process of absorption of the patient’s pain and suffering formed from the sympathetic and caring interactions with the patients and their families. The physical, emotional, intellectual, spiritual, social, and organizational consequences of compassion fatigue are so extensive that they threaten the existential integrity of the nurse. Context-based variables (culture, family, and community such as personality features like devotion behaviors and commitment towards the patient, exposure to multiple stressors, organizational challenges, and lack of self-care are factors associated with an increased risk of compassion fatigue. Concept development of compassion fatigue is the first step in the protection of nurses against the destructive consequences of compassion fatigue and to improve quality of care.

  1. PMMA-hydroxyapatite composite material retards fatigue failure of augmented bone compared to augmentation with plain PMMA: in vivo study using a sheep model.

    Science.gov (United States)

    Arabmotlagh, Mohammad; Bachmaier, Samuel; Geiger, Florian; Rauschmann, Michael

    2014-11-01

    Polymethylmethacrylate (PMMA) is the most commonly used void filler for augmentation of osteoporotic vertebral fracture, but the differing mechanical features of PMMA and osteoporotic bone result in overload and failure of adjacent bone. The aim of this study was to compare fatigue failure of bone after augmentation with PMMA-nanocrystalline hydroxyapatite (HA) composite material or with plain PMMA in a sheep model. After characterization of the mechanical properties of a composite material consisting of PMMA and defined amounts (10, 20, and 30% volume fraction) of HA, the composite material with 30% volume fraction HA was implanted in one distal femur of sheep; plain PMMA was implanted in the other femur. Native non-augmented bone served as control. Three and 6 months after implantation, the augmented bone samples were exposed to cyclic loading and the evolution of damage was investigated. The fatigue life was highest for the ovine native bone and lowest for bone-PMMA specimens. Bone-composite specimens showed significantly higher fatigue life than the respective bone-PMMA specimens in both 3- and 6-month follow-up groups. These results suggest that modification of mechanical properties of PMMA by addition of HA to approximate those of cancellous bone retards fatigue failure of the surrounding bone compared to augmented bone with plain PMMA. © 2014 Wiley Periodicals, Inc.

  2. Spatially explicit, nano-mechanical models of the muscle half-sarcomere: Implications for biomechanical tuning in atrophy and fatigue

    Science.gov (United States)

    Kataoka, Aya; Tanner, Bertrand C. W.; Macpherson, J. Michael; Xu, Xiangrong; Wang, Qi; Regnier, Michael; Daniel, Thomas L.; Chase, P. Bryant

    2007-01-01

    Astronaut biomechanical performance depends on a wide variety of factors. Results from computational modelling suggest that muscle function—a key component of performance—could be modulated by compliance of the contractile filaments in muscle, especially when force is low such as transient Ca activation in a twitch, reduced activation in muscle fatigue encountered during EVA, or perhaps atrophy during prolonged space flight. We used Monte-Carlo models to investigate the hypotheses that myofilament compliance influences muscle function during a twitch, and also modulates the effects of cooperative interactions between contractile proteins on force generation. Peak twitch force and the kinetics of force decay were both decreased, while tension cost was increased, when myofilament compliance was increased relative to physiological values. Both the apparent Ca sensitivity and cooperativity of activation of steady-state isometric force were altered by myofilament compliance even when there were no explicit interactions included between binding sites. The effects of cooperative interactions between adjacent regulatory units were found to be greater than either the effect of myofilament compliance on apparent cooperativity of activation or that due to myosin cross-bridge-induced cooperativity. These results indicate that muscle function may be "tuned" at the molecular level, particularly under conditions of reduced Ca activation.

  3. A Low Order Model for Analyzing effects of Blade Fatigue Load Control

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2006-01-01

    A new low order mathematical model is introduced to analyse blade dynamics and blade load reducing control strategies for wind turbines. The model consists of a typical wing section model combined with a rotor speed model, leading to four structural degrees of freedom (flapwise, edgewise, and tor......A new low order mathematical model is introduced to analyse blade dynamics and blade load reducing control strategies for wind turbines. The model consists of a typical wing section model combined with a rotor speed model, leading to four structural degrees of freedom (flapwise, edgewise......, and torsional blade oscillations, and rotor speed). The aerodynamics is described by a model of unsteady aerodynamic. The equations of motion are derived in nonlinear and linear form. The linear equations of motion are used for stability analysis and control design. The nonlinear equations of motion are used...

  4. The Electrochemical Investigation of the Corrosion Rates of Welded Pipe ASTM A106 Grade B

    Directory of Open Access Journals (Sweden)

    Trinet Yingsamphancharoen

    2016-08-01

    Full Text Available The aim of this work was to investigate the corrosion rate of welded carbon steel pipe (ASTM (American Society for Testing and Materials A106 Grade B by GTAW under the currents of 60, 70, and 80 A. All welded pipes satisfied weld procedure specifications and were verified by a procedure qualification record. The property of used materials was in agreement with the ASME standard: section IX. The welded pipe was used for schematic model corrosion measurements applied in 3.5 wt % NaCl at various flow rates and analyzed by using the electrochemical technique with Tafel’s equation. The results showed the correlation between the flow rate and the corrosion rate of the pipe; the greater the flow rate, the higher corrosion rate. Moreover, the welded pipe from the welding current of 70 A exhibited higher tensile strength and corrosion resistance than those from currents of 60 and 80 A. It indicated that the welding current of 70 A produced optimum heat for the welding of A106 pipe grade B. In addition, the microstructure of the welded pipe was observed by SEM. The phase transformation and crystallite size were analyzed by XRD and Sherrer’s equation. The results suggested that the welding current could change the microstructure and phase of the welded pipe causing change in the corrosion rate.

  5. An Exercise Model to Study Progressive Muscle Fatigue During Constant Work Rate Exercise on a Cycle Ergometer

    National Research Council Canada - National Science Library

    Fulco, Charles

    2003-01-01

    ... of the same muscles during the activity. However, conventional ergometric testing modes such as stationary cycling or treadmill exercise do not readily lend themselves to quantitating the progressive increase in muscle fatigue...

  6. Experimental and numerical study of a modified ASTM C633 adhesion test for strongly-bonded coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bernardie, Raphaëlle; Berkouch, Reda; Valette, Stéphane; Absi, Joseph; Lefort, Pierre [University of Limoges, Limoges Cedex (France)

    2017-07-15

    When coatings are strongly bonded to their substrates it is often difficult to measure the adhesion values. The proposed method, which is suggested naming “silver print test”, consists in covering the central part of the samples with a thin layer of silver paint, before coating. The process used for testing this new method was the Air plasma spraying (APS), and the materials used were alumina coatings on C35 steel substrates, previously pre-oxidized in CO{sub 2}. The silver painted area was composed of small grains that did not oxidize but that significantly sintered during the APS process. The silver layer reduced the surface where the coating was linked to the substrate, which allowed its debonding, using the classical adhesion test ASTM C633-13, while the direct use of this test (without silver painting) led to ruptures inside the glue used in this test. The numerical modelling, based on the finite element method with the ABAQUS software, provided results in good agreement with the experimental measurements. This concordance validated the used method and allowed accessing to the values of adherence when the experimental test ASTM C633-13 failed, because of ruptures in the glue. After standardization, the “silver print test” might be used for other kinds of deposition methods, such as PVD, CVD, PECVD.

  7. An investigation of force components in orthogonal cutting of medical grade cobalt-chromium alloy (ASTM F1537).

    Science.gov (United States)

    Baron, Szymon; Ahearne, Eamonn

    2017-04-01

    An ageing population, increased physical activity and obesity are identified as lifestyle changes that are contributing to the ongoing growth in the use of in-vivo prosthetics for total hip and knee arthroplasty. Cobalt-chromium-molybdenum (Co-Cr-Mo) alloys, due to their mechanical properties and excellent biocompatibility, qualify as a class of materials that meet the stringent functional requirements of these devices. To cost effectively assure the required dimensional and geometric tolerances, manufacturers rely on high-precision machining. However, a comprehensive literature review has shown that there has been limited research into the fundamental mechanisms in mechanical cutting of these alloys. This article reports on the determination of the basic cutting-force coefficients in orthogonal cutting of medical grade Co-Cr-Mo alloy ASTM F1537 over an extended range of cutting speeds ([Formula: see text]) and levels of undeformed chip thickness ([Formula: see text]). A detailed characterisation of the segmented chip morphology over this range is also reported, allowing for an estimation of the shear plane angle and, overall, providing a basis for macro-mechanic modelling of more complex cutting processes. The results are compared with a baseline medical grade titanium alloy, Ti-6Al-4V ASTM F136, and it is shown that the tangential and thrust-force components generated were, respectively, ≈35% and ≈84% higher, depending primarily on undeformed chip thickness but with some influence of the cutting speed.

  8. Unified viscoplasticity modelling and its application to fatigue-creep behaviour of gas turbine rotor

    OpenAIRE

    Benaarbia, A.; Rae, Y.; Sun, Wei

    2018-01-01

    This paper presents an elasto-visco-plastic finite element modelling framework including the associated UMAT codes to investigate the high temperature behaviour of gas turbine rotor steels. The model used in the FE study is an improved and unified multi-axial Chaboche-Lemaitre model which takes into account non-linear kinematic and isotropic hardening. The computational methodology is a three-dimensional framework following an implicit formulation and based on a radial return mapping algorith...

  9. Probabilistic Fatigue Damage Prognosis Using a Surrogate Model Trained Via 3D Finite Element Analysis

    Science.gov (United States)

    Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo

    2015-01-01

    Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.

  10. Automated corrosion fatigue crack growth testing in pressurized water environments

    International Nuclear Information System (INIS)

    Ceschini, L.J.; Liaw, P.K.; Rudd, G.E.; Logsdon, W.A.

    1984-01-01

    This paper describes in detail a novel approach to construct a test facility for developing corrosion fatigue crack growth rate (FCGR) properties in aggressive environments. The environment studied is that of a pressurized water reactor (PWR) at 288 0 C (550 0 F) and 13.8 MPa (200 psig). To expedite data generation, each chamber was designed to accommodate two test specimens. A common water recirculation and pressurization system was employed to service two test chambers. Thus, four fatigue crack propagation rate tests could be conducted simultaneously in the pressurized water environment. The data analysis was automated to minimize the typically high labor costs associated with corrosion fatigue crack propagation testing. Verification FCGR tests conducted on an ASTM A469 rotor steel in a room temperature air environment as well as actual PWR environment FCGR tests performed on an ASTM A533 Grade B Class 2 pressure vessel steel demonstrated that the dual specimen test facility is an excellent system for developing the FCGR properties of materials in adverse environments

  11. Environmental Barrier Coating Fracture, Fatigue and High-Heat-Flux Durability Modeling and Stochastic Progressive Damage Simulation

    Science.gov (United States)

    Zhu, Dongming; Nemeth, Noel N.

    2017-01-01

    Advanced environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect emerging light-weight SiC/SiC ceramic matrix composite (CMC) engine components, further raising engine operating temperatures and performance. Because the environmental barrier coating systems are critical to the performance, reliability and durability of these hot-section ceramic engine components, a prime-reliant coating system along with established life design methodology are required for the hot-section ceramic component insertion into engine service. In this paper, we have first summarized some observations of high temperature, high-heat-flux environmental degradation and failure mechanisms of environmental barrier coating systems in laboratory simulated engine environment tests. In particular, the coating surface cracking morphologies and associated subsequent delamination mechanisms under the engine level high-heat-flux, combustion steam, and mechanical creep and fatigue loading conditions will be discussed. The EBC compostion and archtechture improvements based on advanced high heat flux environmental testing, and the modeling advances based on the integrated Finite Element Analysis Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program will also be highlighted. The stochastic progressive damage simulation successfully predicts mud flat damage pattern in EBCs on coated 3-D specimens, and a 2-D model of through-the-thickness cross-section. A 2-parameter Weibull distribution was assumed in characterizing the coating layer stochastic strength response and the formation of damage was therefore modeled. The damage initiation and coalescence into progressively smaller mudflat crack cells was demonstrated. A coating life prediction framework may be realized by examining the surface crack initiation and delamination propagation in conjunction with environmental

  12. Numerical analysis of rolling contact fatigue crack initiation and fatigue life prediction of the railway crossing

    OpenAIRE

    Xin, L.; Markine, V.L.; Shevtsov, I.

    2015-01-01

    The procedure for analysing rolling contact fatigue crack initiation and fatigue life prediction of the railway turnout crossing is developed. A three-dimensional finite element (FE) model is used to obtain stress and strain results, considering the dynamic effects of wheel-crossing rolling contact. Material model accounting for elastic- plastic isotropic and kinematic hardening effects is adopted. The results from FE analysis are combined with J-S fatigue model that is based on critical plan...

  13. Modelling the Effects of Surface Residual Stresses on Fatigue Behavior of PM Disk Alloys, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A finite element based model will be developed and validated to capture the evolution of residual stresses and cold work at machined features of compressor and...

  14. Prediction of Fatigue Crack Growth in Rail Steels.

    Science.gov (United States)

    1981-10-01

    Measures to prevent derailments due to fatigue failures of rails require adequate knowledge of the rate of propagation of fatigue cracks under service loading. The report presents a computational model for the prediction of crack growth in rails. The...

  15. Statistical modelling of compression and fatigue damage of unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    A statistical computational model of strength and damage of unidirectional carbon fiber reinforced composites under compressive and cyclic compressive loading is presented in this paper. The model is developed on the basis of the Budiansky–Fleck fiber kinking condition, continuum damage mechanics...... concept and the Monte-Carlo method. The effects of fiber misalignment variability, fiber clustering, load sharing rules on the damage in composite are studied numerically. It is demonstrated that the clustering of fibers has a negative effect of the damage resistance of a composite. Further, the static...

  16. A Simulation Method for High-Cycle Fatigue-Driven Delamination using a Cohesive Zone Model

    DEFF Research Database (Denmark)

    Bak, Brian Lau Verndal; Turon, A.; Lindgaard, Esben

    2016-01-01

    on parameter fitting of any kind. The method has been implemented as a zero-thickness eight-node interface element for Abaqus and as a spring element for a simple finite element model in MATLAB. The method has been validated in simulations of mode I, mode II, and mixed-mode crack loading for both self...

  17. Effect of portland cement (current ASTM C150/AASHTO M85) with limestone and process addition (ASTM C465/AASHTO M327) on the performance of concrete for pavement and bridge decks.

    Science.gov (United States)

    2014-02-01

    The Illinois Department of Transportation (IDOT) is making several changes to concrete mix designs, using revisions to : cement specification ASTM C150/AASHTO M85 and ASTM C465/AASHTO M327. These proposed revisions will enable the : use of more susta...

  18. Vibration fatigue using modal decomposition

    Science.gov (United States)

    Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha

    2018-01-01

    Vibration-fatigue analysis deals with the material fatigue of flexible structures operating close to natural frequencies. Based on the uniaxial stress response, calculated in the frequency domain, the high-cycle fatigue model using the S-N curve material data and the Palmgren-Miner hypothesis of damage accumulation is applied. The multiaxial criterion is used to obtain the equivalent uniaxial stress response followed by the spectral moment approach to the cycle-amplitude probability density estimation. The vibration-fatigue analysis relates the fatigue analysis in the frequency domain to the structural dynamics. However, once the stress response within a node is obtained, the physical model of the structure dictating that response is discarded and does not propagate through the fatigue-analysis procedure. The structural model can be used to evaluate how specific dynamic properties (e.g., damping, modal shapes) affect the damage intensity. A new approach based on modal decomposition is presented in this research that directly links the fatigue-damage intensity with the dynamic properties of the system. It thus offers a valuable insight into how different modes of vibration contribute to the total damage to the material. A numerical study was performed showing good agreement between results obtained using the newly presented approach with those obtained using the classical method, especially with regards to the distribution of damage intensity and critical point location. The presented approach also offers orders of magnitude faster calculation in comparison with the conventional procedure. Furthermore, it can be applied in a straightforward way to strain experimental modal analysis results, taking advantage of experimentally measured strains.

  19. Thermo-mechanical fatigue testing and simulation using a viscoplasticity model for a P91 steel

    OpenAIRE

    Hyde, C.J.; Sun, W.; Hyde, T.H.; Saad, A.A.

    2012-01-01

    An experimental programme of cyclic thermo-mechanical testing for a P91 power plant steel, under isothermal, and in-phase and out-of-phase thermo-mechanical, temperature-strain cycle conditions, has been implemented. Using the experimental data, an optimisation procedure has been developed for the accurate determination of the material constants under isothermal conditions, in which the Chaboche model is employed to describe material responses. The material was found to exhibit cyclic softeni...

  20. Thermal fatigue damage evaluation of a PWR NPP steam generator injection nozzle model subjected to thermal stratification phenomenon

    International Nuclear Information System (INIS)

    Leite da Silva, Luiz; Rodrigues Mansur, Tanius; Cimini Junior, Carlos Alberto

    2011-01-01

    Thermal stratification phenomenon with the same thermodynamic steam generator (SG) injection nozzle parameters was simulated. After 41 experiments, the experimental section was dismantled; cut and specimens were made of its material. Other specimens were made of the preserved pipe material. By comparing their fatigue tests results, the pipe material damage was evaluated. The water temperature layers and also the outside pipe wall temperatures were measured at the same level. Strains outside the pipe in 7 positions were measured. The experimental section develops thermal stratified flows, stresses and strains caused enlargement of material grain size and reduction in fatigue life.

  1. 77 FR 50113 - ASTM International-Food and Drug Administration Workshop on Absorbable Medical Devices: Lessons...

    Science.gov (United States)

    2012-08-20

    ... use of absorbable materials (including synthetic polymers as well as erodible metals) in medical... Absorbable Medical Devices: Lessons Learned From Correlations of Bench Testing and Clinical Performance... Bench Testing and Clinical Performance.'' FDA is co-sponsoring the workshop together with ASTM...

  2. An evaluation of efforts by nuclear power plants to use ASTM D3803-89

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, W.P.

    1995-02-01

    The number of nuclear power plants are now using ASTM D3803-89, {open_quotes}Standard Test Method for Nuclear-Grade Activated Carbon{close_quotes} for routine surveillance testing of adsorbents. In order to judge the impact of this change, we have gathered radioiodine removal test results from our data base on a system-by-system basis (i.e. control room, technical support center, and spent fuel pool) and compared test results obtained for the same kind of systems using the new and older test methods. Included in this comparison are systems with and without humidity control. Results are discussed from the standpoint of what to expect if a change to testing using ASTM D3803-89 is contemplated, especially regarding test results in light existing acceptance criteria. Additionally, the results are discussed from the standpoint of the sensitivity of the ASTM test method to detect when the performance of the carbon in air cleaning systems has been compromised (compared to the older methods). Finally, we offer some suggestions for how other plants might upgrade their carbon testing to incorporate testing to ASTM D3803-89.

  3. Deriving allowable properties of lumber : a practical guide for interpretation of ASTM standards

    Science.gov (United States)

    Alan Bendtsen; William L. Galligan

    1978-01-01

    The ASTM standards for establishing clear wood mechanical properties and for deriving structural grades and related allowable properties for visually graded lumber can be confusing and difficult for the uninitiated to interpret. This report provides a practical guide to using these standards for individuals not familiar with their application. Sample stress...

  4. Comparing the Methodologies in ASTM G198: Is There an Easy Way Out?

    Science.gov (United States)

    Samuel L. Zelinka

    2013-01-01

    ASTM(1) G198, Standard test method for determining the relative corrosion performance of driven fasteners in contact with treated wood, was accepted by consensus and published in 2011. The method has two different exposure conditions for determining fastener corrosion performance in treated wood. The first method places the wood and embedded...

  5. Autogenous shrinkage of Ducorit S5R ASTM C 1698-09 test method

    DEFF Research Database (Denmark)

    Damkilde, Lars

    The report deals with experimental measurement of autogenous shrinkage of Ducorit S5R according to the test method ASTM C 1698-09. This test method measures the bulk strain of a sealed cementitious specimen, at constant temperature and not subjected to external forces, from the time of final...

  6. An evaluation of efforts by nuclear power plants to use ASTM D3803-89

    International Nuclear Information System (INIS)

    Freeman, W.P.

    1995-01-01

    The number of nuclear power plants are now using ASTM D3803-89, open-quotes Standard Test Method for Nuclear-Grade Activated Carbonclose quotes for routine surveillance testing of adsorbents. In order to judge the impact of this change, we have gathered radioiodine removal test results from our data base on a system-by-system basis (i.e. control room, technical support center, and spent fuel pool) and compared test results obtained for the same kind of systems using the new and older test methods. Included in this comparison are systems with and without humidity control. Results are discussed from the standpoint of what to expect if a change to testing using ASTM D3803-89 is contemplated, especially regarding test results in light existing acceptance criteria. Additionally, the results are discussed from the standpoint of the sensitivity of the ASTM test method to detect when the performance of the carbon in air cleaning systems has been compromised (compared to the older methods). Finally, we offer some suggestions for how other plants might upgrade their carbon testing to incorporate testing to ASTM D3803-89

  7. ASTM Committee D-7 : Wood : promoting safety and standardization for 100 years

    Science.gov (United States)

    David W. Green; Robert L. Ethington

    2004-01-01

    In October 2004, Committee D-7 on Wood of the American Society for Testing and Materials (ASTM) is celebrating 100 years of contributions to the safe and efficient use of wood as a building material. Born during a period of rapid social, economic, and technological change, the Committee faced controversial issues and the challenge of a changing forest resource. This...

  8. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    Science.gov (United States)

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The Status of silicosis in the world: Feedback on the ASTM Silica Symposium

    CSIR Research Space (South Africa)

    Pretorius, CJ

    2013-06-01

    Full Text Available The second ASTM Silica Symposium was held in Oct 2012 where speakers reported on the status of silicosis in their respective countries. Speakers reported on findings of research that they carried out on sampling equipment and analytical techniques...

  10. Beneficial Effect of Brewers' Yeast Extract on Daily Activity in a Murine Model of Chronic Fatigue Syndrome

    Directory of Open Access Journals (Sweden)

    Takashi Takahashi

    2006-01-01

    Full Text Available The aim of this study was to assess the effect of Brewers' yeast extract (BYE on daily activity in a mouse model of chronic fatigue syndrome (CFS. CFS was induced by repeated injection of Brucella abortus (BA antigen every 2 weeks. BYE was orally administered to mice in a dose of 2 g per kg per day for 2 weeks before injecting BA and for 4 weeks thereafter. We evaluated daily running activity in mice receiving BYE as compared with that in untreated mice. Weekly variation of body weight (BW and survival in both groups was monitored during the observation period. Spleen weight (SW, SW/BW ratio, percent splenic follicular area and expression levels of interferon-γ (IFN-γ and interleukin-10 (IL-10 mRNA in spleen were determined in both groups at the time of sacrifice. The daily activity during 2 weeks after the second BA injection was significantly higher in the treated group than in the control. There was no difference in BW between both groups through the experimental course. Two mice in the control died 2 and 7 days after the second injection, whereas no mice in the treated group died. Significantly decreased SW and SW/BW ratio were observed in the treated mice together with elevation of splenic follicular area. There were suppressed IFN-γ and IL-10 mRNA levels in spleens from the treated mice. Our results suggest that BYE might have a protective effect on the marked reduction in activity following repeated BA injection via normalization of host immune responses.

  11. Fatigue crack propagation in neutron-irradiated ferritic pressure-vessel steels

    International Nuclear Information System (INIS)

    James, L.A.

    1977-01-01

    The results of a number of experiments dealing with fatigue crack propagation in irradiated reactor pressure-vessel steels are reviewed. The steels included ASTM alloys A302B, A533B, A508-2, and A543, as well as weldments in A543 steel. Fluences and irradiation conditions were generally typical of those experienced by most power reactors. In general, the effect of neutron irradiation on the fatigue crack propagation behavior of these steels was neither significantly beneficial nor significantly detrimental

  12. Characterization of Solder Joint Reliability Using Cyclic Mechanical Fatigue Testing

    Science.gov (United States)

    Kim, Choong-Un; Bang, Woong-Ho; Xu, Huili; Lee, Tae-Kyu

    2013-10-01

    This article summarizes the mechanics of two mechanical fatigue methods, cyclic bending fatigue and shear fatigue, in inducing failure in solder joints in package assemblies, and it presents the characteristics of fatigue failures resulting from these methods using example cases of Sn-Pb eutectic and Sn-rich Pb-free solder alloys. Numerical simulation suggests that both testing configurations induce fatigue failure by the crack-opening mode. In the case of bending fatigue, the strain induced by the bending displacement is found to be sensitive to chip geometry, and it induces fatigue cracks mainly at the solder matrix adjacent to the printed circuit board interface. In case of shear fatigue, the failure location is firmly fixed at the solder neck, created by solder mask, where an abrupt change in the solder geometry occurs. Both methods conclude that the Coffin-Manson model is the most appropriate model for the isothermal mechanical fatigue of solder alloys. An analysis of fatigue characteristics using the frame of the Coffin-Manson model produces several insightful results, such as the reason why Pb-free alloys show higher fatigue resistance than Sn-Pb alloys even if they are generally more brittle. Our analysis suggests that it is related to higher work hardening. All these results indicate that mechanical fatigue can be an extremely useful method for fast screening of defective package structures and also in gaining a better understanding of fatigue failure mechanism and prediction of reliability in solder joints.

  13. 77 FR 2456 - Incorporation of Revised ASTM Standards That Provide Flexibility in the Use of Alternatives to...

    Science.gov (United States)

    2012-01-18

    ... at http://www.astm.org . (1) ASTM D86-97, Standard Test Method for Distillation of Petroleum Products... 15, 2009), Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester, IBR approved... 89, Table 4 is amended by revising the entries ``Flash Point, [deg]C (minimum)'' and ``Viscosity @ 38...

  14. 77 FR 10358 - Acceptance of ASTM F963-11 as a Mandatory Consumer Product Safety Standard

    Science.gov (United States)

    2012-02-22

    ... CONSUMER PRODUCT SAFETY COMMISSION 16 CFR Chapter II Acceptance of ASTM F963-11 as a Mandatory Consumer Product Safety Standard AGENCY: Consumer Product Safety Commission. ACTION: Acceptance of standard..., (CPSIA), Public Law 110-314, made the provisions of ASTM F963-07, Standard Consumer Safety Specifications...

  15. Effect of stress ratio on the fatigue behaviour of glass/epoxy composite

    Science.gov (United States)

    Syayuthi, A. R. A.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Basaruddin, K. S.; Peng, T. L.

    2017-10-01

    The effect of stress ratio on the fatigue behaviour of the GFRE composite has been investigated. The glass fibre reinforced epoxy (GFRE) composite plates were fabricated using vacuum infusion method. Static tensile was performed in accordance with the ASTM D5766 standard, and the cyclic test was conducted according to ASTM D3479 with three different stress ratio, R = 0, 0.5, -1. Static tensile tests were carried out to determine the ultimate strength of this composite. Subsequently, fatigue tests loads ranging from 30% to 90% of the ultimate load were applied to each specimen. The S–N curve of different stress ratio loading of fibreglass/epoxy composites was then established. The results show that the number of cycles to failure increases as the loading is decreased. The specimens for fatigue tests loads 30% at R = 0 and -1 recorded the highest number of cycles at 2 million cycles. The results obtained from this test indicated a significant life reduction for R = -1 compared with the tension-tension loading, with the life reduction for R = -1 being greatest. The fatigue behaviour of the GFRE composite materials is not only influenced by the percentage of fatigue tests load but with different of stress ratio.

  16. Longitudinal and dynamic measurement invariance of the FACIT-Fatigue scale: an application of the measurement model of derivatives to ECOG-ACRIN study E2805.

    Science.gov (United States)

    Estabrook, Ryne; Cella, David; Zhao, Fengmin; Manola, Judith; DiPaola, Robert S; Wagner, Lynne I; Haas, Naomi B

    2018-03-05

    While quality of life measures may be used to assess meaningful change and group differences, their scaling and validation often rely on a single occasion of measurement. Using the 13-item FACIT-Fatigue questionnaire at three timepoints, this study tests whether individual items change together in ways consistent with a general fatigue factor. The measurement model of derivatives (MMOD) is a novel method for measurement evaluation that directly assesses whether a given factor structure accurately describes how individual test items change over time. MMOD transforms item-level longitudinal data into a set of orthogonal change scores, each one representing either a within-person longitudinal mean or a different type of longitudinal change. These change scores are then factor analyzed and tested for invariance. This approach is applied to the FACIT-Fatigue scale in a sample of patients with renal cell carcinoma treated on 'ECOG-ACRIN Cancer Research Group (ECOG-ACRIN) study 2805. Analyses revealed strong evidence of unidimensionality, and apparent factorial invariance using traditional techniques. MMOD revealed a small but statistically significant difference in factor structure ([Formula: see text], [Formula: see text]), where factor loadings were weaker and more variable for measuring longitudinal change. The differences in factor structure were not large enough to substantially affect scale usage in this application, but they do reveal some variability across items in the FACIT-Fatigue in their ability to detect change. Future applications should consider differential sensitivity of individual items in multi-item scales, and perhaps even capitalize upon these differences by selecting items that are more sensitive to change.

  17. Empirical modelling of the dynamic response of fatigue during intermittent submaximal contractions of human forearm and calf muscles.

    Science.gov (United States)

    Green, Simon; Stefanovic, Brad; Warman, Joel; Askew, Christopher D

    2015-02-01

    Maximum force (Fmax) declines during intermittent submaximal contractions, but the linearity of this fatigue response and number of underlying phases is not clear. Healthy men were studied during two experiments (n=10 each). Experiment 1 involved single bouts of intermittent forearm contractions (50% Fmax) to failure using both limbs assigned as Armcontrol or Armtraining. Experiment 2 involved five bouts of intermittent calf contractions (60% Fmax) to failure using the same limb where data from the longest single trial (Calfsingle) or averaged across five bouts (Calfaveraged) were analysed. Fmax was assessed at 25-30s intervals during exercise and fitted to ten mono- and biphasic functions consisting of linear and/or nonlinear terms. For each fatigue response, the function which provided the best fit was determined on statistical grounds. Biphasic functions provided the majority of best fits during Armcontrol (9/10), Armtraining (10/10), Calfsingle (7/10) and Calfaveraged (9/10). For each condition, linear functions provided the best fit in 4-5 out of 10 responses. Two biphasic functions differentiated only by their first term (linear versus exponential) provided the best fit for 29/40 fatigue responses. These outcomes suggest that fatigue during intermittent contractions exhibits a biphasic response characterised by nonlinear and linear behaviour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Statistical treatment of fatigue test data

    International Nuclear Information System (INIS)

    Raske, D.T.

    1980-01-01

    This report discussed several aspects of fatigue data analysis in order to provide a basis for the development of statistically sound design curves. Included is a discussion on the choice of the dependent variable, the assumptions associated with least squares regression models, the variability of fatigue data, the treatment of data from suspended tests and outlying observations, and various strain-life relations

  19. Research progress of exercise-induced fatigue

    Directory of Open Access Journals (Sweden)

    Peng-yi DAI

    2016-12-01

    Full Text Available Exercise-induced fatigue is a comprehensive response to a variety of physiological and biochemical changes in the body, and can affect people's quality of life to different extents. If no timely recovery after occurrence of fatigue, accumulated gradually, it can lead to "burnout", a "overtraining syndrome", "chronic fatigue syndrome", etc., which will cause endocrine disturbance, immune suppression, even physical illness. Exercise-induced fatigue becomes an important factor endangering human health. In recent years, many experts and scholars at home and abroad are committed to the research of exercise-induced fatigue, and have put forward a variety of hypothesis to explain the cause of exercise-induced fatigue. They expect to find out the methods for preventing and eliminating exercise-induced fatigue. This article discusses mainly the pathogenesis, model building, elimination/ relief, etc. of exercise-induced fatigue to point out the research achievements of exercise-induced fatigue and its existing problems. DOI: 10.11855/j.issn.0577-7402.2016.11.14

  20. Tensile and Fatigue Testing and Material Hardening Model Development for 508 LAS Base Metal and 316 SS Similar Metal Weld under In-air and PWR Primary Loop Water Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Soppet, William [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in September 2015 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2015 report we presented a baseline mechanistic finite element model of a two-loop pressurized water reactor (PWR) for systemlevel heat transfer analysis and subsequent thermal-mechanical stress analysis and fatigue life estimation under reactor thermal-mechanical cycles. In the present report, we provide tensile and fatigue test data for 508 low-alloy steel (LAS) base metal, 508 LAS heat-affected zone metal in 508 LAS–316 stainless steel (SS) dissimilar metal welds, and 316 SS-316 SS similar metal welds. The test was conducted under different conditions such as in air at room temperature, in air at 300 oC, and under PWR primary loop water conditions. Data are provided on materials properties related to time-independent tensile tests and time-dependent cyclic tests, such as elastic modulus, elastic and offset strain yield limit stress, and linear and nonlinear kinematic hardening model parameters. The overall objective of this report is to provide guidance to estimate tensile/fatigue hardening parameters from test data. Also, the material models and parameters reported here can directly be used in commercially available finite element codes for fatigue and ratcheting evaluation of reactor components under in-air and PWR water conditions.

  1. Corrosion and Fatigue Behavior of High-Strength Steel Treated with a Zn-Alloy Thermo-diffusion Coating

    Science.gov (United States)

    Mulligan, C. P.; Vigilante, G. N.; Cannon, J. J.

    2017-11-01

    High and low cycle fatigue tests were conducted on high-strength steel using four-point bending. The materials tested were ASTM A723 steel in the as-machined condition, grit-blasted condition, MIL-DTL-16232 heavy manganese phosphate-coated condition, and ASTM A1059 Zn-alloy thermo-diffusion coated (Zn-TDC). The ASTM A723 steel base material exhibits a yield strength of 1000 MPa. The effects of the surface treatments versus uncoated steel were examined. The fatigue life of the Zn-TDC specimens was generally reduced on as-coated specimens versus uncoated or phosphate-coated specimens. Several mechanisms are examined including the role of compressive residual stress relief with the Zn-TDC process as well as fatigue crack initiation from the hardened Zn-Fe alloy surface layer produced in the gas-metal reaction. Additionally, the effects of corrosion pitting on the fatigue life of coated specimens are explored as the Zn-TDC specimens exhibit significantly improved corrosion resistance over phosphate-coated and oiled specimens.

  2. Probabilistic Fatigue Design of Composite Material for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2011-01-01

    In the present paper a probabilistic design approach to fatigue design of wind turbine blades is presented. The physical uncertainty on the fatigue strength for composite material is estimated using public available fatigue tests. Further, the model uncertainty on Miner rule for damage accumulation...

  3. Final Report for Project 13-4791: New Mechanistic Models of Creep-Fatigue Crack Growth Interactions for Advanced High Temperature Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Kruzic, Jamie J [Oregon State Univ., Corvallis, OR (United States); Univ. of New South Wales, Sydney, NSW (Australia); Siegmund, Thomas [Purdue Univ., West Lafayette, IN (United States); Tomar, Vikas

    2018-03-20

    This project developed and validated a novel, multi-scale, mechanism-based model to quantitatively predict creep-fatigue crack growth and failure for Ni-based Alloy 617 at 800°C. Alloy 617 is a target material for intermediate heat exchangers in Generation IV very high temperature reactor designs, and it is envisioned that this model will aid in the design of safe, long lasting nuclear power plants. The technical effectiveness of the model was shown by demonstrating that experimentally observed crack growth rates can be predicted under both steady state and overload crack growth conditions. Feasibility was considered by incorporating our model into a commercially available finite element method code, ABAQUS, that is commonly used by design engineers. While the focus of the project was specifically on an alloy targeted for Generation IV nuclear reactors, the benefits to the public are expected to be wide reaching. Indeed, creep-fatigue failure is a design consideration for a wide range of high temperature mechanical systems that rely on Ni-based alloys, including industrial gas power turbines, advanced ultra-super critical steam turbines, and aerospace turbine engines. It is envisioned that this new model can be adapted to a wide range of engineering applications.

  4. Predictors and Trajectories of Morning Fatigue Are Distinct From Evening Fatigue.

    Science.gov (United States)

    Wright, Fay; D'Eramo Melkus, Gail; Hammer, Marilyn; Schmidt, Brian L; Knobf, M Tish; Paul, Steven M; Cartwright, Frances; Mastick, Judy; Cooper, Bruce A; Chen, Lee-May; Melisko, Michelle; Levine, Jon D; Kober, Kord; Aouizerat, Bradley E; Miaskowski, Christine

    2015-08-01

    Fatigue is the most common symptom in oncology patients during chemotherapy. Little is known about the predictors of interindividual variability in initial levels and trajectories of morning fatigue severity in these patients. An evaluation was done to determine which demographic, clinical, and symptom characteristics were associated with initial levels as well as the trajectories of morning fatigue and to compare findings with our companion paper on evening fatigue. A sample of outpatients with breast, gastrointestinal, gynecological, and lung cancer (n = 586) completed demographic and symptom questionnaires a total of six times over two cycles of chemotherapy. Fatigue severity was evaluated using the Lee Fatigue Scale. Hierarchical linear modeling was used to answer the study objectives. A large amount of interindividual variability was found in the morning fatigue trajectories. A piecewise model fit the data best. Patients with higher body mass index, who did not exercise regularly, with a lower functional status, and who had higher levels of state anxiety, sleep disturbance, and depressive symptoms reported higher levels of morning fatigue at enrollment. Variations in the trajectories of morning fatigue were predicted by the patients' ethnicity and younger age. The modifiable risk factors that were associated with only morning fatigue were body mass index, exercise, and state anxiety. Modifiable risk factors that were associated with both morning and evening fatigue included functional status, depressive symptoms, and sleep disturbance. Using this information, clinicians can identify patients at higher risk for more severe morning fatigue and evening fatigue, provide individualized patient education, and tailor interventions to address the modifiable risk factors. Copyright © 2015 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  5. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  6. Simplified elastoplastic fatigue analysis

    International Nuclear Information System (INIS)

    Autrusson, B.; Acker, D.; Hoffmann, A.

    1987-01-01

    Oligocyclic fatigue behaviour is a function of the local strain range. The design codes ASME section III, RCC-M, Code Case N47, RCC-MR, and the Guide issued by PNC propose simplified methods to evaluate the local strain range. After having briefly described these simplified methods, we tested them by comparing the results of experimental strains with those predicted by these rules. The experiments conducted for this study involved perforated plates under tensile stress, notched or reinforced beams under four-point bending stress, grooved specimens under tensile-compressive stress, and embedded grooved beams under bending stress. They display a relative conservatism depending on each case. The evaluation of the strains of rather inaccurate and sometimes lacks conservatism. So far, the proposal is to use the finite element codes with a simple model. The isotropic model with the cyclic consolidation curve offers a good representation of the real equivalent strain. There is obviously no question of representing the cycles and the entire loading history, but merely of calculating the maximum variation in elastoplastic equivalent deformations with a constant-rate loading. The results presented testify to the good prediction of the strains with this model. The maximum equivalent strain will be employed to evaluate fatigue damage

  7. Distinct behavioral and brain changes after different durations of the modified multiple platform method on rats: An animal model of central fatigue.

    Directory of Open Access Journals (Sweden)

    Chenxia Han

    Full Text Available The modified multiple platform method (MMPM is a classical sleep deprivation model. It has been widely used in behavioral and brain research, due to its effects on physical and mental functions. However, different MMPM protocols can promote distinct effects in rats. Although the MMPM has been proved to induce central fatigue, the effects of different durations of subjection to the MMPM remain undetermined. This study aims to investigate the changes in behavior, N-Methyl-d-Aspartate receptor 1 (NR1 and 2A (NR2A, as well as the ultrastructural alteration in the hippocampus after different MMPM modelling, to compare the central fatigue effect induced by dynamic MMPM. Rats were randomly divided into four groups: 5-, 14- and 21- day MMPM groups, and a control group. Each MMPM group underwent a 14-hour daily MMPM modelling. After each training session, open field and elevated plus maze tests were performed. Corticosterone levels were detected by ELISA, and the hippocampal NR1 and NR2A were measured by RT-PCR and Western blot analysis. In addition, ultrastructural changes in the hippocampal cornu ammonis 1(CA1 region were determined by transmission electron microscopy (TEM. The findings showed that the 5 and 14 days of MMPM induced a high-stress state, while the 21 days of MMPM induced anxiety and degenerative alteration in the hippocampal morphology. Additionally, hippocampal NR1 and NR2A gene expression decreased in all MMPM groups, whereas the protein expression only decreased in the 21-day group. Overall, different durations of MMPM caused distinct behavioral and brain changes, and the 21 days of MMPM could induce central fatigue.

  8. Stuy on Fatigue Life of Aluminum Alloy Considering Fretting

    Science.gov (United States)

    Yang, Maosheng; Zhao, Hongqiang; Wang, Yunxiang; Chen, Xiaofei; Fan, Jiali

    2018-01-01

    To study the influence of fretting on Aluminum Alloy, a global finite element model considering fretting was performed using the commercial code ABAQUS. With which a new model for predicting fretting fatigue life has been presented based on friction work. The rationality and effectiveness of the model were validated according to the contrast of experiment life and predicting life. At last influence factor on fretting fatigue life of aerial aluminum alloy was investigated with the model. The results revealed that fretting fatigue life decreased monotonously with the increasing of normal load and then became constant at higher pressures. At low normal load, fretting fatigue life was found to increase with increase in the pad radius. At high normal load, however, the fretting fatigue life remained almost unchanged with changes in the fretting pad radius. The bulk stress amplitude had the dominant effect on fretting fatigue life. The fretting fatigue life diminished as the bulk stress amplitude increased.

  9. Equivalent configurations for notch and fretting fatigue

    Directory of Open Access Journals (Sweden)

    J. A. Araújo

    2015-07-01

    Full Text Available Under the typical partial slip conditions under which fretting fatigue takes place, the amount of superficial damage is small. Therefore, the substantial reduction in fatigue life caused by fretting, when compared to plain fatigue, may well be more associated with the stress concentration and the stress gradient phenomena generated by the contact problem than to the superficial loss of material. In this setting, notch stress-based methodologies could, in principle, be applied to fretting in the medium/high cycle fatigue regime. The aim of this work was to investigate whether it is possible to design fretting and notch fatigue configurations, which are nominally identical in terms of damage measured by a multiaxial fatigue model. The methodology adopted to carry out this search considered a cylindrical on flat contact and a V-notch. Load and geometry dimensions of both configurations were adjusted in order to try to obtain the “same” decay of the Multiaxial Fatigue Index from the hot spot up to a critical distance. Positive results of such simulations can lead us to design an experimental program that can bring more firm conclusions on the use of pure stress-based approaches, which do not include the wear damage, in the modeling of fretting fatigue.

  10. Modeling Cyclic Fatigue Hysteresis Loops of 2D Woven Ceramic Matrix Composites at Elevated Temperatures in Steam

    Directory of Open Access Journals (Sweden)

    Longbiao Li

    2016-05-01

    Full Text Available In this paper, the cyclic fatigue hysteresis loops of 2D woven SiC/SiC ceramic matrix composites (CMCs at elevated temperatures in steam have been investigated. The interface slip between fibers and the matrix existing in matrix cracking modes 3 and 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, is considered as the major reason for hysteresis loops of 2D woven CMCs. The hysteresis loops of 2D SiC/SiC composites corresponding to different peak stresses, test conditions, and loading frequencies have been predicted using the present analysis. The damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire matrix cracking modes of the composite, and the hysteresis dissipated energy increase with increasing fatigue peak stress. With increasing cycle number, the interface shear stress in the longitudinal yarns decreases, leading to transition of interface slip types of matrix cracking modes 3 and 5.

  11. A Micromechanics-Based Method for Multiscale Fatigue Prediction

    Science.gov (United States)

    Moore, John Allan

    An estimated 80% of all structural failures are due to mechanical fatigue, often resulting in catastrophic, dangerous and costly failure events. However, an accurate model to predict fatigue remains an elusive goal. One of the major challenges is that fatigue is intrinsically a multiscale process, which is dependent on a structure's geometric design as well as its material's microscale morphology. The following work begins with a microscale study of fatigue nucleation around non- metallic inclusions. Based on this analysis, a novel multiscale method for fatigue predictions is developed. This method simulates macroscale geometries explicitly while concurrently calculating the simplified response of microscale inclusions. Thus, providing adequate detail on multiple scales for accurate fatigue life predictions. The methods herein provide insight into the multiscale nature of fatigue, while also developing a tool to aid in geometric design and material optimization for fatigue critical devices such as biomedical stents and artificial heart valves.

  12. Numerical modeling of hydrogen diffusion in structural steels under cathodic overprotection and its effects on fatigue crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Silva Diniz, D.; Almeida Silva, A. [Federal University of Campina Grande, Campina Grande-PB (Brazil); Andrade Barbosa, J.M. [Federal University of Pernambuco, Recife-PE (Brazil); Palma Carrasco, J.

    2012-05-15

    This paper presents a numerical simulation of the effect of hydrogen atomic diffusion on fatigue crack propagation on structural steels. The simulation was performed with a specimen type CT of API 5CT P110 steel, loaded in the tensile opening mode, in plane strain state and under the effects of a cyclic mechanical load and the hydrogen concentration at the crack tip. As hydrogen source, a cathodic protection system was considered, commonly used in subsea pipelines. The equations of evolution of variables at the crack tip form a non-linear system of ordinary differential equations that was solved by means of the 4th order Runge-Kutta method. The solid-solid diffusion through the lattice ahead of the crack tip was simulated using the finite difference method. The simulations results show that under these conditions, the fatigue crack evolution process is enhanced by the hydrogen presence in the material, and that the start time of the crack propagation decreases as its concentration increases. These results show good correlation and consistency with macroscopic observations, providing a better understanding of hydrogen embrittlement in fatigue crack propagation processes in structural steels. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Results of ASTM round robin testing for mode 1 interlaminar fracture toughness of composite materials

    Science.gov (United States)

    Obrien, T. Kevin; Martin, Roderick H.

    1992-01-01

    The results are summarized of several interlaboratory 'round robin' test programs for measuring the mode 1 interlaminar fracture toughness of advanced fiber reinforced composite materials. Double Cantilever Beam (DCB) tests were conducted by participants in ASTM committee D30 on High Modulus Fibers and their Composites and by representatives of the European Group on Fracture (EGF) and the Japanese Industrial Standards Group (JIS). DCB tests were performed on three AS4 carbon fiber reinforced composite materials: AS4/3501-6 with a brittle epoxy matrix; AS4/BP907 with a tough epoxy matrix; and AS4/PEEK with a tough thermoplastic matrix. Difficulties encountered in manufacturing panels, as well as conducting the tests are discussed. Critical issues that developed during the course of the testing are highlighted. Results of the round robin testing used to determine the precision of the ASTM DCB test standard are summarized.

  14. The Association Between Fatigue and Disease Activity in Patients with Rheumatoid Arthritis : A Latent Growth Curve Model Analysis of Between-Subject Differences and Within-Subject Changes

    NARCIS (Netherlands)

    Geenen, R.; Overman, C.L.; Lafeber, F.P.J.G.; van Laar, J.M.; Marijnissen, A.C.A

    BACKGROUND The lack of association between fatigue and objective disease activity markers in patients with rheumatoid arthritis (RA) is counterintuitive since patients and doctors consider fatigue an indicator of underlying disease activity. We hypothesized that there is hardly any association

  15. Low-cycle fatigue of X 2 NiCoMo 18 12 and X 10 NiCrAlTi 32 20

    International Nuclear Information System (INIS)

    Detert, K.; Adolfs, R.

    1992-01-01

    The low-cycle fatigue and short crack-growth behaviour of an ultra-high strength maraging steel and a high-nickel austenitic steel have been studies. The tests were performed in a laboratory environment at room temperature in push-pull cycles with constant strain amplitudes of 0.25 to 2%. Short crack-growth investigations were performed using bending specimens loaded by a resonance bending machine. Crack growth was measured using the replica method. The cyclic and tension stress strain behaviour has been compared. Fatigue tests were interpreted according to the recommended practice of ASTM-E 606-80. First microcracks were observed after 10 to 70% of the fatigue life. (orig.) [de

  16. An Evaluation of a Proposed Revision of the ASTM D 1990 Grouping Procedure

    Science.gov (United States)

    Steve P Verrill; James W. Evans; David E. Kretschmann; Cherilyn A. Hatfield

    2013-01-01

    Lum, Taylor, and Zidek have proposed a revised procedure for wood species grouping in ASTM standard D 1990. We applaud the authors’ recognition of the importance of considering a strength distribution’s variability as well as its fifth percentile. However, we have concerns about their proposed method of incorporating this information into a standard. We detail these...

  17. Fatigue Damage in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1996-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Fatigue failure is found to depend both on the total time under load and on the number of cycles.Recent accelerated fatigue research on wood is reviewed, and a discrepancy between...... to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation between stiffness reduction...

  18. Cognitive and Physical Fatigue Tasks Enhance Pain, Cognitive Fatigue and Physical Fatigue in People with Fibromyalgia

    Science.gov (United States)

    Dailey, Dana L; Keffala, Valerie J; Sluka, Kathleen A

    2014-01-01

    Objective Fibromyalgia is a condition characterized by chronic widespread muscle pain and fatigue. The primary objective of this study was to determine if pain, perceived cognitive fatigue, and perceived physical fatigue were enhanced in participants with fibromyalgia compared to healthy controls during a cognitive fatigue task, a physical fatigue task and a dual fatigue task. Methods Twenty four people with fibromyalgia and 33 healthy controls completed pain, fatigue and function measures. A cognitive fatigue task (Controlled Oral Word Association Test) and physical fatigue task (Valpar peg test) were done individually and combined for a dual fatigue task. Resting pain, perceived cognitive fatigue and perceived physical fatigue were assessed during each task using visual analogue scales. Function was assessed with shoulder range of motion and grip. Results People with fibromyalgia had significantly higher increases in pain, cognitive fatigue and physical fatigue when compared to healthy controls after completion of a cognitive fatigue task, a physical fatigue task, or a dual fatigue task (pfibromyalgia performed equivalently on measures of physical performance and cognitive performance on the physical and cognitive fatigue tasks, respectively. Conclusions These data show that people with fibromyalgia show larger increases in pain, perceived cognitive fatigue and perceived physical fatigue to both cognitive and physical fatigue tasks compared to healthy controls. The increases in pain and fatigue during cognitive and physical fatigue tasks could influence subject participation in daily activities and rehabilitation. PMID:25074583

  19. Fatigue of coated and laser hardened steels

    International Nuclear Information System (INIS)

    La Cruz, P. de.

    1990-01-01

    In the present work the effect of ion nitriding, laser hardening and hot dip galvanizing upon the fatigue limit and notch sensitivity of a B-Mn Swedish steel SS 2131 have been investigated. The fatigue tests were performed in plane reverse bending fatigue (R=1). The quenched and tempered condition was taken as the reference condition. The microstructure, microhardness, fracture surface and coating appearance of the fatigue surface treated specimens were studied. Residual stress and retained austenite measurements were also carried out. It was found that ion nitriding improves the fatigue limit by 53 % for smooth specimens and by 115 % for notched specimens. Laser hardening improves the fatigue limit by 18 % and 56 % for smooth and notched specimen respectively. Hot dip galvanizing gives a slight deterioration of the fatigue limit (9 % and 10 % for smooth and notched specimen respectively). Ion nitriding and laser hardening decrease the value of the notch sensitivity factor q by 78 % and 65 % respectively. Hot dip galvanizing does not modify it. A simple schematic model based on a residual stress distribution, has been used to explain the different effects. It seems that the presence of the higher compressive residual stresses and the higher uniformity of the microstructure may be the causes of the better fatigue performance of ion nitrided specimens. (119 refs.) (author)

  20. Influence of Casting Section Thickness on Fatigue Strength of Austempered Ductile Iron

    Science.gov (United States)

    Olawale, J. O.; Ibitoye, S. A.

    2017-10-01

    The influence of casting section thickness on fatigue strength of austempered ductile iron was investigated in this study. ASTM A536 65-45-12 grade of ductile iron was produced, machined into round samples of 10, 15, 20 and 25 mm diameter, austenitized at a temperature of 820 °C, quenched into an austempering temperature (TA) of 300 and 375 °C and allowed to be isothermally transformed at these temperatures for a fixed period of 2 h. From the samples, fatigue test specimens were machined to conform to ASTM E-466. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) methods were used to characterize microstructural morphology and phase distribution of heat-treated samples. The fatigue strength decreases as the section thickness increases. The SEM image and XRD patterns show a matrix of acicular ferrite and carbon-stabilized austenite with ferrite coarsening and volume fraction of austenite reducing as the section thickness increases. The study concluded that the higher the value of carbon-stabilized austenite the higher the fatigue strength while it decreases as the ausferrite structure becomes coarse.

  1. Towards Whole Body Fatigue Assessment of Human Movement: A Fatigue-Tracking System Based on Combined sEMG and Accelerometer Signals

    Directory of Open Access Journals (Sweden)

    Haiwei Dong

    2014-01-01

    Full Text Available This paper proposes a method to assess the overall fatigue of human body movement. First of all, according to previous research regarding localized muscular fatigue, a linear relation is assumed between the mean frequency and the muscular working time when the muscle is experiencing fatigue. This assumption is verified with a rigorous statistical analysis. Based on this proven linearity, localized muscular fatigue is simplified as a linear model. Furthermore, localized muscular fatigue is considered a dynamic process and, hence, the localized fatigue levels are tracked by updating the parameters with the most current surface electromyogram (sEMG measurements. Finally, an overall fatigue level is computed by fusing localized muscular fatigue levels. The developed fatigue-tracking system is evaluated with two fatigue experiments (in which 10 male subjects and seven female subjects participated, including holding self-weight (dip start position training and lifting weight with one arm (arm curl training.

  2. Numerical Analysis of Rolling Contact Fatigue Crack Initiation and Fatigue Life Prediction of the Railway Crossing

    NARCIS (Netherlands)

    Xin, L.; Markine, V.L.; Shevtsov, I.

    2015-01-01

    The procedure for analysing rolling contact fatigue crack initiation and fatigue life prediction of the railway turnout crossing is developed. A three-dimensional finite element (FE) model is used to obtain stress and strain results, considering the dynamic effects of wheel-crossing rolling contact.

  3. Design, installation, and condition assessment of a concrete bridge deck constructed with ASTM A1035 CS no. 4 bars.

    Science.gov (United States)

    2017-06-01

    Recently developed corrosion-resistant reinforcing structural design guidelines were used to design, construct, and : assess a reinforced concrete bridge deck with high-strength ASTM A1035 CS steel bars. The bridge replacement is located : along the ...

  4. The central governor model of exercise regulation teaches us precious little about the nature of mental fatigue and self-control failure

    Directory of Open Access Journals (Sweden)

    Michael eInzlicht

    2016-05-01

    Full Text Available Self-control is considered broadly important for many domains of life. One of its unfortunate features, however, is that it tends to wane over time, with little agreement about why this is the case. Recently, there has been a push to address this problem by looking to the literature in exercise physiology, specifically the work on the central governor model of physical fatigue. Trying to explain how and why mental performance wanes over time, the central governor model suggests that exertion is throttled by some central nervous system mechanism that receives information about energetic bodily needs and motivational drives to regulate exertion and, ultimately, to prevent homeostatic breakdown, chiefly energy depletion. While we admire the spirit of integration and the attempt to shed light on an important topic in psychology, our concern is that the central governor model is very controversial in exercise physiologists, with increasing calls to abandon it altogether, making it a poor fit for psychology. Our concerns are threefold. First, while we agree that preservation of bodily homeostasis makes for an elegant ultimate account, the fact that such important homeostatic concerns can be regularly overturned with even slight incentives (e.g., a smile renders the ultimate account impotent and points to other ultimate functions for fatigue. Second, despite the central governor being thought to take as input information about the metabolic needs of the body, there is no credible evidence that mental effort actually consumes inordinate amounts of energy that are not already circulating in the brain. Third, recent modifications of the model make the central governor appear like an all-knowing homunculus and unfalsifiable in principle, thus contributing very little to our understanding of why people tend to disengage from effortful tasks over time. We note that the latest models in exercise physiology have actually borrowed concepts and models from

  5. Extended fatigue life of a catalyst-free self-healing acrylic bone cement using microencapsulated 2-octyl cyanoacrylate

    Science.gov (United States)

    Brochu, Alice B.W.; Matthys, Oriane B.; Craig, Stephen L.; Reichert, William M.

    2014-01-01

    The tissue adhesive 2-octyl cyanoacrylate (OCA) was encapsulated in polyurethane microshells and incorporated into bone cement to form a catalyst free, self-healing bone cement comprised of all clinically approved components. The bending strength, modulus, and fatigue lifetime were investigated in accordance with ASTM and ISO standards for the testing of PMMA bone cement. The bending strength of bone cement specimens decreased with increasing wt% capsules content for capsules without or with OCA, with specimens of formulation. PMID:24825796

  6. Development of a Cast Iron Fatigue Properties Database for use with Modern Design Methods

    Energy Technology Data Exchange (ETDEWEB)

    DeLa' O, James, D.; Gundlach, Richard, B.; Tartaglia, John, M.

    2003-09-18

    A reliable and comprehensive database of design properties for cast iron is key to full and efficient utilization of this versatile family of high production-volume engineering materials. A database of strain-life fatigue properties and supporting data for a wide range of structural cast irons representing industry standard quality was developed in this program. The database primarily covers ASTM/SAE standard structural grades of ADI, CGI, ductile iron and gray iron as well as an austempered gray iron. Twenty-two carefully chosen materials provided by commercial foundries were tested and fifteen additional datasets were contributed by private industry. The test materials are principally distinguished on the basis of grade designation; most grades were tested in a 25 mm section size and in a single material condition common for the particular grade. Selected grades were tested in multiple sections-sizes and/or material conditions to delineate the properties associated with a range of materials for the given grade. The cyclic properties are presented in terms of the conventional strain-life formalism (e.g., SAE J1099). Additionally, cyclic properties for gray iron and CGI are presented in terms of the Downing Model, which was specifically developed to treat the unique stress-strain response associated with gray iron (and to a lesser extent with CGI). The test materials were fully characterized in terms of alloy composition, microstructure and monotonic properties. The CDROM database presents the data in various levels of detail including property summaries for each material, detailed data analyses for each specimen and raw monotonic and cyclic stress-strain data. The CDROM database has been published by the American Foundry Society (AFS) as an AFS Research Publication entitled ''Development of a Cast Iron Fatigue Properties Database for Use in Modern Design Methods'' (ISDN 0-87433-267-2).

  7. Clinical neurophysiology of fatigue.

    Science.gov (United States)

    Zwarts, M J; Bleijenberg, G; van Engelen, B G M

    2008-01-01

    Fatigue is a multidimensional concept covering both physiological and psychological aspects. Chronic fatigue is a typical symptom of diseases such as cancer, multiple sclerosis (MS), Parkinson's disease (PD) and cerebrovascular disorders but is also presented by people in whom no defined somatic disease has been established. If certain criteria are met, chronic fatigue syndrome can be diagnosed. The 4-item Abbreviated Fatigue Questionnaire allows the extent of the experienced fatigue to be assessed with a high degree of reliability and validity. Physiological fatigue has been well defined and originates in both the peripheral and central nervous system. The condition can be assessed by combining force and surface-EMG measurements (including frequency analyses and muscle-fibre conduction estimations), twitch interpolation, magnetic stimulation of the motor cortex and analysis of changes in the readiness potential. Fatigue is a well-known phenomenon in both central and peripheral neurological disorders. Examples of the former conditions are multiple sclerosis, Parkinson's disease and stroke. Although it seems to be a universal symptom of many brain disorders, the unique characteristics of the concomitant fatigue also point to a specific relationship with several of these syndromes. As regards neuromuscular disorders, fatigue has been reported in patients with post-polio syndrome, myasthenia gravis, Guillain-Barré syndrome, facioscapulohumeral dystrophy, myotonic dystrophy and hereditary motor and sensory neuropathy type-I. More than 60% of all neuromuscular patients suffer from severe fatigue, a prevalence resembling that of patients with MS. Except for several rare myopathies with specific metabolic derangements leading to exercise-induced muscle fatigue, most studies have not identified a prominent peripheral cause for the fatigue in this population. In contrast, the central activation of the diseased neuromuscular system is generally found to be suboptimal. The

  8. The Identification of Fatigue Resistant and Fatigue Susceptible Individuals

    National Research Council Canada - National Science Library

    Harrison, Richard; Chaiken, Scott; Harville, Donald; Fischer, Joseph; Fisher, Dion; Whitmore, Jeff

    2008-01-01

    The present study was designed to target two specific areas regarding fatigue. The primary purpose was to begin investigations into possible genetic markers linked to fatigue resistance and fatigue susceptibility...

  9. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...

  10. Optimal Fatigue Testing

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Sørensen, John Dalsgaard; Kroon, I. B.

    1993-01-01

    life experiments for the same purpose. The methodology is basedon modern probabilistic concepts amd classical decision theory. The special case where the fatigue life experiments are given in terms of SN curves is considered in Particular. The proposed techniques are illustrated by an example.......This paper considers the reassessment of the reliability of tubular joints subjected to fatigue load. The reassessment is considered in two parts namely the task of utilizing new experimental data on fatigue life to update the reliability of the tubular joint ant the task of planning new fatigue...

  11. Fatigue and creep-fatigue damage assessment in Ti-6AL-4V titanium alloy using IR-thermography

    International Nuclear Information System (INIS)

    Kumar, Jalaj; Kumar, Vikas; Sundara Raman, S. Ganesh

    2015-01-01

    Titanium alloys such as Ti-6Al-4V are susceptible for fatigue and creep-fatigue interaction induced damage both at ambient and high temperature conditions. These alloys are extensively used for various structural applications such as aero-engine components etc. Reliable operation of such components depends on effective damage assessment during service. For offline damage assessment, excellent NDT techniques such as eddy current, ultrasonics, radiography etc. are available. But for online damage assessment, IR-thermography is one of the most popular techniques worldwide due to its non-intrusive and non-contact nature. Hence in the present investigation, for online damage assessment of creep-fatigue and fatigue damage, IR-thermography has been used. By holding the sample at peak stress, creep-fatigue interaction effect was introduced in the sample. Thermal profiles over fatigue and creep-fatigue samples were captured using online lock-in IR-thermography. Further, thermal modeling has been performed on the experimentally evaluated IR-data using first and second laws of thermodynamics. Thermal modeling effectively captured the partitioning of hysteresis energy into thermal losses and damage energy. This damage energy is responsible for creation of damage features such as voids in these samples. The damage energy for the sample tested with hold time (creep-fatigue) was more than that without hold time (pure fatigue) sample. Microscopic investigation further validated the higher amount of damage in creep-fatigue sample than fatigue sample. (author)

  12. Residual fatigue life evaluation of rail at squats seeds using 3D explicit finite element analysis

    NARCIS (Netherlands)

    Deng, X.; Naeimi, M.; Li, Z.; Qian, Z.

    2014-01-01

    A modeling procedure to predict the residual fatigue life of rail at squats seeds is developed in this article. Two models are involved: a 3D explicit Finite Element (FE) model to compute the stress and strain at squats in rail, and the J-S fatigue damage model to determine the residual fatigue life

  13. Correlates of fatigue in older adults with rheumatoid arthritis.

    Science.gov (United States)

    Belza, B L; Henke, C J; Yelin, E H; Epstein, W V; Gilliss, C L

    1993-01-01

    The purposes of this study were to describe the prevalence of fatigue, examine the association between fatigue and doctor visits, and identify correlates of fatigue in rheumatoid arthritis (RA). On average, a high degree of fatigue was reported to occur every day, to remain constant during the course of a week, and to most often affect walking and household chores. When controlling for disease severity and insurance coverage, respondents who reported more fatigue made more visits to the rheumatologist than those reporting less fatigue. A regression model with fatigue as the dependent variable revealed that the following variables explained a significant amount of variance: pain rating, functional status, sleep quality, female gender, comorbid conditions, and duration of disease.

  14. Fatigue Reliability Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    1991-01-01

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...... through linear-elastic fracture mechanics (LEFM). In determining the cumulative fatigue damage, Palmgren-Miner's rule is applied. Element reliability, as well as systems reliability, is estimated using first-order reliability methods (FORM). The sensitivity of the systems reliability to various parameters...... is investigated. The systems reliability index, estimated by using the fatigue elements with the fatigue strength expressed through SN relations, is found to be smaller than the systems reliability index estimated by using LEFM. It is shown that the systems reliability index is very sensitive to variations...

  15. Data development for ASTM E24.06.02 round robin program on instability prediction

    Science.gov (United States)

    Mccabe, D. E.

    1979-01-01

    Basis data for use in an ASTM E24.06.02 task group round robin activity was developed. Compact specimens were made of 2024-T351, 7075-T651 aluminum alloys, and 304 stainless steel. All were 12.7 mm thick and planar dimension variables incorporated were for 1T, 2T and 4T sizes. Representative raw data for each material and specimen size are contained herein. R-curves plotted in terms of delta a physical and delta a effective are plotted for each material.

  16. ASTM STANDARD GUIDE FOR EVALUATING DISPOSAL OPTIONS FOR REUSE OF CONCRETE FROM NUCLEAR FACILITY DECOMMISSIONING

    International Nuclear Information System (INIS)

    Phillips, Ann Marie; Meservey, Richard H.

    2003-01-01

    Within the nuclear industry, many contaminated facilities that require decommissioning contain huge volumes of concrete. This concrete is generally disposed of as low-level waste at a high cost. Much of the concrete is lightly contaminated and could be reused as roadbed, fill material, or aggregate for new concrete, thus saving millions of dollars. However, because of the possibility of volumetric contamination and the lack of a method to evaluate the risks and costs of reusing concrete, reuse is rarely considered. To address this problem, Argonne National Laboratory-East (ANL-E) and the Idaho National Engineering and Environmental Laboratory teamed to write a ''concrete protocol'' to help evaluate the ramifications of reusing concrete within the U.S. Department of Energy (DOE). This document, titled the Protocol for Development of Authorized Release Limits for Concrete at U.S. Department of Energy Site (1) is based on ANL-E's previously developed scrap metal recycle protocols; on the 10-step method outlined in DOE's draft handbook, Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material (2); and on DOE Order 4500.5, Radiation Protection of the Public and the Environment (3). The DOE concrete protocol was the basis for the ASTM Standard Guide for Evaluating Disposal Options for Concrete from Nuclear Facility Decommissioning, which was written to make the information available to a wider audience outside DOE. The resulting ASTM Standard Guide is a more concise version that can be used by the nuclear industry worldwide to evaluate the risks and costs of reusing concrete from nuclear facility decommissioning. The bulk of the ASTM Standard Guide focuses on evaluating the dose and cost for each disposal option. The user calculates these from the detailed formulas and tabulated data provided, then compares the dose and cost for each disposal option to select the best option that meets regulatory requirements. With this information

  17. Mechanical behaviour of Astm A 297 grade Hp joints welded using different processes

    International Nuclear Information System (INIS)

    Emygdio, Paulo Roberto Oliveira; Zeemann, Annelise; Almeida, Luiz Henrique de

    1996-01-01

    The influence of different arc welding processes on mechanical behaviour was studied for cast heat resistant stainless steel welded joints, in the as welded conditions. ASTM A 297 grade HP with niobium and niobium/titanium additions were welded following three different welding procedures, using shielded metal arc welding gas tungsten arc welding and plasma arc welding, in six welded joints. The welded joint mechanical behaviour was evaluated by ambient temperature and 870 deg C tensile tests; and creep tests at 900 deg C and 50 MPa. Mechanical test results showed that the welding procedure qualification following welding codes is not suitable for high temperature service applications. (author)

  18. Impact of ASTM Standard E722 update on radiation damage metrics

    Energy Technology Data Exchange (ETDEWEB)

    DePriest, Kendall Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    The impact of recent changes to the ASTM Standard E722 is investigated. The methodological changes in the production of the displacement kerma factors for silicon has significant impact for some energy regions of the 1-MeV(Si) equivalent fluence response function. When evaluating the integral over all neutrons energies in various spectra important to the SNL electronics testing community, the change in the response results in an increase in the total 1-MeV(Si) equivalent fluence of 2 7%. Response functions have been produced and are available for users of both the NuGET and MCNP codes.

  19. (Thunb.), Makino on Physical Fatigue

    African Journals Online (AJOL)

    fatigue agent, but there is a need for further research on long-term use in order to show its positive effects on physical fatigue. Key words: polysaccharides from Gynostemma pentaphyllum (Thunb.) Makino; physical fatigue; forced swimming test; ...

  20. Usefulness of multiple dimensions of fatigue in fibromyalgia.

    Science.gov (United States)

    Ericsson, Anna; Bremell, Tomas; Mannerkorpi, Kaisa

    2013-07-01

    To explore in which contexts ratings of multiple dimensions of fatigue are useful in fibromyalgia, and to compare multidimensional fatigue between women with fibromyalgia and healthy women. A cross-sectional study. The Multidimensional Fatigue Inventory (MFI-20), comprising 5 subscales of fatigue, was compared with the 1-dimensional subscale of fatigue from the Fibromyalgia Impact Questionnaire (FIQ) in 133 women with fibromyalgia (mean age 46 years; standard deviation 8.6), in association with socio-demographic and health-related aspects and analyses of explanatory variables of severe fatigue. The patients were also compared with 158 healthy women (mean age 45 years; standard deviation 9.1) for scores on MFI-20 and FIQ fatigue. The MFI-20 was associated with employment, physical activity and walking capacity (rs = -0.27 to -0.36), while FIQ fatigue was not. MFI-20 and FIQ fatigue were equally associated with pain, sleep, depression and anxiety (rs = 0.32-0.63). Regression analyses showed that the MFI-20 increased the explained variance (R2) for the models of pain intensity, sleep, depression and anxiety, by between 7 and 29 percentage points, compared with if FIQ fatigue alone was included in the models. Women with fibromyalgia rated their fatigue higher than healthy women for all subscales of the MFI-20 and the FIQ fatigue (p fatigue, assessed by the MFI-20, appear to be valuable in studies of employment, pain intensity, sleep, distress and physical function in women with fibromyalgia. The patients reported higher levels on all fatigue dimensions in comparison with healthy women.

  1. Fatigue Properties of Plain Concrete under Triaxial Tension-Compression-Compression Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Dongfu Zhao

    2017-01-01

    Full Text Available Fatigue tests were performed on plain concrete under triaxial tension-compression-compression (T-C-C cyclic loading with constant and variable amplitude using a large multiaxial machine. Experimental results show that, under constant amplitude fatigue loads, the development of residual strain in the fatigue loading direction depends mostly on the lateral compressive stress ratio and is nearly independent of stress level. Under variable amplitude fatigue loads, the fatigue residual strain is related to the relative fatigue cycle and lateral compressive stress ratio but has little relationship with the loading process. To model this system, the relative residual strain was defined as the damage variant. Damage evolutions for plain concrete were established. In addition, fatigue damage analysis and predictions of fatigue remaining life were conducted. This work provides a reference for multistage fatigue testing and fatigue damage evaluation of plain concrete under multiaxial loads.

  2. Research on the Fatigue Life Prediction Method of Thrust Rod

    Directory of Open Access Journals (Sweden)

    Guoyu Feng

    2016-01-01

    Full Text Available Purpose of this paper is to investigate the fatigue life prediction method of the thrust rod based on the continuum damage mechanics. The equivalent stress used as damage parameters established rubber fatigue life prediction model. Through the finite element simulation and material test, the model parameters and the fatigue damage dangerous positions were obtained. By equivalent stress life model, uniaxial fatigue life of the V-type thrust rod is analyzed to predict the ratio of life and the life of the test was 1.73, within an acceptable range, and the fatigue damage occurring position and finite element analysis are basically the same. Fatigue life analysis shows that the method is of correct, theoretical, and practical value.

  3. Chronic fatigue syndrome

    African Journals Online (AJOL)

    Chronic fatigue syndrome. Committee for Science and Education, Medical. Association of South Africa. Objective. ... Synonyms. Major controversy surrounds the name of the syndrome. In medical circles the preferred term is chronic fatigue .... urine tests using dipsticks. The above investigations should only be pursued when.

  4. Chronic fatigue syndrome

    OpenAIRE

    Reid, Steven F; Chalder, Trudie; Cleare, Anthony; Hotopf, Matthew; Wessely, Simon

    2008-01-01

    Chronic fatigue syndrome (CFS) is characterised by severe, disabling fatigue, and other symptoms including musculoskeletal pain, sleep disturbance, impaired concentration, and headaches. CFS affects between 0.006% and 3% of the population depending on the criteria used, with women being at higher risk than men.

  5. Chronic fatigue syndrome

    OpenAIRE

    Reid, Steven; Chalder, Trudie; Cleare, Anthony; Hotopf, Matthew; Wessely, Simon

    2011-01-01

    Chronic fatigue syndrome is characterised by severe, disabling fatigue, and other symptoms including musculoskeletal pain, sleep disturbance, impaired concentration, and headaches. CFS affects between 0.006% and 3% of the population depending on the criteria used, with women being at higher risk than men.

  6. Chronic fatigue syndrome

    OpenAIRE

    Cleare, Anthony J.; Reid, Steven; Chalder, Trudie; Hotopf, Matthew; Wessely, Simon

    2015-01-01

    Chronic fatigue syndrome (CFS) is characterised by severe, disabling fatigue, and other symptoms, including musculoskeletal pain, sleep disturbance, impaired concentration, and headaches. CFS affects between 0.006% and 3% of the population depending on the criteria used, with women being at higher risk than men.

  7. Clinical neurophysiology of fatigue.

    NARCIS (Netherlands)

    Zwarts, M.J.; Bleijenberg, G.; Engelen, B.G.M. van

    2008-01-01

    Fatigue is a multidimensional concept covering both physiological and psychological aspects. Chronic fatigue is a typical symptom of diseases such as cancer, multiple sclerosis (MS), Parkinson's disease (PD) and cerebrovascular disorders but is also presented by people in whom no defined somatic

  8. Improved ASTM G72 Test Method for Ensuring Adequate Fuel-to-Oxidizer Ratios

    Science.gov (United States)

    Juarez, Alfredo; Harper, Susana Tapia

    2016-01-01

    The ASTM G72/G72M-15 Standard Test Method for Autogenous Ignition Temperature of Liquids and Solids in a High-Pressure Oxygen-Enriched Environment is currently used to evaluate materials for the ignition susceptibility driven by exposure to external heat in an enriched oxygen environment. Testing performed on highly volatile liquids such as cleaning solvents has proven problematic due to inconsistent test results (non-ignitions). Non-ignition results can be misinterpreted as favorable oxygen compatibility, although they are more likely associated with inadequate fuel-to-oxidizer ratios. Forced evaporation during purging and inadequate sample size were identified as two potential causes for inadequate available sample material during testing. In an effort to maintain adequate fuel-to-oxidizer ratios within the reaction vessel during test, several parameters were considered, including sample size, pretest sample chilling, pretest purging, and test pressure. Tests on a variety of solvents exhibiting a range of volatilities are presented in this paper. A proposed improvement to the standard test protocol as a result of this evaluation is also presented. Execution of the final proposed improved test protocol outlines an incremental step method of determining optimal conditions using increased sample sizes while considering test system safety limits. The proposed improved test method increases confidence in results obtained by utilizing the ASTM G72 autogenous ignition temperature test method and can aid in the oxygen compatibility assessment of highly volatile liquids and other conditions that may lead to false non-ignition results.

  9. Relation between the national handbook of recommended methods for water data acquisition and ASTM standards

    Science.gov (United States)

    Glysson, G. Douglas; Skinner, John V.

    1991-01-01

    In the late 1950's, intense demands for water and growing concerns about declines in the quality of water generated the need for more water-resources data. About thirty Federal agencies, hundreds of State, county and local agencies, and many private organizations had been collecting water data. However, because of differences in procedures and equipment, many of the data bases were incompatible. In 1964, as a step toward establishing more uniformity, the Bureau of the Budget (now the Office of Management and Budget, OMB) issued 'Circular A-67' which presented guidelines for collecting water data and also served as a catalyst for creating the Office of Water Data Coordination (OWDC) within the U.S. Geological Survey. This paper discusses past, present, and future aspects of the relation between methods in the National Handbook and standards published by ASTM (American Society for Testing and Materials) Committee D-19 on Water's Subcommittee D-19.07 on Sediment, Geomorphology, and Open Channel Flow. The discussion also covers historical aspects of standards - development work jointly conducted by OWDC and ASTM.

  10. Effect of Lanthanum on Microstructures and Properties of ASTM A216 Steel

    Directory of Open Access Journals (Sweden)

    Aiqin Wang

    2016-01-01

    Full Text Available In order to satisfy the rudder horn casting standards of the International Association of Classification Societies, the properties of ASTM A216 steel should be improved. Therefore, in this article the rudder horn casting and accompanying specimens were cast moulded by arc furnace smelting, external refining, and modification treatment of the molten steel by lanthanum. The samples were first underwent normalizing treatment at 900 °C for 10 hours, then air cooled, followed by tempering treatment at 600 °C for 7 hours and samples were air cooled again. The mechanical properties and microstructures of the samples were measured. The crystallography relationships between lanthanum compounds formed in the molten steel and primary δ-Fe were analysed. The nucleation effect of lanthanum compounds as a heterogeneous nucleation core of primary δ-Fe were calculated and discussed based on two-dimensional mismatch theory. The results indicated that the strip MnS inclusions in ASTM A216 steel became granular rare earth compound inclusions due to La. The refined microstructures were obtained by a synergistic effect of the enhanced condensate depression and the nucleation rate of melt and La compounds as the heterogeneous nucleation caused by La.

  11. Application of MCDM based hybrid optimization tool during turning of ASTM A588

    Directory of Open Access Journals (Sweden)

    Himadri Majumder

    2017-07-01

    Full Text Available Multi-criteria decision making approach is one of the most troublesome tools for solving the tangled optimization problems in the machining area due to its capability of solving the complex optimization problems in the production process. Turning is widely used in the manufacturing processes as it offers enormous advantages like good quality product, customer satisfaction, economical and relatively easy to apply. A contemporary approach, MOORA coupled with PCA, was used to ascertain an optimal combination of input parameters (spindle speed, depth of cut and feed rate for the given output parameters (power consumption, average surface roughness and frequency of tool vibration using L27 orthogonal array for turning on ASTM A588 mild steel. Comparison between MOORA-PCA and TOPSIS-PCA shows the effectiveness of MOORA over TOPSIS method. The optimum parameter combination for multi-performance characteristics has been established for ASTM A588 mild steel are spindle speed 160 rpm, depth of cut 0.1 mm and feed rate 0.08 mm/rev. Therefore, this study focuses on the application of the hybrid MCDM approach as a vital selection making tool to deal with multi objective optimization problems.

  12. Na and Li ion diffusion in modified ASTM C 1260 test by Magnetic Resonance Imaging (MRI)

    International Nuclear Information System (INIS)

    Feng, X.; Balcom, B.J.; Thomas, M.D.A.; Bremner, T.W.

    2008-01-01

    In the current study, MRI was applied to investigate lithium and sodium ion diffusion in cement paste and mortars containing inert sand and borosilicate glass. Paste and mortars were treated by complying with ASTM C 1260. Lithium and sodium distribution profiles were collected at different ages after different treatments. Results revealed that sodium ions had a greater diffusion rate than lithium ions, suggesting that Na reaches the aggregate particle surface before Li. Results also showed that Na and Li ions had a competitive diffusion process in mortars; soaking in a solution with higher [Li] favored Li diffusion but hindered Na diffusion. In mortars containing glass, a substantial amount of Li was consumed by the formation of ASR products. When [Li] in soaking solution was reduced to 0.37 N, a distinctive Na distribution profile was observed, indicating the free-state Na ions were continuously transformed to solid reaction products by ASR. Hence, in the modified ASTM C 1260 test, [Li] in the storage solution should be controlled at 0.74 N, in order to completely prevent the consumption of Na ions and thus stop ASR

  13. Examining fatigue in COPD

    DEFF Research Database (Denmark)

    Al-Shair, Khaled; Muellerova, Hana; Yorke, Janelle

    2012-01-01

    ABSTRACT: INTRODUCTION: Fatigue is a disruptive symptom that inhibits normal functional performance of COPD patients in daily activities. The availability of a short, simple, reliable and valid scale would improve assessment of the characteristics and influence of fatigue in COPD. METHODS......: At baseline, 2107 COPD patients from the ECLIPSE cohort completed the Functional Assessment of Chronic Illness Therapy Fatigue (FACIT-F) scale. We used well-structured classic method, the principal components analysis (PCA) and Rasch analysis for structurally examining the 13-item FACIT-F. RESULTS: Four items...... were less able to capture fatigue characteristics in COPD and were deleted. PCA was applied to the remaining 9 items of the modified FACIT-F and resulted in three interpretable dimensions: i) general (5 items); ii) functional ability (2 items); and iii) psychosocial fatigue (2 items). The modified...

  14. Using endogenous saccades to characterize fatigue in multiple sclerosis.

    Science.gov (United States)

    Ferreira, Marisa; Pereira, Paulo A; Parreira, Marta; Sousa, Inês; Figueiredo, José; Cerqueira, João J; Macedo, Antonio F

    2017-05-01

    Multiple Sclerosis (MS) is likely to cause dysfunction of neural circuits between brain regions increasing brain working load or a subjective overestimation of such working load leading to fatigue symptoms. The aim of this study was to investigate if saccades can reveal the effect of fatigue in patients with MS. Patients diagnosed with MS (EDSSendogenous generated saccade paradigm (valid and invalid trials). The fatigue severity scale (FSS) was used to assess the severity of fatigue. FSS scores were used to define two subgroups, the MS fatigue group (score above normal range) and the MS non-fatigue. Differences between groups were tested using linear mixed models. Thirty-one MS patients and equal number of controls participated in this study. FSS scores were above the normal range in 11 patients. Differences in saccade latency were found according to group (p<0.001) and trial validity (p=0.023). Differences were 16.9ms, between MS fatigue and MS non-fatigue, 15.5ms between MS fatigue and control. The mean difference between valid and invalid trials was 7.5ms. Differences in saccade peak velocity were found according to group (p<0.001), the difference between MS fatigue and control was 22.3°/s and between MS fatigue and non-fatigue was 12.3°/s. Group was a statistically significant predictor for amplitude (p<0.001). FSS scores were correlated with peak velocity (p=0.028) and amplitude (p=0.019). Consistent with the initial hypothesis, our study revealed altered saccade latency, peak velocity and amplitude in patients with fatigue symptoms. Eye movement testing can complement the standard inventories when investigating fatigue because they do not share similar limitations. Our findings contribute to the understanding of functional changes induced by MS and might be useful for clinical trials and treatment decisions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Microstructural and Material Quality Effects on Rolling Contact Fatigue of Highly Elastic Intermetallic Ball Bearings

    Science.gov (United States)

    DellaCorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.

    2016-01-01

    Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.

  16. Fatigue in Multiple Sclerosis: Misconceptions and Future Research Directions.

    Science.gov (United States)

    Rudroff, Thorsten; Kindred, John H; Ketelhut, Nathaniel B

    2016-01-01

    Fatigue is one of the most disabling side effects in people with multiple sclerosis. While this fact is well known, there has been a remarkable lack of progress in determining the pathophysiological mechanisms behind fatigue and the establishment of effective treatments. The main barrier has been the lack of a unified definition of fatigue that can be objectively tested with validated experimental models. In this "perspective article" we propose the use of the following model and definition of fatigue: the decrease in physical and/or mental performance that results from changes in central, psychological, and/or peripheral factors. These changes depend on the task being performed, the environmental conditions it is performed in, and the physical and mental capacity of the individual. Our definition and model of fatigue outlines specific causes of fatigue and how it affects task performance. We also outline the strengths and weaknesses of commonly used measures of fatigue and suggest, based on our model and definition, new research strategies, which should include multiple measures. These studies should be mechanistic with validated experimental models to determine changes in central, psychological, and/or peripheral factors that explain fatigue. The proposed new research strategies may lead to the identification of the origins of MS related fatigue and the development of new, more effective treatments.

  17. Fatigue in Multiple Sclerosis: Misconceptions and Future Research Directions

    Directory of Open Access Journals (Sweden)

    Thorsten Rudroff

    2016-08-01

    Full Text Available Fatigue is one of the most disabling side effects in people with multiple sclerosis (PwMS. While this fact is well known, there has been a remarkable lack of progress in determining the pathophysiological mechanisms behind fatigue and the establishment of effective treatments. The main barrier has been the lack of a unified definition of fatigue that can be objectively tested with validated experimental models. In this ‘perspective article’ we propose the use of the following model and definition of fatigue: the decrease in physical and/or mental performance that results from changes in central, psychological, and/or peripheral factors. These changes depend on the task being performed, the environmental conditions it is performed in, and the physical and mental capacity of the individual. Our definition and model of fatigue outlines specific causes of fatigue and how it affects task performance. We also outline the strengths and weaknesses of commonly used measures of fatigue and suggest, based on our model and definition, new research strategies which should include multiple measures. These studies should be mechanistic with validated experimental models to determine changes in central, psychological, and/or peripheral factors that explain fatigue. The proposed new research strategies may lead to the identification of the origins of MS related fatigue and the development of new, more effective treatments.

  18. Modeling of the fatigue damage accumulation processes in the material of NPP design units under thermomechanical unstationary effects. Estimation of spent life and forecast of residual life

    International Nuclear Information System (INIS)

    Kiriushin, A.I.; Korotkikh, Yu.G.; Gorodov, G.F.

    2002-01-01

    Full text: The estimation problems of spent life and forecast of residual life of NPP equipment design units, operated at unstationary thermal force loads are considered. These loads are, as a rule, unregular and cause rotation of main stress tensor platforms of the most loaded zones of structural elements and viscoelastic plastic deformation of material in the places of stresses concentrations. The existing engineering approaches to the damages accumulation processes calculation in the material of structural units, their advantages and disadvantages are analyzed. For the processes of fatigue damages accumulation a model is proposed, which allows to take into account the unregular pattern of deformation multiaxiality of stressed state, rotation of main platforms, non-linear summation of damages at the loading mode change. The model in based on the equations of damaged medium mechanics, including the equations of viscoplastic deformation of the material and evolutionary equations of damages accumulation. The algorithms of spent life estimation and residual life forecast of the controlled equipment and systems zones are made on the bases of the given model by the known real history of loading, which is determined by real model of NPP operation. The results of numerical experiments on the basis of given model for various processes of thermal force loads and their comparison with experimental results are presented. (author)

  19. Computed tomographic imaging of subchondral fatigue cracks in the distal end of the third metacarpal bone in the thoroughbred racehorse can predict crack micromotion in an ex-vivo model.

    Directory of Open Access Journals (Sweden)

    Marie-Soleil Dubois

    Full Text Available Articular stress fracture arising from the distal end of the third metacarpal bone (MC3 is a common serious injury in Thoroughbred racehorses. Currently, there is no method for predicting fracture risk clinically. We describe an ex-vivo biomechanical model in which we measured subchondral crack micromotion under compressive loading that modeled high speed running. Using this model, we determined the relationship between subchondral crack dimensions measured using computed tomography (CT and crack micromotion. Thoracic limbs from 40 Thoroughbred racehorses that had sustained a catastrophic injury were studied. Limbs were radiographed and examined using CT. Parasagittal subchondral fatigue crack dimensions were measured on CT images using image analysis software. MC3 bones with fatigue cracks were tested using five cycles of compressive loading at -7,500N (38 condyles, 18 horses. Crack motion was recorded using an extensometer. Mechanical testing was validated using bones with 3 mm and 5 mm deep parasagittal subchondral slots that modeled naturally occurring fatigue cracks. After testing, subchondral crack density was determined histologically. Creation of parasagittal subchondral slots induced significant micromotion during loading (p<0.001. In our biomechanical model, we found a significant positive correlation between extensometer micromotion and parasagittal crack area derived from reconstructed CT images (SR = 0.32, p<0.05. Correlations with transverse and frontal plane crack lengths were not significant. Histologic fatigue damage was not significantly correlated with crack dimensions determined by CT or extensometer micromotion. Bones with parasagittal crack area measurements above 30 mm2 may have a high risk of crack propagation and condylar fracture in vivo because of crack micromotion. In conclusion, our results suggest that CT could be used to quantify subchondral fatigue crack dimensions in racing Thoroughbred horses in-vivo to

  20. Fatigue Analysis of Automobile Control Arm Based on Ncode

    Directory of Open Access Journals (Sweden)

    Ren Huanmei

    2016-01-01

    Full Text Available In order to improve the vehicle chassis structure durability, the fatigue analysis and optimization design of the low control arm (LCA was taken. A finite element model was established. By using this model, the stress distribution and lowest point of lifetime of the control arm under fatigue load was calculated. Based on the results of analysis, the optimization scheme according to the structure characteristics of components was presented, and a solution to improve the control arm fatigue life was given out. The research provided reference for engineering application of calculation and optimization of chassis components fatigue life.

  1. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  2. Dynamics of chronic active herpesvirus-6 infection in patients with chronic fatigue syndrome: data acquisition for computer modeling.

    Science.gov (United States)

    Krueger, G R; Koch, B; Hoffmann, A; Rojo, J; Brandt, M E; Wang, G; Buja, L M

    2001-01-01

    Ten adult patients with persistent active HHV-6 variant A infection and clinical chronic fatigue syndrome (CFS) were studied over a period of 24 months after initial clinical diagnosis. CFS was diagnosed according to IIIP-revised CDC-criteria as defined by the CFS Expert Advisory Group to the German Federal Ministry of Health in 1994. Changes in HHV-6 antibody titer, viral DNA load, peripheral blood T lymphocytes and subpopulations, as well as CD4/CD8 cell ratio and cell death (apoptosis) were monitored. Data were collected for comparison with respective changes in acute HHV-6 infection and as a basis for future computer simulation studies. The results showed variable but slightly elevated numbers of HHV-6 DNA copies in the blood of patients with CFS, while PBL (peripheral blood lymphocyte) apoptosis rates were clearly increased. CD4/CD8 cell ratios varied from below 1 up to values as seen in autoimmune disorders. Contrary to acute HHV-6 infection, T lymphocytes do not exhibit the usual response to HHV-6, that is elevation of mature and immature populations suggesting a certain degree of unresponsiveness. The data suggest that persistent low-dose stimulation by HHV-6 may favor imbalanced immune response rather than overt immune deficiency. This hypothesis requires confirmation through additional functional studies.

  3. Physical-Mechanism Exploration of the Low-Cycle Unified Creep-Fatigue Formulation

    OpenAIRE

    Dan Liu; Dirk John Pons

    2017-01-01

    Background—Creep-fatigue behavior is identified as the incorporated effects of fatigue and creep. One class of constitutive-based models attempts to evaluate creep and fatigue separately, but the interaction of fatigue and creep is neglected. Other models treat the damage as a single component, but the complex numerical structures that result are inconvenient for engineering application. The models derived through a curve-fitting method avoid these problems. However, the method of curving fit...

  4. Creep-fatigue damage assessment by subsequent fatigue straining

    International Nuclear Information System (INIS)

    Yaguchi, M.; Nakamura, T.; Ishikawa, A.; Asada, Y.

    1993-01-01

    A series of creep-fatigue tests has been conducted with Modified 9Cr-1Mo steel at 600 deg. C in a high vacuum environment of 0.1mPa to assess an accumulation of creep-fatigue damage. In these tests, each test specimen has been subjected to prior creep-fatigue loading followed by subsequent fatigue loading or prior fatigue loading followed by subsequent creep-fatigue loading. A linear summation of cumulative damage of fatigue and creep life fraction is smaller than unity for the former case, and larger than unity for the latter case. SEM observation was conducted and it was shown that in the case of prior creep-fatigue loading, crack mode transforms from transgranular to intergranular type with the increase of the number of cycles of prior creep-fatigue loading, while crack mode is generally intergranular in the case of prior fatigue loading. (author)

  5. Advances in fatigue lifetime predictive techniques; Proceedings of the Symposium, San Francisco, CA, Apr. 24, 1990

    International Nuclear Information System (INIS)

    Mitchell, M.R.; Landgraf, R.W.

    1992-01-01

    Recent progress in the development of methods to predict fatigue performance of materials and structures is reviewed. Attention is given to general approaches to fatigue mechanics, elevated temperature phenomena, spectrum loading, the multiaxial behavior, and applications. Particular attention is given to a fracture-mechanics-based model for cumulative damage assessment, thermo-mechanical fatigue life prediction methods, a probabilistic fracture mechanics approach for structural reliability assessment of space flight systems, a multiaxial fatigue life estimation technique, plasticity and fatigue damage modeling of severely loaded tubing, damage evaluation in composite materials using thermographic stress analysis, and fatigue lifetime monitoring in power plants

  6. Fatigue Management (La Gestion de la Fatigue)

    Science.gov (United States)

    1991-12-01

    Management Pre’face Etant donne la tenidance de plus en plus marque ~e vets le maintien en service des aironefs au-delak des dates lintites...transport aircraft designed prototype sade its first flight one year about 20 years ago; from the fatigue point later. The results of the flight testing

  7. Mesoscopic scale thermal fatigue damage

    International Nuclear Information System (INIS)

    Robertson, C.; Fissolo, A.; Fivel, M.

    2001-01-01

    In an attempt to better understand damage accumulation mechanisms in thermal fatigue, dislocation substructures forming in 316L steel during one specific test were examined and simulated. Hence, thin foils taken out of massive, tested specimens were first observed in transmission electron microscopy (TEM). These observations help in determining one initial dislocation configuration to be implemented in a 3-D model combining 3D discrete dislocation dynamics simulation (DDD) and finite element method computations (FEM). It was found that the simulated mechanical behaviour of the DDD microstructure is compatible with FEM and experimental data. The numerically generated dislocation microstructure is similar to ladder-like dislocation arrangements as found in many fatigued f.c.c. materials. Distinct mechanical behaviour for the two active slip systems was shown and deformation mechanisms were proposed. (authors)

  8. Radiotherapy-related fatigue.

    Science.gov (United States)

    Jereczek-Fossa, Barbara Alicja; Marsiglia, Hugo Raul; Orecchia, Roberto

    2002-03-01

    Radiotherapy-induced fatigue is a common early and chronic side-effect of irradiation, reported in up to 80 and 30% of patients during radiation therapy and at follow-up visits, respectively. It is frequently underestimated by medical and nursing staff, only about 50% of patients discuss it with a physician and in one fourth of cases any intervention is proposed to the patient. The patients rarely expect fatigue to be a side-effect of treatment. The etiology of this common symptom, its correlates and prevalence are poorly understood. In numerous studies the level and time course of fatigue was demonstrated to depend on the site of tumor and treatment modalities. For example, psychological mechanisms have been proposed to explain fatigue in women receiving irradiation for early breast cancer, whereas decline in neuromuscular efficiency rather than psychological reasons can lead to the fatigue observed in patients undergoing radiotherapy for prostate cancer. Fatigue can affect global quality of life more than pain, sexual dysfunction and other cancer- or treatment-related symptoms. Several interventions have been tested in the management of radiotherapy-related fatigue and some randomized studies have been recently published. Although an optimal method has not yet been established, some promising results have been reported with relaxation therapy, group psychotherapy, physical exercise and sleep. Further methodologically correct studies are warranted to define better the causes, optimal prevention and management of this symptom.

  9. Summary: Update to ASTM guide E 1523 to charge control and charge referencing techniques in x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Baer, D.R.

    2005-01-01

    An updated version of the American Society for Testing and Materials (ASTM) guide E 1523 to the methods to charge control and charge referencing techniques in x-ray photoelectron spectroscopy has been released by ASTM [Annual Book of ASTM Standards Surface Analysis (American Society for Testing and Materials, West Conshohocken, PA, 2004), Vol. 03.06]. The guide is meant to acquaint x-ray photoelectron spectroscopy (XPS) users with the various charge control and charge referencing techniques that are and have been used in the acquisition and interpretation of XPS data from surfaces of insulating specimens. The current guide has been expanded to include new references as well as recommendations for reporting information on charge control and charge referencing. The previous version of the document had been published in 1997 [D. R. Baer and K. D. Bomben, J. Vac. Sci. Technol. A 16, 754 (1998)

  10. Fatigue in cold-forging dies: Tool life analysis

    DEFF Research Database (Denmark)

    Skov-Hansen, P.; Bay, Niels; Grønbæk, J.

    1999-01-01

    In the present investigation it is shown how the tool life of heavily loaded cold-forging dies can be predicted. Low-cycle fatigue and fatigue crack growth testing of the tool materials are used in combination with finite element modelling to obtain predictions of tool lives. In the models...... is reported. (C) 1999 Elsevier Science S.A. All rights reserved....

  11. Prolonged unexplained fatigue in paediatrics

    NARCIS (Netherlands)

    Bakker, R.J.

    2010-01-01

    Prolonged Unexplained Fatigue in Paediatrics. Fatigue, as the result of mental or physical exertion, will disappear after rest, drinks and food. Fatigue as a symptom of illness will recover with the recovering of the illness. But when fatigue is ongoing for a long time, and not the result of

  12. Perceived fatigue following pediatric burns

    NARCIS (Netherlands)

    Akkerman, Moniek; Mouton, Leonora J.; Dijkstra, Froukje; Niemeijer, Anuschka S.; van Brussel, Marco; van der Woude, Lucas H. V.; Disseldorp, Laurien M.; Nieuwenhuis, Marianne K.

    2017-01-01

    Purpose: Fatigue is a common consequence of numerous pediatric health conditions. In adult burn survivors, fatigue was found to be a major problem. The current cross-sectional study is aimed at determining the levels of perceived fatigue in pediatric burn survivors. Methods: Perceived fatigue was

  13. Perceived fatigue following pediatric burns

    NARCIS (Netherlands)

    Akkerman, Moniek; Mouton, Leonora J.; Dijkstra, Froukje; Niemeijer, Anuschka S.; van Brussel, Marco|info:eu-repo/dai/nl/30481962X; Van der Woude, Lucas H. V.; Disseldorp, Laurien M.; Nieuwenhuis, Marianne K.

    2017-01-01

    Purpose Fatigue is a common consequence of numerous pediatric health conditions. In adult burn survivors, fatigue was found to be a major problem. The current cross-sectional study is aimed at determining the levels of perceived fatigue in pediatric burn survivors. Methods Perceived fatigue was

  14. White Paper Summary of 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Louthan, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); PNNL, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-05-29

    This white paper recommends that ASTM International develop standards to address the potential impact of hydrides on the long term performance of irradiated zirconium alloys. The need for such standards was apparent during the 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding and Assembly Components, sponsored by ASTM International Committee C26.13 and held on June 10-12, 2014, in Jackson, Wyoming. The potentially adverse impacts of hydrogen and hydrides on the long term performance of irradiated zirconium-alloy cladding on used fuel were shown to depend on multiple factors such as alloy chemistry and processing, irradiation and post irradiation history, residual and applied stresses and stress states, and the service environment. These factors determine the hydrogen content and hydride morphology in the alloy, which, in turn, influence the response of the alloy to the thermo-mechanical conditions imposed (and anticipated) during storage, transport and disposal of used nuclear fuel. Workshop presentations and discussions showed that although hydrogen/hydride induced degradation of zirconium alloys may be of concern, the potential for occurrence and the extent of anticipated degradation vary throughout the nuclear industry because of the variations in hydrogen content, hydride morphology, alloy chemistry and irradiation conditions. The tools and techniques used to characterize hydrides and hydride morphologies and their impacts on material performance also vary. Such variations make site-to-site comparisons of test results and observations difficult. There is no consensus that a single material or system characteristic (e.g., reactor type, burnup, hydrogen content, end-of life stress, alloy type, drying temperature, etc.) is an effective predictor of material response during long term storage or of performance after long term storage. Multi-variable correlations made for one alloy may not represent the behavior of another alloy exposed to

  15. Analysis of fatigue life for tube trailer cylinders

    OpenAIRE

    Xinqi YU; Bolong SONG; Zhao ZHANG; Qinggang LIU

    2015-01-01

    Risk of fatigue failure exists in the tube trailer cylinders under the condition of internal pressure variation and inertial load caused through road transport. In order to estimate the safety state of the cylinders under the action of alternating load, the model of certain geometry sizes is built based on the widely used tube trailer cylinders. The fatigue analysis of tube trailer gas cylinders is made aiming at the action of the internal pressure and the inertial load. The fatigue life dist...

  16. Fatigue failure of materials under broad band random vibrations

    Science.gov (United States)

    Huang, T. C.; Lanz, R. W.

    1971-01-01

    The fatigue life of material under multifactor influence of broad band random excitations has been investigated. Parameters which affect the fatigue life are postulated to be peak stress, variance of stress and the natural frequency of the system. Experimental data were processed by the hybrid computer. Based on the experimental results and regression analysis a best predicting model has been found. All values of the experimental fatigue lives are within the 95% confidence intervals of the predicting equation.

  17. Fatigue and its Effect on Performance in Military Environments

    Science.gov (United States)

    2007-01-01

    growth hormone ( HGH ). Evolving over millennia, this circadian pattern is consistent across mammalian species, including humans, and is highly...Fatigue Avoidance Scheduling Tool or FAST ™ Performance Under Stress.indb 240 26/09/2007 17:55:52 Fatigue and its Effect on Performance in Military...Using the Sleep and Fatigue, Task Effectiveness (SAFTE) model developed by Hursh and others, FAST ™ uses the 72 hour sleep history of an individual to

  18. Probabilistic Analysis for Comparing Fatigue Data Based on Johnson-Weibull Parameters

    Science.gov (United States)

    Vlcek, Brian L.; Hendricks, Robert C.; Zaretsky, Erwin V.

    2013-01-01

    Leonard Johnson published a methodology for establishing the confidence that two populations of data are different. Johnson's methodology is dependent on limited combinations of test parameters (Weibull slope, mean life ratio, and degrees of freedom) and a set of complex mathematical equations. In this report, a simplified algebraic equation for confidence numbers is derived based on the original work of Johnson. The confidence numbers calculated with this equation are compared to those obtained graphically by Johnson. Using the ratios of mean life, the resultant values of confidence numbers at the 99 percent level deviate less than 1 percent from those of Johnson. At a 90 percent confidence level, the calculated values differ between +2 and 4 percent. The simplified equation is used to rank the experimental lives of three aluminum alloys (AL 2024, AL 6061, and AL 7075), each tested at three stress levels in rotating beam fatigue, analyzed using the Johnson- Weibull method, and compared to the ASTM Standard (E739 91) method of comparison. The ASTM Standard did not statistically distinguish between AL 6061 and AL 7075. However, it is possible to rank the fatigue lives of different materials with a reasonable degree of statistical certainty based on combined confidence numbers using the Johnson- Weibull analysis. AL 2024 was found to have the longest fatigue life, followed by AL 7075, and then AL 6061. The ASTM Standard and the Johnson-Weibull analysis result in the same stress-life exponent p for each of the three aluminum alloys at the median, or L(sub 50), lives

  19. Multiaxial creep-fatigue rules

    International Nuclear Information System (INIS)

    Spindler, M.W.; Hales, R.; Ainsworth, R.A.

    1997-01-01

    Within the UK, a comprehensive procedure, called R5, is used to assess the high temperature response of structures. One part of R5 deals with creep-fatigue initiation, and in this paper we describe developments in this part of R5 to cover multiaxial stress states. To assess creep-fatigue, damage is written as the linear sum of fatigue and creep components. Fatigue is assessed using Miner's law with the total endurance split into initiation and growth cycles. Initiation is assessed by entering the curve of initiation cycles vs strain range using a Tresca equivalent strain range. Growth is assessed by entering the curve of growth cycles vs strain range using a Rankine equivalent strain range. The number of allowable cycles is obtained by summing the initiation and growth cycles. In this way the problem of defining an equivalent strain range applicable over a range of endurance is avoided. Creep damage is calculated using ductility exhaustion methods. In this paper we address two aspects; first, the nature of stress relaxation and, hence, accumulated creep strain in multiaxial stress fields; secondly, the effect of multiaxial stress on creep ductility. The effect of multiaxial stress state on creep ductility has been examined using experimental data and mechanistic models. Good agreement is demonstrated between an empirical description of test data and a cavity growth model, provided a simple nucleation criterion is included. A simple scaling factor is applied to uniaxial creep ductility, defined as a function of stress state. The factor is independent of the cavity growth mechanisms and yields a value of equivalent strain which can be conveniently used in determining creep damage by ductility exhaustion. (author). 14 refs, 4 figs

  20. Hyperthermia and fatigue

    DEFF Research Database (Denmark)

    Nybo, Lars

    2008-01-01

    of the cardiovascular function, which eventually reduces arterial oxygen delivery to the exercising muscles. Accordingly, aerobic energy turnover is impaired and anaerobic metabolism provokes peripheral fatigue. In contrast, metabolic disturbances of muscle homeostasis are less important during prolonged exercise...... of the dopaminergic system, but may primarily relate to inhibitory signals from the hypothalamus arising secondary to an increase in brain temperature. Fatigue is an integrated phenomenon, and psychological factors, including the anticipation of fatigue, should not be neglected and the interaction between central...... and peripheral physiological factors also needs to be considered....

  1. Development of system based code for integrity of FBR. Fundamental probabilistic approach, Part 1: Model calculation of creep-fatigue damage (Research report)

    International Nuclear Information System (INIS)

    Kawasaki, Nobuchika; Asayama, Tai

    2001-09-01

    Both reliability and safety have to be further improved for the successful commercialization of FBRs. At the same time, construction and operation costs need to be reduced to a same level of future LWRs. To realize compatibility among reliability, safety and, cost, the Structural Mechanics Research Group in JNC started the development of System Based Code for Integrity of FBR. This code extends the present structural design standard to include the areas of fabrication, installation, plant system design, safety design, operation and maintenance, and so on. A quantitative index is necessary to connect different partial standards in this code. Failure probability is considered as a candidate index. Therefore we decided to make a model calculation using failure probability and judge its applicability. We first investigated other probabilistic standards like ASME Code Case N-578. A probabilistic approach in the structural integrity evaluation was created based on these results, and also an evaluation flow was proposed. According to this flow, a model calculation of creep-fatigue damage was performed. This trial calculation was for a vessel in a sodium-cooled FBR. As the result of this model calculation, a crack initiation probability and a crack penetration probability were found to be effective indices. Last we discussed merits of this System Based Code, which are presented in this report. Furthermore, this report presents future development tasks. (author)

  2. Comparisons of ASTM standards cited in the NRC standard review plan, NUREG-0800 and related documents

    Energy Technology Data Exchange (ETDEWEB)

    Ankrum, A.R.; Bohlander, K.L.; Gilbert, E.R.; Pawlowski, R.A.; Spiesman, J.B.

    1995-10-01

    This report provides the results of comparisons of the cited and latest versions of ASTM standards cited in the NRC Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants (NUREG 0800) and related documents. The comparisons were performed by Battelle Pacific Northwest Laboratories in support of the NRC`s Standard Review Plan Update and Development Program. Significant changes to the standards, from the cited version to the latest version, are described and discussed in a tabular format for each standard. Recommendations for updating each citation in the Standard Review Plan are presented. Technical considerations and suggested changes are included for related regulatory documents (i.e., Regulatory Guides and the Code of Federal Regulations) citing the standard. The results and recommendations presented in this document have not been subjected to NRC staff review.

  3. Corrosion resistance and microstructure of alloy 625 weld overlay on ASTM A516 grade 70

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Mohammad J. [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Petroleum Engineering Dept.; Ketabchi, Mostafa [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Mining and Metallurgical Engineering Dept.

    2016-02-01

    Nickel-based alloys are a crucial class of materials because of their excellent corrosion resistance. In the present study, single layer and two layers alloy 625 weld overlays were deposited by GTAW process on A516 grade 70 carbon steel. The dilution in terms of Fe, Ni, Mo and Nb content was calculated in 30 points of weld overlay. Microstructure observations showed that alloy 625 had austenitic structure with two types of Laves and NbC secondary phases. The uniform and pitting corrosion resistance of alloy 625 weld overlay as casted and as forged were evaluated in accordance with ASTM G48-2011 standard at different temperatures to determine the weight loss and critical pitting temperature. For achieving a better comparison, samples from alloy 625 as casted and as forged were tested under the same conditions. The results point out that single layer alloy 625 weld overlay is not suitable for chloride containing environments, two layers alloy 625 weld overlay and alloy 625 as casted have acceptable corrosion resistance and almost the same critical pitting temperature. Alloy 625 as forged has the best corrosion resistance and the highest critical pitting temperature among all test specimens. Also, the corrosion behavior was evaluated in accordance with ASTM G28 standard. The corrosion rate of single layer weld overlay was unacceptable. The average corrosion rate of two layers weld overlay and in casted condition were 35.82 and 33.01 mpy, respectively. [German] Nickellegierungen sind aufgrund ihres exzellenten Korrosionswiderstandes eine bedeutende Werkstoffklasse. In der diesem Beitrag zugrunde liegenden Studie wurden mittels WIG-Schweissens ein- und zweilagige Schweissplattierungen auf den Kohlenstoffstahl A516 (Grade 70) aufgebracht. Die Vermischung in Form des Fe-, Ni-, Mo- und Nb-Gehaltes wurde an 30 Punkten der Schweissplattierungen berechnet. Die mikrostrukturellen Untersuchungen ergaben, dass die Legierung 625 eine austenitische Struktur mit zwei Arten von

  4. Stress analysis of the cracked lap shear specimens: An ASTM round robin

    Science.gov (United States)

    Johnson, W. S.

    1986-01-01

    This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.

  5. Stress analysis of the cracked-lap-shear specimen - An ASTM round-robin

    Science.gov (United States)

    Johnson, W. S.

    1987-01-01

    This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.

  6. ASTM and VAMAS activities in titanium matrix composites test methods development

    Science.gov (United States)

    Johnson, W. S.; Harmon, D. M.; Bartolotta, P. A.; Russ, S. M.

    1994-01-01

    Titanium matrix composites (TMC's) are being considered for a number of aerospace applications ranging from high performance engine components to airframe structures in areas that require high stiffness to weight ratios at temperatures up to 400 C. TMC's exhibit unique mechanical behavior due to fiber-matrix interface failures, matrix cracks bridged by fibers, thermo-viscoplastic behavior of the matrix at elevated temperatures, and the development of significant thermal residual stresses in the composite due to fabrication. Standard testing methodology must be developed to reflect the uniqueness of this type of material systems. The purpose of this paper is to review the current activities in ASTM and Versailles Project on Advanced Materials and Standards (VAMAS) that are directed toward the development of standard test methodology for titanium matrix composites.

  7. Hardness optimization of boride diffusion layer on Astm F-75 alloy using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Arguelles O, J. L.; Corona R, M. A. [Universidad Autonoma de San Luis Potosi, Doctorado Institucional en Ingenieria y Ciencia de Materiales, San Luis Potosi 78000, SLP (Mexico); Marquez H, A.; Saldana R, A. L.; Saldana R, A. [Universidad de Guanajuato, Ingenieria Mecanica Agricola DICIVA, Irapuato, Guanajuato 36500 (Mexico); Moreno P, J., E-mail: amarquez@ugto.mx [Universidad de Guanajuato, Departamento de Minas, Metalurgia y Geologia, Ex-Hacienda San Matias s/n, Guanajuato, Guanajuato 36020 (Mexico)

    2017-11-01

    In this study, the Response Surface Methodology (Rsm) and Central Composite Design (Ccd) were used to optimize the hardness of boride diffusion layer on Astm F-75 alloy (also called Haynes alloy). A boronizing thermochemical treatment was carried out at different temperatures and for different time periods. Hardness tests were conducted. The boride diffusion layer was verified by the X-ray diffraction (XRD) analysis indicating the formation of Co B, Co{sub 2}B, Cr B and Mo{sub 2}B phases. An optimal hardness of 3139.7 Hv was obtained for the samples subjected to the boriding process for a duration of 6.86 h at 802.4 degrees Celsius. (Author)

  8. Hardness optimization of boride diffusion layer on Astm F-75 alloy using response surface methodology

    International Nuclear Information System (INIS)

    Arguelles O, J. L.; Corona R, M. A.; Marquez H, A.; Saldana R, A. L.; Saldana R, A.; Moreno P, J.

    2017-01-01

    In this study, the Response Surface Methodology (Rsm) and Central Composite Design (Ccd) were used to optimize the hardness of boride diffusion layer on Astm F-75 alloy (also called Haynes alloy). A boronizing thermochemical treatment was carried out at different temperatures and for different time periods. Hardness tests were conducted. The boride diffusion layer was verified by the X-ray diffraction (XRD) analysis indicating the formation of Co B, Co 2 B, Cr B and Mo 2 B phases. An optimal hardness of 3139.7 Hv was obtained for the samples subjected to the boriding process for a duration of 6.86 h at 802.4 degrees Celsius. (Author)

  9. Designing cathodic protection systems for marine structures and vehicles. ASTM special technical publication 1370

    Energy Technology Data Exchange (ETDEWEB)

    Hack, H.P. [ed.

    1999-07-01

    Cathodic protection is an important method of protecting structures and ships from the corrosive effects of seawater. Poor designs can be far more costly to implement than optimal designs, Improper design can cause overprotection, with resulting paint blistering and accelerated corrosion of some alloys, underprotection, with resultant structure corrosion, or stray current corrosion of nearby structures. The first ASTM symposium specifically aimed at cathodic protection in seawater was intended to compile all the criteria and philosophy for designing both sacrificial and impressed current cathodic protection systems for structures and vehicles in seawater. The papers which are included in this STP are significant in that they summarize the major seawater cathodic protection system design philosophies. Papers have been processed separately for inclusion on the database.

  10. Comparisons of ASTM standards cited in the NRC standard review plan, NUREG-0800 and related documents

    International Nuclear Information System (INIS)

    Ankrum, A.R.; Bohlander, K.L.; Gilbert, E.R.; Pawlowski, R.A.; Spiesman, J.B.

    1995-10-01

    This report provides the results of comparisons of the cited and latest versions of ASTM standards cited in the NRC Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants (NUREG 0800) and related documents. The comparisons were performed by Battelle Pacific Northwest Laboratories in support of the NRC's Standard Review Plan Update and Development Program. Significant changes to the standards, from the cited version to the latest version, are described and discussed in a tabular format for each standard. Recommendations for updating each citation in the Standard Review Plan are presented. Technical considerations and suggested changes are included for related regulatory documents (i.e., Regulatory Guides and the Code of Federal Regulations) citing the standard. The results and recommendations presented in this document have not been subjected to NRC staff review

  11. Phases Evolution of an ASTM 335 steel under continuous cooling P91

    International Nuclear Information System (INIS)

    Carrizo, D.A; Danon, C.A; Ramos, C.P

    2012-01-01

    This paper studies the influence of the cooling rate on phase transformations and the resulting microstructure in continuous cooling cycles for an ASTM A335 P91 steel, under fixed austenization conditions. The CCT (Continuous Cooling Transformation) diagram of this material is reported in the literature, so the main phase fields are known. The final structure of the samples depends on the austenitic grain size and the cooling rate. The studied samples were austenized at 1050 o C for 30 minutes and then cooled at different rates between 50 o C/h and 300 o C/h. The identification and characterization of the phases was carried out by using Scanning Electron Microscopy, X-ray Diffraction and Moessbauer Spectroscopy. From the results so obtained, additions to the CCT diagram of the material are proposed, providing new information to it

  12. Microstructure evolution of ASTM 335 P91 steel, subjected to continuous cooling

    International Nuclear Information System (INIS)

    Carrizo, D.A; Danon, C.A; Ramos, C.P

    2012-01-01

    This paper studies the influence of the cooling rate on an isothermal phase transformations in ASTM A335 P91 steel, by the analysis of the resulting microstructure after several continuous cooling cycles under fixed austenization conditions. The CCT (Continuous Cooling Transformation) diagram of this material has already been reported in the literature, so the main phase fields are known, and they depend on the austenitic grain size and the cooling rate. Five samples were tested in a dilatometer, they were austenized and then cooled at different rates between 50 o C/h and 300 o C/h. The identification and characterization of the resulting phases was carried out by using Scanning Electron Microscopy, X-ray Diffraction and Mossbauer Spectroscopy. The obtained results allowed to add information about the presence of retained austenite and (Fe,Cr) 3 C - type carbides to the CCT diagram of the material (author)

  13. Experiences of Fatigue at Sea

    DEFF Research Database (Denmark)

    Zhao, Zhiwei; Jepsen, Jørgen Riis; Chen, Zhonglong

    2016-01-01

    Fatigue has negative impacts on the general working population as well as on seafarers. In order to study seafarers’ fatigue, a questionnaire-base survey was conducted to gain information about potential risk factors for fatigue and construct indexes indicating fatigue. The study applies T-test t......-test to compare strata of seafarers to analyse work and sleep patterns in global seafaring. Qualitative analysis are also employed to explore the impacts of fatigue on seafarer’s occupational health and safety....

  14. Understanding Muscle Dysfunction in Chronic Fatigue Syndrome

    Directory of Open Access Journals (Sweden)

    Gina Rutherford

    2016-01-01

    Full Text Available Introduction. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME is a debilitating disorder of unknown aetiology, characterised by severe disabling fatigue in the absence of alternative diagnosis. Historically, there has been a tendency to draw psychological explanations for the origin of fatigue; however, this model is at odds with findings that fatigue and accompanying symptoms may be explained by central and peripheral pathophysiological mechanisms, including effects of the immune, oxidative, mitochondrial, and neuronal pathways. For example, patient descriptions of their fatigue regularly cite difficulty in maintaining muscle activity due to perceived lack of energy. This narrative review examined the literature for evidence of biochemical dysfunction in CFS/ME at the skeletal muscle level. Methods. Literature was examined following searches of PUB MED, MEDLINE, and Google Scholar, using key words such as CFS/ME, immune, autoimmune, mitochondria, muscle, and acidosis. Results. Studies show evidence for skeletal muscle biochemical abnormality in CFS/ME patients, particularly in relation to bioenergetic dysfunction. Discussion. Bioenergetic muscle dysfunction is evident in CFS/ME, with a tendency towards an overutilisation of the lactate dehydrogenase pathway following low-level exercise, in addition to slowed acid clearance after exercise. Potentially, these abnormalities may lead to the perception of severe fatigue in CFS/ME.

  15. Corrosion fatigue behaviour of aluminium 5083-H111 welded using gas metal arc welding method

    CSIR Research Space (South Africa)

    Mutombo, K

    2011-12-01

    Full Text Available to the requirements of ASTM standards G31 [24] and G46 [25]. The 3.5% NaCl simulated sea water was prepared by dissolving 3.5 ? 0.1 parts by weight of Corrosion Fatigue Behaviour of Aluminium 5083-H111 Welded Using Gas Metal Arc Welding Method 193 NaCl in 96..., dissolve in some chemical solutions, such as strong acids or alkaline solutions. Damage to this passive layer in chloride-containing environments (such as sea water or NaCl solutions), may result in localised corrosive attack such as pitting corrosion...

  16. Fretting corrosion tests on orthopedic plates and screws made of ASTM F138 stainless steel

    Directory of Open Access Journals (Sweden)

    Claudio Teodoro dos Santos

    Full Text Available Introduction Although there has been significant progress in the design of implants for osteosynthesis, the occurrence of failures in these medical devices are still frequent. These implants are prone to suffer from fretting corrosion due to micromotion that takes place between the screw heads and plate holes. Consequently, fretting corrosion has been the subject of research in order to understand its influence on the structural integrity of osteosynthesis implants. The aim of this paper is to correlate the surface finish characteristics of bone plate-screw systems with fretting corrosion. Methods The surface finish (machined and polished of five specimens taken from three commercial dynamic compression plates (DCP were evaluated. For testing, the specimens were fixed with bone screws, immersed in a solution of 0.90% NaCl and subjected to a rocking motion with an amplitude of 1.70 mm and frequency of 1.0 Hz for 1.0 × 106 cycles, according to the ASTM F897 standard. Both, plate and screws were manufactured in Brazil with ASTM F138 stainless steel. Results Flaws on the hole countersink area and on the screw thread of some specimens were identified stereoscopically. At the end of the test all the specimens showed evidence of fretting corrosion with an average metal loss of 4.80 mg/million cycles. Conclusion An inadequate surface finish in some areas of the plates and screws may have favored the incidence of damage to the passive film, accelerating the fretting corrosion at the interfaces between the plate hole countersink and the screw head. Keywords Osteosynthesis, DCP, Bone plate, Screw, Fretting corrosion, Stainless steel.

  17. Determination of ASTM 1016 structural welded joints fracture toughness through J integral

    International Nuclear Information System (INIS)

    Martins, Geraldo de Paula; Villela, Jefferson Jose; Terra, Jose Lucio; Rabello, Emerson Giovani; Martins, Geraldo Antonio Scoralick; Carneiro, Jose Rubens Goncalves

    2009-01-01

    Fracture toughness is an important parameter for studies of materials behavior in nuclear and conventional industry. Crack propagation resistance is, in general, evaluate using one of the fracture mechanics parameters K IC , for the case of the materials that exhibits a linear elastic behavior, the CTOD (crack tip opening displacement) and J IC , the critical value of J Integral, for the case of materials with elastic-plastic behavior. On this work the fracture mechanics parameters of the ASTM 1016 structural steel welded joints were obtained, using the J Integral. Charpy V tests at several temperatures were also obtained, with the purpose to obtain the curves of ductile-brittle of the regions of the welded joints: Base Metal, (MB), and Melted Zone (MZ). The joints were welded by Gas Metal Arc Welding (GMAW) with V bevel for evaluation the MZ toughness properties. The tests were accomplished at temperatures varying from -100 deg C to 100 deg C using the technical of compliance variation for J IC determination, the critical value that defines the initial stable crack growth, that applies to brittle and ductile materials. The J Integral alternative specimens has square cross section 10mmX10mm, according ASTM E 1820, with notch localized respectively at the BM and MZ. After the tests, the specimens fractured were analyzed in a scanning microscopic electronic (SME) for verification of the fracture surface. The fractography of the specimens at elevated temperatures presented dimples at the region of stable crack growth, characteristic of ductile fracture. The results of J Integral and Charpy V presented a good correlation between these two parameters. From these correlations it can be concluded that in some applications, the use Charpy V energy to infer fracture toughness can be substitute the Integral J tests. (author)

  18. Fatigue in post-poliomyelitis syndrome: association with disease-related, behavioral, and psychosocial factors.

    Science.gov (United States)

    Trojan, Daria A; Arnold, Douglas L; Shapiro, Stan; Bar-Or, Amit; Robinson, Ann; Le Cruguel, Jean-Pierre; Narayanan, Sridar; Tartaglia, Maria C; Caramanos, Zografos; Da Costa, Deborah

    2009-05-01

    To determine the biopsychosocial correlates of general, physical, and mental fatigue in patients with postpoliomyelitis syndrome (PPS) by assessing the additional contribution of potentially modifiable factors after accounting for important nonmodifiable disease-related factors. It was hypothesized that disease-related, behavioral, and psychosocial factors would contribute in different ways to general, physical, and mental fatigue in PPS and that a portion of fatigue would be determined by potentially modifiable factors. Cross-sectional study. A tertiary university-affiliated hospital post-polio clinic. Fifty-two ambulatory patients with PPS who were not severely depressed were included. Potential correlates for fatigue included disease-related factors (acute polio weakness, time since acute polio, PPS duration, muscle strength, pain, forced vital capacity, maximum inspiratory pressure, maximum expiratory pressure, body mass index, disability, fibromyalgia), behavioral factors (physical activity, sleep quality), and psychosocial factors (depression, stress, self-efficacy). Fatigue was assessed with the Multidimensional Fatigue Inventory (MFI; assesses fatigue on 5 subscales) and the Fatigue Severity Scale (FSS). Multivariate models were computed for MFI General, Physical, and Mental Fatigue. Age-adjusted multivariate models with nonmodifiable factors included the following predictors of (1) MFI General Fatigue: maximum inspiratory pressure, fibromyalgia, muscle strength; (2) MFI Physical Fatigue: maximum expiratory pressure, muscle strength, age, time since acute polio; and (3) MFI Mental Fatigue: none. The following potentially modifiable predictors made an additional contribution to the models: (1) MFI General Fatigue: stress, depression; (2) MFI Physical Fatigue: physical activity, pain; and (3) MFI Mental Fatigue: stress. PPS fatigue is multidimensional. Different types of fatigue are determined by different variables. Potentially modifiable factors account for

  19. Fatigue Performance of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Jun, Zhang; Stang, Henrik

    1996-01-01

    The objective of the present study is to obtain basic data of fibre reinforced concrete under fatigue load and to set up a theoretical model based on micromechanics. In this study, the bridging stress in fiber reinforced concrete under cyclic tensile load was investigted in details. The damage...... mechanism of the interface between fiber and matrix was proposed and a rational model given. Finally, the response of a steel fiber reinforced concrete beam under fatigue loading was predicted based on this model and compared with experimental results....

  20. Insomnia and Fatigue

    Science.gov (United States)

    ... in turn leads to fatigue, may affect your self-esteem, mood, emotions, relationships and work. But you don’ ... 19004 Phone: (855) 807-6386 email Facebook Twitter Instagram YouTube Contact Us Privacy Policy Site Credits Terms ...

  1. Fatigue Evaluation Algorithms: Review

    DEFF Research Database (Denmark)

    Passipoularidis, Vaggelis; Brøndsted, Povl

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Puck...... series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a wind turbine rotor...... blade construction. Two versions of the algorithm, the one using single-step and the other using incremental application of each load cycle (in case of ply failure) are implemented and compared. Simulation results confirm the ability of the algorithm to take into account load sequence effects...

  2. Bending Fatigue of Carburized Steel at Very Long Lives

    Science.gov (United States)

    Nelson, D. V.; Long, Z.

    2016-01-01

    The bending fatigue behavior of two carburized steels is investigated for lives between approximately 105 and 108 cycles. Cracks are observed to start at sub-surface inclusions and develop features on fracture surfaces resembling "fish eyes" in appearance. This type of sub-surface cracking tends to govern fatigue strength at long lives. Previous studies of "fish eye" fatigue in carburized steel have been relatively few and have mainly considered failures originating at depths beneath a carburized case, where compressive residual stresses are minimal and hardness values approach those in the core. This study provides fatigue data for cracks originating within cases at various depths where compressive residual stresses are substantial and hardness is much higher than in the core. Fatigue strength is predicted by a simple model, accounting for the influence of residual stresses and hardness values at the different depths at which cracks started. Predictions of fatigue strength are compared with data generated in this study.

  3. Source Localization of Eeg Signals during Muscle Fatigue

    Science.gov (United States)

    Liu, Jing Z.; Yao, Bing; Lewandowski, Beth E.; Karakasis, Chris; Brown, Robert W.; Yue, Guang H.

    2003-10-01

    In this study we determined sources of EEG signals during a fatigue process involving intermittent maximal voluntary contractions (MVCs). In the fatigue motor task, subjects consecutively performed 200 trials of handgrip MVCs, each lasted 2 s, followed by a 5-s rest. In the control task, subjects performed the same task but the rest time was 28 s, and there was also a 5-min rest after each 40 trials so that fatigue effect was minimized. EEG signals were recorded along with handgrip force and EMG data. Current dipole model was applied to determine the signal sources in a three-sphere homogeneous head frame. Effects of fatigue on the signal source were determined. The results showed no significant changes in dipole strength and orientation but significant larger movement ranges in the dipole location during the fatigue process than during the control, indicating fatigue-related rotation of the center of cortical activation.

  4. Statistical simulation of small fatigue crack nucleation and coalescence in a lamellar TiAl alloy

    Science.gov (United States)

    Chan, Kwais; Wittkowsky, Bettina; Pfuff, Michael

    1999-05-01

    This article examines the possibility of fatigue failure as the result of fatigue crack nucleation and coalescence at stress ranges below the fatigue limit and the large crack threshold where fatigue cracks are expected not to grow. By representing the material as a two-dimensional array of beam elements, the nucleation of nonpropagating small cracks at various material locations is modeled via a statistical approach that considers fatigue crack nucleation by accumulation of damage at randomly distributed weak regions. Once nucleated, the fatigue cracks do not propagate but extend only by linking with fatigue cracks subsequently formed in the contiguous elements. Result of the computer simulation suggests that fatigue failure by crack nucleation and coalescence is feasible, but the cycles-to-coalescence is much longer than the cycles-to-initiation for the first crack. Implications of the results in fatigue life assessment based on the Kitagawa diagram are discussed for TiAl alloys.

  5. The Recognition Of Fatigue

    DEFF Research Database (Denmark)

    Elsass, Peter; Jensen, Bodil; Mørup, Rikke

    2007-01-01

    Elsass P., Jensen B., Morup R., Thogersen M.H. (2007). The Recognition Of Fatigue: A qualitative study of life-stories from rehabilitation clients. International Journal of Psychosocial Rehabilitation. 11 (2), 75-87......Elsass P., Jensen B., Morup R., Thogersen M.H. (2007). The Recognition Of Fatigue: A qualitative study of life-stories from rehabilitation clients. International Journal of Psychosocial Rehabilitation. 11 (2), 75-87...

  6. Effects of the normalizing time and temperature on the impact properties of ASTM A-516 grade 70 steel

    International Nuclear Information System (INIS)

    Carneiro, T.; Cescon, T.

    1982-01-01

    The influence of normalizing time and temperature, as well as the plate thickness, on the impact properties of ASTM A-516 grade 70 steel, is studied. Results show that different normalizing conditions may lead to equivalent microstructure with different impact properties. Normalizing conditions that cause low cooling rate in the critical zone exhibit banded microstructure with inferior impact properties. (Author) [pt

  7. Numerical analysis of thermomechanical low cycle fatigue

    Science.gov (United States)

    Sulich, Piotr; Egner, Władysław; Egner, Halina

    2018-01-01

    In this paper the numerical analysis of low cycle fatigue behavior of steel in non-isothermal conditions is presented. First the experimental tests are analyzed to recognize different aspects of material behavior. Then the appropriate constitutive model is developed and implemented into numerical procedures. The model parameters are identified on the basis of the available experimental data. Finally some benchmark simulations are performed.

  8. Creep-fatigue damage assessment by subsequent fatigue straining

    International Nuclear Information System (INIS)

    Yaguchi, Masatsugu; Nakamura, Toshiya; Ishikawa, Akiyoshi; Asada, Yasuhide

    1993-01-01

    A series of creep-fatigue tests has been conducted with Modified 9Cr-1Mo steel at 600 C in a high vacuum environment of 0.1 mPa to assess an accumulation of creep-fatigue damage. In these tests, each test specimen has been subjected to prior creep-fatigue loading followed by subsequent fatigue loading or prior fatigue loading followed by subsequent creep-fatigue loading. A linear summation of cumulative damage of fatigue and creep life fraction was smaller than unity for the former case, and larger than unity for the latter case. Scanning electron microscopic observation showed that in the case of prior creep-fatigue loading, a crack propagated from inclusions around which cavities were observed and its appearance transformed from transgranular to intergranular type with the increase of the number of cycles of prior creep-fatigue loading, while crack mode was predominantly intergranular in the case of prior fatigue loading. It was suggested that in the case of prior creep-fatigue loading, the fatigue life becomes shorter than that predicted by the linear rule due to early initiation of a crack caused from the cavity creation. In the case of prior fatigue loading, the crack propagates different courses in each loading to lead to the life fraction which is larger than unity

  9. Effects of processing on the transverse fatigue properties of low-sulfur AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Collins, S.R.; Michal, G.M. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Materials Science and Engineering

    1993-12-01

    The effects of inclusions due to steelmaking processes on the fatigue life of AISI 4140 have been investigated. The test matrix consisted of three commercially produced heats of AISI 4140 of comparable cleanliness: one was conventionally cast (CC), and two were inert gas-shielded/bottom-poured (IGS). One of the IGS heats was calcium-treated to explore the effects of inclusion shape control (IGS/SC). All heats were hot-rolled and reduced over 95 pct to produce bar stock of 127 to 152 mm (5 to 6 in.) in diameter. Transverse axial specimens confirming to ASTM E466 were machined, quenched, and tempered to approximately 40 HRC, and they were fatigue tested in tension-tension cycling (R = 0.1). Test results and statistical analyses of the stress-life data show that the IGS grade has several times the fatigue strength of the CC grade at 10{sup 7} cycles. Lower-limit fatigue strengths calculated at a 99.9 pct probability were 518.5 MPa (75.2 ksi) for IGS vs 55.6 MPa (8.1 ksi) for the CC grade. The IGS/SC grad had the best performance at all stress and life levels. The results obtained indicate that fatigue performance can be improved by choosing a processing method that reduces the indigence of exogenous oxides and by controlling the shape of the sulfides.

  10. Fatigue crack growth characteristics of offshore structural steel in marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, B

    1993-04-01

    Corrosion fatigue of a metal is a more severe form of fatigue phenomena in the presence of a corrosive environment like seawater or sour gas. The enhanced fatigue crack growth rate has been attributed in part to the anodic dissolution (oxidation of metal) at the crack tip and to hydrogen embrittlement. Microrganisms, especially sulfate-reducing bacteria, have been known to enhance metal fatigue. A study was carried out of the corrosion fatigue behaviour of CSA G 40.21 M 350 WT steel. Tests were conducted in air, seawater and seawater with cathodic protection. Compact tension specimens and ASTM substitute seawater was used. Crack growth data were acquired using the alternating current potential drop technique. Loading frequency was 3 Hz in air and 0.167 Hz in seawater. The air tests were conducted at room temperature and the seawater tests were conducted at 5[degree]C. The stress ratio for all the tests was 0.05. Multiple tests in similar environments produced high agreement between results. Free corrosion crack growth rate in seawater for the intermediate range of [delta]K was ca 1.5-2.0 times higher than that in air. However, applying a cathodic protection of [minus]830 mV reduced the crack growth rate to the growth rate in air. 31 refs., 37 figs., 3 tabs.

  11. Failure and fatigue mechanisms in composite materials

    Science.gov (United States)

    Rosen, B. W.; Kulkarni, S. V.; Mclaughlin, P. V., Jr.

    1975-01-01

    A phenomenological description of microfailure under monotonic and cyclic loading is presented, emphasizing the significance of material inhomogeneity for the analysis. Failure in unnotched unidirectional laminates is reviewed for the cases of tension, compression, shear, transverse normal, and combined loads. The failure of notched composite laminates is then studied, with particular attention paid to the effect of material heterogeneity on load concentration factors in circular holes in such laminates, and a 'materials engineering' shear-lay type model is presented. The fatigue of notched composites is discussed with the application of 'mechanistic wearout' model for determining crack propagation as a function of the number of fatigue cycles.-

  12. Mental Fatigue Evaluation

    Directory of Open Access Journals (Sweden)

    Valery V. Rozhentsov

    2013-01-01

    Full Text Available The article offers the method for evaluation of mental fatigue, based on the method of paired light pulses. Ten pre-trained test men with normal vision, aged 18–20 participated in the experiment. Testees were showed subsequent paired light pulses at a 200 ms interval, divided by initial interpulse interval of 70 ms, recurring at the fixed time interval of 1 s. Testees determined the threshold interpulse interval, at which the two pulses in a pair merged into one, three times, using the method of successive approximation. Then testees solved algebraic equations with several unknowns for two hours. The threshold interpulse interval was determined three times every 20 minutes in the course of equations solving. The degree of mental fatigue DMF was calculated, using the formula: DMFi = (TPIi – TPI0 100% / TPIi; i = 1, 2, … , n, where DMFi is the degree of mental fatigue at the i-th measurement; TPIi is average arithmetic duration of threshold interpulse interval at the i-th measurement; TPI0 is average arithmetic duration of threshold interpulse interval before algebraic equations solving; n is the dimension of threshold interpulse interval measurement in the course of algebraic equations solving. After 20 minutes of work, the degree of mental fatigue of one of the testees was 9.5 %, rose to 21 % by the end of the first hour and exceeded 39 % by the end of the second hour. Similar dynamics of mental fatigue was observed in all testees, but its development and the degree of fatigue are individual. To prevent fatigue and ensure high level of efficiency one should set the individual schedule and rest pauses duration during mental activity.

  13. Optimal Inspection Planning for Fatigue Damage of Offshore Structures

    DEFF Research Database (Denmark)

    Madsen, H.O.; Sørensen, John Dalsgaard; Olesen, R.

    1990-01-01

    A formulation of optimal design, inspection and maintenance against damage caused by fatigue crack growth is formulated. A stochastic model for fatigue crack growth based on linear elastic fracture mechanics Is applied. Failure is defined by crack growth beyond a critical crack size. The failure...

  14. Wind Farm Dispatch Control for Demand Tracking and Minimized Fatigue

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Schiøler, Henrik; Leth, John-Josef

    2012-01-01

    This work presents a strategy for dispatching production references to the individual turbines in a wind farm, such that an overall production demand for the farm is obeyed, while the fatigue experienced by the turbines is minimized. Using a turbine fatigue model for simulating the aging across t...

  15. Numerical Studies of Low Cycle Fatigue in Forward Extrusion Dies

    DEFF Research Database (Denmark)

    Pedersen, Thomas Ø

    2000-01-01

    Forward extrusion dies typically fail due to transverse fatigue cracks or wear. Fatigue cracks are initiated in regions where the material is subjected to repeated plastic deformations, e.g. the transition radius in a forward extrusion die, in the present work, a material model capable...

  16. Effects of crack tip plasticity on fatigue crack propagation

    International Nuclear Information System (INIS)

    Park, H.B.

    1996-01-01

    A simple model for fatigue crack propagation has been proposed based on the modified Dugdale model of crack tip plasticity and energy balance approach to stable crack propagation. To verify the proposed model, fatigue tests were performed on the specimens of Type 304 stainless steel and Inconel 718. To measure the effect of crack tip bluntness on the fatigue crack propagation, specimens of different thickness were used. Results show that the theoretical prediction of fatigue crack propagation agreed well with the experimental test results. It is suggested that the prediction of fatigue crack propagation should take account of the different plasticity related to the variation of specimen thickness, stress state and material's tearing modulus in the crack tip region. (orig.)

  17. Computed Tomographic Imaging of Subchondral Fatigue Cracks in the Distal End of the Third Metacarpal Bone in the Thoroughbred Racehorse Can Predict Crack Micromotion in an Ex-Vivo Model

    Science.gov (United States)

    Dubois, Marie-Soleil; Morello, Samantha; Rayment, Kelsey; Markel, Mark D.; Vanderby, Ray; Kalscheur, Vicki L.; Hao, Zhengling; McCabe, Ronald P.; Marquis, Patricia; Muir, Peter

    2014-01-01

    Articular stress fracture arising from the distal end of the third metacarpal bone (MC3) is a common serious injury in Thoroughbred racehorses. Currently, there is no method for predicting fracture risk clinically. We describe an ex-vivo biomechanical model in which we measured subchondral crack micromotion under compressive loading that modeled high speed running. Using this model, we determined the relationship between subchondral crack dimensions measured using computed tomography (CT) and crack micromotion. Thoracic limbs from 40 Thoroughbred racehorses that had sustained a catastrophic injury were studied. Limbs were radiographed and examined using CT. Parasagittal subchondral fatigue crack dimensions were measured on CT images using image analysis software. MC3 bones with fatigue cracks were tested using five cycles of compressive loading at -7,500N (38 condyles, 18 horses). Crack motion was recorded using an extensometer. Mechanical testing was validated using bones with 3 mm and 5 mm deep parasagittal subchondral slots that modeled naturally occurring fatigue cracks. After testing, subchondral crack density was determined histologically. Creation of parasagittal subchondral slots induced significant micromotion during loading (pThoroughbred horses in-vivo to assess risk of condylar fracture. Horses with parasagittal crack arrays that exceed 30 mm2 may have a high risk for development of condylar fracture. PMID:25077477

  18. Illness perceptions and fatigue in systemic vasculitis.

    Science.gov (United States)

    Grayson, Peter C; Amudala, Naomi A; Mcalear, Carol A; Leduc, Renée L; Shereff, Denise; Richesson, Rachel; Fraenkel, Liana; Merkel, Peter A

    2013-11-01

    To compare illness perceptions among patients with different forms of vasculitis, identify risk factors for negative illness perceptions, and determine the association between illness perceptions and fatigue. Participants were recruited from an online vasculitis registry to complete the revised Illness Perception Questionnaire (IPQ-R). The mean scores on each IPQ-R dimension were compared across different types of vasculitis. Cluster analysis and stepwise regression identified predictors of negative illness perception. Fatigue was measured using the general subscale of the Multidimensional Fatigue Inventory (MFI-20). Patient-reported measures of disease activity and IPQ-R dimensions were assessed in relation to MFI-20 scores using linear regression in sequential, additive models with model-fit comparisons. In total, 692 participants with 9 types of vasculitis completed the IPQ-R. For 6 of the 8 IPQ-R dimensions, there were no significant differences in mean scores between the different vasculitides. Scores in the identity and cyclical dimensions were significantly higher in Behçet’s disease compared with other types of vasculitis (13.5 versus 10.7 for identity and 4.0 versus 3.2 for cyclical [P IPQ-R dimensions explained an equivalent proportion of variability in fatigue scores compared with measures of disease activity. Illness perceptions are similar across different types of vasculitis, and younger age is a risk factor for negative illness perceptions. Illness perceptions explain differences in fatigue scores beyond what can be explained by measures of disease activity.

  19. Creep fatigue design of FBR components

    International Nuclear Information System (INIS)

    Bhoje, S.B.; Chellapandi, P.

    1997-01-01

    This paper deals with the characteristic features of Fast Breeder Reactor (FBR) with reference to creep fatigue, current creep fatigue design approach in compliance with RCCMR (1987) design code, material data, effects of weldments and neutron irradiation, material constitutive models employed, structural analysis and further R and D required for achieving maturity in creep fatigue design of FBR components. For the analysis reported in this paper, material constitutive models developed based on ORNIb (Oak Ridge National Laboratory) and Chaboche viscoplastic theories are employed to demonstrate the potential of FBR components for higher plant temperatures and/or longer life. The results are presented for the studies carried out towards life prediction of Prototype Fast Breeder Reactor (PFBR) components. (author). 24 refs, 8 figs, 5 tabs

  20. Periostin deficiency increases bone damage and impairs injury response to fatigue loading in adult mice.

    Directory of Open Access Journals (Sweden)

    Nicolas Bonnet

    Full Text Available Bone damage removal and callus formation in response to fatigue loading are essential to prevent fractures. Periostin (Postn is a matricellular protein that mediates adaptive response of cortical bone to loading. Whether and how periostin influences damage and the injury response to fatigue remains unknown. We investigated the skeletal response of Postn(-/- and Postn(+/+ mice after fatigue stimulus by axial compression of their tibia. In Postn(+/+ mice, cracks number and surface (CsNb, CsS increased 1h after fatigue, with a decrease in strength compared to non-fatigued tibia. At 15 days, CsNb had started to decline, while CtTV and CtBV increased in fatigued vs non-fatigued tibia, reflecting a woven bone response that was present in 75% of the fatigued bones. Cortical porosity and remodelling also prominently increased in the fatigued tibia of Postn(+/+ mice. At 30 days, paralleling a continuous removal of cortical damage, strength of the fatigued tibia was similar to the non-fatigue tibia. In Postn(-/- mice, cracks were detectable even in the absence of fatigue, while the amount of collagen crosslinks and tissue hardness was decreased compared to Postn(+/+. Fatigue significantly increased CsNb and CsS in Postn(-/-, but was not associated with changes in CtTV and CtBV, as only 16% of the fatigued bones formed some woven bone. Cortical porosity and remodelling did not increase either after fatigue in Postn(-/-, and the level of damage remained high even after 30 days. As a result, strength remained compromised in Postn(-/- mice. Contrary to Postn(+/+, which osteocytic lacunae showed a change in the degree of anisotropy (DA after fatigue, Postn(-/- showed no DA change. Hence periostin appears to influence bone materials properties, damage accumulation and repair, including local modeling/remodeling processes in response to fatigue. These observations suggest that the level of periostin expression could influence the propensity to fatigue fractures.

  1. Randomized controlled trial of the Valencia model of waking hypnosis plus CBT for pain, fatigue, and sleep management in patients with cancer and cancer survivors.

    Science.gov (United States)

    Mendoza, M E; Capafons, A; Gralow, J R; Syrjala, K L; Suárez-Rodríguez, J M; Fann, J R; Jensen, M P

    2017-11-01

    This study evaluated the efficacy of an intervention combining the Valencia model of waking hypnosis with cognitive-behavioral therapy (VMWH-CBT) in managing cancer-related pain, fatigue, and sleep problems in individuals with active cancer or who were post-treatment survivors. We hypothesized that four sessions of VMWH-CBT would result in greater improvement in participants' symptoms than four sessions of an education control intervention. Additionally, we examined the effects on several secondary outcome domains that are associated with increases in these symptoms (depression, pain interference, pain catastrophizing, and cancer treatment distress). The study design was a randomized controlled crossover clinical trial comparing the VMWH-CBT intervention with education control. Participants (N = 44) received four sessions of both treatments, in a counterbalanced order (n = 22 per order condition). Participants were 89% female (N = 39) with mean age of 61 years (SD = 12.2). They reported significantly greater improvement after receiving the active treatment relative to the control condition in all the outcome measures. Treatment gains were maintained at 3-month follow-up. This study supports the beneficial effects of the VMWH-CBT intervention relative to a control condition and that treatment gains remain stable. VMWH-CBT-trained clinicians should be accessible for managing symptoms both during and after cancer treatment, though the findings need to be replicated in larger samples of cancer survivors. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Computed tomographic imaging of subchondral fatigue cracks in the distal end of the third metacarpal bone in the thoroughbred racehorse can predict crack micromotion in an ex-vivo model.

    Science.gov (United States)

    Dubois, Marie-Soleil; Morello, Samantha; Rayment, Kelsey; Markel, Mark D; Vanderby, Ray; Kalscheur, Vicki L; Hao, Zhengling; McCabe, Ronald P; Marquis, Patricia; Muir, Peter

    2014-01-01

    Articular stress fracture arising from the distal end of the third metacarpal bone (MC3) is a common serious injury in Thoroughbred racehorses. Currently, there is no method for predicting fracture risk clinically. We describe an ex-vivo biomechanical model in which we measured subchondral crack micromotion under compressive loading that modeled high speed running. Using this model, we determined the relationship between subchondral crack dimensions measured using computed tomography (CT) and crack micromotion. Thoracic limbs from 40 Thoroughbred racehorses that had sustained a catastrophic injury were studied. Limbs were radiographed and examined using CT. Parasagittal subchondral fatigue crack dimensions were measured on CT images using image analysis software. MC3 bones with fatigue cracks were tested using five cycles of compressive loading at -7,500N (38 condyles, 18 horses). Crack motion was recorded using an extensometer. Mechanical testing was validated using bones with 3 mm and 5 mm deep parasagittal subchondral slots that modeled naturally occurring fatigue cracks. After testing, subchondral crack density was determined histologically. Creation of parasagittal subchondral slots induced significant micromotion during loading (pBones with parasagittal crack area measurements above 30 mm2 may have a high risk of crack propagation and condylar fracture in vivo because of crack micromotion. In conclusion, our results suggest that CT could be used to quantify subchondral fatigue crack dimensions in racing Thoroughbred horses in-vivo to assess risk of condylar fracture. Horses with parasagittal crack arrays that exceed 30 mm2 may have a high risk for development of condylar fracture.

  3. Biologic fatigue in psoriasis.

    Science.gov (United States)

    Levin, Ethan C; Gupta, Rishu; Brown, Gabrielle; Malakouti, Mona; Koo, John

    2014-02-01

    Over the past 15 years, biologic medications have greatly advanced psoriasis therapy. However, these medications may lose their efficacy after long-term use, a concept known as biologic fatigue. We sought to review the available data on biologic fatigue in psoriasis and identify strategies to help clinicians optimally manage patients on biologic medications in order to minimize biologic fatigue. We reviewed phase III clinical trials for the biologic medications used to treat psoriasis and performed a PubMed search for the literature that assessed the loss of response to biologic therapy. In phase III clinical trials of biologic therapies for the treatment of psoriasis, 20-32% of patients lost their PASI-75 response during 0.8-3.9 years of follow-up. A study using infliximab reported the highest percentage of patients who lost their response (32%) over the shortest time-period (0.8 years). Although not consistently reported across all studies, the presence of antidrug antibodies was associated with the loss of response to treatment with infliximab and adalimumab. Biologic fatigue may be most frequent in those patients using infliximab. Further studies are needed to identify risk factors associated with biologic fatigue and to develop meaningful antidrug antibody assays.

  4. Thermography detection on the fatigue damage

    Science.gov (United States)

    Yang, Bing

    It has always been a great temptation in finding new methods to in-situ "watch" the material fatigue-damage processes so that in-time reparations will be possible, and failures or losses can be minimized to the maximum extent. Realizing that temperature patterns may serve as fingerprints for stress-strain behaviors of materials, a state-of-art infrared (IR) thermography camera has been used to "watch" the temperature evolutions of both crystalline and amorphous materials "cycle by cycle" during fatigue experiments in the current research. The two-dimensional (2D) thermography technique records the surface-temperature evolutions of materials. Since all plastic deformations are related to heat dissipations, thermography provides an innovative method to in-situ monitor the heat-evolution processes, including plastic-deformation, mechanical-damage, and phase-transformation characteristics. With the understanding of the temperature evolutions during fatigue, thermography could provide the direct information and evidence of the stress-strain distribution, crack initiation and propagation, shear-band growth, and plastic-zone evolution, which will open up wide applications in studying the structural integrity of engineering components in service. In the current research, theoretical models combining thermodynamics and heat-conduction theory have been developed. Key issues in fatigue, such as in-situ stress-strain states, cyclic softening and hardening observations, and fatigue-life predictions, have been resolved by simply monitoring the specimen-temperature variation during fatigue. Furthermore, in-situ visulizations as well as qualitative and quantitative analyses of fatigue-damage processes, such as Luders-band evolutions, crack propagation, plastic zones, and final fracture, have been performed by thermography. As a method requiring no special sample preparation or surface contact by sensors, thermography provides an innovative and convenient method to in-situ monitor

  5. A Rasch Analysis of Assessments of Morning and Evening Fatigue in Oncology Patients Using the Lee Fatigue Scale.

    Science.gov (United States)

    Lerdal, Anners; Kottorp, Anders; Gay, Caryl; Aouizerat, Bradley E; Lee, Kathryn A; Miaskowski, Christine

    2016-06-01

    To accurately investigate diurnal variations in fatigue, a measure needs to be psychometrically sound and demonstrate stable item function in relationship to time of day. Rasch analysis is a modern psychometric approach that can be used to evaluate these characteristics. To evaluate, using Rasch analysis, the psychometric properties of the Lee Fatigue Scale (LFS) in a sample of oncology patients. The sample comprised 587 patients (mean age 57.3 ± 11.9 years, 80% women) undergoing chemotherapy for breast, gastrointestinal, gynecological, or lung cancer. Patients completed the 13-item LFS within 30 minutes of awakening (i.e., morning fatigue) and before going to bed (i.e., evening fatigue). Rasch analysis was used to assess validity and reliability. In initial analyses of differential item function, eight of the 13 items functioned differently depending on whether the LFS was completed in the morning or in the evening. Subsequent analyses were conducted separately for the morning and evening fatigue assessments. Nine of the morning fatigue items and 10 of the evening fatigue items demonstrated acceptable goodness-of-fit to the Rasch model. Principal components analyses indicated that both morning and evening assessments demonstrated unidimensionality. Person-separation indices indicated that both morning and evening fatigue scales were able to distinguish four distinct strata of fatigue severity. Excluding four items from the morning fatigue scale and three items from the evening fatigue scale improved the psychometric properties of the LFS for assessing diurnal variations in fatigue severity in oncology patients. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  6. Fatigue Equivalent Stress State Approach Validation in Non-conservative Criteria: a Comparative Study

    Directory of Open Access Journals (Sweden)

    Kévin Martial Tsapi Tchoupou

    Full Text Available Abstract This paper is concerned with the fatigue prediction models for estimating the multiaxial fatigue limit. An equivalent loading approach with zero out-of-phase angles intended for fatigue limit evaluation under multiaxial loading is used. Based on experimental data found in literatures, the equivalent stress is validated in Crossland and Sines criteria and predictions compared to the predictions of existing multiaxial fatigue; results over 87 experimental items show that the equivalent stress approach is very efficient.

  7. Formulation and Application of a Stochastic Fatigue Damage Accumulation Model for the Response of Buckled Composite Panels

    National Research Council Canada - National Science Library

    Chen, P

    2000-01-01

    ...., excursions from one buckled state to the other. First, a large displacements small strains structural dynamic formulation is developed that accounts for the given temperature effects and relies on a higher-order shear modeling...

  8. Fatigue design 1998

    Energy Technology Data Exchange (ETDEWEB)

    Marquis, G.; Solin, J. [eds.] [VTT Manufacturing Technology, Espoo (Finland)

    1998-12-31

    These preprints contain the presentations to be delivered at the Fatigue Design 1998 symposium held on May 26-29, 1998 in Espoo. Fatigue Design 1998 is the tenth in a series of VTT symposia addressing the challenge of fatigue of materials, components and structures. Previous international events were in 1992 and 1995. The key theme of the current meeting is `RELIABILITY`. The two volumes (VTT symposium 181-182) represent 56 contributions by authors representing 26 countries. Emphasis has been given to application oriented research topics that report new technologies, new uses of existing methods and case studies. The objective of the symposium is to bring together researchers and engineers to share experiences and new innovations in designing reliable components to resist alternating loads. (orig.)

  9. Determinants of seafarers’ fatigue

    DEFF Research Database (Denmark)

    Bøggild Dohrmann, Solveig; Leppin, Anja

    2017-01-01

    of the present article was therefore to systematically detect, analyze and assess the quality of this evidence. Methods: Systematic searches in ten databases were performed. Searches considered articles published in scholarly journals from 1980 to April 15, 2016. Nineteen out of 98 eligible studies were included......Purpose: Fatigue jeopardizes seafarer’s health and safety. Thus, knowledge on determinants of fatigue is of great importance to facilitate its prevention. However, a systematic analysis and quality assessment of all empirical evidence specifically for fatigue are still lacking. The aim......: Realistic countermeasures ought to be established, e.g., in terms of shared or split night shifts. As internal as well as external validity of many study findings was limited, the range of factors investigated was insufficient and few studies investigated more complex interactions between different factors...

  10. Fatigue in Cambodia veterans.

    Science.gov (United States)

    de Vries, M; Soetekouw, P M; Van Der Meer, J W; Bleijenberg, G

    2000-05-01

    In 1992 and 1993, Dutch military personnel were deployed in the peace operation UNTAC in Cambodia. Since returning, Cambodia veterans have reported health complaints which they perceive to be related to their service. Their symptoms strikingly resemble health problems reported by Gulf War veterans. Four years post-return, a cross-sectional survey on health symptoms in Cambodia veterans was initiated. Questionnaires were sent to all Cambodia veterans and four comparison groups. Forgetfulness, difficulty concentrating and fatigue were the symptoms most commonly endorsed. An operational case definition was constructed using a validated fatigue severity questionnaire. Cases were not uniquely found in Cambodia veterans (17%). In Rwanda and Bosnia veterans, respectively, 28% and 11% also met our case definition. Fatigue severity level was predicted by pre-mission, during-mission and post-mission variables, of which retrospective recollection of side-effects of vaccines and causal attributions also have been shown to be relevant in studies on Gulf-related illness.

  11. Modafinil May Alleviate Poststroke Fatigue

    DEFF Research Database (Denmark)

    Poulsen, Mai Bang; Damgaard, Bodil; Zerahn, Bo

    2015-01-01

    was randomized, double-blinded, and placebo-controlled. Patients were treated with 400-mg modafinil or placebo for 90 days. Assessments were done at inclusion, 30, 90, and 180 days. The primary end point was fatigue at 90 days measured by the Multidimensional Fatigue Inventory-20 general fatigue domain......BACKGROUND AND PURPOSE: Poststroke fatigue is common and reduces quality of life. Current evidence for intervention is limited, and this is the first placebo-controlled trial to investigate treatment of poststroke fatigue with the wakefulness promoting drug modafinil. METHODS: The trial....... Secondary end points included the Fatigue Severity Scale, the Montreal Cognitive Assessment, the modified Rankin Scale and the Stroke-specific quality of Life questionnaire. Adult patients with a recent stroke achieving a score of ≥12 on the Multidimensional Fatigue Inventory-20 general fatigue domain were...

  12. Fatigue Predictions of Various Joints of Magnesium Alloys

    Science.gov (United States)

    Kang, H.; Kari, K.; Getti, A.; Khosrovaneh, A. K.; Su, X.; Zhang, L.; Lee, Y.-L.

    In this project, a front shock tower of a passenger vehicle is developed with various magnesium alloys and joining methods. To predict the fatigue life of the joints in the structure, fatigue tests of various joint specimens including friction stir linear welding, self-piecing rivet joint with and without adhesive, and friction stir spot welding were conducted. The magnesium alloys used for the specimens are AM60 (cast), AM30 (extrusion), and AZ31 (sheet). Various finite element modeling techniques were attempted for simulating the various joints. Fatigue life prediction method for the joints was performed using the stress-life curve approach. The finite element modeling technique and the fatigue prediction method will be verified with fatigue tests of the actual front shock tower structure subjected to variable amplitude loadings in near future.

  13. Fatigue and fatigue crack growth processes in hard tissues: The importance of age and surface integrity

    Science.gov (United States)

    Majd, Hessam

    With the progressive increase in partially and fully dentate seniors, fracture has become an increasingly common form of restored tooth failure. Dentin undergoes progressive changes in microstructure with patient age, and studies are now suggesting that there is a reduction in fatigue strength and fatigue crack growth resistance of this tissue. This dissertation explores aging of dentin, the influence of flaws that are introduced during restorative processes on the fatigue properties of dentin, and proposes models for characterizing the damage initiation and growth process during fatigue of dentin. Results from this investigation show that the fatigue crack growth properties (Paris Law parameters (C, m) andDeltaKth) of human dentin undergo the most significant changes at a patient age of 42 years. Based on the fatigue crack growth responses, three age groups were established including young (age≤33), aged (34≤age ≤49) and old (50≤age) patients for further analysis. There were significant differences in the initiation and growth behavior between the tissues of patients from the three age groups. With regards to the influence of restorative processes, there was no influence on the quasi-static responses of dentin. However, the endurance limit of dentin treated with the dental burs (28 MPa) and abrasive air jet (35 MPa) were approximately 36% and 20% lower than that of the control (44 MPa), respectively. Both cutting processes caused a significant reduction (p≤0.0001) in fatigue strength. An accumulative damage model was developed to characterize fatigue of the control and bur treated dentin as well as provide a model for fatigue life prediction. The damage models were derived as a function of number of loading cycles (N), and ratio of applied stress to ultimate strength (r). The developed models provide estimations for the initial state of damage, the state of damage during the life, as well as the damage accumulation rate for cyclic loading of dentin

  14. Do cognitive and physical fatigue tasks enhance pain, cognitive fatigue, and physical fatigue in people with fibromyalgia?

    Science.gov (United States)

    Dailey, Dana L; Keffala, Valerie J; Sluka, Kathleen A

    2015-02-01

    Fibromyalgia is a condition characterized by chronic widespread muscle pain and fatigue. The primary objective of this study was to determine if pain, perceived cognitive fatigue, and perceived physical fatigue were enhanced in participants with fibromyalgia compared to healthy controls during a cognitive fatigue task, a physical fatigue task, and a dual fatigue task. In total, 24 people with fibromyalgia and 33 healthy controls completed pain, fatigue, and function measures. A cognitive fatigue task (Controlled Oral Word Association Test) and physical fatigue task (Valpar peg test) were done individually and combined for a dual fatigue task. Resting pain, perceived cognitive fatigue, and perceived physical fatigue were assessed during each task using visual analog scales. Function was assessed with shoulder range of motion and grip. People with fibromyalgia had significantly higher increases in pain, cognitive fatigue, and physical fatigue when compared to healthy controls after completion of a cognitive fatigue task, a physical fatigue task, or a dual fatigue task (P fibromyalgia performed equivalently on measures of physical performance and cognitive performance on the physical and cognitive fatigue tasks, respectively. These data show that people with fibromyalgia show larger increases in pain, perceived cognitive fatigue, and perceived physical fatigue to both cognitive and physical fatigue tasks compared to healthy controls. The increases in pain and fatigue during cognitive and physical fatigue tasks could influence subject participation in daily activities and rehabilitation. Copyright © 2015 by the American College of Rheumatology.

  15. Fatigue 󈨛. Volume 1,

    Science.gov (United States)

    1987-06-01

    Growth of Small Fatigue 261 Cracks in Copper at Room and Cryogenic Temperatures - I.B. KWON , J. WEERTMAN AND M.E. FINE -ehaviour of Short Cracks in a...Cycli Strai Amplitudes. 0 4 . /2 < 0.3 [maximum stress < 60% oy ] Upon cycling, short cracks initiated in the soft (115 HV) precipitate-free...THE INITIATION AND GROWTH OF SMALL FATIGUE CRACKS IN COPPER AT ROOM AND CRYOGENIC TEMPERATURES I. B. Kwon , J. Weertman and M. E. Fine * The

  16. Repeatability and Reproducibility of Compression Strength Measurements Conducted According to ASTM E9

    Science.gov (United States)

    Luecke, William E.; Ma, Li; Graham, Stephen M.; Adler, Matthew A.

    2010-01-01

    Ten commercial laboratories participated in an interlaboratory study to establish the repeatability and reproducibility of compression strength tests conducted according to ASTM International Standard Test Method E9. The test employed a cylindrical aluminum AA2024-T351 test specimen. Participants measured elastic modulus and 0.2 % offset yield strength, YS(0.2 % offset), using an extensometer attached to the specimen. The repeatability and reproducibility of the yield strength measurement, expressed as coefficient of variations were cv(sub r)= 0.011 and cv(sub R)= 0.020 The reproducibility of the test across the laboratories was among the best that has been reported for uniaxial tests. The reported data indicated that using diametrically opposed extensometers, instead of a single extensometer doubled the precision of the test method. Laboratories that did not lubricate the ends of the specimen measured yield stresses and elastic moduli that were smaller than those measured in laboratories that lubricated the specimen ends. A finite element analysis of the test specimen deformation for frictionless and perfect friction could not explain the discrepancy, however. The modulus measured from stress-strain data were reanalyzed using a technique that finds the optimal fit range, and applies several quality checks to the data. The error in modulus measurements from stress-strain curves generally increased as the fit range decreased to less than 40 % of the stress range.

  17. OPTIMIZACION DE LAS PROPIEDADES DE TRANSPORTE IONICO DEL CONCRETO Y SIMULACION DEL ENSAYO ASTM C1202

    Directory of Open Access Journals (Sweden)

    JUAN LIZARAZO MARRIAGA

    2009-01-01

    Full Text Available En este artículo se presentan los resultados de la simulación computacional del flujo de los principales iones presentes (Cl-, OH-, Na+, y K+ en un ensayo ASTM C1202: "Indicación eléctrica de la resistencia del concreto a la penetración de Iones cloruro". Para la modelación se utilizó un esquema de diferencias finitas definido mediante la ecuación de Nernst - Plank con un campo eléctrico variable, la cual describe los movimientos iónicos en un material poroso saturado. Para lograr esto, los resultados de un nuevo ensayo electroquímico diseñado para medir el potencial de membrana, en compañía de la corriente eléctrica, fueron optimizados para obtener los coeficientes intrínsicos de difusión, la composición inicial de la solución de poros, la capacidad de fijación de cloruros y la porosidad de la mezcla de concreto.

  18. Simplification and transformation of ASTM F1292 measurement procedure for fall accident injury criteria.

    Science.gov (United States)

    Kato, Maki; Shimodaira, Yoshie; Sato, Takeshi; Iida, Hiromi

    2014-01-01

    Protecting children from injuries caused by fall accidents from playground equipment is important. Therefore, measures toward minimizing the risk of fall accident injuries are required. The risk of injury can be evaluated using ASTM F1292. In this test, G-max and the HIC are used to estimate the risk of injury. However, the measurement procedure is too complicated for application to a large number of installed equipment. F1292 requires simplified by reducing the number of phases, even with a small risk of loss in accuracy. With this in mind, this study proposes a shortened measurement procedure and a transformation equation to estimate the risk as same as F1292. As the result of experiments, it was revealed that G-max and the HIC values for both procedures linearly increase with drop height. The differences in outcomes between the regression equations of the standardized procedure and those of the shortened procedure can be used as a correction value. They can be added to the value measured by the shortened procedure. This suggests that the combination of the shortened procedure and transformation equation would be equivalent to F1292, with the advantage of being more easily and efficiently applied to the evaluation of installed playground equipment.

  19. Characterization of ASTM A335 P92 steel in continuous cooling cycles

    International Nuclear Information System (INIS)

    Xaubet, M. N.; Danón, C. A.; Ramos, C. P.

    2013-01-01

    The operating conditions demanded by Generation IV reactors include high temperatures, higher radiation doses and highly corrosive environments. Among the structural materials proposed both for in-core and out-of-core applications, elevated-temperature P91/P92 ferritic/martensitic steels have been considered. This work studies the transformation behavior and microstructural evolution of ASTM A335 P92 steel in continuous cooling cycles (CCT). The material was austenized at 1050 ºC and afterwards cooled down at controlled rates (300, 50 and 15 ºC/h). The determination and characterization of the phases present in the samples was performed by optical microscopy, field emission scanning electron microscopy, Mössbauer spectroscopy and X-ray diffraction. Samples whose cooling rates were on the limits of the studied range (300 and 15 ºC/h) presented completely martensitic and completely ferritic structures, respectively. The sample cooled down at intermediate rate exhibited, though, a mixed structure of martensite and ferrite. Second-phase precipitation has also been observed in all the samples. (author)

  20. Silicon Damage Response Function Derivation and Verification: Assessment of Impact on ASTM Standard E722

    Energy Technology Data Exchange (ETDEWEB)

    Depriest, Kendall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-01

    Unsuccessful attempts by members of the radiation effects community to independently derive the Norgett-Robinson-Torrens (NRT) damage energy factors for silicon in ASTM standard E722-14 led to an investigation of the software coding and data that produced those damage energy factors. The ad hoc collaboration to discover the reason for lack of agreement revealed a coding error and resulted in a report documenting the methodology to produce the response function for the standard. The recommended changes in the NRT damage energy factors for silicon are shown to have significant impact for a narrow energy region of the 1-MeV(Si) equivalent fluence response function. However, when evaluating integral metrics over all neutrons energies in various spectra important to the SNL electronics testing community, the change in the response results in a small decrease in the total 1- MeV(Si) equivalent fluence of ~0.6% compared to the E722-14 response. Response functions based on the newly recommended NRT damage energy factors have been produced and are available for users of both the NuGET and MCNP codes.

  1. Tekken testing to determine the preheating temperature on ASTM A514 GR B steel

    International Nuclear Information System (INIS)

    Asta, Eduardo; Zalazar, Monica; Quesada, Hector

    2003-01-01

    The cold cracking test methods are used to determine the preheating temperature in order to avoid cracking in steel welding.In this work Tekken tests on high strength quenching and tempering (ASTM A514 GrB) structural steel with a thickness of 25 mm have been made.The welds were done using a FCAW process with gas shielding and basic low hydrogen cored wire E 110T5-K4.The welding parameters and joint design applied in this work are similar to the ones used on site production.The base metal, HAZ and weld metal microstructure have been evaluated by optical and SEM microscopy.Thermal cycles records of each welding have been made to relate preheat temperature with the cooling time on the range of 800-500 degC (t8/5) or 800-100degC (t8/1) and the evidence of crack or no crack condition.Finally, a preheat temperature of 150degC and the cooling time larger than 17 s improve a welding integrity without cracks

  2. Tekken tests in a steel 'ASTM A 514 GR B' to determine the preheating temperature

    International Nuclear Information System (INIS)

    Quesada, Hector Juan; Zalazar, Monica; Asta, Eduardo Pablo

    2004-01-01

    Cold fissure tests are used to determine the proper preheating temperature in order to prevent fissures during the steel welding process. Tekken tests were carried out on a quenched and tempered high resistance 25.4 mm thick steel (ASTM A514 Gr.B) used in structural applications. The welding was carried out using a FCAW semiautomatic process with gas protection and low hydrogen tubular electrode E110T5-K4. Similar parameters and splicing design were later applied in production. The microstructures of the base material and the welding were determined by optic and electron microscopy. The thermal cycles of the welding were recorded in order to relate the preheating temperature with the cooling time from 800 o C - 500 o C (t 8/5 ) and from 800 o C - 100 o C (tg/1) and the presence or not of fissures. Preheating at 150 o C and t 8/5 greater than 17 s was found to guarantee fissure free welding (CW)

  3. Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure

    International Nuclear Information System (INIS)

    Martins, Marcelo; Casteletti, Luiz Carlos

    2005-01-01

    Duplex and super duplex stainless steels are ferrous alloys with up to 26% chromium, 8% nickel, 5% molybdenum and 0.3% nitrogen, which are largely used in applications in media containing ions from the halogen family, mainly the chloride ion (Cl - ). The emergence of this material aimed at substituting Copper-Nickel alloys (Cupro-Nickel) that despite presenting good corrosion resistance, has mechanical properties quite inferior to steel properties. The metallurgy of duplex and super duplex stainless steel is complex due to high sensitiveness to sigma phase precipitation that becomes apparent, due to the temperatures they are exposed on cooling from solidification as well as from heat treatment processes. The objective of this study was to verify the influence of heat treating temperatures on the microstructure and hardness of ASTM A890/A890M Gr 6A super duplex stainless steel type. Microstructure control is of extreme importance for castings, as the chemical composition and cooling during solidification inevitably provide conditions for precipitation of sigma phase. Higher hardness in these materials is directly associated to high sigma phase concentration in the microstructure, precipitated in the ferrite/austenite interface. While heat treatment temperature during solution treatment increases, the sigma phase content in the microstructure decreases and consequently, the material hardness diminishes. When the sigma phase was completely dissolved by the heat treatment, the material hardness was influenced only due to ferrite and austenite contents in the microstructure

  4. The optimization of mechanical properties for nuclear transportation casks in ASTM A350 LF5

    International Nuclear Information System (INIS)

    Price, S.; Honeyman, G.A.

    1997-01-01

    Transport flasks are required for the movement of spent nuclear fuel. Due to their nature of operation, it is necessary that these flasks are produced from forged steels with exceptional toughness properties. The material specification generally cited for flask manufacture is ASTM A350 Grade LF5 Class 1, a carbon-manganese-nickel alloy. The range of chemical analysis permitted by this specification is very broad and it is the responsibility of the material manufacturer to select a composition within this range which will satisfy all the mechanical properties requirements, and to ensure safe and reliable performance. Forgemasters Steel and Engineering Limited have experience in the manufacture of large high integrity fuel element flask forgings which extend over several decades. This experience and involvement in international standards in US, Europe and Japan has facilitated the development of an optimized analysis with a low carbon content, nickel levels towards the top end of the allowed range, a deliberate aluminum addition to control grain size and strictly controlled residual element levels. The resultant steel has excellent low temperature impact properties which greatly exceed the requirements of the specification. This analysis is now being adopted for the manufacture of all current transport flasks

  5. Differences in morning and evening fatigue in oncology patients and their family caregivers.

    Science.gov (United States)

    Dhruva, Anand; Aouizerat, Bradley E; Cooper, Bruce; Paul, Steven M; Dodd, Marylin; West, Claudia; Wara, William; Lee, Kathryn; Dunn, Laura B; Langford, Dale J; Merriman, John D; Baggott, Christina; Cataldo, Janine; Ritchie, Christine; Kober, Kord; Leutwyler, Heather; Miaskowski, Christine

    2013-12-01

    To identify distinct latent classes of individuals based on ratings of morning and evening fatigue; evaluate for differences in phenotypic characteristics, as well as symptom and quality of life scores, among these latent classes; and evaluate for an overlap in morning and evening fatigue class membership. In a sample of 167 oncology outpatients and 85 of their FCs, growth mixture modeling was used to identify distinct latent classes based on ratings of morning and evening fatigue obtained before, during, and after radiation therapy. Analyses of variance and Chi Square analyses were used to evaluate for differences among the morning and evening fatigue latent classes. Three distinct latent classes for morning fatigue were identified. Participants in the High Morning Fatigue class (47%) were younger and had lower functional status. Three distinct latent classes for evening fatigue were identified. Participants in the High Evening Fatigue class (61%) were younger, more likely to be female, more likely to have children at home, and more likely to be a FC. Only 10.3% of participants were classified in both the Very Low Morning and Low Evening Fatigue classes and 41.3% were classified in both the High Morning and High Evening Fatigue classes. Different characteristics were associated with morning and evening fatigue, which suggests that morning and evening fatigue may be distinct but related symptoms. Additional research is needed to elucidate the mechanisms that may underlie diurnal variability in fatigue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Fatigue after stroke: a systematic review of associations with impaired physical fitness.

    Science.gov (United States)

    Duncan, Fiona; Kutlubaev, Mansur A; Dennis, Martin S; Greig, Carolyn; Mead, Gillian E

    2012-02-01

    Fatigue is a common and distressing post stroke symptom. One important hypothesis is that fatigue after stroke may be triggered by physical deconditioning, which sets up a vicious, self-perpetuating cycle of fatigue, avoidance of physical activity, further deconditioning, and more fatigue. If an association between physical activity and fatigue after stroke could be established, this would provide a rationale for developing a physical activity-based treatment. Systematically review all observational studies, which have measured both fatigue poststroke and one or more measures of physical fitness and/or physical activity at the same time-point and reported the association between fatigue and fitness variables. Publications were identified by systematically searching databases MEDLINE, EMBASE, CINAHL, PsychInfo, and Sportdiscus using keywords 'fatigue', 'stroke', 'fitness', or 'activity' and their associated terms or synonyms. Publications that provided data on associations between fatigue in stroke patients and levels of physical activity, cardiorespiratory fitness and/or muscle strength and mass were included. Twenty-nine potential studies were retrieved after scrutinizing the titles and abstracts, of which only three fulfilled our inclusion criteria. No association between fatigue and any measures of physical activity or fitness were found. One study did find, through structural equation modeling techniques that fatigue indirectly influences exercise through self-efficacy expectations. There is very limited evidence regarding associations between exercise, fitness, and fatigue after stroke. It still remains highly plausible that exercise can have a positive influence on fatigue. Future research should be longitudinal in design.

  7. Fatigue Strength of Weathering Steel

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Klusák, Jan

    2012-01-01

    Roč. 18, č. 1 (2012), s. 18-22 ISSN 1392-1320 Grant - others:GA MPO(CZ) FT/TA5/076 Institutional support: RVO:68081723 Keywords : fatigue of weathering steel * corrosion pits * fatigue notch factor Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.522, year: 2012

  8. Fatigue data compilation and evaluation of fatigue on design

    International Nuclear Information System (INIS)

    Nyilas, A.

    1985-05-01

    The aim of this report is a review of the available fatigue data of various materials necessary for the design of large superconducting magnets for fusion. One of the primary objectives of this work is to present a broad outline of the low temperature fatigue data of relevant materials within the scope of available data. Besides the classical fatigue data of materials the fatigue crack propagation measurements are outlined widely. The existing recommendations for the design of cryogenic structures are described. A brief introduction of fracture mechanics as well as a historical background of the development of our present day understanding of fatigue has been done. (orig.) [de

  9. Method of improving fatigue life of cast nickel based superalloys and composition

    Science.gov (United States)

    Denzine, Allen F.; Kolakowski, Thomas A.; Wallace, John F.

    1978-03-14

    The invention consists of a method of producing a fine equiaxed grain structure (ASTM 2-4) in cast nickel-base superalloys which increases low cycle fatigue lives without detrimental effects on stress rupture properties to temperatures as high as 1800.degree. F. These superalloys are variations of the basic nickel-chromium matrix, hardened by gamma prime [Ni.sub.3 (Al, Ti)] but with optional additions of cobalt, tungsten, molybdenum, vanadium, columbium, tantalum, boron, zirconium, carbon and hafnium. The invention grain refines these alloys to ASTM 2 to 4 increasing low cycle fatigue life by a factor of 2 to 5 (i.e. life of 700 hours would be increased to 1400 to 3500 hours for a given stress) as a result of the addition of 0.01% to 0.2% of a member of the group consisting of boron, zirconium and mixtures thereof to aid heterogeneous nucleation. The alloy is vacuum melted and heated to 250.degree.-400.degree. F. above the melting temperature, cooled to partial solidification, thus resulting in said heterogeneous nucleation and fine grains, then reheated and cast at about 50.degree.-100.degree. F. of superheat. Additions of 0.1% boron and 0.1% zirconium (optional) are the preferred nucleating agents.

  10. System for nucleation and propagation of fatigue cracks on SE(B) specimens

    International Nuclear Information System (INIS)

    Rocha, Nirlando Antonio; Gomes Junyor, Jose Onesimo; Reis, Emil; Vilela, Jefferson Jose; Moura, Cassio Melo

    2015-01-01

    The degree of safety that a structural component has against catastrophic fracture in service can be obtained from fracture mechanics parameters. The master curve could be used for integrity evaluation in pressure vessel of nuclear power plant. The pre-crack specimens are used in this evaluation. The tests based on ASTM E 8M and ASTM E 647 standards to determination of material properties related to fracture mechanics, most often performed in a servo-hydraulic drive equipment, are time consuming and costly. This paper presents the development of a system for nucleation and propagation of fatigue cracks on SE(B) specimens. The operating principle consists of a cyclic loading, concentrated in the center of the specimen, transmitted and controlled by an eccentric mechanism. The main contribution of this work is the low-cost technology in the production of fatigue pre-crack, and the possibility of performing the nucleation and propagation of the pre-crack required for obtaining the J IC and CTOD parameters. The experimental results satisfied expectations with respect to the plastic deformation in the crack tip and met the requirements of the standards. (author)

  11. System for nucleation and propagation of fatigue cracks on SE(B) specimens

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Nirlando Antonio; Gomes Junyor, Jose Onesimo; Reis, Emil; Vilela, Jefferson Jose, E-mail: nar@cdtn.br, E-mail: ze_onezo@hotmail.com, E-mail: emilr@cdtn.br, E-mail: jjv@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Moura, Cassio Melo, E-mail: cassio.moura@gerdau.com.br [Gerdau S.A., Ouro Branco, MG (Brazil)

    2015-07-01

    The degree of safety that a structural component has against catastrophic fracture in service can be obtained from fracture mechanics parameters. The master curve could be used for integrity evaluation in pressure vessel of nuclear power plant. The pre-crack specimens are used in this evaluation. The tests based on ASTM E 8M and ASTM E 647 standards to determination of material properties related to fracture mechanics, most often performed in a servo-hydraulic drive equipment, are time consuming and costly. This paper presents the development of a system for nucleation and propagation of fatigue cracks on SE(B) specimens. The operating principle consists of a cyclic loading, concentrated in the center of the specimen, transmitted and controlled by an eccentric mechanism. The main contribution of this work is the low-cost technology in the production of fatigue pre-crack, and the possibility of performing the nucleation and propagation of the pre-crack required for obtaining the J{sub IC} and CTOD parameters. The experimental results satisfied expectations with respect to the plastic deformation in the crack tip and met the requirements of the standards. (author)

  12. Nondestructive detection of microstructural fatigue damage

    International Nuclear Information System (INIS)

    Willems, H.; Persch, H.

    1990-02-01

    Ultrasonic as well as magnetic investigations have been performed on a pressure vessel steel (A533, B class 1) in order to study the influence of fatigue loading on both elastic and magnetic material properties. Using laboratory specimens under two different loading conditions (tension-tension loading, tension-compression loading), material characteristics like ultrasonic velocity, ultrasonic absorption, coercivity, incremental permeability were measured and evaluated as a function of consumed lifetime. Only in case of macroscopic plastic deformation, significant changes of the measuring quantities were observed. Otherwise the effects are so small that the nondestructive detection of microstructural changes due to fatigue loading seems not to be feasible under practical conditions (for example at pressure vessels) with the techniques used. Besides a zero measurement, additional measurements on a 1:5 model vessel at JRC Ispra could not be carried out, because the planned fatigue tests were not performed by JRC Ispra during the research period

  13. Microstructural and Material Quality Effects on Rolling Contact Fatigue of Highly Elastic Intermetallic NiTi Ball Bearings

    Science.gov (United States)

    Dellacorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.

    2017-01-01

    Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.

  14. Effect of vibration loading on the fatigue life of part-through notched pipe

    International Nuclear Information System (INIS)

    Mittal, Rahul; Singh, P.K.; Pukazhendi, D.M.; Bhasin, V.; Vaze, K.K.; Ghosh, A.K.

    2011-01-01

    A systematic experimental and analytical study has been carried out to investigate the effect of vibration loading on the fatigue life of the piping components. Three Point bend (TPB) specimens machined from the actual pipe have been used for the evaluation of Paris constants by carrying out the experiments under vibration + cyclic and cyclic loading as per the ASTM Standard E647. These constants have been used for the prediction of the fatigue life of the pipe having part-through notch of a/t = 0.25 and aspect ratio (2c/a) of 10. Predicted results have shown the reduction in fatigue life of the notched pipe subjected to vibration + cyclic loading by 50% compared to that of cyclic loading. Predicted results have been validated by carrying out the full-scale pipe (with part-through notch) tests. Notched pipes were subjected to loading conditions such that the initial stress-intensity factor remains same as that of TPB specimen. Experimental results of the full-scale pipe tests under vibration + cyclic loading has shown the reduction in fatigue life by 70% compared to that of cyclic loading. Fractographic examination of the fracture surface of the tested specimens subjected to vibration + cyclic loading have shown higher presence of brittle phases such as martensite (in the form of isolated planar facets) and secondary micro cracks. This could be the reason for the reduction of fatigue life in pipe subjected to vibration + cyclic loading. - Highlights: → Vibration loading affects fatigue crack growth rate. → Crack initiation life depends on crack tip radius. → Crack initiation life depends on the characteristic distance. → Characteristic distance depends on the loading conditions. → Vibration + cyclic load gives lower fatigue life.

  15. Fatigue crack growth in mixed mode I+III+III non proportional loading conditions in a 316 stainless steel, experimental analysis and modelization of the effects of crack tip plasticity

    International Nuclear Information System (INIS)

    Fremy, F.

    2012-01-01

    This thesis deals with fatigue crack growth in non-proportional variable amplitude mixed mode I + II + III loading conditions and analyses the effects of internal stresses stemming from the confinement of the plastic zone in small scale yielding conditions. The tests showed that there are antagonistic long-distance and short-distance effects of the loading history on fatigue crack growth. The shape of loading path, and not only the maximum and minimum values in this path, is crucial and, by comparison, the effects of contact and friction are of lesser importance. Internal stresses play a major role on the fatigue crack growth rate and on the crack path. An approach was developed to analyze the elastic-plastic behavior of a representative section of the crack front using the FEA. A model reduction technic is used to extract the relevant information from the FE results. To do so, the velocity field is partitioned into mode I, II, III elastic and plastic components, each component being characterized by an intensity factor and a fixed spatial distribution. The calculations were used to select seven loading paths in I + II and I + II + III mixed mode conditions, which all have the same amplitudes for each mode, the same maximum, minimum and average values. These paths are supposed to be equivalent in the sense of common failure criteria, but differ significantly when the elastic-plastic behavior of the material is accounted for. The results of finite element simulations and of simulations using a simplified model proposed in this thesis are both in agreement with experimental results. The approach was also used to discuss the role of mode III loading steps. Since the material behavior is nonlinear, the nominal loading direction does not coincide with the plastic flow direction. Adding a mode III loading step in a mode I+II fatigue cycle, may, in some cases, significantly modify the behaviour of the crack (crack growth rate, crack path and plastic flow). (author)

  16. Fatigue and thermal fatigue of Pb-Sn solder joints

    International Nuclear Information System (INIS)

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55 0 C and 125 0 C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb

  17. Model for fracture mechanics based prediction of the fatigue strength of engineering alloys containing microscopical initial defects

    Directory of Open Access Journals (Sweden)

    Zerbst Uwe

    2014-06-01

    Full Text Available Recently two of the authors of the present paper proposed a model for fracture mechanics based prediction of the S-N characteristics of metallic components with large microstructural defects and supported this by a validation excercise on an aluminium alloy AL5380 H321. Within this presentation the authors extend the study using a number of data sets from the literature. Despite of necessary assumptions for the compensation of partially missing input information the results are fairly reasonable, with the exception of high loading levels where the analyses of two of the data sets yield non-conservative results. The authors propose multiple crack initiation as the potential root of the problem and discuss methods for extending the model for taking into account crack initiation.

  18. Critical fatigue behaviour in brittle glasses

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The dynamic fatigue fracture behaviour in different glasses under various sub-threshold loading conditions are analysed here employing an anomalous diffusion model. Critical dynamical behaviour in the time-to-fracture and the growth of the micro-crack sizes, similar to that observed in such materials in the case.

  19. Partial Safety Factors for Fatigue Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2010-01-01

    In the present paper calibration of partial safety factors for fatigue design of wind turbine blades is considered. The stochastic models for the physical uncertainties on the material properties are based on constant amplitude fatigue tests and the uncertainty on Miners rule for linear damage ac...... of the partial safety factors depending on the level of model and statistical uncertainty. This could be useful for manufactures that perform additional measurements or calculations in order to bring down the model and statistical uncertainties....

  20. Chronic fatigue syndrome

    African Journals Online (AJOL)

    Objective. To acknowledge the dinical syndrome chronic fatigue syndrome (CFS) and outline the diagnostic criteria and reasonable management. Outcomes. Attempt at containment of treatmentcost and improvement of the quality of care of patients with. CFS. Evidence. Delphi-type commentary from 20 expert clinicians and ...