WorldWideScience

Sample records for modelocked semiconductor lasers

  1. Modelling colliding-pulse mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Bischoff, Svend

    or to determine the optimum operation conditions. The purpose of this thesis is to elucidate some of the physics of interest in the field of semiconductor laser modelling, semiconductor optics and fiber optics. To be more specific we will investigate: The Colliding-Pulse Mode-Locked (CPM) Quantum Well (QW) laser...

  2. Single-SectionFabry-Perot Mode-Locked Semiconductor Lasers

    Directory of Open Access Journals (Sweden)

    Weiguo Yang

    2011-01-01

    Full Text Available We present a review of the theoretical models and experimental verification of the single-section Fabry-Perot mode-locked semiconductor lasers based on multiple-spatial-mode (MSM coupling. The mode-locked operation at the repetition rates of 40 GHz and higher and the pulse width of a few picoseconds are confirmed by the intensity autocorrelation, the fast photo detection and RF spectrum, and the optical spectral interference measurement of ultrafast pulse. The spatial mode coupling theory of single-section Fabry-Perot mode-locked semiconductor lasers is also reviewed, and the results are compared with the experimental observations. The small signal modulation response of these lasers, which exhibits high-frequency responses well beyond the relaxation oscillation resonance limit, is also modeled theoretically, and the simulation is verified by the experimental measurements.

  3. Dispersion-managed semiconductor mode-locked ring laser.

    Science.gov (United States)

    Resan, Bojan; Archundia, Luis; Delfyett, Peter J; Alphonse, Gerard

    2003-08-01

    A novel breathing-mode external sigma-ring-cavity semiconductor mode-locked laser is developed. Intracavity pulse compression and stretching produce linearly chirped pulses with an asymmetric exponential temporal profile. External dispersion compensation reduces the pulse duration to 274 fs (within 10% of the bandwidth limit).

  4. Semiconductor Mode-Locked Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten

    2003-01-01

    The thesis deals with the design and fabrication of semiconductor mode-locked lasers for use in optical communication systems. The properties of pulse sources and characterization methods are described as well as requirements for application in communication systems. Especially, the importance of......, and ways to reduce high-frequency jitter is discussed. The main result of the thesis is a new design of the epitaxial structure that both enables simplified fabrication and improves the properties of monolithic lasers. 40 GHz monolithic lasers with record low jitter and high power is presented as well...... as the first 10 GHz all-active monolithic laser with both short pulses and low jitter.Results from external cavity mode-locked lasers are also reported along with an investigation of the influence of the operating conditions on the performance of the device. Antireflection coatings are a critical limiting...

  5. Material Engineering for Monolithic Semiconductor Mode-Locked Lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina

    This thesis is devoted to the materials engineering for semiconductor monolithic passively mode-locked lasers (MLLs) as a compact energy-efficient source of ultrashort optical pulses. Up to the present day, the achievement of low-noise sub-picosecond pulse generation has remained a challenge....... This work has considered the role of the combined ultrafast gain and absorption dynamics in MLLs as a main factor limiting laser performance. An independent optimization of MLL amplifier and saturable absorber active materials was performed. Two promising approaches were considered: quantum dot (QD...... application in MLLs. Improved QW laser performance was demonstrated using the asymmetric barrier layer approach. The analysis of the gain characteristics showed that the high population inversion beneficial for noise reduction cannot be achieved for 10 GHz QW MLLs and would have required lowering the modal...

  6. Mode-Locked Semiconductor Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Oxenløwe, Leif Katsuo

    2005-01-01

    We present investigations on 10 and 40 GHz monolithic mode-locked lasers for applications in optical communications systems. New all-active lasers with one to three quantum wells have been designed, fabricated and characterized.......We present investigations on 10 and 40 GHz monolithic mode-locked lasers for applications in optical communications systems. New all-active lasers with one to three quantum wells have been designed, fabricated and characterized....

  7. Theory of Passively Mode-Locked Photonic Crystal Semiconductor Lasers

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Blaaberg, Søren; Mørk, Jesper

    2010-01-01

    We report the first theoretical investigation of passive mode-locking in photonic crystal mode-locked lasers. Related work has investigated coupled-resonator-optical-waveguide structures in the regime of active mode-locking [Opt. Express 13, 4539-4553 (2005)]. An extensive numerical investigation...... of the influence of key parameters of the active sections and the photonic crystal cavity on the laser performance is presented. The results show the possibility of generating stable and high quality pulses in a large parameter region. For optimized dispersion properties of the photonic crystal waveguide cavity......, the pulses have sub picosecond widths and are nearly transform limited....

  8. Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.

    Science.gov (United States)

    Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A

    2016-02-22

    With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.

  9. Techniques for increasing output power from mode-locked semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Mar, A.; Vawter, G.A.

    1996-02-01

    Mode-locked semiconductor lasers have drawn considerable attention as compact, reliable, and relatively inexpensive sources of short optical pulses. Advances in the design of such lasers have resulted in vast improvements in pulsewidth and noise performance, at a very wide range of repetition rates. An attractive application for these lasers would be to serve as alternatives for large benchtop laser systems such as dye lasers and solid-state lasers. However, mode-locked semiconductor lasers have not yet approached the performance of such systems in terms of output power. Different techniques for overcoming the problem of low output power from mode-locked semiconductor lasers will be discussed. Flared and arrayed lasers have been used successfully to increase the pulse saturation energy limit by increasing the gain cross section. Further improvements have been achieved by use of the MOPA configuration, which utilizes a flared semiconductor amplifier s amplify pulses to energies of 120 pJ and peak powers of nearly 30W.

  10. Performance of external cavity mode-locked semiconductor lasers employing reverse biased saturable absorbers

    DEFF Research Database (Denmark)

    Yvind, Kresten; Skovgaard, P.M.W.; Mørk, Jesper;

    2002-01-01

    We have experimentally investigated the performance of external cavity mode-locked semiconductor lasers employing reverse biased saturable absorbers. We have measured the magnitude of trailing pulses when varying the chip length and studied the pulse quality when changing the driving conditions...

  11. Design and evaluation of modelocked semiconductor lasers for low noise and high stability

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Christiansen, Lotte Jin;

    2005-01-01

    We present work on design of monolithic mode-locked semiconductor lasers with focus on the gain medium. The use of highly inverted quantum wells in a low-loss waveguide enables both low quantum noise, low-chirped pulses and a large stability region. Broadband noise measurements are performed...

  12. A semiconductor-based, frequency-stabilized mode-locked laser using a phase modulator and an intracavity etalon.

    Science.gov (United States)

    Davila-Rodriguez, Josue; Ozdur, Ibrahim; Williams, Charles; Delfyett, Peter J

    2010-12-15

    We report a frequency-stabilized semiconductor-based mode-locked laser that uses a phase modulator and an intracavity Fabry-Perot etalon for both active mode-locking and optical frequency stabilization. A twofold multiplication of the repetition frequency of the laser is inherently obtained in the process. The residual timing jitter of the mode-locked pulse train is 13 fs (1 Hz to 100 MHz), measured after regenerative frequency division of the photodetected pulse train.

  13. Experimental investigation of relaxation oscillations resonance in mode-locked Fabry-Perot semiconductor lasers

    CERN Document Server

    Roncin, Vincent; Hayau, Jean-François; Besnard, Pascal; Simon, Jean-Claude; Van Dijk, F; Shen, Alexandre; Duan, Guang-Hua

    2014-01-01

    We propose in this communication an experimental study of the relaxation oscillations behavior in mode-locked lasers. The semiconductor self-pulsating laser diode is composed by two gain sections, without saturable absorber. It is made of bulk structure and designed for optical telecommunication applications. This specific device allows two different regimes of optical modulation: the first one corresponds to the resonance of the relaxation oscillations and the second one, to the mode-locking regime at FSR value. This singular behavior leads us to characterize the self-pulsations which are coexisting in the laser and to describe two regimes of output modulation: the first one appears thanks to the resonance of the oscillation relaxation and the other one corresponds to the FSR of the Fabry-Perot laser at 40 GHz.

  14. Intra-cavity frequency-doubled mode-locked semiconductor disk laser at 325 nm.

    Science.gov (United States)

    Bek, Roman; Baumgärtner, Stefan; Sauter, Fabian; Kahle, Hermann; Schwarzbäck, Thomas; Jetter, Michael; Michler, Peter

    2015-07-27

    We present a passively mode-locked semiconductor disk laser (SDL) emitting at 650nm with intra-cavity second harmonic generation to the ultraviolet (UV) spectral range. Both the gain and the absorber structure contain InP quantum dots (QDs) as active material. In a v-shaped cavity using the semiconductor samples as end mirrors, a beta barium borate (BBO) crystal is placed in front of the semiconductor saturable absorber mirror (SESAM) for pulsed UV laser emission in one of the two outcoupled beams. Autocorrelation (AC) measurements at the fundamental wavelength reveal a FWHM pulse duration of 1.22ps. With a repetition frequency of 836MHz, the average output power is 10mW per beam for the red emission and 0.5mW at 325nm.

  15. Low threshold diode-pumped picosecond mode-locked Nd:YAG laser with a semiconductor saturable absorber mirror

    Science.gov (United States)

    Eshghi, M. J.; Majdabadi, A.; Koohian, A.

    2017-01-01

    In this paper, a low threshold diode pumped passively mode-locked Nd:YAG laser has been demonstrated by using a semiconductor saturable absorber mirror. The threshold power for continuous-wave mode-locking is relatively low, about 3.2 W. The resonator stability across the pump power has been analytically examined. Moreover, the mode overlap between the pump beam and the laser fundamental mode has been simulated by MATLAB software. Adopting Z-shaped resonator configuration and suitable design of the resonator’s arm lengths, has enabled the author to prepare mode-locking conditions, and obtain 40 ps pulses with 112 MHz pulse repetition rate. The laser output was stable without any Q switched instability. To the best of our knowledge, this is the lowest threshold for CW mode-locking operation of a Nd:YAG laser.

  16. Gigahertz dual-comb modelocked diode-pumped semiconductor and solid-state lasers

    Science.gov (United States)

    Link, S. M.; Mangold, M.; Golling, M.; Klenner, A.; Keller, U.

    2016-03-01

    We present a simple approach to generate simultaneously two gigahertz mode-locked pulse trains from a single gain element. A bi-refringent crystal in the laser cavity splits the one cavity beam into two cross-polarized and spatially separated beams. This polarization-duplexing is successfully demonstrated for both a semiconductor disk laser (i.e. MIXSEL) and a diode-pumped solid-state Nd:YAG laser. The beat between the two beams results in a microwave frequency comb, which represents a direct link between the terahertz optical frequencies and the electronically accessible microwave regime. This dual-output technique enables compact and cost-efficient dual-comb lasers for spectroscopy applications.

  17. Silicon Photonics WDM Transceiver with SOA and Semiconductor Mode-Locked Laser

    CERN Document Server

    Moscoso-Mártir, Alvaro; Hauck, Johannes; Chimot, Nicolas; Setter, Rony; Badihi, Avner; Rasmussen, Daniel E; Garreau, Alexandre; Nielsen, Mads; Islamova, Elmira; Romero-García, Sebastián; Shen, Bin; Sandomirsky, Anna; Rockman, Sylvie; Li, Chao; Azadeh, Saeed Sharif; Lo, Guo-Qiang; Mentovich, Elad; Merget, Florian; Lelarge, François; Witzens, Jeremy

    2016-01-01

    We demonstrate a complete Silicon Photonics WDM link relying on a single section semiconductor mode-locked laser and a single SOA to support up to 12 multiplexed channels with a bit error rate of 1e-12 at serial data rates of 14 Gbps without channel pre-emphasis, equalization or forward error correction. Individual channels reach error free operation at 25 Gbps and multi-channel operation at 25 Gbps is shown to be compatible with standard 7% overhead hard decision forward error correction. Silicon Photonics transmitter and receiver chips are hybridly integrated with driver and receiver electronics. A detailed link model is derived and verified. Particular emphasis is placed on accurate system level modeling of laser RIN, SOA amplified spontaneous emission noise and receiver noise. The impact of the electrical receiver bandwidth and non-Gaussian statistics on level dependent amplified spontaneous emission noise are investigated in detail. The channel count scalability as limited by SOA saturation is further an...

  18. Electrical Addressing and Temporal Tweezing of Localized Pulses in Passively Mode-Locked Semiconductor Lasers

    CERN Document Server

    Camelin, P; Marconi, M; Giudici, M

    2016-01-01

    We show that the pumping current is a convenient parameter for manipulating the temporal Localized Structures (LSs), also called localized pulses, found in passively mode-locked Vertical-Cavity Surface-Emitting Lasers. While short electrical pulses can be used for writing and erasing individual LSs, we demonstrate that a current modulation introduces a temporally evolving parameter landscape allowing to control the position and the dynamics of LSs. We show that the localized pulses drifting speed in this landscape depends almost exclusively on the local parameter value instead of depending on the landscape gradient, as shown in quasi-instantaneous media. This experimental observation is theoretically explained by the causal response time of the semiconductor carriers that occurs on an finite timescale and breaks the parity invariance along the cavity, thus leading to a new paradigm for temporal tweezing of localized pulses. Different modulation waveforms are applied for describing exhaustively this paradigm. ...

  19. Ultrafast non-equilibrium carrier dynamics in semiconductor laser mode-locking

    Science.gov (United States)

    Hader, J.; Scheller, M.; Laurain, A.; Kilen, I.; Baker, C.; Moloney, J. V.; Koch, S. W.

    2017-01-01

    Experimental and theoretical results on the mode-locking dynamics in vertical-external-cavity surface-emitting lasers with semiconductor and graphene saturable absorber mirrors are reviewed with an emphasis on the role of nonequilibrium carrier effects. The systems are studied theoretically using a fully microscopic many-body model for the carrier distributions and polarizations, coupled to Maxwell’s equations for the field propagation. Pump-probe measurements are performed with (sub-) 100 fs resolution. The analysis shows that the non-equilibrium carrier dynamics in the gain quantum-wells and saturable absorber medium significantly influences the system’s response and the resulting mode-locked pulses. The microscopic model is used to study the pulse build up from spontaneous emission noise and to determine the dependence of achievable pulse lengths and fluences on the amounts of saturable and non-saturable losses and the optical gain. The change of the group delay dispersion (GDD) on the pump level is examined and the dependence of the pulse lengths on the total amount of GDD is demonstrated experimentally. Theory-experiment comparisons are used to demonstrate the highly quantitative accuracy of the fully microscopic modeling.

  20. Short pulse generation in a passively mode-locked photonic crystal semiconductor laser

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Blaaberg, Søren; Mørk, Jesper

    2010-01-01

    We present a new type of passively mode-locked laser with quantum wells embedded in photonic crystal waveguides operating in the slow light regime, which is capable of emitting sub picosecond pulses with widely controllable properties......We present a new type of passively mode-locked laser with quantum wells embedded in photonic crystal waveguides operating in the slow light regime, which is capable of emitting sub picosecond pulses with widely controllable properties...

  1. Influence of kinetic hole filling on the stability of mode-locked semiconductor disk lasers

    Science.gov (United States)

    Moloney, Jerome V.; Kilen, Isak; Hader, Jorg; Koch, Stephan W.

    2016-03-01

    Microscopic many-body theory is employed to analyze the mode-locking dynamics of a vertical external-cavity surface-emitting laser with a saturable absorber mirror. The quantum-wells are treated microscopically through the semiconductor Bloch equations and the light field using Maxwell's equations. Higher order correlation effects such as polarization dephasing and carrier relaxation at the second Born level are included and also approximated using effective rates fitted to second-Born-Markov evaluations. The theory is evaluated numerically for vertical external cavity surface emitting lasers with resonant periodic gain media. For given gain, the influence of the loss conditions on the very-short pulse generation in the range above 100 fs is analyzed. Optimized operational parameters are identified. Additionally, the fully microscopic theory at the second Born level is used to carrier out a pump-probe study of the carrier recovery in individual critical components of the VECSEL cavity such as the VECSEL chip itself and semiconductor or graphene saturable absorber mirrors.

  2. Wavelength-tunable 10 GHz actively harmonic mode-locked fiber laser based on semiconductor optical amplifier

    Science.gov (United States)

    Mao, Yan; Tong, Xinglin; Wang, Zhiqiang; Zhan, Li; Hu, Pan; Chen, Liang

    2015-12-01

    We demonstrate a widely wavelength-tunable actively mode-locked fiber laser based on semiconductor optical amplifier. Beneficiating from the actively mode-locking operation and the wavelength-tunable characteristics of a Fabry-Perot filter, different harmonic mode-locking orders, from the fundamental mode-locking order (18.9 MHz) to the 520th order (9.832 GHz), can be easily achieved. The spectral bandwidth corresponding to the fundamental repetition rate is 0.12 nm with the pulse duration of 9.8 ns, leading to the TBP value of 146, which is about 460 times the transform-limited value for soliton pulse. The highest repetition rate of the mode-locked pulses we obtained is 9.832 GHz, with a signal-to-noise ratio up to 50 dB. The theoretical transform-limited pulse duration is 21 ps. Meanwhile, the central wavelength can be continuously tuned over 43.4 nm range (1522.8-1566.2 nm). The higher repetition rate and the widely tuning wavelength range make the fiber laser to own great potential and promising prospects in areas such as optical communication and photonic analog-to-digital conversion (ADC).

  3. Artificial Neuron Based on Integrated Semiconductor Quantum Dot Mode-Locked Lasers.

    Science.gov (United States)

    Mesaritakis, Charis; Kapsalis, Alexandros; Bogris, Adonis; Syvridis, Dimitris

    2016-12-19

    Neuro-inspired implementations have attracted strong interest as a power efficient and robust alternative to the digital model of computation with a broad range of applications. Especially, neuro-mimetic systems able to produce and process spike-encoding schemes can offer merits like high noise-resiliency and increased computational efficiency. Towards this direction, integrated photonics can be an auspicious platform due to its multi-GHz bandwidth, its high wall-plug efficiency and the strong similarity of its dynamics under excitation with biological spiking neurons. Here, we propose an integrated all-optical neuron based on an InAs/InGaAs semiconductor quantum-dot passively mode-locked laser. The multi-band emission capabilities of these lasers allows, through waveband switching, the emulation of the excitation and inhibition modes of operation. Frequency-response effects, similar to biological neural circuits, are observed just as in a typical two-section excitable laser. The demonstrated optical building block can pave the way for high-speed photonic integrated systems able to address tasks ranging from pattern recognition to cognitive spectrum management and multi-sensory data processing.

  4. Artificial Neuron Based on Integrated Semiconductor Quantum Dot Mode-Locked Lasers

    Science.gov (United States)

    Mesaritakis, Charis; Kapsalis, Alexandros; Bogris, Adonis; Syvridis, Dimitris

    2016-12-01

    Neuro-inspired implementations have attracted strong interest as a power efficient and robust alternative to the digital model of computation with a broad range of applications. Especially, neuro-mimetic systems able to produce and process spike-encoding schemes can offer merits like high noise-resiliency and increased computational efficiency. Towards this direction, integrated photonics can be an auspicious platform due to its multi-GHz bandwidth, its high wall-plug efficiency and the strong similarity of its dynamics under excitation with biological spiking neurons. Here, we propose an integrated all-optical neuron based on an InAs/InGaAs semiconductor quantum-dot passively mode-locked laser. The multi-band emission capabilities of these lasers allows, through waveband switching, the emulation of the excitation and inhibition modes of operation. Frequency-response effects, similar to biological neural circuits, are observed just as in a typical two-section excitable laser. The demonstrated optical building block can pave the way for high-speed photonic integrated systems able to address tasks ranging from pattern recognition to cognitive spectrum management and multi-sensory data processing.

  5. High frequency optoelectronic oscillators based on the optical feedback of semiconductor mode-locked laser diodes.

    Science.gov (United States)

    Haji, Mohsin; Hou, Lianping; Kelly, Anthony E; Akbar, Jehan; Marsh, John H; Arnold, John M; Ironside, Charles N

    2012-01-30

    Optical self seeding feedback techniques can be used to improve the noise characteristics of passively mode-locked laser diodes. External cavities such as fiber optic cables can increase the memory of the phase and subsequently improve the timing jitter. In this work, an improved optical feedback architecture is proposed using an optical fiber loop delay as a cavity extension of the mode-locked laser. We investigate the effect of the noise reduction as a function of the loop length and feedback power. The well known composite cavity technique is also implemented for suppressing supermode noise artifacts presented due to harmonic mode locking effects. Using this method, we achieve a record low radio frequency linewidth of 192 Hz for any high frequency (>1 GHz) passively mode-locked laser to date (to the best of the authors' knowledge), making it promising for the development of high frequency optoelectronic oscillators.

  6. Tunable mode-locked semiconductor laser with Bragg mirror external cavity

    DEFF Research Database (Denmark)

    Yvind, Kresten; Jørgensen, T.; Birkedal, Dan

    2002-01-01

    We present a simplified design for a wavelength tunable external cavity mode-locked laser by employing a wedged GaAs/AlGaAs Bragg mirror. The device emits 4-6 ps pulses at 10 GHz and is tunable over 15 nm. Although, in the present configuration, tunability is limited to 15 nm, however, we have...

  7. High-Power Hybrid Mode-Locked External Cavity Semiconductor Laser Using Tapered Amplifier with Large Tunability

    Directory of Open Access Journals (Sweden)

    Andreas Schmitt-Sody

    2008-01-01

    Full Text Available We report on hybrid mode-locked laser operation of a tapered semiconductor amplifier in an external ring cavity, generating pulses as short as 0.5 ps at 88.1 MHz with an average power of 60 mW. The mode locking is achieved through a combination of a multiple quantum well saturable absorber (>10% modulation depth and an RF current modulation. This designed laser has 20 nm tuning bandwidth in continuous wave and 10 nm tuning bandwidth in mode locking around 786 nm center wavelength at constant temperature.

  8. Attosecond timing jitter pulse trains from semiconductor saturable absorber mode-locked Cr:LiSAF lasers

    OpenAIRE

    Sennaroğlu, Alphan; Li, Duo; Demirbaş, Ümit; Benedick, Andrew; Fujimoto, James G.; Kaertner, Franz X.

    2012-01-01

    The timing jitter of optical pulse trains from diode-pumped, semiconductor saturable absorber mode-locked femtosecond Cr:LiSAF lasers is characterized by a single-crystal balanced optical cross-correlator with an equivalent sensitivity in phase noise of -235 dBc/Hz. The RMS timing jitter is 30 attoseconds integrated from 10 kHz to 50 MHz, the Nyquist frequency of the 100 MHz repetition rate oscillator. The AM-to-PM conversion induced excess phase noise is calculated and compared with experime...

  9. Comparative studies of semiconductor saturable absorber mirror mode-locking dynamics in pulsed diode-end-pumped picosecond Nd:GdVO4 and Nd:YAG lasers

    Institute of Scientific and Technical Information of China (English)

    Bingyuan Zhang; Gang Li; Meng Chen; Guoju Wang; Yonggang Wang

    2006-01-01

    Ultrashort pulses were generated in passively mode-locked Nd:YAG and Nd:GdVO4 lasers pumped by a pulsed laser diode with 10-Hz repetition rate. Stable mode-locked pulse trains were produced with the pulse width of 10 ps. The evolution of the mode-locked pulse was observed in the experiment and was discussed in detail. Comparing the pulse evolutions of Nd:YAG and Nd:GdVO4 lasers, we found that the buildup time of the steady-state mode-locking with semiconductor saturable absorber mirrors (SESAMs) was relevant to the upper-state lifetime and the emission cross-section of the gain medium.

  10. Analysis of timing jitter in external-cavity mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper

    2006-01-01

    processes, self-phase modulation, and spontaneous emission noise. Fluctuations of the mode-locked pulses are characterized from the fully distributed model using direct integration of noise-skirts in the phase-noise spectrum and the soliton perturbations introduced by Haus. We implement the model in order...... to investigate the performance of a MQW buried heterostructure laser. Results from numerical simulations show that the optimum driving conditions for achieving the shortest pulses with minimum timing jitter occur for large reverse bias in the absorber section at an optimum optical bandwidth limited by Gordon...

  11. 10  GHz pulse repetition rate Er:Yb:glass laser modelocked with quantum dot semiconductor saturable absorber mirror.

    Science.gov (United States)

    Resan, B; Kurmulis, S; Zhang, Z Y; Oehler, A E H; Markovic, V; Mangold, M; Südmeyer, T; Keller, U; Hogg, R A; Weingarten, K J

    2016-05-10

    Semiconductor saturable absorber mirror (SESAM) modelocked high pulse repetition rate (≥10  GHz) diode-pumped solid-state lasers are proven as an enabling technology for high data rate coherent communication systems owing to their low noise and high pulse-to-pulse optical phase-coherence. Compared to quantum well, quantum dot (QD)-based SESAMs offer potential advantages to such laser systems in terms of reduced saturation fluence, broader bandwidth, and wavelength flexibility. Here, we describe the first 10 GHz pulse repetition rate QD-SESAM modelocked laser at 1.55 μm, exhibiting 2 ps pulse width from an Er-doped glass oscillator (ERGO). The 10 GHz ERGO laser is modelocked with InAs/GaAs QD-SESAM with saturation fluence as low as 9  μJ/cm2.

  12. Integration of mode-locked diode lasers

    Science.gov (United States)

    Coleman, A. Catrina; Hou, Lianping; Marsh, John H.

    2016-03-01

    Monolithic mode-locked semiconductor lasers are attractive sources of short optical pulses with advantages over more conventional sources in compactness, robustness, performance stability, power consumption, and cost savings. The use of quantum well intermixing (QWI) to integrate passive sections and surface etched distributed Bragg reflectors (DBR) into monolithic laser cavity will be described. The performance of the devices will be presented.

  13. Picosecond pulse generation from a synchronously pumped mode-locked semiconductor laser diode

    Science.gov (United States)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    A semiconductor laser diode was mode locked in an external cavity when synchronously pumped with 90-ps current pulses. Transform-limited optical pulses with a 10-ps pulse width and a peak power of 160 mW were produced. Operating characteristics of such a system are described.

  14. Periodic adjustment of the position of a laser beam spot on a semiconductor saturable absorber mirror in a passively mode-locked solid-state laser

    Institute of Scientific and Technical Information of China (English)

    Xia Pa-Keti; Yan Ping; Gong Ma-Li

    2011-01-01

    A laser diode end-pumped passively mode-locked Nd:YV04 solid-state laser with a semiconductor saturable absorber mirror (SESAM),in which the intracavity laser beam spot on the SESAM can be adjusted periodically,is investigated. Inserting a rectangular prism (RP) into the laser cavity is a promising approach towards the goal of periodically moving the position of the focus spot of the intracavity pulse on the SESAM surface to avoid the long-time irradiation of the laser beam on the same position,thereby solving a series of problems caused by damage to the SESAM and greatly prolonging its usage life. The adjustment of the rectangular prism in the laser cavity does not break the stable continuous wave (CW) mode-locked condition. The laser generates a stable picosecond pulse sequence at 1064 nm with an output power of 3.6 W and a pulse width of 14 ps. The instabilities of the output power and the pulse width are 1.77% and 4.5%,respectively.

  15. A Passively Mode-Locked Diode-End-Pumped Nd:YAG Laser with a Semiconductor Saturable Absorber Mirror Grown by Metal Organic Chemical Vapour Deposition

    Institute of Scientific and Technical Information of China (English)

    王勇刚; 马骁宇; 李春勇; 张治国; 张丙元; 张志刚

    2003-01-01

    We report the experimental results of a mode-locked diode-end-pumped Nd:YAG laser with a semiconductor saturable absorber mirror(SESAM)from which we achieved a 10ps pulse duration at 150MHz repetition rate.The SESAM was grown by metal organic chemical vapour deposition at low temperature.The recovery time was measured to be 0.5 ps,indicating the potential pulse compression to sub-picoseconds.

  16. Experimental demonstration of change of dynamical properties of a passively mode-locked semiconductor laser subject to dual optical feedback by dual full delay-range tuning.

    Science.gov (United States)

    Nikiforov, O; Jaurigue, L; Drzewietzki, L; Lüdge, K; Breuer, S

    2016-06-27

    In this contribution we experimentally demonstrate the change and improvement of dynamical properties of a passively mode-locked semiconductor laser subject to optical feedback from two external cavities by coupling the feedback pulses back into the gain segment. Hereby, we tune the full delay-phase of the pulse-to-pulse period of both external cavities separately and demonstrate the change of the repetition rate, timing jitter, multi-pulse formation and side-band suppression for the first time for such a dual feedback configuration. In addition, we thereby confirm modeling predictions by achieving both a good qualitative and quantitative agreement of experimental and simulated results. Our findings suggest a path towards the realization of side-band free all-optical photonic oscillators based on mode-locked lasers.

  17. Investigations of repetition rate stability of a mode-locked quantum dot semiconductor laser in an auxiliary optical fiber cavity

    DEFF Research Database (Denmark)

    Breuer, Stefan; Elsässer, Wolfgang; McInerney, J.G.

    2010-01-01

    We have investigated experimentally the pulse train (mode beating) stability of a monolithic mode-locked multi-section quantum-dot laser with an added passive auxiliary optical fiber cavity. Addition of the weakly coupled (¿ -24dB) cavity reduces the current-induced shift d¿/dI of the principal...

  18. Mode-locked semiconductor laser system with intracavity spatial light modulator for linear and nonlinear dispersion management.

    Science.gov (United States)

    Balzer, Jan C; Döpke, Benjamin; Brenner, Carsten; Klehr, Andreas; Erbert, Götz; Tränkle, Günther; Hofmann, Martin R

    2014-07-28

    We analyze the influence of second and third order intracavity dispersion on a passively mode-locked diode laser by introducing a spatial light modulator (SLM) into the external cavity. The dispersion is optimized for chirped pulses with highest possible spectral bandwidth that can be externally compressed to the sub picosecond range. We demonstrate that the highest spectral bandwidth is achieved for a combination of second and third order dispersion. With subsequent external compression pulses with a duration of 437 fs are generated.

  19. Dual-central-wavelength passively mode-locked diffusion-bonded Nd:YVO4/Nd:GdVO4 laser with a semiconductor saturable absorber mirror

    Science.gov (United States)

    Chang, F. L.; Sung, C. L.; Huang, T. L.; Wu, T. W.; Cho, H. H.; Liang, H. C.; Chen, Y. F.

    2017-08-01

    A dual-central-wavelength passively mode-locked laser with full modulation in the 0.31 THz optical beating is achieved by using a diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal and a semiconductor saturable absorber mirror. The output power of the dual-band emission is well balanced by tuning the focal position of the pump waist. At a pump power of 13 W, the total output power is up to 2.7 W with a repetition rate of 297.9 MHz. The autocorrelation traces clearly reveal the synchronization of the dual-band emission. Moreover, an analytical model is developed to manifest the multi-pulse structure caused by the etalon effect of the gain medium. More important, we experimentally verify that the etalon effect can be completely eliminated by using the wedge-cut diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal.

  20. Stable mode-locked operation of a low repetition rate diode-pumped Nd:GdVO4 laser by combining quadratic polarisation switching and a semiconductor saturable absorber mirror.

    Science.gov (United States)

    Gerhard, Christoph; Druon, Frédéric; Georges, Patrick; Couderc, Vincent; Leproux, Philippe

    2006-08-07

    In this paper, we present the mode-locked operation of an ultra-robustly stabilised Nd:GdVO(4) laser with low repetition rate by combining quadratic polarisation switching and a semiconductor saturable absorber mirror (SESAM). In addition, similar experiment was also done with Nd:YVO(4). For Nd:GdVO(4), 16-ps pulses at 1063 nm with a repetition rate of 3.95 MHz have been obtained for a laser average output power of 1.4 W. For Nd:YVO(4), the performance was 2.5 W of average power for 15-ps pulses at 1064 nm. Moreover, we demonstrate experimentally the advantage of combining these two passive mode locking techniques in terms of stability ranges. We show how the dual mode-locking technique is crucial to obtain a stable and long-term mode-locked regime in our case of a diode-pumped Nd:GdVO(4) laser operating at low repetition rate and more generally how this dual mode-locking technique improves the stability range of the mode-locked operation giving more flexibility on different parameters.

  1. Comparison of the noise performance of 10 GHz repetition rate quantum-dot and quantum well monolithic mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Carpintero, G.; Thompson, M. G.; Yvind, Kresten

    2011-01-01

    Mode-locked lasers are commonly used in carrier-wave signal generation systems because of their excellent phase noise performance. Owing to the importance of this key parameter, this study presents a like-for-like comparison of the noise performance of the passive mode-locked regime of two devices...... and the shape of the noise pedestals, both depending on the passive mode-locked bias conditions. Nevertheless, the dominant contribution of the RF linewidth to the phase noise, which is significantly narrower for the QD laser, makes this material more suitable for optical generation of low-noise millimetre...... fabricated with different material gain systems, one quantum well and the other quantum dot (QD), both with a monolithic all-active two-section mode-locked structure. Two important factors are identified as having a significant effect on the noise performance, the RF linewidth of the first harmonic...

  2. Novel design of low-jitter 10 GHz all-active monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Christiansen, Lotte Jin

    2004-01-01

    Using a novel design, we have fabricated 10 GHz all-active monolithic mode-locked semiconductor lasers that generate 1.4 ps pulses with record-low timing jitter. The dynamical properties of lasers with 1 and 2 QWs are compared.......Using a novel design, we have fabricated 10 GHz all-active monolithic mode-locked semiconductor lasers that generate 1.4 ps pulses with record-low timing jitter. The dynamical properties of lasers with 1 and 2 QWs are compared....

  3. Dual-polarization mode-locked Nd:YAG laser.

    Science.gov (United States)

    Thévenin, J; Vallet, M; Brunel, M

    2012-07-15

    A mode-locked solid-state laser containing a birefringent element is shown to emit synchronously two frequency combs associated to the two polarization eigenstates of the cavity. An analytical model predicts the polarization evolution of the pulse train, which is determined by the adjustable intracavity birefringence. Experiments realized with a Nd:YAG laser passively mode locked by a semiconductor saturable absorber mirror are in perfect agreement with the model. Locking between the two combs arises for particular values of their frequency difference, e.g., half the repetition rate, and the pulse train polarization sequence is then governed by the relative overall phase offset of the two combs.

  4. Semiconductor laser

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K.; Shyuue, M.

    1982-09-25

    A distributed feedback semiconductor laser is proposed which generates several beams with equal wavelengths in different directions. For this purpose, 1 millimeter grooves are cut into the surface of an n-type conductance GaAs plate in three different directions; these grooves form a diffraction grating. The center of this plate has no grooves and is bombarded by an He/Ne laser beam. The diffraction gratings provide resonance properties and generate laser beams with wavelengths of 8850, 9000 and 9200 angstroms.

  5. An automatic mode-locked system for passively mode-locked fiber laser

    Science.gov (United States)

    Li, Sha; Xu, Jun; Chen, Guoliang; Mei, Li; Yi, Bo

    2013-12-01

    This paper designs and implements one kind of automatic mode-locked system. It can adjust a passively mode-locked fiber laser to keep steady mode-locked states automatically. So the unsteadiness of traditional passively mode-locked fiber laser can be avoided. The system transforms optical signals into electrical pulse signals and sends them into MCU after processing. MCU calculates the frequency of the signals and judges the state of the output based on a quick judgment algorithm. A high-speed comparator is used to check the signals and the comparison voltage can be adjusted to improve the measuring accuracy. Then by controlling two polarization controllers at an angle of 45degrees to each other, MCU extrudes the optical fibers to change the polarization until it gets proper mode-locked output. So the system can continuously monitor the output signal and get it back to mode-locked states quickly and automatically. States of the system can be displayed on the LCD and PC. The parameters of the steady mode-locked states can be stored into an EEPROM so that the system will get into mode-locked states immediately next time. Actual experiments showed that, for a 6.238MHz passively mode-locked fiber lasers, the system can get into steady mode-locked states automatically in less than 90s after starting the system. The expected lock time can be reduced to less than 20s after follow up improvements.

  6. Low-jitter and high-power 40 GHz all-active mode-locked lasers

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Christiansen, Lotte Jin

    2004-01-01

    A novel design strategy for the epitaxial structure of monolithic mode-locked semiconductor lasers is presented. Using an all-active design, we fabricate 40-GHz lasers generating 2.8-ps almost chirp-free pulses with record low high-frequency jitter and more than 7-mW fiber coupled output power....

  7. A Bidirectional, Diode-Pumped, Passively Mode-Locked Nd:YVO4 Ring Laser with a Low-Temperature-Grown Semiconductor Saturable Absorber Mirror

    Institute of Scientific and Technical Information of China (English)

    CAI Zhi-Qiang; YAO Jian-Quan; WANG Peng; WANG Yong-Gang; ZHANG Zhi-Gang

    2007-01-01

    We report the operation of a bidirectional picosecond pulsed ring Nd:YVO4 laser based on a low-temperaturegrown semiconductor saturable absorber mirror. Except for the laser crystal, the six-mirror ring laser cavity has no intra-cavity elements such as focusing lens or mirror. The bidirectional mode locked pluses are obtained at the repetition rate of 117.5MHz, pulse duration of Sips, power of 2×200 mW.

  8. Semiconductor Laser Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  9. Dark solitons in mode-locked lasers

    CERN Document Server

    Ablowitz, Mark J; Nixon, Sean D; Frantzeskakis, Dimitri J

    2010-01-01

    Dark soliton formation in mode-locked lasers is investigated by means of a power-energy saturation model which incorporates gain and filtering saturated with energy, and loss saturated with power. It is found that general initial conditions evolve into dark solitons under appropriate requirements also met in the experimental observations. The resulting pulses are well approximated by dark solitons of the unperturbed nonlinear Schr\\"{o}dinger equation. Notably, the same framework also describes bright pulses in anomalous and normally dispersive lasers.

  10. Monolithic mode-locked lasers with deeply dry etched Bragg mirror

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    Background: Semiconductor mode-locked lasers are attractive as components in futureultra high-speed telecommunication systems (160-640Gb/s); as picosecond pulse sources,clock-recovery devices and for demultiplexing in Optical Time Division Multiplexing(OTDM) systems. We have recently designed, fa...

  11. Stable mode-locking in an Yb:YAG laser with a fast SESAM

    Institute of Scientific and Technical Information of China (English)

    Guifang Ju(居桂方); Lu Chai(柴路); Qingyue Wang(王清月); Zhigang Zhang(张志刚); Yonggang Wang(王勇刚); Xiaoyu Ma(马骁宇)

    2003-01-01

    Stable mode-locking in a diode-pumped Yb:YAG laser was obtained with a very fast semiconductor saturable absorber mirror (SESAM). The pulse width was measured to be 4 ps at the central wavelength of 1047 nm. The average power was 200 mW and the repetition rate was 200 MHz.

  12. Recent progress in picosecond pulse generation from semiconductor lasers

    Science.gov (United States)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    This paper reviews the recent progress in producing picosecond optical pulses from semiconductor laser diodes. The discussion concentrates on the mode-locking of a semiconductor laser diode in an external resonator. Transform-limited optical pulses ranging from several picoseconds to subpicosecond durations have been observed with active and passive mode-locking. Even though continuing research on the influence of impurities and defects on the mode-locking process is still needed, this technique has good promise for being utilized in fiber-optic communication systems. Alternative methods of direct electrical and optical excitation to produce ultrashort laser pulses are also described. They can generate pulses of similar widths to those obtained by mode-locking. The pulses generated will find applications in laser ranging and detector response measurement.

  13. Self-optimizing femtosecond semiconductor laser.

    Science.gov (United States)

    Döpke, Benjamin; Pilny, Rouven H; Brenner, Carsten; Klehr, Andreas; Erbert, Götz; Tränkle, Günther; Balzer, Jan C; Hofmann, Martin R

    2015-04-20

    A self-optimizing approach to intra-cavity spectral shaping of external cavity mode-locked semiconductor lasers using edge-emitting multi-section diodes is presented. An evolutionary algorithm generates spectrally resolved phase- and amplitude masks that lead to the utilization of a large part of the net gain spectrum for mode-locked operation. Using these masks as a spectral amplitude and phase filter, a bandwidth of the optical intensity spectrum of 3.7 THz is achieved and Fourier-limited pulses of 216 fs duration are generated after further external compression.

  14. A 12.1-W SESAM mode-locked Yb:YAG thin disk laser

    Science.gov (United States)

    Yingnan, Peng; Zhaohua, Wang; Dehua, Li; Jiangfeng, Zhu; Zhiyi, Wei

    2016-05-01

    Pumped by a 940 nm fiber-coupled diode laser, a passively mode-locked Yb:YAG thin disk oscillator was demonstrated with a semiconductor saturable absorber mirror (SESAM). 12.1 W mode-locked pulses were obtained with pulse duration of 698 fs at the repetition rate of 57.43 MHz. Measurement showed that the beam quality was close to the diffraction limit. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB922402), the National Major Instrument Program of China (Grant No. 2012YQ120047), and the National Natural Science Foundation of China (Grant No. 61210017).

  15. Monolithic Hybrid and Passive Mode-Locked 40GHz Quantum Dot Laser Diodes

    DEFF Research Database (Denmark)

    Thompson, M. G.; Larsson, David; Rae, A. R.

    2006-01-01

    For the first time hybrid and passive mode-locking jitter performance is investigated in 40GHz quantum-dot mode-locked lasers. Record low passive mode-locking jitter of 219fs is presented, along with promising hybrid mode-locking results of 124fs.......For the first time hybrid and passive mode-locking jitter performance is investigated in 40GHz quantum-dot mode-locked lasers. Record low passive mode-locking jitter of 219fs is presented, along with promising hybrid mode-locking results of 124fs....

  16. Monolithic Hybrid and Passive Mode-Locked 40GHz Quantum Dot Laser Diodes

    DEFF Research Database (Denmark)

    Thompson, M. G.; Larsson, David; Rae, A. R.;

    2006-01-01

    For the first time hybrid and passive mode-locking jitter performance is investigated in 40GHz quantum-dot mode-locked lasers. Record low passive mode-locking jitter of 219fs is presented, along with promising hybrid mode-locking results of 124fs.......For the first time hybrid and passive mode-locking jitter performance is investigated in 40GHz quantum-dot mode-locked lasers. Record low passive mode-locking jitter of 219fs is presented, along with promising hybrid mode-locking results of 124fs....

  17. Semiconductor laser. Halbleiterlaser

    Energy Technology Data Exchange (ETDEWEB)

    Wuenstel, K.; Gohla, B.; Tegude, F.; Luz, G.; Hildebrand, O.

    1987-08-27

    A highly modulable semiconductor laser and a process for its manufacture are described. The semiconductor laser has a substrate, a stack of semiconductor layers and electrical contacts. To reduce the capacity, the width of the stack of semiconductor layers is reduced at the sides by anisotropic etching. The electrical contacts are situated on the same side of the substrate and are applied in the same stage of the process. The semiconductor laser is suitable for monolithic integration in other components.

  18. Optical Phase Locking of Modelocked Lasers for Particle Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Plettner, T.; Sinha, S.; Wisdom, J.; /Stanford U., Phys. Dept.; Colby, E.R.; /SLAC

    2006-02-17

    Particle accelerators require precise phase control of the electric field through the entire accelerator structure. Thus a future laser driven particle accelerator will require optical synchronism between the high-peak power laser sources that power the accelerator. The precise laser architecture for a laser driven particle accelerator is not determined yet, however it is clear that the ability to phase-lock independent modelocked oscillators will be of crucial importance. We report the present status on our work to demonstrate long term phaselocking between two modelocked lasers to within one degree of optical phase and describe the optical synchronization techniques that we employ.

  19. Fabrication and Characterisation of Low-noise Monolithic Mode-locked Lasers

    DEFF Research Database (Denmark)

    Larsson, David

    2007-01-01

    This thesis deals with the fabrication and characterisation of monolithic semiconductor mode-locked lasers for use in optical communication systems. Other foreseeable applications may be as sources in microwave photonics and optical sampling. The thesis also deals with the design and fabrication...... of intracavity monolithically integrated filters. The common dnominator among the diffrent parts of the thesis is how to achieve and measure the lowest possible noise. Achieving low noise has been pinpointed as one of the most important and difficult challenges for semiconductor mode-locked lasers. The main...... result of this thesis are a fabrication process of a monolithic and deeply etched distributed Bragg reflector and a characterisation system for measurement of quantum limitid timing noise at high repetition rates. The Bragg reflector is a key component in achieving transform limited pulses with low noise...

  20. Applications of Semiconductor Lasers

    Institute of Scientific and Technical Information of China (English)

    LI Te; SUN Yan-fang; NING Yong-qiang; WANG Li-jun

    2005-01-01

    An overview of the applications of semiconductor lasers is presented. Diode lasers are widely used today,and the most prevalent use of the laser is probably in CD and DVD drives for computers and audio/video media systems. Semiconductor lasers are also used in many other fields ranging from optical fiber communications to display,medicine and pumping sources.

  1. Increased reliability of passive mode-locking a multi-atmosphere TE CO2 laser by injection mode-locking

    NARCIS (Netherlands)

    Goor, van F.A.

    1986-01-01

    By injection of manosecond pulses from an AM mode-locked TEA CO2 laser in a passive mode-locked multi-atmosphere TE CO2 laser the shot-to-shot reproducibility of the generated subnanosecond pulses was increased to almost 100%.

  2. All-fiber passively mode-locked Ho-laser pumped by ytterbium fiber laser

    Science.gov (United States)

    Filatova, S. A.; Kamynin, V. A.; Zhluktova, I. V.; Trikshev, A. I.; Tsvetkov, V. B.

    2016-11-01

    We report an all-fiber mode-lock holmium-doped ring laser passively mode-locked by nonlinear polarization rotation without dispersion compensation. The laser produced picosecond pulses at 2.057 µm. The average output power was 4.5 mW.

  3. Wide-band residual phase-noise measurements on 40-GHz monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Larsson, David; Hvam, Jørn Märcher

    2005-01-01

    We have performed wide-band residual phase-noise measurements on semiconductor 40-GHz mode-locked lasers by employing electrical waveguide components for the radio-frequency circuit. The intrinsic timing jitters of lasers with one, two, and three quantum wells (QW) are compared and our design...... prediction, concerning noise versus number of QWs, for the first time corroborated by experiments. A minimum jitter of 44 fs is found, by extrapolating to the Nyquist frequency, for the one-QW device having nearly transform-limited pulses of 1.2 ps. This jitter is nearly three times lower than for a three...

  4. Physics of semiconductor lasers

    CERN Document Server

    Mroziewicz, B; Nakwaski, W

    2013-01-01

    Written for readers who have some background in solid state physics but do not necessarily possess any knowledge of semiconductor lasers, this book provides a comprehensive and concise account of fundamental semiconductor laser physics, technology and properties. The principles of operation of these lasers are therefore discussed in detail with the interrelations between their design and optical, electrical and thermal properties. The relative merits of a large number of laser structures and their parameters are described to acquaint the reader with the various aspects of the semiconductor l

  5. Self-starting mode-locked picosecond Ti:sapphire laser by using of a fast SESAM

    Institute of Scientific and Technical Information of China (English)

    Zhu Jiang-Feng; Tian Jin-Rong; Wang Peng; Ling Wei-Jun; Li De-Hua; Wei Zhi-Yi

    2006-01-01

    A stable continuous wave mode-locked picosecond Ti:sapphire laser by using a fast semiconductor saturable absorber mirror (SESAM) is demonstrated. The laser delivers pulse width of 20 ps at a central wavelength of 813 nm and a repetition rate of 100 MHz. The maximum output power is 1.34 W with pump power of 7 W which corresponds to an optical-optical conversion efficiency of 19.1%.

  6. Simultaneous Q-switching and mode-locking in the CW Nd:YAG laser

    Science.gov (United States)

    Kuizenga, D. J.; Phillion, D. W.; Siegman, A. E.; Lund, T.

    1973-01-01

    The theory of transient mode-locking for an active modulator in a laser with a homogeneously broadened line is presented. The theory is applied to simultaneously Q-switched and mode-locked Nd:YAG lasers and good agreement between theory and experiment is obtained. The main conclusion is that under usual Q-switched operating conditions the mode-locking process does not have sufficient time to build up to steady-state conditions. We also present a method to overcome this problem by allowing the laser to prelase before the Q-switch is opened. Mode-locked pulses whose width approaches the steady-state value are obtained. The transient mode-locking theory presented here also applies to actively mode-locking TEA CO2 lasers and to other types of simultaneously pulsed and mode-locked lasers.

  7. Contrastive study of two SESAMs for passive mode-locking in Nd:YVO4 laser with low pump power

    Institute of Scientific and Technical Information of China (English)

    Yang Liu; Liqun Sun; Yonggang Wang; Qian Tian; Xiaoyu Ma; Zhigang Zhang

    2005-01-01

    Two semiconductor saturable absorber mirrors (SESAMs), of which one is coated with 50% reflection film on the top and the other is not, were contrastively studied in passively mode-locked solid-state lasers which were pumped by low output power laser diode (LD). Experiments have shown that reducing the modulation depth of SESAM by coating partial reflection film, whose reflectivity is higher than that between SESAM and air interface, is an effective method to get continuous wave (CW) mode-locking instead of Q-switched power LD, in which no water-cooling system was used, could obtain CW mode-locking by the 50% reflector coated SESAM with average output power of ~ 20 mW.

  8. Slow Light Semiconductor Laser

    Science.gov (United States)

    2015-02-02

    we demonstrate a semiconductor laser with a spectral linewidth of 18 kHz in the telecom band around 1:55um. The views, opinions and/or findings...we demonstrate a semiconductor laser with a spectral linewidth of 18 kHz in the telecom band around 1:55um. Further, the large intracavity field...hybrid Si/III- V platforms Abstract The semiconductor laser is the principal light source powering the world-wide optical fiber network . Ever

  9. Quasi mode-locking of coherent feedback random fiber laser

    Science.gov (United States)

    Ma, R.; Zhang, W. L.; Zeng, X. P.; Yang, Z. J.; Rao, Y. J.; Yao, B. C.; Yu, C. B.; Wu, Y.; Yu, S. F.

    2016-12-01

    Mode-locking is a milestone in the history of lasers that allows the generation of short light pulses and stabilization of lasers. This phenomenon is known to occur only in standard ordered lasers for long time and until recently it is found that it also occurs in disordered random lasers formed by nanoscale particles. Here, we report the realization of a so-called quasi mode-locking of coherent feedback random fiber laser which consists of a partially disordered linear cavity formed between a point reflector and a random distributed fiber Bragg grating array with an inserted graphene saturable absorber. We show that multi-groups of regular light pulses/sub-pulses with different repetition frequencies are generated within the quasi mode-locking regime through the so-called collective resonances phenomenon in such a random fiber laser. This work may provide a platform to study mode locking as well as pulse dynamic regulation of random lasing emission of coherent feedback disordered structures and pave the way to the development of novel multi-frequency pulse fiber lasers with potentially wide frequency tuning range.

  10. Chirp of monolithic colliding pulse mode-locked diode lasers

    DEFF Research Database (Denmark)

    Hofmann, M.; Bischoff, S.; Franck, Thorkild

    1997-01-01

    Spectrally resolved streak camera measurements of picosecond pulses emitted by hybridly colliding pulse mode-locked (CPM) laser diodes are presented in this letter. Depending on the modulation frequency both blue-chirped (upchirped) and red-chirped (downchirped) pulses can be observed. The two...... different regimes and the transition between them are characterized experimentally and the behavior is explained on the basis of our model for the CPM laser dynamics. (C) 1997 American Institute of Physics....

  11. A semiconductor laser

    Energy Technology Data Exchange (ETDEWEB)

    Naoko, O.; Masaru, K.

    1984-04-20

    A semiconductor laser with enhanced characteristics is patented in which bleaching coatings are generated on the outcoupling mirrors by sputtering alternating coating layers made from A1203 and A10, with high and low indices of refraction.

  12. High-Energy Passive Mode-Locking of Fiber Lasers

    Directory of Open Access Journals (Sweden)

    Edwin Ding

    2012-01-01

    Full Text Available Mode-locking refers to the generation of ultrashort optical pulses in laser systems. A comprehensive study of achieving high-energy pulses in a ring cavity fiber laser that is passively mode-locked by a series of waveplates and a polarizer is presented in this paper. Specifically, it is shown that the multipulsing instability can be circumvented in favor of bifurcating to higher-energy single pulses by appropriately adjusting the group velocity dispersion in the fiber and the waveplate/polarizer settings in the saturable absorber. The findings may be used as practical guidelines for designing high-power lasers since the theoretical model relates directly to the experimental settings.

  13. Sub-20-Attosecond Timing Jitter Mode-Locked Fiber Lasers

    CERN Document Server

    Kim, Hyoji; Song, Youjian; Yang, Heewon; Shin, Junho; Kim, Chur; Jung, Kwangyun; Wang, Chingyue; Kim, Jungwon

    2014-01-01

    We demonstrate 14.3-attosecond timing jitter [integrated from 10 kHz to 94 MHz offset frequency] optical pulse trains from 188-MHz repetition-rate mode-locked Yb-fiber lasers. In order to minimize the timing jitter, we shorten the non-gain fiber length to shorten the pulsewidth and reduce excessive higher-order nonlinearity and nonlinear chirp in the fiber laser. The measured jitter spectrum is limited by the amplified spontaneous emission limited quantum noise in the 100 kHz - 1 MHz offset frequency range, while it was limited by the relative intensity noise-converted jitter in the lower offset frequency range. This intrinsically low timing jitter enables sub-100-attosecond synchronization between the two mode-locked Yb-fiber lasers over the full Nyquist frequency with a modest 10-kHz locking bandwidth. The demonstrated performance is the lowest timing jitter measured from any free-running mode-locked fiber lasers, comparable to the performance of the lowest-jitter Ti:sapphire solid-state lasers.

  14. Self-mode-locking semiconductor disk laser.

    Science.gov (United States)

    Gaafar, Mahmoud; Richter, Philipp; Keskin, Hakan; Möller, Christoph; Wichmann, Matthias; Stolz, Wolfgang; Rahimi-Iman, Arash; Koch, Martin

    2014-11-17

    The development of mode-locked semiconductor disk lasers received striking attention in the last 14 years and there is still a vast potential of such pulsed lasers to be explored and exploited. While for more than one decade pulsed operation was strongly linked to the employment of a saturable absorber, self-mode-locking emerged recently as an effective and novel technique in this field - giving prospect to a reduced complexity and improved cost-efficiency of such lasers. In this work, we highlight recent achievements regarding self-mode-locked semiconductor devices. It is worth to note, that although nonlinear effects in the active medium are expected to give rise to self-mode-locking, this has to be investigated with care in future experiments. However, there is a controversy whether results presented with respect to self-mode-locking truly show mode-locking. Such concerns are addressed in this work and we provide a clear evidence of mode-locking in a saturable-absorber-free device. By using a BBO crystal outside the cavity, green light originating from second-harmonic generation using the out-coupled laser beam is demonstrated. In addition, long-time-span pulse trains as well as radiofrequency-spectra measurements are presented for our sub-ps pulses at 500 MHz repetition rate which indicate the stable pulse operation of our device. Furthermore, a long-time-span autocorrelation trace is introduced which clearly shows absence of a pedestal or double pulses. Eventually, a beam-profile measurement reveals the excellent beam quality of our device with an M-square factor of less than 1.1 for both axes, showing that self-mode-locking can be achieved for the fundamental transverse mode.

  15. Timing characterization of 100 GHz passively mode-locked discrete mode laser diodes

    CERN Document Server

    Bitauld, David; O'Brien, Stephen

    2011-01-01

    We report on the characterization of the timing stability of passively mode-locked discrete mode diode laser sources. These are edge-emitting devices with a spatially varying refractive index profile for spectral filtering. Two devices with a mode-locking frequency of 100 GHz are characterized. The first device is designed to support a comb of six modes and generates near Fourier limited 1.9 ps pulses. The second supports four primary modes resulting in a sinusoidal modulation of the optical intensity. Using a cross-correlation technique, we measured a 20 fs pulse to pulse timing jitter for the first device, while, for the second device, a mode-beating (RF) linewidth of 1 MHz was measured using heterodyne mixing in a semiconductor optical amplifier. Comparison of these results with those obtained for an equivalent Fabry-Perot laser indicates that the spectral filtering mechanism employed does not adversely affect the timing properties of these passively mode-locked devices.

  16. Integrated optics dissipative soliton mode-locked laser on glass

    Science.gov (United States)

    Charlet, Bertrand; Bastard, Lionel; Broquin, Jean-Emmanuel

    2011-01-01

    Mode-lock lasers have been studied a lot in the past years for producing pulses as short as possible. These devices have mostly been realized in bulk optics and they are consequently cumbersome and sensitive to vibrations. There are only a few studies on integrated optics mode-lock lasers, though this technology is very promising because of its stability, compactness and the possibility to integrate several functions on a single chip. In this paper, we present an ion-exchange passively mode-locked laser in dissipative soliton operation. One of the key characteristics of this structure is its mechanical stability. Indeed, no bulk optics is needed because the saturable absorber is hybridized on the top of the waveguide in order to interact with the evanescent part of the guided mode. Indeed, the device that has been obtained is composed of an ion-exchanged single mode waveguide realized in a Neodymium doped phosphate glass. The laser feedback is produced by a Fabry-Perot cavity realized with two multilayers dielectric mirrors stuck on the waveguides facets. We implemented a bis(4- dimethylaminodithiobenzil)nickel (BDN) dye included in a cellulose acetate thick film, which presents a saturable absorber behaviour around 1.06 μm. With this structure, pulses with repetition rates of 3.3 GHz and a single mode output have been measured. Moreover, the use of an autocorrelation set-up allowed us measuring picosecond pulse durations.

  17. Self-stabilized and dispersion-compensated passively mode-locked Yb:Yttrium aluminum garnet laser

    Science.gov (United States)

    Agnesi, A.; Guandalini, A.; Reali, G.

    2005-04-01

    Self-stabilized passive mode-locking of a diode-pumped Yb:yttrium aluminum garnet laser with a semiconductor saturable absorber was achieved using an off-phase-matching second-harmonic crystal. According to the numerical model, such a condition is accomplished by self-defocusing in the nonlinear crystal in the presence of positive intracavity dispersion. Robust mode locking with Fourier-limited 1.0-ps pulses was obtained, whereas mode locking, unassisted by the nonlinear crystal, yielded 2.2-ps pulses, with the laser operating near the edge of the stability region in order to minimize the saturation energy of the semiconductor device.

  18. Commercial mode-locked vertical external cavity surface emitting lasers

    Science.gov (United States)

    Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Head, C. Robin; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.

    2017-02-01

    In recent years, M Squared Lasers have successfully commercialized a range of mode-locked vertical external cavity surface emitting lasers (VECSELs) operating between 920-1050nm and producing picosecond-range pulses with average powers above 1W at pulse repetition frequencies (PRF) of 200MHz. These laser products offer a low-cost, easy-to-use and maintenance-free tool for the growing market of nonlinear microscopy. However, in order to present a credible alternative to ultrafast Ti-sapphire lasers, pulse durations below 200fs are required. In the last year, efforts have been directed to reduce the pulse duration of the Dragonfly laser system to below 200fs with a target average power above 1W at a PRF of 200MHz. This paper will describe and discuss the latest efforts undertaken to approach these targets in a laser system operating at 990nm. The relatively low PRF operation of Dragonfly lasers represents a challenging requirement for mode-locked VECSELs due to the very short upper state carrier lifetime, on the order of a few nanoseconds, which can lead to double pulsing behavior in longer cavities as the time between consecutive pulses is increased. Most notably, the design of the Dragonfly VECSEL cavity was considerably modified and the laser system extended with a nonlinear pulse stretcher and an additional compression stage. The improved Dragonfly laser system achieved pulse duration as short as 130fs with an average power of 0.85W.

  19. Application of ABCD Formalism in Theoretical and Experimental Analysis of Actively Modelocked Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Time domain ABCD matrix formalism is a useful model for analyzing the characteristics of actively modelocked fiber laser. Based on this model and given more consideration on the influences of optical fiber dispersion and optical fiber nonlinearity, the laser characteristic of actively modelocked fiber laser is analyzed, and the comparision of the theoretical analysis results with experimental ones is given.

  20. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  1. Mode-locked InAs/InP quantum-dash-based DBR laser with monolithically integrated SOA

    Science.gov (United States)

    Joshi, Siddharth; Chimot, Nicolas; Barbet, Sophie; Accard, Alain; Lelarge, François

    2014-02-01

    We present the first demonstration of InAs/InP Quantum Dash based single-section frequency comb generator designed for use in photonic integrated circuits. The laser cavity is closed using a specific Bragg reflector without compromising the mode-locking performance of the laser. This enables the integration of single-section mode- locked laser on photonic integrated circuits as on-chip frequency comb source. As a demonstration, we integrate the Fabry Perot laser with a semiconductor optical amplifier. Such a device could be used for amplification or modulation of the frequency generated comb. We thus investigate the device operation to obtain a NRZ modulated comb.

  2. Active mode-locking via pump modulation in a Tm-doped fiber laser

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2016-10-01

    Full Text Available We propose and experimentally realize a new class of actively mode-locking technique using pump modulation for rare-earth doped fiber lasers. A Tm-doped fiber laser at 2 μm is mode-locked using the proposed active mode-locking via pump modulation technique. Low-threshold continuous-wave mode-locking is achieved with a transform-limited pulse width of 4.4 ps, a spectral bandwidth of 0.9 nm, and a repetition rate of 12.9 MHz. Second-harmonic mode-locking is also demonstrated by simply driving the pump current at an appropriate frequency. More importantly, we believe that this technique can be applied to mode-lock other rare-earth doped fiber laser systems such as erbium- and ytterbium-doped fiber lasers.

  3. Towards monolithic integration of mode-locked vertical cavity surface emitting laser

    Science.gov (United States)

    Aldaz, Rafael I.

    2007-12-01

    The speed and performance of today's high end computing and communications systems have placed difficult but still feasible demands on off-chip electrical interconnects. However, future interconnect systems may need aggregate bandwidths well into the terahertz range thereby making electrical bandwidth, density, and power targets impossible to meet. Optical interconnects, and specifically compact semiconductor mode-locked lasers, could alleviate this problem by providing short pulses in time at 10s of GHz repetition rates for Optical Time Division Multiplexing (OTDM) and clock distribution applications. Furthermore, the characteristic spectral comb of frequencies of these lasers could also serve as a multi-wavelength source for Wavelength Division Multiplexing (WDM) applications. A fully integrated mode-locked Vertical Cavity Surface Emitting Laser (VCSEL) is proposed as a low-cost high-speed source for these applications. The fundamental laser platform for such a device has been developed and a continuous-wave version of these lasers has been fabricated and demonstrated excellent results. Output powers close to 60mW have been obtained with very high beam quality factor of M2 unassisted ultrafast QD saturable absorbers, without the need to incorporate high concentrations of non radiative recombination centers by either ion-implantation or low temperature growth.

  4. Fundamentals of semiconductor lasers

    CERN Document Server

    Numai, Takahiro

    2015-01-01

    This book explains physics under the operating principles of semiconductor lasers in detail based on the experience of the author, dealing with the first manufacturing of phase-shifted DFB-LDs and recent research on transverse modes.   The book also bridges a wide gap between journal papers and textbooks, requiring only an undergraduate-level knowledge of electromagnetism and quantum mechanics, and helps readers to understand journal papers where definitions of some technical terms vary, depending on the paper. Two definitions of the photon density in the rate equations and two definitions of the phase-shift in the phase-shifted DFB-LD are explained, and differences in the calculated results are indicated, depending on the definitions.    Readers can understand the physics of semiconductor lasers and analytical tools for Fabry-Perot LDs, DFB-LDs, and VCSELs and will be stimulated to develop semiconductor lasers themselves.

  5. Multiwavelength arrays of mode-locked lasers for WDM applications

    Science.gov (United States)

    Davis, Lawrence J.; Young, Martin G.; Dougherty, David J.; Keo, Sam A.; Muller, Richard E.; Maker, Paul D.; Forouhar, Siamak

    1998-08-01

    The continued need for increased bandwidth is driving the pursuit of both increased speed in TDM and more channels in WDM for fiber optic communication systems. Multiwavelength arrays of monolithic mode-locked DBR lasers are an attractive source for future high bit rate (100 - 800 Gb/s) optical communication systems. Monolithic mode-locked lasers in the colliding-pulse mode-locked configuration have been fabricated, with DBR end mirrors for wavelength selection. A continuous gain region has been employed for ease of fabrication and the elimination of multiple reflections within the cavity. Arrays containing up to 9 wavelengths have been fabricated, with all the wavelengths within the erbium-doped fiber amplifier gain bandwidth. An RF signal is applied to the saturable absorber for synchronization to an external clock and reduction of the phase noise. For a 4.6 mm cavity, short (< 10 ps) optical pulses at high (approximately 18 GHz) repetition rates have been achieved. Low single side-band phase noise values (-107 dBc/Hz 100 kHz offset) have been demonstrated, nearly equal to that of the RF source.

  6. Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang

    2012-01-01

    , enable acquisition of densely sampled three-dimensional datasets covering a wide field of view. However, semiconductor optical amplifiers (SOAs)-the typical laser gain media for swept sources-for the 1060nm band could until recently only provide relatively low output power and bandwidth. We have......Optical coherence tomography (OCT) in the 1060nm range is interesting for in vivo imaging of the human posterior eye segment (retina, choroid, sclera) due to low absorption in water and deep penetration into the tissue. Rapidly tunable light sources, such as Fourier domain mode-locked (FDML) lasers...... implemented an FDML laser using a new SOA featuring broad gain bandwidth and high output power. The output spectrum coincides with the wavelength range of minimal water absorption, making the light source ideal for OCT imaging of the posterior eye segment. With a moderate SOA current (270 mA) we achieve up...

  7. Semiconductor nanowire lasers

    Science.gov (United States)

    Eaton, Samuel W.; Fu, Anthony; Wong, Andrew B.; Ning, Cun-Zheng; Yang, Peidong

    2016-06-01

    The discovery and continued development of the laser has revolutionized both science and industry. The advent of miniaturized, semiconductor lasers has made this technology an integral part of everyday life. Exciting research continues with a new focus on nanowire lasers because of their great potential in the field of optoelectronics. In this Review, we explore the latest advancements in the development of nanowire lasers and offer our perspective on future improvements and trends. We discuss fundamental material considerations and the latest, most effective materials for nanowire lasers. A discussion of novel cavity designs and amplification methods is followed by some of the latest work on surface plasmon polariton nanowire lasers. Finally, exciting new reports of electrically pumped nanowire lasers with the potential for integrated optoelectronic applications are described.

  8. Repetition rate continuously tunable 10-GHz picosecond mode-locked fiber ring laser

    Institute of Scientific and Technical Information of China (English)

    Fang Wan; Ziyu Wang

    2006-01-01

    A couple of simple-structure phase modulators were used in active mode-locked fiber laser to implement repetition rate continuous tuning. The laser produces pulse as short as 5.7 ps whose repetition rate tuning can cover the spacing of the adjoining order mode-locking frequencies.

  9. Modeling of mode-locked coupled-resonator optical waveguide lasers

    DEFF Research Database (Denmark)

    Agger, Christian; Skovgård, Troels Suhr; Gregersen, Niels;

    2010-01-01

    Coupled-resonator optical waveguides made from coupled high-Q photonic crystal nanocavities are investigated for use as cavities in mode-locked lasers. Such devices show great potential in slowing down light and can serve to reduce the cavity length of a mode-locked laser. An explicit expression...

  10. Properties of InGaAs quantum dot saturable absorbers in monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Thompson, M.G.; Marinelli, C.; Chu, Y.

    Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance.......Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance....

  11. Long all-active monolithic mode-locked lasers with surface-etched bragg gratings

    OpenAIRE

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    2007-01-01

    We have fabricated 4.4-mm-long monolithic InAlGaAsP–InP mode-locked lasers with integrated deeply surface etched distributed Bragg reflector (DBR) mirrors. The lasers produce 3.7-ps transform-limited Gaussian pulses with 10-mW average output power and 250-fs absolute timing jitter. The performance of the DBR lasers is compared to the performance of Fabry–PÉrot mode-locked lasers from the same wafer and to the performance of earlier reported long monolithic DBR mode-locked lasers and is found ...

  12. Long all-active monolithic mode-locked lasers with surface-etched bragg gratings

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    2007-01-01

    We have fabricated 4.4-mm-long monolithic InAlGaAsP–InP mode-locked lasers with integrated deeply surface etched distributed Bragg reflector (DBR) mirrors. The lasers produce 3.7-ps transform-limited Gaussian pulses with 10-mW average output power and 250-fs absolute timing jitter. The performance...... of the DBR lasers is compared to the performance of Fabry–PÉrot mode-locked lasers from the same wafer and to the performance of earlier reported long monolithic DBR mode-locked lasers and is found to be better....

  13. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers.

    Science.gov (United States)

    Eigenwillig, Christoph M; Wieser, Wolfgang; Todor, Sebastian; Biedermann, Benjamin R; Klein, Thomas; Jirauschek, Christian; Huber, Robert

    2013-01-01

    Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.

  14. A racetrack mode-locked silicon evanescent laser.

    Science.gov (United States)

    Fang, Alexander W; Koch, Brian R; Gan, Kian-Giap; Park, Hyundai; Jones, Richard; Cohen, Oded; Paniccia, Mario J; Blumenthal, Daniel J; Bowers, John E

    2008-01-21

    By utilizing a racetrack resonator topography, an on-chip mode locked silicon evanescent laser (ML-SEL) is realized that is independent of facet polishing. This enables integration with other devices on silicon and precise control of the ML-SEL's repetition rate through lithographic definition of the cavity length. Both passive and hybrid mode-locking have been achieved with transform limited, 7 ps pulses emitted at a repetition rate of 30 GHz. Jitter and locking range are measured under hybrid mode locking with a minimum absolute jitter and maximum locking range of 364 fs, and 50 MHz, respectively.

  15. Nonlinear fibre-optic devices pumped by semiconductor disk lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chamorovskiy, A Yu; Okhotnikov, Oleg G [Optoelectronics Research Center, Tampere University of Technology, Tampere (Finland)

    2012-11-30

    Semiconductor disk lasers offer a unique combination of characteristics that are particularly attractive for pumping Raman lasers and amplifiers. The advantages of disk lasers include a low relative noise intensity (-150 dB Hz{sup -1}), scalable (on the order of several watts) output power, and nearly diffraction-limited beam quality resulting in a high ({approx}70 % - 90 %) coupling efficiency into a single-mode fibre. Using this technology, low-noise fibre Raman amplifiers operating at 1.3 {mu}m in co-propagation configuration are developed. A hybrid Raman-bismuth doped fibre amplifier is proposed to further increase the pump conversion efficiency. The possibility of fabricating mode-locked picosecond fibre lasers operating under both normal and anomalous dispersion is shown experimentally. We demonstrate the operation of 1.38-{mu}m and 1.6-{mu}m passively mode-locked Raman fibre lasers pumped by 1.29-{mu}m and 1.48-{mu}m semiconductor disk lasers and producing 1.97- and 2.7-ps pulses, respectively. Using a picosecond semiconductor disk laser amplified with an ytterbium-erbium fibre amplifier, the supercontinuum generation spanning from 1.35 {mu}m to 2 {mu}m is achieved with an average power of 3.5 W. (invited paper)

  16. Tunable Infrared Semiconductor Lasers

    Science.gov (United States)

    2013-12-20

    Lett. 81, 406-408 (2002). [20] M. Ito and T. Kimura, “Oscillation properties of AlGaAs DH Lasrs with an external grating,” IEEE J. Quant. Elec- tron...tuning range has been demonstrated on a large area index-coupled, optically pumped mid-infrared type-II semiconductor distributed feedback (DFB) laser...lithography (IL) technique is used to pattern this chirped grating with two coherent spherical waves. A new grating fabrication optical arrangement

  17. Dynamic localization and Bloch oscillations in the spectrum of a frequency mode-locked laser.

    Science.gov (United States)

    Longhi, Stefano

    2005-04-01

    It is shown that a frequency mode-locked laser with a sinusoidal sweep of modulation frequency around a mode-locking condition represents an ideal optical system for observing in the spectral domain the phenomena of dynamic localization and Bloch oscillations of electrons in an ideal solid placed in an external ac electric field.

  18. WS2 mode-locked ultrafast fiber laser

    Science.gov (United States)

    Mao, Dong; Wang, Yadong; Ma, Chaojie; Han, Lei; Jiang, Biqiang; Gan, Xuetao; Hua, Shijia; Zhang, Wending; Mei, Ting; Zhao, Jianlin

    2015-01-01

    Graphene-like two dimensional materials, such as WS2 and MoS2, are highly anisotropic layered compounds that have attracted growing interest from basic research to practical applications. Similar with MoS2, few-layer WS2 has remarkable physical properties. Here, we demonstrate for the first time that WS2 nanosheets exhibit ultrafast nonlinear saturable absorption property and high optical damage threshold. Soliton mode-locking operations are achieved separately in an erbium-doped fiber laser using two types of WS2-based saturable absorbers, one of which is fabricated by depositing WS2 nanosheets on a D-shaped fiber, while the other is synthesized by mixing WS2 solution with polyvinyl alcohol, and then evaporating them on a substrate. At the maximum pump power of 600 mW, two saturable absorbers can work stably at mode-locking state without damage, indicating that few-layer WS2 is a promising high-power flexible saturable absorber for ultrafast optics. Numerous applications may benefit from the ultrafast nonlinear features of WS2 nanosheets, such as high-power pulsed laser, materials processing, and frequency comb spectroscopy. PMID:25608729

  19. Hybrid mode-locked ultrashort-pulse erbium-doped fiber laser

    Science.gov (United States)

    Lazarev, Vladimir A.; Sazonkin, Stanislav S.; Pniov, Alexey B.; Tsapenko, Konstantin P.; Krylov, Alexander A.; Obraztsova, Elena D.

    2014-03-01

    One of the implementations of fs-laser with CNT-film for mode-locking is considered. Scheme of single-pulse, self-starting, stable mode-locked laser generation by appropriate polarization controllers adjustment is suggested. The mechanism of cavity length stabilization for a femtosecond fiber laser based on the pump source modulation is considered. Bandwidth of the feedback frequency stabilization system based on pump source modulation method is defined.

  20. Diode-Pumped Mode-Locked LiSAF Laser

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-02-01

    Under this contract we have developed Cr{sup 3+}:LiSrAlF{sub 6} (Cr:LiSAF, LiSAF) mode-locked lasers suitable for generation of polarized electrons for CEBAF. As 670 nm is an excellent wavelength for optical pumping of Cr:LiSAF, we have used a LIGHTWAVE developed 670 nm diode pump module that combines the output of ten diode lasers and yields approximately 2 Watts of optical power. By the use of a diffraction limited pump beam however, it is possible to maintain a small mode size through the length of the crystal and hence extract more power from Cr:LiSAF laser. For this purpose we have developed a 1 Watt, red 660nm laser (LIGHTWAVE model 240R) which serves as an ideal pump for Cr:LiSAF and is a potential replacement of costly and less robust krypton laser. This new system is to compliment LIGHTWAVE Series 240, and is currently being considered for commercialization. Partially developed under this contract is LIGHTWAVEs product model 240 which has already been in our production lines for a few months and is commercially available. This laser produces 2 Watts of output at 532 nm using some of the same technology developed for production of the 660nm red system. It is a potential replacement for argon ion lasers and has better current and cooling requirements and is an excellent pump source for Ti:Al{sub 2}O{sub 3}. Also, as a direct result of this contract we now have the capability of commercially developing a mode-locked 100MHz Cr:LiSAF system. Such a laser could be added to our 100 MHz LIGHTWAVE Series 131. The Series 131 lasers provide pico second pulses and were originally developed under another DOE SBIR. Both models of LIGHTWAVE Series 240 lasers, the fiber coupled pump module and the 100MHz LiSAF laser of Series 131 have been partially developed under this contract, and are commercially competitive products.

  1. 70-fs mode-locked erbium-doped fiber laser with topological insulator.

    Science.gov (United States)

    Liu, Wenjun; Pang, Lihui; Han, Hainian; Tian, Wenlong; Chen, Hao; Lei, Ming; Yan, Peiguang; Wei, Zhiyi

    2016-01-27

    Femtosecond optical pulses have applications in optical communication, astronomical frequency combs, and laser spectroscopy. Here, a hybrid mode-locked erbium-doped fiber (EDF) laser with topological insulator (TI) is proposed, for the first time to our best knowledge. The pulsed laser deposition (PLD) method is employed to fabricate the fiber-taper TI saturable absorber (TISA). By virtue of the fiber-taper TISA, the hybrid EDF laser is passively mode-locked using the nonlinear polarization evolution (NPE), and emits 70 fs pulses at 1542 nm, whose 3 dB spectral width is 63 nm with a repetition rate and transfer efficiency of 95.4 MHz and 14.12%, respectively. Our experiments indicate that the proposed hybrid mode-locked EDF lasers have better performance to achieve shorter pulses with higher power and lower mode-locking threshold in the future.

  2. Characterization of a self-starting, passively mode-locked fiber ring laser that exploits nonlinear polarization evolution.

    Science.gov (United States)

    Matsas, V J; Richardson, D J; Newson, T P; Payne, D N

    1993-03-01

    A full characterization of a self-starting, passively mode-locked soliton ring fiber laser in terms of its various modes of mode-locked operation, cavity length, and type of fiber used is presented. Direct evidence, based on state-of-polarization measurements, that nonlinear polarization evolution is the responsible mode-locking mechanism is also given.

  3. Compact optical displacement sensing by detection of microwave signals generated from a monolithic passively mode-locked laser under feedback

    Science.gov (United States)

    Simos, Christos; Simos, Hercules; Nikas, Thomas; Syvridis, Dimitris

    2015-05-01

    A monolithic passively mode-locked laser is proposed as a compact optical sensor for displacements and vibrations of a reflecting object. The sensing principle relies on the change of the laser repetition frequency that is induced by optical feedback from the object under measurement. It has been previously observed that, when a semiconductor passively mode locked laser receives a sufficient level of optical feedback from an external reflecting surface it exhibits a repetition frequency that is no more determined by the mode-locking rule of the free-running operation but is imposed by the length of the external cavity. Therefore measurement of the resulting laser repetition frequency under self-injection permits the accurate and straightforward determination of the relative position of the reflecting object. The system has an inherent wireless capability since the repetition rate of the laser can be wirelessly detected by means of a simple antenna which captures the microwave signal generated by the saturable absorber and is emitted through the wiring of the laser. The sensor setup is very simple as it requires few optical components besides the laser itself. Furthermore, the deduction of the relative position of the reflecting object is straightforward and does not require any processing of the detected signal. The proposed sensor has a theoretical sub-wavelength resolution and its performance depends on the RF linewidth of the laser and the resolution of the repetition frequency measurement. Other physical parameters that induce phase changes of the external cavity could also be quantified.

  4. Passive Q-Switching Modelocked Yb3+-Doped Fibre Laser with GaAs Absorber Grown at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    FENG Xiao-Ming; WANG Yong-Gang; ZHANG Zhi-Gang; WANG Yong-Gang; LIU Yuan-Yuan; LAN Yong-Sheng; LIN Tao; WANG Jun; WANG Xiao-Wei; FANG Gao-Zhan; MA Xiao-Yu

    2005-01-01

    @@ GaAs absorber was grown at low temperature (550℃) by metal organic chemical vapour deposition (MOCVD)and was used as an output coupler with which we realized Q-switching modelocked Yb3+-doped fibre laser. The shortest period of the envelope of the Q-switched modelocking is about 3μs. The modelocking threshold is 4.27 W and the highest average output pulse power is 290mW. The modelocking frequency is 12MHz.

  5. Modelling and characterization of colliding-pulse mode-locked (CPM) quantum well lasers. [MPS1

    DEFF Research Database (Denmark)

    Bischoff, Svend; Brorson, S.D.; Franck, T.

    1996-01-01

    A theoretical and experimental study of passive colliding pulse mode-locked quantum well lasers is presented. The theoretical model for the gain dynamics is based on semi-classical density matrixequations. The gain dynamics are characterized exp...

  6. Graphene oxide mode-locked femtosecond erbium-doped fiber lasers

    National Research Council Canada - National Science Library

    Xu, Jia; Liu, Jiang; Wu, Sida; Yang, Quan-Hong; Wang, Pu

    2012-01-01

    We demonstrated the femtosecond erbium-doped all-fiber lasers mode-locked with graphene oxide, which can be conveniently obtained from natural graphite by simple oxidation and ultra-sonication process...

  7. Modelling and characterization of colliding-pulse mode-locked (CPM) quantum well lasers. [MPS1

    DEFF Research Database (Denmark)

    Bischoff, Svend; Brorson, S.D.; Franck, T.;

    1996-01-01

    A theoretical and experimental study of passive colliding pulse mode-locked quantum well lasers is presented. The theoretical model for the gain dynamics is based on semi-classical density matrixequations. The gain dynamics are characterized exp...

  8. Widely tunable Tm-doped mode-locked all-fiber laser

    Science.gov (United States)

    Yan, Zhiyu; Sun, Biao; Li, Xiaohui; Luo, Jiaqi; Shum, Perry Ping; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2016-06-01

    We demonstrated a widely tunable Tm-doped mode-locked all-fiber laser, with the widest tunable range of 136 nm, from 1842 to 1978 nm. Nonlinear polarization evolution (NPE) technique is employed to enable mode-locking and the wavelength-tunable operation. The widely tunable range attributes to the NPE-induced transmission modulation and bidirectional pumping mechanism. Such kind of tunable mode-locked laser can find various applications in optical communications, spectroscopy, time-resolved measurement, and among others.

  9. Figure-eight actively-passively mode-locked erbium-doped fiber laser

    Science.gov (United States)

    Wang, Zhaoying; Yu, Zhenhong; Ge, Chunfeng; Zhang, Ruifeng; Jia, Dongfang; Li, Shichen

    2003-03-01

    The advantages of using nonlinear optical loop mirror (NOLM) to compress pulse with slight amplitude fluctuation and reflected energy loss are analyzed in theory. Experimentally the NOLM is placed in an actively mode-locked erbium-doped fiber ring laser to form a figure-eight actively and passively modelocked fiber laser. 12 ps mode-locked pulses centered at 1.543 ?m were obtained with the modulation frequency of 2.498748700 GHz. 3.715 mW output power is achieved with 50 mW pump power.

  10. Pulse-shaping mechanism in colliding-pulse mode-locked laser diodes

    DEFF Research Database (Denmark)

    Bischoff, Svend; Sørensen, Mads Peter; Mørk, J.;

    1995-01-01

    The large signal dynamics of passively colliding pulse mode-locked laser diodes is studied. We derive a model which explains modelocking via the interplay of gain and loss dynamics; no bandwidth limiting element is necessary for pulse formation. It is found necessary to have both fast and slow...... absorber dynamics to achieve mode-locking. Significant chirp is predicted for pulses emitted from long lasers, in agreement with experiment. The pulse width shows a strong dependence on both cavity and saturable absorber length. (C) 1995 American Institute of Physics....

  11. Diode-end-pumped passively mode-locked Nd:GAGG laser at 1.3 μm with SESAM Diode-end-pumped passively mode-locked Nd:GAGG laser

    Science.gov (United States)

    Li, Y. B.; Jia, Z. T.; Yang, Y.; Fu, X. W.; Yuan, D. S.; Zhi, Y. C.; Dong, C. M.; Zhang, B. T.; He, J. L.; Tao, X. T.

    2012-08-01

    The performance of a passively mode-locked Nd:Gd3AlxGa5-xO12 (Nd:GAGG) laser at 1332 nm was experimentally investigated by using a semiconductor saturable absorber mirror (SESAM) for the first time. At the absorbed pump power of 6.7 W, the average output power was obtained to be 293 mW with the pulse duration of 6.3 ps and the repetition rate of 32.2 MHz. The corresponding single pulse energy and the peak power were determined to be 4.55 nJ and 722 W, respectively.

  12. Wavelength and duration tunable soliton generation from a regeneratively mode-locked fiber laser

    Institute of Scientific and Technical Information of China (English)

    Bin Tan(谈斌); Zhiyong Li(李智勇); Zhaoying Wang(王肇颖); Chunfeng Ge(葛春风); Dongfang Jia(贾东方); Wenjun Ni(倪文俊); Shichen Li(李世忱)

    2004-01-01

    A 10-GHz soliton source with pulse duration between 4-8 ps and wavelength continuously tunable from 1530 to 1563 nm is presented. Using regeneratively mode-locking technology, the harmonically modelocked fiber ring laser could work without pulse dropout at room temperature when no cavity length or polarization maintaining mechanism is available. Applying only one 980-nm laser diode pump, the average output power reaches more than 4 mW.

  13. Record bandwidth and sub-picosecond pulses from a monolithically integrated mode-locked quantum well ring laser.

    Science.gov (United States)

    Moskalenko, Valentina; Latkowski, Sylwester; Tahvili, Saeed; de Vries, Tjibbe; Smit, Meint; Bente, Erwin

    2014-11-17

    In this paper, we present the detailed characterization of a semiconductor ring passively mode-locked laser with a 20 GHz repetition rate that was realized as an indium phosphide based photonic integrated circuit (PIC). Various dynamical regimes as a function of operating conditions were explored in the spectral and time domain. A record bandwidth of the optical coherent comb from a quantum well based device of 11.5 nm at 3 dB and sub-picosecond pulse generation is demonstrated.

  14. $CO_{2}$ laser ion source Comparison between mode-locked and free- running laser beams

    CERN Document Server

    Lisi, N; Scrivens, R

    2001-01-01

    The production of highly charged ions in a CO/sub 2/ laser-generated plasma is compared for different laser pulse-time structures. The work was performed at the CERN Laser Ion Source, which has the aim of developing a high current, high charge-state ion source for the Large Hadron Collider (LHC). When an intense laser pulse is focused onto a high-Z metal target, the ions expanding in the plasma plume are suitable for extraction from the plasma and matching into a synchrotron. For the first time, a comparison is made between free- running pulses with randomly fluctuating intensity, and mode-locked pulse trains with a reproducible structure and the same energy. Despite the lower power density with respect to the mode-locked pulse train, the free-running pulse provides higher charge states and higher yield. (10 refs).

  15. Efficient Laser-Diode End-Pumped Passively Q-Switched Mode-Locked Yb:LYSO Laser Based on SESAM

    Institute of Scientific and Technical Information of China (English)

    XU Shi-Xiang; LI Wen-Xue; HAO Qiang; ZHAI Hui; ZENG He-Ping

    2008-01-01

    We report an eddicient Q-switched laser action based on a semiconductor saturable absorber mirrors(SESAMs)as passively Q-switched laser starter and a Yb:LYSO alloyed crystal as gain material pumped directly by 974nm In GaAs laser diodes.The output pulse duration is measured to be about 7μs,while the average power and the repetition rate of the pulse chain are about 0.92 W and 6.2kHz.respectively,under 12.5 W absorbed pumping power.The Q-switched mode-locked pulse train is also observed in this setup.The laser performance shows that Yb:LYSO is a promising laser gain medium for laser-diode pumped compact solid-state lasers.

  16. A semiconductor laser

    Energy Technology Data Exchange (ETDEWEB)

    Naoko, O.; Khiroiti, S.

    1984-05-20

    An improved method is patented for increasing the service life of semiconductor lasers which does not hinder their characteristics, by applying a protective film to the end planes of the optical resonator of the laser. It is recommended that a mixture of an A1203 dielectric and an inert element such as argon be used for a GaAs, GaA1As laser as the protective film. The radii of gallium and arsenic atoms are equal to 1.24 and 1.25 angstroms, respectively. The radii of A1, O and Si atoms which make up the protective film are equal to 1.43, .61 and 1.17 angstroms, respectively. The radius of the argon atoms in the protective film, which is equal to 1.91 angstroms) is high compared to the atoms noted above. As a result, the movement of the gallium and arsenic atoms, which causes a drop in later characteristics during operation, is made more difficult.

  17. Broadly Tunable SOA-Based Active Mode-Locked Fibre Ring Laser by Forward Injection Optical Pulse

    Institute of Scientific and Technical Information of China (English)

    YAN Shuang-Yi; ZHANG Jian-Guo; ZHAO Wei; LU Hong-Qiang; WANG Wei-Qiang

    2008-01-01

    @@ We present a broadly tunable active mode-locked fibre ring laser based on a semiconductor optical amplifier (SOA), with forward injection optical pulses. The laser can generate pulse sequence with pulsewidth about 12ps and high output power up to 8.56dBm at 2.5 GHz stably. Incorporated with a wavelength-tunable optical bandpass filter, the pulse laser can operate with a broad wavelength tunable span up to 37nm with almost constant pulsewidth. A detailed experimental analysis is also carried out to investigate the relationship between the power of the internal cavity and the pulsewidth of the output pulse sequence. The experimental configuration of the pulse laser is very simple and easy to setup with no polarization-sensitive components.

  18. Equal-Amplitude Optical Pulse Generation from a Rational Harmonic Mode-Locked Fibre Laser

    Institute of Scientific and Technical Information of China (English)

    FENG Xin-Huan; YUAN Shu-Zhong; LI Yao; LIU Yan-Ge; KAI Gui-Yun; DONG Xiao-Yi

    2004-01-01

    A simple technique for the generation of equal-amplitude high repetition rate pulses from a rational harmonic mode-locked fibre ring laser is demonstrated. The principle is based on the combination of the nonlinear characteristics of the modulator and the effect of rational harmonic mode-locking. The two sources act on each other and the integrated effect eventually leads to the pulse amplitude-equalization. We obtain amplitude-equalized short pulses up to the fifth-order rational harmonic mode-locking with an optimum bias level and modulation depth of the modulator, which demonstrates the efficiency of this method.

  19. Mode-locked 1.5 micrometers semiconductor optical amplifier fiber ring

    OpenAIRE

    Pedersen, Niels V.; Jakobsen, Kaj Bjarne; Vaa, Michael

    1996-01-01

    The dynamics of a mode-locked SOA fiber ring are investigated experimentally and numerically. Generation of near transform-limited (time-bandwidth product=0.7) 1.5 μm 54 ps FWHM pulses with a peak power of 2.8 mW at a repetition rate of 960 MHz is demonstrated experimentally. The experimental results agree well with the simulation results obtained using a transmission line laser model (TLLM) model, Both experiments and numerical simulations show how the RF power and the detuning affect the pu...

  20. Semiconductor lasers stability, instability and chaos

    CERN Document Server

    Ohtsubo, Junji

    2017-01-01

    This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in se...

  1. A variable frequency semiconductor laser

    Energy Technology Data Exchange (ETDEWEB)

    Tosikhiro, F.; Khiromoto, S.

    1984-03-27

    A variable frequency, power stabilized semiconductor laser is patented. This laser includes, in addition to an active layer, a photoconducting channel layer and a layer made from a material manifesting a Pockels effect. A voltage is injected between these two layers to vary the emission frequency. The laser pumping voltage is stabilized.

  2. CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser

    Science.gov (United States)

    Zhou, Yan; Hu, Zhiping; Li, Yue; Xu, Jianqiu; Tang, Xiaosheng; Tang, Yulong

    2016-06-01

    Cesium lead halide perovskite nanocrystals (CsPbX3, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr3 nanocrystal films and characterize their physical properties. Broadband linear absorption from ˜0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr3 saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr3 liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm2, respectively. With this SA, mode-locking operation of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ˜216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ˜1076 nm. This work shows that CsPbBr3 films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.

  3. CsPbBr{sub 3} nanocrystal saturable absorber for mode-locking ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan; Li, Yue; Xu, Jianqiu; Tang, Yulong, E-mail: yulong@sjtu.edu.cn [Key Laboratory for Laser Plasmas (MOE), Department of Physics and Astronomy, Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240 (China); Hu, Zhiping; Tang, Xiaosheng [Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2016-06-27

    Cesium lead halide perovskite nanocrystals (CsPbX{sub 3}, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr{sub 3} nanocrystal films and characterize their physical properties. Broadband linear absorption from ∼0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr{sub 3} saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr{sub 3} liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm{sup 2}, respectively. With this SA, mode-locking operation of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ∼216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ∼1076 nm. This work shows that CsPbBr{sub 3} films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.

  4. Kerr Lens Mode-locked Operation of Yb:KYW Laser

    Institute of Scientific and Technical Information of China (English)

    Falihati.Mejiti; V.L.Kalashnikov; I.G.Poloyko; Toran.Vajidi

    2002-01-01

    Using a modified ABCD-matrix approach accounting for nonlinear refraction in active medium,the ranges of cavity parameters that provide a mode-locking of Yb∶KYW-laser in usual z-fold cavity configuration are determined.Taking the cavity parameters that provide a most efficient mode locking and based on fluctuation model,a numerical simulation of laser operation is performed.In the calculations the side-band pump power of 6W at 982 nm is used in 1 cm length KYW crystal with 1 cm×0.005 cm beam cross section.Calculations show that self-starting operation is possible with these parameters and dispersion compensation allows for bandwidth-limited ultrashort pulse generation.The shortest pulse duration was determined to be about 200 fs with self-starting buid-up time of 130 μs.Such a built-up time is comparable and even shorter than that one for the lasers with semiconductor saturable absorbers.The region of negative dispersion provided by prism pair for a stable ultrashort pulse generation was determined to be (-17000~-42000)fs2.

  5. A semiconductor laser excitation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Kaadzunari, O.; Masaty, K.

    1984-03-27

    A semiconductor laser excitation circuit is patented that is designed for operation in a pulsed mode with a high pulse repetition frequency. This circuit includes, in addition to a semiconductor laser, a high speed photodetector, a reference voltage source, a comparator, and a pulse oscillator and modulator. If the circuit is built using standard silicon integrated circuits, its speed amounts to several hundred megahertz, if it is constructed using gallium arsenide integrated circuits, its speed is several gigahertz.

  6. Semiconductor lasers and herterojunction leds

    CERN Document Server

    Kressel, Henry

    2012-01-01

    Semiconductor Lasers and Heterojunction LEDs presents an introduction to the subject of semiconductor lasers and heterojunction LEDs. The book reviews relevant basic solid-state and electromagnetic principles; the relevant concepts in solid state physics; and the p-n junctions and heterojunctions. The text also describes stimulated emission and gain; the relevant concepts in electromagnetic field theory; and the modes in laser structures. The relation between electrical and optical properties of laser diodes; epitaxial technology; binary III-V compounds; and diode fabrication are also consider

  7. Pulse properties of external cavity mode locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Kroh, Marcel; Mørk, Jesper

    2006-01-01

    The performance of an external-cavity mode-locked semiconductor laser is investigated both theoretically and experimentally. The optimization analysis focuses on the regimes of stable mode locking and the generation of sub-picosecond optical pulses. We demonstrate stable output pulses down to one...... picosecond duration with more than 30 dB trailing pulse suppression. The limiting factors to the device performance are investigated on the basis of a fully-distributed time-domain model.We find that ultrafast gain dynamics effectively reduce the pulse-shaping strength and inhibit the generation...

  8. Hierarchy, dimension, attractor and self-organization -- dynamics of mode-locked fiber lasers

    CERN Document Server

    Wei, Huai; Shi, Wei; Zhu, Xiushan; Norwood, Robert A; Peyghambarian, Nasser; Jian, Shuisheng

    2016-01-01

    Mode-locked fiber lasers are one of the most important sources of ultra-short pulses. However, A unified description for the rich variety of states and the driving forces behind the complex and diverse nonlinear behavior of mode-locked fiber lasers have yet to be developed. Here we present a comprehensive theoretical framework based upon complexity science, thereby offering a fundamentally new way of thinking about the behavior of mode-locked fiber lasers. This hierarchically structured frame work provide a model with and changeable variable dimensionality resulting in a simple and elegant view, with which numerous complex states can be described systematically. The existence of a set of new mode-locked fiber laser states is proposed for the first time. Moreover, research into the attractors' basins reveals the origin of stochasticity, hysteresis and multistability in these systems. These findings pave the way for dynamics analysis and new system designs of mode-locked fiber lasers. The paradigm will have a w...

  9. Pulse shaping in mode-locked fiber lasers by in-cavity spectral filter.

    Science.gov (United States)

    Boscolo, Sonia; Finot, Christophe; Karakuzu, Huseyin; Petropoulos, Periklis

    2014-02-01

    We numerically show the possibility of pulse shaping in a passively mode-locked fiber laser by inclusion of a spectral filter into the laser cavity. Depending on the amplitude transfer function of the filter, we are able to achieve various regimes of advanced temporal waveform generation, including ones featuring bright and dark parabolic-, flat-top-, triangular- and saw-tooth-profiled pulses. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for controlling the dynamics of mode-locked fiber lasers.

  10. 10-GHz 1.59-μm quantum dash passively mode-locked two-section lasers

    DEFF Research Database (Denmark)

    Dontabactouny, Madhoussoudhana; Rosenberg, C.; Semenova, Elizaveta

    2010-01-01

    This paper reports the fabrication and the characterisation of a 10 GHz two-section passively mode-locked quantum dash laser emitting at 1.59 μm. The potential of the device's mode-locking is investigated through an analytical model taking into account both the material parameters and the laser g...

  11. High-resolution microwave-photonic applications via precise synchronization between RF and mode-locked laser pulses (Conference Presentation)

    Science.gov (United States)

    Shi, Kebin; Lu, Xing; Lv, Zhiqiang

    2016-10-01

    Precise synchronization between radio frequency and mode-locked laser pulses provides a high resolution capability for detecting either time jitter in laser pulse train or phase noise in radio frequency. In this talk, we will present our recent progresses on radio frequency dissemination and fiber optical sensing based on sub-femtosecond level synchronization between radio frequency and mode-locked pulse train.

  12. Noise Effects in the Mode-Locked External Cavity Lasers

    Institute of Scientific and Technical Information of China (English)

    Nuran Dogru; M. Sadettin Ozyazici

    2003-01-01

    Effect of high level of spontaneous and carrier noise on mode-locked hybrid soliton pulse source and relative intensity noise is described. Transform limited pulses are not generated over a wide frequency range because of these noises.

  13. Mode-locked Pr3+-doped silica fiber laser with an external cavity

    DEFF Research Database (Denmark)

    Shi, Yuan; Poulsen, Christian; Sejka, Milan

    1994-01-01

    We present a Pr3+-doped silica-based fiber laser mode-locked by using a linear external cavity with a vibrating mirror. Stable laser pulses with a FWHM of less than 44 ps, peak power greater than 9 W, and repetition rate up to 100 MHz are obtained. The pulse width versus cavity mismatch ΔL and pump...

  14. Stabilization of an AM mode-locked tea CO2 laser

    NARCIS (Netherlands)

    Goor, van F.A.

    1983-01-01

    An increased shot-to-shot reproducibility has been obtained by injection of radiation from a cw CO2 laser in an amplitude mode-locked TEA CO2 laser without additional pulse broadening. Stable pulses variable from 900 ps up to 4 ns have been generated with this new technique.

  15. Bound soliton pulses in a passively mode-locked fibre ring laser

    Institute of Scientific and Technical Information of China (English)

    Zhang Shu-Min; Lü Fu-Yun; Gong Yan-Dong; Zhou Xiao-Qun; Yang Xiu-Feng; Lü Chao

    2005-01-01

    The bound solitons in a passively mode-locked fibre ring laser are observed and their formation mechanism is summarized in this paper. In order to obtain stable bound solitons, a strong CW laser field at the centre of the soliton spectral is necessary to suppress and synchronize the random soliton phase variations.

  16. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.

    2000-01-01

    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...... propagation structures in lasers and amplifiers which suppress lateral reflections....

  17. Near- infrared, mode-locked waveguide lasers with multi-GHz repetition rates

    Science.gov (United States)

    Choudhary, A.; Lagatsky, A. A.; Zhang, Z. Y.; Zhou, K. J.; Wang, Q.; Hogg, R. A.; Pradeesh, K.; Rafailov, E. U.; Resan, B.; Oehler, A. E. H.; Weingarten, K. J.; Sibbett, W.; Brown, C. T. A.; Shepherd, D. P.

    2014-02-01

    In this work, we discuss mode-locking results obtained with low-loss, ion-exchanged waveguide lasers. With Yb3+-doped phosphate glass waveguide lasers, a repetition rate of up to 15.2 GHz was achieved at a wavelength of 1047 nm with an average power of 27 mW and pulse duration of 811 fs. The gap between the waveguide and the SESAM introduced negative group velocity dispersion via the Gires Tournois Interferometer (GTI) effect which allowed the soliton mode-locking of the device. A novel quantum dot SESAM was used to mode-lock Er3+, Yb3+-doped phosphate glass waveguide lasers around 1500 nm. Picosecond pulses were achieved at a maximum repetition rate of 6.8 GHz and an average output power of 30 mW. The repetition rate was tuned by more than 1 MHz by varying the pump power.

  18. Hybrid mode-locked erbium-doped all-fiber soliton laser with a distributed polarizer.

    Science.gov (United States)

    Chernykh, D S; Krylov, A A; Levchenko, A E; Grebenyukov, V V; Arutunyan, N R; Pozharov, A S; Obraztsova, E D; Dianov, E M

    2014-10-10

    A soliton-type erbium-doped all-fiber ring laser hybrid mode-locked with a co-action of arc-discharge single-walled carbon nanotubes (SWCNTs) and nonlinear polarization evolution (NPE) is demonstrated. For the first time, to the best of our knowledge, boron nitride-doped SWCNTs were used as a saturable absorber for passive mode-locking initiation. Moreover, the NPE was introduced through the implementation of the short-segment polarizing fiber. Owing to the NPE action in the laser cavity, significant pulse length shortening as well as pulse stability improvement were observed as compared with a SWCNTs-only mode-locked laser. The shortest achieved pulse width of near transform-limited solitons was 222 fs at the output average power of 9.1 mW and 45.5 MHz repetition frequency, corresponding to the 0.17 nJ pulse energy.

  19. Comparative study on the temporal contrast of femtosecond mode-locked laser oscillators.

    Science.gov (United States)

    Stuart, Nicholas; Robinson, Timothy; Hillier, David; Hopps, Nick; Parry, Bryn; Musgrave, Ian; Nersisyan, Gagik; Sharba, Ahmed; Zepf, Matthew; Smith, Roland A

    2016-07-15

    We have investigated the temporal intensity contrast characteristics from a broad range of mode-locked short-pulse oscillators used for seeding high-power terawatt and petawatt-class laser systems. Saturable absorber (SESAM), Kerr lens (KLM), nonlinear polarization evolution (NPE) in optical fibers and synchronously pumped optical parametric oscillator (OPO) mode-locked sources have been measured using a third-order autocorrelator with up to 1010 dynamic range. We restricted the temporal characterization to features higher-order dispersion limits the performance of KLM and NPE sources up to the 105 contrast level, while >108 contrast was observed from the SESAM and OPO laser pulse trains.

  20. A Q-switched, mode-locked fiber laser employing subharmonic cavity modulation.

    Science.gov (United States)

    Chang, You Min; Lee, Junsu; Lee, Ju Han

    2011-12-19

    We present a new and simple approach for the generation of Q-switched, mode-locked pulses from a laser cavity. The approach is based on cavity loss modulation that employs a subharmonic frequency of the fundamental intermode frequency spacing. A range of experiments have been carried out using an erbium-doped fiber-based ring cavity laser in order to verify that this simple approach can readily produce high quality Q-switched, mode-locked pulses. An active tuning of the Q-switched envelope repetition rate is also shown to be easily achievable by adjusting the order of the applied subharmonic frequency.

  1. Low jitter and high power all-active mode-locked lasers

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Christiansen, Lotte Jin

    2003-01-01

    A novel epitaxial design leading to low loss and low gain saturation improves the properties of 40 GHz mode-locked lasers. We obtain 2.8 ps nearly chirp free pulses with 228 fs jitter and fiber-coupled power of 7 mW.......A novel epitaxial design leading to low loss and low gain saturation improves the properties of 40 GHz mode-locked lasers. We obtain 2.8 ps nearly chirp free pulses with 228 fs jitter and fiber-coupled power of 7 mW....

  2. Low jitter and high power all-active mode-locked lasers

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Christiansen, Lotte Jin

    2003-01-01

    A novel epitaxial design leading to low loss and low gain saturation improves the properties of 40 GHz mode-locked lasers. We obtain 2.8 ps nearly chirp free pulses with 228 fs jitter and -coupled power of 7 mW.......A novel epitaxial design leading to low loss and low gain saturation improves the properties of 40 GHz mode-locked lasers. We obtain 2.8 ps nearly chirp free pulses with 228 fs jitter and -coupled power of 7 mW....

  3. Q-switched mode-locking of an erbium-doped fiber laser using cavity modulation frequency detuning.

    Science.gov (United States)

    Chang, You Min; Lee, Junsu; Jhon, Young Min; Lee, Ju Han

    2012-07-20

    We present the results of an investigation regarding a Q-switched mode-locked fiber laser scheme based on a cavity modulation frequency detuning technique. The approach is based on undamped laser relaxation oscillations occurring due to frequency detuning in the fundamental cavity resonance frequency. Through a range of experiments with an erbium-doped, fiber-based, ring-cavity laser, this approach has been shown to be capable of generating high-quality Q-switched mode-locked pulses from an optical fiber-based laser. The maximum frequency detuning range for a stable Q-switched mode-locking operation has been observed to vary depending on the pump power used. We found that the highest pulse peak power was obtained at the frequency detuning threshold at which the operation changed from the mode-locking to the Q-switched mode-locking regime.

  4. 35 GHz passive mode-locking of InGaAs/GaAs quantum dot lasers at 1.3 μm with Fourier-limited pulses

    DEFF Research Database (Denmark)

    Kuntz, M.; Fiol, G.; Laemmlin, M.;

    2004-01-01

    We report 35 GHz passive mode-locking and 20 GHz hybrid mode-locking of quantum dot (QD) lasers at 1.3 ìm. Our investigations show ultrafast absorber recovery times and for the first time transform-limited mode-locked pulses.......We report 35 GHz passive mode-locking and 20 GHz hybrid mode-locking of quantum dot (QD) lasers at 1.3 ìm. Our investigations show ultrafast absorber recovery times and for the first time transform-limited mode-locked pulses....

  5. A High Power and High Repetition Rate Modelocked Ti-Sapphire Laser for Photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    J. Hansknecht; M. Poelker

    2001-07-01

    A high power cw mode-locked Ti-sapphire laser has been constructed to drive the Jefferson Lab polarized photoinjector and provide > 500 mW average power with 50 ps pulsewidths at 499 MHz or 1497 MHz pulse repetition rates. This laser allows efficient, high current synchronous photoinjection for extended periods of time before intrusive steps must be taken to restore the quantum efficiency of the strained layer GaAs photocathode. The use of this laser has greatly enhanced the maximum high polarization beam current capability and operating lifetime of the Jefferson Lab photoinjector compared with previous performance using diode laser systems. A novel modelocking technique provides a simple means to phase-lock the optical pulse train of the laser to the accelerator and allows for operation at higher pulse repetition rates to {approx} 3 GHz without modification of the laser cavity. The laser design and characteristics are described below.

  6. Resonantly pumped continuous-wave mode-locked Ho:YAP laser

    Science.gov (United States)

    Duan, X. M.; Lin, W. M.; Cui, Z.; Yao, B. Q.; Li, H.; Dai, T. Y.

    2016-04-01

    In this paper, we report a continuous-wave mode-locked Ho:YAP laser for the first time to our knowledge. Mode-locked pulse was produced by using an acousto-optic modulator. A 1.91-μm Tm-fiber laser as the pump source, at incident pump power of 25.9 W, the maximum output power of 2.87 W at 2117.8 nm was achieved in continuous-wave mode-locked regime. Pulse as short as 254.8 ps was obtained at repetition frequency of 81.52 MHz. In addition, the beam quality factor M 2 value of 1.6 was obtained.

  7. Multiwavelength mode-locked cylindrical vector beam fiber laser based on mode selective coupler

    Science.gov (United States)

    Huang, Ping; Cai, Yu; Wang, Jie; Wan, Hongdan; Zhang, Zuxing; Zhang, Lin

    2017-10-01

    We propose and demonstrate a multiwavelength mode-locked fiber laser with cylindrical vector beam generation for the first time, to the best of our knowledge. The mode-locking mechanism is based on a nonlinear polarization rotation effect in fiber, and the multiwavelength operation is contributed to by an in-line birefringence fiber filter with periodic multiple passbands, formed by incorporating a section of polarization maintaining fiber into the laser cavity with a fiber polarizer. Furthermore, by using a home-made mode selective coupler, which acts as both a mode converter from fundamental mode to higher-order mode and an output coupler, multiwavelength mode-locked cylindrical vector beams have been obtained. This may have potential applications in mode-division multiplexing optical fiber communication and material processing.

  8. Transition state to mode locking in a passively mode-locked erbium-doped fibre ring laser

    Institute of Scientific and Technical Information of China (English)

    Liu Jia-Rui; Xu Wen-Cheng; Luo Zhi-Chao; Luo Ai-Ping; Yin Hai-Sen

    2011-01-01

    The transition state between the continuous wave region and the mode-locked region in a passively mode-locked erbium-doped fibre ring laser has been experimentally observed by utilizing the nonlinear polarization rotation technique. When the pump power reaches the mode-locked threshold, the metastable pulse train with a tunable repetition rate is obtained in the transition from the continuous wave state to the passive mode-locked state via proper adjustment of the polarization controller. A simple model has been established to explain the experimental observation.

  9. Mode-locking based on a zero-area pulse formation in a laser with a coherent absorber

    CERN Document Server

    Arkhipov, Mikhail V; Kalinichev, Alexey A; Babuskin, Ihar; Rosanov, Nikolai N; Arkhipov, Rostislav M

    2016-01-01

    We observe experimentally a mode-locking in a continuous narrow-band tunable dye laser with molecular iodine absorber cells, which transitions have large phase relaxation time T2. We show that the mode-locking arises due to coherent interaction of light with the absorbing medium leading to Rabi oscillations, so that zero-area (0{\\pi}-) pulses in the absorber are formed. Such mode-locking regime is different to most typical passive modelocking mechanisms where saturation plays the main role.

  10. Passively mode-locked fiber laser based on polarization rotation in a multiple-quantum-well waveguide.

    Science.gov (United States)

    Okhotnikov, O G; Salcedo, J R

    1995-01-01

    We give experimental evidence for a new type of mode-locking mechanism for Er-doped fiber lasers based on polarization evolution in an intracavity multiple-quantum-well waveguide. Experiments indicate that anisotropic properties of waveguides can continuously start the mode-locking process.

  11. Advances in semiconductor lasers

    CERN Document Server

    Coleman, James J; Jagadish, Chennupati

    2012-01-01

    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scien

  12. Correlation coefficient measurement of the mode-locked laser tones using four-wave mixing.

    Science.gov (United States)

    Anthur, Aravind P; Panapakkam, Vivek; Vujicic, Vidak; Merghem, Kamel; Lelarge, Francois; Ramdane, Abderrahim; Barry, Liam P

    2016-06-01

    We use four-wave mixing to measure the correlation coefficient of comb tones in a quantum-dash mode-locked laser under passive and active locked regimes. We study the uncertainty in the measurement of the correlation coefficient of the proposed method.

  13. Spectral development of pico second pulses of mode-locked Nd-glass lasers

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A.; Weinhardt, N.

    1983-04-01

    The spectra of single picosecond pulses of mode-locked Nd-glass lasers are investigated along the pulse train. In addition to self-phase modulation, the spectra are modified due to spectral hole burning in the inhomogeneous gain profile of the active medium.

  14. Monolithic Multi-Colour 40 GHz Mode-Locked Laser Array

    OpenAIRE

    Hou, Lianping; Eddie, Iain; Marsh, John

    2016-01-01

    The monolithic integration of four 40 GHz multi-colored mode-locked lasers with a 4×1 MMI, four electroabsorption modulators and an SOA has been demonstrated. The shortest pulse widths are between 2.63 and 2.85 ps.

  15. An investigation of the spectral content of a mode-locked pulsed CO2 laser

    NARCIS (Netherlands)

    Bormans, B.J.M.; Olbertz, A.H.M.

    1980-01-01

    The frequency width of a pulse train in a pulsed mode-locked CO2 laser has been accurately measured by means of a Fabry-Perot interferometer. We succeeded in resolving the longitudinal mode structure. The results are in excellent agreement with the results of previous measurements of the line width

  16. Quantum beats in forward scattering: subnanosecond studies with a mode-locked dye laser.

    Science.gov (United States)

    Harde, H; Burggraf, H; Mlynek, J; Lange, W

    1981-06-01

    Time-resolved polarization spectroscopy of transient coherent superpositions of atomic substates is extended to the picosecond time scale by using a synchronously pumped mode-locked dye laser. As a first demonstration, hyperfine beats in the sodium D(1) and D(2), lines were resolved. The ground-state splitting could be determined with an accuracy of better than 10(-3).

  17. Quantum beats in forward scattering - Subnanosecond studies with a mode-locked dye laser

    Science.gov (United States)

    Harde, H.; Burggraf, H.; Mlynek, J.; Lange, W.

    1981-06-01

    Time-resolved polarization spectroscopy of transient coherent superpositions of atomic substates is extended to the picosecond time scale by using a synchronously pumped mode-locked dye laser. As a first demonstration, hyperfine beats in the sodium D1 and D2 lines were resolved. The ground-state splitting could be determined with an accuracy of better than 0.001.

  18. A precise length etalon generator controlled by femtosecond mode-locked laser

    Science.gov (United States)

    Šmid, Radek; Čip, Ondřej; Lazar, Josef

    2007-09-01

    The progress in the field of optical frequency standards is oriented to femtosecond mode-locked lasers stabilized by technique of the optical frequency synthesis. Such a laser produces a supercontinuum light, which is composed of a cluster of coherent frequency components in certain interval of wavelengths. A value of the repetition rate of femtosecond pulses determines (in the frequency domain) spacing of these coherent components. If we control the mode-locked laser by means of i.e. atomic clocks we ensure frequency of these components very stable. With respect to definition of SI unit "one meter" on basis of speed of light the stabilized mode-locked laser can be used for implementation of this definition by non-traditional way. In the work we present our proposal of a system, which converts excellent frequency stability of components generated by the mode-locked laser to a net of discrete absolute lengths represented by a distance of two mirrors of an optical resonator. On basis of theory, the optical resonator with a cavity length has a periodic frequency spectrum Similarly the frequency of i-th comb component could be written as: f i = f ceo + i f rep, where f ceo is the comb offset frequency and f rep is the repetition rate. For the simplicity we presume the offset frequency f ceo equals to zero. If the supercontinuum beam of the mode-locked laser illuminates the resonator and at the same time the cavity length L is adjusted to length L p = c / (2 p f rep ) then both spectra fit. The symbol 'p' is an integer value. It produces intensity maximum in the output of the cavity, which is detected by a photodetector and locked in the servo-loop. For absolute discrete values of cavity lengths L p that well satisfy the condition above we obtain precise etalons of length.

  19. Scheme for independently stabilizing the repetition rate and optical frequency of a laser using a regenerative mode-locking technique.

    Science.gov (United States)

    Nakazawa, Masataka; Yoshida, Masato

    2008-05-15

    We have succeeded in achieving independent control of the repetition rate and optical frequency of a pulse laser by employing a regenerative mode-locking technique. By adopting a voltage-controlled microwave phase shifter or an optical delay line in a regenerative feedback loop we can control the repetition rate of the laser without directly disturbing the optical frequencies. We experimentally show how this independent control can be realized by employing a 40 GHz harmonically and regeneratively mode-locked fiber laser.

  20. Wavelength tunable stretched-pulse mode-locked all-fiber erbium ring laser with single polarization fiber.

    Science.gov (United States)

    Li, Shenping; Chen, Xin; Kuksenkov, Dmitri V; Koh, Joohyun; Li, Ming-Jun; Zenteno, Luis A; Nolan, Daniel A

    2006-06-26

    A wavelength tunable stretched-pulse mode-locked all-fiber ring laser using single polarization fiber (SPF) was demonstrated. In this laser, a segment of SPF was used simultaneously as a polarizer and a tunable filter in the laser cavity. Self-starting mode-locking with femtosecond output pulses was demonstrated. A wavelength tuning of ~20nm was achieved by bending the SPF with different radii.

  1. Pulse formation and characteristics of the cw mode-locked titanium-doped sapphire laser

    Science.gov (United States)

    Zschocke, Wolfgang; Stamm, Uwe; Heumann, Ernst; Ledig, Mario; Guenzel, Uwe; Kvapil, Jiri; Koselja, Michael P.; Kubelka, Jiri

    1991-10-01

    We report on measurements of transient and steady-state pulse characteristics of an acousto- optically mode-locked titanium-doped sapphire laser. During the pulse evolution, oscillations in the pulse width and pulse energy are found. A steady state is reached after about 40 to 60 microsecond(s) . The steady-state pulse width is strongly influenced by the mode-locking loss as well as the intracavity bandwidth. Shortest pulses of typically 15 ps are obtained. The experiment is compared with results of a simple computer simulation.

  2. Polarization dynamics in dissipative soliton fiber lasers mode-locked by nonlinear polarization rotation.

    Science.gov (United States)

    Kong, Lingjie; Xiao, Xiaosheng; Yang, Changxi

    2011-09-12

    We numerically studied the polarization dynamics in dissipative soliton lasers mode-locked by nonlinear polarization rotation (NPR). It was found that the polarization states of the intracavity dissipative soliton vary with time across the pulse. Depending on output coupling ratios, the polarization states of the pulse peak before the polarizer can be either nearly circular or nearly linear polarizations. The polarization dependent component in NPR is found to play a role of spectral filter under high and medium output coupling. However, NPR may work as a weak optical limiter under low output coupling, when additional spectral filtering is necessary to maintain steady mode-locking state.

  3. Generation of the numerator=2 rational harmonic mode-locked pulses in fiber ring lasers

    Institute of Scientific and Technical Information of China (English)

    Pinghe Wang(汪平河); Li Zhan(詹黎); Qinghao Ye(叶庆好); Yuxing Xia(夏宇兴)

    2004-01-01

    In conventional rational harmonic mode-locking, optical pulse trains with the repetition rate of(pn + 1)fc are generated when the modulation frequency of the in-cavity modulator is set at fm=(n + 1/p)fc, where n and p are both integers, fc is the fundamental cavity frequency. In this paper, we report that rational harmonic mode locking phenomenon takes place in the fiber lasers when the modulation frequency is set at fm =(n + 2/p)fc. The pulse generations are experimentally demonstrated when the numerator of the rational corresponds to 2 in 5th and 7th order rational harmonic mode-locking.

  4. Multi-gigahertz repetition rate ultrafast waveguide lasers mode-locked with graphene saturable absorbers

    Science.gov (United States)

    Obraztsov, P. A.; Okhrimchuk, A. G.; Rybin, M. G.; Obraztsova, E. D.; Garnov, S. V.

    2016-08-01

    We report the development of an approach to build compact waveguide lasers that operate in the stable fundamental mode-locking regime with multigigahertz repetition rates. The approach is based on the use of depressed cladding multi- or single-mode waveguides fabricated directly in the active laser crystal using the femtosecond laser inscription method and a graphene saturable absorber. Using this approach we achieve the stable self-starting mode-locking operation of a diode-pumped waveguide Nd:YAG laser that delivers picosecond pulses at a repetition rate of up to 11.5 GHz with an average power of 12 mW at a central wavelength of 1064 nm. The saturable absorbers are formed through the chemical vapor deposition of single-layer graphene on the output coupler mirror or directly on the end facet of the laser crystal. The stable self-starting mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with an intracavity interferometer. The method developed for the creation of compact ultrashort pulse laser generators with gigahertz repetition rates can be extended further and applied for the development of compact high-repetition rate lasers that operate at a wide range of IR wavelengths.

  5. Phase diagram and complexity of mode-locked lasers: from order to disorder

    CERN Document Server

    Leuzzi, L; Folli, V; Angelani, L; Ruocco, G

    2008-01-01

    We investigate mode-locking processes in lasers displaying a variable degree of structural randomness, from standard optical cavities to multiple-scattering media. By employing methods mutuated from spin-glass theory, we analyze the mean-field Hamiltonian and derive a phase-diagram in terms of the pumping rate and the degree of disorder. Three phases are found: i) paramagnetic, corresponding to a noisy continuous wave emission, ii) ferromagnetic, that describes the standard passive mode-locking, and iii) the spin-glass in which the phases of the electromagnetic field are frozen in a exponentially large number of configurations. The way the mode-locking threshold is affected by the amount of disorder is quantified. The results are also relevant for other physical systems displaying a random Hamiltonian, like Bose-Einstein condensates and nonlinear optical beams.

  6. Harmonic Mode-Locked Fiber Laser based on Photonic Crystal Fiber Filled with Topological Insulator Solution

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2015-04-01

    Full Text Available We reported that the photonic crystal fiber (PCF filled with TI:Bi2Te3 nanosheets solution could act as an effective saturable absorber (SA. Employing this TI-PCF SA device; we constructed an ytterbium-doped all-fiber laser oscillator and achieved the evanescent wave mode-locking operation. Due to the large cavity dispersion; the fundamental mode-locking pulse had the large full width at half maximum (FWHM of 2.33 ns with the repetition rate of ~1.11 MHz; and the radio frequency (RF spectrum with signal-to-noise ratio (SNR of 61 dB. In addition; the transition dynamics from a bunched state of pulses to harmonic mode-locking (HML was also observed; which was up to 26th order.

  7. Diode-Pumped Soliton and Non-Soliton Mode-Locked Yb:GYSO Lasers

    Institute of Scientific and Technical Information of China (English)

    HE Jin-Ping; LIANG Xiao-Yan; LI Jin-Feng; ZHENG Li-He; SU Liang-Bi; XU Jun

    2011-01-01

    @@ Diode-pumped soliton and non-soliton mode-locked Yb:(Gd1-xYx,)2SiO5 (x=0.5) lasers are demonstrated.Pulsesas short as 1.4 ps are generated for the soliton mode-locked operation, with a pair of SF10 prisms as the negativedispersion elements.The central wavelength is 1056nm and the repetition rate is 48 MHz.For the non-solitonmode locking, the output power could achieve ~1.2W and the pulse width is about 20ps.The critical pulseenergy in the soliton-mode locked operation against the Q-switched mode locking is much lower than the criticalpulse energy in the non-soliton mode-locked operation

  8. Electron beam pumped semiconductor laser

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  9. Observation of soliton explosions in a passively mode-locked fiber laser

    CERN Document Server

    Runge, Antoine F J; Erkintalo, Miro

    2014-01-01

    Soliton explosions are among the most exotic dissipative phenomena studied in mode-locked lasers. In this regime, a dissipative soliton circulating in the laser cavity experiences an abrupt structural collapse, but within a few roundtrips returns to its original quasi-stable state. In this work we report on the first observation of such events in a fiber laser. Specifically, we identify clear explosion signatures in measurements of shot-to-shot spectra of an Yb-doped mode-locked fiber laser that is operating in a transition regime between stable and noise-like emission. The comparatively long, all-normal-dispersion cavity used in our experiments also permits direct time-domain measurements, and we show that the explosions manifest themselves as abrupt temporal shifts in the output pulse train. Our experimental results are in good agreement with realistic numerical simulations based on an iterative cavity map.

  10. Ultrafast pulse generation in a mode-locked Erbium chip waveguide laser

    CERN Document Server

    Khurmi, Champak; Zhang, Wen Qi; V., Shahraam Afshar; Chen, George; Genest, Jérôme; Monro, Tanya M; Lancaster, David G

    2016-01-01

    We report mode-locked ~1550 nm output of transform-limited ~180 fs pulses from a large mode-area (diameter ~ 50 {\\mu}m) guided-wave erbium fluorozirconate glass laser. The passively mode-locked oscillator generates pulses with 25 nm bandwidth at 156 MHz repetition rate and peak-power of 260 W. Scalability to higher repetition rate is demonstrated by transform-limited 410 fs pulse output at 1.3 GHz. To understand the origins of the broad spectral output, the laser cavity is simulated by using a numerical solution to the Ginzburg-Landau equation. This paper reports the widest bandwidth and shortest pulses achieved from an ultra-fast laser inscribed waveguide laser.

  11. Comparison of models of fast saturable absorption in passively modelocked lasers.

    Science.gov (United States)

    Wang, Shaokang; Marks, Brian S; Menyuk, Curtis R

    2016-09-01

    Fast saturable absorbers (FSAs) play a critical role in stabilizing many passively modelocked lasers. The most commonly used averaged model to study these lasers is the Haus modelocking equation (HME) that includes a third-order nonlinear FSA. However, it predicts a narrow region of stability that is inconsistent with experiments. To better replicate the laser physics, averaged laser models that include FSAs with higher-than-third-order nonlinearities have been introduced. Here, we compare three common FSA models to each other and to the HME using the recently-developed boundary tracking algorithms. The three FSA models are the cubic-quintic model, the sinusoidal model, and the algebraic model. We find that all three models predict the existence of a stable high-energy solution that is not present in the HME and have a much larger stable operating region. We also find that all three models predict qualitatively similar stability diagrams. We conclude that averaged laser models that include FSAs with higher-than-third-order nonlinearity should be used when studying the stability of passively modelocked lasers.

  12. Nonlinear switching in a two-concentric-core chalcogenide glass optical fiber for passively mode-locking a fiber laser.

    Science.gov (United States)

    Nazemosadat, Elham; Mafi, Arash

    2014-08-15

    We propose an all-fiber mode-locking device, which operates based on nonlinear switching in a novel two-concentric-core fiber structure. The design is particularly attractive given the ease of fabrication and coupling to other components in a mode-locked fiber laser cavity. The nonlinear switching in this coupler is studied, and the relative power transmission is obtained. The analysis shows that this nonlinear switch is practical for mode-locking fiber lasers and is forgiving to fabrication errors.

  13. Dynamics of a Dispersion-Managed Passively Mode-Locked Er-Doped Fiber Laser Using Single Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Norihiko Nishizawa

    2015-07-01

    Full Text Available We investigated the dynamics of a dispersion-managed, passively mode-locked, ultrashort-pulse, Er-doped fiber laser using a single-wall carbon nanotube (SWNT device. A numerical model was constructed for analysis of the SWNT fiber laser. The initial process of passive mode-locking, the characteristics of the output pulse, and the dynamics inside the cavity were investigated numerically for soliton, dissipative-soliton, and stretched-pulse mode-locking conditions. The dependencies on the total dispersion and recovery time of the SWNTs were also examined. Numerical results showed similar behavior to experimental results.

  14. Theory of the ultrafast mode-locked GaN lasers in a large-signal regime

    CERN Document Server

    Smetanin, Igor V; Boiko, Dmitri L

    2011-01-01

    Analytical theory of the high-power passively mode-locked laser with a slow absorber is developed. In distinguishing from previous treatment, our model is valid at pulse energies well exceeding the saturation energy of absorber. This is achieved by solving the mode-locking master equation in the pulse energy-domain representation. The performances of monolithic sub-picosecond blue-violet GaN mode-locked diode laser in the high-power operation regime are analyzed using the developed approach.

  15. Low-timing-jitter, stretched-pulse passively mode-locked fiber laser with tunable repetition rate and high operation stability

    Science.gov (United States)

    Liu, Yuanshan; Zhang, Jian-Guo; Chen, Guofu; Zhao, Wei; Bai, Jing

    2010-09-01

    We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 µm wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice.

  16. Clock recovery from NRZ data at 10 Gb/s using SOA loop mirror and mode-locked fiber ring laser based on SOA

    Institute of Scientific and Technical Information of China (English)

    Lina Yin; Guoming Liu; Jian Wu; Jintong Lin

    2006-01-01

    @@ All-optical clock recovery from non-return-to-zero (NRZ) data using an semiconductor optical amplifier(SOA) loop mirror and a mode-locked SOA fiber laser is firstly schematically explained and experimentally demonstrated at 10 Gb/s. Furthermore, the pulse quality of the recovered clock is effectively improved by using a continuous-wave (CW) assist light in the gain region of SOA, through which the amplitude modulation is reduced from 57.2% to 8.47%. This scheme is a promising method for clock recovery from NRZ data in the future all-optical communication networks.

  17. 1700 nm dispersion managed mode-locked bismuth fiber laser

    OpenAIRE

    Teppo Noronen; Sergei Firstov; Evgeny Dianov; Okhotnikov, Oleg G.

    2016-01-01

    We demonstrate the first 1.7 μm bismuth-doped fiber laser generating ultrashort pulses via passive mode-locking. Pulse operation has been achieved for both anomalous and normal dispersion of the laser cavity owing to broadband characteristics of carbon nanotube saturable absorber. The laser delivered 1.65 ps pulses in net anomalous dispersion regime. In normal dispersion regime, the laser delivered 14 ps pulses which could be compressed to 1.2 ps using external fiber compressor.

  18. 1700 nm dispersion managed mode-locked bismuth fiber laser

    Science.gov (United States)

    Noronen, Teppo; Firstov, Sergei; Dianov, Evgeny; Okhotnikov, Oleg G.

    2016-04-01

    We demonstrate the first 1.7 μm bismuth-doped fiber laser generating ultrashort pulses via passive mode-locking. Pulse operation has been achieved for both anomalous and normal dispersion of the laser cavity owing to broadband characteristics of carbon nanotube saturable absorber. The laser delivered 1.65 ps pulses in net anomalous dispersion regime. In normal dispersion regime, the laser delivered 14 ps pulses which could be compressed to 1.2 ps using external fiber compressor.

  19. Mode-locking optimization with a real-time feedback system in a Nd:yttrium lithium fluoride laser cavity

    Science.gov (United States)

    Marengoni, C.; Canova, F.; Batani, D.; Benocci, R.; Librizzi, M.; Narayanan, V.; Gomareschi, M.; Lucchini, G.; Kilpio, A.; Shashkov, E.; Stuchebrukhov, I.; Vovchenko, V.; Chernomyrdin, V.; Krasuyk, I.; Hall, T.; Bittanti, S.

    2007-01-01

    We present a control system, which allows an automatic optimization of the pulse train stability in a mode-locked laser cavity. In order to obtain real-time corrections, we chose a closed loop approach. The control variable is the cavity length, mechanically adjusted by gear system acting on the rear cavity mirror, and the controlled variable is the envelope modulation of the mode-locked pulse train. Such automatic control system maintains the amplitude of the mode-locking pulse train stable within a few percent rms during the working time of the laser. Full implementation of the system on an Nd:yttrium lithium fluoride actively mode-locked laser is presented.

  20. Semiconductor Lasers Stability, Instability and Chaos

    CERN Document Server

    Ohtsubo, Junji

    2013-01-01

    This third edition of “Semiconductor Lasers, Stability, Instability and Chaos” was significantly extended.  In the previous edition, the dynamics and characteristics of chaos in semiconductor lasers after the introduction of the fundamental theory of laser chaos and chaotic dynamics induced by self-optical feedback and optical injection was discussed. Semiconductor lasers with new device structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are interesting devices from the viewpoint of chaotic dynamics since they essentially involve chaotic dynamics even in their free-running oscillations. These topics are also treated with respect to the new developments in the current edition. Also the control of such instabilities and chaos control are critical issues for applications. Another interesting and important issue of semiconductor laser chaos in this third edition is chaos synchronization between two lasers and the application to optical secure communication. One o...

  1. Terahertz generation and detection using femtosecond mode-locked Yb-doped fiber laser

    Science.gov (United States)

    Kong, Moon Sik; Kim, Ji Su; Han, Sang-Pil; Kim, Namje; Moon, Ki Won; Park, Kyung Hyun; Jeon, Min Yong

    2016-02-01

    We successfully demonstrate a THz generation using an ytterbium (Yb)-doped mode-locked femtosecond fiber laser and a home-made low-temperature grown (LTG) InGaAs Photoconductive antenna (PCA) module for THz Time-domain spectroscopy (TDS) systems. The Yb-doped fiber ring laser consists of a pump laser diode (PLD), a wavelength division multiplexer (WDM) coupler, a single-mode fiber (SMF), a 25 cm-long highly Yb-doped fiber, two collimators, two quarter wave plates (QWPs), a half-wave plate (HWP), a 10 nm broadband band pass filter, an isolator, and a polarizing beam splitter (PBS). In order to achieve the passively mode-locked optical short pulse, the nonlinear polarization rotation (NPR) effect is used. The achieved center wavelength and the 3 dB bandwidth of the modelocked fiber laser are 1.03 μm and ~ 15.6 nm, respectively. It has 175 fs duration after pulse compression with 66.2 MHz repetition rate. The average output power of mode-locked laser has more than 275 mW. The LTG-InGaAs PCA modules are used as the emitter and receiver in order to achieve the THz radiation. The PCA modules comprise a hyper-hemispherical Si lens and a log-spiral antenna-integrated LTG-InGaAs PCA chip electronically contacted on a printed circuit board (PCB). An excitation optical average pumping and probing power were ~ 6.3 mW and 5 mW, respectively. The free-space distance between the emitter and the receiver in the THz-TDS system was 70 mm. The spectrum of the THz radiation is achieved higher than 1.5 THz.

  2. Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration

    CERN Document Server

    Cunning, B V; Kielpinski, D

    2011-01-01

    Saturable absorbers are a key component for mode-locking femtosecond lasers. Polymer films containing graphene flakes have recently been used in transmission as laser mode-lockers, but suffer from high nonsaturable loss, limiting their application in low-gain lasers. Here we present a saturable absorber mirror based on a film of pure graphene flakes. The device is used to mode lock an erbium-doped fiber laser, generating pulses with state-of-the-art, sub-200-fs duration. The laser characteristic indicate that the film exhibits low nonsaturable loss (13% per pass) and large absorption modulation depth (45% of low-power absorption).

  3. Long-term stable microwave signal extraction from mode-locked lasers

    Science.gov (United States)

    Kim, J.; Ludwig, F.; Felber, M.; Kärtner, F. X.

    2007-07-01

    Long-term synchronization between two 10.225 GHz microwave signals at +10 dBm power level, locked to a 44.26 MHz repetition rate passively mode-locked fiber laser, is demonstrated using balanced optical-microwave phase detectors. The out-of-loop measurement result shows 12.8 fs relative timing jitter integrated from 10 Hz to 10 MHz. Long-term timing drift measurement shows 48 fs maximum deviation over one hour, mainly limited by drift of the out-of-loop characterization setup itself. To the best of our knowledge, this is the first time to demonstrate long-term (>1 hour) 3 mrad-level phase stability of a 10.225 GHz microwave signal extracted from a mode-locked laser.

  4. Magneto-optic Crystal Polarization Controller Assisted Mode-Locked Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guang-Zhen; GUI Li-Li; XIAO Xiao-Sheng; YANG Chang-Xi

    2011-01-01

    We report a passively mode-locked erbium-doped fiber laser based on a compact magneto-optic crystal polarization controller. The length of the polarization controller consisting of four magneto-optic crystal rotators and two quarter wave-plates is only 10cm.Adjusting the polarization controller, central wavelength around 1559nm and repetition rate 21.10 MHz mode-locked pulse are obtained. Pulse duration and 3 dB spectrum width are 598.4fs and 6.24nm respectively. Single pulse energy is about 151.7pJ. Because of its small size, low insertion loss,good controllability and negligible dispersion, the magneto-optic crystal polarization controller could be an ideal polarization controller in fiber lasers.

  5. Attosecond-resolution timing jitter characterization of free-running mode-locked lasers.

    Science.gov (United States)

    Kim, Jungwon; Chen, Jeff; Cox, Jonathan; Kärtner, Franz X

    2007-12-15

    Timing jitter characterization of optical pulse trains from free-running mode-locked lasers with attosecond resolution is demonstrated using balanced optical cross correlation in the timing detector and the timing delay configurations. In the timing detector configuration, the balanced cross correlation between two mode-locked lasers synchronized by a low-bandwidth phase-locked loop is used to measure the timing jitter spectral density outside the locking bandwidth. In addition, the timing delay configuration using a 325 m long timing-stabilized fiber link enables the characterization of timing jitter faster than the delay time. The limitation set by shot noise in this configuration is 2.2 x 10(-8) fs(2)/Hz corresponding to 470 as in 10 MHz bandwidth.

  6. Semiconductor Lasers Stability, Instability and Chaos

    CERN Document Server

    Ohtsubo, Junji

    2008-01-01

    This monograph describes fascinating recent progress in the field of chaos, stability and instability of semiconductor lasers. Applications and future prospects are discussed in detail. The book emphasizes the various dynamics induced in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Recent results of both theoretical and experimental investigations are presented. Demonstrating applications of semiconductor laser chaos, control and noise, Semiconductor Lasers describes suppression and chaotic secure communications. For those who are interested in optics but not familiar with nonlinear systems, a brief introduction to chaos analysis is presented.

  7. Melting and freezing of light pulses and modes in mode-locked lasers.

    Science.gov (United States)

    Gordon, Ariel; Vodonos, Boris; Smulakovski, Vladimir; Fischer, Baruch

    2003-12-15

    We present a first experimental demonstration of melting of light pulses and freezing of lightwave modes by applying external noise which acts like temperature, verifying our recent theoretical prediction (Gordon and Fischer [1]). The experiment was performed in a fiber laser passively mode-locked by nonlinear rotation of polarization. The first order phase transition was observed directly in time domain and also by measurement of the quartic order parameter (RF power).

  8. Polarization locking in an isotropic, modelocked soliton Er/Yb fiber laser.

    Science.gov (United States)

    Cundiff, S; Collings, B; Knox, W

    1997-07-07

    A modelocked fiber laser, operating in the soliton regime without any explicit intracavity polarizers, is observed to spontaneously lock its output polarization for certain values of the intracavity birefringence. For other settings of the intracavity birefringence the output polarization undergoes pulse-to-pulse evolution. The dependence of the output polarization evolution on intracavity birefringence outside of the locking regions can be understood with a simple model. The locking behavior exhibits several surprising aspects and is not completely understood.

  9. Effects of resonator input power on Kerr lens mode-locked lasers

    Indian Academy of Sciences (India)

    S Kazempour; A Keshavarz; G Honarasa

    2015-07-01

    Using the ABCD matrix method, the common stability region between the sagittal and tangential planes of a four-mirror Kerr lens mode-locked (KLM) laser cavity is obtained for different ranges of input power. In addition, the effect of the input power on the Kerr lens sensitivity is investigated. Optimal input power and position for highest Kerr lens sensitivity in the stability region are presented and self-starting regime has been achieved. Results show that the resonator input power has a great influence on designing the KLM lasers which can be used in fabricating an optimal femtosecond laser.

  10. Ultrafast erbium-doped fiber laser mode-locked with a black phosphorus saturable absorber

    Science.gov (United States)

    Ahmed, M. H. M.; Latiff, A. A.; Arof, H.; Harun, S. W.

    2016-09-01

    We experimentally demonstrate a passive mode-locked erbium-doped fiber laser (EDFL) using a multi-layer black phosphorus saturable absorber (BPSA). The BPSA is fabricated by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto scotch tape. A small piece of the tape is then placed between two ferrules and integrated into an EDFL cavity to achieve a self-started soliton mode-locked pulse operation at 1560.7 nm wavelength. The 3 dB bandwidth, pulse width, and repetition rate of the laser are 6.4 nm, 570 fs, and 6.88 MHz, respectively. The average output power is 5.1 mW at pump power of 140 mW and thus, the pulse energy and peak power are estimated at 0.74 nJ and 1.22 kW, respectively. The BPSA was constructed in a simple fabrication process and has a modulation depth of 7% to successfully produce the stable mode-locked fiber laser.

  11. All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter

    Science.gov (United States)

    Li, N.; Liu, M. Y.; Gao, X. J.; Zhang, L.; Jia, Z. X.; Feng, Y.; Ohishi, Y.; Qin, G. S.; Qin, W. P.

    2016-07-01

    We demonstrated a widely tunable mode-locked thulium doped fiber laser (TDFL) by using a homemade multimode interference filter (MMIF). The MMIF had a structure of single mode fiber (SMF)—multimode fiber (MMF)—SMF and three main transmission peaks at 1901.2, 1957.2 and 2043.2 nm. By mechanically bending the MMIF, the three main transmission peaks were tuned in the range of 1860-2024 nm due to multimode interference effect. By inserting the MMIF into a passively mode-locked TDFL cavity pumped by a 1570 nm fiber laser, a tunable mode-locked TDFL with a tuning range of 1919.6-2014.9 nm was achieved by adjusting the MMIF. To the best of our knowledge, such a tunable range is the largest among all-fiber tunable mode-locked TDFLs.

  12. Passively Mode-Locked Fiber Laser with a Sub-Megahertz Repetition Rate

    Institute of Scientific and Technical Information of China (English)

    CHEN Jiong; JIA Dong-Fang; WU Yong-Chao; WANG Chang-Le; WANG Zhao-Ying; YANG Tian-Xin

    2011-01-01

    We demonstrate an ultra-long cavity by which an all-fiber erbium-doped fiber laser is passively mode-locked by nonlinear polarization rotation.The length of the resonant cavity amounts to 466m,which can be achieved by incorporating a 420m highly nonlinear fiber.The laser generates stable mode-locked pulses with a 444 kHz fundamental repetition rate.A near transform-limited subpicosecond pulse is obtained without any dispersion compensation.The maximum average power of the output pulses is 5.16 mW,which corresponds to a per-pulse energy of 11.62nJ.A low-repetition-rate optical pulse train is required for many applications such as micromachining,biomedical diagnostics and lidar systems.[1-3] However,the repetition rate of conventional fiber lasers is normally tens of MHz.Pulse pickers such as Pockels cells or acousto-optic modulators are always used to lower the repetition rate,however,reduction in this way introduces significant energy losses,impairs the signal-to-noise ratio (SNR) and increases complexity.Because the pulse repetition rate of a modelocked laser is inversely proportional to its resonator length,longer cavities lead to lower pulse repetition rates and,consequently,to higher pulse energy at the same average power of radiation.%We demonstrate an ultra-long cavity by which an all-fiber erbium-doped fiber laser is passively mode-locked by nonlinear polarization rotation. The length of the resonant cavity amounts to 466 m, which can be achieved by incorporating a 420 m highly nonlinear fiber. The laser generates stable mode-locked pulses with a 444 kHz fundamental repetition rate. A near transform-limited subpicosecond pulse is obtained without any dispersion compensation. The maximum average power of the output pulses is 5.16mW, which corresponds to a per-pulse energy of 11.62 nJ.

  13. Large net-normal dispersion Er-doped fibre laser mode-locked with a nonlinear amplifying loop mirror

    CERN Document Server

    Bowen, Patrick; Broderick, Neil G R

    2016-01-01

    We report on an environmentally stable, all-PM-fibre, Er-doped, mode-locked laser with a central wavelength of 1550 nm. Significantly, the laser possesses large net-normal dispersion such that its dynamics are comparable to that of an all-normal dispersion fibre laser at 1 {\\mu}m with an analogous architecture. The laser is mode-locked with a nonlinear amplifying loop mirror to produce pulses that are externally compressible to 500 fs. Experimental results are in good agreement with numerical simulations.

  14. High brightness semiconductor lasers with reduced filamentation

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.;

    1999-01-01

    High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture...

  15. Pulsed pumping of semiconductor disk lasers.

    Science.gov (United States)

    Hempler, Nils; Hopkins, John-Mark; Kemp, Alan J; Schulz, Nico; Rattunde, Marcel; Wagner, Joachim; Dawson, Martin D; Burns, David

    2007-03-19

    Efficient operation of semiconductor disk lasers is demonstrated using uncooled and inexpensive 905nm high-power pulsed semiconductor pump lasers. Laser emission, with a peak power of 1.7W, is obtained from a 2.3mum semiconductor disk laser. This is seven times the power achieved under continuous pumping. Analysis of the time-dependent spectral characteristics of the laser demonstrate that significant device heating occurs over the 100-200ns duration of the pumping pulse - finite element modelling of the thermal processes is undertaken in support of these data. Spectral narrowing to below 0.8nm is obtained by using an intra-cavity birefringent filter.

  16. Simple synchronization technique of a mode-locked laser for Laser-Compton scattering γ-ray source

    Science.gov (United States)

    Mori, Michiaki; Kosuge, Atsushi; Kiriyama, Hiromitsu; Hajima, Ryoichi; Kondo, Kiminori

    2016-06-01

    We propose a simple and effective synchronization technique between a reference electrical oscillator and a mode-locked laser for a narrowband picosecond Laser-Compton scattering γ-ray source by using a commercial-based 1-chip frequency synthesizer, which is widely used in radio communication. The mode-locked laser has been successfully synchronized in time with a jitter of 180 fs RMS for 10 Hz-100 kHz bandwidth. A good stability of 640 μHz at 80 MHz repetition rate for 10 h operation has also been confirmed. We discuss in detail the design and performance of this technique (in terms of timing jitter, stability, and validity).

  17. Gain engineering for all-optical microwave and high speed pulse generation in mode-locked fiber lasers

    Science.gov (United States)

    Li, Fangxin; Helmy, Amr S.

    2014-03-01

    Pulsed sources based on approaches that employ only photonic components and no RF components will be discussed in this talk. Several technologies have been explored to generate actively mode-locked sources using electronically driven fiber ring cavities. However, for these sources the pulse repetition rate is usually limited by the bandwidth of the intracavity modulator. Filtering of highly-stable low repetition rate optical combs utilizing cavities such as Fabry-Perot etalons can be used to overcome this limitation. This scheme is not flexible as it requires highly precise control of ultrahigh finesse etalons which limits the repetition rate to the free spectral range of the filter. Pulsed sources based on semiconductor devices offer many advantages, including large gain bandwidth, rapid tunability, long-term stability. In this work we introduce a novel, simple method to generate optical clock with wavelength tunability using two continuous wave (CW) lasers. The lasers are injected into a conventional SOAs-based fiber ring laser. The beating signal generated by these two lasers causes the modulation of the SOA gain saturation inside the cavity. Thus, the SOA provides gain and functions as the modulator as well as the gain medium. When the lasing mode inside the cavity is amplified, it also results in gain-induced four wave mixing. The proposed technique is particularly versatile, overcoming the bandwidth limitation of other techniques, which require RF sources. Moreover, this technique provides the possibility for hybrid integration as it is comprised of semiconductor chips that can be heterogeneously integrated on a Si platform.

  18. Packaging of high power semiconductor lasers

    CERN Document Server

    Liu, Xingsheng; Xiong, Lingling; Liu, Hui

    2014-01-01

    This book introduces high power semiconductor laser packaging design. The characteristics and challenges of the design and various packaging, processing, and testing techniques are detailed by the authors. New technologies, in particular thermal technologies, current applications, and trends in high power semiconductor laser packaging are described at length and assessed.

  19. Mode-locking external-cavity laser-diode sensor for displacement measurements of technical surfaces

    Science.gov (United States)

    Czarske, Jürgen; Möbius, Jasper; Moldenhauer, Karsten

    2005-09-01

    A novel laser sensor for position measurements of technical solid-state surfaces is proposed. An external Fabry-Perot laser cavity is assembled by use of an antireflection-coated laser diode together with the technical surface. Mode locking results from pumping the laser diode synchronously to the mode spacing of the cavity. The laser cavity length, i.e., the distance to the measurement object, is determined by evaluation of the modulation transfer function of the cavity by means of a phase-locked loop. The mode-locking external-cavity laser sensor incorporates a resonance effect that results in highly resolving position and displacement measurements. More than a factor-of-10 higher resolution than with conventional nonresonant sensing principles is achieved. Results of the displacement measurements of various technical surfaces are reported. Experimental and theoretical investigations are in good agreement.

  20. Frequency stabilization in FBG external cavity semiconductor laser based on acetylene absorption method

    Institute of Scientific and Technical Information of China (English)

    Li Zhi-quan; Su Feng-yan; Kang Li-li

    2008-01-01

    A frequency-stabilized 1.53 μm FBG external-cavity semiconductor laser by using acetylene absorption is presented and its basic principles are introduced. Graded refractive index fiber and pigtailed fiber are used in the absorption air chamber to enhance the coupling stability. The impact of the background power is eliminated by using the third-harmonic modelocking technique. A lock-in amplifier is utilized to ensure that the output laser wavelength is locked at the C2H2 absorption line of 1530.37 nm. The frequency stability reaches 10-8 within 24 h.

  1. Tunable mode-locked laser with micro-air gap cavity

    Science.gov (United States)

    Ahmad, H.; Aidit, S. N.; Hassan, N. A.; Ooi, S. I.; Tiu, Z. C.

    2017-02-01

    A tunable mode-locked laser with a micro-air gap cavity acting as a high resolution tuning is proposed and demonstrated. The laser utilizes the nonlinear polarization technique in the cavity to obtain a reliable and stable mode locking over the whole tuning range at a resolution of 1 nm. The micro-air gap is constructed by aligning two fiber facets coaxially, and the variation of micro-air gap introduces a tuning mechanism where it changes the gain saturation compensation in the gain medium and thus induces wavelength shifting on the generated solitons.

  2. Microwave signal extraction from femtosecond mode-locked lasers with attosecond relative timing drift.

    Science.gov (United States)

    Kim, Jungwon; Kärtner, Franz X

    2010-06-15

    We present a feedback-control method for suppression of excess phase noise in the optical-to-electronic conversion process involved in the extraction of microwave signals from femtosecond mode-locked lasers. A delay-locked loop based on drift-free phase detection with a differentially biased Sagnac loop is employed to eliminate low-frequency (e.g., locked laser with a relative rms timing jitter of 2.4 fs (integrated from 1 mHz to 1 MHz) and a relative rms timing drift of 0.84 fs (integrated over 8 h with 1 Hz bandwidth) between the optical pulse train and the extracted microwave signal.

  3. Mode-locked Lasers Applied to Deflecting a Near Earth Object on Collision Course with Earth

    CERN Document Server

    Fork, Richard; Burgess, Luke; Bergstue, Grant

    2013-01-01

    We consider synchronized trains of sub-picosecond pulses generated by mode-locked lasers applied to deflection of near Earth objects (NEO) on collision course with Earth. Our method is designed to avoid a predicted collision of the NEO with Earth by at least the diameter of Earth. We estimate deflecting a 10,000 MT NEO, such as the asteroid which struck Earth near Chelyabinsk, Russia to be feasible within several months using average power in the ten kilowatt range. We see this deflection method as scalable to larger NEO to a degree not possible using continuous laser systems.

  4. Graphene oxide mode-locked Yb:GAGG bulk laser operating in the femtosecond regime

    Science.gov (United States)

    Cui, Liang; Lou, Fei; Li, Yan-bin; Hou, Jia; He, Jing-Liang; Jia, Zhi-Tai; Liu, Jing-Quan; Zhang, Bai-Tao; Yang, Ke-Jian; Wang, Zhao-Wei; Tao, Xu-Tang

    2015-04-01

    High-quality graphene oxide saturable absorber (SA) is successfully fabricated with 1-2 layer graphene oxide. By employing this SA, we have demonstrated femtosecond pulse generation from a graphene oxide passively mode locked bulk laser for the first time to our best knowledge. With two Gires-Tournois interferometer mirrors for dispersion compensation, pulses as short as 493 fs with an average power of 500 mW are obtained at the central wavelength of 1035.5 nm. These results presented here indicate the great potential of GO for generating femtosecond mode-locked pulses in the bulk laser.

  5. Mode-locked 1.5 micrometers semiconductor optical amplifier fiber ring

    DEFF Research Database (Denmark)

    Pedersen, Niels V.; Jakobsen, Kaj Bjarne; Vaa, Michael

    1996-01-01

    The dynamics of a mode-locked SOA fiber ring are investigated experimentally and numerically. Generation of near transform-limited (time-bandwidth product=0.7) 1.5 μm 54 ps FWHM pulses with a peak power of 2.8 mW at a repetition rate of 960 MHz is demonstrated experimentally. The experimental res...

  6. Mode-Locked 1.5 um Semiconductor Optical Fiber Ring

    DEFF Research Database (Denmark)

    Pedersen, Niels Vagn; Jakobsen, Kaj Bjarne; Vaa, Michael

    1996-01-01

    The dynamics of a mode-locked SOA fiber ring are investigated experimentally and numerically. Generation of near transform-limited (time-bandwidth product = 0.7) 1.5 um 54 ps FWHM pulses with a peak power of 2.8 mW at a repetition rate of 960 MHz is demonstrated experimentally. The experimental...

  7. Material Engineering for Monolithic Semiconductor Mode-Locked Lasers

    OpenAIRE

    Kulkova, Irina; Yvind, Kresten; Semenova, Elizaveta; Larsson, David

    2014-01-01

    Denne afhandling omhandler halvleder materialeteknologi for selvkørende kortpulslasere, der er kompakte og energieffektive kilder til meget korte optiske pulser. Opnåelse af støjsvage sub-picosekund pulser er en udfordring. I dette arbejde er indflydelsen af den kombinerede ultrahurtige dynamik fra forstærker og absorber materialerne, som primær begrænsende faktor i pulsgenereringen, gransket. En uafhængig optimering af forstærker og absorber sektion er gjort og to lovende retninger undersøgt...

  8. Modeling of mode-locking in a laser with spatially separate gain media

    CERN Document Server

    Oldenbeuving, R M; van Voorst, P D; Offerhaus, H L; Boller, K -J

    2010-01-01

    We present a novel laser mode-locking scheme and discuss its unusual properties and feasibility using a theoretical model. A large set of single-frequency continuous-wave lasers oscillate by amplification in spatially separated gain media. They are mutually phase-locked by nonlinear feedback from a common saturable absorber. As a result, ultra short pulses are generated. The new scheme offers three significant benefits: the light that is amplified in each medium is continuous wave, thereby avoiding issues related to group velocity dispersion and nonlinear effects that can perturb the pulse shape. The set of frequencies on which the laser oscillates, and therefore the pulse repetition rate, is controlled by the geometry of resonator-internal optical elements, not by the cavity length. Finally, the bandwidth of the laser can be controlled by switching gain modules on and off. This scheme offers a route to mode-locked lasers with high average output power, repetition rates that can be scaled into the THz range, ...

  9. Absorber and gain chip optimization to improve performance from a passively modelocked electrically pumped vertical external cavity surface emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Zaugg, C. A., E-mail: zauggc@phys.ethz.ch; Mangold, M.; Pallmann, W. P.; Golling, M.; Tilma, B. W.; Keller, U. [Department of Physics, Institute for Quantum Electronics, ETH Zürich, 8093 Zürich (Switzerland); Gronenborn, S.; Moench, H.; Weichmann, U. [Philips Technologie GmbH Photonics Aachen, Steinbachstrasse 15, 52074 Aachen (Germany); Miller, M. [Philips Technologie GmbH U-L-M Photonics, Lise-Meitner-Strasse 13, 89081 Ulm (Germany)

    2014-03-24

    We present an electrically pumped vertical-external-cavity surface-emitting laser (EP-VECSEL) modelocked with a semiconductor saturable absorber mirror (SESAM) with significantly improved performance. In different cavity configurations, we present the shortest pulses (2.5 ps), highest average output power (53.2 mW), highest repetition rate (18.2 GHz), and highest peak power (4.7 W) to date. The simple and low-cost concept of EP-VECSELs is very attractive for mass-market applications such as optical communication and clocking. The improvements result from an optimized gain chip from Philips Technologie GmbH and a SESAM, specifically designed for EP-VECSELs. For the gain chip, we found a better trade-off between electrical and optical losses with an optimized doping scheme in the substrate to increase the average output power. Furthermore, the device's bottom contact diameter (60 μm) is smaller than the oxide aperture diameter (100 μm), which favors electro-optical conversion into a TEM{sub 00} mode. Compared to optically pumped VECSELs we have to increase the field enhancement in the active region of an EP-VECSEL which requires a SESAM with lower saturation fluence and higher modulation depth for modelocking. We therefore used a resonant quantum well SESAM with a 3.5-pair dielectric top-coating (SiN{sub x} and SiO{sub 2}) to enhance the field in the absorber at the lasing wavelength of 980 nm. The absorption bandedge at room temperature is detuned (965 nm) compared to the resonance (980 nm), which enables temperature-tuning of the modulation depth and saturation fluence from approximately 2.5% up to 15% and from 20 μJ/cm{sup 2} to 1.1 μJ/cm{sup 2}, respectively.

  10. Absorber and gain chip optimization to improve performance from a passively modelocked electrically pumped vertical external cavity surface emitting laser

    Science.gov (United States)

    Zaugg, C. A.; Gronenborn, S.; Moench, H.; Mangold, M.; Miller, M.; Weichmann, U.; Pallmann, W. P.; Golling, M.; Tilma, B. W.; Keller, U.

    2014-03-01

    We present an electrically pumped vertical-external-cavity surface-emitting laser (EP-VECSEL) modelocked with a semiconductor saturable absorber mirror (SESAM) with significantly improved performance. In different cavity configurations, we present the shortest pulses (2.5 ps), highest average output power (53.2 mW), highest repetition rate (18.2 GHz), and highest peak power (4.7 W) to date. The simple and low-cost concept of EP-VECSELs is very attractive for mass-market applications such as optical communication and clocking. The improvements result from an optimized gain chip from Philips Technologie GmbH and a SESAM, specifically designed for EP-VECSELs. For the gain chip, we found a better trade-off between electrical and optical losses with an optimized doping scheme in the substrate to increase the average output power. Furthermore, the device's bottom contact diameter (60 μm) is smaller than the oxide aperture diameter (100 μm), which favors electro-optical conversion into a TEM00 mode. Compared to optically pumped VECSELs we have to increase the field enhancement in the active region of an EP-VECSEL which requires a SESAM with lower saturation fluence and higher modulation depth for modelocking. We therefore used a resonant quantum well SESAM with a 3.5-pair dielectric top-coating (SiNx and SiO2) to enhance the field in the absorber at the lasing wavelength of 980 nm. The absorption bandedge at room temperature is detuned (965 nm) compared to the resonance (980 nm), which enables temperature-tuning of the modulation depth and saturation fluence from approximately 2.5% up to 15% and from 20 μJ/cm2 to 1.1 μJ/cm2, respectively.

  11. Diode array pumped, non-linear mirror Q-switched and mode-locked Nd : YVO4 laser – a good tool for powder SHG measurement

    Indian Academy of Sciences (India)

    P K Datta; Chandrajit Basu; S Mukhopadhyay; S K Das; G K Samanta; Antonio Agnesi

    2004-11-01

    A non-linear mirror consisting of a lithium triborate crystal and a dichroic output coupler are used to mode-lock (passively) an Nd : YVO4 laser, pumped by a diode laser array. The laser can operate both in cw mode-locked and simultaneously Q-switched and mode-locked (QML) regime. The peak power of the laser while operating in QML regime is much higher but pulses suffers from poor amplitude stability. The incorporation of an acousto-optic modulator as an active Q-switch enhances the stability of the QML pulse envelope. The second-order non-linearity of powdered crystalline urea is conclusively measured with respect to KDP while the laser is operating in passively Q-switched and passively mode-locked regime as well as in actively Q-switched and passively mode-locked regime.

  12. Generation of 170-fs Laser Pulses at 1053 nm by a Passively Mode-Locked Yb:YAG Laser

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bin-Bin; WEI Zhi-Yi; LI De-Hua; TENG Hao; Bourdet G. L

    2009-01-01

    A novel method is developed to obtain 1.05μm laser operation with a Yb:YAG laser. By using a Yb:YAG crystal with proper length and doping concentration, a femtosecond Yb: YAG laser is realized at the central wavelength of 1053nm. The measured pulse duration and spectral bandwidth (FWHM) are 17ors and 7nm; the repetition rate is 80 MHz. Under a power pump of 2 W, an average mode-locking power of 180mW is achieved.

  13. Diode end-pumped self-Q-switched and mode-locked Nd,Cr:YAG/KTP green laser

    Institute of Scientific and Technical Information of China (English)

    Du Shi-Feng; Wang Su-Mei; Zhang Dong-Xiang; Feng Bao-Hua; Zhang Chun-Yu; Zhang Ling; Zhang Zhi-Guo; Zhang Shi-Wen

    2006-01-01

    We first experimentally demonstrate a laser-diode end-pumped self-Q-switched and mode-locked Nd,Cr:YAG green laser with a KTP crystal as the intra- cavity frequency doubler. The device produces an average output power of 680 mW at 532 nm. The corresponding pulse width of the Q-switched envelope of the green laser is 170 ± 20 ns. The mode-locked pulses have a repetition rate of approximately 183 MHz and the average pulse duration is estimated to be around sub-nanosecond. It is found that the intra-cavity frequency doubling greatly improves the modulation depth and stability of the mode-locked pulses within the Q-switched envelope.

  14. Ultrashort mode-locked lasers with additional Raman active elements

    Science.gov (United States)

    Trunov, V. I.; Kirpichnikov, A. V.; Pestryakov, Efim V.; Petrov, V. V.; Komarov, A. K.; Komarov, Konstantin P.

    2002-05-01

    Numerical simulation of ultrashort pulse generation in the laser with a composite active medium and additional Raman active element in a cavity has been done. It was created that for some laser parameters the optimization of a Raman gain and a frequency shift values was resulted in additional shortening of pulse duration.

  15. Wavelength Spacing Tunable, Multiwavelength Q-switched Fiber Laser Mode-locked by Graphene Oxide

    CERN Document Server

    Gao, Lei

    2014-01-01

    We demonstrate a wavelength spacing tunable, multiwavelength Q-switched mode-locked fiber laser (QML) based on a fiber taper deposited with graphene oxide. The operation of the laser can be understood in terms of the formation of bunches of QMLs which possess small temporal intervals, and multiwavelength spectra are generated due to the Fourier transformation. We find that the temporal spacing of the QMLs is highly sensitive to the pump power, and as a result, the wavelength spacing can be easily tuned by varying the pump power. Our experimental laser provides a wavelength spacing tuning range from ~0.001 nm to 0.145 nm with a pump power variation less than 10 mW. The laser could be developed into a low lost wavelength spacing tunable optical source for a wide range of applications, such as spectroscopy, microwave/terahertz signal generation, optical metrology, optical communications and sensing.

  16. Switchable dual-wavelength all-fiber laser mode-locked by carbon nanotubes

    Science.gov (United States)

    Kong, Y. C.; Yang, H. R.; Li, W. L.; Chen, G. W.

    2015-01-01

    We have proposed a compact dual-wavelength all-fiber pulse laser based on a single-walled carbon nanotube and chirped fiber Bragg gratings (CFBGs). A transmission filter is composed of a circulator and two CFBGs and is capable of controlling the operation of the proposed fiber laser. Mode-locking operations can be switched between 1551.2 and 1548.6 nm with the appropriate adjustment of polarization controller. Our laser delivers the pulses with the spectral bandwidth of about 0.6 nm and the pulse duration of about 7 ps. This work provides a low-cost, stable, and dual-wavelength ultrafast-pulsed laser source suitable for practical applications.

  17. Laser Cooling of 2-6 Semiconductors

    Science.gov (United States)

    2016-08-12

    AFRL-AFOSR-JP-TR-2016-0067 Laser Cooling of II-VI Semiconductors Qihua Xiong NANYANG TECHNOLOGICAL UNIVERSITY Final Report 08/12/2016 DISTRIBUTION A...From - To) 15 May 2013 to 14 May 2016 4. TITLE AND SUBTITLE Laser Cooling of II-VI Semiconductors 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-13-1...13. SUPPLEMENTARY NOTES 14. ABSTRACT The breakthrough of laser cooling in semiconductor has stimulated strong interest in further scaling up towards

  18. Semiconductor Lasers and Their Application in Optical Fiber Communication.

    Science.gov (United States)

    Agrawal, Govind P.

    1985-01-01

    Working principles and operating characteristics of the extremely compact and highly efficient semiconductor lasers are explained. Topics include: the p-n junction; Fabry-Perot cavity; heterostructure semiconductor lasers; materials; emission characteristics; and single-frequency semiconductor lasers. Applications for semiconductor lasers include…

  19. Diode-Pumped Self Q-Switched and Mode-Locking Nd3+,Cr4+:YAG Laser

    Institute of Scientific and Technical Information of China (English)

    LI Chun-Yong; LI Ping-Xue; LI De-Hua; FENG Bao-Hua; FU Pan-Ming; ZHANG Zhi-Guo; ZHANG Shi-Wen

    2004-01-01

    @@ Using Nd3+,Cr4+ : YAG as a laser crystal and saturable absorber simultaneously, we obtain a self-Q-switched and mode-locking laser at 1.06 μm with straight cavity structure. Self mode-locking phenomenon was observed at an intracavity intensity of only about 2000 W/cm2. More than 90% modulation depth is achieved at an intracavity intensity of less than 3.0 × 104 W/cm2 for the first time. The Q-switched pulse width and repetition rate are found to be connected with the cavity length and the output power.

  20. Cross-phase modulation instability in mode-locked laser based on reduced graphene oxide

    CERN Document Server

    Gaol, Lei; Liu, Min; Huang, Wei

    2014-01-01

    Cross-phase modulation instability (XPMI) is experimentally observed in a fiber ring cavity with net normal dispersion and mode-locked by long fiber taper. The taper is deposited with reduced graphene oxide, which can decrease the threshold of XPMI due to the enhanced nonlinearity realized by 8 mm evanescent field interaction length and strong mode confinement. Experimental results indicate that the phase matching conditions in two polarization directions are different, and sidebands with different intensities are generated. This phase matching condition can be satisfied even the polarization state of the laser varies greatly under different pump strengths.

  1. Sub-picosecond ultra-low frequency passively mode-locked fiber laser

    Science.gov (United States)

    Cuadrado-Laborde, Christian; Cruz, José L.; Díez, Antonio; Andrés, Miguel V.

    2016-11-01

    We developed a nonlinear polarization rotation all-fiber mode-locked erbium-doped fiber laser, with the purpose to reach a sub-picosecond and sub-megahertz light pulse emission. In the process, we observed three different emission regimes as the net birefringence is changed, namely high-power dissipative soliton resonance, low-power soliton regime, and a mixed combination of both. In the pure solitonic regime, a 0.961 MHz train of chirp-free Gaussian pulses was obtained, with a time width of 0.919 ps at 1564.3 nm.

  2. Supercontinuum generation pumped by a regeneratively mode-locked fiber laser

    Institute of Scientific and Technical Information of China (English)

    JIA Dong-fang; TAN Bin; WANG Zhao-ying; GE Chun-feng; NI Wen-jun; LI Shi-chen

    2005-01-01

    Supercontinuum(SC) generation in a dispersion-shifted fiber(DSF) pumped by a 10 GHz regeneratively mode-locked fiber laser(RMLFL) is presented.Optimization of pump wavelength leads to a 20 dB bandwidth of 58.73 nm,which covers the whole C band and part of L band.Using an angle-tuning thin film filter,multi-wavelength and pico-second pulse trains of low chirp could be chosen from the SC spectrum.Amplified spontaneous emission(ASE) induced degeneration of the achieved pulse trains is observed and discussed.

  3. Trade-off between Linewidth and Slip Rate in a Mode-Locked Laser Model

    CERN Document Server

    Moore, Richard O

    2014-01-01

    We demonstrate a trade-off between linewidth and loss-of-lock frequency in a mode-locked laser employing active feedback to control the carrier-envelope offset phase difference. In frequency metrology applications, the linewidth translates directly to uncertainty in the measured frequency, while the impact of lock loss and recovery on the measured frequency is less well understood. We reduce the dynamics to stochastic differential equations, specifically diffusion processes, and compare the linearized linewidth to the rate of lock loss determined by the mean time to exit calculated from large deviation theory.

  4. An ultrafast optics undergraduate advanced laboratory with a mode-locked fiber laser

    Science.gov (United States)

    Schaffer, Andrew; Fredrick, Connor; Hoyt, Chad; Jones, Jason

    2015-05-01

    We describe an ultrafast optics undergraduate advanced laboratory comprising a mode-locked erbium fiber laser, auto-correlation measurements, and an external, free-space parallel grating dispersion compensation apparatus. The simple design of the stretched pulse laser uses nonlinear polarization rotation mode-locking to produce pulses at a repetition rate of 55 MHz and average power of 5.5 mW. Interferometric and intensity auto-correlation measurements are made using a Michelson interferometer that takes advantage of the two-photon nonlinear response of a common silicon photodiode for the second order correlation between 1550 nm laser pulses. After a pre-amplifier and compression, pulse widths as narrow as 108 fs are measured at 17 mW average power. A detailed parts list includes previously owned and common components used by the telecommunications industry, which may decrease the cost of the lab to within reach of many undergraduate and graduate departments. We also describe progress toward a relatively low-cost optical frequency comb advanced laboratory. NSF EIR #1208930.

  5. Multiple-Pulse Operation and Bound States of Solitons in Passive Mode-Locked Fiber Lasers

    Directory of Open Access Journals (Sweden)

    A. Komarov

    2012-01-01

    Full Text Available We present results of our research on a multiple-pulse operation of passive mode-locked fiber lasers. The research has been performed on basis of numerical simulation. Multihysteresis dependence of both an intracavity energy and peak intensities of intracavity ultrashort pulses on pump power is found. It is shown that the change of a number of ultrashort pulses in a laser cavity can be realized by hard as well as soft regimes of an excitation and an annihilation of new solitons. Bound steady states of interacting solitons are studied for various mechanisms of nonlinear losses shaping ultrashort pulses. Possibility of coding of information on basis of soliton trains with various bonds between neighboring pulses is discussed. The role of dispersive wave emitted by solitons because of lumped intracavity elements in a formation of powerful soliton wings is analyzed. It is found that such powerful wings result in large bounding energies of interacting solitons in steady states. Various problems of a soliton interaction in passive mode-locked fiber lasers are discussed.

  6. Bright-dark rogue wave in mode-locked fibre laser (Conference Presentation)

    Science.gov (United States)

    Kbashi, Hani; Kolpakov, Stanislav; Martinez, Amós; Mou, Chengbo; Sergeyev, Sergey V.

    2017-05-01

    Bright-Dark Rogue Wave in Mode-Locked Fibre Laser Hani Kbashi1*, Amos Martinez1, S. A. Kolpakov1, Chengbo Mou, Alex Rozhin1, Sergey V. Sergeyev1 1Aston Institute of Photonic Technologies, School of Engineering and Applied Science Aston University, Birmingham, B4 7ET, UK kbashihj@aston.ac.uk , 0044 755 3534 388 Keywords: Optical rogue wave, Bright-Dark rogue wave, rogue wave, mode-locked fiber laser, polarization instability. Abstract: Rogue waves (RWs) are statistically rare localized waves with high amplitude that suddenly appear and disappear in oceans, water tanks, and optical systems [1]. The investigation of these events in optics, optical rogue waves, is of interest for both fundamental research and applied science. Recently, we have shown that the adjustment of the in-cavity birefringence and pump polarization leads to emerge optical RW events [2-4]. Here, we report the first experimental observation of vector bright-dark RWs in an erbium-doped stretched pulse mode-locked fiber laser. The change of induced in-cavity birefringence provides an opportunity to observe RW events at pump power is a little higher than the lasing threshold. Polarization instabilities in the laser cavity result in the coupling between two orthogonal linearly polarized components leading to the emergence of bright-dark RWs. The observed clusters belongs to the class of slow optical RWs because their lifetime is of order of a thousand of laser cavity roundtrip periods. References: 1. D. R. Solli, C. Ropers, P. Koonath,and B. Jalali, Optical rogue waves," Nature, 450, 1054-1057, 2007. 2. S. V. Sergeyev, S. A. Kolpakov, C. Mou, G. Jacobsen, S. Popov, and V. Kalashnikov, "Slow deterministic vector rogue waves," Proc. SPIE 9732, 97320K (2016). 3. S. A. Kolpakov, H. Kbashi, and S. V. Sergeyev, "Dynamics of vector rogue waves in a fiber laser with a ring cavity," Optica, 3, 8, 870, (2016). 5. S. Kolpakov, H. Kbashi, and S. Sergeyev, "Slow optical rogue waves in a unidirectional fiber laser

  7. Generation of sub-100 fs pulses from mode-locked Nd,Y:SrF2 laser with enhancing SPM

    Science.gov (United States)

    Zhu, Jiangfeng; Wei, Long; Tian, Wenlong; Liu, Jiaxing; Wang, Zhaohua; Su, Liangbi; Xu, Jun; Wei, Zhiyi

    2016-05-01

    A mode-locked laser using Nd,Y:SrF2 crystal as the gain medium is presented in this letter. By special design of the cavity for enhancing the self-phase modulation effect, femtosecond mode-locking with 97 fs pulse duration and 13.2 nm spectral width centered at 1061 nm is obtained at a repetition rate of 96 MHz. The average output power is 102 mW under 925 mW pump power, corresponding to the optical-to-optical efficiency of 11%. To the best of our knowledge, these are the first sub-100 fs pulses generated from a mode-locked Nd doped crystal laser.

  8. Second harmonic pico-second pulse generation with mode-locked 1064nm DBR laser diodes

    Science.gov (United States)

    Klehr, A.; Prziwarka, T.; Jedrzejczyk, D.; Brox, O.; Bugge, F.; Wenzel, H.; Paschke, K.; Erbert, G.; Tränkle, G.

    2014-02-01

    Detailed experimental investigations of the generation of high-energy short infrared and green pulses with a mode-locked multi-section distributed Bragg reflector (DBR) laser in dependence on the lengths of the gain section and the saturableabsorber (SA) section as well the corresponding input currents and reverse voltages, respectively, are presented. The laser under investigation is 3.5 mm long and has a 500 μm long DBR section. The remaining cavity was divided into four 50 μm, four 100 μm, two 200 μm and eight 250 μm long electrically separated segments so that the lengths of the gain and SA sections can be simply varied by bonding. Thus, the dependence of the mode-locking behavior on the lengths of the gain and SA sections can be investigated on the same device. Optimal mode-locking was obtained for absorber lengths between LAbs = 200 μm and 300 μm and absorber voltages between UAbs= -2 V and -3 V. A pulse length of τ ≍ 10 ps, a repetition frequency of 13 GHz and a RF line width of less than 100 kHz were measured. An infrared peak pulse power of 900 mW was reached. The FWHM of the optical spectrum was about 150 pm. With an 11.5 mm long periodically poled MgO doped LiNbO3 crystal having a ridge geometry of 5 μm width and 4 μm height green light pulses were generated. With an infrared pump peak power of 900 mW a green pulse energy of 3.15 pJ was reached. The opto-optical conversion efficiency was about 31%.

  9. Integrated optics approach for advanced semiconductor lasers

    Science.gov (United States)

    Suematsu, Yasuharu; Arai, Shigehisa

    1987-11-01

    Recent advances in the field of semiconductor integrated optics are reviewed from the point of view of monolithic integration of semiconductor lasers and other optical components and/or devices. Emphasis is placed on dynamic-single-mode (DSM) lasers, such as DFB and DBR lasers, intended for highly stable single-wavelength light sources for such monolithic integration. The realization of high-performance DSM lasers and the fabrication techniques of monolithically integrated optical devices and circuits are briefly reviewed. A variety of potential applications is discussed.

  10. Multi-Format Wavelength Conversion Using Quantum Dash Mode-Locked Laser Pumps

    Directory of Open Access Journals (Sweden)

    Yousra Ben M’Sallem

    2015-05-01

    Full Text Available We investigate and compare the performance of wavelength conversion for two different non-return-to-zero (NRZ modulation formats at 40 Gb/s: on off keying (OOK and differential phase-shift keying (DPSK. To achieve wide wavelength coverage and integrability, we use a dual pump scheme exploiting four-wave mixing in semiconductor optical amplifiers. For phase stability, we use a quantum-dash mode-locked laser (QD-MLL as a multi-wavelength source for the dual pumps, with tunability provided by the output filter. The significant sidelobes of the DPSK spectrum (relative to OOK require the balancing of the pump proximity to the original signal (facilitating high conversion efficiency with the signal degradation from the pump spectrum overlapping the converted DPSK signal. We achieve a conversion efficiency near –3.6 dB for OOK and –5.4 dB for DPSK across a 12 nm tuning range with low input powers (1 dBm. We measure bit error rate (BER and obtain error free transmission (BER < 10−9 with a power penalty less than 2 dB for OOK and 3 dB for DPSK.

  11. Flexible pulses from carbon nanotubes mode-locked fiber laser

    Science.gov (United States)

    Yang, Ling-Zhen; Yang, Yi; Wang, Juan-Fen

    2016-12-01

    We demonstrate a flexible erbium-doped pulsed fiber laser which achieves the wavelength and pulse width tuning by adjusting an intracavity filter. The intracavity filter is flexible to achieve any of the different wavelengths and bandwidths in the tuning range. The wavelength and width of pulse can be tuned in a range of ˜ 20 nm and from ˜ 0.8 ps to 87 ps, respectively. The flexible pulsed fiber laser can be accurately controlled, which is insensitive to environmental disturbance. Project supported by the National Natural Science Foundation of China (Grant No. 61575137) and the Program on Social Development by Department of Science and Technology of Shanxi Province, China (Grant No. 20140313023-3).

  12. RF spectral analysis for characterisation of mode-locked regimes in fibre lasers

    Science.gov (United States)

    Ivanenko, Alexey V.; Kobtsev, Sergey M.; Kokhanovskiy, Alexey; Smirnov, Sergey V.

    2016-10-01

    In this work, we present our results of RF spectral analysis applied to mode-locked lasers and propose a method of qualitative assessment of mode-locked operation, which allows differentiation of individual generation regimes by a parameter calculated from RF spectra of the fundamental and the n-th radiation harmonics. The proposed parameter is derived both from the signal-to-noise ratio and from width and amount of additional noise present in RF spectrum of inter-mode beats at the fundamental pulse repetition frequency and its harmonic. This work presents analysis of energy fluctuations and temporal instability of pulse train period for different regimes of pulse generation in Yb fibre laser mode locked due to nonlinear polarization evolution. The paper shows that energy fluctuations of single-scale ("conventional") pulses is about 1.6%, whereas for double-scale pulses energy fluctuations amount to 11.5%. Temporal instability of double-scale pulse train period is 1.5 times higher in comparison with single-scale pulse train period.

  13. Mode-Locked CO Laser for Isotope Separation of Uranium Employing Condensation Repression

    Directory of Open Access Journals (Sweden)

    Igor Y. Baranov

    2010-01-01

    Full Text Available In the present work, we have suggested a technical solution of a CO laser facility for industrial separation of uranium used in the production of fuel for nuclear power plants. There has been used a method of laser isotope separation of uranium, employing condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide acceptable efficiency in the separating unit and the high effective coefficient of the laser with the wavelength of 5.3 μm. Receiving a uniform RF discharge under medium pressure and high Mach numbers in the gas stream solves the problem of an electron beam and cryogenic cooler of CO lasers. The laser active medium is being cooled while it is expanding in the nozzle; a low-current RF discharge is similar to a non-self-sustained discharge. In the present work, we have developed a calculation model of optimization and have defined the parameters of a mode-locked CO laser with an RF discharge in the supersonic stream. The CO laser average power of 3 kW is sufficient for efficient industrial isotope separation of uranium at one facility.

  14. Amplification of short pulses from a mode-locked diode laser in an ytterbium-doped fiber

    NARCIS (Netherlands)

    Hekelaar, M.G.; Adhimoolam, B.; Gross, P.; Lindsay, I.D.; Boller, Klaus J.

    2005-01-01

    We report the first mode-locked diode laser at 1.04 µm with subsequent amplification of the pulses in an ytterbium-doped fiber amplifier. The generated pulses have a pulse duration of 70ps and peak power of 50W.

  15. Systematic investigation of the temperature behavior of InAs/InP quantum nanostructure passively mode-locked lasers

    DEFF Research Database (Denmark)

    Klaime, K.; Piron, R.; Grillot, F.

    2013-01-01

    This paper aims to investigate the effects of the temperature on the mode-locking capability of two section InAs/InP quantum nanostructure (QN) passively mode locked lasers. Devices are made with multi-layers of self-assembled InAs QN either grown on InP(100) (5 quantum dashes (QDashes) layers...

  16. Rate equation dynamics of passively mode-locked quasi-continuous lasers: pulse stability and dynamic pulse compression

    Energy Technology Data Exchange (ETDEWEB)

    New, G.H.C.; Orkney, K.E.; Nock, M.J.W.

    1976-09-01

    New theoretical results connected with the stability of multiple pulsing in a passively mode-locked quasicontinuous laser in the rate equation approximation are presented. Together with earlier results, these allow the number of pulses per cavity transit to be predicted and a qualitative estimate made of the pulse duration for any combination of parameters. The results are illustrated by computer evolutions.

  17. Pulse width tunable subpicosecond pulse generation from an actively modelocked monolithic MQW laser/MQW electroabsorption modulator

    Science.gov (United States)

    Takada, A.; Sato, K.; Saruwatari, M.; Yamamoto, M.

    1994-05-01

    Actively modelocked pulses are generated from a 1.59 micron MQW laser integrated with an MQW electroabsorption modulator driven at the monolithic cavity frequency. The pulse width is controlled from 39 ps to 0.55 ps by changing the inverse bias voltage applied to the electroabsorption modulator and by linear pulse compression using a fiber.

  18. Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating.

    Science.gov (United States)

    Zhang, Zuxing; Mou, Chengbo; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin; Turitsyn, Sergei

    2013-11-18

    We demonstrate generation of sub-100 fs pulses at 1.5 µm in a mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating element. The laser features a genuine all-fiber configuration. Based on the unique polarization properties of the 45°-tilted fiber grating, we managed to produce sub-100 fs laser pulses through proper dispersion management. To the best of our knowledge, this is the shortest pulse generated from mode-locked lasers with fiber gratings. The output pulse has an average power of 8 mW, with a repetition rate of 47.8 MHz and pulse energy of 1.68 nJ. The performance of laser also matches well the theoretical simulations.

  19. Q-switched mode-locked diode-pumped Nd:YVO4 laser with a saturable Bragg reflector

    Institute of Scientific and Technical Information of China (English)

    Juan Du(杜鹃); Jingliang He(何京良); Jie Liu(刘杰); Qiuxia Jiang(姜秋霞); Sheng Liu(刘胜); Huitian Wang(王慧田)

    2004-01-01

    We demonstrated a diode-pumped passively Q-switched mode-locked Nd:YVO4 laser by using a relaxed saturable Bragg reflector (SBR). Stable mode-locked pulse train with the repetition rate of ~230 MHz was achieved and the pulse train was modulated by the Q-switched envelope with the repetition rate of ~150 kHz. The maximum output of 4 W was obtained under the pump power of 13.5 W. The optical-to-optical efficiency was 30%. We also discussed the transition of each process having emerged.

  20. Q-switched mode-locked diode-pumped Nd:YVO4 laser with a saturable Bragg reflector

    Institute of Scientific and Technical Information of China (English)

    杜鹃; 何京良; 刘杰; 姜秋霞; 刘胜; 王慧田

    2004-01-01

    We demonstrated a diode-pumped passively Q-switched mode-locked Nd:YVO4 laser by using a relaxed saturable Bragg reflector (SBR). Stable mode-locked pulse train with the repetition rate of ~230 MHz was achieved and the pulse train was modulated by the Q-switched envelope with the repetition rate of ~150kHz. The maximum output of 4 W was obtained under the pump power of 13.5 W. The optical-to-optical efficiency was 30%. We also discussed the transition of each process having emerged.

  1. Mode-locked Yb-doped fiber laser emitting broadband pulses at ultra-low repetition rates

    CERN Document Server

    Bowen, Patrick; Provo, Richard; Harvey, John D; Broderick, Neil G R

    2016-01-01

    We report on an environmentally stable, Yb-doped, all-normal dispersion, mode-locked fibre laser that is capable of creating broadband pulses with ultra-low repetition rates. Specifically, through careful positioning of fibre sections in an all-PM-fibre cavity mode-locked with a nonlinear amplifying loop mirror, we achieve stable pulse trains with repetition rates as low as 506 kHz. The pulses have several nanojules of energy and are compressible down to ultrashort (< 500 fs) durations.

  2. Hybrid mode-locked fiber ring laser using graphene and charcoal nanoparticles as saturable absorbers

    Science.gov (United States)

    Hu, Hongyu; Zhang, Xiang; Li, Wenbo; Dutta, Niloy K.

    2016-05-01

    A fiber ring laser which implements hybrid mode locking technique has been proposed and experimentally demonstrated to generate pulse train at 20 GHz repetition rate with ultrashort pulse width. Graphene and charcoal nano-particles acting as passive mode lockers are inserted into a rational harmonic mode-locked fiber laser to improve the performance. With graphene saturable absorbers, the pulse duration is shortened from 5.3 ps to 2.8 ps, and with charcoal nano-particles, it is shortened to 3.2 ps. The RF spectra show that supermode noise can be removed in the presence of the saturable absorbers. Numerical simulation of the pulse transmission has also been carried out, which shows good agreement with the experimental results.

  3. Microwave emission by nonlinear crystals irradiated with a high-intensity, mode-locked laser

    CERN Document Server

    Borghesani, A F; Guarise, M

    2016-01-01

    We report on the experimental investigation of the efficiency of some nonlinear crystals to generate microwave (RF) radiation as a result of optical rectification (OR) when irradiated with intense pulse trains delivered by a mode-locked laser at $1064\\,$nm. We have investigated lithium triborate (LBO), lithium niobate (LiNbO$_3$), zinc selenide (ZnSe), and also potassium titanyl orthophosphate (KTP) for comparison with previous measurements. The results are in good agreement with the theoretical predictions based on the form of the second-order nonlinear susceptibility tensor. For some crystals we investigated also the second harmonic generation (SHG) to cross check the theoretical model. We confirm the theoretical prediction that OR leads to the production of higher order RF harmonics that are overtones of the laser repetition rate.

  4. Dynamics of soliton explosions in passively mode-locked fiber lasers

    CERN Document Server

    Runge, Antoine F J; Erkintalo, Miro

    2015-01-01

    A soliton explosion is an instability whereby a dissipative soliton undergoes a sudden structural collapse, but remarkably returns back to its original shape after a short transient. We recently reported the first experimental observation of this effect in a fiber laser (A. F. J. Runge et al., Optica 2, 36 (2015)). Here, we expand on our initial work, presenting a more detailed experimental and numerical study of the characteristics and dynamics of soliton explosions in passively mode-locked fiber lasers. Specifically, we explore different cavity configurations and gain levels, observing and characterizing explosion events using spectral and temporal real-time single-shot techniques. Our results highlight that the explosion characteristics observed in experiments depend critically on the position in the cavity where the output coupler is located. Furthermore, we find that the frequency at which explosions occur can be controlled by adjusting the pump power. We also identify a new kind of ``partial'' explosion...

  5. Femtosecond pulse generation from a Topological Insulator mode-locked fiber laser

    CERN Document Server

    Liu, Hao; Liu, Meng; Zhao, Nian; Luo, Ai-Ping; Luo, Zhi-Chao; Xu, Wen-Cheng; Zhang, Han; Zhao, Chu-Jun; Wen, Shuang-Chun

    2014-01-01

    We reported on the generation of femtosecond pulse in an anomalous-dispersion fiber ring laser by using a polyvinyl alcohol (PVA)-based Topological Insulator (TI), Bi2Se3 saturable absorber (SA). The PVA-TI composite has a low saturable optical intensity of 12 MW/cm2 and a modulation depth of ~3.9%. By incorporating the fabricated PVA-TISA into a fiber laser, mode-locking operation could be achieved at a low pump threshold of 25 mW. After an optimization of the cavity parameters, optical pulse with ~660 fs centered at 1557.5 nm wavelength had been generated. The experimental results demonstrate that the PVA could be an excellent host material for fabricating high-performance TISA, and also indicate that the filmy PVA-TISA is indeed a good candidate for ultrafast saturable absorption device.

  6. Passively harmonic mode-locked fiber laser based on ReS2 saturable absorber

    Science.gov (United States)

    Lu, Feifei

    2017-06-01

    We demonstrate the generation of harmonic mode-locking (HML) in an erbium-doped fiber laser with a microfiber-based rhenium disulfide (ReS2) saturable absorber (SA). Taking advantages of both saturable absorption and large third-order nonlinear effect of ReS2, HML pulse with 318.5 MHz repetition rate can be obtained, corresponding to 168th harmonic of fundamental repetition frequency of 1.896 MHz. When the pump power is increased gradually, the pulse interval remains constant, while the output power increases linearly. At the pump power of 450 mW, the output power is ˜12 mW. The proposed high-repetition-rate pulse lasers would attract considerable attention due to its potential applications in soliton communications and frequency combs.

  7. Graphene oxide mode-locked femtosecond erbium-doped fiber lasers.

    Science.gov (United States)

    Xu, Jia; Liu, Jiang; Wu, Sida; Yang, Quan-Hong; Wang, Pu

    2012-07-02

    We demonstrated the femtosecond erbium-doped all-fiber lasers mode-locked with graphene oxide, which can be conveniently obtained from natural graphite by simple oxidation and ultra-sonication process. With proper dispersion management in an all-fiber ring cavity, the laser directly generated 200 fs pulses at a repetition rate of 22.9 MHz and the average output power was 5.8 mW. With the variation of net cavity dispersion, output pulses with pulse width of 0.2~3 ps were obtained at a repetition rate of 22.9~0.93 MHz. These results are comparable with those of graphene saturable absorbers and the superiority of easy fabrication and hydrophilic property of graphene oxide will facilitate its potential applications for ultrafast photonics.

  8. Characterization of timing jitter spectra in free-running mode-locked lasers with 340 dB dynamic range over 10 decades of Fourier frequency

    CERN Document Server

    Jung, Kwangyun

    2014-01-01

    We demonstrate a method that enables accurate timing jitter spectral density characterization of free-running mode-locked laser oscillators over more than 10-decade of Fourier frequency from mHz to tens MHz range. The method is based on analyzing both the input voltage noise to the slave laser and the output voltage noise from the balanced optical cross- correlator (BOC), when two mode-locked lasers are synchronized in repetition rate by the BOC. As a demonstration experiment, timing jitter spectrum of a free-running mode-locked Er-fiber laser with a dynamic range of >340 dB is measured over Fourier frequency ranging from 1 mHz to 38.5 MHz (Nyquist frequency). The demonstrated method can resolve different noise mechanisms that cause specific jitter characteristics in free-running mode-locked laser oscillators for a vast range of time scales from 1000-s.

  9. Vertical external cavity surface emitting semiconductor lasers

    CERN Document Server

    Holm, M

    2001-01-01

    Active stabilisation showed a relative locked linewidth of approx 3 kHz. Coarse tuning over 7 nm was achieved using a 3-plate birefingent filter plate while fine-tuning using cavity length change allowed tuning over 250 MHz. Vertical external cavity semiconductor lasers have emerged as an interesting technology based on current vertical cavity semiconductor laser knowledge. High power output into a single transverse mode has attracted companies requiring good fibre coupling for telecommunications systems. The structure comprises of a grown semiconductor Bragg reflector topped with a multiple quantum well gain region. This is then included in an external cavity. This device is then optically pumped to promote laser action. Theoretical modelling of AIGaAs based VECSEL structures was undertaken, showing the effect of device design on laser characteristics. A simple 3-mirror cavity was constructed to assess the static characteristics of the structure. Up to 153 mW of output power was achieved in a single transver...

  10. Isolator-free switchable uni- and bidirectional hybrid mode-locked erbium-doped fiber laser.

    Science.gov (United States)

    Chernysheva, Maria; Araimi, Mohammed Al; Kbashi, Hani; Arif, Raz; Sergeyev, Sergey V; Rozhin, Aleksey

    2016-07-11

    An Erbium-doped fibre ring laser hybrid mode-locked with single-wall carbon nanotubes (SWNT) and nonlinear polarisation evolution (NPE) without an optical isolator has been investigated for various cavity conditions. Precise control of the state of polarisation (SOP) in the cavity ensures different losses for counter-propagating optical fields. As the result, the laser operates in quasi-unidirectional regime in both clockwise (CW) and counter-clockwise (CCW) directions with the emission strengths difference of the directions of 22 dB. Furthermore, by adjusting the net birefringence in the cavity, the laser can operate in a bidirectional generation. In this case, a laser pumped with 75 mW power at 980 nm generates almost identical 790 and 570 fs soliton pulses with an average power of 1.17 and 1.11 mW. The operation stability and pulse quality of the soliton pulses in both unidirectional regimes are highly competitive with those generated in conventional ring fibre lasers with isolator in the cavity. Demonstrated bidirectional laser operation can find vital applications in gyroscopes or precision rotation sensing technologies.

  11. Passively mode-locked stretched-pulse erbium-doped fiber ring laser with a regenerative feedback

    Science.gov (United States)

    Roy, Vincent; Lamonde, Martin; Babin, Francois; Piche, Michel

    2003-02-01

    A polarization additive pulse mode-locked stretched-pulse erbium-doped fiber ring laser with a regenerative feedback producing near transform-limited femtosecond pulses is reported. The regenerative feedback makes use of an intensity modulator driven at twice the fundamental repetition rate of the passively mode-locked fiber laser. The laser is self-starting for a limited range of pump power. The de-chirped pulses have a duration of 90 fs (FWHM) and a pulse time-bandwidth product of 0.44. The pulse energy amounts to 0.3 nJ. Pulses with nearly twice that energy could be obtained, though without self-starting capability. The laser RF power spectrum measurement yields an amplitude noise as low as 0.15% (rms) and a pulse timing jitter of 150 fs (rms). In addition, RF spectra show no relaxation oscillation in the self-starting regime.

  12. Semiconductor Laser Tracking Frequency Distance Gauge

    Science.gov (United States)

    Phillips, James D.; Reasenberg, Robert D.

    2009-01-01

    Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require a spaceworthy laser distance gauge of substantially improved performance. The Tracking Frequency Gauge (TFG) uses a single beam, locking a laser to the measurement interferometer. We have demonstrated this technique with pm (10(exp -12) m) performance. We report on the version we are now developing based on space-qualifiable, fiber-coupled distributed-feedback semiconductor lasers.

  13. A compact differential laser Doppler velocimeter using a semiconductor laser

    NARCIS (Netherlands)

    Jentink, H.W.; Beurden, van J.A.J.; Helsdingen, M.A.; Mul, de F.F.M.; Suichies, H.E.; Aarnoudse, J.G.; Greve, J.

    1987-01-01

    A small differential laser Doppler velocimeter which uses a semiconductor laser and a small number of optical components is described. In this device the light from the laser diode is split into coherent beams by means of a diffraction grating. The two first-order beams are crossed in a probe volume

  14. Advances in high power semiconductor diode lasers

    Science.gov (United States)

    Ma, Xiaoyu; Zhong, Li

    2008-03-01

    High power semiconductor lasers have broad applications in the fields of military and industry. Recent advances in high power semiconductor lasers are reviewed mainly in two aspects: improvements of diode lasers performance and optimization of packaging architectures of diode laser bars. Factors which determine the performance of diode lasers, such as power conversion efficiency, temperature of operation, reliability, wavelength stabilization etc., result from a combination of new semiconductor materials, new diode structures, careful material processing of bars. The latest progress of today's high-power diode lasers at home and abroad is briefly discussed and typical data are presented. The packaging process is of decisive importance for the applicability of high-power diode laser bars, not only technically but also economically. The packaging techniques include the material choosing and the structure optimizing of heat-sinks, the bonding between the array and the heat-sink, the cooling and the fiber coupling, etc. The status of packaging techniques is stressed. There are basically three different diode package architectural options according to the integration grade. Since the package design is dominated by the cooling aspect, different effective cooling techniques are promoted by different package architectures and specific demands. The benefit and utility of each package are strongly dependent upon the fundamental optoelectronic properties of the individual diode laser bars. Factors which influence these properties are outlined and comparisons of packaging approaches for these materials are made. Modularity of package for special application requirements is an important developing tendency for high power diode lasers.

  15. Efficient OPSL-pumped mode-locked Yb:Lu2O3 laser with 67% optical-to-optical efficiency

    Science.gov (United States)

    Heuer, Alexander M.; Saraceno, Clara J.; Beil, Kolja; Huber, Günter; Kränkel, Christian

    2016-01-01

    We present a mode-locked Yb:Lu2O3 laser with up to 67% of optical-to-optical efficiency. By utilizing a high brightness optically pumped semiconductor laser (OPSL) as a pump source and using a semiconductor saturable absorber mirror (SESAM) we obtained self-starting mode locking. A pulse duration of 571 fs at 4.73 W of average output power with an optical-to-optical efficiency of 67% was achieved. In a slightly different cavity configuration the pulse duration was reduced to 313 fs at 2.16 W of average output power. In both cases the pulse duration was longer than the Fourier limit and the spectrum supports significantly shorter pulse durations. The laser wavelength is centered at 1034 nm and the repetition rate is 100.76 MHz in both cases. In continuous wave fundamental mode operation the optical-to-optical efficiency was as high as 78% with output powers exceeding 5 W.

  16. Mode-locked and Q-switched operation of a diode laser pumped Nd:YAG laser operating at 1.064 µm

    Science.gov (United States)

    Maker, G. T.; Keen, S. J.; Ferguson, A. I.

    1988-10-01

    We describe the performance of a mode-locked and Q-switched Nd:YAG laser operating at 1.064 μm, optically pumped by a 500 mW diode laser. The cw mode-locked system provides bandwidth-limited pulses of 55 ps duration, with a corresponding peak power of 3.3 W. When Q-switched the energy within the 100 ns pulse envelope is 10 μJ giving a peak power in the largest pulse of 7 kW. Preliminary results for operation at 1.32 μm are also reported.

  17. Characterization of nonlinear saturation and mode-locking potential of ionically-doped colored glass filter for short-pulse fiber lasers.

    Science.gov (United States)

    Zhang, M; Kelleher, E J R; Popov, S V; Taylor, J R

    2013-05-20

    The nonlinear saturable absorption of an ionically-doped colored glass filter is measured directly using a Z-scan technique. For the first time, we demonstrate the potential of this material as a saturable asborber in fiber lasers. We achieve mode-locking of an ytterbium doped system. Mode-locking of cavities with all-positive and net-negative group velocity dispersion are demonstrated, achieving pulse durations of 60 ps and 4.1 ps, respectively. This inexpensive and optically robust material, with the potential for broadband operation, could surplant other saturable absorber devices in affordable mode-locked fiber lasers.

  18. Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation.

    Science.gov (United States)

    Wang, Xiong; Zhou, Pu; Wang, Xiaolin; Xiao, Hu; Liu, Zejin

    2014-03-10

    We demonstrate the nanosecond-level pulses in Tm-doped fiber laser generated by passively harmonic mode-locking. Nonlinear polarization rotation performed by two polarization controllers (PCs) is employed to induce the self-starting harmonic mode-locking. The fundamental repetition rate of the laser is 448.8 kHz, decided by the length of the cavity. Bundles of pulses with up to 17 uniform subpulses are generated due to the split of pulse when the pump power increases and the PCs are adjusted. Continuous harmonic mode-locked pulse trains are obtained with 1st to 6th and even more than 15th order when the positions of the PCs are properly fixed and the pump power is scaled up. The widths of all the uniform individual pulses are mostly 3-5 ns, and pulse with width of 304 ns at fundamental repetition rate can also be generated by adjusting the PCs. Hysteresis phenomenon of the passively harmonic mode-locked pulses' repetition frequency versus pump power is observed. The rather wide 3dB spectral bandwidth of the pulse train (25 nm) indicates that they may resemble noise-like pulses.

  19. Suppression of continuous lasing in a carbon nanotube polyimide film mode-locked erbium-doped fiber laser.

    Science.gov (United States)

    Gui, Lili; Yang, Xin; Zhao, Guangzhen; Yang, Xu; Xiao, Xiaosheng; Zhu, Jinsong; Yang, Changxi

    2011-01-01

    We demonstrated an erbium-doped mode-locked fiber laser using a single-walled carbon nanotube-dispersed polyimide (SWNT-PI) film. Different mode-locking operations were compared and analyzed utilizing SWNT-PI films with different concentrations (2, 1, and 0.25 wt.%, respectively). It was found that the continuous single-pulse mode-locking operation was often accompanied by a continuous wave oscillation part for the 1 and 0.25 wt.% SWNT-PI films, whereas the 2 wt.% SWNT-PI film presented the most excellent mode-locking performance, thanks to sufficient modulation depth. Using the 2 wt.% SWNT-PI film, a stable pulse train with a pulse width of 840 fs and a repetition rate of 15.3 MHz was achieved. The average output power was 0.33 mW at the pump power of 155 mW under an output coupling ratio of 10%. Operational performance of the laser cavity when employing the 2 wt.% SWNT-PI film was also demonstrated.

  20. Modeling and analysis of polarization effects in Fourier domain mode-locked lasers.

    Science.gov (United States)

    Jirauschek, Christian; Huber, Robert

    2015-05-15

    We develop a theoretical model for Fourier domain mode-locked (FDML) lasers in a non-polarization-maintaining configuration, which is the most widely used type of FDML source. This theoretical approach is applied to analyze a widely wavelength-swept FDML setup, as used for picosecond pulse generation by temporal compression of the sweeps. We demonstrate that good agreement between simulation and experiment can only be obtained by including polarization effects due to fiber bending birefringence, polarization mode dispersion, and cross-phase modulation into the theoretical model. Notably, the polarization dynamics are shown to have a beneficial effect on the instantaneous linewidth, resulting in improved coherence and thus compressibility of the wavelength-swept FDML output.

  1. A novel numerical model for passively mode-locked solid-state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, A.; Aussenegg, F.; Lippitsch, M.; Roschger, E.

    1983-04-01

    Numerical computer models could be of high value in testing ideas for improving passive mode locking. Most of the known models for solid-state lasers lack realistic quantitative results, however. A new model is presented, using a rate-equation approach which has been refined to include interference effects by using field amplitudes and phases instead of energies. Also, the saturable absorber is treated by rate equations. With this model, a rather complete description of the pulse evolution is possible. The influence of various parameters on the mode-locking quality is calculated. The model is also capable of reliably describing processes based mainly on interference effects, like the action of external subresonators.

  2. Multi-pass oscillator layout for high-energy mode-locked thin-disk lasers

    CERN Document Server

    Schuhmann, K; Antognini, A

    2016-01-01

    A novel optical layout for a multi-pass resonator is presented paving the way for pulse energy scaling of mode-locked thin-disk lasers. The multi-pass resonator we are proposing consists of a concatenation of nearly identical optical segments. Each segment corresponds to a round-trip in an optically stable cavity containing an active medium exhibiting soft aperture effects. This scheme is apt for energy and power scaling because the stability region of this multi-pass resonator contrarily to the 4f-based schemes does not shrink with the number of passes. We conclude proposing a simple way to double the stability region of the state-of-the-art layouts used in the industry achievable by a minimal rearrangement of the used optical components.

  3. Supercontinuum Generation in DSF Pumped by Actively Mode-Locked Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    JIA Dongfang; WANG Zhaoying; LI Shichen

    2005-01-01

    The supercontinuum (SC) generation at the repetition rate of 10 GHz is presented. The SC is generated in a 4.2 km conventional dispersion-shifted fiber ( DSF), which is produced with nonlinear effects and group velocity dispersion. The DSF is pumped by an actively mode-locked Er3+ -doped fiber laser with pulse width of 7.97 ps. A novel SC pulse source with a bandwidth up to 125 nm is obtained, which covers the whole C, L bands and part of S band. The stable, narrow pulses with mean pulse-width of 9.7 ps and time-bandwidth product of 0.48 are filtered out across the whole SC bandwidth. This supercontinuum pulse source is suitable for future high-speed optical communications.

  4. Bidirectional chaos communication between two outer semiconductor lasers coupled mutually with a central semiconductor laser.

    Science.gov (United States)

    Li, Ping; Wu, Jia-Gui; Wu, Zheng-Mao; Lin, Xiao-Dong; Deng, Dao; Liu, Yu-Ran; Xia, Guang-Qiong

    2011-11-21

    Based on a linear chain composed of a central semiconductor laser and two outer semiconductor lasers, chaos synchronization and bidirectional communication between two outer lasers have been investigated under the case that the central laser and the two outer lasers are coupled mutually, whereas there exists no coupling between the two outer lasers. The simulation results show that high-quality and stable isochronal synchronization between the two outer lasers can be achieved, while the cross-correlation coefficients between the two outer lasers and the central laser are very low under proper operation condition. Based on the high performance chaos synchronization between the two outer lasers, message bidirectional transmissions of bit rates up to 20 Gbit/s can be realized through adopting a novel decoding scheme which is different from that based on chaos pass filtering effect. Furthermore, the security of bidirectional communication is also analyzed.

  5. Structure of picosecond pulses of a Q-switched and mode-locked diode-pumped Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Donin, V I; Yakovin, D V; Gribanov, A V [Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2015-12-31

    The pulse duration of a diode-pumped Nd:YAG laser, in which Q-switching with mode-locking (QML regime) is achieved using a spherical mirror and a travelling-wave acousto-optic modulator, is directly measured with a streak camera. It is found that the picosecond pulses can have a non-single-pulse structure, which is explained by excitation of several competing transverse modes in the Q-switching regime with a pulse repetition rate of 1 kHz. In the case of cw mode-locking (without Q-switching), a new (auto-QML) regime is observed, in which the pulse train repetition rate is determined by the frequency of the relaxation oscillations of the laser field while the train contains single picosecond pulses. (control of laser radiation parameters)

  6. Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber.

    Science.gov (United States)

    Jeong, Hwanseong; Choi, Sun Young; Rotermund, Fabian; Yeom, Dong-Il

    2013-11-04

    We report the continuous control of the pulse width of a passively mode-locked fiber laser via polarization state adjustment in a single-walled carbon nanotube saturable absorber (SWCNT-SA). The SWCNT, coated on the side-polished fiber, was fabricated with optimized conditions and used for stable mode-locking of the fiber laser without Q-switching instabilities for any polarization state of the laser intra-cavity. The 3-dB spectral bandwidth of the mode-locked pulses can be continuously tuned from 1.8 nm to 8.5 nm with the polarization control for a given laser cavity length and applied pump power. A pulse duration varying from 470 fs to 1.6 ps was also observed with a change in the spectral bandwidth. The linear and the nonlinear transmission properties of the SA were analyzed, and found to exhibit different modulation depths depending on the input polarization state in the SA. The largest modulation depth of the SA was observed at the polarization state of the transverse electric mode that delivers shortest pulses at the laser output.

  7. Laser cooling in semiconductors (Conference Presentation)

    Science.gov (United States)

    Zhang, Jun

    2017-06-01

    Laser cooling of semiconductor is very important topic in science researches and technological applications. Here we will report our progresses on laser cooling in semiconductors. By using of strong coupling between excitons and longitudinal optical phonons (LOPs), which allows the resonant annihilation of multiple LOPs in luminescence up-conversion processes, we observe a net cooling by about 40 K starting from 290 kelvin with 514-nm pumping and about 15 K starting from100 K with 532-nm pumping in a semiconductor using group-II-VI cadmium sulphide nanobelts. We also discuss the thickness dependence of laser cooing in CdS nanobelts, a concept porotype of semiconductor cryocooler and possibility of laser cooling in II-VI semiconductor family including CdSSe、CdSe, CdSe/ZnTe QDs and bulk CdS et al., Beyond II-VI semiconductor, we will present our recent progress in laser cooling of organic-inorganic perovskite materials, which show a very big cooling power and external quantum efficiency in 3D and 2D case. Further more, we demonstrate a resolved sideband Raman cooling of a specific LO phonon in ZnTe, in which only one specific phonon resonant with exciton can be cooled or heated. In the end, we will discuss the nonlinear anti-Stokes Raman and anti-Stokes photoluminescence upcoversion in very low temperature as low as down to liquid 4.2 K. In this case, the anti-Stokes resonance induces a quadratic power denpendece of anti-Stokes Raman and anti-Stokes PL. We proposed a CARS-like process to explain it. This nonlinear process also provides a possible physics picture of ultra-low temperatures phonon assisted photoluminescence and anti-Stokes Raman process.

  8. Enhanced amplified spontaneous emission in III-V semiconductor photonic crystal waveguides

    DEFF Research Database (Denmark)

    Ek, Sara; Schubert, Martin; Yvind, Kresten;

    2010-01-01

    We experimentally demonstrate enhanced amplified spontaneous emission in the slow light regime of an active photonic crystal waveguide slab. This promises great opportunities for future devices such as miniaturized semiconductor optical amplifiers and mode-locked lasers.......We experimentally demonstrate enhanced amplified spontaneous emission in the slow light regime of an active photonic crystal waveguide slab. This promises great opportunities for future devices such as miniaturized semiconductor optical amplifiers and mode-locked lasers....

  9. Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser.

    Science.gov (United States)

    Lin, Yung-Hsiang; Yang, Chun-Yu; Liou, Jia-Hong; Yu, Chin-Ping; Lin, Gong-Ru

    2013-07-15

    A photonic crystal fiber (PCF) with high-quality graphene nano-particles uniformly dispersed in the hole cladding are demonstrated to passively mode-lock the erbium-doped fiber laser (EDFL) by evanescent-wave interaction. The few-layer graphene nano-particles are obtained by a stabilized electrochemical exfoliation at a threshold bias. These slowly and softly exfoliated graphene nano-particle exhibits an intense 2D band and an almost disappeared D band in the Raman scattering spectrum. The saturable phenomena of the extinction coefficient β in the cladding provides a loss modulation for the intracavity photon intensity by the evanescent-wave interaction. The evanescent-wave mode-locking scheme effectively enlarges the interaction length of saturable absorption with graphene nano-particle to provide an increasing transmittance ΔT of 5% and modulation depth of 13%. By comparing the core-wave and evanescent-wave mode-locking under the same linear transmittance, the transmittance of the graphene nano-particles on the end-face of SMF only enlarges from 0.54 to 0.578 with ΔT = 3.8% and the modulation depth of 10.8%. The evanescent wave interaction is found to be better than the traditional approach which confines the graphene nano-particles at the interface of two SMF patchcords. When enlarging the intra-cavity gain by simultaneously increasing the pumping current of 980-nm and 1480-nm pumping laser diodes (LDs) to 900 mA, the passively mode-locked EDFL shortens its pulsewidth to 650 fs and broadens its spectral linewidth to 3.92 nm. An extremely low carrier amplitude jitter (CAJ) of 1.2-1.6% is observed to confirm the stable EDFL pulse-train with the cladding graphene nano-particle based evanescent-wave mode-locking.

  10. Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser

    Science.gov (United States)

    Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan

    2010-01-01

    The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome

  11. Switchable repetition rate bound solitons passively mode-locked fiber laser

    Science.gov (United States)

    Wang, Xuqin; Yao, Yong

    2016-11-01

    We present a kind of a switchable repetition rate mode-locked of bound-state solitons in a fiber laser based on Bi2Se3 saturable absorber (SA). In the fiber laser, two forms of the bound-state optical spectrum with central wavelength of 1532 nm are observed. The fiber laser is operate at the abnormal group velocity dispersion and the bound state pulses are equally distributed to the temporal domain. The fundamental cavity repetition-rate is 1.11 MHz with a pulse duration of 2.27 ps. The output average power and the pulse peak energy are 1.53 mW and 607 W respectively, which the pump power is 267 mW. The different repetition-rates are also achieved by changing the pump power or adjusting the angle of polarization controller. In the experiment, the repetition-rate is switched from 1.11 MHz to 41.32 MHz (37th-order, the highest repetition-rate).

  12. Developing high energy mode-locked fiber laser at 2 micron

    CERN Document Server

    Huang, C; Shang, W; Tang, Y; Xu, J

    2015-01-01

    While dissipative soliton operation has successfully improved the pulse energy of 1 {\\mu}m and 1.5 {\\mu}m fiber lasers to tens of nanojoules, it is still hard to scale the pulse energy of dissipative solitons at 2 {\\mu}m due to the anomalous dispersion of the gain fiber. Based on theoretical simulation, we analyze intracavity dynamics of dissipative solitons (DSs) and propose that gain fiber should be condensed to short length in order to scale the pulse energy of 2 {\\mu}m DSs. The simulation predicts pulse energy of over 10 nJ for 2 {\\mu}m dissipative solitons, comparable to that achieved in the 1 {\\mu}m and 1.5 {\\mu}m regimes. Experimental operation generates stable 2 {\\mu}m DSs from a linear cavity with pulse energy of 4.9 nJ and dechirped pulse duration of 579 fs. These results advance our understanding of mode-locked fiber laser at different wavelengths and lay an important step in achieving high energy ultrafast laser pulses from anomalous dispersion gain media at 2 {\\mu}m.

  13. Black phosphorus mode-locked Er-doped ZBLAN fiber laser at 2.8 um wavelength

    CERN Document Server

    Qin, Zhipeng; Zhao, Chujun; Wen, Shuangchun; Yuan, Peng; Qian, Liejia

    2015-01-01

    Mid-infrared saturable absorber mirror is successfully fabricated by transferring the mechanically exfoliated black phosphorus onto the gold-coated mirror. With the as-prepared black phosphorus saturable absorber mirror, a continuous-wave passively mode-locked Er:ZBLAN fiber laser is demonstrated at the wavelength of 2.8 um, which delivers a maximum average output power of 613 mW, a repetition rate of 24 MHz and a pulse duration of 42 ps. To the best of our knowledge, it is the first time to demonstrate black phosphorus mode-locked laser at 2.8 um wavelength. Our results demonstrate the feasibility of black phosphorus flake as a new two-dimensional material for application in mid-infrared ultrafast photonics.

  14. Passively mode-locking erbium-doped fiber lasers with 0.3 nm single-walled carbon nanotubes.

    Science.gov (United States)

    Xu, Xintong; Zhai, Jianpang; Li, Ling; Chen, Yanping; Yu, Yongqin; Zhang, Min; Ruan, Shuangchen; Tang, Zikang

    2014-10-24

    We demonstrate a passively mode-locked erbium-doped fiber laser (EDFL) by using the smallest single-walled carbon nanotubes (SWNTs) with a diameter of 0.3 nm as the saturable absorber. These ultrasmall SWNTs are fabricated in the elliptical nanochannels of a ZnAPO₄-11 (AEL) single crystal. By placing an AEL crystal into an EDFL cavity pumped by a 980 nm laser diode, stable passive mode-locking is achieved for a threshold pump power of 280 mW, and 73 ps pulses at 1563.2 nm with a repetition rate of 26.79 MHz.

  15. Method and system for powering and cooling semiconductor lasers

    Science.gov (United States)

    Telford, Steven J; Ladran, Anthony S

    2014-02-25

    A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.

  16. Mid-infrared supercontinuum generation in tapered ZBLAN fiber with a standard Erbium mode-locked fiber laser

    DEFF Research Database (Denmark)

    Kubat, Irnis; Moselund, Peter M.; Bang, Ole

    2013-01-01

    . commercially available), core diameter Dc=7 μm, and ZDW=1.5 μm, is pumped with TFWHM=10 ps and P0=10 kW pulses from an Er mode-locked laser with a 40 MHz repetition rate and 4W average power. The resulting MIR SC seen in Fig. 1(b) is based on Modulation Instability breakup of the pump pulse, which generates...

  17. Picosecond to femtosecond pulses from high power self mode-locked ytterbium rod-type fiber laser

    OpenAIRE

    Deslandes, Pierre; Perrin, Mathias; Saby, Julien; Sangla, Damien; Salin, François; Freysz, Eric

    2013-01-01

    International audience; We have designed an ytterbium rod-type fiber laser oscillator with tunable pulse duration. This system that delivers more than 10 W of average power is self mode-locked. It yields femtosecond to picosecond laser pulses at a repetition rate of 74 MHz. The pulse duration is adjusted by changing the spectral width of a band pass filter that is inserted in the laser cavity. Using volume Bragg gratings of 0.9 nm and 0.07 nm spectrum bandwidth, this oscillator delivers nearl...

  18. Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution.

    Science.gov (United States)

    Yan, Zhiyu; Li, Xiaohui; Tang, Yulong; Shum, Perry Ping; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2015-02-23

    We propose and demonstrate a tunable and switchable dual-wavelength ultra-fast Tm-doped fiber laser. The tunability is based on nonlinear polarization evolution (NPE) technique in a passively mode-locked laser cavity. The NPE effect induces wavelength-dependent loss in the cavity to effectively alleviate mode competition and enables the multiwavelength mode locking. The laser exhibits tunable dual-wavelength mode locking over a wide range from 1852 to 1886 nm. The system has compact structure and both the wavelength tuning and switching capabilities can be realized by controlling the polarization in the fiber ring cavity.

  19. Control over the performance characteristics of a passively mode-locked erbium-doped fibre ring laser

    Energy Technology Data Exchange (ETDEWEB)

    Chernysheva, M A; Krylov, A A; Dianov, E M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Ogleznev, A A [Perm Research and Production Instrument Company, Perm (Russian Federation); Arutyunyan, N R; Pozharov, A S; Obraztsova, E D [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2013-08-31

    We report an all-fibre ultrashort pulse erbium-doped ring laser passively mode-locked by single-wall carbon nanotubes dispersed in carboxymethylcellulose-based polymer films. Owing to intracavity dispersion management and controlled absorption in the polymer films, the laser is capable of generating both femto- and picosecond pulses of various shapes in the spectral range 1.53 – 1.56 μm. We have demonstrated and investigated the generation of almost transform- limited, inversely modified solitons at a high normal cavity dispersion. (control of laser radiation parameters)

  20. Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances.

    Science.gov (United States)

    Kang, M S; Joly, N Y; Russell, P St J

    2013-02-15

    We report the experimental demonstration of a passively mode-locked Er-doped fiber ring laser operating at the 337th harmonic (1.80 GHz) of the cavity. The laser makes use of highly efficient Raman-like optoacoustic interactions between the guided light and gigahertz acoustic resonances trapped in the micron-sized solid glass core of a photonic crystal fiber. At sufficient pump power levels the laser output locks to a repetition rate corresponding to the acoustic frequency. A stable optical pulse train with a side-mode suppression ratio higher than 45 dB was obtained at low pump powers (~60 mW).

  1. Effect of gain nonlinearity in semiconductor lasers

    DEFF Research Database (Denmark)

    Jensen, Niels H.; Christiansen, Peter Leth; Skovgaard, Ove

    1988-01-01

    Semiconductor lasers are modeled by single-mode rate equations with Langevin noise terms and the influence of nonlinear gain is investigated. For cw operation the probability distribution for the carrier number and the photon number in the laser cavity is obtained. The corresponding (2......+1)-dimensional Fokker-Planck equation is derived and integrated on an Amdahl VP1100 vector processor. Above threshold the resulting probability density agrees with the rate-equation predictions. The case of high-speed modulation is also considered. The nonlinear gain is found to stabilize the laser....

  2. Reduced filamentation in high power semiconductor lasers

    DEFF Research Database (Denmark)

    Skovgaard, Peter M. W.; McInerney, John; O'Brien, Peter

    1999-01-01

    High brightness semiconductor lasers have applications in fields ranging from material processing to medicine. The main difficulty associated with high brightness is that high optical power densities cause damage to the laser facet and thus require large apertures. This, in turn, results in spatio...... in the optical field causes spatial hole-burning and thus filamentation. To reduce filamentation we propose a new, relatively simple design based on inhomogeneous pumping in which the injected current has a gradual transverse profile. We confirm the improved laser performance theoretically and experimentally...

  3. A semiconductor laser device employing optical feedback

    Energy Technology Data Exchange (ETDEWEB)

    Tosikhiro, F.; Akimoto, S.; Katsuyuki, F.; Kun, I.

    1984-06-22

    A method is proposed for obtaining stable lasing parameters using a single longitudinal mode with reduced noise. This method involves reflecting a portion of the laser emission from the semiconductor laser back into the active region. An angular reflector with an angle other than a right angle is used. The laser emission which exits this end of the resonator is collimated by a lens into a parallel beam, which, when reflected off the angular reflector, strikes the lens at specific angles, and is focused at two points on this same end. This makes it possible to obtain single longitudinal mode lasing with significant submodal structure attenuation and a total absence of noise.

  4. Semiconductor laser applications in rheumatology

    Science.gov (United States)

    Pascu, Mihail-Lucian; Suteanu, S.

    1996-01-01

    Two types of laser diode (LD) based equipment for rheumatology are introduced. The first is a portable device which contains single LD emitting at 890 nm laser pulses (time full width 100 nsec) of reprate tunable within (0.5 - 1.5) kHz; the laser beam average power is 0.7 mW at 1 kHz reprate. The second is computer controlled, contains one HeNe laser and 5 LD allowing 6 modes of patient irradiation (placebo effect evaluation included). HeNe laser works in cw at 632.8 nm; the LD works each as described for the portable equipment. HeNe and LD beams are superposed so that HeNe laser spot in the irradiation plane has a 60 mm diameter and the LD spots covers a 50 mm diameter disc centered on the HeNe laser spot. Clinical applications using the second type of equipment are reported; 1287 patients were treated between October 1991 and October 1994. Female/male ratio was 4:1 and their age distribution was between 18 and 85 years. The average number of exposures was 10 and the mean exposure time was 7 minutes. Studies were made on the treatment of rheumatoid arthritis, seronegative arthritis, degenerative joint diseases, abarticular rheumatism, osteoporosis pain and pains and edema after fractures.

  5. High-Power and Low-Noise 10-GHz All-Active Monolithic Mode-Locked Lasers with Surface Etched Bragg Grating

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    2007-01-01

    We have fabricated 4.4 mm long monolithic InAlGaAsP/InP mode-locked lasers with integrated deeply surface etched DBR-mirrors. The lasers produce 3.7 ps transform-limited Gaussian pulses with 10 mW average power and 250 fs timing jitter.......We have fabricated 4.4 mm long monolithic InAlGaAsP/InP mode-locked lasers with integrated deeply surface etched DBR-mirrors. The lasers produce 3.7 ps transform-limited Gaussian pulses with 10 mW average power and 250 fs timing jitter....

  6. Visible-wavelength semiconductor lasers and arrays

    Science.gov (United States)

    Schneider, Jr., Richard P.; Crawford, Mary H.

    1996-01-01

    A visible semiconductor laser. The visible semiconductor laser includes an InAlGaP active region surrounded by one or more AlGaAs layers on each side, with carbon as the sole p-type dopant. Embodiments of the invention are provided as vertical-cavity surface-emitting lasers (VCSELs) and as edge-emitting lasers (EELs). One or more transition layers comprised of a substantially indium-free semiconductor alloy such as AlAsP, AlGaAsP, or the like may be provided between the InAlGaP active region and the AlGaAS DBR mirrors or confinement layers to improve carrier injection and device efficiency by reducing any band offsets. Visible VCSEL devices fabricated according to the invention with a one-wavelength-thick (1.lambda.) optical cavity operate continuous-wave (cw) with lasing output powers up to 8 mW, and a peak power conversion efficiency of up to 11%.

  7. Spectral Feature Analysis of Semiconductor Thin Disk Laser

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The semiconductor thin disk laser is a new type of semiconductor laser. This work gives the basic operation function of the semiconductor disk laser, and analyses the heat effect by the experimentally measured photoluminescence spectrum of the laser chip at different pump power and different temperatures. We can see that: with increasing pump power, the thermal effect of the gain material becomes seriously and causes the saturation of carrier lifetime, so the electron-hole pair created in the absorbtion lay...

  8. Passively Q-switched and mode-locked erbium doped fiber laser based on N-doped graphene saturable absorber

    Science.gov (United States)

    Ahmad, H.; Aidit, S. N.; Ooi, S. I.; Rezayi, M.; Tiu, Z. C.

    2017-10-01

    A passively Q-switched and mode-locked erbium-doped fiber laser based on a nitrogen-doped graphene saturable absorber is demonstrated. The N-doped graphene based saturable absorber has a modulation depth of 37.88% and a saturation intensity of 0.016 73 MW cm‑2. By integrating the N-doped graphene saturable absorber into the laser cavity, a stable Q-switched operation with a centre wavelength of 1561.1 nm is obtained with a pulse energy of up to 29.0 nJ. As the pump power increases, the Q-switching operation transits into a mode-locking operation. The mode-locking operation is achieved with a centre wavelength of 1560 nm, a pulse width of 0.98 ps, a repetition rate of 28.5 MHz and a signal to noise ratio of up to 40 dB in the RF spectrum.

  9. Multilayer graphene for Q-switched mode-locking operation in an erbium-doped fiber laser

    Science.gov (United States)

    Wang, Zhiteng; Zhu, Shou-En; Chen, Yu; Wu, Man; Zhao, Chujun; Zhang, Han; Janssen, G. C. A. M.; Wen, Shuangchun

    2013-07-01

    We report the laser operation of Q-switched mode-locking (QML) in an erbium-doped fiber laser by using a multilayer graphene saturable absorber (SA), which consists of 22-layer of graphene fabricated by the chemical vapor deposition method. Based on our balanced twin detector measurement, the graphene sample is confirmed to show a saturable intensity of 3.375 MW/cm2 and an absolute modulation depth of 40.27%. It is demonstrated that this graphene SA can readily produce high quality QML pulses. At the pump power of 391.9 mW, the stable mode-locked pulse train with the Q-switched envelope repetition rate of 16.98 kHz and the envelope width of 13.84 μs are achieved. The maximal main pulse peak power can reach up to 35.89 W. This verifies that the multilayer graphene can be still applied as an effective saturable absorber for passively Q-switched mode-locked operation.

  10. Femtosecond all-polarization-maintaining fiber laser operating at 1028 nm

    DEFF Research Database (Denmark)

    Olsson, R.K.; Andersen, T.V.; Leick, Lasse;

    2008-01-01

    We present an effective solution for an all-polarization-maintaining modelocked femtosecond fiber laser operating at the central wavelength of 1028 nm. The laser is based on an Yb-doped active fiber. Modelocking is enabled by a semiconductor saturable absorber mirror, and the central wavelength...

  11. Femtosecond mode-locking of an ytterbium-doped fiber laser using self-assembled gold nanorods

    Science.gov (United States)

    Lee, J.; Koo, J.; Lee, J. H.

    2017-09-01

    We experimentally demonstrate the use of a saturable absorber (SA) based on self-assembled gold nanorods (GNRs) for femtosecond mode-locking of an ytterbium-doped fiber-based 1 µm laser. A novel type of SA was made by implementation of an end-to-end GNRs self-assembly technique through hot-air induced rapid drying of the GNRs in a deionized water suspension, which enabled us to enhance optical absorption in the 1.06 µm wavelength region. By incorporating this novel SA into an ytterbium-doped fiber-based ring cavity under dispersion-managed conditions, we were able to readily generate mode-locked, soliton pulses having a temporal width of 840 fs at 1063.9 nm. To the best of our knowledge, this is the first demonstration of the effectiveness of a GNRs-based SA for the generation of femtosecond soliton pulses operating in the 1 µm range.

  12. Rational harmonic mode-locked laser using a bismuth-oxide-based highly nonlinear erbium-doped fiber

    Science.gov (United States)

    Fukuchi, Yutaka; Hirata, Kouji; Muraguchi, Masahiro; Maeda, Joji

    2017-01-01

    We report a rational harmonic mode-locked fiber laser employing a bismuth-oxide-based highly nonlinear erbium-doped fiber (Bi-HNL-EDF) with a length of 1.5 m. The Bi-HNL-EDF is used as a broadband gain medium and as a noise suppressor based on self-phase modulation. The amplitude of the rational harmonic mode-locked pulses can be regulated by properly tuning the modulation parameters of the intracavity modulator. The cavity length as short as 6 m enables generation of stable and clean short pulses with a repetition frequency up to 40 GHz over the wavelength range covering both the conventional and the longer bands.

  13. Mode-locked Erbium-doped fiber laser generation using hybrid ZnO/GO saturable absorber

    Science.gov (United States)

    Hassan, H.; Ariannejad, M. M.; Safaei, R.; Amiri, I. S.; Ahmad, H.

    2017-06-01

    Mode-locked generation of erbium-doped fiber laser (EDFL) with hybrid zinc oxide/graphene oxide (ZnO/GO) thin film as saturable absorber (SA) is proposed and practically demonstrated. The SA shows the modulation depth of 18.69% and it has been sandwiched between the fiber ferrules. Mode-locked pulse occurred at pump power of 14.8 mW and by varying the pump power to maximum threshold 27.43 mW, the repetition rate of the pulse fixed at 19.98 MHz at 1563 nm of central wavelength. The pulse width is estimated as 0.90 ps, whereas the pulse energy is calculated as 27.0 nJ.

  14. Optical injection in semiconductor ring lasers

    CERN Document Server

    Coomans, W; Van der Sande, G; Gelens, L; Danckaert, J; 10.1103/PhysRevA.81.033802

    2011-01-01

    We theoretically investigate optical injection in semiconductor ring lasers and disclose several dynamical regimes. Through numerical simulations and bifurcation continuation, two separate parameter regions in which two different injection-locked solutions coexist are revealed, in addition to a region in which a frequency-locked limit cycle coexists with an injection-locked solution. Finally, an antiphase chaotic regime without the involvement of any carrier dynamics is revealed. Parallels are drawn with the onset of chaos in the periodically forced Duffing oscillator.

  15. Coherent optical pumping of semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Pfister, M.; Dupertuis, M.A. [Inst. de Micro- et Optoelectronique, Lausanne (Switzerland). Dept. de Physique

    1995-01-01

    The influence of coherent optical pumping in semiconductor lasers is investigated theoretically. In particular the mathematical conditions under which an optically pumped system behaves like an electrically (incoherently) pumped system are derived. The authors show that it is practically impossible to reach the interesting regime where coherent effects are important because of the inherent constraints to absorb photons at the pump frequency and to reach threshold gain at the lasing frequency. The effects of changing the temperature and of reduced dimensionality are discussed.

  16. Compact and high repetition rate Kerr-lens mode-locked 532 nm Nd:YVO4 laser

    Science.gov (United States)

    Li, Zuohan; Peng, Jiying; Yuan, Ruixia; Wang, Tongtong; Yao, Jianquan; Zheng, Yi

    2015-11-01

    A compact and feasible CW Kerr-lens-induced mode-locked 532 nm Nd:YVO4 laser system was experimentally demonstrated for the first time with theoretical analysis. Kerr-lens mode locking with intracavity second harmonic generation provides a promising method to generate a high-repetition-rate picosecond green laser. With an incident pump power of 6 W, the average output power of mode locking was 258 mW at a high repetition rate of 1.1 GHz.

  17. Semiconductor lasers in rheumatological treatment

    Science.gov (United States)

    Pascu, Mihail-Lucian; Suteanu, S.; Ignat, P.; Pruna, Simion; Chitu, A.

    1995-03-01

    A computer controlled equipment, containing 6 lasers (HeNe and 5 diode lasers--DL) conceived to be used in rheumatological treatment is reported. DL emit at 895 nm and for typical applications, their expanded spots are superposed within the irradiation plane, on the HeNE defocused spot used to define the surface to be irradiated. DL emit 100 nsec pulses between 0.5 KHz and 1.5 KHz repetition rate and 0.5 mW average power (measured at 1 KHz). 150 patients with rheumathologic diseases were treated: lumbar spondylosis (75), gonarthrosis (30), cervical spondylosis (21), coxarthrosis (15), Heberden and Bouchard (9). The treatment consisted of: group I, 50 patients--laser therapy, 10 min/day, 10 days; group II, 50 patients--classical antirheumatic treatment; group III, 50 patients--mixed treatment. Assessment of sympathetic skin activity made using reactometry measurements, shows that latency time was longer before irradiation, 1867 +/- 289) msec then after, (1234 +/- 321) msec. Pain rating indexes decreasing for all three groups of patients were measured. Better results for more superficial diseases were obtained and best results were observed after irradiation with 1 KHz - 1.5 KHz repetition rate IR pulses. Better results were obtained when spot irradiation in a few points combined with zone irradiations was used.

  18. Generation of 30  fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO4 laser.

    Science.gov (United States)

    Ma, Jie; Huang, Haitao; Ning, Kaijie; Xu, Xiaodong; Xie, Guoqiang; Qian, Liejia; Loh, Kian Ping; Tang, Dingyuan

    2016-03-01

    Stable 30 fs pulses centered at 1068 nm (less than 10 optical cycles) are demonstrated in a diode pumped Yb:CaYAlO4 laser by using high-quality chemical vapor deposited monolayer graphene as the saturable absorber. The mode-locked 8.43 optical-cycle pulses have a spectral bandwidth of ∼50  nm and a pulse repetition frequency of ∼113.5  MHz. To the best of our knowledge, this is the shortest pulse ever reported for graphene mode-locked lasers and mode-locked Yb-doped bulk lasers. Our experimental results demonstrate that graphene mode locking is a very promising practical technique for directly generating few-cycle optical pulses from a laser oscillator.

  19. Optical complexity in external cavity semiconductor laser

    Science.gov (United States)

    Rondoni, Lamberto; Ariffin, M. R. K.; Varatharajoo, Renuganth; Mukherjee, Sayan; Palit, Sanjay K.; Banerjee, Santo

    2017-03-01

    In this article, the window based complexity and output modulation of a time delayed chaotic semiconductor laser (SL) model has been investigated. The window based optical complexity (OC), is measured by introducing the recurrence sample entropy (SampEn). The analysis has been done without and in the presence of external noise. The significant changes in the dynamics can be observed under induced noise with weak strength. It has also been found that there is a strong positive correlation between the output power and the complexity of the system with various sets of parameters. The laser intensity, as well as the OC can be increased with the incremental noise strength and the associated system parameters. Thus, optical complexity quantifies the system dynamics and its instabilities, since is strongly correlated with the laser outputs. This analysis can be applied to measure the laser instabilities and modulation of output power.

  20. Titanium Dioxide (TiO2) film as a new saturable absorber for generating mode-locked Thulium-Holmium doped all-fiber laser

    Science.gov (United States)

    Mohd Rusdi, Muhammad Farid; Latiff, Anas Abdul; Paul, Mukul Chandra; Das, Shyamal; Dhar, Anirban; Ahmad, Harith; Harun, Sulaiman Wadi

    2017-03-01

    We report the generation of mode-locked thulium-holmium doped fiber laser (THDFL) at 1979 nm. This is a first demonstration of mode-locked by using Titanium Dioxide (TiO2) film as a saturable absorber (SA). A piece of 1 mm×1 mm TiO2 film was sandwiched in between two fiber ferrule in the cavity. Fabrication process of TiO2 film incorporated a TiO2 and a polyvinyl alcohol (PVA). The stable 9 MHz repetition rate of mode-locked mode operation with 58 dB SNR was generated under pump power of 902-1062 mW. At maximum pump power, the mode-locked THDFL has output power and pulse energy of 15 mW and 1.66 nJ, respectively. Our results demonstrate the TiO2 can be used promisingly in ultrafast photonics applications.

  1. EDITORIAL: Semiconductor lasers: the first fifty years Semiconductor lasers: the first fifty years

    Science.gov (United States)

    Calvez, S.; Adams, M. J.

    2012-09-01

    Anniversaries call for celebrations. Since it is now fifty years since the first semiconductor lasers were reported, it is highly appropriate to celebrate this anniversary with a Special Issue dedicated to the topic. The semiconductor laser now has a major effect on our daily lives since it has been a key enabler in the development of optical fibre communications (and hence the internet and e-mail), optical storage (CDs, DVDs, etc) and barcode scanners. In the early 1960s it was impossible for most people (with the exception of very few visionaries) to foresee any of these future developments, and the first applications identified were for military purposes (range-finders, target markers, etc). Of course, many of the subsequent laser applications were made possible by developments in semiconductor materials, in the associated growth and fabrication technology, and in the increased understanding of the underlying fundamental physics. These developments continue today, so that the subject of semiconductor lasers, although mature, is in good health and continues to grow. Hence, we can be confident that the pervasive influence of semiconductor lasers will continue to develop as optoelectronics technology makes further advances into other sectors such as healthcare, security and a whole host of applications based on the global imperatives to reduce energy consumption, minimise environmental impact and conserve resources. The papers in this Special Issue are intended to tell some of the story of the last fifty years of laser development as well as to provide evidence of the current state of semiconductor laser research. Hence, there are a number of papers where the early developments are recalled by authors who played prominent parts in the story, followed by a selection of papers from authors who are active in today's exciting research. The twenty-fifth anniversary of the semiconductor laser was celebrated by the publication of a number of papers dealing with the early

  2. Simple optical frequency comb generation using a passively mode-locked quantum dot laser

    Science.gov (United States)

    Liu, Li; Zhang, Xiupu; Xu, Tiefeng; Dai, Zhenxiang; Liu, Taijun

    2017-08-01

    A simple and quasi-tunable optical frequency comb (OFC) generator is proposed and experimentally demonstrated using a C-band passively Fabry-Pérot quantum dot mode-locked laser and a dual-driven LiNbO3 Mach-Zehnder modulator. A 16-nm bandwidth OFC with 81, 58 and 30 comb lines at frequency interval of 23.3 GHz, 35 GHz and 70 GHz respectively is obtained experimentally. Measured average optical signal to noise ratio of 10-dB bandwidth OFCs is 36.3 dB, 38.5 dB and 40.8 dB at frequency interval of 23.3 GHz, 35 GHz and 70 GHz, respectively. Besides, single-sideband phase noise of the 23.3 GHz and 35 GHz frequency comb is -110 dBc/Hz and -102 dBc/Hz at an offset of 1 kHz, respectively. RF linewidth of the 23.3 GHz and 35 GHz OFC is about from 275 Hz to 289 Hz. This is considered a very simple OFC generator with a broadband and seamless spectrum.

  3. Sub-femtosecond absolute jitter microwaves generation from free-running mode-locked Er-fiber lasers

    CERN Document Server

    Jung, Kwangyun; Kim, Jungwon

    2013-01-01

    We demonstrate 10-GHz microwave signal generation from a free-running mode-locked Er-fiber laser with 1.5 fs absolute rms timing jitter integrated from 1 kHz to 5 GHz (Nyquist frequency) offset frequency. In the 10 kHz - 10 MHz integration bandwidth typically used for microwave generators, the rms integrated jitter is 0.49 fs. The Er-fiber laser is operated in the stretched-pulse regime at close-to-zero dispersion to minimize the intrinsic phase noise from the laser. In order to mitigate the excess phase noise in the optical-to-electronic conversion process, we synchronize a low-noise voltage-controlled oscillator to the fiber laser using a fiber Sagnac-loop-based optical-microwave phase detector. This result shows that one can generate sub-femtosecond-level jitter microwave signals from free-running mode-locked fiber lasers and commercially available dielectric resonator oscillators without stabilized optical references.

  4. Design and Applications of In-Cavity Pulse Shaping by Spectral Sculpturing in Mode-Locked Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Sonia Boscolo

    2015-11-01

    Full Text Available We review our recent progress on the realisation of pulse shaping in passively-mode-locked fibre lasers by inclusion of an amplitude and/or phase spectral filter into the laser cavity. We numerically show that depending on the amplitude transfer function of the in-cavity filter, various regimes of advanced waveform generation can be achieved, including ones featuring parabolic-, flat-top- and triangular-profiled pulses. An application of this approach using a flat-top spectral filter is shown to achieve the direct generation of high-quality sinc-shaped optical Nyquist pulses with a widely tunable bandwidth from the laser oscillator. We also present the operation of an ultrafast fibre laser in which conventional soliton, dispersion-managed soliton (stretched-pulse and dissipative soliton mode-locking regimes can be selectively and reliably targeted by adaptively changing the dispersion profile and bandwidth programmed on an in-cavity programmable filter. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for achieving a high degree of control over the dynamics and output of mode-locked fibre lasers.

  5. Comparison of Monolithic Optical Frequency Comb Generators Based on Passively Mode-Locked Lasers for Continuous Wave mm-Wave and Sub-THz Generation

    DEFF Research Database (Denmark)

    Criado, A. R.; de Dios, C.; Acedo, P.;

    2012-01-01

    In this paper, two different Passive Mode-Locked Laser Diodes (PMLLD) structures, a Fabry–Perot cavity and a ring cavity laser are characterized and evaluated as monolithic Optical Frequency Comb Generators (OFCG) for CW sub-THz generation. An extensive characterization of the devices under study...

  6. High-Power and Low-Noise 10-GHz All-Active Monolithic Mode-Locked Lasers with Surface Etched Bragg Grating

    OpenAIRE

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    2007-01-01

    We have fabricated 4.4 mm long monolithic InAlGaAsP/InP mode-locked lasers with integrated deeply surface etched DBR-mirrors. The lasers produce 3.7 ps transform-limited Gaussian pulses with 10 mW average power and 250 fs timing jitter.

  7. Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers.

    Science.gov (United States)

    Tahvili, M S; Du, L; Heck, M J R; Nötzel, R; Smit, M K; Bente, E A J M

    2012-03-26

    We present an investigation of passive and hybrid mode-locking in Fabry-Pérot type two-section InAs/InP(100) quantum dot lasers that show dual wavelength operation. Over the whole current and voltage range for mode-locking of these lasers, the optical output spectra show two distinct lobes. The two lobes provide a coherent bandwidth and are verified to lead to two synchronized optical pulses. The generated optical pulses are elongated in time due to a chirp which shows opposite signs over the two spectral lobes. Self-induced mode-locking in the single-section laser shows that the dual-wavelength spectra correspond to emission from ground state. In the hybrid mode-locking regime, a map of locking range is presented by measuring the values of timing jitter for several values of power and frequency of the external electrical modulating signal. An overview of the systematic behavior of InAs/InP(100) quantum dot mode-locked lasers is presented as conclusion.

  8. Self-amplitude and self-phase modulation of the charcoal mode-locked erbium-doped fiber lasers.

    Science.gov (United States)

    Lin, Yung-Hsiang; Lo, Jui-Yung; Tseng, Wei-Hsuan; Wu, Chih-I; Lin, Gong-Ru

    2013-10-21

    With the intra-cavity nano-scale charcoal powder based saturable absorber, the 455-fs passive mode-locking of an L-band erbium-doped fiber laser (EDFL) is demonstrated. The size reduction of charcoal nano-particle is implemented with a simple imprinting-exfoliation-wiping method, which assists to increase the transmittance up to 0.91 with corresponding modulation depth of 26%. By detuning the power gain from 17 to 21 dB and cavity dispersion from -0.004 to -0.156 ps² of the EDFL, the shortening of mode-locked pulsewidth from picosecond to sub-picosecond by the transformation of the pulse forming mechanism from self-amplitude modulation (SAM) to the combining effect of self-phase modulation (SPM) and group delay dispersion (GDD) is observed. A narrower spectrum with 3-dB linewidth of 1.83-nm is in the SAM case, whereas the spectral linewidth broadens to 5.86 nm with significant Kelly sideband pair can be observed if the EDFL enters into the SPM regime. The mode-locking mechanism transferred from SAM to SPM/GDD dominates the pulse shortening procedure in the EDFL, whereas the intrinsic defects in charcoal nano-particle only affect the pulse formation at initial stage. The minor role of the saturable absorber played in the EDFL cavity with strongest SPM is observed.

  9. Phase-stabilization of the carrier-envelope-offset frequency of a SESAM modelocked thin disk laser.

    Science.gov (United States)

    Klenner, Alexander; Emaury, Florian; Schriber, Cinia; Diebold, Andreas; Saraceno, Clara J; Schilt, Stéphane; Keller, Ursula; Südmeyer, Thomas

    2013-10-21

    We phase-stabilized the carrier-envelope-offset (CEO) frequency of a SESAM modelocked Yb:CaGdAlO₄ (CALGO) thin disk laser (TDL) generating 90-fs pulses at a center wavelength of 1051.6 nm and a repetition rate of 65 MHz. By launching only 2% of its output power into a photonic crystal fiber, we generated a coherent octave-spanning supercontinuum spectrum. Using a standard f-to-2f interferometer for CEO detection, we measured CEO beats with 33 dB signal-to-noise ratio in 100 kHz resolution bandwidth. We achieved a tight lock of the CEO frequency at 26.18 MHz by active feedback to the pump current. The residual in-loop integrated phase noise is 120 mrad (1 Hz-1 MHz). This is, to our knowledge, the first CEO-stabilized SESAM modelocked TDL. Our results show that a reliable lock of the CEO frequency can be achieved using standard techniques in spite of the strongly spatially multimode pumping scheme of TDLs. This opens the door towards fully-stabilized low-noise frequency combs with hundreds of watts of average power from table-top SESAM modelocked thin disk oscillators.

  10. 8.5-W mode-locked Yb:Lu$_{1.5}$Y$_{1.5}$Al$_5$O$_{12}$ laser with master oscillator power amplifiers

    CERN Document Server

    Wang, Fuyong; Xie, Guoqiang; Yuan, Peng; Qian, Liejia; Xu, Xiaodong; Xu, Jun

    2014-01-01

    We report on a diode-pumped passively mode-locked Yb:Lu$_{1.5}$Y$_{1.5}$Al$_5$O$_{12}$ (Yb:LuYAG) laser for the first time to our knowledge. With the mixed crystal of Yb:LuYAG as gain medium, the mode-locked laser generated 2.2 W of average output power with a repetition rate of 83.9 MHz and pulse duration of 2.2 ps at the wavelength of 1030 nm. In order to obtain higher output power, the output from the mode-locked oscillator was further amplified to 8.5 W by two-stage single-pass amplifiers. The high-power picosecond laser is very useful for applications such as pumping of mid-infrared optical parametric oscillators, material micro-processing, and UV light generation, etc.

  11. Explaining simultaneous dual-band carbon nanotube mode-locking Erbium-doped fiber laser by net gain cross section variation.

    Science.gov (United States)

    Rosa, Henrique G; Steinberg, David; Thoroh de Souza, Eunézio A

    2014-11-17

    In this paper we report the pulse evolution of a simultaneously mode-locked Erbium-doped fiber laser at 1556-nm-band and 1533-nm-band. We explain the dual wavelength laser operation by means of net gain cross section variations caused by the population inversion rate dependence on the pump power. At 1556-nm-band, we observed pulse duration of 370 fs with bandwidth of 8.50 nm and, for pump power higher than 150 mW, we observe the rise of a CW and mode-locked laser, sequentially, at 1533-nm-band. We show that both bands are simultaneously mode-locked and operate at different repetition rates.

  12. Q-switched mode-locked erbium-doped fiber laser based on topological insulator Bi(2)Se(3) deposited fiber taper.

    Science.gov (United States)

    Gao, Lei; Huang, Wei; Zhang, Jing Dong; Zhu, Tao; Zhang, Han; Zhao, Chu Jun; Zhang, Wei; Zhang, Hua

    2014-08-10

    We have demonstrated the passive Q-switching mode-locking operation in an erbium-doped fiber (EDF) laser by using topological insulator Bi(2)Se(3) deposited on fiber taper, whose damage threshold can be further increased by the large evanescent field interacting length. Due to the low saturation intensity, stable Q-switched mode-locked fiber lasers centered at 1562 nm can be generated at a pump power of 10 mW. The temporal and spectral characteristics for different pump strengths have also been investigated. To the best of our knowledge, it is the first time a Q-switched mode-locked EDF laser based on the fiber taper deposited by Bi(2)Se(3) was generated.

  13. Semiconductor disk laser pumped Cr2+:Znse lasers.

    Science.gov (United States)

    Hempler, Nils; Hopkins, John-Mark; Rösener, Benno; Rattunde, Marcel; Wagner, Joachim; Fedorov, Vladimir V; Moskalev, Igor S; Mirov, Sergey B; Burns, David

    2009-09-28

    A new flexible pump source, the optically-pumped semiconductor disk laser (SDL), for the Cr(2+):ZnSe laser is reported. The SDL provides up to 6W output power at a free running central wavelength of 1.98 microm. The Cr(2+):ZnSe laser operated at an output power of 1.8W and a slope efficiency of approximately 50% with respect to absorbed pump power whilst maintaining a low output intensity noise figure of <0.14% RMS. The system required no optical isolation even under the situation of significant optical feedback.

  14. Continuous-wave to pulse regimes for a family of passively mode-locked lasers with saturable nonlinearity

    Science.gov (United States)

    Dikandé, Alain M.; Voma Titafan, J.; Essimbi, B. Z.

    2017-10-01

    The transition dynamics from continuous-wave to pulse regimes of operation for a generic model of passively mode-locked lasers with saturable absorbers, characterized by an active medium with non-Kerr nonlinearity, are investigated analytically and numerically. The system is described by a complex Ginzburg–Landau equation with a general m:n saturable nonlinearity (i.e {I}m/{(1+{{Γ }}I)}n, where I is the field intensity and m and n are two positive numbers), coupled to a two-level gain equation. An analysis of stability of continuous waves, following the modulational instability approach, provides a global picture of the self-starting dynamics in the system. The analysis reveals two distinct routes depending on values of the couple (m, n), and on the dispersion regime: in the normal dispersion regime, when m = 2 and n is arbitrary, the self-starting requires positive values of the fast saturable absorber and nonlinearity coefficients, but negative values of these two parameters for the family with m = 0. However, when the spectral filter is negative, the laser can self-start for certain values of the input field and the nonlinearity saturation coefficient Γ. The present work provides a general map for the self-starting mechanisms of rare-earth doped figure-eight fiber lasers, as well as Kerr-lens mode-locked solid-state lasers.

  15. Active III-V Semiconductor Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara; Chen, Yaohui; Schubert, Martin;

    2011-01-01

    We experimentally demonstrate enhanced amplified spontaneous emission in a quantum well III-V semiconductor photonic crystal waveguide slab. The effect is described by enhanced light matter interaction with the decrease of the group velocity. These are promising results for future compact devices...... for terabit/s communication, such as miniaturised semiconductor optical amplifiers and mode-locked lasers....

  16. 10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser

    Science.gov (United States)

    Chen, Ying; Liu, Ke; He, Li-jiao; Yang, Jing; Zong, Nan; Yang, Feng; Gao, Hong-wei; Liu, Zhao; Yuan, Lei; Lan, Ying-jie; Bo, Yong; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2017-01-01

    We have demonstrated an electro-optically cavity-dumped mode-locked (CDML) picosecond Nd:YVO4 laser at 1342 nm with 880 nm diode-laser direct pumping. At a repetition rate of 10 kHz, an average output power of 0.119 W was achieved, corresponding to a pulse energy of 11.9 μJ. Compared with the continuous wave mode-locking pulse energy of 17.5 nJ, the CDML pulse energy was 680 times higher. The pulse width was measured to be 33.4 ps, resulting in the peak power of 356 kW. Meanwhile, the beam quality was nearly diffraction limited with an average beam quality factor M2 of 1.29.

  17. A stable polarization switching laser from a bidirectional passively mode-locked thulium-doped fiber oscillator.

    Science.gov (United States)

    Zhou, Wei; Shen, Deyuan; Wang, Yishan; Ma, Hefeng; Wang, Fei

    2013-04-08

    We report on a novel polarization switching laser from a bidirectional passively mode-locked thulium(Tm)-doped fiber oscillator, which was characterized by the periodical change of polarization state of every pulse. The switching laser was created by combing two orthogonally stable vector solitons, which were found to be wave-breaking-free pulses in the all-anomalous-dispersion regime. The measured repetition rates of switching laser and the corresponding vector solitons were 49.596 MHz, 24.798 MHz, and 24.798MHz. By controlling wave plates, either of the polarized pulse trains can be switched on or off. To our knowledge, this is the first report of polarization switching laser with vector solitons in Tm fiber oscillators.

  18. Wavelength Spacing Tunable, Multiwavelength Q-Switched Mode-Locked Laser Based on Graphene-Oxide-Deposited Tapered Fiber

    CERN Document Server

    Gao, Lei; Zeng, Jing

    2014-01-01

    A wavelength spacing tunable, multiwavelength Q-switched mode-locked (QML) fiber laser in an erbium-doped fiber cavity based on graphene oxide deposited on tapered fiber is proposed by choosing the diameter and length of the taper, graphene oxide thickness and cavity dispersion, in which the wavelength spacing could be tuned by pump power. The evolutions of temporal and spectral with different pump strengths are investigated. Results show that the tunability of the multiwavelength laser can be interpreted by the bound states of QML laser resulting from a mutual interaction of dispersion, nonlinear effect, insertion loss, and pump power. To the best of our knowledge, it is the first experimental observation of bound states of QML, which provides a new mechanism to fabricate tunable multiwavelength laser.

  19. The characteristics of Kerr-lens mode-locked self-Raman Nd:YVO4 1176 nm laser

    Science.gov (United States)

    Li, Zuohan; Peng, Jiying; Yao, Jianquan; Han, Ming

    2017-03-01

    In this paper we report on a compact and feasible dual-concave cavity CW Kerr-lens mode-locked self-Raman Nd:YVO4 laser. A self-starting diode-pumped picosecond Nd:YVO4 1176 nm laser is demonstrated without any additional components, where the stimulated Stokes Raman scattering and Kerr-lens-induced mode locking are operated in the same crystal. With an incident pump power of 12 W, the average output power at 1176 nm is up to 643 mW. Meanwhile, the repetition rate and the pulse width of the fundamental laser are measured to be 1.53 GHz and 8.6 ps, respectively. In addition, the yellow laser output at 588 nm is realized by frequency doubling with a LiB3O5 crystal.

  20. Ultrafast soliton mode-locked Zirconia-based Erbium-doped fiber laser with carbon nanotubes saturable absorber

    Science.gov (United States)

    Munira Markom, Arni; Wey Sen-Winson, Mah; Paul, Mukul Chandra; Wadi Harun, Sulaiman

    2017-06-01

    Ultrafast soliton mode-locked fiber laser was successfully generated in zirconia-yttria-alumina (Zr-Y-Al) co-doped erbium-doped fiber laser cavity using a single-wall carbon nanotubes (SWCNTs) as saturable absorber. The laser cavity was 11.5 m long with the group delay dispersion of -0.04 ps2. The laser generates soliton pulse train with a center wavelength and 3 dB bandwidth of 1564.2 nm and 3.8 nm, respectively at pump power of 92 mW. Meanwhile, the repetition rate, pulse duration and pulse energy were 17.7 MHz, 770 fs and 51.4 nJ.

  1. The Study on the Variation of the Cavity Length's Influence on the Output Pulse Train of the Actively Mode-Locked Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    LUO Hong-e; TIAN Xiao-jian; GAO Bo

    2005-01-01

    The influence of actively mode-locked Erbium-Doped Fiber Laser(EDFL) cavity length variation on the noises of an optical pulse train is investigated, in theory and in MATLAB simulation. Using a simple model, the noise characteristics of the output pulse train are studied. The results show that the noises of the output pulse train increase with the increasing of the variation of the cavity length. The theory analysis and the simulation results agree well. This result is very significant for us to improve the reliability and the stability of the actively mode-locked fiber laser.

  2. Mode-locking of a high power, 888 nm pumped Nd:YVO4 laser using nonlinear polarization rotation via Type I second harmonic generation.

    Science.gov (United States)

    Schäfer, Christoph; Fries, Christian; Theobald, Christian; L'huillier, Johannes A

    2013-01-15

    Continuous-wave mode-locking of a laser exploiting the nonlinear polarization rotation (NPR) technique via Type I second harmonic generation is demonstrated for the first time. The NPR is generated by a lithium triborate crystal and transformed into nonlinear cavity losses of a 888 nm pumped Nd:YVO4 laser. Self-starting, reliable mode-locking has been achieved at a high average output power of 20.6 W and a pulse duration of 7.3 ps. Furthermore, transform limited pulses down to 2.7 ps have been demonstrated at 9.9 W.

  3. High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier.

    Science.gov (United States)

    Ding, Y; Aviles-Espinosa, R; Cataluna, M A; Nikitichev, D; Ruiz, M; Tran, M; Robert, Y; Kapsalis, A; Simos, H; Mesaritakis, C; Xu, T; Bardella, P; Rossetti, M; Krestnikov, I; Livshits, D; Montrosset, Ivo; Syvridis, D; Krakowski, M; Loza-Alvarez, P; Rafailov, E

    2012-06-18

    In this paper, we present the generation of high peak-power picosecond optical pulses in the 1.26 μm spectral band from a repetition-rate-tunable quantum-dot external-cavity passively mode-locked laser (QD-ECMLL), amplified by a tapered quantum-dot semiconductor optical amplifier (QD-SOA). The laser emission wavelength was controlled through a chirped volume Bragg grating which was used as an external cavity output coupler. An average power of 208.2 mW, pulse energy of 321 pJ, and peak power of 30.3 W were achieved. Preliminary nonlinear imaging investigations indicate that this system is promising as a high peak-power pulsed light source for nonlinear bio-imaging applications across the 1.0 μm - 1.3 μm spectral range.

  4. Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiantao; Gross, Simon; Withford, Michael J.; Fuerbach, Alexander [Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) and MQ Photonics Research Centre, Dept. of Physics and Astronomy, Macquarie Univ., NSW (Australia); Zhang, Han; Guo, Zhinan [SZU-NUS Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Lab. of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen Univ. (China)

    2016-08-15

    Nanosheets of bismuth telluride (Bi{sub 2}Te{sub 3}), a topological insulator material that exhibits broadband saturable absorption due to its non-trivial Dirac-cone like energy structure, are utilized to generate short pulses from Tm:ZBLAN waveguide lasers. By depositing multiple layers of a carefully prepared Bi{sub 2}Te{sub 3} solution onto a glass substrate, the modulation depth and the saturation intensity of the fabricated devices can be controlled and optimized. This approach enables the realization of saturable absorbers that feature a modulation depth of 13% and a saturation intensity of 997 kW/cm{sup 2}. For the first time to our knowledge, Q-switched mode-locked operation of a linearly polarized mid-IR ZBLAN waveguide chip laser was realized in an extended cavity configuration using the topological insulator Bi{sub 2}Te{sub 3}. The maximum average output power of the laser is 16.3 mW and the Q-switched and mode-locked repetition rates are 44 kHz and 436 MHz, respectively. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Effects of carbon nanotubes and graphene oxide absorbers on the noise of mode-locked fiber lasers

    CERN Document Server

    Li, Xiaohui; Yu, Xuechao; Wang, Yonggang; Wang, Yishan; Meng, Bo; Tang, Yulong; Yu, Xia; Zhang, Ying; Sun, Zhipei; Shum, Perry Ping; Wang, Qi Jie

    2014-01-01

    Phase noise is very important for the ultrafast pulse application in telecommunication, ultrafast diagnose, material science, and biology. In this paper, two types of carbon nano-materials, single-wall carbon nanotube and graphene oxide, are investigated for noise suppression in ultrafast photonics. Various properties of the wall-paper SAs, such as saturable intensity, optical absorption and degree of purity, are found to be key factors determining the phase noise of the ultrafast pulses. A reduced-noise femtosecond fiber laser is experimentally demonstrated by optimizing the above parameters of carbon material based SAs. The phase noise reduction more than 10 dB at 10 kHz can be obtained in the experiments. To our knowledge, this is the first time that the relationship between different carbon material based SAs and the phase noise of mode-locked lasers has been investigated. This work will pave the way to get a high-quality ultrashort pulse in passively mode-locked fiber lasers.

  6. Broadband fast semiconductor saturable absorber.

    Science.gov (United States)

    Jacobovitz-Veselka, G R; Kellerm, U; Asom, T

    1992-12-15

    Kerr lens mode-locked (KLM) solid-state lasers are typically not self-starting. We address this problem by introducing a broadband semiconductor saturable absorber that could be used as a tunable, all-solid-state, passive starting mechanism. We extend the wavelength tunability of a semiconductor saturable absorber to more than 100 nm using a band-gap-engineered low-temperature molecular-beam-epitaxy (MBE)-grown bulk AlGaAs semiconductor saturable absorber in which the absorption edge of the saturable absorber has been artificially broadened by continuously reducing the Al concentration during the MBE growth. We demonstrate its tunability and its feasibility as a starting mechanism for KLM with a picosecond resonant passive mode-locked Ti:sapphire laser. The extension to femtosecond KLM lasers has been discussed previously.

  7. As-grown uniform MoS2/mica saturable absorber for passively Q-switched mode-locked Nd:GdVO4 laser

    Science.gov (United States)

    Xu, Yuanyuan; Yang, Cheng; Ge, Pengguang; Liu, Jie; Jiang, Shouzhen; Li, Chun; Man, Baoyuan

    2016-08-01

    Molybdenum disulfide (MoS2) has recently attracted growing attention due to its distinctive properties and potential applications in optoelectronics and electronics. Here, large-area and high-quality MoS2 film with uniform thickness was obtained by thermally decomposing ammonium thiomolybdate. Besides, it is firstly demonstrated that the as-grown MoS2/mica can be directly inserted into Nd:GdVO4 laser cavity as saturable absorber for the output of diode-pumped passively Q-switched mode-locked pulse trains. Using the MoS2 saturable absorbers, the stable Q-switched mode-locked pulse trains with high modulation depth were realized, suggesting that the broadband MoS2 SA could potentially be employed in mode-locking laser system

  8. Semiconductor Laser Wind Lidar for Turbine Control

    DEFF Research Database (Denmark)

    Hu, Qi

    instead of the conventional fiber-lasers. Besides its advantage of lower cost, the relative intensity noise, which peaks around 1 MHz for fiber lasers, is inherently avoided by using a semiconductor light source. The impact of the line width increment on the SNR in the application of wind measurement has...... and demonstrated in this work. The challenge, aside from cost and compactness, is to ensure a long lifetime without regular maintenance, since the wind turbines are designed to last for 20 years. Finally, field test results of various measurement campaigns, designed to evaluate our lidar design, are presented here...... historical overview within the topic of wind lidar systems. Both the potential and the challenges of an industrialized wind lidar has been addressed here. Furthermore, the basic concept behind the heterodyne detection and a brief overview of the lidar signal processing is explained; and a simple...

  9. Fabrication and Characterization of Edge-Emitting Semiconductor Lasers

    Science.gov (United States)

    Song, Junyeob

    The semiconductor laser was invented in 1962, and has recently become ubiquitous in modern life. This thesis focuses on the development of a semiconductor laser fabricating process which utilizes semiconductor manufacturing technology in a cleanroom environment including photolithography, etching, deposition, and bonding processes. A photomask for patterning is designed, recipes of photolithography process and etching process are developed with experiments. This work gives how to develop the process of fabrication and determine the parameters for each processes. A series of semiconductor laser devices are then fabricated using the developed process and characterization is performed to assess device performance with industrial standard methods. A fabricated device has 18W power and 11% conversion efficiency.

  10. Fiber Transmission Stabilization by Optical Heterodyning Techniques and Synchronization of Mode-Locked Lasers Using Two Spectral Lines

    CERN Document Server

    Staples, J W

    2005-01-01

    Stabilization of the transit time through a glass fiber using an optical heterodyne technique promises to provide jitter reduction down to the few femtosecond level using inexpensive commodity hardware. An acousto-optical frequency shifter provides the optical frequency offset that is used to downconvert phase shifts at optical frequency to equivalent phase shifts at radio frequency which are used to close a phase-lock loop driving a piezoelectric phase shifter. Using the stabilized fiber transmission medium, two spectral lines of a mode locked laser lock two low-power CW lasers which are transmitted to a receiver which phase locks the same spectral lines of a second mode-locked laser to the first. The optical transmission system operates at low power and is linear, providing excellent signal-to-noise ratio and allows many signals to be transmitted without mutual interference. Experimental results will be presented.

  11. Mode-locking and Q-switching in multi-wavelength fiber ring laser using low frequency phase modulation.

    Science.gov (United States)

    Jun, Chang Su; Kim, Byoung Yoon

    2011-03-28

    We describe experimental investigation of pulsed output from a multi-wavelength fiber ring laser incorporating low frequency phase modulation with large modulation amplitude. The Erbium-doped fiber (EDF) ring laser generated more than 8 wavelength channels with the help of a phase modulator operating at 26.2 kHz and a periodic intra-cavity filter. For most cases, the laser output is pulsed in the form of mode-locking at 5.62 MHz and/or Q-switching at harmonic and sub-harmonic of the phase modulation frequency. Chaotic pulse output is also observed. The behavior of the output pulses are described as functions of pump power and phase modulation amplitude. The relative intensity noise (RIN) value of a single wavelength channel is measured to be under -100 dB/Hz (-140 dB/Hz beyond 1.5 GHz).

  12. Picosecond to femtosecond pulses from high power self mode-locked ytterbium rod-type fiber laser.

    Science.gov (United States)

    Deslandes, Pierre; Perrin, Mathias; Saby, Julien; Sangla, Damien; Salin, François; Freysz, Eric

    2013-05-06

    We have designed an ytterbium rod-type fiber laser oscillator with tunable pulse duration. This system that delivers more than 10 W of average power is self mode-locked. It yields femtosecond to picosecond laser pulses at a repetition rate of 74 MHz. The pulse duration is adjusted by changing the spectral width of a band pass filter that is inserted in the laser cavity. Using volume Bragg gratings of 0.9 nm and 0.07 nm spectrum bandwidth, this oscillator delivers nearly Fourier limited 2.8 ps and 18.5 ps pulses, respectively. With a 4 nm interference filter, one obtains picosecond pulses that have been externally dechirped down to 130 fs.

  13. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

    CERN Document Server

    Liu, Ya; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-01-01

    Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses wit...

  14. Photonic ferromagnetic-like spontaneous mode-locking phase transition with replica symmetry breaking in multimode Nd:YAG laser

    CERN Document Server

    Moura, André L; Raposo, Ernesto P; Gomes, Anderson S L; de Araújo, Cid B

    2016-01-01

    The recent reports of the replica symmetry breaking (RSB) phenomenon in photonic experiments [1-5] boosted the understanding of the role of disorder in multimode lasers, as well as helped to settle enlightening connections [6-13] with the statistical physics of complex systems. RSB manifests when identically-prepared system replicas reach distinct states, yielding different measures of observable quantities [14]. Here we demonstrate the RSB in the spontaneous mode-locking regime of a conventional multimode Nd:YAG laser in a closed cavity. The underlying mechanism is quite distinct from that of the RSB spinglass phase in cavityless random lasers with incoherently-oscillating modes. Here, a specific nonuniform distribution of the gain takes place in each pulse, and frustration is induced since the coherent oscillation of a given subset of longitudinal modes dominates and simultaneously inhibits the others. Nevertheless, when high losses are introduced only the replica-symmetric amplified stimulation emission is...

  15. Experimental investigation of harmonic and subharmonic synchronization of 40 GHz mode-locked quantum-dash laser diodes.

    Science.gov (United States)

    Maldonado-Basilio, Ramón; Latkowski, Sylwester; Philippe, Severine; Landais, Pascal

    2011-05-01

    Synchronization of a 40 GHz quantum-dash mode-locked (ML) Fabry-Perot laser diode with optically injected pulse streams is experimentally studied. Injected signals consist of nonmodulated and modulated trains of 1.6 ps pulses at various repetition rates, ranging from 10 to 160 GHz and 10 to 160 Gbps, respectively. Subharmonic, fundamental, and harmonic synchronization of the ML laser allows retrieval of stable 40 GHz clock pulses featuring a width of 1.8 ps. Frequency components at 10 and 20 GHz do not create any amplitude modulation on the recovered 40 GHz clock pulses when injecting signals at 10 and 20 GHz/Gbps. In addition, external synchronization of the laser with pulse streams at 80 and 160 GHz/Gbps is sustained despite the absence of significant components at or below 40 GHz.

  16. Repetition frequency scaling of an all-polarization maintaining erbium-doped mode-locked fiber laser based on carbon nanotubes saturable absorber

    Energy Technology Data Exchange (ETDEWEB)

    Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M. [Laser and Fiber Electronics Group, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Jagiello, J.; Lipinska, L. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)

    2015-04-07

    We demonstrate an all-polarization maintaining (PM), mode-locked erbium (Er)-doped fiber laser based on a carbon nanotubes (CNT) saturable absorber (SA). The laser resonator was maximally simplified by using only one passive hybrid component and a pair of fiber connectors with deposited CNTs. The repetition frequency (F{sub rep}) of such a cost-effective and self-starting mode-locked laser was scaled from 54.3 MHz to 358.6 MHz. The highest F{sub rep} was obtained when the total cavity length was shortened to 57 cm. The laser allows ultrashort pulse generation with the duration ranging from 240 fs to 550 fs. Because the laser components were based on PM fibers the laser was immune to the external perturbations and generated laniary polarized light with the degree of polarization (DOP) of 98.7%.

  17. Repetition frequency scaling of an all-polarization maintaining erbium-doped mode-locked fiber laser based on carbon nanotubes saturable absorber

    Science.gov (United States)

    Sotor, J.; Sobon, G.; Jagiello, J.; Lipinska, L.; Abramski, K. M.

    2015-04-01

    We demonstrate an all-polarization maintaining (PM), mode-locked erbium (Er)-doped fiber laser based on a carbon nanotubes (CNT) saturable absorber (SA). The laser resonator was maximally simplified by using only one passive hybrid component and a pair of fiber connectors with deposited CNTs. The repetition frequency (Frep) of such a cost-effective and self-starting mode-locked laser was scaled from 54.3 MHz to 358.6 MHz. The highest Frep was obtained when the total cavity length was shortened to 57 cm. The laser allows ultrashort pulse generation with the duration ranging from 240 fs to 550 fs. Because the laser components were based on PM fibers the laser was immune to the external perturbations and generated laniary polarized light with the degree of polarization (DOP) of 98.7%.

  18. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  19. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  20. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers.

    Science.gov (United States)

    Li, Xiaohui; Wu, Kan; Sun, Zhipei; Meng, Bo; Wang, Yonggang; Wang, Yishan; Yu, Xuechao; Yu, Xia; Zhang, Ying; Shum, Perry Ping; Wang, Qi Jie

    2016-04-29

    Low phase noise mode-locked fiber laser finds important applications in telecommunication, ultrafast sciences, material science, and biology, etc. In this paper, two types of carbon nano-materials, i.e. single-wall carbon nanotube (SWNT) and graphene oxide (GO), are investigated as efficient saturable absorbers (SAs) to achieve low phase noise mode-locked fiber lasers. Various properties of these wall-paper SAs, such as saturable intensity, optical absorption and degree of purity, are found to be key factors determining the performance of the ultrafast pulses. Reduced-noise femtosecond fiber lasers based on such carbon-based SAs are experimentally demonstrated, for which the phase noise has been reduced by more than 10 dB for SWNT SAs and 8 dB for GO SAs at 10 kHz. To the best of our knowledge, this is the first investigation on the relationship between different carbon material based SAs and the phase noise of mode-locked lasers. This work paves the way to generate high-quality low phase noise ultrashort pulses in passively mode-locked fiber lasers.

  1. Theoretical Analysis of Dependence of Nonlinear Effects in Mode-Locked Yb:YAG Lasers with a Highly Nonlinear Intra-Cavity Medium

    Directory of Open Access Journals (Sweden)

    Takeshi Yoshida

    2015-11-01

    Full Text Available Nonlinear ultrashort pulse propagation in a mode-locked Yb:YAG laser with a highly nonlinear intra-cavity medium is analyzed using a nonlinear Schrodinger equation. The output spectra are extended by the increased laser intensity, and spectral bandwidths wider than those of the gain medium are achieved. Moreover, pulse widths are shortened by increased laser intensity to considerably less than those of the gain medium. The simulation results qualitatively agree with the experimental results.

  2. Femtosecond mode-locked erbium-doped fiber laser based on MoS2-PVA saturable absorber

    Science.gov (United States)

    Ahmed, M. H. M.; Latiff, A. A.; Arof, H.; Ahmad, H.; Harun, S. W.

    2016-08-01

    We fabricate a free-standing few-layer molybdenum disulfide (MoS2)-polymer composite by liquid phase exfoliation of chemically pristine MoS2 crystals and use this to demonstrate a soliton mode-locked Erbium-doped fiber laser (EDFL). A stable self-started mode-locked soliton pulse is generated by fine-tuning the rotation of the polarization controller at a low threshold pump power of 25 mW. Its solitonic behavior is verified by the presence of Kelly sidebands in the output spectrum. The central wavelength, pulse width, and repetition rate of the laser are 1573.7 nm, 630 fs, and 27.1 MHz, respectively. The maximum pulse energy is 0.141 nJ with peak power of 210 W at pump power of 170 mW. This result contributes to the growing body of work studying the nonlinear optical properties of transition metal dichalcogenides that present new opportunities for ultrafast photonic applications.

  3. Compact ultrafast semiconductor disk laser for nonlinear imaging in living organisms

    Science.gov (United States)

    Aviles-Espinosa, Rodrigo; Filippidis, G.; Hamilton, Craig; Malcolm, Graeme; Weingarten, Kurt J.; Südmeyer, Thomas; Barbarin, Yohan; Keller, Ursula; Artigas, David; Loza-Alvarez, Pablo

    2011-03-01

    Ultrashort pulsed laser systems (such as Ti:sapphire) have been used in nonlinear microscopy during the last years. However, its implementation is not straight forward as they are maintenance-intensive, bulky and expensive. These limitations have prevented their wide-spread use for nonlinear imaging, especially in "real-life" biomedical applications. In this work we present the suitability of a compact ultrafast semiconductor disk laser source, with a footprint of 140x240x70 mm, to be used for nonlinear microscopy. The modelocking mechanism of the laser is based on a quantumdot semiconductor saturable absorber mirror (SESAM). The laser delivers an average output power of 287 mW with 1.5 ps pulses at 500 MHz, corresponding to a peak power of 0.4 kW. Its center wavelength is 965 nm which is ideally suited for two-photon excitation of the widely used Green Fluorescent Protein (GFP) marker as it virtually matches its twophoton action cross section. We reveal that it is possible to obtain two photon excited fluorescence images of GFP labeled neurons and secondharmonic generation images of pharynx and body wall muscles in living C. elegans nematodes. Our results demonstrate that this compact laser is well suited for long-term time-lapse imaging of living samples as very low powers provide a bright signal. Importantly this non expensive, turn-key, compact laser system could be used as a platform to develop portable nonlinear bio-imaging devices, facilitating its wide-spread adoption in "real-life" applications.

  4. Mode-locked Nd:YAG laser pumped by LD%LD抽运锁模Nd:YAG激光器研究

    Institute of Scientific and Technical Information of China (English)

    黎章; 袁易君

    2011-01-01

    利用Cr4+:YAG和声光锁模器联合对光纤耦合LD抽运Nd:YAG激光器进行主被动锁模,比较和分析了Cr4+:YAG被动锁模,声光锁模器主动锁模及两者联合主被动锁模三种情况下平均输出功率的特性,结果表明主被动联合锁模克服了主动锁模稳定性差、被动锁模输出功率低、锁模不完全的缺点,得到幅值和能量抖动小于±6%、锁模深度100%、脉宽小于410 ps、输出平均功率290 mW的绿光锁模脉冲.%Using Cr4+:YAG and acousto-optic mode-locker jointly, the fiber coupling LD pumping Nd: YAG laser was actively-passively mode-locked. The output average power of passively mode-locked by Cr4+:YAG only, actively mode-locked by acousto-optic mode-locker only and mode-locked by Cr4+:YAG and acoustooptic jointly are compared and analyzed. The result shows good resolution to the low output energy and stability, and the mode-lock amplitude and energy fluctuation is less than ±6%, with the depth of mode locking of 100%, pulse width less than 410 ps and output average power near 290 mW.

  5. Powerful red-green-blue laser source pumped with a mode-locked thin disk laser.

    Science.gov (United States)

    Brunner, Felix; Innerhofer, Edith; Marchese, Sergio V; Südmeyer, Thomas; Paschotta, Rüdiger; Usami, Takeshi; Ito, Hiromasa; Kurimura, Sunao; Kitamura, Kenji; Arisholm, Gunnar; Keller, Ursula

    2004-08-15

    We present a red-green-blue laser source with average powers of 8 W in the red, 23 W in the green, and 10.1 W in the blue. The entire pump power for the nonlinear conversion stages is provided by a single laser oscillator without any amplifier stages. Our system does not require any synchronized cavities, and all nonlinear crystals except one are critically phase matched at room temperature.

  6. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Deri, R J

    2011-01-03

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and

  7. Up to 400 GHz burst-mode pulse generation from a hybrid harmonic mode-locked Er-doped fibre laser

    Science.gov (United States)

    Wang, Sheng-Min; Lai, Yinchieh

    2017-02-01

    By inserting a birefringence filter with FSR  =  100 GHz inside a hybrid mode-locked Er-doped fibre laser, we successfully generate ps to sub-ps optical burst pulses with the intra-burst pulse rate up to 400 GHz. Multiplication of the intra-burst pulse rate is attributed to a new effect analogous to rational harmonic mode-locking, which occurs due to the relative alignment of the cavity harmonic frequencies, the external phase modulation induced frequencies, and the filter-selected frequencies.

  8. Laser micromachining of semiconductors for photonics applications

    Science.gov (United States)

    Nantel, Marc; Yashkir, Yuri; Lee, Seong K.; Mugford, Chas; Hockley, Bernard S.

    2001-10-01

    For decades, precisely machining silicon has been critical for the success of the semiconductor industry. This has traditionally been done through wet chemical etching, but in the pursuit of integrating photonics devices on a single chip, other techniques are worth exploring. This quest opens up interest in finding a non-wet, non-contact, arbitrary-shape milling technique for silicon. In this paper, we present our latest work in the laser micromachining of silicon. A kilohertz-repetition-rate diode-pumped Nd:YLF laser (in infrared, green or ultraviolet modes) is focused on the surface of silicon wafers in a chlorine atmosphere for an enhanced magnitude and control of the etching rate. In the chlorine atmosphere, much less debris is deposited on the surface around the cut, sub-damage threshold machining is achieved for a better control of the etching depth, and etching rates ranging from 20-300,000 micron-cube/s have been measured. In particular, the use of an infrared laser beam is singled out, along with the advantages that it holds. Results of simulations highlight the particular characteristics of the various wavelength chosen for the machining.

  9. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler

    CERN Document Server

    Wang, Teng; Shi, Fan; Pang, Fufei; Huang, Sujuan; Wang, Tingyun; Zeng, Xianglong

    2016-01-01

    We experimentally demonstrated a high-order optical vortex pulsed laser based on a mode selective all-fiber fused coupler composed of a single-mode fiber (SMF) and a few-mode fiber (FMF). The fused SMF-FMF coupler inserted in the cavity not only acts as mode converter from LP01 mode to LP11 or LP21 modes with a broadband width over 100 nm, but also directly delivers femtosecond vortex pulses out of the mode locked cavity. To the best of our knowledge, this is the first report on the generation of high-order pulse vortex beams in mode-locked fiber laser. The generated 140 femtosecond vortex beam has a spectral width of 67 nm centered at 1544 nm.

  10. Picosecond 1.3{-}\\unicode{956} {\\text{m}} bismuth fibre laser mode-locked by a nonlinear loop mirror

    Science.gov (United States)

    Khegai, A. M.; Afanas'ev, F. V.; Riumkin, K. E.; Firstov, S. V.; Khopin, V. F.; Myasnikov, D. V.; Mel'kumov, M. A.; Dianov, E. M.

    2016-12-01

    The influence of the concentration of bismuth active centres (BACs) in phosphosilicate fibres on their optical parameters, including gain coefficient and non-saturable losses, has been studied. A range of BAC concentrations optimal for designing ultrashort-pulse (USP) lasers was chosen based on the obtained results. The optimised fibre was used to fabricate an all-fibre 1.3-\\unicode{956}{\\text{m}} USP laser mode-locked by a nonlinear loop mirror, which emits 11.3-{\\text{ps}} pulses with an energy of 1.65 {\\text{nJ}} and a repetition rate of 3.6 {\\text{MHz}}. A bismuth fibre amplifier made it possible to increase the pulse energy to 8.3 {\\text{nJ}}. After compression in a diffraction grating compressor, the pulse duration decreased to 530 {\\text{fs}}.

  11. Turbulent chimeras in large semiconductor laser arrays

    CERN Document Server

    Shena, Joniald; Kovanis, Vassilios; Tsironis, George P

    2016-01-01

    Semiconductor laser arrays have been investigated experimentally and theoretically from the viewpoint of temporal and spatial coherence for the past forty years. In this work, we are focusing on a rather novel complex collective behavior, namely chimera states, where synchronized clusters of emitters coexist with unsynchronized ones. For the first time, we find such states exist in large diode arrays based on quantum well gain media with nearest-neighbor interactions. The crucial parameters are the evanescent coupling strength and the relative optical frequency detuning between the emitters of the array. By employing a recently proposed figure of merit for classifying chimera states, we provide quantitative and qualitative evidence for the observed dynamics. The corresponding chimeras are identified as turbulent according to the irregular temporal behavior of the classification measure. Such studies may be the springboard for designing next generation photonic emitters providing on demand diverse waveforms.

  12. Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control.

    Science.gov (United States)

    Iwakuni, Kana; Inaba, Hajime; Nakajima, Yoshiaki; Kobayashi, Takumi; Hosaka, Kazumoto; Onae, Atsushi; Hong, Feng-Lei

    2012-06-18

    We have developed an optical frequency comb using a mode-locked fiber ring laser with an intra-cavity waveguide electro-optic modulator controlling the optical length in the laser cavity. The mode-locking is achieved with a simple ring configuration and a nonlinear polarization rotation mechanism. The beat note between the laser and a reference laser and the carrier envelope offset frequency of the comb were simultaneously phase locked with servo bandwidths of 1.3 MHz and 900 kHz, respectively. We observed an out-of-loop beat between two identical combs, and obtained a coherent δ-function peak with a signal to noise ratio of 70 dB/Hz.

  13. Generation of 30 fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO_4 laser

    Science.gov (United States)

    Ma, Jie; Huang, Haitao; Ning, Kaijie; Xu, Xiaodong; Xie, Guoqiang; Qian, Liejia; Loh, Kian Ping; Tang, Dingyuan

    2016-03-01

    Stable 30 fs pulses centered at 1068 nm (less than 10 optical cycles) are demonstrated in a diode pumped Yb:CaYAlO4 laser by using high-quality chemical vapor deposited monolayer graphene as the saturable absorber. The mode locked 8.43 optical-cycle pulses have a spectral bandwidth of ~ 50 nm and a pulse repetition frequency of ~ 113.5 MHz. To our knowledge, this is the shortest pulse ever reported for graphene mode-locked lasers and mode-locked Yb-doped bulk lasers. Our experimental results demonstrate that graphene mode locking is a very promising practical technique to generate few-cycle optical pulses directly from a laser oscillator.

  14. Generation of 30-fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO4 laser

    CERN Document Server

    Ma, Jie; Ning, Kaijie; Xu, Xiaodong; Xie, Guoqiang; Qian, Liejia; Loh, Kian Ping; Tang, Dingyuan

    2015-01-01

    Stable 30 fs pulses centered at 1068 nm (less than 10 optical cycles) are demonstrated in a diode pumped Yb:CaYAlO4 laser by using high-quality chemical vapor deposited monolayer graphene as the saturable absorber. The mode locked 8.43 optical-cycle pulses have a spectral bandwidth of ~ 50 nm and a pulse repetition frequency of ~ 113.5 MHz. To our knowledge, this is the shortest pulse ever reported for graphene mode-locked lasers and mode-locked Yb-doped bulk lasers. Our experimental results demonstrate that graphene mode locking is a very promising practical technique to generate few-cycle optical pulses directly from a laser oscillator.

  15. Generation of 10 GHz transform-limited pulse train from dual-pump mode-locking erbium-doped fiber laser

    Science.gov (United States)

    He, Li; Yang, Bojun; Zhang, Xiaoguang; Yu, Li

    2006-09-01

    A dual-pump 10 GHz mode-locking erbium-doped fiber laser was demonstrated. With 10-GHz signal modulation of the modulator, less than 12 ps mode-locked pulse at 10 GHz repetition rate with 1.097 mW average output power was obtained. The corresponding spectrum width is 0.277 nm, which is centered at 1561 nm. The corresponding product of time and bandwidth is Δv*Δt which equals 0.433. Gaussian pulse shape is assumed, the output pulse is almost transform limited. Compared with single-pump fiber ring laser, the dual-pump fiber ring laser is helpful for suppression of supermode noise, which make this kind of fiber ring laser more stable.

  16. Switchable Dual-Wavelength Mode-Locked Er-Doped Fibre Laser Using a Bragg Grating in Polarization-Maintaining Fibre

    Institute of Scientific and Technical Information of China (English)

    FENG Xin-Huan; LIU Yan-Ge; SUN Lei; XIONG Ling-Yun; LI-Yao; YUAN Shu-Zhong; KAI Gui-Yun; DONG Xiao-Yi

    2004-01-01

    @@ A simple actively mode-locked fibre ring laser is proposed and successfully demonstrated to generate switchable dual-wavelength picosecond pulses using a Bragg grating in a polarization-maintaining fibre. The wavelength spacing specified by the grating is only 0.52nm. The proposed laser can be made to operate in stable dualwavelength or switch between wavelengths at room temperature, only by simple adjustment of a polarization controller.

  17. Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kichul; Lee, Young Tack; Choi, Won-Kook; Song, Yong-Won [Center for Opto-electronic Materials and Devices, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Lee, Junsu; Lee, Ju Han [School of Electrical and Computer Engineering, University of Seoul (Korea, Republic of)

    2015-12-15

    Black phosphorus, or BP, has found a lot of applications in recent years including photonics. The most recent studies have shown that the material has an excellent optical nonlinearity useful in many areas, one of which is in saturable absorption for passive mode-locking. A direct interaction scheme for mode-locking, however, has a potential to optically cause permanent damage to the already delicate material. Evanescent field interaction scheme has already been proven to be a useful method to prevent such danger for other 2-dimensional nanomaterials. In this report, we have utilized the evanescent field interaction to demonstrate that the optical nonlinear characteristics of BP is sufficiently strong to use in such an indirect interaction method. The successful demonstration of the passive mode-locking operation has generated pulses with the pulse duration, repetition rate, and time bandwidth product of 2.18 ps, 15.59 MHz, and 0.336, respectively. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Laser method for simulating the transient radiation effects of semiconductor

    Science.gov (United States)

    Li, Mo; Sun, Peng; Tang, Ge; Wang, Xiaofeng; Wang, Jianwei; Zhang, Jian

    2017-05-01

    In this paper, we demonstrate the laser simulation adequacy both by theoretical analysis and experiments. We first explain the basic theory and physical mechanisms of laser simulation of transient radiation effect of semiconductor. Based on a simplified semiconductor structure, we describe the reflection, optical absorption and transmission of laser beam. Considering two cases of single-photon absorption when laser intensity is relatively low and two-photon absorption with higher laser intensity, we derive the laser simulation equivalent dose rate model. Then with 2 types of BJT transistors, laser simulation experiments and gamma ray radiation experiments are conducted. We found good linear relationship between laser simulation and gammy ray which depict the reliability of laser simulation.

  19. Monolayer semiconductor nanocavity lasers with ultralow thresholds

    Science.gov (United States)

    Wu, Sanfeng; Buckley, Sonia; Schaibley, John R.; Feng, Liefeng; Yan, Jiaqiang; Mandrus, David G.; Hatami, Fariba; Yao, Wang; Vučković, Jelena; Majumdar, Arka; Xu, Xiaodong

    2015-04-01

    Engineering the electromagnetic environment of a nanometre-scale light emitter by use of a photonic cavity can significantly enhance its spontaneous emission rate, through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter, providing a low-threshold laser system with small footprint, low power consumption and ultrafast modulation. An ultralow-threshold nanoscale laser has been successfully developed by embedding quantum dots into a photonic crystal cavity (PCC). However, several challenges impede the practical application of this architecture, including the random positions and compositional fluctuations of the dots, extreme difficulty in current injection, and lack of compatibility with electronic circuits. Here we report a new lasing strategy: an atomically thin crystalline semiconductor--that is, a tungsten diselenide monolayer--is non-destructively and deterministically introduced as a gain medium at the surface of a pre-fabricated PCC. A continuous-wave nanolaser operating in the visible regime is thereby achieved with an optical pumping threshold as low as 27 nanowatts at 130 kelvin, similar to the value achieved in quantum-dot PCC lasers. The key to the lasing action lies in the monolayer nature of the gain medium, which confines direct-gap excitons to within one nanometre of the PCC surface. The surface-gain geometry gives unprecedented accessibility and hence the ability to tailor gain properties via external controls such as electrostatic gating and current injection, enabling electrically pumped operation. Our scheme is scalable and compatible with integrated photonics for on-chip optical communication technologies.

  20. Output spectrum of an unlocked optically driven semiconductor laser

    Energy Technology Data Exchange (ETDEWEB)

    Gallion, P.; Debarge, G.; Chabran, C.

    1986-05-01

    The output of an unlocked optically injected semiconductor laser exhibits a two-sided spectral distribution about its lasing frequency. The experimental results are explained by coupled phase and amplitude modulation and described by a rate-equation analysis.

  1. 基于氧化石墨烯的锁模激光实验%Experiment of mode-locked laser using graphene oxide

    Institute of Scientific and Technical Information of China (English)

    程晨; 魏加峰; 刘博文; 张建友; 刘杰

    2014-01-01

    设计了低成本全固态锁模超快激光实验系统,使用透射式氧化石墨烯饱和吸收体作为被动锁模元件,直接插入到腔内,可依次观察到激光的不同运转状态.实验采用结构紧凑的谐振腔设计,获得了二极管端面泵浦Nd∶YVO4晶体的1064 nm连续波被动锁模激光输出,重复频率为81 M Hz ,最大平均输出功率为1.23 W ,相应的锁模单脉冲能量为15.2 nJ .%A low cost all solid-state mode-locked ultrashort laser operation based on a graphene oxide saturable absorber was designed .By using graphene oxide saturable absorber (SA ) as mode-locked component ,passively mode-locked 1 064 nm continuous wave laser output of end-diode-pump Nd∶YVO4 crystal was obtained with compact resonator .The maximum average output power of 1 .23 W with a repetition rate of 81 M Hz was obtained ,corresponding to mode-locking single pulse energy of 15 .2 nJ .

  2. Ultrawide broadband photonic source based on a new design of mode-locked erbium-doped fibre laser

    Science.gov (United States)

    Jarabo, S.; Salgado-Remacha, F. J.

    2015-09-01

    Pulses with a spectral width of 134 nm at  -6 dBm nm-1 and 223 nm at  -20 dBm nm-1, covering L-band and U-band and longer wavelengths (even beyond 1700 nm), are achieved by means of a new design of passive mode-locked erbium-doped fibre laser. This source includes a C/L-band filter inside a ring cavity with an L-band erbium-doped fibre amplifier as active medium and its output pulses are amplified by means of a second L-band amplifier. It is demonstrated that output spectra are clearly broadened due to the presence of the C/L band filter.

  3. 6.5 µJ pulses from a compact dissipative soliton resonance mode-locked erbium-ytterbium double clad (DC) laser

    Science.gov (United States)

    Krzempek, K.; Abramski, K.

    2017-01-01

    The feasibility of constructing a compact, all-fiber, dissipative soliton resonance (DSR) mode-locked erbium-ytterbium double clad laser emitting 6.517 µJ pulses directly from the cavity is presented. The laser was built in a figure-8 configuration and mode-locked using a nonlinear optical loop mirror. A DSR regime of operation was enforced in the cavity by large net-anomalous dispersion (-21.431 ps2), obtained by incorporating 1 km of SMF28 fiber in the resonator. The laser operated at a 201 kHz repetition rate, with maximum average output power of 1.31 W at 7.2 W of pump power, yielding an impressive 20% slope efficiency.

  4. Semiconductor Laser Lidar Wind Velocity Sensor for Turbine Control

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Hu, Qi; Pedersen, Christian

    2014-01-01

    A dual line-of-sight CW lidar that measures both wind speed and direction is presented . The wind lidar employs a semiconductor laser, which allows for inexpensive remote sensors geared towards enhanced control of wind turbines .......A dual line-of-sight CW lidar that measures both wind speed and direction is presented . The wind lidar employs a semiconductor laser, which allows for inexpensive remote sensors geared towards enhanced control of wind turbines ....

  5. Picosecond Semiconductor Lasers For Characterizing High-Speed Image Shutters

    Science.gov (United States)

    Pagano, T. S.; Janson, F. J.; Yates, G. J.; Jaramillo, S. A.

    1986-01-01

    A portable system that utilizes solid state electronic timing circuits and a pulsed semiconductor laser for characterizing the optical gate sequence of high-speed image shutters, including microchannel-plate intensifier tubes (MCPTs), and silicon-intensified target vidicons (SITVs), is described and compared to earlier methods of characterization. Gate sequences obtained using the system and streak camera data of the semiconductor laser pulse are presented, with a brief discussion of the electronic delay timing and avalanche circuits used in the system.

  6. Management of gingival hyperpigmentation by semiconductor diode laser.

    Science.gov (United States)

    Gupta, Geeti

    2011-09-01

    Gingival hyperpigmentation is caused by excessive deposition of melanin in the basal and suprabasal cell layers of the epithelium. Although melanin pigmentation of the gingiva is completely benign, cosmetic concerns are common, particularly in patients having a very high smile line (gummy smile). Various depigmentation techniques have been employed, such as scalpel surgery, gingivectomy, gingivectomy with free gingival autografting, cryosurgery, electrosurgery, chemical agents such as 90% phenol and 95% alcohol, abrasion with diamond burs, Nd:YAG laser, semiconductor diode laser, and CO(2) laser. The present case report describes simple and effective depigmentation technique using semiconductor diode laser surgery - for gingival depigmentation, which have produced good results with patient satisfaction.

  7. Continuously tunable wideband semiconductor fiber-ring laser

    Science.gov (United States)

    Mao, Xuefeng; Zhao, Shiwei; Yuan, Suzhen; Wang, Xiaofa; Zheng, Peichao

    2017-08-01

    We demonstrate a wideband tunable semiconductor fiber-ring laser that can be continuously tuned from 1498 nm to 1623 nm. The proposed laser uses a semiconductor optical amplifier (SOA) as a gain medium and a fiber Fabry-Perot tunable filter as a selective wavelength filter. The optimized drive current of the SOA and the output coupling ratio are obtained by experimental research. This laser has a simple configuration, low threshold, flat laser output power and high optical signal-to-noise ratio.

  8. Use of a semiconductor-diode laser in urology

    Science.gov (United States)

    Watson, Graham M.

    1994-05-01

    The gallium arsenide semiconductor laser can emit in the near infrared where the depth of penetration into tissue is great although scattering is less than with the Nd:YAG laser. The laser is highly compact. It runs off a normal electrical outlet with no cooling requirement. It is therefore quiet and convenient. The laser has been assessed in a wide variety of applications in our urological department.

  9. The Modulation Response of a Semiconductor Laser Amplifier

    DEFF Research Database (Denmark)

    Mørk, Jesper; Mecozzi, Antonio; Eisenstein, Gadi

    1999-01-01

    We present a theoretical analysis of the modulation response of a semiconductor laser amplifier. We find a resonance behavior similar to the well-known relaxation oscillation resonance found in semiconductor lasers, but of a different physical origin. The role of the waveguide (scattering) loss...... are analyzed. The nonlinear transparent waveguide, i.e. an amplifier saturated to the point where the stimulated emission balances the internal losses, is shown to be analytically solvable and is a convenient vehicle for gaining qualitative understanding of the dynamics of modulated semiconductor optical...

  10. Quantum confined laser devices optical gain and recombination in semiconductors

    CERN Document Server

    Blood, Peter

    2015-01-01

    The semiconductor laser, invented over 50 years ago, has had an enormous impact on the digital technologies that now dominate so many applications in business, commerce and the home. The laser is used in all types of optical fibre communication networks that enable the operation of the internet, e-mail, voice and skype transmission. Approximately one billion are produced each year for a market valued at around $5 billion. Nearly all semiconductor lasers now use extremely thin layers of light emitting materials (quantum well lasers). Increasingly smaller nanostructures are used in the form of quantum dots. The impact of the semiconductor laser is surprising in the light of the complexity of the physical processes that determine the operation of every device. This text takes the reader from the fundamental optical gain and carrier recombination processes in quantum wells and quantum dots, through descriptions of common device structures to an understanding of their operating characteristics. It has a consistent...

  11. Hybrid organic semiconductor lasers for bio-molecular sensing.

    Science.gov (United States)

    Haughey, Anne-Marie; Foucher, Caroline; Guilhabert, Benoit; Kanibolotsky, Alexander L; Skabara, Peter J; Burley, Glenn; Dawson, Martin D; Laurand, Nicolas

    2014-01-01

    Bio-functionalised luminescent organic semiconductors are attractive for biophotonics because they can act as efficient laser materials while simultaneously interacting with molecules. In this paper, we present and discuss a laser biosensor platform that utilises a gain layer made of such an organic semiconductor material. The simple structure of the sensor and its operation principle are described. Nanolayer detection is shown experimentally and analysed theoretically in order to assess the potential and the limits of the biosensor. The advantage conferred by the organic semiconductor is explained, and comparisons to laser sensors using alternative dye-doped materials are made. Specific biomolecular sensing is demonstrated, and routes to functionalisation with nucleic acid probes, and future developments opened up by this achievement, are highlighted. Finally, attractive formats for sensing applications are mentioned, as well as colloidal quantum dots, which in the future could be used in conjunction with organic semiconductors.

  12. Effects of the Facet Reflectivity of a Laser Diode on Fiber Bragg Grating Semiconductor Lasers

    Institute of Scientific and Technical Information of China (English)

    Honggang; Yu; Chang-Qing; Xu; Na; Li; Zhilin; Peng; Jacek; Wojcik; Peter; Mascher

    2003-01-01

    Effects of facet reflectivity of a laser diode on the performance of fiber Bragg grating semiconductor lasers are studied experimentally. Facet reflectivity of less than 10-4 is necessary to obtain stable oscillation wavelength.

  13. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation.

    Science.gov (United States)

    Chen, Yu; Jiang, Guobao; Chen, Shuqing; Guo, Zhinan; Yu, Xuefeng; Zhao, Chujun; Zhang, Han; Bao, Qiaoliang; Wen, Shuangchun; Tang, Dingyuan; Fan, Dianyuan

    2015-05-18

    Black phosphorus (BP), an emerging narrow direct band-gap two-dimensional (2D) layered material that can fill the gap between the semi-metallic graphene and the wide-bandgap transition metal dichalcogenides (TMDs), had been experimentally found to exhibit the saturation of optical absorption if under strong light illumination. By taking advantage of this saturable absorption property, we could fabricate a new type of optical saturable absorber (SA) based on mechanically exfoliated BPs, and further demonstrate the applications for ultra-fast laser photonics. Based on the balanced synchronous twin-detector measurement method, we have characterized the saturable absorption property of the fabricated BP-SAs at the telecommunication band. By incorporating the BP-based SAs device into the all-fiber Erbium-doped fiber laser cavities, we are able to obtain either the passive Q-switching (with maximum pulse energy of 94.3 nJ) or the passive mode-locking operation (with pulse duration down to 946 fs). Our results show that BP could also be developed as an effective SA for pulsed fiber or solid-state lasers.

  14. A Micro Blue-violet Laser by Frequency Doubling of Semiconductor Laser

    Institute of Scientific and Technical Information of China (English)

    周寿桓; 姜东升; 赵鸿

    2001-01-01

    In this paper, a micro blue-violet laser by frequency doubling of a semiconductor laser with a new nonlinear organometallic complex cadmium mercury thiocyanate crystal (CMTC) is reported. At room temperature, the blue-violet laser output of 11.8 mW at 404 nm and the conversion4efficiency of the second harmonic generation (SHG) of 0. 60% were obtained with a 1. 98 W, 808 nm semiconductor laser and a 4 mm crystal.

  15. Single-section mode-locked 1.55-μm InAs/InP quantum dot lasers grown by MOVPE

    Science.gov (United States)

    Gao, Feng; Luo, Shuai; Ji, Hai-Ming; Liu, Song-Tao; Lu, Dan; Ji, Chen; Yang, Tao

    2016-07-01

    We report on ultra-short pulse single-section mode-locked lasers emitting at 1.55 μm, based on self-assembled InAs/InGaAsP/InP quantum dot active regions grown by metal-organic vapor phase epitaxy (MOVPE). For a 1.5-mm-long Fabry-Perot laser, mode-locking at a repetition rate of 29.8 GHz with pulse duration of 855 fs is obtained without any external pulse compression techniques. The mode-beating exhibits a narrow RF linewidth less than 30 kHz, and a wide frequency tuning range up to 73 MHz can be achieved by simply changing the injection current. Moreover, a higher repetition rate of 55.6 GHz and the transform limited Gaussian-pulse with the 707 fs pulse duration are achieved from a device with a shorter cavity length of 0.8 mm.

  16. Passively mode-locking erbium-doped fiber lasers with 0.3 nm Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Xu, Xintong; Zhai, Jianpang; Li, Ling; Chen, Yanping; Yu, Yongqin; Zhang, Min; Ruan, Shuangchen; Tang, Zikang

    2014-01-01

    We demonstrate a passively mode-locked erbium-doped fiber laser (EDFL) by using the smallest single-walled carbon nanotubes (SWNTs) with a diameter of 0.3 nm as the saturable absorber. These ultrasmall SWNTs are fabricated in the elliptical nanochannels of a ZnAPO4-11 (AEL) single crystal. By placing an AEL crystal into an EDFL cavity pumped by a 980 nm laser diode, stable passive mode-locking is achieved for a threshold pump power of 280 mW, and 73 ps pulses at 1563.2 nm with a repetition rate of 26.79 MHz. PMID:25342292

  17. Effective generation of optical quadruple frequency millimeter-wave based on fiber laser using injection rational harmonic mode-locked technique

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Xue Feng; Fei Huang; Xiaoming Liu

    2009-01-01

    A method to generate the optical quadruple frequency millimeter-wave with high power efficiency is pro-posed and demonstrated based on the combination of the injection 2nd-order rational harmonic mode-locked fiber ring laser technique and the fiber grating notch filter. In this approach, the fiber Bragg grating notch filter is inserted into the laser cavity to prevent the undesired optical carrier, so that the pump power can be converted to 2nd-order harmonic wave more efficiently. In our experiment, the power efficiency of optical quadruple frequency millimeter-wave (40 GHz) generation is ten folds of that of our previous method based only on the rational harmonic mode-locked technique.

  18. Longitudinal analysis of semiconductor lasers with low reflectivity facets

    Energy Technology Data Exchange (ETDEWEB)

    Baets, R.; Lagasse, P.E.; Vande Capelle, J.P.

    1985-06-01

    An analysis is made of longitudinal effects in semiconductor lasers with low facet reflectivities. For this purpose, a self-consistent model is used based on the beam propagation method, which takes into account both the lateral and longitudinal dimension. The calculations show that longitudinal effects have a significant influence on the output fields in the laser.

  19. Theoretical analysis of pulse modulation of semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Xu Baoxi; Zhan Yushu; Guo Siji

    1987-05-01

    Rate equations of Gaussian shape pulse modulated semiconductor lasers are solved by Runge--Kutta method, and the results are analyzed. The formulae for calculating the delay time, pulse width of laser pulse and maximum bit-rate of Gaussian shape pulse modulation are derived. The experimental results of modulation pattern effects are given.

  20. 220 fs Er-Yb:glass laser mode-locked by a broadband low-loss Si/Ge saturable absorber

    CERN Document Server

    Grawert, F J; Ilday, F O; Liu, J; Gopinath, J T; Shen, H M; Wada, K; Ippen, E P; Kimerling, L C; Kaertner, Franz X

    2004-01-01

    We demonstrate femtosecond performance of an ultra-broadband high-index-contrast saturable Bragg reflector consisting of a silicon/silicon-dioxide/germanium structure that is fully compatible with CMOS processing. This device offers a reflectivity bandwidth of over 700 nm and sub-picosecond recovery time of the saturable loss. It is used to achieve mode-locking of an Er-Yb:glass laser centered at 1540 nm, generating 220 fs pulses, with the broadest output spectrum to date.

  1. Self-Starting Passively Mode-Locking All-Solid-State Laser with GaAs Absorber Grown at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    JIA Yu-Lei; LING Wei-Jun; WEI Zhi-Yi; WANG Yong-Gang; MA Xiao-Yu

    2005-01-01

    @@ We realize a stable self-starting passively mode-locking all-solid-state laser by using novel GaAs mirrors as the absorber and output coupler. The GaAs mirror is grown by the technology of metal organic chemical vapour deposition at low temperature. With such an absorber as the output coupler in the laser resonator, laser pulses with duration of 42ps were generated at a repetition rate of 400MHz, corresponding to the average power of 590mW.

  2. Mode-locked femtosecond all polarization-maintaining erbium-doped dispersion managed fiber laser based on a nonlinear amplifying loop mirror

    Science.gov (United States)

    Wu, Wenjue; Zhou, Yue; Sun, Ji; Dai, Yitang; Yin, Feifei; Dai, Jian; Xu, Kun

    2016-11-01

    We proposed a mode-locked all-polarization-maintaining erbium-doped fiber laser base on a nonlinear amplifying loop mirror (NALM). The laser can generate 1.6 ps pulses at 1550 nm with the energy of 1 nJ that can be compressed down to 100 fs with the compressor outside the cavity. The repetition rate of the output pulse is 12MHz. Such configuration of laser is easier controlled and self starting long term operation, and is highly desirable for industrial applications, such as micro-machining.

  3. Semiconductor Laser Multi-Spectral Sensing and Imaging

    Directory of Open Access Journals (Sweden)

    Han Q. Le

    2010-01-01

    Full Text Available Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO. These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  4. High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator.

    Science.gov (United States)

    Pronin, O; Brons, J; Grasse, C; Pervak, V; Boehm, G; Amann, M-C; Kalashnikov, V L; Apolonski, A; Krausz, F

    2011-12-15

    We demonstrate a power-scalable Kerr-lens mode-locked Yb:YAG thin-disk oscillator. It delivers 200 fs pulses at an average power of 17 W and a repetition rate of 40 MHz. At an increased (180 W) pump power level, the laser produces 270 fs 1.1 μJ pulses at an average power of 45 W (optical-to-optical efficiency of 25%). Semiconductor-saturable-absorber-mirror-assisted Kerr-lens mode locking (KLM) and pure KLM with a hard aperture show similar performance. To our knowledge, these are the shortest pulses achieved from a mode-locked Yb:YAG disk oscillator and this is the first demonstration of a Kerr-lens mode-locked thin-disk laser.

  5. Large area growth of monolayer MoS2 film on quartz and its use as a saturable absorber in laser mode-locking

    Science.gov (United States)

    Zhao, Wei-fang; Yu, Hua; Liao, Meng-zhou; Zhang, Ling; Zou, Shu-zhen; Yu, Hai-juan; He, Chao-jian; Zhang, Jing-yuan; Zhang, Guang-yu; Lin, Xue-chun

    2017-02-01

    Monolayer MoS2 film on quartz was fabricated by a home-made three-temperature zone chemical vapor deposition method. The photo, AFM image, Raman spectroscopy and HRTEM image showed that high quality as-grown MoS2 film completely covered the whole quartz substrate of a few cm2. A Nd:YVO4 laser with mode-locking operation was obtained by using the monolayer MoS2 on quartz as the saturable absorber (SA). To the best of our knowledge, this is the first report on large-area growth of high quality monolayer MoS2 film on transparent quartz substrate, and the first time that the CVD MoS2 SA was used in mode-locked solid state lasers. Because of the large area, high transmission, low non-saturable loss and high optical damage threshold of this material, it is very suitable for application in mode-locked solid state lasers.

  6. Overall optimization of high-speed semiconductor laser modules

    Institute of Scientific and Technical Information of China (English)

    LIU Yu; CHEN ShuoFu; WANG Xin; YUAN HaiQing; XIE Liang; ZHU NingHua

    2009-01-01

    Based on the high frequency techniques such as frequency response measurement, equivalent circuit modeling and packaging parasitics compensation, a comprehensive optimization method for packag-ing high-speed semiconductor laser module is presented in this paper. The experiments show that the small-signal magnitude frequency response of the TO packaged laser module is superior to that of laser diode in frequencies, and the in-band flatness and the phase-frequency linearity are also im-proved significantly.

  7. Development of the power control system for semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Suk; Kim, Cheol Jung

    1997-12-01

    For the first year plan of this program, we developed the power control system for semiconductor lasers. We applied the high-current switching mode techniques to fabricating a power control system. Then, we investigated the direct side pumping techniques with GaA1As diode laser bars to laser crystal without pumping optics. We obtained 0.5W average output power from this DPSSL. (author). 54 refs., 3 tabs., 18 figs.

  8. Synchronization scenario of two distant mutually coupled semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mirasso, Claudio; Heil, Tilmann;

    2004-01-01

    We present numerical and experimental investigations of the synchronization of the coupling-induced instabilities in two distant mutually coupled semiconductor lasers. In our experiments, two similar Fabry-Perot lasers are coupled via their coherent optical fields. Our theoretical framework...... is based on a rate equation model obtained under weak coupling conditions. In both experiments and simulations, we find (achronal) synchronization of subnanosecond intensity fluctuations in concurrence with asymmetric physical roles between the lasers, even under symmetric operating conditions. We explore...

  9. Integrated Microwave Photonic Isolators: Theory, Experimental Realization and Application in a Unidirectional Ring Mode-Locked Laser Diode

    Directory of Open Access Journals (Sweden)

    Martijn J.R. Heck

    2015-09-01

    Full Text Available A novel integrated microwave photonic isolator is presented. It is based on the timed drive of a pair of optical modulators, which transmit a pulsed or oscillating optical signal with low loss, when driven in phase. A signal in the reverse propagation direction will find the modulators out of phase and, hence, will experience high loss. Optical and microwave isolation ratios were simulated to be in the range up to 10 dB and 20 dB, respectively, using parameters representative for the indium phosphide platform. The experimental realization of this device in the hybrid silicon platform showed microwave isolation in the 9 dB–22 dB range. Furthermore, we present a design study on the use of these isolators inside a ring mode-locked laser cavity. Simulations show that unidirectional operation can be achieved, with a 30–50-dB suppression of the counter propagating mode, at limited driving voltages. The potentially low noise and feedback-insensitive operation of such a laser makes it a very promising candidate for use as on-chip microwave or comb generators.

  10. Research of actively-passively mode-locked Nd:YAG laser pumped by pulse xenon lamp%主被动锁模脉冲氙灯抽运Nd:YAG激光器的研究

    Institute of Scientific and Technical Information of China (English)

    袁易君

    2011-01-01

    为了克服主动锁模脉冲能量低、被动调Q锁模稳定性差、锁模不完全的缺点,采用Cr:YAG和声光锁模器进行主被动联合锁模脉冲氙灯抽运的Nd:YAG激光器,实验验证和分析了Cr:YAG被动锁模,声光锁模器主动锁模及两者联合主被动锁模3种情况下输出脉冲的特性.结果表明,主被动联合锁模可得到200mJ输出能量、输出幅值和能量抖动小于±5%、锁模深度100%、脉宽小于450ps的1064nm锁模脉冲输出,腔外增加KTP倍频晶体,可得到约41%的转换效率的532nm稳定锁模脉冲输出.这一结果验证了主被动锁模技术的可行性,有利于锁模技术的进一步发展.%In order to resolve the low output energy of active mode-locked laser and instability of passive mode-locked laser,Cr4+ :YAG passive mode-locker and acousto-optic active mode-locker were used jointly for Nd:YAG laser mode-locking.The output characteristics of passively mode-locked by Cr4+ :YAG only, actively mode-locked by anousto-optic mode-locker only and mode-locked by Cr+ :YAG and acousto-optic jointly were analyzed and compared through experiments.Results showed that the joint mode-locking method gave good resolution to the low output energy and stability, and the mode-lock amplitude and energy fluctuation were less than ± 5%, with the depth of mode locking of 100%, pulse width less than 450ps and output energy near 200mJ at 1064nm wavelength.Adding KTP crystal out of the cavity, the output conversion efficiency was about 41% at 532nm wavelength.The results show the possibility of actively-passively mode-locked technology and it is helpful for the development of mode-locking technology.

  11. Gain and Index Dynamics in Semiconductor Lasers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    Semiconductor optical amplifiers (SOAs) provide ultrafast, i.e. broadband components for optical communication systems. They enter not only as signal generators and amplifiers, but also as nonlinear elements for ultrafast signal processing such as wavelength conversion, switching, and regeneratio...

  12. Effective Linewidth of Semiconductor Lasers for Coherent Optical Data Links

    Directory of Open Access Journals (Sweden)

    Miguel Iglesias Olmedo

    2016-06-01

    Full Text Available We discuss the implications of using monolithically integrated semiconductor lasers in high capacity optical coherent links suitable for metro applications, where the integration capabilities of semiconductor lasers make them an attractive candidate to reduce transceiver cost. By investigating semiconductor laser frequency noise profiles we show that carrier induced frequency noise plays an important role in system performance. We point out that, when such lasers are employed, the commonly used laser linewidth fails to estimate system performance, and we propose an alternative figure of merit that we name “Effective Linewidth”. We derive this figure of merit analytically, explore it by numerical simulations and experimentally validate our results by transmitting a 28 Gbaud DP-16QAM over an optical link. Our investigations cover the use of semiconductor lasers both in the transmitter side and as a local oscillator at the receiver. The obtained results show that our proposed “effective linewidth” is easy to measure and accounts for frequency noise more accurately, and hence the penalties associated to phase noise in the received signal.

  13. Ultrafast dynamics and laser action of organic semiconductors

    CERN Document Server

    Vardeny, Zeev Valy

    2009-01-01

    Spurred on by extensive research in recent years, organic semiconductors are now used in an array of areas, such as organic light emitting diodes (OLEDs), photovoltaics, and other optoelectronics. In all of these novel applications, the photoexcitations in organic semiconductors play a vital role. Exploring the early stages of photoexcitations that follow photon absorption, Ultrafast Dynamics and Laser Action of Organic Semiconductors presents the latest research investigations on photoexcitation ultrafast dynamics and laser action in pi-conjugated polymer films, solutions, and microcavities.In the first few chapters, the book examines the interplay of charge (polarons) and neutral (excitons) photoexcitations in pi-conjugated polymers, oligomers, and molecular crystals in the time domain of 100 fs-2 ns. Summarizing the state of the art in lasing, the final chapters introduce the phenomenon of laser action in organics and cover the latest optoelectronic applications that use lasing based on a variety of caviti...

  14. Heteroclinic dynamics of coupled semiconductor lasers with optoelectronic feedback.

    Science.gov (United States)

    Shahin, S; Vallini, F; Monifi, F; Rabinovich, M; Fainman, Y

    2016-11-15

    Generalized Lotka-Volterra (GLV) equations are important equations used in various areas of science to describe competitive dynamics among a population of N interacting nodes in a network topology. In this Letter, we introduce a photonic network consisting of three optoelectronically cross-coupled semiconductor lasers to realize a GLV model. In such a network, the interaction of intensity and carrier inversion rates, as well as phases of laser oscillator nodes, result in various dynamics. We study the influence of asymmetric coupling strength and frequency detuning between semiconductor lasers and show that inhibitory asymmetric coupling is required to achieve consecutive amplitude oscillations of the laser nodes. These studies were motivated primarily by the dynamical models used to model brain cognitive activities and their correspondence with dynamics obtained among coupled laser oscillators.

  15. Rough scattering made by laser on metal and semiconductor surfaces

    Science.gov (United States)

    Shandybina, Galina D.

    1994-10-01

    Diffraction on metal and semiconductor surfaces during the process of laser irradiation is interesting for microelectronics, power optics and elements of measuring technology. We also present experimental data in changing dynamics of diffuse reflection of copper and bronze mirrors and silicon polished plates during laser irradiation. The impulse of laser radiation from neodymium glass lasts 4 ms. There could be seen the intense reversible increase of diffusion scattering and at the same time decrease of specular component of reflection during laser influence on metal and the appearance of precisely expressed unreturn scattering reflexes during irradiation of semiconductor plates long before the melting threshold. We conduct the quantitative measurements of target thermo-deformation, local deformation of heterogeneities and laser induced effects of the surface with the help of the impulse two-beam interferometry method by indirect measurements of temperature in laser radiation zone. We also established the connection between the dynamic change of scattering of metal and semiconductor with the nature of deformation, such as thermo-deformation of the whole irradiation zone, local deformation of heterogeneities of the surface and defects generated by laser. A physical model of laser induced surface roughness, confirmed by mathematical calculations in the thermoelastic approach, will be also discussed.

  16. Singly-resonant sum frequency generation of visible light in a semiconductor disk laser

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Schlosser, P.J.; Hastie, J.E.;

    2009-01-01

    In this paper a generic approach for visible light generation is presented. It is based on sum frequency generation between a semiconductor disk laser and a solid-state laser, where the frequency mixing is achieved within the cavity of the semiconductor disk laser using a singlepass of the solid-...... spectrum, by appropriate choice of semiconductor material and single-pass laser wavelength.......In this paper a generic approach for visible light generation is presented. It is based on sum frequency generation between a semiconductor disk laser and a solid-state laser, where the frequency mixing is achieved within the cavity of the semiconductor disk laser using a singlepass of the solid......-state laser light. This exploits the good beam quality and high intra-cavity power present in the semiconductor disk laser to achieve high conversion efficiency. Combining sum frequency mixing and semiconductor disk lasers in this manner allows in principle for generation of any wavelength within the visible...

  17. Femtosecond Carrier Dynamics and Modelocking in Monolithic CPM Lasers. [SB1

    DEFF Research Database (Denmark)

    Brorson, S.D.; Bischoff, Svend; MØrk, J.

    1996-01-01

    Femtosecond pump-probe measurements of the dynamics in both forward- and reverse-biased semiconductor optical waveguides arepresented. Slow (nanosecond) as well as ultrafast (femtosecond) dynamics are observed in both kinds of structures....

  18. Femtosecond Carrier Dynamics and Modelocking in Monolithic CPM Lasers. [SB1

    DEFF Research Database (Denmark)

    Brorson, S.D.; Bischoff, Svend; MØrk, J.;

    1996-01-01

    Femtosecond pump-probe measurements of the dynamics in both forward- and reverse-biased semiconductor optical waveguides arepresented. Slow (nanosecond) as well as ultrafast (femtosecond) dynamics are observed in both kinds of structures....

  19. Reliability of Semiconductor Laser Packaging in Space Applications

    Science.gov (United States)

    Gontijo, Ivair; Qiu, Yueming; Shapiro, Andrew A.

    2008-01-01

    A typical set up used to perform lifetime tests of packaged, fiber pigtailed semiconductor lasers is described, as well as tests performed on a set of four pump lasers. It was found that two lasers failed after 3200, and 6100 hours under device specified bias conditions at elevated temperatures. Failure analysis of the lasers indicates imperfections and carbon contamination of the laser metallization, possibly from improperly cleaned photo resist. SEM imaging of the front facet of one of the lasers, although of poor quality due to the optical fiber charging effects, shows evidence of catastrophic damage at the facet. More stringent manufacturing controls with 100% visual inspection of laser chips are needed to prevent imperfect lasers from proceeding to packaging and ending up in space applications, where failure can result in the loss of a space flight mission.

  20. Semiconductor lasers as integrated optical biosensors: sensitivity optimisation

    Energy Technology Data Exchange (ETDEWEB)

    Coote, J; Sweeney, S J [Advanced Technology Institute, University of Surrey, Guildford, UK GU2 7XH (United Kingdom)

    2007-07-15

    Semiconductor lasers contain both a light source and waveguide, rendering them suitable for adaptation to evanescent field biosensing. One-dimensional simulations using the beam propagation method have been carried out for planar semiconductor waveguide structures, with a view to maximising sensitivity of the effective index to changes in the refractive index and thickness of a film on the waveguide surface. Various structural parameters are investigated and it is found that thinning the upper cladding layer maximises the sensitivity. Implications for laser operation are considered, and an optimised structure is proposed. Surface layer index and thickness resolutions of 0.2 and 2nm are predicted.

  1. 80 nm tunable DBR-free semiconductor disk laser

    Science.gov (United States)

    Yang, Z.; Albrecht, A. R.; Cederberg, J. G.; Sheik-Bahae, M.

    2016-07-01

    We report a widely tunable optically pumped distributed Bragg reflector (DBR)-free semiconductor disk laser with 6 W continuous wave output power near 1055 nm when using a 2% output coupler. Using only high reflecting mirrors, the lasing wavelength is centered at 1034 nm and can be tuned up to a record 80 nm by using a birefringent filter. We attribute such wide tunability to the unique broad effective gain bandwidth of DBR-free semiconductor disk lasers achieved by eliminating the active mirror geometry.

  2. Pulse operation of semiconductor laser with nonlinear optical feedback

    Science.gov (United States)

    Guignard, Celine; Besnard, Pascal; Mihaescu, Adrian; MacDonald, K. F.; Pochon, Sebastien; Zheludev, Nikolay I.

    2004-09-01

    A semiconductor laser coupled to a gallium-made non linear mirror may exhibit pulse regime. In order to better understand this coupled cavity, stationary solutions and dynamics are described following the standard Lang and Kobayashi equations for a semiconductor laser submitted to nonlinear optical feedback. It is shown that the nonlinearity distorts the ellipse on which lied the stationary solutions, with a ``higher'' part corresponding to lower reflectivity and a ``lower'' part to higher reflectivity. Bifurcation diagrams and nonlinear analysis are presented while the conditions for pulsed operation are discussed.

  3. Active control of emission directionality of semiconductor microdisk lasers

    CERN Document Server

    Liew, Seng Fatt; Ge, Li; Solomon, Glenn S; Cao, Hui

    2014-01-01

    We demonstrate lasing mode selection in nearly circular semiconductor microdisks by shaping the spatial profile of optical pump. Despite of strong mode overlap, adaptive pumping suppresses all lasing modes except the targeted one. Due to slight deformation of the cavity shape and boundary roughness, each lasing mode has distinct emission pattern. By selecting different mode to be the dominant lasing mode, we can switch both the lasing frequency and the output direction. Such tunability by external pump after the laser is fabricated enhances the functionality of semiconductor microcavity lasers.

  4. Return-map for semiconductor lasers with optical feedback

    DEFF Research Database (Denmark)

    Mørk, Jesper; Tromborg, Bjarne; Sabbatier, H.;

    1999-01-01

    It is well known that a semiconductor laser exposed to moderate optical feedback and biased near threshold exhibits the phenomenon of low-frequency intensity fluctuations (LFF). While this behavior can be numerically simulated using the so-called Lang-Kobayshi model, the interpretation of the phe......It is well known that a semiconductor laser exposed to moderate optical feedback and biased near threshold exhibits the phenomenon of low-frequency intensity fluctuations (LFF). While this behavior can be numerically simulated using the so-called Lang-Kobayshi model, the interpretation...

  5. Gigahertz Self-referenceable Frequency Comb from a Semiconductor Disk Laser

    CERN Document Server

    Zaugg, Christian A; Mangold, Mario; Mayer, Aline S; Link, Sandro M; Emaury, Florian; Golling, Matthias; Gini, Emilio; Saraceno, Clara J; Tilma, Bauke W; Keller, Ursula

    2014-01-01

    We present a 1.75-GHz self-referenceable frequency comb from a vertical external-cavity surface-emitting laser (VECSEL) passively modelocked with a semiconductor saturable absorber mirror (SESAM). The VECSEL delivers 231-fs pulses with an average power of 100 mW and is optimized for stable and reliable operation. The optical spectrum was centered around 1038 nm and nearly transform-limited with a full width half maximum (FWHM) bandwidth of 5.5 nm. The pulses were first amplified to an average power of 5.5 W using a backward-pumped Yb-doped double-clad large mode area (LMA) fiber and then compressed to 85 fs with 2.2 W of average power with a passive LMA fiber and transmission gratings. Subsequently, we launched the pulses into a highly nonlinear photonic crystal fiber (PCF) and generated a coherent octave-spanning supercontinuum (SC). We then detected the carrier-envelope offset (CEO) frequency (fCEO) beat note using a standard f-to-2f-interferometer. The fCEO exhibits a signal-to-noise ratio of 17 dB in a 10...

  6. Fabrication of 16 W all-normal-dispersion mode-locked Yb-doped rod-type fiber laser with large-mode area

    Institute of Scientific and Technical Information of China (English)

    吕国; 滕浩; 王立娜; 王睿; 王军利; 魏志义

    2015-01-01

    A mode-locked ytterbium-doped rod-type fiber laser with 85 µm core diameter is developed based on the nonlinear polarization evolution in an all-normal-dispersion ring cavity, in which a uniaxial birefringent plate is used as the spectral filter. Average power up to 16 W is obtained at the repetition rate of 58 MHz, and the pulse duration is compressed to 182 fs with a grating-pair compressor. The output laser pulses show very good beam quality and power stability.

  7. High power dissipative soliton in an Erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror.

    Science.gov (United States)

    Cabasse, A; Martel, G; Oudar, J L

    2009-06-08

    We report on a passively mode-locked erbium-doped fiber laser, using a high nonlinear modulation depth saturable absorber mirror, in a Fabry-Perot cavity. A segment of dispersion compensation fiber is added inside the cavity in order to build a high-positive dispersion regime. The setup produced highly chirped pulses with an energy of 1.8 nJ at a repetition rate of 33.5 MHz. Numerical simulations accurately reflect our experimental results and show that pulse-shaping in this laser could be interpreted as producing 'dissipative solitons'.

  8. Kerr-Lens Mode-Locked Femtosecond Yb:GdYSiO5 Laser Directly Pumped by a Laser Diode

    Directory of Open Access Journals (Sweden)

    Jiangfeng Zhu

    2015-10-01

    Full Text Available We demonstrate the first Kerr-lens mode-locked operation in a diode-pumped Yb:GdYSiO5 oscillator. Under a diode pump power of 5 W, 141 fs pulses with an average power of 237 mW were obtained at a repetition rate of 118 MHz. The central wavelength was at 1094 nm with a bandwidth of 10.1 nm. Shorter pulses were obtained by adjusting the cavity to operate at a shorter wavelength, resulting in 55 fs pulse duration at the central wavelength of 1054 nm with a bandwidth of 23.5 nm.

  9. Liquid Contact Luminescence from Semiconductor Laser Materials

    Science.gov (United States)

    1997-01-09

    Luminescence - Diagnostic As a diagnostic tool, LCL can provide much useful information about the quality of the epitaxial wafer prior to laser fabrication . In...diagnostic tool, LCL can provide a variety of useful information about the quality of the epitaxial wafer prior to laser fabrication . Temporal...the quality of the epitaxial laser wafer prior to laser fabrication . It is a quick, inexpensive, and non- destructive process that measures a variety

  10. Management of gingival hyperpigmentation by semiconductor diode laser

    Directory of Open Access Journals (Sweden)

    Geeti Gupta

    2011-01-01

    Full Text Available Gingival hyperpigmentation is caused by excessive deposition of melanin in the basal and suprabasal cell layers of the epithelium. Although melanin pigmentation of the gingiva is completely benign, cosmetic concerns are common, particularly in patients having a very high smile line (gummy smile. Various depigmentation techniques have been employed, such as scalpel surgery, gingivectomy, gingivectomy with free gingival autografting, cryosurgery, electrosurgery, chemical agents such as 90% phenol and 95% alcohol, abrasion with diamond burs, Nd:YAG laser, semiconductor diode laser, and CO 2 laser. The present case report describes simple and effective depigmentation technique using semiconductor diode laser surgery - for gingival depigmentation, which have produced good results with patient satisfaction.

  11. Integrated semiconductor twin-microdisk laser under mutually optical injection

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ling-Xiu; Liu, Bo-Wen; Lv, Xiao-Meng; Yang, Yue-De; Xiao, Jin-Long; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2015-05-11

    We experimentally study the characteristics of an integrated semiconductor twin-microdisk laser under mutually optical injection through a connected optical waveguide. Based on the lasing spectra, four-wave mixing, injection locking, and period-two oscillation states are observed due to the mutually optical injection by adjusting the injected currents applied to the two microdisks. The enhanced 3 dB bandwidth is realized for the microdisk laser at the injection locking state, and photonic microwave is obtained from the electrode of the microdisk laser under the period-two oscillation state. The plentifully dynamical states similar as semiconductor lasers subject to external optical injection are realized due to strong optical interaction between the two microdisks.

  12. All semiconductor laser Doppler anemometer at 1.55 microm.

    Science.gov (United States)

    Hansen, René Skov; Pedersen, Christian

    2008-10-27

    We report to our best knowledge the first all semiconductor Laser Doppler Anemometer (LIDAR) for wind speed determination. We will present the design and first experimental results on a focusing coherent cw laser Doppler anemometer for measuring atmospheric wind velocities in the 10 meters to 300 meters distance range. Especially, we will demonstrate that both the output power as well as the demanding coherence properties required from the laser source can be accomplished by an all semiconductor laser. Preliminary tests at a distance of 40 meters indicate a typical signal to noise ratio of 9 dB. This result is obtained at a clear day with an up-date rate of 12 Hz.

  13. Supercontinuum generation based on all-normal-dispersion Yb-doped fiber laser mode-locked by nonlinear polarization rotation: Influence of seed's output port

    Science.gov (United States)

    Xiao, Xiaosheng; Hua, Yi

    2016-10-01

    All-normal-dispersion (ANDi) mode-locked Yb-doped fiber laser is a promising seed source for supercontinuum (SC) generation, due to its compact structure and broadband output. The influences of output ports of the ANDi laser mode-locked by nonlinear polarization rotation (NPR), on the generated SC are investigated. Two output ports of ANDi laser are considered, one of which is the conventional nonlinear polarization rotation (NPR) port and the other is extracted from a coupler after the NPR port. It is found that, the SC originated from the coupler port is much broader than that from the NPR port, which is validated by lots of experiments with different output parameters. Furthermore, the conclusion is verified and generalized to general ANDi lasers by numerical simulations, because the output pulse from coupler port could be cleaner than that from NPR port. Besides, there are no significant differences in the phase coherence and temporal stability between the SCs generated from both ports. Hence for the SC generation based on ANDi laser, it is preferred to use the pulse of coupler port (i.e. pulse after NPR port) serving as the seed source.

  14. Semiconductor lasers vs LEDs in diagnostic and therapeutic medicine

    Science.gov (United States)

    Gryko, Lukasz; Zajac, Andrzej; Szymanska, Justyna; Blaszczak, Urszula; Palkowska, Anna; Kulesza, Ewa

    2016-12-01

    Semiconductor emitters are used in many areas of medicine, allowing for new methods of diagnosis, treatment and effective prevention of many diseases. The article presents selected areas of application of semiconductor sources in UVVIS- NIR range, where in recent years competition in semiconductor lasers and LEDs applications has been observed. Examples of applications of analyzed sources are indicated for LLLT, PDT and optical diagnostics using the procedure of color contrast. Selected results of LLLT research of the authors are presented that were obtained by means of the developed optoelectronic system for objectified irradiation and studies on the impact of low-energy laser and LED on lines of endothelial cells of umbilical vein. Usefulness of the spectrally tunable LED lighting system for diagnostic purposes is also demonstrated, also as an illuminator for surface applications - in procedure of variable color contrast of the illuminated object.

  15. The effective index method and its application to semiconductor lasers

    DEFF Research Database (Denmark)

    Buus, Jens

    1982-01-01

    By the effective index method a two-dimensional field problem is transformed to a problem for a one-dimensional effective waveguide. This method is applied to semiconductor lasers having a gradual lateral variation in the complex permittivity. For the special case of a parabolic variation...

  16. Laser Cooling of 2-6 Semiconductors

    Science.gov (United States)

    2016-08-12

    solar cell component, laser materials and waveguides, in which defect in the materials would impair the performance of related device, such as emission... solar cell , and optically pumped lasers. Recent work also shows that perovskite single crystals possess low trap.-state density and high external...difference, the net laser cooling also need nearly unity external quantum efficiency (EQE) and absorption efficiency according to Sheik-Bahae/Epstein

  17. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    We have produced GaAs-based quantum-dot edge-emitting lasers operating at 1.16 mu m with record-low transparency current, high output power, and high internal quantum efficiencies. We have also realized GaAs-based quantum-dot lasers emitting at 1.3 mu m, both high-power edge emitters and low...

  18. A semiconductor laser system for the production of antihydrogen

    CERN Document Server

    Mullers, A; Kolbe, D; Diehl, T; Koglbauer, A; Sattler, M; Stappel, M; Steinborn, R; Walz, J; Gabrielse, G; Kalra, R; Kolthammer, W S; McConnell, R P; Richerme, P; Fitzakerley, D W; George, M C; Hessels, E A; Storry, C H; Weel, M; Grzonka, D; Oelert, W

    2012-01-01

    Laser-controlled charge exchange is a promising method for producing cold antihydrogen. Caesium atoms in Rydberg states collide with positrons and create positronium. These positronium atoms then interact with antiprotons, forming antihydrogen. Laser excitation of the caesium atoms is essential to increase the cross section of the charge-exchange collisions. This method was demonstrated in 2004 by the ATRAP collaboration by using an available copper vapour laser. For a second generation of charge-exchange experiments we have designed a new semiconductor laser system that features several improvements compared to the copper vapour laser. We describe this new laser system and show the results from the excitation of caesium atoms to Rydberg states within the strong magnetic fields in the ATRAP apparatus.

  19. Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering.

    Science.gov (United States)

    Qin, Peng; Song, Youjian; Kim, Hyoji; Shin, Junho; Kwon, Dohyeon; Hu, Minglie; Wang, Chingyue; Kim, Jungwon

    2014-11-17

    Fiber lasers mode-locked with normal cavity dispersion have recently attracted great attention due to large output pulse energy and femtosecond pulse duration. Here we accurately characterized the timing jitter of normal-dispersion fiber lasers using a balanced cross-correlation method. The timing jitter characterization experiments show that the timing jitter of normal-dispersion mode-locked fiber lasers can be significantly reduced by using narrow band-pass filtering (e.g., 7-nm bandwidth filtering in this work). We further identify that the timing jitter of the fiber laser is confined in a limited range, which is almost independent of cavity dispersion map due to the amplifier-similariton formation by insertion of the narrow bandpass filter. The lowest observed timing jitter reaches 0.57 fs (rms) integrated from 10 kHz to 10 MHz Fourier frequency. The rms relative intensity noise (RIN) is also reduced from 0.37% to 0.02% (integrated from 1 kHz to 5 MHz Fourier frequency) by the insertion of narrow band-pass filter.

  20. Generation of soliton and bound soliton pulses in mode-locked erbium-doped fiber laser using graphene film as saturable absorber

    Science.gov (United States)

    Haris, H.; Harun, S. W.; Anyi, C. L.; Muhammad, A. R.; Ahmad, F.; Tan, S. J.; Nor, R. M.; Zulkepely, N. R.; Ali, N. M.; Arof, H.

    2016-04-01

    We report an observation of soliton and bound-state soliton in passive mode-locked fibre laser employing graphene film as a passive saturable absorber (SA). The SA was fabricated from the graphene flakes, which were obtained from electrochemical exfoliation process. The graphene flakes was mixed with polyethylene oxide solution to form a polymer composite, which was then dried at room temperature to produce a film. The film was then integrated in a laser cavity by attaching it to the end of a fibre ferrule with the aid of index matching gel. The fibre laser generated soliton pulses with a 20.7 MHz repetition rate, 0.88 ps pulse width, 0.0158 mW average output power, 0.175 pJ pulse energy and 18.72 W peak power at the wavelength of 1564 nm. A bound soliton with pulse duration of ~1.04 ps was also obtained at the pump power of 110.85 mW by carefully adjusting the polarization of the oscillating laser. The formation of bound soliton is due to the direct pulse to pulse interaction. The results show that the proposed graphene-based SA offers a simple and cost efficient approach of generating soliton and bound soliton in mode-locked EDFL set-up.

  1. WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers

    CERN Document Server

    Wu, Kan; Wang, Jun; Li, Xing; Chen, Jianping

    2014-01-01

    Two-dimensional (2D) nanomaterials, especially the transition metal sulfide semiconductors, have drawn great interests due to their potential applications in viable photonic and optoelectronic devices, such as saturable absorbers (SAs) and optical switches, etc. In this work, tungsten disulfide (WS2) based SA for ultrafast photonic applications was demonstrated. WS2 nanosheets were prepared using liquid-phase exfoliation method and embedded in polyvinyl alcohol (PVA) thin film for the practical usage. Saturable absorption was observed in the WS2-PVA SA at the telecommunication waveband near 1550 nm. By incorporating WS2-PVA SA into a fiber laser cavity, both stable mode locking operation and Q-switching operation were achieved. In the mode locking operation, the laser obtained femtosecond output pulse width and high spectral purity in the radio frequency spectrum. In the Q-switching operation, the laser had tunable repetition rate and output pulse energy of a few tens of nano joule. Our findings suggest that ...

  2. Spectral Feature Analysis of Semiconductor Thin Disk Laser

    Institute of Scientific and Technical Information of China (English)

    HE Chun-feng; QIN Li; LI Jun; CHENG Li-wen; LIANG Xue-mei; NING Yong-qiang; WANG Li-jun

    2007-01-01

    The semiconductor thin disk laser is a new type of semiconductor laser. This work gives the basic operation function of the semiconductor disk laser, and analyses the heat effect by the experimentally measured photoluminescence spectrum of the laser chip at different pump power and different temperatures. We can see that: with increasing pump power, the thermal effect of the gain material becomes seriously and causes the saturation of carrier lifetime, so the electron-hole pair created in the absorbtion layer has no enough time to rate to one of the wells, and the non-radiative recombination happens in the barrier. When the thermal effect becomes stronger, the chip will be not lasing. This phenomenon is from the smaller energy offset between barrier and quantum well. We optimize the original structure design and experimental technology. A non-absorbing AlGaAs layer which is transparent to the pumping and laser wavelength is added to confine the carriers in the quantum wells. At the same time a DBR with double reflecting band is induced to improve the absorbing efficiency of the pumping light. The single QW is replaced by the three narrow QWs. This three QWs structure can add the quantum state of QW, increase the recombination probability of carriers in the QWs and reduce the heat effect. The chemical etching equipment is also improved to control the surface unevenness to be within 50 nm.

  3. Portable semiconductor disk laser for in vivo tissue monitoring: a platform for the development of clinical applications

    Science.gov (United States)

    Aviles-Espinosa, Rodrigo; Filippidis, George; Hamilton, Craig; Malcolm, Graeme; Weingarten, Kurt J.; Südmeyer, Thomas; Barbarin, Yohan; Keller, Ursula; Artigas, David; Loza-Alvarez, Pablo

    2011-07-01

    Long term in vivo observations at large penetration depths and minimum sample disturbance are some of the key factors that have enabled the study of different cellular and tissue mechanisms. The continuous optimization of these aspects is the main driving force for the development of advanced microscopy techniques such as those based on nonlinear effects. Its wide implementation for general biomedical applications is however, limited as the currently used nonlinear microscopes are based on bulky, maintenance-intensive and expensive excitation sources such as Ti:sapphire ultrafast lasers. We present the suitability of a portable (140x240x70 mm) ultrafast semiconductor disk laser (SDL) source, to be used in nonlinear microscopy. The SDL is modelocked by a quantum-dot semiconductor saturable absorber mirror (SESAM). This enables the source to deliver an average output power of 287 mW with 1.5 ps pulses at 500 MHz, corresponding to a peak power of 0.4 kW. The laser center wavelength (965 nm) virtually matches the two-photon absorption cross-section of the widely used Green Fluorescent Protein (GFP). This property greatly relaxes the required peak powers, thus maximizing sample viability. This is demonstrated by presenting two-photon excited fluorescence images of GFP labeled neurons and second-harmonic generation images of pharyngeal muscles in living C. elegans nematodes. Our results also demonstrate that this compact laser is well suited for efficiently exciting different biological dyes. Importantly this non expensive, turn-key, compact laser system could be used as a platform to develop portable nonlinear bio-imaging devices, facilitating its widespread adoption in biomedical applications.

  4. Bidirectional communication using delay coupled chaotic directly modulated semiconductor lasers

    Indian Academy of Sciences (India)

    Bindu M Krishna; Manu P John; V M Nandakumaran

    2010-02-01

    Chaotic synchronization of two directly modulated semiconductor lasers with negative delayed optoelectronic feedback is investigated and this scheme is found to be useful for efficient bidirectional communication between the lasers. A symmetric bidirectional coupling is identified as a suitable method for isochronal synchronization of such lasers. The optimum values of coupling and feedback strength that can provide maximum quality of synchronization are identified. This method is successfully employed for encoding/decoding both analog and digital messages. The importance of a symmetric coupling is demonstrated by studying the variation of decoding efficiency with respect to asymmetric coupling.

  5. Use of a semiconductor diode laser in urology

    Science.gov (United States)

    Watson, Graham M.; Anson, K.

    1993-05-01

    The gallium arsenide semiconductor laser at 805 nm has been used with a variety of delivery fibers to produce actions varying from incision to interstitial coagulation. Clinical experience at this early stage suggests that the laser can be used to cut skin and connective tissue efficiently in air. It may prove at least as effective as the neodymium YAG laser for interstitial coagulation of tumors or prostate. Further efforts are required to promote its action cutting underwater and as a coagulator both in air and water.

  6. A method of manufacturing graduated substrates for a semiconductor laser

    Energy Technology Data Exchange (ETDEWEB)

    Yosikava, A.; Kadzumura, K.; Ota, K.; Sugino, T.; Vada, M.

    1984-01-12

    A method is patented for manufacturing a substrate with a graduated design for a semiconductor laser with a long service life and the necessary optical characteristics in a 1.5 micrometer spectral range. The laser is manufactured using a GaAs substrate with an active zone based on GaxAll-xAs. In order to achieve this goal, the active layer is equipped with a so called diffusion window whose diameter is chosen so that the threshold pumping current of the laser is less than 30 milliamperes.

  7. Comparison of the noise performance of 10GHz QW and QD mode-locked laser diodes

    DEFF Research Database (Denmark)

    Carpintero, Guillermo; Thompson, Mark G.; Yvind, Kresten

    2010-01-01

    This paper reports the experimental characterization of the noise performance of a quantum dot and a quantum well 10GHz passive mode locked laser diodes.......This paper reports the experimental characterization of the noise performance of a quantum dot and a quantum well 10GHz passive mode locked laser diodes....

  8. Dissipative soliton mode-locked all-fiber laser with a broad spectral bandwidth

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seolwon; Yeom, Dongil [Ajou University, Suwon (Korea, Republic of)

    2014-12-15

    We demonstrate an all-fiber dissipative soliton fiber laser (DSFL) with a very broad spectral bandwidth by optimizing the cavity design of the fiber laser. Two different cavity schemes of the DSFL with simple cavity structures were built by employing a hybrid component, and their properties were investigated while varying the net cavity dispersion of the laser. By optimizing the cavity dispersion of the fiber laser, we achieved a DSFL that stably deliver linear chirped pulses with a pulse duration of 912.5 fs at a repetition rate of 52.2 MHz without additional pulse compression. The measured spectral bandwidth of the laser was 68 nm, which is the largest value ever reported for Er-doped DSFL oscillators.

  9. Broadband Spectroscopy of CO_2 Bands Near 2 μm Using a Femtosecond Mode-Locked Laser

    Science.gov (United States)

    Klose, Andrew; Maser, Daniel L.; Ycas, Gabriel; Diddams, Scott; Newbury, Nathan R.; Coddington, Ian

    2014-06-01

    The optical frequency comb provided in the output of a femtosecond, mode-locked laser has been employed for many applications, including broadband spectroscopic measurements of trace gases using a variety of detection techniques. One environmentally significant trace gas is CO_2, which has characteristic absorption bands near 1.6 μm and 2.0 μm. Continuous wave (cw) lasers have typically been used to measure CO_2 at atmospheric-level concentrations. However, a broadband frequency comb source can provide rapid, simultaneous and accurate measurements of multiple transitions without the need for mechanical scanning or frequency tuning. Previously, precision broadband spectroscopy was performed on CO_2 bands near 1.6 μm. However, the CO_2 absorption bands near 2 μm have nearly a ten-fold increase in line strength compared to the bands near 1.6 μm, making the 2 μm bands attractive candidates for precision measurements of CO_2 with improved signal-to-noise and reduced uncertainty. Here, broadband quantitative spectroscopy of CO_2 bands near 2 μm is pursued. The source that was developed consists of an Er:fiber oscillator, Er:doped fiber amplifier, and highly nonlinear optical fiber, which generates a broadband spectrum spanning from 1 to 2.2 μm with an average power of 270 mW. Over 70 mW of the optical power is contained in the 1.8-2.2 μm region relevant to the CO_2 measurement. After generation, the laser light is passed through laboratory gas cells or open air where the absorption features from the sample gas are imprinted onto the laser light. Initial detection efforts involve a virtually imaged phased array- (VIPA-)based spectrometer whose output is subsequently imaged on a InSb array detector. The bandwidth of the measured spectrum is 50 nm, limited by the size of the detector array. The characteristics of the spectrometer, including the detection limits and temporal resolution, will be presented. In addition, the progress towards the use of the present

  10. COHERENT LIDAR SYSTEM BASED ON A SEMICONDUCTOR LASER AND AMPLIFIER

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a compact, reliable and low-cost coherent LIDAR (Light Detection And Ranging) system for remote wind-speed determination, determination of particle concentration, and/or temperature based on an all semiconductor light source and related methods. The present...... invention provides a coherent LIDAR system comprising a semiconductor laser for emission of a measurement beam of electromagnetic radiation directed towards a measurement volume for illumination of particles in the measurement volume, a reference beam generator for generation of a reference beam, a detector...

  11. Hybrid mode-locking in pulsed ytterbium fiber laser with carbon nanotube saturable absorber

    Science.gov (United States)

    Khudyakov, Dmitry V.; Borodkin, Andrey A.; Lobach, Anatoly S.; Vartapetov, Sergey K.

    2015-10-01

    Ultrafast pulse generation in all-normal dispersion Yb-doped fiber laser on 1.04 μm have been reported. Stable self-starting pulse generation in output of the ring fiber laser have been investigated where nonlinear polarization rotation interacted with contribution from the single walled carbon nanotube saturable absorber. Laser pulses with 0.7 nJ pulse energy and 1.7 ps pulse width at 35.6 MHz repetition rate were achieved. The output pulse could be externally compressed to width of 180 fs by pair of gratings.

  12. Low-timing-jitter high-power mode-locked 1063 nm Nd:GdVO₄ master oscillator power amplifier.

    Science.gov (United States)

    Wang, Zhi-min; Zhang, Feng-feng; Zuo, Jun-wei; Yang, Jing; Yuan, Lei; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2015-10-01

    A low-timing-jitter high-power semiconductor saturable absorber mirror mode-locked picosecond (ps) 1063 nm Nd:GdVO4 master oscillator power amplifier is presented. Using a single-pass Nd:GdVO4 amplifier, an amplified laser with 21.5 W output power and 8.3 ps pulsewidth was achieved at 250 MHz repetition rate. Employing a servo control, an average RMS timing jitter of ∼222  fs was realized. This laser can be used as a drive laser for photocathode injectors in free-electron lasers.

  13. Diode-pumped, Cr:YAG passively Q-switched and mode-locked Nd:YVO4/KTP green laser

    Institute of Scientific and Technical Information of China (English)

    Junying Wang(王军营); Quan Zheng(郑权); Qinghua Xue(薛庆华); Huiming Tan(檀慧明)

    2003-01-01

    The phenomena of simultaneous Q-switching and mode-locking in a diode-pumped Nd:YVO4/Cr:YAG/KTP green laser are reported and discussed in this paper. With 5.3-W pump power, by using a nearlyhemispherical cavity (the cavity length is only 97 mm), the results of modulation depth of 70% and theperiod of 0.6 ns are obtained, the output power and the repetitive frequency of Q-switched pulse are 90mW and 12 kHz, respectively.

  14. Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser.

    Science.gov (United States)

    Smirnov, Sergey V; Kobtsev, Sergey M; Kukarin, Sergey V

    2014-01-13

    For the first time we report the results of both numerical simulation and experimental observation of second-harmonic generation as an example of non-linear frequency conversion of pulses generated by passively mode-locked fiber master oscillator in different regimes including conventional (stable) and double-scale (partially coherent and noise-like) ones. We show that non-linear frequency conversion efficiency of double-scale pulses is slightly higher than that of conventional picosecond laser pulses with the same energy and duration despite strong phase fluctuations of double-scale pulses.

  15. Finite Element Simulation of the Optical Modes of Semiconductor Lasers

    CERN Document Server

    Pomplun, J; Schmidt, F; Schliwa, A; Bimberg, D; Pietrzak, A; Wenzel, H; Erbert, G; 10.1002/pssb.200945451

    2010-01-01

    In the present article we investigate optical near fields in semiconductor lasers. We perform finite element simulations for two different laser types, namely a super large optical waveguide (SLOW) laser, which is an edge emitter, and a vertical cavity surface emitting laser (VCSEL). We give the mathematical formulation of the different eigenvalue problems that arise for our examples and explain their numerical solution with the finite element method. Thereby, we also comment on the usage of transparent boundary conditions, which have to be applied to respect the exterior environment, e.g., the very large substrate and surrounding air. For the SLOW laser we compare the computed near fields to experimental data for different design parameters of the device. For the VCSEL example a comparison to simplified 1D mode calculations is carried out.

  16. Passively synchronized Q-switched and mode-locked dual-band Tm3+:ZBLAN fiber lasers using a common graphene saturable absorber

    Science.gov (United States)

    Jia, Chenglai; Shastri, Bhavin J.; Abdukerim, Nurmemet; Rochette, Martin; Prucnal, Paul R.; Saad, Mohammed; Chen, Lawrence R.

    2016-11-01

    Dual-band fiber lasers are emerging as a promising technology to penetrate new industrial and medical applications from their dual-band properties, in addition to providing compactness and environmental robustness from the waveguide structure. Here, we demonstrate the use of a common graphene saturable absorber and a single gain medium (Tm3+:ZBLAN fiber) to implement (1) a dual-band fiber ring laser with synchronized Q-switched pulses at wavelengths of 1480 nm and 1840 nm, and (2) a dual-band fiber linear laser with synchronized mode-locked pulses at wavelengths of 1480 nm and 1845 nm. Q-switched operation at 1480 nm and 1840 nm is achieved with a synchronized repetition rate from 20 kHz to 40.5 kHz. For synchronous mode-locked operation, pulses with full-width at half maximum durations of 610 fs and 1.68 ps at wavelengths of 1480 nm and 1845 nm, respectively, are obtained at a repetition rate of 12.3 MHz. These dual-band pulsed sources with an ultra-broadband wavelength separation of ~360 nm will add new capabilities in applications including optical sensing, spectroscopy, and communications.

  17. Passively synchronized Q-switched and mode-locked dual-band Tm(3+):ZBLAN fiber lasers using a common graphene saturable absorber.

    Science.gov (United States)

    Jia, Chenglai; Shastri, Bhavin J; Abdukerim, Nurmemet; Rochette, Martin; Prucnal, Paul R; Saad, Mohammed; Chen, Lawrence R

    2016-11-02

    Dual-band fiber lasers are emerging as a promising technology to penetrate new industrial and medical applications from their dual-band properties, in addition to providing compactness and environmental robustness from the waveguide structure. Here, we demonstrate the use of a common graphene saturable absorber and a single gain medium (Tm(3+):ZBLAN fiber) to implement (1) a dual-band fiber ring laser with synchronized Q-switched pulses at wavelengths of 1480 nm and 1840 nm, and (2) a dual-band fiber linear laser with synchronized mode-locked pulses at wavelengths of 1480 nm and 1845 nm. Q-switched operation at 1480 nm and 1840 nm is achieved with a synchronized repetition rate from 20 kHz to 40.5 kHz. For synchronous mode-locked operation, pulses with full-width at half maximum durations of 610 fs and 1.68 ps at wavelengths of 1480 nm and 1845 nm, respectively, are obtained at a repetition rate of 12.3 MHz. These dual-band pulsed sources with an ultra-broadband wavelength separation of ~360 nm will add new capabilities in applications including optical sensing, spectroscopy, and communications.

  18. Synchronous Characterization of Semiconductor Microcavity Laser Beam

    CERN Document Server

    Wang, Tao

    2015-01-01

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross-section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center and the defects-related spectrum can also be extracted from these high-resolution pictures.

  19. Wavelength-resonant surface-emitting semiconductor laser

    Science.gov (United States)

    Brueck, Steven R. J.; Schaus, Christian F.; Osinski, Marek A.; McInerney, John G.; Raja, M. Yasin A.; Brennan, Thomas M.; Hammons, Burrell E.

    1989-01-01

    A wavelength resonant semiconductor gain medium is disclosed. The essential feature of this medium is a multiplicity of quantum-well gain regions separated by semiconductor spacer regions of higher bandgap. Each period of this medium consisting of one quantum-well region and the adjacent spacer region is chosen such that the total width is equal to an integral multiple of 1/2 the wavelength in the medium of the radiation with which the medium is interacting. Optical, electron-beam and electrical injection pumping of the medium is disclosed. This medium may be used as a laser medium for single devices or arrays either with or without reflectors, which may be either semiconductor or external.

  20. Laser cooling of a semiconductor by 40 kelvin.

    Science.gov (United States)

    Zhang, Jun; Li, Dehui; Chen, Renjie; Xiong, Qihua

    2013-01-24

    Optical irradiation accompanied by spontaneous anti-Stokes emission can lead to cooling of matter, in a phenomenon known as laser cooling, or optical refrigeration, which was proposed by Pringsheim in 1929. In gaseous matter, an extremely low temperature can be obtained in diluted atomic gases by Doppler cooling, and laser cooling of ultradense gas has been demonstrated by collisional redistribution of radiation. In solid-state materials, laser cooling is achieved by the annihilation of phonons, which are quanta of lattice vibrations, during anti-Stokes luminescence. Since the first experimental demonstration in glasses doped with rare-earth metals, considerable progress has been made, particularly in ytterbium-doped glasses or crystals: recently a record was set of cooling to about 110 kelvin from the ambient temperature, surpassing the thermoelectric Peltier cooler. It would be interesting to realize laser cooling in semiconductors, in which excitonic resonances dominate, rather than in systems doped with rare-earth metals, where atomic resonances dominate. However, so far no net cooling in semiconductors has been achieved despite much experimental and theoretical work, mainly on group-III-V gallium arsenide quantum wells. Here we report a net cooling by about 40 kelvin in a semiconductor using group-II-VI cadmium sulphide nanoribbons, or nanobelts, starting from 290 kelvin. We use a pump laser with a wavelength of 514 nanometres, and obtain an estimated cooling efficiency of about 1.3 per cent and an estimated cooling power of 180 microwatts. At 100 kelvin, 532-nm pumping leads to a net cooling of about 15 kelvin with a cooling efficiency of about 2.0 per cent. We attribute the net laser cooling in cadmium sulphide nanobelts to strong coupling between excitons and longitudinal optical phonons (LOPs), which allows the resonant annihilation of multiple LOPs in luminescence up-conversion processes, high external quantum efficiency and negligible background

  1. Polarization dynamic patterns of vector solitons in a graphene mode-locked fiber laser.

    Science.gov (United States)

    Han, Mengmeng; Zhang, Shumin; Li, Xingliang; Zhang, Huaxing; Yang, Hong; Yuan, Ting

    2015-02-09

    Multiple polarization dynamic patterns of vector solitons, including fundamental solitons, bunched solitons, loosely or tightly bound states and harmonic mode locking have been observed experimentally in an erbium-doped fiber ring laser with graphene as a saturable absorber. By carefully adjusting the pump power and the orientation of the intra-cavity polarization controller, either polarization rotation or polarization locked operation have all been achieved for the above vector solitons. This is the first time that high order harmonic mode locking of polarization rotation vector solitons has been achieved. The signal to noise ratio of our system was ~51 dB, which indicates that the laser operated with high stability.

  2. Numerical modeling of mode-locked fiber lasers with a fiber-based saturable-absorber

    Science.gov (United States)

    Wang, Long; Chong, Andy; Haus, Joseph W.

    2017-01-01

    We report fiber laser simulations with a fiber compatible, self-focusing, saturable absorber (SA) device. The SA device consists of two tapered fiber ends separated by a bulk, nonlinear medium. An optical beam transmitted from one tapered fiber end, propagate through the nonlinear medium (chalcogenide glass As40 S e60) and couples back into the other tapered fiber end. Pulse propagation in the fiber laser cavity is performed using the Split Step Method. Stable pulses are generated with energies around 0.3 nJ and a transform limited pulse width around 200 fs.

  3. Generation regimes of bidirectional hybridly mode-locked ultrashort pulse erbium-doped all-fiber ring laser with a distributed polarizer.

    Science.gov (United States)

    Krylov, Alexander A; Chernykh, Dmitriy S; Arutyunyan, Natalia R; Grebenyukov, Vyacheslav V; Pozharov, Anatoly S; Obraztsova, Elena D

    2016-05-20

    We report on the stable picosecond and femtosecond pulse generation from the bidirectional erbium-doped all-fiber ring laser hybridly mode-locked with a coaction of a single-walled carbon nanotube-based saturable absorber and nonlinear polarization evolution that was introduced through the insertion of the short-segment polarizing fiber. Depending on the total intracavity dispersion value, the laser emits conservative solitons, transform-limited Gaussian pulses, or highly chirped stretched pulses with almost 20 nm wide parabolic spectrum in both clockwise (CW) and counterclockwise (CCW) directions of the ring. Owing to the polarizing action in the cavity, we have demonstrated for the first time, to the best of our knowledge, an efficient tuning of soliton pulse characteristics for both CW and CCW channels via an appropriate polarization control. We believe that the bidirectional laser presented may be highly promising for gyroscopic and other dual-channel applications.

  4. [A clinical observation of pericoronitis treatment with pulse semiconductor laser].

    Science.gov (United States)

    Lu, Shan; Fang, Yuan

    2004-08-01

    In order to valuate the effect of pericoronitis treated with pulse semiconductor laser. As a treatment group, 24 ones drawn ramdomly from 48 cases of pericoronitis were given periodontal radiation, point-radiation therapy and pharmacotherapy as well. While another 24 cases as a contrast group were given pharmacotherapy only. On the 3rd day and the 5th day the degree of pain and restriction of mouth opening of the two groups were graded, contrasted and processed by Ridit statistics. Result, The therapy group gained more notable effect in pain-relieving and mouth-opening-improving than the contrast group. Because of no damage, handy and can be done easily, be definite in curative effect, Pulse semiconductor laser treatment pericoronitis deserves popularizing.

  5. Is there a linewidth theory for semiconductor lasers?

    CERN Document Server

    Spivak, B

    2006-01-01

    Semiconductor laser generation begins at a critical injection when the gain and loss spectra touch each other at a singular frequency. In the framework of the standard (Schawlow-Townes-Lax-Henry) theory, the finite linewidth results from the account of fluctuations associated with the random spontaneous emission processes. This approach is based on the assumption that in the mean-field approximation the singular frequency generation persists for injection levels higher than critical. We show that this assumption in the framework of the Boltzmann kinetic equation for electrons and photons is invalid and therefore the standard description of semiconductor laser linewidth lacks theoretical foundation. Experimental support of the standard theory is also questionable.

  6. Self-Pulsating Semiconductor Lasers Theory and Experiment

    CERN Document Server

    Mirasso, C R; Hernández-García, E; Lenstra, D; Lynch, S; Landais, P; Phelan, P; O'Gorman, J; San Miguel, M; Elsasser, W

    1999-01-01

    We report detailed measurements of the pump-current dependency of the self-pulsating frequency of semiconductor CD lasers. A distinct kink in this dependence is found and explained using rate-equation model. The kink denotes a transition between a region where the self-pulsations are weakly sustained relaxation oscillations and a region where Q-switching takes place. Simulations show that spontaneous emission noise plays a crucial role for the cross-over.

  7. Excitability in a quantum dot semiconductor laser with optical injection.

    Science.gov (United States)

    Goulding, D; Hegarty, S P; Rasskazov, O; Melnik, S; Hartnett, M; Greene, G; McInerney, J G; Rachinskii, D; Huyet, G

    2007-04-13

    We experimentally analyze the dynamics of a quantum dot semiconductor laser operating under optical injection. We observe the appearance of single- and double-pulse excitability at one boundary of the locking region. Theoretical considerations show that these pulses are related to a saddle-node bifurcation on a limit cycle as in the Adler equation. The double pulses are related to a period-doubling bifurcation and occur on the same homoclinic curve as the single pulses.

  8. Refractory period of an excitable semiconductor laser with optical injection

    CERN Document Server

    Garbin, Bruno; Prati, Franco; Javaloyes, Julien; Tissoni, Giovanna; Barland, Stéphane

    2016-01-01

    Injection-locked semiconductor lasers can be brought to a neuron-like excitable regime when parameters are set close to the unlocking transition. Here we study experimentally the response of this system to repeated optical perturbations and observe the existence of a refractory period during which perturbations are not able to elicit an excitable response. The results are analyzed via simulations of a set of dynamical equations which reproduced adequately the experimental results.

  9. Final Report: High Power Semiconductor Laser Sources,

    Science.gov (United States)

    1989-01-01

    m(I mO (26a) Here a is a dimensionless quantity related to the ratio be- 2 tween pump and field intensities, and in our model, is 0, = bxo tanh (xo...and E. Kapon. "Application of the equivalent index bxo 6b method to DH diode lasers," Appl. Opt.. vol. 18. no. 22. pp. 3724- 3725. 1979. While 0,1

  10. Modulation Effects in Multi-Section Semiconductor Lasers (Postprint)

    Science.gov (United States)

    2013-01-01

    semiconductor lasers based on quantum well gain lever,” Appl. Phys. Lett., 59, 2216–2218 (1991). [33] C. P. Seltzer , L. D. Westbrook, and H. J. Wickes...Improved signal-to-noise ratio in gain-levered InGaAsP/InP MQW lasers,” Electron. Lett., 29, 230–231 (1993). [34] L. D. Westbrook and C. P. Seltzer ...Electron. Lett., 30, 37–39 (1994). [37] C. P. Seltzer , L. D. Westbrook, and H. J. Wickes, “The “gain-lever” effect in InGaAsP/InP multiple quantum well

  11. External cavity beam combining of 21 semiconductor lasers using SPGD.

    Science.gov (United States)

    Montoya, Juan; Augst, Steven J; Creedon, Kevin; Kansky, Jan; Fan, Tso Yee; Sanchez-Rubio, Antonio

    2012-04-10

    Active coherent beam combining of laser oscillators is an attractive way to achieve high output power in a diffraction limited beam. Here we describe an active beam combining system used to coherently combine 21 semiconductor laser elements with an 81% beam combining efficiency in an external cavity configuration compared with an upper limit of 90% efficiency in the particular configuration of the experiment. Our beam combining system utilizes a stochastic parallel gradient descent (SPGD) algorithm for active phase control. This work demonstrates that active beam combining is not subject to the scaling limits imposed on passive-phasing systems.

  12. Sensitivity of quantum-dot semiconductor lasers to optical feedback.

    Science.gov (United States)

    O'Brien, D; Hegarty, S P; Huyet, G; Uskov, A V

    2004-05-15

    The sensitivity of quantum-dot semiconductor lasers to optical feedback is analyzed with a Lang-Kobayashi approach applied to a standard quantum-dot laser model. The carriers are injected into a quantum well and are captured by, or escape from, the quantum dots through either carrier-carrier or phonon-carrier interaction. Because of Pauli blocking, the capture rate into the dots depends on the carrier occupancy level in the dots. Here we show that different carrier capture dynamics lead to a strong modification of the damping of the relaxation oscillations. Regions of increased damping display reduced sensitivity to optical feedback even for a relatively large alpha factor.

  13. Femtosecond laser color marking of metal and semiconductor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ionin, Andrey A.; Kudryashov, Sergey I.; Makarov, Sergey V.; Seleznev, Leonid V.; Sinitsyn, Dmitry V. [Russian Academy of Sciences, P.N. Lebedev Physical Institute, Moscow (Russian Federation); Golosov, Evgeniy V.; Golosova, Ol' ga A.; Kolobov, Yuriy R. [Belgorod State University, Belgorod (Russian Federation); Ligachev, Alexander E. [Russian Academy of Sciences, A.M. Prokhorov General Physics Institute, Moscow (Russian Federation)

    2012-05-15

    Color marking of rough or smooth metal (Al, Cu, Ti) and semiconductor (Si) surfaces was realized via femtosecond laser fabrication of periodic surface nanorelief, representing one-dimensional diffraction gratings. Bright colors of the surface nanorelief, especially for longer electromagnetic wavelengths, were provided during marking through pre-determined variation of the laser incidence angle and the resulting change of the diffraction grating period. This coloration technique was demonstrated for the case of silicon and various metals to mark surfaces in any individual color with a controllable brightness level and almost without their accompanying chemical surface modification. (orig.)

  14. High density semiconductor nanodots by direct laser fabrication

    Science.gov (United States)

    Haghizadeh, Anahita; Yang, Haeyeon

    2016-03-01

    We report a direct method of fabricating high density nanodots on the GaAs(001) surfaces using laser irradiations on the surface. Surface images indicate that the large clumps are not accompanied with the formation of nanodots even though its density is higher than the critical density above which detrimental large clumps begin to show up in the conventional Stranski-Krastanov growth technique. Atomic force microscopy is used to image the GaAs(001) surfaces that are irradiated by high power laser pulses interferentially. The analysis suggests that high density quantum dots be fabricated directly on semiconductor surfaces.

  15. A semiconductor laser for an integrated optical heterodyne receiver

    Energy Technology Data Exchange (ETDEWEB)

    Tosikhiro, F.; Khiromoto, S.

    1984-04-14

    A design is patented that consists of two identical semiconductor lasers grown on the same substrate, one of which is used to transmit the information signal and the other is used as the oscillator. The oscillator frequency is tuned by varying the laser resonator length. The signals from the two oscillators are mixed at the transmitting end of the communications link, which makes it possible to reduce losses during the introduction of the signal to the fiber and the detector. This design serves to reduce the influence of temperature variations.

  16. Toward continuous-wave operation of organic semiconductor lasers

    Science.gov (United States)

    Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya

    2017-01-01

    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042

  17. Pulse Evolution Characteristics in Self-Similar Mode-locked Fibre Laser

    Institute of Scientific and Technical Information of China (English)

    TU Cheng-Hou; LI Zhen; LEI Ting; LI Yong-Nan; GUO Wen-Gang; WEI Dai; ZHU Hui; ZHANG Shuang-Gen; LU Fu-Yun

    2007-01-01

    A self-similar mode locked fibre laser is studied based on a numerical model. By introducing a dimensionless factor k to characterize the pulse shape, the self-similar pulse evolution, formation and the temporal and spectral shape changes due to the elements in the cavity are investigated throughout the iaser cavity. The results show that in the self-similar mode locked fibre laser, self-similar pulse is first formed in the single-mode fibre, which is then amplified in the gain fibre. Gain bandwidth has a small influence on pulse shape, so high energy self-similar pulse can be obtained after amplification. Because net cavity dispersion directly influences the pulse width as well as peak power after compression by a pair of gratings, which can determine the pulse self-similar evolution, it is very important to control the net cavity dispersion to a certain range to obtain self-similar pulses.

  18. Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber

    CERN Document Server

    Yin, Ke; Zheng, Xin; Yu, Hao; Cheng, Xiangai; Hou, Jing

    2015-01-01

    The newly-emergent two-dimensional topological insulators (TIs) have shown their unique electronic and optical properties, such as good thermal management, high nonlinear refraction index and ultrafast relaxation time. Their narrow energy band gaps predict their optical absorption ability further into the mid-infrared region and their possibility to be very broadband light modulators ranging from the visible to the mid-infrared region. In this paper, a mid-infrared mode-locked fluoride fiber laser with TI Bi2Te3 nano-sheets as the saturable absorber is presented. Continuous wave lasing, Q-switched and continuous-wave mode-locking (CW-ML) operations of the laser are observed sequentially by increasing the pump power. The observed CW-ML pulse train has a pulse repetition rate of 10.4 MHz, a pulse width of ~6 ps, and a center wavelength of 2830 nm. The maximum achievable pulse energy is 8.6 nJ with average power up to 90 mW. This work forcefully demonstrates the promising applications of two-dimensional TIs for ...

  19. Diode-pumped Yb,Y:CaF2 laser mode-locked by monolayer graphene

    Science.gov (United States)

    Zhu, Hongtong; Liu, Jie; Jiang, Shouzhen; Xu, Shicai; Su, Liangbi; Jiang, Dapeng; Qian, Xiaobo; Xu, Jun

    2015-12-01

    The large-area and high-quality monolayer graphene saturable absorber with a sandwich structure is prepared by the chemical vapor deposition technique. Using graphene saturable absorber, the mode locking operation of a diode-pumped Yb,Y:CaF2 laser is demonstrated. Without extra negative dispersion elements, 4.8 ps pulses are yielded at 1051 nm. The pulse repetition rate is 60 MHz.

  20. Packaging and Performance of 980nm Broad Area Semiconductor Lasers

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    High power broad area semiconductor lasers have found increasing applications in pumping of solid state laser systems and fiber amplifiers, frequency doubling, medical systems and material processing.Packaging including the assembly design, process and thermal management, has a significant impact on the optical performance and reliability of a high power broad area laser. In this paper, we introduce the package structures and assembling process of 980nm broad area lasers and report the performances including output power, thermal behavior and far fields.We will report two types of high power broad area laser assemblies.One is a microchannel liquid cooled assembly and the other is a conduction cooled CT-mount assembly. Optical powers of 15W and 10W were achieved from a 980nm broad area laser with a 120 μ m stripe width in a microchannel liquid cooled assembly and conduction cooled CT-mount assembly, respectively.Furthermore,a high power of 6.5W out of fiber was demonstrated from a pigtailed, fully packaged butterfly-type module without TEC (Thermoelectric cooler).The measurement results showed that thermal management is the key in not only improving output power, but also significantly improving beam divergence and far field distribution.The results also showed that the die attach solder can significant impact the reliability of high power broad area lasers and that indium solder is not suitable for high power laser applications due to electromigration at high current densities and high temperatures.

  1. Semiconductor laser diodes and the design of a D.C. powered laser diode drive unit

    OpenAIRE

    Cappuccio, Joseph C., Jr.

    1988-01-01

    Approved for public release; distribution is unlimited This thesis addresses the design, development and operational analysis of a D.C. powered semiconductor laser diode drive unit. A laser diode requires an extremely stable power supply since a picosecond spike of current or power supply switching transient could result in permanent damage. The design offers stability and various features for operational protection of the laser diode. The ability to intensity modulate (analog) and pulse m...

  2. Semiconductor laser diodes and the design of a D.C. powered laser diode drive unit

    OpenAIRE

    Cappuccio, Joseph C., Jr.

    1988-01-01

    Approved for public release; distribution is unlimited This thesis addresses the design, development and operational analysis of a D.C. powered semiconductor laser diode drive unit. A laser diode requires an extremely stable power supply since a picosecond spike of current or power supply switching transient could result in permanent damage. The design offers stability and various features for operational protection of the laser diode. The ability to intensity modulate (analog) and pulse m...

  3. Ultrashort pulse laser slicing of semiconductor crystal

    Science.gov (United States)

    Kim, Eunho; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka

    2016-07-01

    Meanwhile, by the convention wire-saw technique, it is difficult to slice off a thin wafer from bulk SiC crystal without the reserving space for cutting. In this study, we have achieved exfoliation of 4H-SiC single crystal by femtosecond laser induced slicing method. By using this, the exfoliated surface with the root-mean-square roughness of 3 μm and the cutting-loss thickness smaller than 30 μm was successfully demonstrated. We have also observed the nanostructure on the exfoliated surface in SiC crystal.

  4. A 31 mW, 280 fs passively mode-locked fiber soliton laser using a high heat-resistant SWNT/P3HT saturable absorber coated with siloxane.

    Science.gov (United States)

    Ono, Takato; Hori, Yuichiro; Yoshida, Masato; Hirooka, Toshihiko; Nakazawa, Masataka; Mata, Junji; Tsukamoto, Jun

    2012-10-08

    We report a substantial increase in the heat resistance in a connector-type single-wall carbon nanotube (SWNT) saturable absorber by sealing SWNT/P3HT composite with siloxane. By applying the saturable absorber to a passively mode-locked Er fiber laser, we successfully demonstrated 280 fs, 31 mW pulse generation with a fivefold improvement in heat resistance.

  5. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction

    Science.gov (United States)

    Song, Yong-Won; Jang, Sung-Yeon; Han, Won-Suk; Bae, Mi-Kyung

    2010-02-01

    Employing graphene as an intracavity passive power modulating element, we demonstrate the efficient laser pulsation in high pulse-energy regime with evanescent field interaction between the propagating light and graphene layer. Graphene is prepared by the solution based reduction of graphene oxide, and dispersed homogeneously into the water for spray onto an all-fiber substrate, side-polished fiber. With the intracavity power up to 21.41 dBm, we ensure the robust high-energy operation without any thermal damage of graphene. Resultant output pulses have center wavelength, spectral width, and repetition rate of 1561.6 nm, 1.96 nm, and 6.99 MHz, respectively.

  6. Graphene mode-locked multipass-cavity femtosecond Cr4+: forsterite laser

    OpenAIRE

    Baylam, Işınsu; Çizmeciyan, Melisa Natali; Sennaroğlu, Alphan; Ozharar, Sarper; Balcı, Osman; Pince, Ercag; Kocabaş, Coşkun

    2013-01-01

    We report, for the first time to our knowledge, the use of graphene as a saturable absorber in an energy-scaled femtosecond Cr4+: forsterite laser. By incorporating a multipass cavity, the repetition rate of the original short resonator was reduced to 4.51 MHz, which resulted in the generation of 100 fs, nearly transform-limited pulses at 1252 nm with a peak power of 53 kW. To the best of our knowledge, this is the highest peak power obtained from a room-temperature, femtosecond Cr4+: forster...

  7. Thermally Controlled Comb Generation and Soliton Modelocking in Microresonators

    CERN Document Server

    Joshi, Chaitanya; Luke, Kevin; Ji, Xingchen; Miller, Steven A; Klenner, Alexander; Okawachi, Yoshitomo; Lipson, Michal; Gaeta, Alexander L

    2016-01-01

    We report the first demonstration of thermally controlled soliton modelocked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systematic and repeatable pathway to single- and multi-soliton modelocked states without adjusting the pump laser wavelength. Such an approach could greatly simplify the generation of modelocked frequency combs and facilitate applications such as chip-based dual-comb spectroscopy.

  8. Monolithic mode-locked lasers with deeply dry etched Bragg mirror

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    gasmixture, gas flow, chamber pressure and the power supplied to the plasma2.Figure 1: SEM micrograph of a deeply etched 2nd order grating and waveguidein InP. 1K. yvind et al, Phot. Technology Letters 16, 975-977 (2004)2Y. Feurprier et al., J. Vac. Sci. A 16(3), 1552-1559 (1998)...... section, such as self-phase modulation. The solution to this problem is to integratethe laser with a wavelength selective Bragg grating. Another advantage of the gratingshould be lower noise. Deep Reactive Ion Etching (RIE) of the grating is a key for lowcostmass production of these lasers, making...... and high index regions (etched andunetched), is 240 nm for a 1st order grating and 480 nm for the 2nd order.Fabrication: The mask for the grating is formed by a combination of E-beam writing andUV-lithography. The resist pattern is transferred to a 100 nm SiO2-film, with a CHF3(Freon) based dry etch...

  9. Superfluorescent emission in electrically pumped semiconductor laser

    CERN Document Server

    Boiko, D L; Stadelmann, T; Grossmann, S; Hoogerwerf, A; Weig, T; Schwarz, U T; Sulmoni, L; Lamy, J -M; Grandjean, N

    2013-01-01

    We report superfluorescent (SF) emission in electrically pumped InGaN/InGaN QW lasers with saturable absorber. In particular, we observe a superlinear growth of the peak power of SF pulses with increasing amplitude of injected current pulses and attribute it to cooperative pairing of electron-hole (e-h) radiative recombinations. The phase transitions from amplified spontaneous emission to superfluorescence and then to lasing regime is confirmed by observing (i) superlinear peak power growth, (ii) spectral shape with hyperbolic secant envelope and (iii) red shift of central wavelength of SF emission pulse. The observed red shift of SF emission is shown to be caused by the pairing of e-h pairs in an indirect cooperative X-transition.

  10. Introduction to semiconductor lasers for optical communications an applied approach

    CERN Document Server

    Klotzkin, David J

    2014-01-01

    This textbook provides a thorough and accessible treatment of semiconductor lasers from a design and engineering perspective. It includes both the physics of devices as well as the engineering, designing, and testing of practical lasers. The material is presented clearly with many examples provided. Readers of the book will come to understand the finer aspects of the theory, design, fabrication, and test of these devices and have an excellent background for further study of optoelectronics. This book also: ·         Provides a multi-faceted approach to explaining the theories behind semiconductor lasers, utilizing mathematical examples, illustrations, and written theoretical presentations ·         Offers a balance of relevant optoelectronic topics, with specific attention given to distributed feedback lasers, growth techniques, and waveguide cavity design ·         Provides a summary of every chapter, worked examples, and problems for readers to solve ·         Empasizes...

  11. Experimental Study of a Pulsed Ytterbium-Doped Fibre Laser with Fast and Slow Saturable Absorbers in a Linear Cavity

    Institute of Scientific and Technical Information of China (English)

    GAN Yu; XIANG Wang-Hua; ZHOU Xiao-Fang; ZHANG Gui-Zhong; ZHANG Bing; WANG Yong-Gang; MA Xiao-Yu

    2006-01-01

    @@ We present a linear-cavity stretched-pulse fibre laser with mode locking by a nonlinear polarization rotation and by semiconductor saturable-absorber mirrors. A Q-switched mode-locking cw train and a mode-locking pulse train are obtained in the experiment. We investigate the effects of the equivalent fast saturable absorber and the slow saturable absorbers in experiment. It is found that neither the nonlinear polarization evolution effect nor a semiconductor saturable absorber mirror is enough to produce the stable cw mode-locking pulses in this experiment. A nonlinear polarization evolution effect controls the cavity loss to literally carve the pulses;semiconductor saturable absorber mirrors provide the self-restarting and maintain the stability of the modelocking operation.

  12. Dynamic single-mode semiconductor lasers with a distributed reflector

    Energy Technology Data Exchange (ETDEWEB)

    Suematsu, Y.; Arai, S.; Kishino, K.

    1983-03-01

    Recent progress in dynamic single-mode (DSM) semiconductor lasers in the wavelength of 1.5-1.6 microns are reviewed, and the basic principle of DSM operation is given. Study of the DSM laser is originated for application to wide-band optical-fiber communication in the lowest loss wavelength region of 1.5 to 1.65 microns. A DSM laser consists of a mode-selective resonator and a transverse-mode-controller waveguide, as in the narrow-striped distributed-Bragg-reflector (DBR) laser, so as to maintain a fixed axial mode under rapid direct modulation. The technology of monolithic integration for optical circuits is applied to realize some DSM lasers. Structures, static and dynamic characteristics of lasing wavelength, output power, and reliability of state-of-the-art DSM lasers are reviewed. Dynamic spectral width of 0.3 nm, output power of a few milliwatts, and reliability over a few thousand hours are reported for experimental DSM lasers. 120 references.

  13. Dynamic single-mode semiconductor lasers with a distributed reflector

    Science.gov (United States)

    Suematsu, Y.; Arai, S.; Kishino, K.

    1983-03-01

    Recent progress in dynamic single-mode (DSM) semiconductor lasers in the wavelength of 1.5-1.6 microns are reviewed, and the basic principle of DSM operation is given. Study of the DSM laser is originated for application to wide-band optical-fiber communication in the lowest loss wavelength region of 1.5 to 1.65 microns. A DSM laser consists of a mode-selective resonator and a transverse-mode-controller waveguide, as in the narrow-striped distributed-Bragg-reflector (DBR) laser, so as to maintain a fixed axial mode under rapid direct modulation. The technology of monolithic integration for optical circuits is applied to realize some DSM lasers. Structures, static and dynamic characteristics of lasing wavelength, output power, and reliability of state-of-the-art DSM lasers are reviewed. Dynamic spectral width of 0.3 nm, output power of a few milliwatts, and reliability over a few thousand hours are reported for experimental DSM lasers.

  14. Diode-pumped passively Q-switched and mode-locked Nd:YLF laser with Cr4+:YAG saturable absorber

    Institute of Scientific and Technical Information of China (English)

    Shudi Pan; Kezhen Han; Hongmei Wang; Xiuwei Fan; Jingliang He

    2006-01-01

    @@ A diode-pumped passively Q-switched Nd:YLF laser was demonstrated by using saturable absorber of Cr4+:YAG. At the incident power of 7.74 W, pure passively Q-switched laser with per pulse energy of 210 Μj and pulse width of 19.6 ns at repetition rate of 1.78 kHz was obtained by using Cr4+:YAG with initial transmission of 80%. At the incident power of 8.70 W, a Q-switched mode-locking with average output power of 650 Mw was achieved, the overall slop efficiency was 16%, corresponding to the initial transmission of 85% of Cr4+ :YAG.

  15. Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber.

    Science.gov (United States)

    Xia, Handing; Li, Heping; Lan, Changyong; Li, Chun; Zhang, Xiaoxia; Zhang, Shangjian; Liu, Yong

    2014-07-14

    We demonstrate an erbium-doped fiber laser passively mode-locked by a multilayer molybdenum disulfide (MoS(2)) saturable absorber (SA). The multilayer MoS(2) is prepared by the chemical vapor deposition (CVD) method and transferred onto the end-face of a fiber connector. Taking advantage of the excellent saturable absorption of the fabricated MoS(2)-based SA, stable mode locking is obtained at a pump threshold of 31 mW. Resultant output soliton pulses have central wavelength, spectral width, pulse duration, and repetition rate of 1568.9 nm, 2.6 nm, 1.28 ps, and 8.288 MHz, respectively. The experimental results show that multilayer MoS(2) is a promising material for ultrafast laser systems.

  16. Self-organization of the Q-switched mode-locked regime in a diode-pumped Nd:YAG laser

    Science.gov (United States)

    Donin, V. I.; Yakovin, D. V.; Gribanov, A. V.

    2015-06-01

    A new Q-switched mode-locked generation regime of a solid-state laser, in which a Q-switch is "spontaneously" formed at the frequency of relaxation oscillations, has been observed for the first time. The new generation has been implemented by means of the previously proposed method of an acoustic modulator of a traveling wave in combination with a spherical mirror of a cavity. Stable pulse trains with a repetition frequency of ~30 kHz and a duration of ~2 µs have been observed in the diode-pump Nd:YAG laser with an average output power of ~3 W. Each train contains about 200 equispaced single pulses with a duration of ~45 ps.

  17. High Efficiency, Room Temperature Mid-Infrared Semiconductor Laser Development for IR Countermeasures

    Science.gov (United States)

    2009-05-01

    CONTRACT NUMBER EFFICIENCY, ROOM TEMPERATURE MID-INFRARED SEMICONDUCTOR LASER DEVELOPMENT FOR IR COUNTERMEASURES Sb. GRANT NUMBER FA9550-04-1-0433...04-1-0433 Title: (DEPSCOR FY04) High Efficiency, Room Temperature Mid-Infrared Semiconductor Laser Development for IR Countermeasures Principal...AFOSR Final Performance Report, March 2008 Award No.: FA9550-04-1-0433 Title: High Efficiency, Room Temperature Mid-Infrared Semiconductor Laser

  18. Green Output of 1.5 W from a Diode-Pumped Intracavity Frequency-Doubled Self-Q-Switched and Mode-Locked Cr,Nd:YAG Laser

    Institute of Scientific and Technical Information of China (English)

    DU Shi-Feng; WANG Su-Mei; ZHANG Dong-Xiang; LI De-Hua; ZHANG Zhi-Guo; FENG Bao-Hua; ZHANG Shi-Wen

    2007-01-01

    We report a diode-pumped intracavity frequency-doubled self-Q-switched and mode-locked Cr,Nd:YAG/KTP green laser with a Z-type cavity, which produces 1.5 W of average power at 532 nm with incident pump power 14.2 W. The individual mode-locked green pulse duration is about 560ps with 149MHz repetition rate. Almost 100% modulation depth of the mode-locked green pulses is achieved at an incident pump power of 4.13 W. The maximum energy of Q-switched green pulse is 19.8 fiJ. The experimental results of pulse duration and pulse energy of Q-switched green pulse agree well with the theoretical calculations.

  19. Dynamic analysis and continuous control of semiconductor lasers

    CERN Document Server

    Behnia, Sohrab; Afrang, Saeid

    2011-01-01

    Stability control in laser is still an emerging field of research. In this paper the dynamics of External cavity semiconductor lasers (ECSLs) is widely studied applying the methods of chaos physics. The stability is analyzed through plotting the Lyapunov exponent spectra, bifurcation diagrams and time series. The oscillation of the electric field E has been reported to be either periodic (P1,P2,..) or chaotic. The results of the study show that the rich nonlinear dynamics of the electric field |E|^2 includes saddle node bifurcations, quasi-periodicity and regular pulse packages. The issue of finding the conditions for creating stable domains has been studied. By considering the dynamical pumping current system coupled with laser, a method for the creation of the stable domain has been introduced.

  20. COHERENT LIDAR SYSTEM BASED ON A SEMICONDUCTOR LASER AND AMPLIFIER

    DEFF Research Database (Denmark)

    2009-01-01

    invention provides a coherent LIDAR system comprising a semiconductor laser for emission of a measurement beam of electromagnetic radiation directed towards a measurement volume for illumination of particles in the measurement volume, a reference beam generator for generation of a reference beam, a detector......The present invention relates to a compact, reliable and low-cost coherent LIDAR (Light Detection And Ranging) system for remote wind-speed determination, determination of particle concentration, and/or temperature based on an all semiconductor light source and related methods. The present...... for generation of a detector signal by mixing of the reference beam with light emitted from the particles in the measurement volume illuminated by the measurement beam, and a signal processor for generating a velocity signal corresponding to the velocity of the particles based on the detector signal....

  1. Handheld nonlinear microscope system comprising a 2 MHz repetition rate, mode-locked Yb-fiber laser for in vivo biomedical imaging.

    Science.gov (United States)

    Krolopp, Ádám; Csákányi, Attila; Haluszka, Dóra; Csáti, Dániel; Vass, Lajos; Kolonics, Attila; Wikonkál, Norbert; Szipőcs, Róbert

    2016-09-01

    A novel, Yb-fiber laser based, handheld 2PEF/SHG microscope imaging system is introduced. It is suitable for in vivo imaging of murine skin at an average power level as low as 5 mW at 200 kHz sampling rate. Amplified and compressed laser pulses having a spectral bandwidth of 8 to 12 nm at around 1030 nm excite the biological samples at a ~1.89 MHz repetition rate, which explains how the high quality two-photon excitation fluorescence (2PEF) and second harmonic generation (SHG) images are obtained at the average power level of a laser pointer. The scanning, imaging and detection head, which comprises a conventional microscope objective for beam focusing, has a physical length of ~180 mm owing to the custom designed imaging telescope system between the laser scanner mirrors and the entrance aperture of the microscope objective. Operation of the all-fiber, all-normal dispersion Yb-fiber ring laser oscillator is electronically controlled by a two-channel polarization controller for Q-switching free mode-locked operation. The whole nonlinear microscope imaging system has the main advantages of the low price of the fs laser applied, fiber optics flexibility, a relatively small, light-weight scanning and detection head, and a very low risk of thermal or photochemical damage of the skin samples.

  2. Dissolution-and-reduction CVD synthesis of few-layer graphene on ultra-thin nickel film lifted off for mode-locking fiber lasers

    Science.gov (United States)

    Peng, Kaung-Jay; Lin, Yung-Hsiang; Wu, Chung-Lun; Lin, Sheng-Fong; Yang, Chun-Yu; Lin, Shih-Meng; Tsai, Din-Ping; Lin, Gong-Ru

    2015-01-01

    The in-situ dissolution-and-reduction CVD synthesized few-layer graphene on ultra-thin nickel catalyst film is demonstrated at temperature as low as 550 °C, which can be employed to form transmission-type or reflection-type saturable absorber (SA) for mode-locking the erbium-doped fiber lasers (EDFLs). With transmission-type graphene SA, the EDFL shortens its pulsewidth from 483 to 441 fs and broadens its spectral linewidth from 4.2 to 6.1 nm with enlarging the pumping current from 200 to 900 mA. In contrast, the reflection-type SA only compresses the pulsewidth from 875 to 796 fs with corresponding spectral linewidth broadened from 2.2 to 3.3 nm. The reflection-type graphene mode-locker increases twice of its equivalent layer number to cause more insertion loss than the transmission-type one. Nevertheless, the reflection-type based saturable absorber system can generate stabilized soliton-like pulse easier than that of transmission-type system, because the nonlinearity induced self-amplitude modulation depth is simultaneously enlarged when passing through the graphene twice under the retro-reflector design. PMID:26328535

  3. Dissolution-and-reduction CVD synthesis of few-layer graphene on ultra-thin nickel film lifted off for mode-locking fiber lasers

    Science.gov (United States)

    Peng, Kaung-Jay; Lin, Yung-Hsiang; Wu, Chung-Lun; Lin, Sheng-Fong; Yang, Chun-Yu; Lin, Shih-Meng; Tsai, Din-Ping; Lin, Gong-Ru

    2015-09-01

    The in-situ dissolution-and-reduction CVD synthesized few-layer graphene on ultra-thin nickel catalyst film is demonstrated at temperature as low as 550 °C, which can be employed to form transmission-type or reflection-type saturable absorber (SA) for mode-locking the erbium-doped fiber lasers (EDFLs). With transmission-type graphene SA, the EDFL shortens its pulsewidth from 483 to 441 fs and broadens its spectral linewidth from 4.2 to 6.1 nm with enlarging the pumping current from 200 to 900 mA. In contrast, the reflection-type SA only compresses the pulsewidth from 875 to 796 fs with corresponding spectral linewidth broadened from 2.2 to 3.3 nm. The reflection-type graphene mode-locker increases twice of its equivalent layer number to cause more insertion loss than the transmission-type one. Nevertheless, the reflection-type based saturable absorber system can generate stabilized soliton-like pulse easier than that of transmission-type system, because the nonlinearity induced self-amplitude modulation depth is simultaneously enlarged when passing through the graphene twice under the retro-reflector design.

  4. Continuous-wave Raman laser pumped within a semiconductor disk laser cavity.

    Science.gov (United States)

    Parrotta, Daniele C; Lubeigt, Walter; Kemp, Alan J; Burns, David; Dawson, Martin D; Hastie, Jennifer E

    2011-04-01

    A KGd(WO₄)₂ Raman laser was pumped within the cavity of a cw diode-pumped InGaAs semiconductor disk laser (SDL). The Raman laser threshold was reached for 5.6 W of absorbed diode pump power, and output power up to 0.8 W at 1143 nm, with optical conversion efficiency of 7.5% with respect to the absorbed diode pump power, was demonstrated. Tuning the SDL resulted in tuning of the Raman laser output between 1133 and 1157 nm.

  5. 4.5 W mid-infrared supercontinuum generation in a ZBLAN fiber pumped by a Q-switched mode-locked Tm3+- doped fiber laser

    Science.gov (United States)

    Kneis, C.; Donelan, B.; Berrou, A.; Manek-Hönninger, I.; Cadier, B.; Robin, T.; Poulain, M.; Joulain, F.; Eichhorn, M.; Kieleck, C.

    2015-02-01

    The generation of mid-infrared (mid-IR) supercontinuum (SC) radiation, ranging from 2 - 5 μm, is subject of intense research due to its wide range of applications. A very popular host media for mid-IR SC generation are soft glass fibers owing to their low-loss transmission in the mid-IR wavelength regime, particularly fluoride fibers are very attractive for high-power operation. In this research study, a diode-pumped Q-switched mode-locked (QML) thulium (Tm3+)-doped double-clad silica fiber laser is used to pump a ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fiber for mid-IR SC generation. The QML regime of the fiber laser is actively generated by two acousto-optic modulators. The Tm3+-fiber laser provided up to 23.5 W (26 W) of average output power in QML (continuous wave) regime with a slope efficiency of 36 % (32 %). The measured beam quality has been close to the diffraction-limit in QML regime. The system delivered mode-locked pulses with a duration of 7.5 ps, measured with a commercial autocorrelator system, at a repetition rate of 46 MHz. The Q-switched envelopes had a width between 50 and 150 ns depending on the output power level and the adjustable repetition rate. Mid-IR SC with an average output power in all spectral bands of 4.5 W have been achieved with more than 3 W/ 1.7 W/ 1 W/ 0.36 W after a long-wave-pass filter with a 3 dB-edge at 2.15 μm/ 2.65 μm/ 3.1 μm/ 3.5 μm.

  6. Bidirectional private key exchange using delay-coupled semiconductor lasers.

    Science.gov (United States)

    Porte, Xavier; Soriano, Miguel C; Brunner, Daniel; Fischer, Ingo

    2016-06-15

    We experimentally demonstrate a key exchange cryptosystem based on the phenomenon of identical chaos synchronization. In our protocol, the private key is symmetrically generated by the two communicating partners. It is built up from the synchronized bits occurring between two current-modulated bidirectionally coupled semiconductor lasers with additional self-feedback. We analyze the security of the exchanged key and discuss the amplification of its privacy. We demonstrate private key generation rates up to 11  Mbit/s over a public channel.

  7. Effective Linewidth of Semiconductor Lasers for Coherent Optical Data Links

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Pang, Xiaodan; Schatz, Richard

    2016-01-01

    name “Effective Linewidth”. We derive this figure of merit analytically, explore it by numerical simulations and experimentally validate our results by transmitting a 28 Gbaud DP-16QAM over an optical link. Our investigations cover the use of semiconductor lasers both in the transmitter side...... and as a local oscillator at the receiver. The obtained results show that our proposed “effective linewidth” is easy to measure and accounts for frequency noise more accurately, and hence the penalties associated to phase noise in the received signal....

  8. An electrically injected rolled-up semiconductor tube laser

    Energy Technology Data Exchange (ETDEWEB)

    Dastjerdi, M. H. T.; Djavid, M.; Mi, Z., E-mail: zetian.mi@mcgill.ca [Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9 (Canada)

    2015-01-12

    We have demonstrated electrically injected rolled-up semiconductor tube lasers, which are formed when a coherently strained InGaAs/InGaAsP quantum well heterostructure is selectively released from the underlying InP substrate. The device exhibits strong coherent emission in the wavelength range of ∼1.5 μm. A lasing threshold of ∼1.05 mA is measured for a rolled-up tube with a diameter of ∼5 μm and wall thickness of ∼140 nm at 80 K. The Purcell factor is estimated to be ∼4.3.

  9. DBR-free optically pumped semiconductor disk lasers

    Science.gov (United States)

    Yang, Zhou; Albrecht, Alexander R.; Cederberg, Jeffrey G.; Sheik-Bahae, Mansoor

    2015-03-01

    Optically pumped semiconductor disk lasers (SDLs) provide high beam quality with high average-power power at designer wavelengths. However, material choices are limited by the need for a distributed Bragg reflector (DBR), usually monolithically integrated with the active region. We demonstrate DBR-free SDL active regions, which have been lifted off and bonded to various transparent substrates. For an InGaAs multi-quantum well sample bonded to a diamond window heat spreader, we achieved CW lasing with an output power of 2 W at 1150 nm with good beam quality.

  10. Spherical distribution structure of the semiconductor laser diode stack for pumping

    Institute of Scientific and Technical Information of China (English)

    Zhao Tianzhuo; Yu Jin; Liu Yang; Zhang Xue; Ma Yunfeng; Fan Zhongwei

    2011-01-01

    A semiconductor laser diode stack is used for pumping and 8 semiconductor laser diode arrays of the stack are put on a sphere,and the output of every bar is specially off-axis compressed to realize high coupling efficiency.The output beam of this semiconductor laser diode stack is shaped by a hollow duct to the laser active medium.The efficiency of the hollow light pipe,which is used for semiconductor laser diode stack coupling,is analyzed by geometric optics and ray tracing.Geometric optics analysis diagnoses the reasons for coupling loss and guides the design of the structure.Ray tracing analyzes the relation between the structural parameters and the output characteristics of this pumping system,and guides parameter optimization.Simulation and analysis results show that putting the semiconductor laser diode arrays on a spherical surface can increase coupling efficiency,reduce the optimum duct length and improve the output energy field distribution.

  11. A Step Tunable External Cavity Semiconductor Laser for WDM Network Deployment

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We put forward a kind of tunable external cavity semiconductor laser with feedback on both chip facets. It outputs the single-frequency laser with high side-mode suppression ratio and the frequency could be step tuned.

  12. Design and construct of a tunable semiconductor laser

    Directory of Open Access Journals (Sweden)

    J. Sabbaghzadeh

    2000-06-01

    Full Text Available   In this paper we explain in detail the design of a semiconductor laser coupled with the reflected beams from a grating. Since the beams reflected are diffracted at different angles, only one component of them can be resonated in the cavity. This technique reduces the output frequency of the laser and increases its stability.   Since this system has various applications in the spectroscopy, gas concentrations, air pollution measurements, investigation of atomic and molecular structure, and so on, system is believed to be simple and accurate. This design is made for the first time in Iran and its reliability has been tested by the measurement of the rubidium atom, and the result is given.

  13. Experimental examinations of semiconductor laser amplifiers for optical communication technology

    Science.gov (United States)

    Ludwig, Reinhold

    1993-01-01

    Properties of SLA (Semiconductor Laser Amplifier), which are particularly interesting for application to linear repeaters in coherent multichannel systems, are studied and design rules for future optimized amplifier structure are deduced. Laser diode antireflection was examined and reflection factor was measured. Low signal properties were discussed considering injection current, wavelengths, temperature and polarization. The coupling between amplifiers and glass fibers was examined. The utilization of cascade amplifiers as linear repeaters in multichannel heterodyne systems and television distribution systems was investigatied. The following results are obtained: measurement and calculation of the paradiaphony between two signals radiated in a SLA; multichannel data transfer through a SLA; polarization independent amplification with SLA configurations; measurement of the frequency dependence of four wave mixing sidelines in a SLA; measurement of the system degradation through echoes in a bidirectional SLA chain; data transmission with frequency conversion and calculation of multichannel transmission systems with cascade SLA, taking into account saturation, signal to noise ratio, bandwidth reduction and echo.

  14. Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector.

    Science.gov (United States)

    Zaugg, C A; Sun, Z; Wittwer, V J; Popa, D; Milana, S; Kulmala, T S; Sundaram, R S; Mangold, M; Sieber, O D; Golling, M; Lee, Y; Ahn, J H; Ferrari, A C; Keller, U

    2013-12-16

    We report a versatile way of controlling the unsaturated loss, modulation depth and saturation fluence of graphene-based saturable absorbers (GSAs), by changing the thickness of a spacer between a single layer graphene (SLG) and a high-reflection mirror. This allows us to modulate the electric field intensity enhancement at the GSA from 0 up to 400%, due to the interference of incident and reflected light at the mirror. The unsaturated loss of the SLG-mirror-assembly can be reduced to ∼0. We use this to mode-lock a vertical-external-cavity surface-emitting laser (VECSEL) from 935 to 981 nm. This approach can be applied to integrate SLG into various optical components, such as output coupler mirrors, dispersive mirrors or dielectric coatings on gain materials. Conversely, it can also be used to increase the absorption (up to 10%) in various graphene based photonics and optoelectronics devices, such as photodetectors.

  15. Nanosecond soliton pulse generation by mode-locked erbium-doped fiber laser using single-walled carbon-nanotube-based saturable absorber.

    Science.gov (United States)

    Ismail, Mohd Afiq; Harun, Sulaiman Wadi; Zulkepely, Nurul Rozullyah; Nor, Roslan Md; Ahmad, Fauzan; Ahmad, Harith

    2012-12-20

    We demonstrate a simple and low cost mode-locked erbium-doped fiber laser (EDFL) operating in the nanosecond region using a single-walled carbon nanotube (SWCNT)-based saturable absorber (SA). A droplet of SWCNT solution is applied on the end of a fiber ferrule, which is then mated to another clean connector ferrule to construct an SA. Then the SA is integrated into a ring EDFL cavity for nanosecond pulse generation. The EDFL operates at around 1570.4 nm, with a soliton-like spectrum with small Kelly sidebands, which confirms the attainment of the anomalous dispersion. It produces a soliton pulse train with a 332 ns width, repetition rate of 909.1 kHz, an average output power of 0.31 mW, and energy of 0.34 nJ at the maximum pump power of 130.8 mW.

  16. 200-fs mode-locked Erbium-doped fiber laser by using mechanically exfoliated MoS2 saturable absorber onto D-shaped optical fiber.

    Science.gov (United States)

    Aiub, Eduardo J; Steinberg, David; Thoroh de Souza, Eunézio A; Saito, Lúcia A M

    2017-05-01

    For the first time, we demonstrated the fabrication of mechanically exfoliated molybdenum disulfide (MoS2) samples deposited onto a D-shaped optical fiber. The MoS2 exfoliated flakes were deposited onto a stacked of 1.2 µm PVA (polyvinyl alcohol) and 300 nm PMMA (polymethyl methacrylate) layers and then transferred directly onto a side polished surface of D-shaped optical fiber with polishing length of 17 mm and no distance from the fiber core. The sample exhibited a high polarization performance as a polarizer with relative polarization extinction ratio of 97.5%. By incorporating the sample as a saturable absorber in the Erbium-doped fiber laser (EDFL), bandwidth of 20.5 nm and pulse duration of 200 fs were generated, which corresponded to the best mode-locking results obtained for all-fiber MoS2 saturable absorber at 1.5 µm wavelength.

  17. Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering

    DEFF Research Database (Denmark)

    Criado, A. R.; Acedo, P.; Carpintero, G.

    2012-01-01

    A Continuous Wave (CW) sub-THz photonic synthesis setup based on a single Passively Mode-Locked Laser Diode (PMLLD) acting as a monolithic Optical Frequency Comb Generator (OFCG) and highly selective optical filtering has been implemented to evaluate the phase noise performance of the generated sub......-THz signals. The analysis of the synthesized sub-THz signals up to 120 GHz gives as a result an effective reduction of the electrical linewidth when compared to direct harmonic generation that begins at 50 GHz and becomes greater as the frequency increases. The phase noise reduction offered by the setup......, along with its integration potential, cost and bandwidth, make it a promising candidate to the development of an integrated and high performance low phase noise local oscillator in the sub-THz range....

  18. Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser

    CERN Document Server

    Yang, Heewon; Shin, Junho; Kim, Chur; Choi, Sun Young; Kim, Guang-Hoon; Rotermund, Fabian; Kim, Jungwon

    2014-01-01

    We show that a 1.13-GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz - 10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be directly generated from a free-running, single-mode diode-pumped Yb:KYW laser mode-locked by single-walled carbon nanotube (SWCNT)-coated mirrors. To our knowledge, this is the lowest timing jitter optical pulse train with the GHz repetition rate ever measured. If this pulse train is used for direct sampling of 565-MHz signals (Nyquist frequency of the pulse train), the demonstrated jitter level corresponds to the projected effective-number-of-bit (ENOB) of 17.8, which is much higher than the thermal noise limit of 50-ohm load resistance (~14 bits).

  19. Packaged semiconductor laser optical phase locked loop for photonic generation, processing and transmission of microwave signals

    DEFF Research Database (Denmark)

    Langley, L.N.; Elkin, M.D.; Edege, C.

    1999-01-01

    In this paper, we present the first fully packaged semiconductor laser optical phase-locked loop (OPLL) microwave photonic transmitter. The transmitter is based on semiconductor lasers that are directly phase locked without the use of any other phase noise-reduction mechanisms. In this transmitter...

  20. Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation

    Science.gov (United States)

    Chernysheva, Maria; Bednyakova, Anastasia; Al Araimi, Mohammed; Howe, Richard C. T.; Hu, Guohua; Hasan, Tawfique; Gambetta, Alessio; Galzerano, Gianluca; Rümmeli, Mark; Rozhin, Aleksey

    2017-03-01

    The complex nonlinear dynamics of mode-locked fibre lasers, including a broad variety of dissipative structures and self-organization effects, have drawn significant research interest. Around the 2 μm band, conventional saturable absorbers (SAs) possess small modulation depth and slow relaxation time and, therefore, are incapable of ensuring complex inter-pulse dynamics and bound-state soliton generation. We present observation of multi-soliton complex generation in mode-locked thulium (Tm)-doped fibre laser, using double-wall carbon nanotubes (DWNT-SA) and nonlinear polarisation evolution (NPE). The rigid structure of DWNTs ensures high modulation depth (64%), fast relaxation (1.25 ps) and high thermal damage threshold. This enables formation of 560-fs soliton pulses; two-soliton bound-state with 560 fs pulse duration and 1.37 ps separation; and singlet+doublet soliton structures with 1.8 ps duration and 6 ps separation. Numerical simulations based on the vectorial nonlinear Schr¨odinger equation demonstrate a transition from single-pulse to two-soliton bound-states generation. The results imply that DWNTs are an excellent SA for the formation of steady single- and multi-soliton structures around 2 μm region, which could not be supported by single-wall carbon nanotubes (SWNTs). The combination of the potential bandwidth resource around 2 μm with the soliton molecule concept for encoding two bits of data per clock period opens exciting opportunities for data-carrying capacity enhancement.