WorldWideScience

Sample records for modelling transport systems

  1. System Convergence in Transport Modelling

    DEFF Research Database (Denmark)

    Rich, Jeppe; Nielsen, Otto Anker; Cantarella, Guilio E.

    2010-01-01

    A fundamental premise of most applied transport models is the existence and uniqueness of an equilibrium solution that balances demand x(t) and supply t(x). The demand consists of the people that travel in the transport system and on the defined network, whereas the supply consists of the resulting...... level-of-service attributes (e.g., travel time and cost) offered to travellers. An important source of complexity is the congestion, which causes increasing demand to affect travel time in a non-linear way. Transport models most often involve separate models for traffic assignment and demand modelling...

  2. Risk management model in road transport systems

    Science.gov (United States)

    Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.

    2016-08-01

    The article presents the results of a study of road safety indicators that influence the development and operation of the transport system. Road safety is considered as a continuous process of risk management. Authors constructed a model that relates the social risks of a major road safety indicator - the level of motorization. The model gives a fairly accurate assessment of the level of social risk for any given level of motorization. Authors calculated the dependence of the level of socio-economic costs of accidents and injured people in them. The applicability of the concept of socio-economic damage is caused by the presence of a linear relationship between the natural and economic indicators damage from accidents. The optimization of social risk is reduced to finding the extremum of the objective function that characterizes the economic effect of the implementation of measures to improve safety. The calculations make it possible to maximize the net present value, depending on the costs of improving road safety, taking into account socio-economic damage caused by accidents. The proposed econometric models make it possible to quantify the efficiency of the transportation system, allow to simulate the change in road safety indicators.

  3. Economic model of pipeline transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.

    1977-07-29

    The objective of the work reported here was to develop a model which could be used to assess the economic effects of energy-conservative technological innovations upon the pipeline industry. The model is a dynamic simulator which accepts inputs of two classes: the physical description (design parameters, fluid properties, and financial structures) of the system to be studied, and the postulated market (throughput and price) projection. The model consists of time-independent submodels: the fluidics model which simulates the physical behavior of the system, and the financial model which operates upon the output of the fluidics model to calculate the economics outputs. Any of a number of existing fluidics models can be used in addition to that developed as a part of this study. The financial model, known as the Systems, Science and Software (S/sup 3/) Financial Projection Model, contains user options whereby pipeline-peculiar characteristics can be removed and/or modified, so that the model can be applied to virtually any kind of business enterprise. The several dozen outputs are of two classes: the energetics and the economics. The energetics outputs of primary interest are the energy intensity, also called unit energy consumption, and the total energy consumed. The primary economics outputs are the long-run average cost, profit, cash flow, and return on investment.

  4. Advanced transport systems analysis, modeling, and evaluation of performances

    CERN Document Server

    Janić, Milan

    2014-01-01

    This book provides a systematic analysis, modeling and evaluation of the performance of advanced transport systems. It offers an innovative approach by presenting a multidimensional examination of the performance of advanced transport systems and transport modes, useful for both theoretical and practical purposes. Advanced transport systems for the twenty-first century are characterized by the superiority of one or several of their infrastructural, technical/technological, operational, economic, environmental, social, and policy performances as compared to their conventional counterparts. The advanced transport systems considered include: Bus Rapid Transit (BRT) and Personal Rapid Transit (PRT) systems in urban area(s), electric and fuel cell passenger cars, high speed tilting trains, High Speed Rail (HSR), Trans Rapid Maglev (TRM), Evacuated Tube Transport system (ETT), advanced commercial subsonic and Supersonic Transport Aircraft (STA), conventionally- and Liquid Hydrogen (LH2)-fuelled commercial air trans...

  5. Advances in dynamic network modeling in complex transportation systems

    CERN Document Server

    Ukkusuri, Satish V

    2013-01-01

    This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.

  6. System Identification Theory Approach to Cohesive Sediment Transport Modelling

    OpenAIRE

    CHEN, HUIXIN

    1997-01-01

    Two aspects of the modelling sediment transport are investigated. One is the univariate time series modelling the current velocity dynamics. The other is the multivariate time series modelling the suspended sediment concentration dynamics. Cohesive sediment dynamics and numerical sediment transport model are reviewed and investigated. The system identification theory and time series analysis method are developed and applied to set up the time series model for current velocity a...

  7. Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development

    International Nuclear Information System (INIS)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2013-01-01

    Transport is one of the most challenge sectors when addressing energy security and climate change due to its high reliance on oil products and lack of the alternative fuels. This paper explores the ability of three transport strategies to contribute to the development of a sustainable transport in China. With this purpose in mind, a Chinese transport model has been created and three current transport strategies which are high speed railway (HSR), urban rail transit (URT) and electric vehicle (EV) were evaluated together with a reference transport system in 2020. As conservative results, 13% of the energy saving and 12% of the CO 2 emission reduction can be attained by accomplishing three strategies compared with the reference transport system. However, the energy demand of transport in 2020 with the implementation of three strategies will be about 1.7 times as much as today. The three strategies show the potential of drawing the transport demand to the more energy efficient vehicles; however, more initiatives are needed if the sustainable transport is the long term objective, such as the solutions to stabilise the private vehicle demands, to continuously improve the vehicle efficiency and to boost the alternative fuels produced from the renewable energy sources. - Highlights: • A Chinese transport model was created and three transport strategies were evaluated • Transport is the biggest driver of the oil demand in China not the industry • The energy demand of transport in 2020 will be twice as much as today • Strategies contribute 13% energy saving and 12% CO 2 emission reduction • More initiatives are needed if a sustainable transport is the long-term objective

  8. Sediment Transport Model for a Surface Irrigation System

    Directory of Open Access Journals (Sweden)

    Damodhara R. Mailapalli

    2013-01-01

    Full Text Available Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model was evaluated for bare and cropped furrow fields. The results indicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. Sensitivity analysis of the parameters of the sediment module showed that the soil erodibility coefficient was the most influential parameter for determining sediment load in furrow irrigation. The developed modeling tool can be used as a water management tool for mitigating sediment loss from the surface irrigated fields.

  9. System convergence in transport models: algorithms efficiency and output uncertainty

    DEFF Research Database (Denmark)

    Rich, Jeppe; Nielsen, Otto Anker

    2015-01-01

    of this paper is to analyse convergence performance for the external loop and to illustrate how an improper linkage between the converging parts can lead to substantial uncertainty in the final output. Although this loop is crucial for the performance of large-scale transport models it has not been analysed......-scale in the Danish National Transport Model (DNTM). It is revealed that system convergence requires that either demand or supply is without random noise but not both. In that case, if MSA is applied to the model output with random noise, it will converge effectively as the random effects are gradually dampened...... in the MSA process. In connection to DNTM it is shown that MSA works well when applied to travel-time averaging, whereas trip averaging is generally infected by random noise resulting from the assignment model. The latter implies that the minimum uncertainty in the final model output is dictated...

  10. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  11. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    International Nuclear Information System (INIS)

    E.L. Hardin

    2000-01-01

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II)

  12. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  13. Analysis of Intelligent Transportation Systems Using Model-Driven Simulations

    Directory of Open Access Journals (Sweden)

    Alberto Fernández-Isabel

    2015-06-01

    Full Text Available Intelligent Transportation Systems (ITSs integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use.

  14. Development of CANDU 6 Primary Heat Transport System Modeling Program

    International Nuclear Information System (INIS)

    Seo, Hyung-beom; Kim, Sung-min; Park, Joong-woo; Kim, Kwang-su; Ko, Dae-hack; Han, Bong-seob

    2007-01-01

    NUCIRC is a steady-state thermal-hydraulic code used for design and performance analyses of CANDU Heat Transport System. The code is used to build PHT model in Wolsong NPP and to calculate channel flow distribution. Wolsong NPP has to calculate channel flow distribution and quality of coolant at the ROH header after every outage by OPP (Operating Policy and Principal). PHT modeling work is time consuming which need a lot of operation experience and specialty. It is very difficult to build PHT model as plant operator in two weeks which is obligate for plant operation after every outage. That is why Wolsong NPP develop NUMODEL (NUcirc MODELing) with many-years experience and a know-how of using NUCIRC code. NUMODEL is computer program which is used to create PHT model based on utilizing NUCIRC code

  15. MODEL CAR TRANSPORT SYSTEM - MODERN ITS EDUCATION TOOL

    Directory of Open Access Journals (Sweden)

    Karel Bouchner

    2017-12-01

    Full Text Available The model car transport system is a laboratory intended for a practical development in the area of the motor traffic. It is also an important education tool for students’ hands-on training, enabling students to test the results of their own studies. The main part of the model car transportation network is a model in a ratio 1:87 (HO, based on component units of FALLER Car system, e.g. cars, traffic lights, carriage way, parking spaces, stop sections, branch-off junctions, sensors and control sections. The model enables to simulate real traffic situations. It includes a motor traffic in a city, in a small village, on a carriageway between a city and a village including a railway crossing. The traffic infrastructure includes different kinds of intersections, such as T-junctions, a classic four-way crossroad and four-way traffic circle, with and without traffic lights control. Another important part of the model is a segment of a highway which includes an elevated crossing with highway approaches and exits.

  16. A transportable system of models for natural resource damage assessment

    International Nuclear Information System (INIS)

    Reed, M.; French, D.

    1992-01-01

    A system of computer models has been developed for assessment of natural resource economic damages resulting from spills of oil and hazardous materials in marine and fresh water environments. Under USA federal legislation, the results of the model system are presumed correct in damage litigation proceedings. The model can address a wide range of spatial and temporal scales. The equations describing the motion of both pollutants and biota are solved in three dimensions. The model can simulate continuous releases of a contaminant, with representation of complex coastal boundaries, variable bathymetry, multiple shoreline types, and spatially variable ecosystem habitats. A graphic user interface provides easy control of the system in addition to the ability to display elements of the underlying geographical information system data base. The model is implemented on a personal computer and on a UNIX workstation. The structure of the system is such that transport to new geographic regions can be accomplished relatively easily, requiring only the development of the appropriate physical, toxicological, biological, and economic data sets. Applications are currently in progress for USA inland and coastal waters, the Adriatic Sea, the Strait of Sicily, the Gulf of Suez, and the Baltic Sea. 4 refs., 2 figs

  17. Modeling of capacitated transportation systems for integral scheduling

    NARCIS (Netherlands)

    Ebben, Mark; van der Heijden, Matthijs C.; Hurink, Johann L.; Schutten, Johannes M.J.

    2003-01-01

    Motivated by a planned automated cargo transportation network, we consider transportation problems in which the finite capacity of resources has to be taken into account. We present a flexible modeling methodology which allows to construct, evaluate, and improve feasible solutions. The modeling is

  18. Modeling of capacitated transportation systems for integral scheduling

    NARCIS (Netherlands)

    Ebben, Mark; van der Heijden, Matthijs C.; Hurink, Johann L.; Schutten, Johannes M.J.

    2003-01-01

    Motivated by a planned automated cargo transportation network, we consider transportation problems in which the finite capacity of resources has to be taken nto account. We present a flexible modeling methodology which allows to construct, evaluate, and improve feasible solutions. The modeling is

  19. Sediment Transport Model for a Surface Irrigation System

    OpenAIRE

    Mailapalli, Damodhara R.; Raghuwanshi, Narendra S.; Singh, Rajendra

    2013-01-01

    Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in fur...

  20. Modeling interfacial area transport in multi-fluid systems

    Energy Technology Data Exchange (ETDEWEB)

    Yarbro, Stephen Lee [Univ. of California, Berkeley, CA (United States)

    1996-11-01

    Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacial area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.

  1. Modeling and Evaluation of LTE in Intelligent Transportation Systems

    NARCIS (Netherlands)

    Trichias, K.; van den Berg, Hans Leo; de Jongh, J.; Litjens, R.; Dimitrova, D.C.; Brogle, M.; Braun, T.; Heijenk, Gerhard J.; Meratnia, Nirvana

    The term Intelligent Transportation Systems (ITS) refers to adding information and communications technology to transport infrastructure and ve- hicles. The IEEE 802.11p standard is considered the main candidate for com- munication within the context of ITS and it performs well for active safety use

  2. Model documentation report: Transportation sector model of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  3. Traffic Route Modelling and Assignment with Intelligent Transport System

    Directory of Open Access Journals (Sweden)

    Kunicina Nadezhda

    2014-12-01

    Full Text Available The development of signal transmitting environment for multimodal traffic control will enhance the integration of emergency and specialized transport routing tools in usual traffic control paradigms - it is one of the opportunities offered by modern intelligent traffic control systems. The improvement of effective electric power use in public transport system is an advantage of Intelligent Transport System (ITS. The research is connected with the improvement of on-line traffic control and adaptation of special traffic lighting alternatives by ITS. The assignment of the nearest appropriate transport will be done by passenger request, but unlike information system, the transport planning is done on demand. The task can be solved with the help of modern technical methods and equipment, as well as by applying control paradigms of the distributed systems. The problem is solved with the help of calculations hyper-graph and scheduling theory. The goal of the research is to develop methods, which support scheduling of the emergency transport, using high performance computing.

  4. Electromagnetic fields in small systems from a multiphase transport model

    Science.gov (United States)

    Zhao, Xin-Li; Ma, Yu-Gang; Ma, Guo-Liang

    2018-02-01

    We calculate the electromagnetic fields generated in small systems by using a multiphase transport (AMPT) model. Compared to A +A collisions, we find that the absolute electric and magnetic fields are not small in p +Au and d +Au collisions at energies available at the BNL Relativistic Heavy Ion Collider and in p +Pb collisions at energies available at the CERN Large Hadron Collider. We study the centrality dependencies and the spatial distributions of electromagnetic fields. We further investigate the azimuthal fluctuations of the magnetic field and its correlation with the fluctuating geometry using event-by-event simulations. We find that the azimuthal correlation 〈" close="〉cos(ϕα+ϕβ-2 ΨRP)〉">cos2 (ΨB-Ψ2) between the magnetic field direction and the second-harmonic participant plane is almost zero in small systems with high multiplicities, but not in those with low multiplicities. This indicates that the charge azimuthal correlation is not a valid probe to study the chiral magnetic effect (CME) in small systems with high multiplicities. However, we suggest searching for possible CME effects in small systems with low multiplicities.

  5. Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development

    DEFF Research Database (Denmark)

    Liu, W.; Lund, H.; Mathiesen, B.V.

    2013-01-01

    Transport is one of the most challenge sectors when addressing energy security and climate change due to its high reliance on oil products and lack of the alternative fuels. This paper explores the ability of three transport strategies to contribute to the development of a sustainable transport i...... and to boost the alternative fuels produced from the renewable energy sources.......Transport is one of the most challenge sectors when addressing energy security and climate change due to its high reliance on oil products and lack of the alternative fuels. This paper explores the ability of three transport strategies to contribute to the development of a sustainable transport......% of the energy saving and 12% of the CO2 emission reduction can be attained by accomplishing three strategies compared with the reference transport system. However, the energy demand of transport in 2020 with the implementation of three strategies will be about 1.7 times as much as today. The three strategies...

  6. Modeling the Effects of a Transportation Security Incident on the Commercial Container Transportation System

    Science.gov (United States)

    2009-09-01

    handling system. Transport Reviews: A Transnational Transdisciplinary Journal , 25 (2), 181–199. Danskin, J. W. (1967). The Theory of Max-Min. New York...review of the state of the art . Analytical Studies in Transport Economics, MIT Press, 161–206. Infrastructure. (n.d.). In The American Heritage

  7. Transport system

    NARCIS (Netherlands)

    Drenth, K.F.

    1999-01-01

    The transport system comprises at least one road surface (2) and at least one vehicle (4) on wheels (6). The road surface (2) has a substantially bowl-shaped cross section and the vehicle (4) is designed so that the wheels (6) run directly on the road surface (2) while the road surface (2) acts as a

  8. Transportation Sector Model of the National Energy Modeling System. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  9. Hypernetwork generation for multi-modal transportation system modeling.

    Science.gov (United States)

    2013-04-01

    The transportation debate has evolved in recent decades to include ideas such as sustainability and livability alongside mobility and safety. Definitional complexities aside, there is no doubt that this evolution has created a national transportation...

  10. A multimedia fate and chemical transport modeling system for pesticides: II. Model evaluation

    International Nuclear Information System (INIS)

    Li Rong; Yang Fuquan; Sloan, James J; Trevor Scholtz, M

    2011-01-01

    Pesticides have adverse health effects and can be transported over long distances to contaminate sensitive ecosystems. To address problems caused by environmental pesticides we developed a multimedia multi-pollutant modeling system, and here we present an evaluation of the model by comparing modeled results against measurements. The modeled toxaphene air concentrations for two sites, in Louisiana (LA) and Michigan (MI), are in good agreement with measurements (average concentrations agree to within a factor of 2). Because the residue inventory showed no soil residues at these two sites, resulting in no emissions, the concentrations must be caused by transport; the good agreement between the modeled and measured concentrations suggests that the model simulates atmospheric transport accurately. Compared to the LA and MI sites, the measured air concentrations at two other sites having toxaphene soil residues leading to emissions, in Indiana and Arkansas, showed more pronounced seasonal variability (higher in warmer months); this pattern was also captured by the model. The model-predicted toxaphene concentration fraction on particles (0.5-5%) agrees well with measurement-based estimates (3% or 6%). There is also good agreement between modeled and measured dry (1:1) and wet (within a factor of less than 2) depositions in Lake Ontario. Additionally this study identified erroneous soil residue data around a site in Texas in a published US toxaphene residue inventory, which led to very low modeled air concentrations at this site. Except for the erroneous soil residue data around this site, the good agreement between the modeled and observed results implies that both the US and Mexican toxaphene soil residue inventories are reasonably good. This agreement also suggests that the modeling system is capable of simulating the important physical and chemical processes in the multimedia compartments.

  11. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    Science.gov (United States)

    Li, Rong; Scholtz, M. Trevor; Yang, Fuquan; Sloan, James J.

    2011-07-01

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  12. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    International Nuclear Information System (INIS)

    Li Rong; Yang Fuquan; Sloan, James J; Scholtz, M Trevor

    2011-01-01

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  13. A model to quantify the resilience of mass railway transportation systems

    International Nuclear Information System (INIS)

    Adjetey-Bahun, Kpotissan; Birregah, Babiga; Châtelet, Eric; Planchet, Jean-Luc

    2016-01-01

    Traditional risk management approaches focus on perturbation events' likelihood and their consequences. However, recent events show that not all perturbation events can be foreseen. The concept of resilience has been introduced to measure not only the system's ability to absorb perturbations, but also its ability to rapidly recover from perturbations. In this work, we propose a simulation-based model for quantifying resilience in mass railway transportation systems by quantifying passenger delay and passenger load as the system's performance indicators. We integrate all subsystems that make up mass railway transportation systems (transportation, power, telecommunication and organisation subsystems) and their interdependencies. The model is applied to the Paris mass railway transportation system. The model's results show that since trains continue running within the system even by decreasing their speed, the system remains resilient. During the normal operation of the system as well as during perturbation, the model shows similarities with reality. The perturbation management plan that consists of setting up temporary train services on part of the impacted line while repairing the failed system's component is considered in this work. We also assess the extent to which some resilient system's capacities (i.e. absorption, adaptation and recovery) can increase the resilience of the system. - Highlights: • The need of resilience quantification models in sociotechnical systems. • We propose a simulation-based model. • This model is applied to Paris mass railway transportation system.

  14. Modeling of uncertainty in atmospheric transport system using hybrid method

    International Nuclear Information System (INIS)

    Pandey, M.; Ranade, Ashok; Brij Kumar; Datta, D.

    2012-01-01

    Atmospheric dispersion models are routinely used at nuclear and chemical plants to estimate exposure to the members of the public and occupational workers due to release of hazardous contaminants into the atmosphere. Atmospheric dispersion is a stochastic phenomenon and in general, the concentration of the contaminant estimated at a given time and at a predetermined location downwind of a source cannot be predicted precisely. Uncertainty in atmospheric dispersion model predictions is associated with: 'data' or 'parameter' uncertainty resulting from errors in the data used to execute and evaluate the model, uncertainties in empirical model parameters, and initial and boundary conditions; 'model' or 'structural' uncertainty arising from inaccurate treatment of dynamical and chemical processes, approximate numerical solutions, and internal model errors; and 'stochastic' uncertainty, which results from the turbulent nature of the atmosphere as well as from unpredictability of human activities related to emissions, The possibility theory based on fuzzy measure has been proposed in recent years as an alternative approach to address knowledge uncertainty of a model in situations where available information is too vague to represent the parameters statistically. The paper presents a novel approach (called Hybrid Method) to model knowledge uncertainty in a physical system by a combination of probabilistic and possibilistic representation of parametric uncertainties. As a case study, the proposed approach is applied for estimating the ground level concentration of hazardous contaminant in air due to atmospheric releases through the stack (chimney) of a nuclear plant. The application illustrates the potential of the proposed approach. (author)

  15. Modelling public transport passenger flows in the era of intelligent transport systems COST Action TU1004 (TransITs)

    CERN Document Server

    Noekel, Klaus

    2016-01-01

    This book shows how transit assignment models can be used to describe and predict the patterns of network patronage in public transport systems. It provides a fundamental technical tool that can be employed in the process of designing, implementing and evaluating measures and/or policies to improve the current state of transport systems within given financial, technical and social constraints. The book offers a unique methodological contribution to the field of transit assignment because, moving beyond “traditional” models, it describes more evolved variants that can reproduce: • intermodal networks with high- and low-frequency services; • realistic behavioural hypotheses underpinning route choice; • time dependency in frequency-based models; and • assumptions about the knowledge that users have of network conditions that are consistent with the present and future level of information that intelligent transport systems (ITS) can provide. The book also considers the practical perspective of practit...

  16. Technical Work Plan for: Near Field Environment: Engineered Barrier System: Radionuclide Transport Abstraction Model Report

    International Nuclear Information System (INIS)

    J.D. Schreiber

    2006-01-01

    This technical work plan (TWP) describes work activities to be performed by the Near-Field Environment Team. The objective of the work scope covered by this TWP is to generate Revision 03 of EBS Radionuclide Transport Abstraction, referred to herein as the radionuclide transport abstraction (RTA) report. The RTA report is being revised primarily to address condition reports (CRs), to address issues identified by the Independent Validation Review Team (IVRT), to address the potential impact of transport, aging, and disposal (TAD) canister design on transport models, and to ensure integration with other models that are closely associated with the RTA report and being developed or revised in other analysis/model reports in response to IVRT comments. The RTA report will be developed in accordance with the most current version of LP-SIII.10Q-BSC and will reflect current administrative procedures (LP-3.15Q-BSC, ''Managing Technical Product Inputs''; LP-SIII.2Q-BSC, ''Qualification of Unqualified Data''; etc.), and will develop related Document Input Reference System (DIRS) reports and data qualifications as applicable in accordance with prevailing procedures. The RTA report consists of three models: the engineered barrier system (EBS) flow model, the EBS transport model, and the EBS-unsaturated zone (UZ) interface model. The flux-splitting submodel in the EBS flow model will change, so the EBS flow model will be validated again. The EBS transport model and validation of the model will be substantially revised in Revision 03 of the RTA report, which is the main subject of this TWP. The EBS-UZ interface model may be changed in Revision 03 of the RTA report due to changes in the conceptualization of the UZ transport abstraction model (a particle tracker transport model based on the discrete fracture transfer function will be used instead of the dual-continuum transport model previously used). Validation of the EBS-UZ interface model will be revised to be consistent with

  17. Integrated urban systems modeling : designing a seamless, comprehensive approach to transportation planning.

    Science.gov (United States)

    2009-01-01

    Metropolitan planning agencies face increasingly complex issues in modeling interactions between the built environment and multimodal transportation systems. Although great strides have been made in simulating land use, travel demand, and traffic flo...

  18. Quantitative modeling of failure propagation in intelligent transportation systems.

    Science.gov (United States)

    2014-08-01

    Unmanned vehicles are projected to reach consumer use within this decade - related legislation has already passed in California. The : most significant technical challenge associated with these vehicles is their integration in transportation environm...

  19. OPE3 : A model system for single-molecule transport

    NARCIS (Netherlands)

    Frisenda, R.

    2016-01-01

    In this dissertation, charge-transport through individual organic molecules is investigated. The single molecules are contacted with two-terminal mechanically controllable break junction gold electrodes and their electrical and mechanical behavior studied at room and low temperature.

  20. The informational system model of Ukrainian national transport workflow improvement based on electronic signature introduction management

    Directory of Open Access Journals (Sweden)

    Grigoriy NECHAEY

    2007-01-01

    Full Text Available Proposed model of informational system supposes improvement of newconceptual method on the work with e-signature in transport nformational systems. Problems and aims that may be solved with the help of this system and the most important economical and technical advantages of the proposed system in comparison with traditional methods of e-signing use are marked out.

  1. A Comparison of Geographic Information Systems, Complex Networks, and Other Models for Analyzing Transportation Network Topologies

    Science.gov (United States)

    Alexandrov, Natalia (Technical Monitor); Kuby, Michael; Tierney, Sean; Roberts, Tyler; Upchurch, Christopher

    2005-01-01

    This report reviews six classes of models that are used for studying transportation network topologies. The report is motivated by two main questions. First, what can the "new science" of complex networks (scale-free, small-world networks) contribute to our understanding of transport network structure, compared to more traditional methods? Second, how can geographic information systems (GIS) contribute to studying transport networks? The report defines terms that can be used to classify different kinds of models by their function, composition, mechanism, spatial and temporal dimensions, certainty, linearity, and resolution. Six broad classes of models for analyzing transport network topologies are then explored: GIS; static graph theory; complex networks; mathematical programming; simulation; and agent-based modeling. Each class of models is defined and classified according to the attributes introduced earlier. The paper identifies some typical types of research questions about network structure that have been addressed by each class of model in the literature.

  2. Transportation system modeling and simulation in support of logistics and operations

    International Nuclear Information System (INIS)

    Yoshimura, R.H.; Kjeldgaard, E.A.; Turnquist, M.A.; List, G.F.

    1997-12-01

    Effective management of DOE's transportation operations requires better data than are currently available, a more integrated management structure for making transportation decisions, and decision support tools to provide needed analysis capabilities. This paper describes a vision of an advanced logistics management system for DOE, and the rationale for developing improved modeling and simulation capability as an integral part of that system. The authors illustrate useful types of models through four examples, addressing issues of transportation package allocation, fleet sizing, routing/scheduling, and emergency responder location. The overall vision for the advanced logistics management system, and the specific examples of potential capabilities, provide the basis for a conclusion that such a system would meet a critical DOE need in the area of radioactive material and waste transportation

  3. Transportation system modeling and simulation in support of logistics and operations

    International Nuclear Information System (INIS)

    Yoshimura, R.H.; Kjeldgaard, E.A.; Turnquist, M.A.; List, G.F.

    1998-01-01

    Effective management of DOE's transportation operations requires better data than are currently available, a more integrated management structure for making transportation decisions, and decision support tools to provide needed analysis capabilities. This paper describes a vision of an advanced logistics management system for DOE, and the rationale for developing improved modeling and simulation capability as an integral part of that system. We illustrate useful types of models through four examples, addressing issues of transportation package allocation, fleet sizing, routing/Scheduling, and emergency responder location. The overall vision for the advanced logistics management system, and the specific examples of potential capabilities, provide the basis for a conclusion that such a system would meet a critical DOE need in the area of radioactive material and waste transportation. (authors)

  4. Implementation of the aquatic radionuclide transport models RIVTOX and COASTOX into the RODOS System

    International Nuclear Information System (INIS)

    Gofman, D.; Lyashenko, G.; Marinets, A.; Mezhueva, I.; Shepeleva, T.; Tkalich, P.; Zheleznyak, M.

    1996-01-01

    The one -dimensional model of radionuclide transport in a network of river channel RIVTOX and two-dimensional lateral-longitudinal model of radionuclide transport in rivers, reservoirs and shallow lakes COASTOX have been implemented into the hydrological model chain of the decision support system RODOS. The software framework is developed to operate the models and to support their coupling with the other parts of RODOS hydrological model chain. The validation studies were performed for RIVTOX and COASTOX on the base of the data sets from Ukrainian, German and United States rivers

  5. Analysing improvements to on-street public transport systems: a mesoscopic model approach

    DEFF Research Database (Denmark)

    Ingvardson, Jesper Bláfoss; Kornerup Jensen, Jonas; Nielsen, Otto Anker

    2017-01-01

    Light rail transit and bus rapid transit have shown to be efficient and cost-effective in improving public transport systems in cities around the world. As these systems comprise various elements, which can be tailored to any given setting, e.g. pre-board fare-collection, holding strategies...... a mesoscopic model which makes it possible to evaluate public transport operations in details, including dwell times, intelligent traffic signal timings and holding strategies while modelling impacts from other traffic using statistical distributional data thereby ensuring simplicity in use and fast...... and other advanced public transport systems (APTS), the attractiveness of such systems depends heavily on their implementation. In the early planning stage it is advantageous to deploy simple and transparent models to evaluate possible ways of implementation. For this purpose, the present study develops...

  6. Technical Work Plan for: Near Field Environment: Engineered System: Radionuclide Transport Abstraction Model Report

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Schreiber

    2006-12-08

    This technical work plan (TWP) describes work activities to be performed by the Near-Field Environment Team. The objective of the work scope covered by this TWP is to generate Revision 03 of EBS Radionuclide Transport Abstraction, referred to herein as the radionuclide transport abstraction (RTA) report. The RTA report is being revised primarily to address condition reports (CRs), to address issues identified by the Independent Validation Review Team (IVRT), to address the potential impact of transport, aging, and disposal (TAD) canister design on transport models, and to ensure integration with other models that are closely associated with the RTA report and being developed or revised in other analysis/model reports in response to IVRT comments. The RTA report will be developed in accordance with the most current version of LP-SIII.10Q-BSC and will reflect current administrative procedures (LP-3.15Q-BSC, ''Managing Technical Product Inputs''; LP-SIII.2Q-BSC, ''Qualification of Unqualified Data''; etc.), and will develop related Document Input Reference System (DIRS) reports and data qualifications as applicable in accordance with prevailing procedures. The RTA report consists of three models: the engineered barrier system (EBS) flow model, the EBS transport model, and the EBS-unsaturated zone (UZ) interface model. The flux-splitting submodel in the EBS flow model will change, so the EBS flow model will be validated again. The EBS transport model and validation of the model will be substantially revised in Revision 03 of the RTA report, which is the main subject of this TWP. The EBS-UZ interface model may be changed in Revision 03 of the RTA report due to changes in the conceptualization of the UZ transport abstraction model (a particle tracker transport model based on the discrete fracture transfer function will be used instead of the dual-continuum transport model previously used). Validation of the EBS-UZ interface model

  7. Modeling for Colloid and Chelator Facilitated Nuclide Transport in Radioactive Waste Disposal System

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2010-08-01

    A modeling study and development of a total system performance assessment (TSPA) program template, by which assessment of safety and performance for a radioactive waste repository with normal and/or abnormal nuclide release cases can be made has been developed. Colloid and chelator facilitated transport that is believed to result for faster nuclide transport in various mediabothinthegeosphereandbiospherehas been evaluated deterministically and probabilistically to demonstrate the capability of the template developed through this study. To this end colloid and chelator facilitated nuclide transport has been modeled rather strainghtforwardly with assumed data through this study by utilizing some powerful function offered by GoldSim. An evaluation in view of apparent influence of colloid and chelator on the nuclide transport in the various media in and around a repository system with data assumed are illustrated

  8. Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study

    Directory of Open Access Journals (Sweden)

    King John R

    2010-03-01

    Full Text Available Abstract Background Stochastic and asymptotic methods are powerful tools in developing multiscale systems biology models; however, little has been done in this context to compare the efficacy of these methods. The majority of current systems biology modelling research, including that of auxin transport, uses numerical simulations to study the behaviour of large systems of deterministic ordinary differential equations, with little consideration of alternative modelling frameworks. Results In this case study, we solve an auxin-transport model using analytical methods, deterministic numerical simulations and stochastic numerical simulations. Although the three approaches in general predict the same behaviour, the approaches provide different information that we use to gain distinct insights into the modelled biological system. We show in particular that the analytical approach readily provides straightforward mathematical expressions for the concentrations and transport speeds, while the stochastic simulations naturally provide information on the variability of the system. Conclusions Our study provides a constructive comparison which highlights the advantages and disadvantages of each of the considered modelling approaches. This will prove helpful to researchers when weighing up which modelling approach to select. In addition, the paper goes some way to bridging the gap between these approaches, which in the future we hope will lead to integrative hybrid models.

  9. A coupled hydrodynamic-hydrochemical modeling for predicting mineral transport in a natural acid drainage system.

    Science.gov (United States)

    Zegers Risopatron, G., Sr.; Navarro, L.; Montserrat, S., Sr.; McPhee, J. P.; Niño, Y.

    2017-12-01

    The geochemistry of water and sediments, coupled with hydrodynamic transport in mountainous channels, is of particular interest in central Chilean Andes due to natural occurrence of acid waters. In this paper, we present a coupled transport and geochemical model to estimate and understand transport processes and fate of minerals at the Yerba Loca Basin, located near Santiago, Chile. In the upper zone, water presentes low pH ( 3) and high concentrations of iron, aluminum, copper, manganese and zinc. Acidity and minerals are the consequence of water-rock interactions in hydrothermal alteration zones, rich in sulphides and sulphates, covered by seasonal snow and glaciers. Downstream, as a consequence of neutral to alkaline lateral water contributions (pH >7) along the river, pH increases and concentration of solutes decreases. The mineral transport model has three components: (i) a hydrodynamic model, where we use HEC-RAS to solve 1D Saint-Venant equations, (ii) a sediment transport model to estimate erosion and sedimentation rates, which quantify minerals transference between water and riverbed and (iii) a solute transport model, based on the 1D OTIS model which takes into account the temporal delay in solutes transport that typically is observed in natural channels (transient storage). Hydrochemistry is solved using PHREEQC, a software for speciation and batch reaction. Our results show that correlation between mineral precipitation and dissolution according to pH values changes along the river. Based on pH measurements (and according to literature) we inferred that main minerals in the water system are brochantite, ferrihydrite, hydrobasaluminite and schwertmannite. Results show that our model can predict the transport and fate of minerals and metals in the Yerba Loca Basin. Mineral dissolution and precipitation process occur for limited ranges of pH values. When pH values are increased, iron minerals (schwertmannite) are the first to precipitate ( 2.5

  10. Analysis and model testing of a Super Tiger Type B waste transport system in accident environments

    International Nuclear Information System (INIS)

    May, R.A.; Yoshimura, H.R.; Romesberg, L.E.; Joseph, B.J.

    1980-01-01

    Sandia National Laboratories is investigating the response of a Type B packaging containing drums of contact-handled transuranic waste (CH-TRU) as a part of a program to evaluate the adequacy of experimental and analytical methods for assessing the safety of waste transport systems in accident environments. A US NRC certified Type B package known as the Super Tiger was selected for the study. This overpack consists of inner and outer steel shells separated by rigid polyurethane foam and can be used for either highway or rail transportation. Tests using scale models of the vehicular system are being conducted in conjunction with computer analyses

  11. Adaptive neuro fuzzy system for modelling and prediction of distance pantograph catenary in railway transportation

    Science.gov (United States)

    Panoiu, M.; Panoiu, C.; Lihaciu, I. L.

    2018-01-01

    This research presents an adaptive neuro-fuzzy system which is used in the prediction of the distance between the pantograph and contact line of the electrical locomotives used in railway transportation. In railway transportation any incident that occurs in the electrical system can have major negative effects: traffic interrupts, equipment destroying. Therefore, a prediction as good as possible of such situations is very useful. In the paper was analyzing the possibility of modeling and prediction the variation of the distance between the pantograph and the contact line using intelligent techniques

  12. The Vehicles Traffic Flow Optimization in an Urban Transportation System by Using Simulation Modeling

    Directory of Open Access Journals (Sweden)

    Coman Marin-Marian

    2017-09-01

    Full Text Available The urban transportation system is characterized by the urban roads development and growth of road traffic, which leads, most of the time, to a series of congestions in the vehicles traffic. Consequently, due to a high time duration spent on the road traffic, the travel time from a location to another one could be very upsetting for any car drivers, or embarrassing for emergency services and vehicle convoys that carry goods or sensitive items. Those are mainly reasons for using simulation modeling to analyze and optimize the travel time of the road traffic actors in the an urban transportation system. This paper focuses on optimization vehicles flow in a crowded area of Sibiu city, by using agent-based modeling concept and AnyLogic simulation modeling software.

  13. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of the transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.

  14. Long-range Transport Modeling System and its Application over the Northeast Asia

    Directory of Open Access Journals (Sweden)

    Il-Soo Park

    2006-06-01

    Full Text Available A Comprehensive Acid Deposition Modeling (CADM was developed at the National Institute of Environmental Research (NIER and Yonsei University in South Korea in order to simulate the long-range transboundary air pollutants and regional acid deposition processes over the Northeast Asia. The modeling system CADM is composed of a real-time numerical weather forecasting model (RAMS and an Eulerian air pollution transport/dispersion/deposition model including gas- and aqueous-phase atmospheric chemical processes for the real-time acquisition of model results and prediction of acidic pollutants. The main objective of CADM is to facilitate an efficient assessment tools by providing the explicit information on the acidic deposition processes. This paper introduces the components of CADM, and describes the comprehensive atmospheric modeling system including atmospheric chemistry for the simulation of acidic processes over the Eastern Asia. The presently developed modeling system CADM has been used to simulate long-range transport over the Northeast Asian region during the spring season from March 5 to 15 2002. For the model validation, the simulated results are compared with both aircraft measurements and surface monitoring observations, and discussed for its operational consideration in Korea

  15. Toward a community coastal sediment transport modeling system: the second workshop

    Science.gov (United States)

    Sherwood, Christopher R.; Harris, Courtney K.; Geyer, W. Rockwell; Butman, Bradford

    2002-01-01

    Models for transport and the long-term fate of particles in coastal waters are essential for a variety of applications related to commerce, defense, public health, and the quality of the marine environment. Examples include: analysis of waste disposal and transport and the fate of contaminated materials; evaluation of burial rates for naval mines or archaeological artifacts; prediction of water-column optical properties; analysis of transport and the fate of biological particles; prediction of coastal flooding and coastal erosion; evaluation of impacts of sea-level or wave-climate changes and coastal development; planning for construction and maintenance of navigable waterways; evaluation of habitat for commercial fisheries; evaluation of impacts of natural or anthropogenic changes in coastal conditions on recreational activities; and design of intakes and outfalls for sewage treatment, cooling systems, and desalination plants.

  16. Systems Models for Transportation Problems : Part 2. The Social Physics for Modern Societies - the Role of the Cities

    Science.gov (United States)

    1977-09-01

    The objective of the research was to make use of a physically based social systems model, developed earlier, to study the determinants of city sizes and their national interactions. In particular, information on the role of a transportation system in...

  17. Heat transport modeling for the design of a low enthalpy open-loop system

    Directory of Open Access Journals (Sweden)

    Leonardo Piccinini

    2012-12-01

    Full Text Available A case study of hydrogeological characterization and heat transport modeling for the design of a low enthalpy system in the Province of Treviso (Italy is here presented. It is an open loop system that pumps and re-injects groundwater from a confined aquifer of the high Veneto plain. This type of systems is the most efficient in terms of yield, but its construction is highly conditioned by the availability of groundwater resource and by the environmental laws related to groundwater exploitation. Groundwater flow modeling with MODFLOW 2005 led to a good aquifer parameters estimation, by means of the quantitative calibration of a pumping test made on the pumping well and an observation piezometer. Then, with the heat transport modeling with SEAWAT 4 the distance between pumping well and re-injecting well has been optimized, avoiding so the thermal feedback effect. The lack of sitespecific data for dispersivity parameters has been solved through a sensitivity analysis on the main dispersivity parameters of heat transport. Finally, in order to comply with the environmental laws, a long-term forecasting simulation (duration of 20 years has been set up in order to evaluate the open loop system thermal impact on the aquifer. The obtained results put in evidence that the design of low enthalpy systems strongly needs a detailed hydrogeological characterization of the aquifer interested by the pumping and that numerical modeling is the most effective tool in support of the definition of the optimal distance between pumping and re-injecting wells in the open loop systems.

  18. Simulating Salt Movement using a Coupled Salinity Transport Model in a Variably Saturated Agricultural Groundwater System

    Science.gov (United States)

    Tavakoli Kivi, S.; Bailey, R. T.; Gates, T. K.

    2017-12-01

    Salinization is one of the major concerns in irrigated agricultural fields. Increasing salinity concentrations are due principally to a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems, and lead to decreasing crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, with saline river water diverted for application on irrigated fields. To assess the different strategies for salt remediation, we present a reactive transport model (UZF-RT3D) coupled with a salinity equilibrium chemistry module for simulating the fate and transport of salt ions in a variably-saturated agricultural groundwater system. The developed model accounts not for advection, dispersion, nitrogen and sulfur cycling, oxidation-reduction, sorption, complexation, ion exchange, and precipitation/dissolution of salt minerals. The model is applied to a 500 km2 region within the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization in the past few decades. The model is tested against salt ion concentrations in the saturated zone, total dissolved solid concentrations in the unsaturated zone, and salt groundwater loading to the Arkansas River. The model now can be used to investigate salinity remediation strategies.

  19. Self-Organized Transport System

    Science.gov (United States)

    2009-09-28

    This report presents the findings of the simulation model for a self-organized transport system where traffic lights communicate with neighboring traffic lights and make decisions locally to adapt to traffic conditions in real time. The model is insp...

  20. Modeling the Energy Use of a Connected and Automated Transportation System (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Brown, A.

    2014-07-01

    Early research points to large potential impacts of connected and automated vehicles (CAVs) on transportation energy use - dramatic savings, increased use, or anything in between. Due to a lack of suitable data and integrated modeling tools to explore these complex future systems, analyses to date have relied on simple combinations of isolated effects. This poster proposes a framework for modeling the potential energy implications from increasing penetration of CAV technologies and for assessing technology and policy options to steer them toward favorable energy outcomes. Current CAV modeling challenges include estimating behavior change, understanding potential vehicle-to-vehicle interactions, and assessing traffic flow and vehicle use under different automation scenarios. To bridge these gaps and develop a picture of potential future automated systems, NREL is integrating existing modeling capabilities with additional tools and data inputs to create a more fully integrated CAV assessment toolkit.

  1. A novel modelling approach to energy transport in a respiratory system.

    Science.gov (United States)

    Nithiarasu, Perumal; Sazonov, Igor

    2017-10-01

    In this paper, energy transport in a respiratory tract is modelled using the finite element method for the first time. The upper and lower respiratory tracts are approximated as a 1-dimensional domain with varying cross-sectional and surface areas, and the radial heat conduction in the tissue is approximated using the 1-dimensional cylindrical coordinate system. The governing equations are solved using 1-dimensional linear finite elements with convective and evaporative boundary conditions on the wall. The results obtained for the exhalation temperature of the respiratory system have been compared with the available animal experiments. The study of a full breathing cycle indicates that evaporation is the main mode of heat transfer, and convection plays almost negligible role in the energy transport. This is in-line with the results obtained from animal experiments. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Modelling of Transport Phenomena

    OpenAIRE

    K., Itoh; S.-I., Itoh; A., Fukuyama

    1993-01-01

    In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the apomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confineme...

  3. Ship Routing with Pickup and Delivery for a Maritime Oil Transportation System: MIP Model and Heuristics

    Directory of Open Access Journals (Sweden)

    Vinícius P. Rodrigues

    2016-09-01

    Full Text Available This paper examines a ship routing problem with pickup and delivery and time windows for maritime oil transportation, motivated by the production and logistics activities of an oil company operating in the Brazilian coast. The transportation costs from offshore platforms to coastal terminals are an important issue in the search for operational excellence in the oil industry, involving operations that demand agile and effective decision support systems. This paper presents an optimization approach to address this problem, based on a mixed integer programming (MIP model and a novel and exploratory application of two tailor-made MIP heuristics, based on relax-and-fix and time decomposition procedures. The model minimizes fuel costs of a heterogeneous fleet of oil tankers and costs related to freighting contracts. The model also considers company-specific constraints for offshore oil transportation. Computational experiments based on the mathematical models and the related MIP heuristics are presented for a set of real data provided by the company, which confirm the potential of optimization-based methods to find good solutions for problems of moderate sizes.

  4. Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System

    Energy Technology Data Exchange (ETDEWEB)

    Begovich, C.L.

    2002-10-28

    Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence on chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.

  5. Large-Scale Transport Model Uncertainty and Sensitivity Analysis: Distributed Sources in Complex Hydrogeologic Systems

    International Nuclear Information System (INIS)

    Sig Drellack, Lance Prothro

    2007-01-01

    The Underground Test Area (UGTA) Project of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is in the process of assessing and developing regulatory decision options based on modeling predictions of contaminant transport from underground testing of nuclear weapons at the Nevada Test Site (NTS). The UGTA Project is attempting to develop an effective modeling strategy that addresses and quantifies multiple components of uncertainty including natural variability, parameter uncertainty, conceptual/model uncertainty, and decision uncertainty in translating model results into regulatory requirements. The modeling task presents multiple unique challenges to the hydrological sciences as a result of the complex fractured and faulted hydrostratigraphy, the distributed locations of sources, the suite of reactive and non-reactive radionuclides, and uncertainty in conceptual models. Characterization of the hydrogeologic system is difficult and expensive because of deep groundwater in the arid desert setting and the large spatial setting of the NTS. Therefore, conceptual model uncertainty is partially addressed through the development of multiple alternative conceptual models of the hydrostratigraphic framework and multiple alternative models of recharge and discharge. Uncertainty in boundary conditions is assessed through development of alternative groundwater fluxes through multiple simulations using the regional groundwater flow model. Calibration of alternative models to heads and measured or inferred fluxes has not proven to provide clear measures of model quality. Therefore, model screening by comparison to independently-derived natural geochemical mixing targets through cluster analysis has also been invoked to evaluate differences between alternative conceptual models. Advancing multiple alternative flow models, sensitivity of transport predictions to parameter uncertainty is assessed through Monte Carlo simulations. The

  6. Macro-System Model for Hydrogen Energy Systems Analysis in Transportation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Diakov, V.; Ruth, M.; Sa, T. J.; Goldsby, M. E.

    2012-06-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  7. Solute transport modelling in a coupled water and heat flow system applied to cold regions hydrogeology

    Science.gov (United States)

    Frampton, Andrew; Destouni, Georgia

    2016-04-01

    In cold regions, flow in the unsaturated zone is highly dynamic with seasonal variability and changes in temperature, moisture, and heat and water fluxes, all of which affect ground freeze-thaw processes and influence transport of inert and reactive waterborne substances. In arctic permafrost environments, near-surface groundwater flow is further restricted to a relatively shallow and seasonally variable active layer, confined by perennially frozen ground below. The active layer is typically partially saturated with ice, liquid water and air, and is strongly dependent on seasonal temperature fluctuations, thermal forcing and infiltration patterns. Here there is a need for improved understanding of the mechanisms controlling subsurface solute transport in the partially saturated active layer zone. Studying solute transport in cold regions is relevant to improve the understanding of how natural and anthropogenic pollution may change as activities in arctic and sub-arctic regions increase. It is also particularly relevant for understanding how dissolved carbon is transported in coupled surface and subsurface hydrological systems under climate change, in order to better understand the permafrost-hydrological-carbon climate feedback. In this contribution subsurface solute transport under surface warming and degrading permafrost conditions is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport

  8. Transportation System Concept of Operations

    Energy Technology Data Exchange (ETDEWEB)

    N. Slater-Thompson

    2006-08-16

    level descriptions. of subsystems and components, and the Transportation System Requirements Document. Other program and system documents, plans, instructions, and detailed designs will be consistent with and informed by the Transportation System Concept of Operations. The Transportation System Concept of Operations is a living document, enduring throughout the OCRWM systems engineering lifecycle. It will undergo formal approval and controlled revisions as appropriate while the Transportation System matures. Revisions will take into account new policy decisions, new information available through system modeling, engineering investigations, technical analyses and tests, and the introduction of new technologies that can demonstrably improve system performance.

  9. UZ Colloid Transport Model

    International Nuclear Information System (INIS)

    McGraw, M.

    2000-01-01

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations

  10. Single-phase pump model for analysis of LMFBR heat transport systems

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.

    1978-05-01

    A single-phase pump model for transient and steady-state analysis of LMFBR heat transport systems is presented. Fundamental equations of the model are angular momentum balance to determine transient impeller speed and mass balance (including thermal expansion effects) to determine the level of sodium in the pump tank. Pump characteristics are modeled by homologous head and torque relations. All regions of pump operation are represented with reverse rotation allowed. The model also includes option for enthalpy rise calculations and pony motor operation. During steady state, the pump operating speed is determined by matching required head with total load in the circuit. Calculated transient results are presented for pump coastdown and double-ended pipe break accidents. The report examines the influence of frictional torque and specific speed on predicted response for the pump coastdown to natural circulation transient. The results for a double-ended pipe break accident indicate the necessity of including all regions of operation for pump characteristics

  11. Transportation System Requirements Document

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This Transportation System Requirements Document (Trans-SRD) describes the functions to be performed by and the technical requirements for the Transportation System to transport spent nuclear fuel (SNF) and high-level radioactive waste (HLW) from Purchaser and Producer sites to a Civilian Radioactive Waste Management System (CRWMS) site, and between CRWMS sites. The purpose of this document is to define the system-level requirements for Transportation consistent with the CRWMS Requirement Document (CRD). These requirements include design and operations requirements to the extent they impact on the development of the physical segments of Transportation. The document also presents an overall description of Transportation, its functions, its segments, and the requirements allocated to the segments and the system-level interfaces with Transportation. The interface identification and description are published in the CRWMS Interface Specification.

  12. Modelling the occurrence, transport and fate of pharmaceuticals in wastewater systems

    DEFF Research Database (Denmark)

    Snip, Laura J.P.; Flores Alsina, Xavier; Plósz, Benedek Gy

    2014-01-01

    This paper demonstrates how occurrence, transport and fate of pharmaceuticals at trace levels can be assessed when modelling wastewater treatment systems using two case studies. Firstly, two approaches based on: 1) phenomenology; and, 2) Markov Chains, are developed to describe the dynamics...... of pharmaceuticals with or without clear administration patterns. Additional simulations also show that sewer conditions might have an important effect on the behaviour of the generated compounds and their metabolites. The results demonstrate that different operating conditions in wastewater treatment plants can...

  13. Development of the living thing transportation systems worksheet on learning cycle model to increase student understanding

    Science.gov (United States)

    Rachmawati, E.; Nurohman, S.; Widowati, A.

    2018-01-01

    This study aims to know: 1) the feasibility LKPD review of aspects of the didactic requirements, construction requirements, technical requirements and compliance with the Learning Cycle. 2) Increase understanding of learners with Learning Model Learning Cycle in SMP N 1 Wates in the form LKPD. 3) The response of learners and educators SMP N 1 Wates to quality LKPD Transportation Systems Beings. This study is an R & D with the 4D model (Define, Design, Develop and Disseminate). Data were analyzed using qualitative analysis and quantitative analysis. Qualitative analysis in the form of advice description and assessment scores from all validates that was converted to a scale of 4. While the analysis of quantitative data by calculating the percentage of materializing learning and achievement using the standard gain an increased understanding and calculation of the KKM completeness evaluation value as an indicator of the achievement of students understanding. the results of this study yield LKPD IPA model learning Cycle theme Transportation Systems Beings obtain 108.5 total scores of a maximum score of 128 including the excellent category (A). LKPD IPA developed able to demonstrate an improved understanding of learners and the response of learners was very good to this quality LKPD IPA.

  14. An extended car-following model accounting for the average headway effect in intelligent transportation system

    Science.gov (United States)

    Kuang, Hua; Xu, Zhi-Peng; Li, Xing-Li; Lo, Siu-Ming

    2017-04-01

    In this paper, an extended car-following model is proposed to simulate traffic flow by considering average headway of preceding vehicles group in intelligent transportation systems environment. The stability condition of this model is obtained by using the linear stability analysis. The phase diagram can be divided into three regions classified as the stable, the metastable and the unstable ones. The theoretical result shows that the average headway plays an important role in improving the stabilization of traffic system. The mKdV equation near the critical point is derived to describe the evolution properties of traffic density waves by applying the reductive perturbation method. Furthermore, through the simulation of space-time evolution of the vehicle headway, it is shown that the traffic jam can be suppressed efficiently with taking into account the average headway effect, and the analytical result is consistent with the simulation one.

  15. Application of the "Behind the Barriers" resilience conceptual model to a flooded rail transport system

    Science.gov (United States)

    Gonzva, Michael; Barroca, Bruno

    2017-04-01

    The vulnerability of guided transport systems facing natural hazards is a burning issue for the urban risks management. Experience feedbacks on guided transport systems show they are particularly vulnerable to natural risks, especially flood risks. Besides, the resilience concept is used as a systemic approach for making an accurate analysis of the effect of these natural risks on rail guided transport systems. In this context, several conceptual models of resilience are elaborated for presenting the various possible resilience strategies applied to urban technical systems. One of this resilience conceptual model is the so-called "Behind The Barriers" model based on the identification of four complementary types of resilience: (i) cognitive resilience, linked to knowledge of the risk and the potential failures; (ii) functional resilience, representing the capacity of a system to protect itself from damage while continuing to provide services; (iii) correlative resilience, that characterises the relationship between service demand and the capacity of the system to respond; (iv) organisational resilience, expressing the capacity to mobilise an area much wider than the one affected. In addition to the work already published during the 7th Resilience Engineering Symposium, the purpose of this paper is to offer an application of a resilience conceptual model, the "Behind the Barriers" model, relating to a specific urban technical system, the public guided transport system, and facing a particular risk, a flood hazard. To do that, the paper is focused on a past incident on a French Intercity railway line as a studied case. Indeed, on June 18th and 19th 2013, the rise of the level of the "Gave de Pau" river, located in the municipality of Coarraze, caused many disorders on the intercity line serving the cities of Tarbes, Pau and Lourdes . Among the disorders caused by the flooding, about 100 meters of railway embankments were collapsed. With a constraint to reopen the

  16. Collaborative Transportation Systems

    OpenAIRE

    Piorkowski, Michal

    2010-01-01

    We propose a new class of applications for Intelligent Transportation Systems (ITSs), called collaborative transportation applications that aim at solving transportation problems such as congestion and parking. Specifically, we define two applications: SmartPark and SmartRide that leverage shortrange wireless communication. We quantify the potential benefits these collaborative transportation applications can offer to an individual and to the public. To this extent, we conduct both the realis...

  17. Analysis of TCE Fate and Transport in Karst Groundwater Systems Using Statistical Mixed Models

    Science.gov (United States)

    Anaya, A. A.; Padilla, I. Y.

    2012-12-01

    Karst groundwater systems are highly productive and provide an important fresh water resource for human development and ecological integrity. Their high productivity is often associated with conduit flow and high matrix permeability. The same characteristics that make these aquifers productive also make them highly vulnerable to contamination and a likely for contaminant exposure. Of particular interest are trichloroethylene, (TCE) and Di-(2-Ethylhexyl) phthalate (DEHP). These chemicals have been identified as potential precursors of pre-term birth, a leading cause of neonatal complications with a significant health and societal cost. Both of these contaminants have been found in the karst groundwater formations in this area of the island. The general objectives of this work are to: (1) develop fundamental knowledge and determine the processes controlling the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems, and (2) characterize transport processes in conduit and diffusion-dominated flow under base flow and storm flow conditions. The work presented herein focuses on the use of geo-hydro statistical tools to characterize flow and transport processes under different flow regimes, and their application in the analysis of fate and transport of TCE. Multidimensional, laboratory-scale Geo-Hydrobed models (GHM) were used for this purpose. The models consist of stainless-steel tanks containing karstified limestone blocks collected from the karst aquifer formation of northern Puerto Rico. The models integrates a network of sampling wells to monitor flow, pressure, and solute concentrations temporally and spatially. Experimental work entails injecting dissolved CaCl2 tracers and TCE in the upstream boundary of the GHM while monitoring TCE and tracer concentrations spatially and temporally in the limestone under different groundwater flow regimes. Analysis of the temporal and spatial concentration distributions of solutes

  18. Thermal transport in fractal systems

    DEFF Research Database (Denmark)

    Kjems, Jørgen

    1992-01-01

    Recent experiments on the thermal transport in systems with partial fractal geometry, silica aerogels, are reviewed. The individual contributions from phonons, fractons and particle modes, respectively, have been identified and can be described by quantitative models consistent with heat capacity...

  19. Intelligent Freigth Transport Systems

    DEFF Research Database (Denmark)

    Overø, Helene Martine; Larsen, Allan; Røpke, Stefan

    2009-01-01

    is to enhance the efficiency and lower the environmental impact in freight transport. In this paper, a pilot project involving real-time waste collection at a Danish waste collection company is described, and a solution approach is proposed. The problem corresponds to the dynamic version of the waste collection......The Danish innovation project entitled “Intelligent Freight Transport Systems” aims at developing prototype systems integrating public intelligent transport systems (ITS) with the technology in vehicles and equipment as well as the IT-systems at various transport companies. The objective...

  20. Numerical modeling of coupled thermal chemical reactive transport: simulation of a heat storage system

    Science.gov (United States)

    Shao, H.; Watanabe, N.; Singh, A. K.; Nagel, T.; Linder, M.; Woerner, A.; Kolditz, O.

    2012-12-01

    As a carbon-free energy supply technology, the operation time and final energy output of thermal solar power plants can be greatly extended if efficient thermal storage systems are applied. One of the proposed design of such system is to utilize reversible thermochemical reactions and its embedded reaction enthalpy, e.g. the Ca(OH)2/CaO hydration circle, in a fixed-bed gas-solid reactor (Schaube et al. 2011) The modeling of such a storage system involves multiple strongly-coupled physical and chemical processes. Seepage velocity is calculated by the nonlinear Forchheimer law. Gas phase density and viscosity are temperature, pressure and composition dependent. Also, heat transfer between gas and solid phases is largely influenced by the exothermal heat produced by the hydration of calcium oxide. Numerical solution of four governing PDEs include the mass balance, reactive transport, heat balance equations for gas and solid phases, which are implemented into the open source scientific software OpenGeoSys in a monolithic way. Based on it, a 2D numerical model, considering the boundary heat loss of the system, was set up to simulate the energy-storage and release circle. The high performance computing techniques were employed in two stages. First, the dynamic behavior of the heat storage system is simulated on a parallel platform. Second, a large number of processors are employed to perform sensitivity analysis, whereas the reaction rates and efficiency factor of heat transfer are parameterized so that the measured and simulated temperature profile fit with each other. The model showed that heat transfer coefficient between solid and gas phase, grain size of the filling material will influence the final performance greatly. By varying these factors, the calibrated model will be further applied to optimize the design of such energy storage system.

  1. Transport modeling and multivariate adaptive regression splines for evaluating performance of ASR systems in freshwater aquifers

    Science.gov (United States)

    Forghani, Ali; Peralta, Richard C.

    2017-10-01

    The study presents a procedure using solute transport and statistical models to evaluate the performance of aquifer storage and recovery (ASR) systems designed to earn additional water rights in freshwater aquifers. The recovery effectiveness (REN) index quantifies the performance of these ASR systems. REN is the proportion of the injected water that the same ASR well can recapture during subsequent extraction periods. To estimate REN for individual ASR wells, the presented procedure uses finely discretized groundwater flow and contaminant transport modeling. Then, the procedure uses multivariate adaptive regression splines (MARS) analysis to identify the significant variables affecting REN, and to identify the most recovery-effective wells. Achieving REN values close to 100% is the desire of the studied 14-well ASR system operator. This recovery is feasible for most of the ASR wells by extracting three times the injectate volume during the same year as injection. Most of the wells would achieve RENs below 75% if extracting merely the same volume as they injected. In other words, recovering almost all the same water molecules that are injected requires having a pre-existing water right to extract groundwater annually. MARS shows that REN most significantly correlates with groundwater flow velocity, or hydraulic conductivity and hydraulic gradient. MARS results also demonstrate that maximizing REN requires utilizing the wells located in areas with background Darcian groundwater velocities less than 0.03 m/d. The study also highlights the superiority of MARS over regular multiple linear regressions to identify the wells that can provide the maximum REN. This is the first reported application of MARS for evaluating performance of an ASR system in fresh water aquifers.

  2. EVALUATION OF THE STATE-OF-THE-ART CONTAMINATED SEDIMENT TRANSPORT AND FATE MODELING SYSTEM

    Science.gov (United States)

    Modeling approaches for evaluating the transport and fate of sediment and associated contaminants are briefly reviewed. The main emphasis is on: 1) the application of EFDC (Environmental Fluid Dynamics Code), the state-of-the-art contaminated sediment transport and fate public do...

  3. Hydrology and phosphorus transport simulation in a lowland polder by a coupled modeling system.

    Science.gov (United States)

    Yan, Renhua; Huang, Jiacong; Li, Lingling; Gao, Junfeng

    2017-08-01

    Modeling the rain-runoff processes and phosphorus transport processes in lowland polders is critical in finding reasonable measures to alleviate the eutrophication problem of downstream rivers and lakes. This study develops a lowland Polder Hydrology and Phosphorus modeling System (PHPS) by coupling the WALRUS-paddy model and an improved phosphorus module of a Phosphorus Dynamic model for lowland Polder systems (PDP). It considers some important hydrological characteristics, such as groundwater-unsaturated zone coupling, groundwater-surface water feedback, human-controlled irrigation and discharge, and detailed physical and biochemical cycles of phosphorus in surface water. The application of the model in the Jianwei polder shows that the simulated phosphorus matches well with the measured values. The high precision of this model combined with its low input data requirement and efficient computation make it practical and easy to the water resources management of Chinese polders. Parameter sensitivity analysis demonstrates that K uptake , c Q2 , c W1 , and c Q1 exert a significant effect on the modeled results, whereas K resuspensionMax , K settling , and K mineralization have little effect on the modeled total phosphorus. Among the three types of uncertainties (i.e., parameter, initial condition, and forcing uncertainties), forcing uncertainty produces the strongest effect on the simulated phosphorus. Based on the analysis result of annual phosphorus balance when considering the high import from irrigation and fertilization, lowland polder is capable of retaining phosphorus and reducing phosphorus export to surrounding aquatic ecosystems because of their special hydrological regulation regime. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Development of a Techno-economic Model of Intelligent Transportation System (ITS) for Deployment in Ghana

    DEFF Research Database (Denmark)

    Adjin, Daniel Michael Okwabi; Tadayoni, Reza

    2011-01-01

    The concept of Intelligent Transportation System (ITS) is about the development and deployment of advanced Traffic Management Systems, Traveler Information Systems, Commercial Vehicle Operations, Public and Private Transportation Systems, and Rural Transportation Systems. Several key technologies......, the paper looks at how these modern technologies can be deployed in developing countries, with emphasis on wireless communications applications which will enable developing countries to take off smoothly and progress into their emerging economies successfully. In this paper we have looked at the key....... The results show that deployment of Intelligent Vehicle Tracking Technology (IVTT) will address the problems of inefficiencies experienced in the Ghanaian road transport haulage tracking industry. Research for ITS development and eployment in these countries should be cost effective....

  5. TRANSPORTATION SYSTEM REQUIREMENTS DOCUMENT

    International Nuclear Information System (INIS)

    2004-01-01

    This document establishes the Transportation system requirements for the U.S. Department of Energy's (DOE's) Civilian Radioactive Waste Management System (CRWMS). These requirements are derived from the Civilian Radioactive Waste Management System Requirements Document (CRD). The Transportation System Requirements Document (TSRD) was developed in accordance with LP-3.1Q-OCRWM, Preparation, Review, and Approval of Office of National Transportation Level-2 Baseline Requirements. As illustrated in Figure 1, the TSRD forms a part of the DOE Office of Civilian Radioactive Waste Management (OCRWM) Technical Baseline

  6. Diagnostic Evaluation of Ozone Production and Horizontal Transport in a Regional Photochemical Air Quality Modeling System

    Science.gov (United States)

    A diagnostic model evaluation effort has been performed to focus on photochemical ozone formation and the horizontal transport process since they strongly impact the temporal evolution and spatial distribution of ozone (O3) within the lower troposphere. Results from th...

  7. Improving transportation systems management and operations (TSM&O), capability maturity model workshop white paper : collaboration.

    Science.gov (United States)

    2015-04-01

    Research done through the Second Strategic Highway Research Program (SHRP 2) determined : that agencies with the most effective transportation systems management and operations : (TSM&O) activities were differentiated not by budgets or technical skil...

  8. Improving transportation systems management and operations (TSM&O), capability maturity model workshop white paper : culture.

    Science.gov (United States)

    2015-04-01

    Research done through the Second Strategic Highway Research Program (SHRP 2) determined : that agencies with the most effective transportation systems management and operations : (TSM&O) activities were differentiated not by budgets or technical skil...

  9. Preliminary scenarios and nuclide transport models for low-and intermediate-level repository system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Han, Kyong Won; Hwang, Yong Soo; Kang, Chul Hyung

    2001-02-01

    Through the study 11 scenarios with which nuclide release from the low- and intermediate-level radioactive waste could be simulated and assessed are selected, based upon FEPs identified. For each scenario, some practical methodologies as well as mathematical models involved in modling of nuclide transport in various media are also proposed. It is considered that such methodologies can play a great role when real repository system is constructed and operated in very near future. Real repository system is anticipated not to be quite different with the repository system postulated through this study. Even though there shows very complicated features for relevant parameters associated with various phisical-, geohydrological-, and geochemical situation and even human society as well, it is very necessary to propose the methodologies for a quantitative assessment of the performance of the repository in order to use them as a template on the practical point of view of preliminary safety assessment. Mathematical models proposed could be easily adopted by such common computer codes as, for example, MIMOSA and MASCOT-K.

  10. An analytical model for predicting transport in a coupled vadose/phreatic system

    International Nuclear Information System (INIS)

    Tomasko, D.

    1997-05-01

    A simple analytical model is presented for predicting the transport of a contaminant in both the unsaturated (vadose) and saturated (phreatic) zones following a surficial spill. The model incorporates advection, dispersion, adsorption, and first-order decay in both zones and couples the transport processes at the water table. The governing equation is solved by using the method of Laplace transforms, with numerical inversion of the Laplace space equation for concentration. Because of the complexity of the functional form for the Laplace space solution, a numerical methodology using the real and imaginary parts of a Fourier series was implemented. To reduce conservatism in the model, dilution at the water table was also included. Verification of the model is demonstrated by its ability to reproduce the source history at the surface and to replicate appropriate one-dimensional transport through either the vadose or phreatic zone. Because of its simplicity and lack of detailed input data requirements, the model is recommended for scoping calculations

  11. Noise-tolerant inverse analysis models for nondestructive evaluation of transportation infrastructure systems using neural networks

    Science.gov (United States)

    Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper

    2013-09-01

    The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement

  12. Coal transporting systems

    International Nuclear Information System (INIS)

    Vasilevski, Goce; Sazdov, Dushko; Tasevski, Apostol

    1999-01-01

    Installation of transporting systems in coal open pits in Macedonia was connected with construction and purchasing of the equipment from foreign companies. During 1998 Electric Power Company of Macedonia in connection with needs of the Oslomej Thermal Power Plant and delivery conditions,decided to give this task to domestic companies. This paper presents the planning activities an the implementation of the new coal transporting system. (Author)

  13. Smart vehicular transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Little, C.Q.; Wilson, C.W.

    1997-05-01

    This work builds upon established Sandia intelligent systems technology to develop a unique approach for the integration of intelligent system control into the US Highway and urban transportation systems. The Sandia developed concept of the COPILOT controller integrates a human driver with computer control to increase human performance while reducing reliance on detailed driver attention. This research extends Sandia expertise in sensor based, real-time control of robotics systems to high speed transportation systems. Knowledge in the form of maps and performance characteristics of vehicles provides the automatic decision making intelligence needed to plan optimum routes, maintain safe driving speeds and distances, avoid collisions, and conserve fuel.

  14. Probabilistic transport models for fusion

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Carreras, B.A.; Lynch, V.E.; Sanchez, R.

    2005-01-01

    A generalization of diffusive (Fickian) transport is considered, in which particle motion is described by probability distributions. We design a simple model that includes a critical mechanism to switch between two transport channels, and show that it exhibits various interesting characteristics, suggesting that the ideas of probabilistic transport might provide a framework for the description of a range of unusual transport phenomena observed in fusion plasmas. The model produces power degradation and profile consistency, as well as a scaling of the confinement time with system size reminiscent of the gyro-Bohm/Bohm scalings observed in fusion plasmas, and rapid propagation of disturbances. In the present work we show how this model may also produce on-axis peaking of the profiles with off-axis fuelling. It is important to note that the fluid limit of a simple model like this, characterized by two transport channels, does not correspond to the usual (Fickian) transport models commonly used for modelling transport in fusion plasmas, and behaves in a fundamentally different way. (author)

  15. Development of the Model of Decision Support for Alternative Choice in the Transportation Transit System

    Directory of Open Access Journals (Sweden)

    Kabashkin Igor

    2015-02-01

    Full Text Available The decision support system is one of the instruments for choosing the most effective decision for cargo owner in constant fluctuated business environment. The objective of this Paper is to suggest the multiple-criteria approach for evaluation and choice the alternatives of cargo transportation in the large scale transportation transit system for the decision makers - cargo owners. The large scale transportation transit system is presented by directed finite graph. Each of 57 alternatives is represented by the set of key performance indicators Kvi and set of parameters Paj. There has been developed a two-level hierarchy system of criteria with ranging expert evaluations based on Analytic Hierarchy Process Method. The best alternatives were suggested according to this method.

  16. Transportable criticality alarm system

    International Nuclear Information System (INIS)

    Clem, W.E.

    1988-09-01

    The Transportable Criticality Alarm System was developed at the Hanford Site in 1982 to comply with the requirements of US Department of Energy Order DOE 5480.1, 12/18/80, and ANSI/ANS-8.3- 1979. The portable unit that it replaced failed to comply with the new requirements in that it did not provide the necessary warning of malfunctions, nor did it provide the Hanford Site standard criticality alarm signal. Modern technology allowed the Transportable Criticality Alarm System to comply with the criticality requirements cited and to incorporate other features that make it more usable, maintainable, and reliable. The Transportable Criticality Alarm System (TCAS) provides temporary criticality coverage in manned areas where the facility criticality alarm system is not operable. This gamma radiation-sensitive system has been in use for the past 6 yr at the Hanford Site. 2 refs., 4 figs., 1 tab

  17. Application of the Geophysical Scale Multi-Block Transport Modeling System to Hydrodynamic Forcing of Dredged Material Placement Sediment Transport within the James River Estuary

    Science.gov (United States)

    Kim, S. C.; Hayter, E. J.; Pruhs, R.; Luong, P.; Lackey, T. C.

    2016-12-01

    The geophysical scale circulation of the Mid Atlantic Bight and hydrologic inputs from adjacent Chesapeake Bay watersheds and tributaries influences the hydrodynamics and transport of the James River estuary. Both barotropic and baroclinic transport govern the hydrodynamics of this partially stratified estuary. Modeling the placement of dredged sediment requires accommodating this wide spectrum of atmospheric and hydrodynamic scales. The Geophysical Scale Multi-Block (GSMB) Transport Modeling System is a collection of multiple well established and USACE approved process models. Taking advantage of the parallel computing capability of multi-block modeling, we performed one year three-dimensional modeling of hydrodynamics in supporting simulation of dredged sediment placements transport and morphology changes. Model forcing includes spatially and temporally varying meteorological conditions and hydrological inputs from the watershed. Surface heat flux estimates were derived from the National Solar Radiation Database (NSRDB). The open water boundary condition for water level was obtained from an ADCIRC model application of the U. S. East Coast. Temperature-salinity boundary conditions were obtained from the Environmental Protection Agency (EPA) Chesapeake Bay Program (CBP) long-term monitoring stations database. Simulated water levels were calibrated and verified by comparison with National Oceanic and Atmospheric Administration (NOAA) tide gage locations. A harmonic analysis of the modeled tides was performed and compared with NOAA tide prediction data. In addition, project specific circulation was verified using US Army Corps of Engineers (USACE) drogue data. Salinity and temperature transport was verified at seven CBP long term monitoring stations along the navigation channel. Simulation and analysis of model results suggest that GSMB is capable of resolving the long duration, multi-scale processes inherent to practical engineering problems such as dredged material

  18. Towards an integrated systems-based modelling framework for drug transport and its effect on tumour cells

    Science.gov (United States)

    2014-01-01

    Background A systematic understanding of chemotherapeutic influence on solid tumours is highly challenging and complex as it encompasses the interplay of phenomena occurring at multiple scales. It is desirable to have a multiscale systems framework capable of disentangling the individual roles of multiple contributing factors, such as transport and extracellular factors, and purely intracellular factors, as well as the interactions among these factors. Based on a recently developed systems-based modelling framework, we have developed a coupled system in order to further elucidate the role of drug transport, and its interplay with cellular signalling by incorporating intra- and extra-vascular drug transport in tumour, dynamic descriptions of intracellular signalling and tumour cell density dynamics. Results Different aspects of the interaction between transport and cell signalling and the effects of transport parameters have been investigated in silico. Limited drug penetration is found to be a major constraint in inducing drug effect; many aspects of the interaction of transport with cell signalling are independent of the details of cell signalling. A sensitivity analysis indicates that the effect of drug diffusivity depends on the balance between interstitial drug transport and the specific requirement for triggering apoptosis (governed by highly nonlinear signalling networks), suggesting that the effect of drug diffusivity in such cases must be considered in conjunction with descriptions of cellular dynamics. Conclusions The modelling framework developed in this study provides qualitative and mechanistic insights into the effect of drug on tumour cells. It provides an in silico experimental platform to investigate the interplay between extracellular factors (e.g. transport) and intracellular factors. Such a platform is essential to understanding the individual and combined effects of transport and cellular factors in solid tumour. PMID:24764492

  19. The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS – Part 1: Model description and evaluation

    Directory of Open Access Journals (Sweden)

    S. R. Freitas

    2009-04-01

    Full Text Available We introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS. CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and from biomass burning aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostics include the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between the simulated biomass burning aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS, with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM2.5 surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosondes and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained.

  20. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This Appendix consists of two unpublished reports produced by Energy and Environmental Analysis, Inc., under contract to Oak Ridge National Laboratory. These two reports formed the basis for the subsequent development of the Fuel Economy Model described in Volume 1. They are included in order to document more completely the efforts undertaken to construct a comprehensive model of automobile fuel economy. The supplemental reports are as follows: Supplement 1--Documentation Attributes of Technologies to Improve Automotive Fuel Economy; Supplement 2--Analysis of the Fuel Economy Boundary for 2010 and Comparison to Prototypes.

  1. A SIL quantification approach based on an operating situation model for safety evaluation in complex guided transportation systems

    International Nuclear Information System (INIS)

    Beugin, J.; Renaux, D.; Cauffriez, L.

    2007-01-01

    Safety analysis in guided transportation systems is essential to avoid rare but potentially catastrophic accidents. This article presents a quantitative probabilistic model that integrates Safety Integrity Levels (SIL) for evaluating the safety of such systems. The standardized SIL indicator allows the safety requirements of each safety subsystem, function and/or piece of equipment to be specified, making SILs pivotal parameters in safety evaluation. However, different interpretations of SIL exist, and faced with the complexity of guided transportation systems, the current SIL allocation methods are inadequate for the task of safety assessment. To remedy these problems, the model developed in this paper seeks to verify, during the design phase of guided transportation system, whether or not the safety specifications established by the transport authorities allow the overall safety target to be attained (i.e., if the SIL allocated to the different safety functions are sufficient to ensure the required level of safety). To meet this objective, the model is based both on the operating situation concept and on Monte Carlo simulation. The former allows safety systems to be formalized and their dynamics to be analyzed in order to show the evolution of the system in time and space, and the latter make it possible to perform probabilistic calculations based on the scenario structure obtained

  2. Improving transportation systems management and operations (TSM&O), capability maturity model workshop white paper : systems and technology.

    Science.gov (United States)

    2015-04-01

    Research done through the Second Strategic Highway Research Program (SHRP 2) determined : that agencies with the most effective transportation systems management and operations : (TSM&O) activities were differentiated not by budgets or technical skil...

  3. Analysis and comparison of transportation security systems

    International Nuclear Information System (INIS)

    Rinne, R.L.

    1976-05-01

    The role of modeling in the analysis of transportation security systems is described. Various modeling approaches are outlined. The conflict model developed in Sandia Laboratories' Transportation Mode Analysis for the NRC Special Safeguards Study is used to demonstrate the capability of models to determine system sensitivities and compare alternatives

  4. Calculating the Contribution Rate of Intelligent Transportation System in Improving Urban Traffic Smooth Based on Advanced DID Model

    Directory of Open Access Journals (Sweden)

    Ming-wei Li

    2015-01-01

    Full Text Available Recent years have witnessed the rapid development of intelligent transportation system around the world, which helps to relieve urban traffic congestion problems. For instance, many mega-cities in China have devoted a large amount of money and resources to the development of intelligent transportation system. This poses an intriguing and important issue: how to measure and quantify the contribution of intelligent transportation system to the urban city, which is still a puzzle. This paper proposes a matching difference-in-difference model to calculate the contribution rate of intelligent transportation system on traffic smoothness. Within the model, the main effect indicators of traffic smoothness are first identified, and then the evaluation index system is built, and finally the ideas of the matching pool are introduced. The proposed model is illustrated in Guangzhou, China (capital city of Guangdong province. The results show that introduction of ITS contributes 9.25% to the improvement of traffic smooth in Guangzhou. Also, the research explains the working mechanism of how ITS improves urban traffic smooth. Eventually, some strategy recommendations are put forward to improve urban traffic smooth.

  5. Laboratory observations and mathematical modeling of colloid-facilitated contaminant transport in chemically heterogeneous systems

    Science.gov (United States)

    Saiers, James E.

    2002-04-01

    In the work reported here, I examine colloid-facilitated solute transport through a natural porous medium that exhibits grain-scale heterogeneity in chemical composition. I conducted six column experiments using the contaminant hydroxyatrazine (HA) and either homogeneous clay-colloid suspensions or mixtures of clay colloids and dissolved organic matter. The transport of colloids composed of illite and montmorillonite, although not conservative, is only slightly affected by rate-limited mass transfer reactions with the oxide-coated aquifer material. Coinjection of HA with monomineralogic suspensions of illite colloids produces modest increases in effluent concentrations of HA relative to experiments performed with colloid-free influent solutions. Montmorillonite colloids have a much higher capacity to bind HA than illite colloids and substantially increase the transport rate of HA in the column experiments. Suwannee River humic acid (SRHA) does not strongly complex aqueous phase HA, but its addition to column influent mixtures that contain HA and montmorillonite suppresses HA adsorption to the clay colloids and promotes a decline in HA mobility. A model for colloid-facilitated transport, formulated to account for nonuniformity in the kinetics of colloid deposition and HA adsorption, closely describes HA transport in experiments performed with monomineralogic clay-colloid suspensions, heterogeneous suspensions made of both illite and montmorillonite, and mixtures of montmorillonite and SRHA.

  6. Optimal concentrations in transport systems

    Science.gov (United States)

    Jensen, Kaare H.; Kim, Wonjung; Holbrook, N. Michele; Bush, John W. M.

    2013-01-01

    Many biological and man-made systems rely on transport systems for the distribution of material, for example matter and energy. Material transfer in these systems is determined by the flow rate and the concentration of material. While the most concentrated solutions offer the greatest potential in terms of material transfer, impedance typically increases with concentration, thus making them the most difficult to transport. We develop a general framework for describing systems for which impedance increases with concentration, and consider material flow in four different natural systems: blood flow in vertebrates, sugar transport in vascular plants and two modes of nectar drinking in birds and insects. The model provides a simple method for determining the optimum concentration copt in these systems. The model further suggests that the impedance at the optimum concentration μopt may be expressed in terms of the impedance of the pure (c = 0) carrier medium μ0 as μopt∼2αμ0, where the power α is prescribed by the specific flow constraints, for example constant pressure for blood flow (α = 1) or constant work rate for certain nectar-drinking insects (α = 6). Comparing the model predictions with experimental data from more than 100 animal and plant species, we find that the simple model rationalizes the observed concentrations and impedances. The model provides a universal framework for studying flows impeded by concentration, and yields insight into optimization in engineered systems, such as traffic flow. PMID:23594815

  7. Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture-clay matrix system

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Broholm, Mette Martina; Binning, Philip John

    2010-01-01

    Clayey tills contaminated with chlorinated solvents are a threat to groundwater and are difficult to remediate. A numerical model is developed for assessing leaching processes and for simulating the remediation via enhanced anaerobic dechlorination. The model simulates the transport...... of a contaminant in a single fracture-clay matrix system coupled with a reactive model for anaerobic dechlorination. The model takes into account microbially driven anaerobic dechlorination, where sequential Monod kinetics with competitive inhibition is used to model the reaction rates, and degradation...... to the physical processes, mainly diffusion in the matrix, than to the biogeochemical processes, when dechlorination is assumed to take place in a limited reaction zone only. The inclusion of sequential dechlorination in clay fracture transport models is crucial, as the contaminant flux to the aquifer...

  8. Swine models for cardiovascular research: a low stress transport and restraint system for large swine.

    Science.gov (United States)

    Lighty, G W; Spear, R S; Karatay, M C; Hare, C L; Carlson, R J

    1992-04-01

    A restraint and transport system was developed for handling large swine during cardiovascular research studies. The major design criteria provided for comfortable, low stress restraint of the swine, safety for laboratory personnel and ability to perform a wide variety of hemodynamic and echocardiographic measurements in the standing, supported standing and sedated, or in Panepinto sling positions. A head gate is provided for venipuncture procedures, and an auxiliary feeding and watering front panel can replace the head gate for use of the system as a post-operative "recovery room". Using this system animals weighing 22 to 150 kg can be easily managed.

  9. Mathematic Modeling and Performance Analysis of an Adaptive Congestion Control in Intelligent Transportation Systems

    OpenAIRE

    Naja, Rola; Université de Versailles

    2015-01-01

    In this paper, we develop a preventive congestion control mechanism applied at highway entrances and devised for Intelligent Transportation Systems (ITS). The proposed mechanism provides a vehicular admission control, regulates input traffic and performs vehicular traffic shaping. Our congestion control mechanism includes two classes of vehicles and is based on a specific priority ticket pool scheme with queue-length threshold scheduling policy, tailored to vehicular networks. In an attempt t...

  10. Rail transport systems approach

    CERN Document Server

    2017-01-01

    This book shows how the systems approach is employed by scientists in various countries to solve specific problems concerning railway transport. In particular, the book describes the experiences of scientists from Romania, Germany, the Czech Republic, the UK, Russia, Ukraine, Lithuania and Poland. For many of these countries there is a problem with the historical differences between the railways. In particular, there are railways with different rail gauges, with different signaling and communication systems, with different energy supplies and, finally, with different political systems, which are reflected in the different approaches to the management of railway economies. The book’s content is divided into two main parts, the first of which provides a systematic analysis of individual means of providing and maintaining rail transport. In turn, the second part addresses infrastructure and management development, with particular attention to security issues. Though primarily written for professionals involved...

  11. Modeling reactive transport in non-ideal aqueous-solid solution system

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Haibing, E-mail: haibing.shao@ufz.de [UFZ-Helmholtz Centre for Environmental Research, Department Environmental Informatics, Permoserstrasse 15, 04318 Leipzig (Germany)] [Applied Environmental System Analysis, TU Dresden, Helmholtzstrasse 10, 01069 Dresden (Germany); Dmytrieva, Svitlana V. [SSC Technocentre, Nauky Prosp. 46, 03650 Kyiv (Ukraine)] [Laboratory for Waste Management, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Kolditz, Olaf [UFZ-Helmholtz Centre for Environmental Research, Department Environmental Informatics, Permoserstrasse 15, 04318 Leipzig (Germany)] [Applied Environmental System Analysis, TU Dresden, Helmholtzstrasse 10, 01069 Dresden (Germany); Kulik, Dmitrii A.; Pfingsten, Wilfried; Kosakowski, Georg [Laboratory for Waste Management, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2009-07-15

    The numerical simulation of reactive mass transport processes in complex geochemical environments is an important tool for the performance assessment of future waste repositories. A new combination of the multi-component mass transport code GeoSys/RockFlow and the Gibbs Energy Minimization (GEM) equilibrium solver GEM-Selektor is used to calculate the accurate equilibrium of multiple non-ideal solid solutions which are important for the immobilization of radionuclides such as Ra. The coupled code is verified by a widely used benchmark of dissolution-precipitation in a calcite-dolomite system. A more complex application shown in this paper is the transport of Ra in the near-field of a nuclear waste repository. Depending on the initial inventories of Sr, Ba and sulfate, non-ideal sulfate and carbonate solid solutions can fix mobile Ra cations. Due to the complex geochemical interactions, the reactive transport simulations can describe the migration of Ra in a much more realistic way than using the traditional linear K{sub D} approach only.

  12. Demand modeling of innovative transport system PRT at the Rotterdam port area

    NARCIS (Netherlands)

    Li, H.; Chen, Y.; Li, J.; Zuylen, H.J. van; Arem, B. van

    2010-01-01

    Demand modeling for a newly built transit system is a major issue for the feasibility study. The complexity for such demand modeling stems from the complicated multi-modal trip making by travelers. This paper proposes to build an innovative transit system PRT in the east port area of Rotterdam to

  13. Zebrafish as a visual and dynamic model to study the transport of nanosized drug delivery systems across the biological barriers.

    Science.gov (United States)

    Li, Ye; Miao, Xiaoqing; Chen, Tongkai; Yi, Xiang; Wang, Ruibing; Zhao, Haitao; Lee, Simon Ming-Yuen; Wang, Xueqing; Zheng, Ying

    2017-08-01

    With the wide application of nanotechnology to drug delivery systems, a simple, dynamic and visual in vivo model for high-throughput screening of novel formulations with fluorescence markers across biological barriers is desperately needed. In vitro cell culture models have been widely used, although they are far from a complimentary in vivo system. Mammalian animal models are common predictive models to study transport, but they are costly and time consuming. Zebrafish (Danio rerio), a small vertebrate model, have the potential to be developed as an "intermediate" model for quick evaluations. Based on our previously established coumarin 6 nanocrystals (C6-NCs), which have two different sizes, the present study investigates the transportation of C6-NCs across four biological barriers, including the chorion, blood brain barrier (BBB), blood retinal barrier (BRB) and gastrointestinal (GI) barrier, using zebrafish embryos and larvae as in vivo models. The biodistribution and elimination of C6 from different organs were quantified in adult zebrafish. The results showed that compared to 200nm C6-NCs, 70nm C6-NCs showed better permeability across these biological barriers. A FRET study suggested that intact C6-NCs together with the free dissolved form of C6 were absorbed into the larval zebrafish. More C6 was accumulated in different organs after incubation with small sized NCs via lipid raft-mediated endocytosis in adult zebrafish, which is consistent with the findings from in vitro cell monolayers and the zebrafish larvae model. C6-NCs could be gradually eliminated in each organ over time. This study demonstrated the successful application of zebrafish as a simple and dynamic model to simultaneously assess the transport of nanosized drug delivery systems across several biological barriers and biodistribution in different organs, especially in the brain, which could be used for central nervous system (CNS) drug and delivery system screening. Copyright © 2017 Elsevier B

  14. Modeling Cobble Transport in a Fluvial System for Provenance Studies: The Cement Mixer Experiment

    Science.gov (United States)

    Pound, K. S.; Heldberg, H.

    2016-12-01

    In order to model the rate at which cobbles of resistant rock are abraded during transport, a set of 17 cubes ( 13 cm edges) of igneous and metamorphic rock (granite, syenite, tonalite, gabbro, diorite, gneiss, schist) were placed in a cement mixer with a 248 liter (9 ft3) drum together with quartz sand and water ballast; 20-28 liters of water and 1-2 liters of quartz sand were used. The cement mixer was run in 1-hour increments, with the rocks traveling between 1.62 and 2.11 km/hr. The mass and volume of each `cube' as well as their long- intermediate- and short- axes were measured each hour. Fragmentation, rounding and other abrasion-related features were also recorded. The experiment was run in order to provide data that would assist in provenance studies in ancient conglomerates. The amount of rounding and the particle size is typically used as a proxy for distance travelled from source. Preliminary results show the cubes to be reduced to 35% - 80% of their original mass, and 36%-80% of their original volume after 7 hours (11.34 km - 14.74 km) of transport. In order to determine transport distances and rates in a gravel-bedded river, flow rates of 100 cm/sec - 350 cm/sec ( 3.28 - 11.48 ft/sec) are required to transport cobbles via saltation. Stream data from five Alaskan gravel-bedded rivers are used to approximate the likely transport distances associated with moderately- to well-rounded cobbles and pebbles.

  15. Erosion, Transportation, and Deposition on Outer Solar System Satellites: Landform Evolution Modeling Studies

    Science.gov (United States)

    Moore, Jeffrey Morgan; Howard, Alan D.; Schenk, Paul M.

    2013-01-01

    Mass movement and landform degradation reduces topographic relief by moving surface materials to a lower gravitational potential. In addition to the obvious role of gravity, abrasive mechanical erosion plays a role, often in combination with the lowering of cohesion, which allows disaggregation of the relief-forming material. The identification of specific landform types associated with mass movement and landform degradation provides information about local sediment particle size and abundance and transportation processes. Generally, mass movements can be classified in terms of the particle sizes of the transported material and the speed the material moved during transport. Most degradation on outer planet satellites appears consistent with sliding or slumping, impact erosion, and regolith evolution. Some satellites, such as Callisto and perhaps Hyperion and Iapetus, have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. A variant on this process is thermally driven frost segregation as seen on all three icy Galilean satellites and perhaps elsewhere. Titan is unique among outer planet satellites in that Aeolian and fluvial processes also operate to erode, transport, and deposit material. We will evaluate the sequence and extent of various landform-modifying erosional and volatile redistribution processes that have shaped these icy satellites using a 3-D model that simulates the following surface and subsurface processes: 1) sublimation and re-condensation of volatiles; 2) development of refractory lag deposits; 3) disaggregation and downward sloughing of surficial material; 4) radiative heating/cooling of the surface (including reflection, emission, and shadowing by other surface elements); 5) thermal diffusion; and 6) vapor diffusion. The model will provide explicit simulations of landform development and thusly predicts the topographic and volatile evolution of the surface

  16. Thermodynamically Constrained Averaging Theory Approach for Modeling Flow and Transport Phenomena in Porous Medium Systems: 5. Single-Fluid-Phase Transport.

    Science.gov (United States)

    Gray, William G; Miller, Cass T

    2009-05-01

    This work is the fifth in a series of papers on the thermodynamically constrained averaging theory (TCAT) approach for modeling flow and transport phenomena in multiscale porous medium systems. The general TCAT framework and the mathematical foundation presented in previous works are used to develop models that describe species transport and single-fluid-phase flow through a porous medium system in varying physical regimes. Classical irreversible thermodynamics formulations for species in fluids, solids, and interfaces are developed. Two different approaches are presented, one that makes use of a momentum equation for each entity along with constitutive relations for species diffusion and dispersion, and a second approach that makes use of a momentum equation for each species in an entity. The alternative models are developed by relying upon different approaches to constrain an entropy inequality using mass, momentum, and energy conservation equations. The resultant constrained entropy inequality is simplified and used to guide the development of closed models. Specific instances of dilute and non-dilute systems are examined and compared to alternative formulation approaches.

  17. SUBSURFACE EMPLACEMENT TRANSPORTATION SYSTEM

    International Nuclear Information System (INIS)

    Wilson, T.; Novotny, R.

    1999-01-01

    The objective of this analysis is to identify issues and criteria that apply to the design of the Subsurface Emplacement Transportation System (SET). The SET consists of the track used by the waste package handling equipment, the conductors and related equipment used to supply electrical power to that equipment, and the instrumentation and controls used to monitor and operate those track and power supply systems. Major considerations of this analysis include: (1) Operational life of the SET; (2) Geometric constraints on the track layout; (3) Operating loads on the track; (4) Environmentally induced loads on the track; (5) Power supply (electrification) requirements; and (6) Instrumentation and control requirements. This analysis will provide the basis for development of the system description document (SDD) for the SET. This analysis also defines the interfaces that need to be considered in the design of the SET. These interfaces include, but are not limited to, the following: (1) Waste handling building; (2) Monitored Geologic Repository (MGR) surface site layout; (3) Waste Emplacement System (WES); (4) Waste Retrieval System (WRS); (5) Ground Control System (GCS); (6) Ex-Container System (XCS); (7) Subsurface Electrical Distribution System (SED); (8) MGR Operations Monitoring and Control System (OMC); (9) Subsurface Facility System (SFS); (10) Subsurface Fire Protection System (SFR); (11) Performance Confirmation Emplacement Drift Monitoring System (PCM); and (12) Backfill Emplacement System (BES)

  18. Reactive transport modeling of subsurface arsenic removal systems in rural Bangladesh.

    Science.gov (United States)

    Rahman, M M; Bakker, M; Patty, C H L; Hassan, Z; Röling, W F M; Ahmed, K M; van Breukelen, B M

    2015-12-15

    Subsurface Arsenic Removal (SAR) is a technique for in-situ removal of arsenic from groundwater. Extracted groundwater is aerated and re-injected into an anoxic aquifer, where the oxygen in the injected water reacts with ferrous iron in the aquifer to form hydrous ferric oxide (HFO). Subsequent extraction of groundwater contains temporarily lower As concentrations, because As sorbs onto the HFO. Injection, storage, and extraction together is called a cycle. A reactive transport model (RTM) was developed in PHREEQC to determine the hydrogeochemical processes responsible for As (im)mobilization during experimental SAR operation performed in Bangladesh. Oxidation of Fe(II) and As(III) were modeled using kinetic-rate expressions. Cation exchange, precipitation of HFO, and surface complexation, were modeled as equilibrium processes. A best set of surface complexation reactions and corresponding equilibrium constants was adopted from previous studies to simulate all 20 cycles of a SAR experiment. The model gives a reasonable match with observed concentrations of different elements in the extracted water (e.g., the r(2) value of As was 0.59 or higher). As concentrations in the extracted water are governed by four major processes. First, As concentration decreases in response to the elevated pH of injection water and likewise increases when native neutral pH groundwater flows in. Second, the sorption capacity for As increases due to the gradual buildup of HFO. Third, As sorption is enhanced by preferential removal of As(V). Fourth, competitive sorption of Si limits the capacity of freshly precipitated HFO for As sorption. Transferability of the developed reactive transport model was demonstrated through successful application of the model, without further calibration, to two additional SAR sites in Bangladesh. This gives confidence that the model could be useful to assess potential SAR performance at locations in Bangladesh based on local hydrogeochemical conditions

  19. Advanced transport modeling of toroidal plasmas with transport barriers

    International Nuclear Information System (INIS)

    Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.

    2005-01-01

    Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)

  20. In Vitro and Ex Vivo Model Systems to Measure ABC Transporter Activity at the Blood-Brain Barrier.

    Science.gov (United States)

    de Wit, Nienke M; Kooij, Gijs; de Vries, Helga E

    2016-01-01

    With the aging population the occurrence of central nervous system diseases such as cancer, mental disorders and neurodegenerative diseases, is expected to increase and hence, the demand for effective drugs. However, the passage of drugs across the blood-brain barrier represents a major challenge in accomplishing efficient brain delivery of therapeutic agents. This highly efficient barrier is composed of a monolayer of capillary endothelial cells supported by pericytes and astrocytic end-feet, that together effectively shield the brain from the blood. The brain microvascular endothelial cells form a physical and metabolic barrier where paracellular and transcellular transport of molecules in and out of the brain is closely regulated, allowing nutrients to pass but preventing the entry of harmful neurotoxic substances, including drugs. For this purpose brain endothelial cells express efficient efflux pumps, such as ATP binding cassette (ABC) transporters, which limit the delivery of drugs into the brain. To treat the above-mentioned chronic central nervous system disorders, it is crucial to design compounds that can pass the blood-brain barrier and thus the ABC transporters. In order to achieve this, representative models of the blood-brain barrier with predictive validity are necessary. This review discusses the current in vitro and ex vivo model systems that are used to measure ABC transporter activity in order to study potential in vivo efficacy of blood-brain barrier-drug passage.

  1. Modeling Studies on the Transport of Benzene and H2S in CO2-Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Spycher, N.; Xu, T.; Apps, J.; Kharaka, Y.; Birkholzer, J.T.

    2010-11-05

    In this study, reactive transport simulations were used to assess the mobilization and transport of organics with supercritical CO{sub 2} (SCC), and the co-injection and transport of H{sub 2}S with SCC. These processes were evaluated at conditions of typical storage reservoirs, and for cases of hypothetical leakage from a reservoir to an overlying shallower fresh water aquifer. Modeling capabilities were developed to allow the simulation of multiphase flow and transport of H{sub 2}O, CO{sub 2}, H{sub 2}S, as well as specific organic compounds (benzene), coupled with multicomponent geochemical reaction and transport. This included the development of a new simulator, TMVOC-REACT, starting from existing modules of the TOUGH2 family of codes. This work also included an extensive literature review, calculation, and testing of phase-partitioning properties for mixtures of the phases considered. The reactive transport simulations presented in this report are primarily intended to illustrate the capabilities of the new simulator. They are also intended to help evaluate and understand various processes at play, in a more qualitative than quantitative manner, and only for hypothetical scenarios. Therefore, model results are not intended as realistic assessments of groundwater quality changes for specific locations, and they certainly do not provide an exhaustive evaluation of all possible site conditions, especially given the large variability and uncertainty in hydrogeologic and geochemical parameter input into simulations. The first step in evaluating the potential mobilization and transport of organics was the identification of compounds likely to be present in deep storage formations, and likely to negatively impact freshwater aquifers if mobilized by SCC. On the basis of a literature review related to the occurrence of these organic compounds, their solubility in water and SCC, and their toxicity (as reflected by their maximum contaminant levels MCL), benzene was

  2. A Geographic Information System approach to modeling nutrient and sediment transport

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.A. [Automated Sciences Group, Inc., Oak Ridge, TN (United States); Hunsaker, C.T.; Beauchamp, J.J. [Oak Ridge National Lab., TN (United States); Timmins, S.P. [Analysas Corp., Oak Ridge, TN (United States)

    1993-02-01

    The objective of this study was to develop a water quality model to quantify nonpoint-source (NPS) pollution that uses a geographic information system (GIS) to link statistical modeling of nutrient and sediment delivery with the spatial arrangement of the parameters that drive the model. The model predicts annual nutrient and sediment loading and was developed, calibrated, and tested on 12 watersheds within the Lake Ray Roberts drainage basin in north Texas. Three physiographic regions are represented by these watersheds, and model success, as measured by the accuracy of load estimates, was compared within and across these regions.

  3. Quantum Transport in Mesoscopic Systems

    Indian Academy of Sciences (India)

    988. RESONANCE │ November 2010. GENERAL │ ARTICLE. Quantum Transport in Mesoscopic Systems. CoulombBlockadeandKondoEffect. Navinder Singh. Keywords. Quantum transport, mesoscopic systems, Coulomb blockade,. Kondo effect. Navinder Singh works in the Physical Research. Laboratory, Ahmedabad.

  4. Modelling the transport of radioactive cesium released from the Fukushima Dai-ichi NPP with sediments through the hydrologic system

    Science.gov (United States)

    Kinouchi, T.; Omata, T.; Wei, L.; Liu, T.; Araya, M.

    2013-12-01

    Due to the accident of the Fukushima Dai-ichi Nuclear Power Plant on March 2011, a huge amount of radionuclides including Cesium-134 and Cesium-137 was deposited over the main island of Japan and the Pacific Ocean, resulting in further transfer and diffusion of Cesium through the atmospheric flow, watershed hydrological processes, and terrestrial ecosystem. Particularly, for the transfer of Cesium-134 and Cesium-137, sediments eroded and transported by the rainfall-runoff processes play an important role as Cesium tends to be strongly adsorbed to soil particles such as clay and silt. In this study, we focus on the transport of sediment and adsorbed Cesium in the watershed-scale hydrologic system to predict the long-term change of distribution of Cesium and its discharge to rivers and ocean. We coupled a physically-based distributed hydrological model with the modules of erosion and transport of sediments and adsorbed Cesium, and applied the coupled model to the Abukuma River watershed, which is located over the area of higher deposition of Cesium. In the model, complex land use and land cover distributions, and the effect of human activities such as irrigation, dam control and urban drainage system are taken into accounts. Simulation was conducted for the period of March 2011 until August 2012, with initial spatial distribution of Cesium-134 and Cesium-137 obtained by the airborne survey. Simulated flow rates and sediment concentrations agreed well with observed, and found that since the accident, two major storms in July and September 2011 transported about 50% of total sediments transported during the simulated periods. Cesium concentration in the sediment was reproduced well except for the difference in the initial periods. This difference is attributable to the uncertainty arisen from the initial distribution of Cesium in the soil and the transfer of Cesium from the forest canopy.

  5. Conceptual and Numerical Modeling of Radionuclide Transport and Retention in Near-Surface Systems

    International Nuclear Information System (INIS)

    Pique, Angels; Arcos, David; Grandia, Fidel; Molinero, Jorge; Duro, Lara; Berglund, Sten

    2013-01-01

    Scenarios of barrier failure and radionuclide release to the near-surface environment are important to consider within performance and safety assessments of repositories for nuclear waste. A geological repository for spent nuclear fuel is planned at Forsmark, Sweden. Conceptual and numerical reactive transport models were developed in order to assess the retention capacity of the Quaternary till and clay deposits for selected radionuclides, in the event of an activity release from the repository. The elements considered were carbon (C), chlorine (Cl), cesium (Cs), iodine (I), molybdenum (Mo), niobium (Nb), nickel (Ni), radium (Ra), selenium (Se), strontium (Sr), technetium (Tc), thorium (Th), and uranium (U). According to the numerical predictions, the repository-derived nuclides that would be most significantly retained are Th, Ni, and Cs, mainly through sorption onto clays, followed by U, C, Sr, and Ra, trapped by sorption and/or incorporation into mineral phases

  6. Transport and Environment Database System (TRENDS): Maritime Air Pollutant Emission Modelling

    DEFF Research Database (Denmark)

    Georgakaki, Aliki; Coffey, Robert; Lock, Grahm

    2005-01-01

    changes from findings reported in Methodologies for Estimating air pollutant Emissions from Transport (MEET). The database operates on statistical data provided by Eurostat, which describe vessel and freight movements from and towards EU 15 major ports. Data are at port to Maritime Coastal Area (MCA......) level, so a bottom-up approach is used. A port to MCA distance database has also been constructed for the purpose of the study. This was the first attempt to use Eurostat maritime statistics for emission modelling; and the problems encountered, since the statistical data collection was not undertaken...... with a view to this purpose, are mentioned. Examples of the results obtained by the database are presented. These include detailed air pollutant emission calculations for bulk carriers entering the port of Helsinki, as an example of the database operation, and aggregate results for different types...

  7. A Hybrid Fuzzy Inference System Based on Dispersion Model for Quantitative Environmental Health Impact Assessment of Urban Transportation Planning

    Directory of Open Access Journals (Sweden)

    Behnam Tashayo

    2017-01-01

    Full Text Available Characterizing the spatial variation of traffic-related air pollution has been and is a long-standing challenge in quantitative environmental health impact assessment of urban transportation planning. Advanced approaches are required for modeling complex relationships among traffic, air pollution, and adverse health outcomes by considering uncertainties in the available data. A new hybrid fuzzy model is developed and implemented through hierarchical fuzzy inference system (HFIS. This model is integrated with a dispersion model in order to model the effect of transportation system on the PM2.5 concentration. An improved health metric is developed as well based on a HFIS to model the impact of traffic-related PM2.5 on health. Two solutions are applied to improve the performance of both the models: the topologies of HFISs are selected according to the problem and used variables, membership functions, and rule set are determined through learning in a simultaneous manner. The capabilities of this proposed approach is examined by assessing the impacts of three traffic scenarios involved in air pollution in the city of Isfahan, Iran, and the model accuracy compared to the results of available models from literature. The advantages here are modeling the spatial variation of PM2.5 with high resolution, appropriate processing requirements, and considering the interaction between emissions and meteorological processes. These models are capable of using the available qualitative and uncertain data. These models are of appropriate accuracy, and can provide better understanding of the phenomena in addition to assess the impact of each parameter for the planners.

  8. Magnetic type transportation system

    International Nuclear Information System (INIS)

    Kobama, Masao.

    1981-01-01

    Purpose: To enable automatic transportation of nuclear substances with optional setting for the transportation distance, even for a long distance, facilitating the automation of the transportation and decreasing the space for the installation of a direction converging section of the transporting path. Constitution: A transporting vehicle having a pair of permanent magnets or ferromagnetic bodies mounted with a predetermined gap to each other along the transporting direction is provided in the transporting path including a bent direction change section for transporting specimens such as nuclear materials, and a plurality of driving vehicles having permanent magnets or ferromagnetic bodies for magnetically attracting the transporting vehicle from outside of the transporting path are arranged to the outside of the transporting path. At least one of the driving vehicles is made to run along the transporting direction of the transporting path by a driving mechanism incorporating running section such as an endless chain to drive the transportation vehicle, and the transporting vehicle is successively driven by each of the driving mechanisms. (Kawakami, Y.)

  9. Blood Sample Transportation by Pneumatic Transportation Systems

    DEFF Research Database (Denmark)

    Nybo, Mads; Lund, Merete E; Titlestad, Kjell

    2018-01-01

    BACKGROUND: Pneumatic transportation systems (PTSs) are increasingly used for transportation of blood samples to the core laboratory. Many studies have investigated the impact of these systems on different types of analyses, but to elucidate whether PTSs in general are safe for transportation...... of blood samples, existing literature on the subject was systematically assessed. METHODS: A systematic literature review was conducted following the preferred reporting items for systematic reviews and metaanalyses (PRISMA) Statement guidelines to gather studies investigating the impact of PTS on analyses...... in blood samples. Studies were extracted from PubMed and Embase. The search period ended November 2016. RESULTS: A total of 39 studies were retrieved. Of these, only 12 studies were conducted on inpatients, mainly intensive care unit patients. Blood gases, hematology, and clinical chemistry were well...

  10. The beam transport system

    International Nuclear Information System (INIS)

    1986-01-01

    The first proton beams have been transported along the transfer beamline and the diagnostic components have thus been used and tested under real operating conditions. The various electronic systems have been linked to the control system and the equipment can now be operated from the control console. The performance of the diagnostic system for the transfer beamline is satisfactory. The beam diagnostic components for the high-energy beamlines up to the isotope production and neutron therapy vaults and the first experimental target rooms have been installed. The high-energy slits have been delivered. The scanner and harp electronics have been installed and linked to their respective components in the beamlines. The pneumatic acuator control electronics has been manufactured, installed and is operational; provision has been made for special control features of the equipment in the therapy beamline. The high-voltage bias supply for the Faraday cups has been implemented. The installation of the beam current measurement system is nearing completion although part of it is already operational. A coaxial relay multiplexer for the capacitive phase probe signals has been manufactured and installed. The diagnostic equipment for the beamlines to isotope production and neutron therapy is thus ready for operation. 4 figs

  11. Improving public transportation systems with self-organization: A headway-based model and regulation of passenger alighting and boarding.

    Science.gov (United States)

    Carreón, Gustavo; Gershenson, Carlos; Pineda, Luis A

    2017-01-01

    The equal headway instability-the fact that a configuration with regular time intervals between vehicles tends to be volatile-is a common regulation problem in public transportation systems. An unsatisfactory regulation results in low efficiency and possible collapses of the service. Computational simulations have shown that self-organizing methods can regulate the headway adaptively beyond the theoretical optimum. In this work, we develop a computer simulation for metro systems fed with real data from the Mexico City Metro to test the current regulatory method with a novel self-organizing approach. The current model considers overall system's data such as minimum and maximum waiting times at stations, while the self-organizing method regulates the headway in a decentralized manner using local information such as the passenger's inflow and the positions of neighboring trains. The simulation shows that the self-organizing method improves the performance over the current one as it adapts to environmental changes at the timescale they occur. The correlation between the simulation of the current model and empirical observations carried out in the Mexico City Metro provides a base to calculate the expected performance of the self-organizing method in case it is implemented in the real system. We also performed a pilot study at the Balderas station to regulate the alighting and boarding of passengers through guide signs on platforms. The analysis of empirical data shows a delay reduction of the waiting time of trains at stations. Finally, we provide recommendations to improve public transportation systems.

  12. Modeling heat and mass transport phenomena at higher temperatures in solar distillation systems - The Chilton-Colburn analogy

    Energy Technology Data Exchange (ETDEWEB)

    Tsilingiris, P.T. [Department of Energy Engineering, Heat Transfer Laboratory, Technological Education Institution of Athens, A. Spyridonos Street, GR 122 10 Egaleo, Athens (Greece)

    2010-02-15

    In the present investigation efforts have been devoted towards developing an analysis suitable for heat and mass transfer processes modeling in solar distillation systems, when they are operating at higher temperatures. For this purpose the use of Lewis relation is not new although its validity is based on the assumptions of identical boundary layer concentration and temperature distributions, as well as low mass flux conditions, which are not usually met in solar distillation systems operating at higher temperatures associated with considerable mass transfer rates. The present analysis, taking into consideration these conditions and the temperature dependence of all pertinent thermophysical properties of the saturated binary mixture of water vapor and dry air, leads to the development of an improved predictive accuracy model. This model, having undergone successful first order validation against earlier reported measurements from the literature, appears to offer more accurate predictions of the transport processes and mass flow rate yield of solar stills when operated at elevated temperatures. (author)

  13. Diffusive gas transport through flooded rice systems

    NARCIS (Netherlands)

    Bodegom, van P.M.; Groot, T.; Hout, van de B.; Leffelaar, P.A.; Goudriaan, J.

    2001-01-01

    A fully mechanistic model based on diffusion equations for gas transport in a flooded rice system is presented. The model has transport descriptions for various compartments in the water-saturated soil and within the plant. Plant parameters were estimated from published data and experiments

  14. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    International Nuclear Information System (INIS)

    B.W. ARNOLD

    2004-01-01

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ

  15. Calculating the Contribution Rate of Intelligent Transportation System in Improving Urban Traffic Smooth Based on Advanced DID Model

    OpenAIRE

    Li, Ming-wei; Yun, Jun; Liu, Na

    2015-01-01

    Recent years have witnessed the rapid development of intelligent transportation system around the world, which helps to relieve urban traffic congestion problems. For instance, many mega-cities in China have devoted a large amount of money and resources to the development of intelligent transportation system. This poses an intriguing and important issue: how to measure and quantify the contribution of intelligent transportation system to the urban city, which is still a puzzle. This paper pro...

  16. COMPUTER DYNAMICS MODELING OF TRANSPORT FACILITIES WITH ANTI-LOCKING AND ANTI-SLIPPAGE SYSTEMS

    Directory of Open Access Journals (Sweden)

    N. N. Hurski

    2009-01-01

    Full Text Available The paper considers a methodology for testing anti-locking system (ALS of new generation. Results of computer  dynamics  modeling of automobile motion at braking with ALS and without ALS are given in the paper. The paper also contains an analysis of  basic characteristics: a braking distance, a value of longitudinal delay, an influence of modulator speed on the efficiency of a braking 

  17. METHODS OF INTEGRATED OPTIMIZATION MAGLEV TRANSPORT SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. Lasher

    2013-09-01

    Full Text Available Purpose. To demonstrate feasibility of the proposed integrated optimization of various MTS parameters to reduce capital investments as well as decrease any operational and maintenance expense. This will make use of MTS reasonable. At present, the Maglev Transport Systems (MTS for High-Speed Ground Transportation (HSGT almost do not apply. Significant capital investments, high operational and maintenance costs are the main reasons why Maglev Transport Systems (MTS are hardly currently used for the High-Speed Ground Transportation (HSGT. Therefore, this article justifies use of Theory of Complex Optimization of Transport (TCOT, developed by one of the co-authors, to reduce MTS costs. Methodology. According to TCOT, authors developed an abstract model of the generalized transport system (AMSTG. This model mathematically determines the optimal balance between all components of the system and thus provides the ultimate adaptation of any transport systems to the conditions of its application. To identify areas for effective use of MTS, by TCOT, the authors developed a dynamic model of distribution and expansion of spheres of effective use of transport systems (DMRRSEPTS. Based on this model, the most efficient transport system was selected for each individual track. The main estimated criterion at determination of efficiency of application of MTS is the size of the specific transportation tariff received from calculation of payback of total given expenses to a standard payback period or term of granting the credit. Findings. The completed multiple calculations of four types of MTS: TRANSRAPID, MLX01, TRANSMAG and TRANSPROGRESS demonstrated efficiency of the integrated optimization of the parameters of such systems. This research made possible expending the scope of effective usage of MTS in about 2 times. The achieved results were presented at many international conferences in Germany, Switzerland, United States, China, Ukraine, etc. Using MTS as an

  18. Development of comprehensive models for opacities and radiation transport for IFE systems

    International Nuclear Information System (INIS)

    Tolkach, V.; Morozov, V.; Hassanein, A.

    2003-01-01

    An ignition in an inertial confinement fusion (ICF) reactor results in X-ray spectra and ion fluxes moving toward the chamber wall with different velocities. During flight, parts of the energy will be deposited either in the residual and/or protective chamber gas or in the initial vapor cloud developed near the wall surface from vaporization. The deposited energy will be re-radiated to the chamber wall long after the ignition process. The exact amount of energy deposited/radiated and time of deposition are key issues in evaluating the chamber response and the economical feasibility of an ICF reactor. The radiation processes in the protective gas layer or in the vapor cloud developed above the first wall play an important role in the overall dynamics of the ICF chamber. A self-consistent field method has been developed to calculate ionization potentials, atom and ion energy levels, transition probabilities, and other atomic properties used to calculate thermodynamic and optical characteristics of the plasma by means of collisional-radiation equilibrium (CRE). The methodology of solving radiation transport equations in spherical geometry and the dependence of results on the chosen theoretical model are demonstrated using the method of inward/outward directions

  19. Optimal transportation networks models and theory

    CERN Document Server

    Bernot, Marc; Morel, Jean-Michel

    2009-01-01

    The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.

  20. Modeling contaminant transport in a three-phase groundwater system with the Freundlich-type retardation factor.

    Science.gov (United States)

    Kim, M; Kim, S B

    2007-02-01

    Colloid-facilitated contaminant transport was simulated in this study for the three-phase groundwater system where one or more sorption processes can be described with nonlinear sorption isotherm (Freundlich isotherm). A concise form of contaminant transport equation was derived from the mass balance equation of the contaminant. The developed model was numerically solved by the finite difference method along with the Picard iteration. The simulation results were used to quantitatively analyze the previously reported column data showing nonlinear sorption behavior. The analysis led to the following observations: (i) increases of the distribution coefficient of contaminant between the aqueous and solid phases (K(S)c) and the one between the dissolved natural organic matters and solid phase ( K(S)OM) generate less facilitation (i.e., late arrival of contaminant breakthrough curves (BTCs), and the distribution coefficient of contaminant between the aqueous and the solid phases (K(OM)c) gives the opposite result; (ii) the increase of the Freundlich constant for the sorption isotherm between the aqueous and the solid phases (N(S)c) yields the late arrival of BTC, and the other two Freundlich constants produce the opposite results; (iii) the Freundlich constants generally yield a sharper front as the BTC arrives at later pore volumes, while the distribution coefficients generally yield a more spread of the BTC as it arrives at later volumes. This modeling study shows that transport modeling provides a more efficient analyzing tool than the retardation factor alone concerning the colloid-facilitated contaminant transport with nonlinear sorption processes.

  1. Numerical modelling on fate and transport of petroleum hydrocarbons in an unsaturated subsurface system for varying source scenario

    Science.gov (United States)

    Berlin, M.; Vasudevan, M.; Kumar, G. Suresh; Nambi, Indumathi M.

    2015-04-01

    The vertical transport of petroleum hydrocarbons from a surface spill through an unsaturated subsurface system is of major concern in assessing the vulnerability of groundwater contamination. A realistic representation on fate and transport of volatile organic compounds at different periods after spill is quite challenging due to the variation in the source behaviour at the surface of spill as well as the variation in the hydrodynamic parameters and the associated inter-phase partitioning coefficients within the subsurface. In the present study, a one dimensional numerical model is developed to simulate the transport of benzene in an unsaturated subsurface system considering the effect of volatilization, dissolution, adsorption and microbial degradation of benzene for (i) constant continuous source, (ii) continuous decaying source, and (iii) residual source. The numerical results suggest that volatilization is the important sink for contaminant removal considering the soil air migration within the unsaturated zone. It is also observed that the coupled effect of dissolution and volatilization is important for the decaying source at the surface immediately after the spill, whereas rate-limited dissolution from residually entrapped source is responsible for the extended contamination towards later period.

  2. Tritium transport modeling at system level for the EUROfusion dual coolant lithium-lead breeding blanket

    Science.gov (United States)

    Urgorri, F. R.; Moreno, C.; Carella, E.; Rapisarda, D.; Fernández-Berceruelo, I.; Palermo, I.; Ibarra, A.

    2017-11-01

    The dual coolant lithium lead (DCLL) breeding blanket is one of the four breeder blanket concepts under consideration within the framework of EUROfusion consortium activities. The aim of this work is to develop a model that can dynamically track tritium concentrations and fluxes along each part of the DCLL blanket and the ancillary systems associated to it at any time. Because of tritium nature, the phenomena of diffusion, dissociation, recombination and solubilisation have been modeled in order to describe the interaction between the lead-lithium channels, the structural material, the flow channel inserts and the helium channels that are present in the breeding blanket. Results have been obtained for a pulsed generation scenario for DEMO. The tritium inventory in different parts of the blanket, the permeation rates from the breeder to the secondary coolant and the amount of tritium extracted from the lead-lithium loop have been computed. Results present an oscillating behavior around mean values. The obtained average permeation rate from the liquid metal to the helium is 1.66 mg h-1 while the mean tritium inventory in the whole system is 417 mg. Besides the reference case results, parametric studies of the lead-lithium mass flow rate, the tritium extraction efficiency and the tritium solubility in lead-lithium have been performed showing the reaction of the system to the variation of these parameters.

  3. Lucretia A Matlab-Based Toolbox for the Modeling and Simulation of Single-Pass Electron Beam Transport Systems

    CERN Document Server

    Tenenbaum, P G

    2005-01-01

    We report on Lucretia, a new simulation tool for the study of single-pass electron beam transport systems. Lucretia supports a combination of analytic and tracking techniques to model the tuning and operation of bunch compressors, linear accelerators, and beam delivery systems of linear colliders and linac-driven Free Electron Laser (FEL) facilities. Extensive use of Matlab scripting, graphics, and numerical capabilities maximize the flexibility of the system, and emphasis has been placed on representing and preserving the fixed relationships between elements (common girders, power supplies, etc.) which must be respected in the design of tuning algorithms. An overview of the code organization, some simple examples, and plans for future development are discussed.

  4. Integrating pro-environmental behavior with transportation network modeling: User and system level strategies, implementation, and evaluation

    Science.gov (United States)

    Aziz, H. M. Abdul

    Personal transport is a leading contributor to fossil fuel consumption and greenhouse (GHG) emissions in the U.S. The U.S. Energy Information Administration (EIA) reports that light-duty vehicles (LDV) are responsible for 61% of all transportation related energy consumption in 2012, which is equivalent to 8.4 million barrels of oil (fossil fuel) per day. The carbon content in fossil fuels is the primary source of GHG emissions that links to the challenge associated with climate change. Evidently, it is high time to develop actionable and innovative strategies to reduce fuel consumption and GHG emissions from the road transportation networks. This dissertation integrates the broader goal of minimizing energy and emissions into the transportation planning process using novel systems modeling approaches. This research aims to find, investigate, and evaluate strategies that minimize carbon-based fuel consumption and emissions for a transportation network. We propose user and system level strategies that can influence travel decisions and can reinforce pro-environmental attitudes of road users. Further, we develop strategies that system operators can implement to optimize traffic operations with emissions minimization goal. To complete the framework we develop an integrated traffic-emissions (EPA-MOVES) simulation framework that can assess the effectiveness of the strategies with computational efficiency and reasonable accuracy. The dissertation begins with exploring the trade-off between emissions and travel time in context of daily travel decisions and its heterogeneous nature. Data are collected from a web-based survey and the trade-off values indicating the average additional travel minutes a person is willing to consider for reducing a lb. of GHG emissions are estimated from random parameter models. Results indicate that different trade-off values for male and female groups. Further, participants from high-income households are found to have higher trade-off values

  5. Thermodynamically Constrained Averaging Theory Approach for Modeling Flow and Transport Phenomena in Porous Medium Systems: 7. Single-Phase Megascale Flow Models.

    Science.gov (United States)

    Gray, William G; Miller, Cass T

    2009-08-01

    This work is the seventh in a series that introduces and employs the thermodynamically constrained averaging theory (TCAT) for modeling flow and transport in multiscale porous medium systems. This paper expands the previous analyses in the series by developing models at a scale where spatial variations within the system are not considered. Thus the time variation of variables averaged over the entire system is modeled in relation to fluxes at the boundary of the system. This implementation of TCAT makes use of conservation equations for mass, momentum, and energy as well as an entropy balance. Additionally, classical irreversible thermodynamics is assumed to hold at the microscale and is averaged to the megascale, or system scale. The fact that the local equilibrium assumption does not apply at the megascale points to the importance of obtaining closure relations that account for the large-scale manifestation of small-scale variations. Example applications built on this foundation are suggested to stimulate future work.

  6. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  7. Goods Transport Modelling, Vol 1

    DEFF Research Database (Denmark)

    Petersen, Morten Steen (red.); Kristiansen, Jørgen

    The report is a study of data requirements and methodologies for goods transport. The study is intended to provide the basis for general discussion about the application of goods transport models in Denmark. The report provides an overview of different types of models and data availability....

  8. Improving public transportation systems with self-organization: A headway-based model and regulation of passenger alighting and boarding.

    Directory of Open Access Journals (Sweden)

    Gustavo Carreón

    Full Text Available The equal headway instability-the fact that a configuration with regular time intervals between vehicles tends to be volatile-is a common regulation problem in public transportation systems. An unsatisfactory regulation results in low efficiency and possible collapses of the service. Computational simulations have shown that self-organizing methods can regulate the headway adaptively beyond the theoretical optimum. In this work, we develop a computer simulation for metro systems fed with real data from the Mexico City Metro to test the current regulatory method with a novel self-organizing approach. The current model considers overall system's data such as minimum and maximum waiting times at stations, while the self-organizing method regulates the headway in a decentralized manner using local information such as the passenger's inflow and the positions of neighboring trains. The simulation shows that the self-organizing method improves the performance over the current one as it adapts to environmental changes at the timescale they occur. The correlation between the simulation of the current model and empirical observations carried out in the Mexico City Metro provides a base to calculate the expected performance of the self-organizing method in case it is implemented in the real system. We also performed a pilot study at the Balderas station to regulate the alighting and boarding of passengers through guide signs on platforms. The analysis of empirical data shows a delay reduction of the waiting time of trains at stations. Finally, we provide recommendations to improve public transportation systems.

  9. Quantum Transport in Mesoscopic Systems

    Indian Academy of Sciences (India)

    A short introduction to the quantum transport in mesoscopic systems is given, and various regim- es of quantum transport such as diffusive, ballis- tic, and adiabatic are explained. The effect of interactions and inelastic scattering along with the characteristic coherent effects of mesoscopic systems give interesting new ...

  10. Intelligent Transportation Systems : critical standards

    Science.gov (United States)

    1999-06-01

    Intelligent Transportation Systems (ITS) standards are industry-consensus standards that provide the details about how different systems interconnect and communicate information to deliver the ITS user services described in the National ITS Architect...

  11. Uranium Transport Modeling

    International Nuclear Information System (INIS)

    Bostick, William D.

    2008-01-01

    Uranium contamination is prevalent at many of the U.S. DOE facilities and at several civilian sites that have supported the nuclear fuel cycle. The potential off-site mobility of uranium depends on the partitioning of uranium between aqueous and solid (soil and sediment) phases. Hexavalent U (as uranyl, UO 2 2+ ) is relatively mobile, forming strong complexes with ubiquitous carbonate ion which renders it appreciably soluble even under mild reducing conditions. In the presence of carbonate, partition of uranyl to ferri-hydrate and select other mineral phases is usually maximum in the near-neutral pH range ∼ 5-8. The surface complexation reaction of uranyl with iron-containing minerals has been used as one means to model subsurface migration, used in conjunction with information on the site water chemistry and hydrology. Partitioning of uranium is often studied by short-term batch 'equilibrium' or long-term soil column testing ; MCLinc has performed both of these methodologies, with selection of method depending upon the requirements of the client or regulatory authority. Speciation of uranium in soil may be determined directly by instrumental techniques (e.g., x-ray photoelectron spectroscopy, XPS; x-ray diffraction, XRD; etc.) or by inference drawn from operational estimates. Often, the technique of choice for evaluating low-level radionuclide partitioning in soils and sediments is the sequential extraction approach. This methodology applies operationally-defined chemical treatments to selectively dissolve specific classes of macro-scale soil or sediment components. These methods recognize that total soil metal inventory is of limited use in understanding bioavailability or metal mobility, and that it is useful to estimate the amount of metal present in different solid-phase forms. Despite some drawbacks, the sequential extraction method can provide a valuable tool to distinguish among trace element fractions of different solubility related to mineral phases

  12. Directions in Radiation Transport Modelling

    Directory of Open Access Journals (Sweden)

    P Nicholas Smith

    2016-12-01

    More exciting advances are on the horizon to increase the power of simulation tools. The advent of high performance computers is allowing bigger, higher fidelity models to be created, if the challenges of parallelization and memory management can be met. 3D whole core transport modelling is becoming possible. Uncertainty quantification is improving with large benefits to be gained from more accurate, less pessimistic estimates of uncertainty. Advanced graphical displays allow the user to assimilate and make sense of the vast amounts of data produced by modern modelling tools. Numerical solvers are being developed that use goal-based adaptivity to adjust the nodalisation of the system to provide the optimum scheme to achieve the user requested accuracy on the results, thus removing the need to perform costly convergence studies in space and angle etc. More use is being made of multi-physics methods in which radiation transport is coupled with other phenomena, such as thermal-hydraulics, structural response, fuel performance and/or chemistry in order to better understand their interplay in reactor cores.

  13. Improving public transportation systems with self-organization: A headway-based model and regulation of passenger alighting and boarding

    Science.gov (United States)

    Gershenson, Carlos; Pineda, Luis A.

    2017-01-01

    The equal headway instability—the fact that a configuration with regular time intervals between vehicles tends to be volatile—is a common regulation problem in public transportation systems. An unsatisfactory regulation results in low efficiency and possible collapses of the service. Computational simulations have shown that self-organizing methods can regulate the headway adaptively beyond the theoretical optimum. In this work, we develop a computer simulation for metro systems fed with real data from the Mexico City Metro to test the current regulatory method with a novel self-organizing approach. The current model considers overall system’s data such as minimum and maximum waiting times at stations, while the self-organizing method regulates the headway in a decentralized manner using local information such as the passenger’s inflow and the positions of neighboring trains. The simulation shows that the self-organizing method improves the performance over the current one as it adapts to environmental changes at the timescale they occur. The correlation between the simulation of the current model and empirical observations carried out in the Mexico City Metro provides a base to calculate the expected performance of the self-organizing method in case it is implemented in the real system. We also performed a pilot study at the Balderas station to regulate the alighting and boarding of passengers through guide signs on platforms. The analysis of empirical data shows a delay reduction of the waiting time of trains at stations. Finally, we provide recommendations to improve public transportation systems. PMID:29287120

  14. Fate and transport of mercury in soil systems : a numerical model in HP1 and sensitivity analysis

    Science.gov (United States)

    Leterme, Bertrand; Jacques, Diederik

    2013-04-01

    Mercury (Hg) poses threats for human health and the environment, notably due to its persistence and its ability to bioaccumulate in ecosystems. Anthropogenic activities are major contributors of mercury release to soils. Main sources of contamination include manufacturing (chlor-alkali plants, manometer spill), mine tailings from mercury, gold and silver mining industries, wood preservation. The objective of this study was to develop a reactive transport model for simulating mercury fate and transport in the unsaturated zone, and to gain insight in the fate and transport of Hg following anthropogenic soil contamination. The present work is done in the framework of the IMaHg project, which aims at providing recommendations to improve management of sites contaminated by mercury within the SNOWMAN funding framework. A model of mercury fate and transport in soil systems was developed using the reactive transport code HP1 (Jacques and Šimůnek, 2010). The geochemical database THERMODDEM (Blanc et al., 2012) is used, augmented with some speciation data from (Skyllberg, 2012). The main processes accounted for in the model are : Hg aqueous speciation (including complexation with dissolved organic matter (DOM) - humic and fulvic acids, and thiol groups), Hg sorption to solid organic matter (SOM), dissolution of solid phase Hg (e.g. cinnabar HgS(s)), dissolution of Hg non-aqueous liquid phase (NAPL), sunlight-driven Hg(II) reduction to Hg(0), Hg(0) diffusion in the gas phase and volatilization, DOM sorption to soil minerals. Colloid facilitated transport is implicitly accounted for by solute transport of Hg-DOM complexes. Because we focused on soil systems having a high Hg contamination, some processes showing relatively smaller Hg fluxes could be neglected such as vegetation uptake and atmospheric wet and dry deposition. NAPL migration and entrapment is not modelled, as pollution is assumed to be historical and only residual NAPL to be present. Mercury methylation and

  15. Reduction of Mn-oxides by ferrous iron in a flow system: column experiment and reactive transport modeling

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Appelo, C. A. J.

    2000-01-01

    (OH)3, Mn21 and H1. The protons are transported downstream and cause the disproportionation of MnOOH at a separate reaction front. Between the two Mn reaction fronts, the dissolution and precipitation of Fe(OH)3 and Al(OH)3 act as proton buffers. Reactive transport modeling, using the code PHREEQC 2...

  16. Air transport system

    CERN Document Server

    Schmitt, Dieter

    2016-01-01

    The book addresses all major aspects to be considered for the design and operation of aircrafts within the entire transportation chain. It provides the basic information about the legal environment, which defines the basic requirements for aircraft design and aircraft operation. The interactions between  airport, air traffic management and the airlines are described. The market forecast methods and the aircraft development process are explained to understand the very complex and risky business of an aircraft manufacturer. The principles of flight physics as basis for aircraft design are presented and linked to the operational and legal aspects of air transport including all environmental impacts. The book is written for graduate students as well as for engineers and experts, who are working in aerospace industry, at airports or in the domain of transport and logistics.

  17. San Francisco Bay: Modeling System for Dredged Material Disposal and Hydraulic Transport

    Science.gov (United States)

    1988-11-01

    boundaries can be fitted and nndes and ele- ments of the mesh can be moved, added, or deleted. These changes can be saved as a permanent file. 20. Boundary...in several formats. The same mesh can be used by the hydrodynamic and the sedimentation transport codes, saving time and confusion. Utility programs...sediment v = kinematic viscosity of the fluid and a sediment mobility parameter AB -- (A7) gr [ pgD (s -1)j where T = total boundary shear stress n’ = a

  18. Concept Layout Model of Transportation Terminals

    Directory of Open Access Journals (Sweden)

    Li-ya Yao

    2012-01-01

    Full Text Available Transportation terminal is the key node in transport systems. Efficient terminals can improve operation of passenger transportation networks, adjust the layout of public transportation networks, provide a passenger guidance system, and regulate the development of commercial forms, as well as optimize the assembly and distribution of modern logistic modes, among others. This study aims to clarify the relationship between the function and the structure of transportation terminals and establish the function layout design. The mapping mechanism of demand, function, and structure was analyzed, and a quantitative relationship between function and structure was obtained from a design perspective. Passenger demand and terminal structure were decomposed into several demand units and structural elements following the principle of reverse engineering. The relationship maps between these two kinds of elements were then analyzed. Function-oriented concept layout model of transportation terminals was established using the previous method. Thus, a technique in planning and design of transportation structures was proposed. Meaningful results were obtained from the optimization of transportation terminal facilities, which guide the design of the functional layout of transportation terminals and improve the development of urban passenger transportation systems.

  19. Improving transportation systems management and operations (TSM&O), capability maturity model workshop white paper : business processes.

    Science.gov (United States)

    2015-04-01

    Research done through the Second Strategic Highway Research Program (SHRP 2) determined : that agencies with the most effective transportation systems management and operations : (TSM&O) activities were differentiated not by budgets or technical skil...

  20. Improving transportation systems management and operations (TSM&O), capability maturity model workshop white paper : performance measurement.

    Science.gov (United States)

    2015-04-01

    Research done through the Second Strategic Highway Research Program (SHRP 2) determined : that agencies with the most effective transportation systems management and operations : (TSM&O) activities were differentiated not by budgets or technical skil...

  1. Improving transportation systems management and operations (TSM&O), capability maturity model workshop white paper : organization and staffing.

    Science.gov (United States)

    2015-04-01

    Research done through the Second Strategic Highway Research Program (SHRP 2) determined : that agencies with the most effective transportation systems management and operations : (TSM&O) activities were differentiated not by budgets or technical skil...

  2. Estimation of Transport Trajectory and Residence Time in Large River–Lake Systems: Application to Poyang Lake (China Using a Combined Model Approach

    Directory of Open Access Journals (Sweden)

    Yunliang Li

    2015-09-01

    Full Text Available The biochemical processes and associated water quality in many lakes mainly depend on their transport behaviors. Most existing methodologies for investigating transport behaviors are based on physically based numerical models. The pollutant transport trajectory and residence time of Poyang Lake are thought to have important implications for the steadily deteriorating water quality and the associated rapid environmental changes during the flood period. This study used a hydrodynamic model (MIKE 21 in conjunction with transport and particle-tracking sub-models to provide comprehensive investigation of transport behaviors in Poyang Lake. Model simulations reveal that the lake’s prevailing water flow patterns cause a unique transport trajectory that primarily develops from the catchment river mouths to the downstream area along the lake’s main flow channels, similar to a river-transport behavior. Particle tracking results show that the mean residence time of the lake is 89 days during July–September. The effect of the Yangtze River (the effluent of the lake on the residence time is stronger than that of the catchment river inflows. The current study represents a first attempt to use a combined model approach to provide insights into the transport behaviors for a large river–lake system, given proposals to manage the pollutant inputs both directly to the lake and catchment rivers.

  3. Co-evolution of intelligent socio-technical systems modelling and applications in large scale emergency and transport domains

    CERN Document Server

    2013-01-01

    As the interconnectivity between humans through technical devices is becoming ubiquitous, the next step is already in the making: ambient intelligence, i.e. smart (technical) environments, which will eventually play the same active role in communication as the human players, leading to a co-evolution in all domains where real-time communication is essential. This topical volume, based on the findings of the Socionical European research project, gives equal attention to two highly relevant domains of applications: transport, specifically traffic, dynamics from the viewpoint of a socio-technical interaction and evacuation scenarios for large-scale emergency situations. Care was taken to investigate as much as possible the limits of scalability and to combine the modeling using complex systems science approaches with relevant data analysis.

  4. Diffusive gas transport through flooded rice systems

    Science.gov (United States)

    van Bodegom, P. M.; Groot, T.; van den Hout, B.; Leffelaar, P. A.; Goudriaan, J.

    2001-09-01

    A fully mechanistic model based on diffusion equations for gas transport in a flooded rice system is presented. The model has transport descriptions for various compartments in the water-saturated soil and within the plant. Plant parameters were estimated from published data and experiments independent of the validation experiment. An independent experiment is described in which the diffusion coefficient of sulfurhexafluoride (SF6) in water-saturated soil was determined. The model was validated by experiments in which transport of SF6 through soil and plant was monitored continuously by photoacoustics. The independent default settings could reasonably predict gas release dynamics in the soil-plant system. Calculated transmissivities and concentration gradients at the default settings show that transport within the soil was the most limiting step in this system, which explains why most gases are released via plant-mediated transport. The root-shoot interface represents the major resistance for gas transport within the plant. A sensitivity analysis of the model showed that gas transport in such a system is highly sensitive to the estimation of the diffusion coefficient of SF6, which helps to understand diel patterns found for greenhouse gas emissions, and to the root distribution with depth. This can be understood from the calculated transmissivities. The model is less sensitive to changes in the resistance at the root-shoot interface and in the root fraction active in gas exchange. The model thus provides an understanding of limiting steps in gas transport, but quantitative predictions of in situ gas transport rates will be difficult given the plasticity of root distribution.

  5. Transport and Environment Database System (TRENDS): Maritime Air Pollutant Emission Modelling

    DEFF Research Database (Denmark)

    Georgakaki, Aliki; Coffey, R. A.; Lock, G.

    2003-01-01

    This paper reports the development of the maritime module within the framework of the TRENDS project. A detailed database has been constructed, which includes all stages of the energy consumption and air pollutant emission calculations. The technical assumptions and factors incorporated in the da...... ¿ short sea or deep-sea shipping. Key Words: Air Pollution, Maritime Transport, Air Pollutant Emissions......This paper reports the development of the maritime module within the framework of the TRENDS project. A detailed database has been constructed, which includes all stages of the energy consumption and air pollutant emission calculations. The technical assumptions and factors incorporated...... encountered since the statistical data collection was not undertaken with a view to this purpose are mentioned. Examples of the results obtained by the database are presented. These include detailed air pollutant emission results per port and vessel type, to aggregate results for different types of movements...

  6. Vorinostat increases expression of functional norepinephrine transporter in neuroblastoma in vitro and in vivo model systems

    Science.gov (United States)

    More, Swati S.; Itsara, Melissa; Yang, Xiaodong; Geier, Ethan G.; Tadano, Michelle K.; Seo, Youngho; VanBrocklin, Henry F.; Weiss, William A.; Mueller, Sabine; Haas-Kogan, Daphne A.; DuBois, Steven G.; Matthay, Katherine K.; Giacomini, Kathleen M.

    2011-01-01

    Purpose Histone deacetylase (HDAC) inhibition causes transcriptional activation or repression of several genes that in turn can influence the biodistribution of other chemotherapeutic agents. Here, we hypothesize that the combination of vorinostat, a HDAC inhibitor, with 131I-metaiodobenzylguanidine (MIBG) would lead to preferential accumulation of the latter in neuroblastoma (NB) tumors via increased expression of the human norepinephrine transporter (NET). Experimental Design In vitro and in vivo experiments examined the effect of vorinostat on the expression of NET, an uptake transporter for 131I-MIBG. Human NB cell lines (Kelly and SH-SY-5Y) and NB1691luc mouse xenografts were employed. The upregulated NET protein was characterized for its effect on 123I-MIBG biodistribution. Results Preincubation of NB cell lines, Kelly and SH-SY-5Y, with vorinostat caused dose-dependent increases in NET mRNA and protein levels. Accompanying this was a corresponding dose-dependent increase in MIBG uptake in NB cell lines. Four-fold and 2.5 fold increases were observed in Kelly and SH-SY-5Y cells, respectively, pre-treated with vorinostat in comparison to untreated cells. Similarly, NB xenografts, created by intravenous tail vein injection of NB1691-luc, and harvested from nude mice livers treated with vorinostat (150 mg/kg i.p.) showed substantial increases in NET protein expression. Maximal effect of vorinostat pretreatment in NB xenografts on 123I-MIBG biodistribution was observed in tumors that exhibited enhanced uptake in vorinostat treated (0.062 ± 0.011 μCi/(mg tissue-dose injected)) versus untreated mice (0.022 ± 0.003 μCi/(mg tissue-dose injected); p vorinostat treatment can enhance NB therapy with 131I-MIBG. PMID:21421857

  7. Modeling and Analysis of Transport Processes and Efficiency of Combined SOFC and PEMFC Systems

    Directory of Open Access Journals (Sweden)

    Abid Rabbani

    2014-08-01

    Full Text Available A hybrid fuel cell system (~10 kWe for an average family house including heating is proposed. The investigated system comprises a Solid Oxide Fuel Cell (SOFC on top of a Polymer Electrolyte Fuel Cell (PEFC. Hydrogen produced from the off-gases of the SOFC can be fed directly to the PEFC. Simulations for the proposed system were conducted using different fuels. Here, results for natural gas (NG, dimethyl ether (DME and ethanol as a fuel are presented and analysed. Behaviour of the proposed system is further investigated by comparing the effects of key factors such as utilisation factor, operating conditions, oxygen-to-carbon (O/C ratios and fuel preheating effects on these fuels. The combined system improves the overall electrical conversion efficiency compared with standalone PEFC or SOFC systems. For the combined SOFC and PEFC system, the overall power production was increased by 8%–16% and the system efficiency with one of the fuels is found to be 12% higher than that of the standalone SOFC system.

  8. Modeling and Analysis of Transport Processes and Efficiency of Combined SOFC and PEMFC Systems

    DEFF Research Database (Denmark)

    Rabbani, Raja Abid; Rokni, Masoud

    2014-01-01

    A hybrid fuel cell system (~10 kWe) for an average family house including heating is proposed. The investigated system comprises a Solid Oxide Fuel Cell (SOFC) on top of a Polymer Electrolyte Fuel Cell (PEFC). Hydrogen produced from the off-gases of the SOFC can be fed directly to the PEFC....... Simulations for the proposed system were conducted using different fuels. Here, results for natural gas (NG), dimethyl ether (DME) and ethanol as a fuel are presented and analysed. Behaviour of the proposed system is further investigated by comparing the effects of key factors such as utilisation factor...

  9. Investments and Operation in an Integrated Power and Transport System

    DEFF Research Database (Denmark)

    Juul, Nina; Boomsma, Trine Krogh

    2013-01-01

    This chapter analyses an integrated power and road transport system. For analysing the influences of including passenger road transport in the energy system, a road transport model is developed. Based on this model, the benefits of integration of the two systems and using electric-drive vehicles...

  10. Modelling the impact of cyber attacks on the traffic control centre of an urban automobile transport system by means of enhanced cybersecurity

    Directory of Open Access Journals (Sweden)

    Ivanova Yoana

    2017-01-01

    Full Text Available This paper aims to show the major role means of protection play for strengthening the cybersecurity of critical transport infrastructure by using the advanced method of simulation modelling. The simulation model of a Traffic Control Centre (TTC of an urban Automobile Transport System (ATS is created by the author in the Riverbed Modeler Academic Edition 17.5 computer networks simulation system and is exposed to the impact of a Denial-of-Service attack. In addition, logical conclusions have been made on the basis of the experimental results obtained and evaluated by comparative analysis with results from analogous previous studies.

  11. Use of car crashes resulting in fatal and serious injuries to analyze a safe road transport system model and to identify system weaknesses.

    Science.gov (United States)

    Stigson, Helena; Hill, Julian

    2009-10-01

    The objective of this study was to evaluate a model for a safe road transport system, based on some safety performance indicators regarding the road user, the vehicle, and the road, by using crashes with fatally and seriously injured car occupants. The study also aimed to evaluate whether the model could be used to identify system weaknesses and components (road user, vehicles, and road) where improvements would yield the highest potential for further reductions in serious injuries. Real-life car crashes with serious injury outcomes (Maximum Abbreviated Injury Scale 2+) were classified according to the vehicle's safety rating by Euro NCAP (European New Car Assessment Programme) and whether the vehicle was fitted with ESC (Electronic Stability Control). For each crash, the road was also classified according to EuroRAP (European Road Assessment Programme) criteria, and human behavior in terms of speeding, seat belt use, and driving under the influence of alcohol/drugs. Each crash was compared and classified according to the model criteria. Crashes where the safety criteria were not met in more than one of the 3 components were reclassified to identify whether all the components were correlated to the injury outcome. In-depth crash injury data collected by the UK On The Spot (OTS) accident investigation project was used in this study. All crashes in the OTS database occurring between 2000 and 2005 with a car occupant with injury rated MAIS2+ were included, for a total of 101 crashes with 120 occupants. It was possible to classify 90 percent of the crashes according to the model. Eighty-six percent of the occupants were injured when more than one of the 3 components were noncompliant with the safety criteria. These cases were reclassified to identify whether all of the components were correlated to the injury outcome. In 39 of the total 108 cases, at least two components were still seen to interact. The remaining cases were only related to one of the safety criteria

  12. Risk assessment in transportation systems

    Directory of Open Access Journals (Sweden)

    Młyńczak Marek

    2016-12-01

    Full Text Available The paper presents problems of hazard identification in transportation systems, where not only field of action is large but also cause-consequences relations between failure causes and losses are distant in time and space. It is observed in transportation systems of goods and passengers, systems of water, gas, oil distribution and electro-energetic nets. Proposed systemic approach based on system elements classification on active (casual and passive ones (affected. There are described concepts of vulnerability (damageability, resilience (ability of recovering and risk controlling by introducing safety measures to undesired event chain.

  13. SISGR: Multiscale Modeling of Multiphase Flow, Transport, and Reactions in Porous Medium Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Cass T. [Univ. of North Carolina, Chapel Hill, NC (United States); Gray, William G. [Univ. of North Carolina, Chapel Hill, NC (United States)

    2017-02-28

    The purpose of this section is to summarize the progress made on this project during the previous funding cycle and to summarize the current state of our work. Advancements have been made in theory, microscale simulation, evaluation and validation of models, applications, and dissemination of research. Each of these areas are summarized in turn in the sections that follow.

  14. Advanced Transport Operating Systems Program

    Science.gov (United States)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  15. Modelling diffusion feedbacks between technology performance, cost and consumer behaviour for future energy-transport systems

    Science.gov (United States)

    Tran, Martino; Brand, Christian; Banister, David

    2014-04-01

    Emerging technologies will have important impacts on sustainability objectives. Yet little is known about the explicit feedbacks between consumer behaviour and technological change, and the potential impact on mass market penetration. We use the UK as a case-study to explore the dynamic interactions between technology supply, performance, cost, and heterogeneous consumer behaviour and the resulting influence on long term market diffusion. Simulations of competing vehicle technologies indicate that petrol hybrids (HEVs) dominate the market over the long-term because they benefit from improved performance and are able to reach the steep part of the diffusion curve by 2025 while competing technologies remain in the early stages of growth and are easier to displace in the market. This is due to the cumulative build-up of stock and slow fleet turnover creating inertia in the technological system. Consequently, it will be difficult to displace incumbent technologies because of system inertia, cumulative growth in stock, long operational life, and consumer risk aversion to new unproven technologies. However, when accounting for both technological and behavioural change, simulations indicate that if investment can reach 30-40% per annum growth in supply, combined with steady technology improvements, and more sophisticated agent decision making such as accounting for full technology lifecycle cost and performance, full battery electric vehicles could displace the incumbent system by 2050.

  16. Modelling antibiotics transport in a waste stabilization pond system in Tanzania

    DEFF Research Database (Denmark)

    Moller, Cathrine Christmas; Weisser, Johan J.; Msigala, Sijaona

    2016-01-01

    Antibiotics in wastewater have become a growing problem in urban and peri-urban areas in developing countries as a result of increased use and misuse of antibiotics. A simple dynamic model, that describes the most important removal processes of antibiotic from the wastewater stabilization pond....... Metronidazole was mainly removed through the outlet, but settling and hydrolysis/photolysis also played a role. A sensitivity analysis (±10%) showed that the soil adsorption coefficient, the amount of suspended matter and the ratio of flow rate and volume were the most sensitive parameters. To strengthen...

  17. Model Predictive Control of Hybrid Thermal Energy Systems in Transport Refrigeration

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Alleyne, Andrew

    2015-01-01

    by simply shifting the charging to the time when vehicle is moving above a threshold speed. Subsequently, a cascade control structure is proposed consisting of (i) an outer loop controller that schedules the TES charging profile using a receding horizon optimization, and (ii) an inner loop model predictive...... controller (MPC) which regulates the TES state of charge while maximizing a derived efficiency factor. For the test case under consideration, and utilizing a specifically derived performance metric, the cascaded control structure shows a 22% improvement over a baseline logic-based controller that focuses...

  18. Next Generation Transport Phenomenology Model

    Science.gov (United States)

    Strickland, Douglas J.; Knight, Harold; Evans, J. Scott

    2004-01-01

    This report describes the progress made in Quarter 3 of Contract Year 3 on the development of Aeronomy Phenomenology Modeling Tool (APMT), an open-source, component-based, client-server architecture for distributed modeling, analysis, and simulation activities focused on electron and photon transport for general atmospheres. In the past quarter, column emission rate computations were implemented in Java, preexisting Fortran programs for computing synthetic spectra were embedded into APMT through Java wrappers, and work began on a web-based user interface for setting input parameters and running the photoelectron and auroral electron transport models.

  19. Methods for testing transport models

    International Nuclear Information System (INIS)

    Singer, C.; Cox, D.

    1991-01-01

    Substantial progress has been made over the past year on six aspects of the work supported by this grant. As a result, we have in hand for the first time a fairly complete set of transport models and improved statistical methods for testing them against large databases. We also have initial results of such tests. These results indicate that careful application of presently available transport theories can reasonably well produce a remarkably wide variety of tokamak data

  20. Modelling pollutant transport

    International Nuclear Information System (INIS)

    Gopinath, D.V.

    1994-01-01

    An attempt has been made here to present a brief outline of the major processes and problems in the environmental modelling with special reference to radionuclide migration in surface waters. The intention has been only to provide a bird's eye view of this fertile and socially relevant area of scientific pursuit. (author). 2 figs., 4 tabs

  1. Conceptual and numerical modelling of radionuclide transport in near-surface systems at Forsmark. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pique, Angels; Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi (Amphos21 Consulting S.L., Barcelona (Spain))

    2010-11-15

    In the framework of the SR-Site safety assessment, a conceptual and numerical modelling of radionuclide reactive transport in near-surface systems (including till and clay systems) at Forsmark has been carried out. The objective was to evaluate the retention capacity of the near-surface systems, composed of Quaternary deposits, which would be the last natural barrier for an eventual radionuclide release from the deep repository prior to reaching the biosphere. The studied radionuclides are 14C, 129I, 36Cl, 94Nb, 59Ni, 93Mo, 79Se, 99Tc, 230Th, 90Sr, 226Ra, 135Cs and U. Conceptual description and numerical simulations of radionuclide reactive transport show that cation exchange and surface complexation on illite are active processes for the retention of several radionuclides (U, Th, Ni, Cs, Sr, Ra). Surface complexation on iron hydroxide is an active process in the till system, able to effectively retain U and Ni. Another retention process of importance is the incorporation of the radionuclides into mineral phases, either by the precipitation of pure phases or solid solutions. Quantitative modelling has been useful to illustrate the incorporation of C and Sr in the carbonate solid solution in the considered model domains (till and clay), as well as the precipitation of uraninite in the clay sediments and the precipitation of native selenium and radiobarite in the till. Other mineral phases that could, a priori, retain U, Se, Nb and Tc do not precipitate in the simulations, either due to the pH-Eh conditions and/or because the dissolved concentration of the element is not high enough under the considered simulation conditions. It is important to keep in mind that changes in these parameters and in the boundary conditions could modify the predicted behaviour of these elements. The radionuclides that are most significantly retarded are Th, Ni and Cs, mainly through sorption onto illite. Therefore, if the amount of illite (or available sorption sites) decreases, the

  2. Conceptual and numerical modelling of radionuclide transport in near-surface systems at Forsmark. SR-Site Biosphere

    International Nuclear Information System (INIS)

    Pique, Angels; Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi

    2010-11-01

    In the framework of the SR-Site safety assessment, a conceptual and numerical modelling of radionuclide reactive transport in near-surface systems (including till and clay systems) at Forsmark has been carried out. The objective was to evaluate the retention capacity of the near-surface systems, composed of Quaternary deposits, which would be the last natural barrier for an eventual radionuclide release from the deep repository prior to reaching the biosphere. The studied radionuclides are 14 C, 129 I, 36 Cl, 94 Nb, 59 Ni, 93 Mo, 79 Se, 99 Tc, 230 Th, 90 Sr, 226 Ra, 135 Cs and U. Conceptual description and numerical simulations of radionuclide reactive transport show that cation exchange and surface complexation on illite are active processes for the retention of several radionuclides (U, Th, Ni, Cs, Sr, Ra). Surface complexation on iron hydroxide is an active process in the till system, able to effectively retain U and Ni. Another retention process of importance is the incorporation of the radionuclides into mineral phases, either by the precipitation of pure phases or solid solutions. Quantitative modelling has been useful to illustrate the incorporation of C and Sr in the carbonate solid solution in the considered model domains (till and clay), as well as the precipitation of uraninite in the clay sediments and the precipitation of native selenium and radiobarite in the till. Other mineral phases that could, a priori, retain U, Se, Nb and Tc do not precipitate in the simulations, either due to the pH-Eh conditions and/or because the dissolved concentration of the element is not high enough under the considered simulation conditions. It is important to keep in mind that changes in these parameters and in the boundary conditions could modify the predicted behaviour of these elements. The radionuclides that are most significantly retarded are Th, Ni and Cs, mainly through sorption onto illite. Therefore, if the amount of illite (or available sorption sites

  3. Physical models of mass transport of iron and nickel in liquid sodium systems

    International Nuclear Information System (INIS)

    Davies, B.S.J.; Polley, M.V.; Skyrme, G.

    1975-12-01

    Experimental observations on corrosion of pure iron and nickel specimens in non-isothermal loops containing flowing sodium have been used to derive values of the concentration of dissolved material at the entrance to the test section and diffusion coefficients of the test material in sodium. The former values differ from the saturation value by only 10 -3 ppm, which is small compared to currently recommended solubility values. The phenomenon cannot be explained in terms of circulating particles. Two other possible explanations are also dismissed. The diffusion coefficient values are consistent with the corroding species being atoms, or molecules containing a few atoms. It is also shown that the observations are better explained in terms of boundary layer controlled mass transfer, rather than a surface controlled process. A computer model based on an alternative solubility relationship is shown to produce results which describe well the observed variation of corrosion rate with oxygen concentration, sodium velocity and downstream position. (author)

  4. An extended car-following model based on intelligent transportation system application

    Science.gov (United States)

    Ge, H. X.; Dai, S. Q.; Dong, L. Y.

    2006-06-01

    The jams in the congested traffic reveal various density waves. Some of them are described by the nonlinear wave equations: the Korteweg-de-Vries (KdV) equation, the Burgers equation and the modified KdV equation. An extended car following model are proposed in previous work, and the kink-antikink solution has been obtained from the mKdV equation. We continue to derive the KdV equation near the neutral stability line by applying the reductive perturbation method. The traffic jam could be thus described by the soliton solution, and the analysis result is consistent with the previous one. From the numerical simulations results, the soliton waves are found, and traffic jam is suppressed efficiently as encounter big disturbances.

  5. Chlorine fate and transport in drinking water distribution systems: Results from experimental and modeling studies

    Science.gov (United States)

    Clark, Robert M.

    2011-12-01

    It has become generally accepted that water quality can deteriorate in a distribution system through microbiological and chemical reactions in the bulk phase and/or at the pipe wall. The most serious aspect of water quality deterioration in a network is the loss of the disinfectant residual that can weaken the barrier against microbial contamination. Studies have suggested that one factor contributing to the loss of disinfectant residuals is the reaction between bulk phase disinfectants and pipe wall material. Free chlorine loss in corroded metal and PVC pipes, subject to changes in velocity, was assessed during an experiment conducted under controlled conditions in a specially constructed pipe loop located at the US Environmental Protection Agency's (EPA's) Test and Evaluation (T&E) Facility in Cincinnati, Ohio (USA). These studies demonstrated that in older unlined metal pipes, the loss of chlorine residual increases with velocity but that wall demand in PVC was negligible.

  6. Simulating mass public-transport systems

    Directory of Open Access Journals (Sweden)

    Jorge Eduardo Ortíz Triviño

    2006-01-01

    Full Text Available A simulation model for evaluating the performance of a mass public-transport system (MPTS is presented in this report. The final prototype was flexible both for constructing an STPM “skeleton“ and modelling random events characteristic of this type of system. The final model was a queuing network with other elements such as origin- destination matrices and graphs allowing typical MPTS phenomena to be considered. The simulation model reacted as expected to changes in the parameters and allowed defining and evaluating typical performance measurement for queues (e.g. mean time spent in the system and queue, expected queue length as well as others representative of these systems.

  7. Real time model for public transportation management

    Directory of Open Access Journals (Sweden)

    Ireneusz Celiński

    2014-03-01

    Full Text Available Background: The article outlines managing a public transportation fleet in the dynamic aspect. There are currently many technical possibilities of identifying demand in the transportation network. It is also possible to indicate legitimate basis of estimating and steering demand. The article describes a general public transportation fleet management concept based on balancing demand and supply. Material and methods: The presented method utilizes a matrix description of demand for transportation based on telemetric and telecommunication data. Emphasis was placed mainly on a general concept and not the manner in which data was collected by other researchers.  Results: The above model gave results in the form of a system for managing a fleet in real-time. The objective of the system is also to optimally utilize means of transportation at the disposal of service providers. Conclusions: The presented concept enables a new perspective on managing public transportation fleets. In case of implementation, the project would facilitate, among others, designing dynamic timetables, updated based on observed demand, and even designing dynamic points of access to public transportation lines. Further research should encompass so-called rerouting based on dynamic measurements of the characteristics of the transportation system.

  8. Bevalac beam transport system

    International Nuclear Information System (INIS)

    Avery, R.; Behrsing, G.; Morgado, R.; Rondeau, D.; Salsig, W.; Selph, F.; Staples, J.; Yourd, R.

    1975-03-01

    The Bevalac consists of, in part, a 200 meter long transfer line between the SuperHILAC and the Bevatron, which are at differing elevation. Unique features in the construction of the transfer line are described. The line, located largely outside, must cope with a natural environment. Part of the line passes through a hillside, requiring some unique support and alignment techniques. The dipoles are of the tape-wound variety and the steering magnets use printed circuit conductors. The vacuum system and an inexpensive and effective destructive monitoring system are described. (U.S.)

  9. Transport phenomena in particulate systems

    CERN Document Server

    Freire, José Teixeira; Ferreira, Maria do Carmo

    2012-01-01

    This volume spans 10 chapters covering different aspects of transport phenomena including fixed and fluidized systems, spouted beds, electrochemical and wastewater treatment reactors. This e-book will be valuable for students, engineers and researchers aiming to keep updated on the latest developments on particulate systems.

  10. Sediment transport patterns in the San Francisco Bay Coastal System from cross-validation of bedform asymmetry and modeled residual flux

    Science.gov (United States)

    Barnard, Patrick L.; Erikson, Li H.; Elias, Edwin P.L.; Dartnell, Peter; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    The morphology of ~ 45,000 bedforms from 13 multibeam bathymetry surveys was used as a proxy for identifying net bedload sediment transport directions and pathways throughout the San Francisco Bay estuary and adjacent outer coast. The spatially-averaged shape asymmetry of the bedforms reveals distinct pathways of ebb and flood transport. Additionally, the region-wide, ebb-oriented asymmetry of 5% suggests net seaward-directed transport within the estuarine-coastal system, with significant seaward asymmetry at the mouth of San Francisco Bay (11%), through the northern reaches of the Bay (7–8%), and among the largest bedforms (21% for λ > 50 m). This general indication for the net transport of sand to the open coast strongly suggests that anthropogenic removal of sediment from the estuary, particularly along clearly defined seaward transport pathways, will limit the supply of sand to chronically eroding, open-coast beaches. The bedform asymmetry measurements significantly agree (up to ~ 76%) with modeled annual residual transport directions derived from a hydrodynamically-calibrated numerical model, and the orientation of adjacent, flow-sculpted seafloor features such as mega-flute structures, providing a comprehensive validation of the technique. The methods described in this paper to determine well-defined, cross-validated sediment transport pathways can be applied to estuarine-coastal systems globally where bedforms are present. The results can inform and improve regional sediment management practices to more efficiently utilize often limited sediment resources and mitigate current and future sediment supply-related impacts.

  11. Model behavior and sensitivity in an application of the cohesive bed component of the community sediment transport modeling system for the York River estuary, VA, USA

    Science.gov (United States)

    Fall, Kelsey A.; Harris, Courtney K.; Friedrichs, Carl T.; Rinehimer, J. Paul; Sherwood, Christopher R.

    2014-01-01

    The Community Sediment Transport Modeling System (CSTMS) cohesive bed sub-model that accounts for erosion, deposition, consolidation, and swelling was implemented in a three-dimensional domain to represent the York River estuary, Virginia. The objectives of this paper are to (1) describe the application of the three-dimensional hydrodynamic York Cohesive Bed Model, (2) compare calculations to observations, and (3) investigate sensitivities of the cohesive bed sub-model to user-defined parameters. Model results for summer 2007 showed good agreement with tidal-phase averaged estimates of sediment concentration, bed stress, and current velocity derived from Acoustic Doppler Velocimeter (ADV) field measurements. An important step in implementing the cohesive bed model was specification of both the initial and equilibrium critical shear stress profiles, in addition to choosing other parameters like the consolidation and swelling timescales. This model promises to be a useful tool for investigating the fundamental controls on bed erodibility and settling velocity in the York River, a classical muddy estuary, provided that appropriate data exists to inform the choice of model parameters.

  12. Data-driven modeling of transportation systems and traffic data analysis during a major power outage in the Netherlands

    NARCIS (Netherlands)

    Melnikov, V.R.; Krzhizhanovskaya, V.V.; Boukhanovsky, A.V.; Sloot, P.M.A.

    2015-01-01

    Efficient methods and tools for road network planning and traffic management are critically important in the ever more urbanized world. The goal of our research is the development of a data-driven multiscale modeling approach for accurate simulation of road traffic in real-life transportation

  13. Development of an aerosol-chemistry transport model coupled to non-hydrostatic icosahedral atmospheric model (NICAM) through applying a stretched grid system to regional simulations around Japan

    Science.gov (United States)

    Goto, D.; Nakajima, T.; Masaki, S.

    2014-12-01

    Air pollution has a great impact on both climate change and human health. One effective way to tackle with these issues is a use of atmospheric aerosol-chemistry models with high-resolution in a global scale. For this purpose, we have developed an aerosol-chemistry model based on a global cloud-resolving model (GCRM), Nonhydrostatic Icosahedral Atmospheric Model (NICAM; Tomita and Satoh, Fluid. Dyn. Res. 2004; Satoh et al., J. Comput. Phys. 2008, PEPS, 2014) under MEXT/RECCA/SALSA project. In the present study, we have simulated aerosols and tropospheric ozone over Japan by our aerosol-chemistry model "NICAM-Chem" with a stretched-grid system of approximately 10 km resolution, for saving the computer resources. The aerosol and chemistry modules are based on Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS; Takemura et al., J. Geophys. Res., 2005) and Chemical AGCM for Study of Atmospheric Environment and Radiative Forcing (CHASER; Sudo et al., J. Geophys. Res., 2002). We found that our model can generally reproduce both aerosols and ozone, in terms of temporal variations (daily variations of aerosols and diurnal variations of ozone). Under MEXT/RECCA/SALSA project, we also have used these results obtained by NICAM-Chem for the assessment of their impact on human health.

  14. GEOS-5 Chemistry Transport Model User's Guide

    Science.gov (United States)

    Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.

    2015-01-01

    The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.

  15. Surveillance systems for intermodal transportation

    Science.gov (United States)

    Jakovlev, Sergej; Voznak, Miroslav; Andziulis, Arunas

    2015-05-01

    Intermodal container monitoring is considered a major security issue in many major logistic companies and countries worldwide. Current representation of the problem, we face today, originated in 2002, right after the 9/11 attacks. Then, a new worldwide Container Security Initiative (CSI, 2002) was considered that shaped the perception of the transportation operations. Now more than 80 larger ports all over the world contribute to its further development and integration into everyday transportation operations and improve the regulations for the developing regions. Although, these new improvements allow us to feel safer and secure, constant management of transportation operations has become a very difficult problem for conventional data analysis methods and information systems. The paper deals with a proposal of a whole new concept for the improvement of the Containers Security Initiative (CSI) by virtually connecting safety, security processes and systems. A conceptual middleware approach with deployable intelligent agent modules is proposed to be used with possible scenarios and a testbed is used to test the solution. Middleware examples are visually programmed using National Instruments LabView software packages and Wireless sensor network hardware modules. An experimental software is used to evaluate he solution. This research is a contribution to the intermodal transportation and is intended to be used as a means or the development of intelligent transport systems.

  16. Modelling Transition Towards Sustainable Transportation Sector

    DEFF Research Database (Denmark)

    Dominkovic, Dominik Franjo; Bačeković, I.; Mýrdal, Jón Steinar Garðarsson

    2016-01-01

    two energy sectors. In order to deal with the raised issue, authors of this paper developed amethodology for calculation of the transition towards sustainable transport sector, focusing on thesolutions that are already available. Furthermore, as a part of the model, a detailed mapping ofresources......In a transition towards 100% renewable energy system, transportation sector is rarely dealt withusing the holistic approach and measuring its impact on the whole energy system. Furthermore, assolutions for power and heat sectors are clearer, it is a tendency of the researchers to focus on thelatter...... needed has been carried out for each of the alternatives. It was shown that theelectrification of the transportation sector is a crucial point in transition, while for the transportmodes that cannot be electrified, or shifted to different transportation modes, four alternatives weredefined: synthetic...

  17. Carajas transport system and port

    Energy Technology Data Exchange (ETDEWEB)

    Soros, P.; Koman, B.

    1986-01-01

    Rich iron ore deposits were discovered during the 1960's in the mountain range of Serra dos Carajas, State of Para, Brazil, near the headwaters of the Tocantins River some 400 miles southwest from the state capital of Belem. The key to the successful exploitation of this deposit was the development of an efficient an economical transportation system. Starting in 1972 extensive surveys and studies were carried out by Soros Associates on behalf of CVRD to determine the optimum way of transporting the ore from the mine site to the markets, most of which are located overseas. Overland transportation to the coast, loading into seagoing vessels and the ocean voyage to the ports of destination was treated as an integrated system in these studies.

  18. Modeling Terrorism Risk to the Air Transportation System: An Independent Assessment of TSA’s Risk Management Analysis Tool and Associated Methods

    Science.gov (United States)

    2012-01-01

    clarifying misconceptions that the experts might have. Methods of incorporating group interaction into assessment include mathematically merging...Modeling Terrorism Risk to the Air Transportation System ics or chemistry underlying some of the processes. This would increase the likelihood that RMAT

  19. Long-term optimization of the transport sector to address greenhouse gas reduction targets under rapid growth. Application of an energy system model for Gauteng province, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschek, Jan

    2013-12-11

    The transport sector is seen as one of the key factors for driving future energy consumption and greenhouse gas (GHG) emissions. Especially in developing countries, significant growth in transport demand is expected. Gauteng province, as the economic centre of South Africa and transport hub for the whole of southern Africa, is one emerging urban region that faces rapid growth. However, the province is on its way to playing a leading role for supporting ways to adapt to climate change and mitigate GHG emissions. Conversely, there is a lack of scientific research on the promising measures for GHG mitigation in the transport sector. For the rapidly growing transport sector of the province in particular, research is focused primarily on extending and structuring the road infrastructure. Moreover, it is important that the transport sector is considered as part of the whole energy system, as significant contributions to GHG emissions and the associated costs arise from energy supply, provision and conversion. This research is the first application of an integrated energy system model (i.e. the TIMES-GEECO model) for the optimization of the transport sector of Gauteng. Optimizing energy system models allows finding least-cost measures for various scenarios, by considering dependencies and interlinkages in the energy system as well as environmental constraints. To do so, the transport sector and the energy supply sector had to be incorporated into the model application in terms of the characteristics of a developing urban region, which includes all relevant transport modes, vehicle technologies, fuel options, vehicle-to-grid energy storage, the consideration of road types as well as explicit expansions of the public transport system and income-dependent travel demand modelling. Additionally, GHG mitigation options outside the provincial boundaries were incorporated to allow for mitigation at least cost and to consider regional resource availability. Moreover, in TIMES

  20. Long-term optimization of the transport sector to address greenhouse gas reduction targets under rapid growth. Application of an energy system model for Gauteng province, South Africa

    International Nuclear Information System (INIS)

    Tomaschek, Jan

    2013-01-01

    The transport sector is seen as one of the key factors for driving future energy consumption and greenhouse gas (GHG) emissions. Especially in developing countries, significant growth in transport demand is expected. Gauteng province, as the economic centre of South Africa and transport hub for the whole of southern Africa, is one emerging urban region that faces rapid growth. However, the province is on its way to playing a leading role for supporting ways to adapt to climate change and mitigate GHG emissions. Conversely, there is a lack of scientific research on the promising measures for GHG mitigation in the transport sector. For the rapidly growing transport sector of the province in particular, research is focused primarily on extending and structuring the road infrastructure. Moreover, it is important that the transport sector is considered as part of the whole energy system, as significant contributions to GHG emissions and the associated costs arise from energy supply, provision and conversion. This research is the first application of an integrated energy system model (i.e. the TIMES-GEECO model) for the optimization of the transport sector of Gauteng. Optimizing energy system models allows finding least-cost measures for various scenarios, by considering dependencies and interlinkages in the energy system as well as environmental constraints. To do so, the transport sector and the energy supply sector had to be incorporated into the model application in terms of the characteristics of a developing urban region, which includes all relevant transport modes, vehicle technologies, fuel options, vehicle-to-grid energy storage, the consideration of road types as well as explicit expansions of the public transport system and income-dependent travel demand modelling. Additionally, GHG mitigation options outside the provincial boundaries were incorporated to allow for mitigation at least cost and to consider regional resource availability. Moreover, in TIMES

  1. Quantum Transport in Mesoscopic Systems

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 11. Quantum Transport in Mesoscopic Systems - Coulomb Blockade and Kondo Effect ... Author Affiliations. Navinder Singh1. Room No 457 Theoretical Physics Division Physical Research Laboratory Navrangpura Ahmedabad 380 009 ...

  2. Multi-compartment Aerosol Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Joshua Allen; Santarpia, Joshua; Brotherton, Christopher M.; Omana, Michael Alexis; Rivera, Danielle; Lucero, Gabriel Anthony

    2017-06-01

    A simple aerosol transport model was developed for a multi-compartmented cleanroom. Each compartment was treated as a well-mixed volume with ventilating supply and return air. Gravitational settling, intercompartment transport, and leakage of exterior air into the system were included in the model. A set of first order, coupled, ordinary differential equations was derived from the conservation equations of aerosol mass and air mass. The system of ODEs was then solved in MATLAB using pre-existing numerical methods. The model was verified against cases of (1) constant inlet-duct concentration, and (2) exponentially decaying inlet-duct concentration. Numerical methods resulted in normalized error of less than 10 -9 when model solutions were compared to analytical solutions. The model was validated against experimental measurements from a single field test and showed good agreement in the shape and magnitude of the aerosol concentration profile with time.

  3. Models in Planning Urban Public Passenger Transport

    Directory of Open Access Journals (Sweden)

    Gordana Štefančić

    2007-07-01

    Full Text Available The solving of complex problems in public transport requiresthe usage of models that are based on the estimate of demandin planning the transport routes. The intention is to predictwhat is going to happen in the future, if the proposed solutionsare implemented. In the majority of cases, the publictransport system is formed as a network and stored in the computermemory in order to start the evaluation process by specifYingthe number of trip origins and destinations in each zone.The trip distribution model which is used to calculate the numberof trips between each pair in the zone is based on the overalltravel frictions from zone to zone.

  4. Optimal configuration of an integrated power and transport system

    DEFF Research Database (Denmark)

    Juul, Nina; Meibom, Peter

    2011-01-01

    Integrating the power and transport system, in the future energy system planning, influences the economically optimal investments and optimal operation of the power system as well as the transport system. For analysing the integrated power and transport system a new model capable of calculating...... optimal investments in both power plants and vehicle technologies is presented in this article. The model includes the interactions between the power system and the transport system including the competition between flexibility measures such as hydrogen storage in combination with electrolysis, heat...

  5. Modeling axisymmetric flow and transport

    Science.gov (United States)

    Langevin, C.D.

    2008-01-01

    Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests.

  6. Modeling Radionuclide Transport in Clays

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Li, Lianchong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liu, Hui -Hai [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-01

    tests (e.g. Garcia-Gutierrez et al. 2006, Soler et al. 2008, van Loon et al. 2004, Wu et al. 2009) and numerical modeling (de Windt et al. 2003; 2006), the effects of THMC processes on radionuclide transport are not fully investigated. The objectives of the research activity documented in this report are to improve a modeling capability for coupled THMC processes and to use it to evaluate the THMC impacts on radionuclide transport. This research activity addresses several key Features, Events and Processes (FEPs), including FEP 2.2.08, Hydrologic Processes, FEP 2.2.07, Mechanical Processes and FEP 2.2.09, Chemical Process— Transport, by studying near-field coupled THMC processes in clay/shale repositories and their impacts on radionuclide transport. This report documents the progress that has been made in FY12. Section 2 discusses the development of THMC modeling capability. Section 3 reports modeling results of THMC impacts on radionuclide transport. Planned work for the remaining months of FY12 and proposed work for FY13 are presented in Section 4.

  7. Symmetrization of mathematical model of charge transport in semiconductors

    Directory of Open Access Journals (Sweden)

    Alexander M. Blokhin

    2002-11-01

    Full Text Available A mathematical model of charge transport in semiconductors is considered. The model is a quasilinear system of differential equations. A problem of finding an additional entropy conservation law and system symmetrization are solved.

  8. Designing E-learning Model to Learn About Transportation Management System to Support Supply Chain Management with Simulation Problems

    OpenAIRE

    Wiyono, Didiek Sri; Pribadi, Sidigdoyo; Permana, Ryan

    2011-01-01

    Focus of this research is designing Transportation Management System (TMS) as e-learning media for logistic education. E-learning is the use of Internet technologies to enhance knowledge and performance. E-learning technologies offer learners control over content, learning sequence, pace of learning, time, and often media, allowing them to tailor their experiences to meet their personal learning objectives. E-learning appears to be at least as effective as classical lectures. Students do not ...

  9. Improvements in Neutronics/Thermal-Hydraulics Coupling in Two-Phase Flow Systems Using Stochastic-Mixture Transport Models

    CERN Document Server

    Palmer, T S

    2003-01-01

    In this NEER project, researchers from Oregon State University have investigated the limitations of the treatment of two-phase coolants as a homogeneous mixture in neutron transport calculations. Improved methods of calculating the neutron distribution in binary stochastic mixtures have been developed over the past 10-15 years and are readily available in the transport literature. These methods are computationally more expensive than the homogeneous (or atomic mix) models, but can give much more accurate estimates of ensemble average fluxes and reaction rates provided statistical descriptions of the distributions of the two materials are know. A thorough review of the two-phase flow literature has been completed and the relevant mixture distributions have been identified. Using these distributions, we have performed Monte Carlo criticality calculations of fuel assemblies to assess the accuracy of the atomic mix approximation when compared to a resolved treatment of the two-phase coolant. To understand the ben...

  10. Symposium on unsaturated flow and transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, E.M.; Gee, G.W.; Nelson, R.W. (eds.)

    1982-09-01

    This document records the proceedings of a symposium on flow and transport processes in partially saturated groundwater systems, conducted at the Battelle Seattle Research Center on March 22-24, 1982. The symposium was sponsored by the US Nuclear Regulatory Commission for the purpose of assessing the state-of-the-art of flow and transport modeling for use in licensing low-level nuclear waste repositories in partially saturated zones. The first day of the symposium centered around research in flow through partially saturated systems. Papers were presented with the opportunity for questions following each presentation. In addition, after all the talks, a formal panel discussion was held during which written questions were addressed to the panel of the days speakers. The second day of the Symposium was devoted to solute and contaminant transport in partially saturated media in an identical format. Individual papers are abstracted.

  11. Physical System Requirements: Transport Waste

    International Nuclear Information System (INIS)

    1992-04-01

    The Nuclear Waste Policy Act (NWPA) of 1982 assigned to the Department of Energy (DOE) the responsibility for managing the disposal of spent nuclear fuel and high-level radioactive waste and established the Office of Civilian Radioactive Waste Management (OCRWM) for that purpose. The Secretary of Energy, in his November 1989 report to Congress (DOE/RW-0247), announced three new initiatives for the conduct of the Civilian Radioactive Waste Management (CRWM) program. One of these initiatives was to establish improved management structure and procedures. In response, OCRWM performed a management study and the Director subsequently issued the Management Systems Improvement Strategy (MSIS) on August 10, 1990, calling for a rigorous implementation of systems engineering principles with a special emphasis on functional analysis. The functional analysis approach establishes a framework for integrating the program management efforts with the technical requirements analysis into a single, unified, and consistent program. This approach recognizes that just as the facilities and equipment comprising the physical waste management system must perform certain functions, so must certain programmatic and management functions be performed within the program in order to successfully bring the physical system into being. The objective of this document is to establish the essential functions, requirements, interfaces, and system architecture for the Transport Waste mission. Based upon the Nuclear Waste Policy Act, the mission of the Waste Transportation System is to transport SNF and/or HLW from the purchaser's/producer's facilities to, and between, NWMS facilities in a manner that protects the health and safety of the public and of workers and the quality of the environment makes effective use of financial and other resources, and to the fullest extent possible uses the private sector

  12. Transport in the Stochastic Lorenz System

    Science.gov (United States)

    Weady, Scott; Agarwal, Sahil; Wilen, Larry; Wettlaufer, John

    2017-11-01

    We study transport in the stochastic Lorenz system mathematically, computationally and using a circuit model. The circuit model provides a very efficient method for computing long time averages of polynomials in the variables X , Y , and Z with real-time updates. In particular, we use this approach to the quantity , which is the heat transport corresponding with Rayleigh-Bénard convection. We interpret our results in the framework of analytical stochastic upper bounds for versus ρ (the reduced Rayleigh number), as well as against numerical solutions. For a given ρ we find a rich dependence of the transport on both noise color and amplitude due to the detailed coupling of noise with Unstable Periodic Orbits.

  13. Reduction of Mn-oxides by ferrous iron in a flow system: column experiment and reactive transport modeling

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Appelo, C. A. J.

    2000-01-01

    of Mn21, Al31, Fe31, and Fe21 in the column outlet solution. However, the initial breakthrough of a peak of Ca21 and the observed pH buffering indicated that exchange processes were of importance as well. The amount of potential exchangers, such as birnessite and ferrihydrite, did vary in the course......(OH)3, Mn21 and H1. The protons are transported downstream and cause the disproportionation of MnOOH at a separate reaction front. Between the two Mn reaction fronts, the dissolution and precipitation of Fe(OH)3 and Al(OH)3 act as proton buffers. Reactive transport modeling, using the code PHREEQC 2...... profiles are more gradual than indicated by the equilibrium model. Reaction kinetics for the dissolution of MnO2 and MnOOH and dissolution of Al(OH)3 were incorporated in the model, which explained the shape of the breakthrough curves satisfactorily. The results of this study emphasize the importance...

  14. Thermodynamically Constrained Averaging Theory Approach for Modeling Flow and Transport Phenomena in Porous Medium Systems: 8. Interface and Common Curve Dynamics.

    Science.gov (United States)

    Gray, William G; Miller, Cass T

    2010-12-01

    This work is the eighth in a series that develops the fundamental aspects of the thermodynamically constrained averaging theory (TCAT) that allows for a systematic increase in the scale at which multiphase transport phenomena is modeled in porous medium systems. In these systems, the explicit locations of interfaces between phases and common curves, where three or more interfaces meet, are not considered at scales above the microscale. Rather, the densities of these quantities arise as areas per volume or length per volume. Modeling of the dynamics of these measures is an important challenge for robust models of flow and transport phenomena in porous medium systems, as the extent of these regions can have important implications for mass, momentum, and energy transport between and among phases, and formulation of a capillary pressure relation with minimal hysteresis. These densities do not exist at the microscale, where the interfaces and common curves correspond to particular locations. Therefore, it is necessary for a well-developed macroscale theory to provide evolution equations that describe the dynamics of interface and common curve densities. Here we point out the challenges and pitfalls in producing such evolution equations, develop a set of such equations based on averaging theorems, and identify the terms that require particular attention in experimental and computational efforts to parameterize the equations. We use the evolution equations developed to specify a closed two-fluid-phase flow model.

  15. Reactive transport models and simulation with ALLIANCES

    International Nuclear Information System (INIS)

    Leterrier, N.; Deville, E.; Bary, B.; Trotignon, L.; Hedde, T.; Cochepin, B.; Stora, E.

    2009-01-01

    Many chemical processes influence the evolution of nuclear waste storage. As a result, simulations based only upon transport and hydraulic processes fail to describe adequately some industrial scenarios. We need to take into account complex chemical models (mass action laws, kinetics...) which are highly non-linear. In order to simulate the coupling of these chemical reactions with transport, we use a classical Sequential Iterative Approach (SIA), with a fixed point algorithm, within the mainframe of the ALLIANCES platform. This approach allows us to use the various transport and chemical modules available in ALLIANCES, via an operator-splitting method based upon the structure of the chemical system. We present five different applications of reactive transport simulations in the context of nuclear waste storage: 1. A 2D simulation of the lixiviation by rain water of an underground polluted zone high in uranium oxide; 2. The degradation of the steel envelope of a package in contact with clay. Corrosion of the steel creates corrosion products and the altered package becomes a porous medium. We follow the degradation front through kinetic reactions and the coupling with transport; 3. The degradation of a cement-based material by the injection of an aqueous solution of zinc and sulphate ions. In addition to the reactive transport coupling, we take into account in this case the hydraulic retroaction of the porosity variation on the Darcy velocity; 4. The decalcification of a concrete beam in an underground storage structure. In this case, in addition to the reactive transport simulation, we take into account the interaction between chemical degradation and the mechanical forces (cracks...), and the retroactive influence on the structure changes on transport; 5. The degradation of the steel envelope of a package in contact with a clay material under a temperature gradient. In this case the reactive transport simulation is entirely directed by the temperature changes and

  16. Evaluation of intelligent transport systems impact on school transport safety

    OpenAIRE

    Jankowska-Karpa Dagmara; Wacowska-Ślęzak Justyna

    2017-01-01

    The integrated system of safe transport of children to school using Intelligent Transport Systems was developed and implemented in four locations across Europe under the Safeway2School (SW2S) project, funded by the EU. The SW2S system evaluation included speed measurements and an eye-tracking experiment carried out among drivers who used the school bus route, where selected elements of the system were tested. The subject of the evaluation were the following system elements: pedestrian safety ...

  17. UVM Transportation Research Center signature project 1B : integrated land-use, transportation and environmental modeling.

    Science.gov (United States)

    2014-05-01

    Land use and transportation are inextricably linked. Models that capture the dynamics and interactions : of both systems are indispensable for evaluating alternative courses of action in policy and investment. : These models must be spatially disaggr...

  18. A fugacity approach for modeling the transport of airborne organic chemicals in an air/plant/soil system

    International Nuclear Information System (INIS)

    Oliver, L.D.; McKone, T.E.

    1991-05-01

    An important issue facing both public and private agencies is the identification and quantification of exposures by indirect pathways to toxic chemicals released to the atmosphere. With recent public concerns over pesticides such as malathion and alar in foods, greater attention is being given to the process of chemical uptake by plants. Whether chemicals taken up by plants can accumulate and ultimately enter the human food chain are important questions for determining health risks and safe levels of toxic air-pollutant emissions and pesticide application. A number of plant-toxicokinetic, or ''botanicokinetic,'' models have been developed to give estimates of how chemicals are partitioned and transported within plants. In this paper, we provide a brief review of these models, describing their main features and listing some of their advantages and disadvantages. We then describe and demonstrate a five-compartment air/plant/soil model, which builds on and extends the features included in previous models. We apply this model to the steady-state chemical partitioning of perchloroethylene, hexachlorobenzene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin in grass as test cases. We conclude with a discussion of the advantages and limitations of the model

  19. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport

  20. Transport Properties for Combustion Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J.; Bastein, L.; Price, P.N.

    2010-02-19

    This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to intermolecular forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/{var_epsilon}, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure substances and binary mixtures are less than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity in most cases; (4

  1. Modelling an Ammonium Transporter with SCLS

    Directory of Open Access Journals (Sweden)

    Angelo Troina

    2009-10-01

    Full Text Available The Stochastic Calculus of Looping Sequences (SCLS is a recently proposed modelling language for the representation and simulation of biological systems behaviour. It has been designed with the aim of combining the simplicity of notation of rewrite systems with the advantage of compositionality. It also allows a rather simple and accurate description of biological membranes and their interactions with the environment.In this work we apply SCLS to model a newly discovered ammonium transporter. This transporter is believed to play a fundamental role for plant mineral acquisition, which takes place in the arbuscular mycorrhiza, the most wide-spread plant-fungus symbiosis on earth. Due to its potential application in agriculture this kind of symbiosis is one of the main focuses of the BioBITs project. In our experiments the passage of NH3 / NH4+ from the fungus to the plant has been dissected in known and hypothetical mechanisms; with the model so far we have been able to simulate the behaviour of the system under different conditions. Our simulations confirmed some of the latest experimental results about the LjAMT2;2 transporter. The initial simulation results of the modelling of the symbiosis process are promising and indicate new directions for biological investigations.

  2. Improved rigorous upper bounds for transport due to passive advection described by simple models of bounded systems

    International Nuclear Information System (INIS)

    Kim, Chang-Bae; Krommes, J.A.

    1988-08-01

    The work of Krommes and Smith on rigorous upper bounds for the turbulent transport of a passively advected scalar [/ital Ann. Phys./ 177:246 (1987)] is extended in two directions: (1) For their ''reference model,'' improved upper bounds are obtained by utilizing more sophisticated two-time constraints which include the effects of cross-correlations up to fourth order. Numerical solutions of the model stochastic differential equation are also obtained; they show that the new bounds compare quite favorably with the exact results, even at large Reynolds and Kubo numbers. (2) The theory is extended to take account of a finite spatial autocorrelation length L/sub c/. As a reasonably generic example, the problem of particle transport due to statistically specified stochastic magnetic fields in a collisionless turbulent plasma is revisited. A bound is obtained which reduces for small L/sub c/ to the quasilinear limit and for large L/sub c/ to the strong turbulence limit, and which provides a reasonable and rigorous interpolation for intermediate values of L/sub c/. 18 refs., 6 figs

  3. Building Conceptual Models of Field-Scale Uranium Reactive Transport in a Dynamic Vadose Zone-Aquifer-River System

    International Nuclear Information System (INIS)

    Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.

    2008-01-01

    Subsurface simulation is being used to build, test, and couple conceptual process models to better understand controls on a 0.4 km by 1.0 km uranium plume that has persisted above the drinking water standard in the groundwater of the Hanford 300 Area over the last 15 years. At this site, uranium-contaminated sediments in the vadose zone and aquifer are subject to significant variations in water levels and velocities driven by the diurnal, weekly, seasonal, and episodic Columbia River stage dynamics. Groundwater flow reversals typically occur twice a day with significant exchange of river water and groundwater in the near-river aquifer. Mixing of the dilute solution chemistry of the river with the groundwater complicates the uranium sorption behavior as the mobility of U(VI) has been shown experimentally to be a function of pH, carbonate, calcium, and uranium. Furthermore, uranium mass transfer between solid and aqueous phases has been observed to be rate-limited in the context of the high groundwater velocities resulting from the river stage fluctuations and the highly transmissive sediments (hydraulic conductivities ∼1500 m/d). One- and two-dimensional vertical cross-sectional simulations of variably-saturated flow and reactive transport, based on laboratory-derived models of distributed rate mass transfer and equilibrium multicomponent surface complexation, are used to assess uranium transport at the dynamic vadose zone aquifer interface as well as changes to uranium mobility due to incursions of river water into the aquifer

  4. ADVANCES IN ZERO ENERGY TRANSPORTATION SYSTEMS

    OpenAIRE

    Ahmad, Othman

    2017-01-01

    Hyperloop mass transportation systems are activelydeveloped at the moment. They represent the forefront development of the ZeroEnergy Transportation systems where air drag is minimized by travelling in avacuum and friction is reduced by non-contact bearings. Hyperloop supportersare confident that the cost of their transportation systems would be lowcompared to existing transportation systems because of the low loss andtherefore low energy consumption as well as other cost-saving techniquesdoc...

  5. Complementary modelling of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Clara; Grandia, Fidel; Arcos, David; Molinero, Jorge; Duro, Lara (Amphos XXI Consulting S.L., Barcelona (Spain))

    2008-10-15

    sensitivity analysis of the more relevant parameters considered in the reactive transport numerical models is also presented here. From the main report of the SR-Can project it is stated that Ra is one of the radionuclides with greater contribution to the radioactive doses that might be transferred to the biosphere in the context of repository release. For this reason, Ra was added to the set of radionuclides (Sr, Cs, and U). Another improvement in the numerical simulations presented here is the calculation of the hydrogeochemical steady state of the near-surface system, prior to repository release. This is done to approach the present-day conditions at Forsmark. In addition, radionuclides derived from repository release have been discriminated from those of natural origin, already present in the groundwaters. Radionuclides coming from repository were labelled as RDCs, RDSr, and RDU (RD stands for repository-derived). Ra was not labelled since the presence of this radionuclide in the modelled domain is exclusively attributed to repository release due to the extremely low concentrations observed in the natural waters of Forsmark. The results attained in the reactive transport models built in this work show that the near-surface systems at Forsmark constitute a geochemical reactive barrier able to retain radionuclides by several key processes, namely cation exchange, adsorption on mineral surfaces and precipitation of pure phases and solid solutions. The reactive transport simulations predict that repository-derived Sr, U, and Cs are retained in the solid phase of both Quaternary deposits under study, while Ra is effectively retained in the till deposit only. Ra is not retained in the glacial clay deposit since saturation of barite, which is the only retention mechanism considered in the simulations for this radionuclide, is not reached in this system. The simulations indicate that, in the till deposit, Sr is retained via cation exchange and coprecipitation with calcite, U is

  6. Probabilistic finite-size transport models for fusion: Anomalous transport and scaling laws

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Sanchez, R.; Carreras, B.A.

    2004-01-01

    Transport in fusion plasmas in the low confinement mode is characterized by several remarkable properties: the anomalous scaling of transport with system size, stiff (or 'canonical') profiles, power degradation, and rapid transport phenomena. The present article explores the possibilities of constructing a unified transport model, based on the continuous-time random walk, in which all these phenomena are handled adequately. The resulting formalism appears to be sufficiently general to provide a sound starting point for the development of a full-blown plasma transport code, capable of incorporating the relevant microscopic transport mechanisms, and allowing predictions of confinement properties

  7. Up-gradient transport in a probabilistic transport model

    DEFF Research Database (Denmark)

    Gavnholt, J.; Juul Rasmussen, J.; Garcia, O.E.

    2005-01-01

    The transport of particles or heat against the driving gradient is studied by employing a probabilistic transport model with a characteristic particle step length that depends on the local concentration or heat gradient. When this gradient is larger than a prescribed critical value, the standard....... These results supplement recent works by van Milligen [Phys. Plasmas 11, 3787 (2004)], which applied Levy distributed step sizes in the case of supercritical gradients to obtain the up-gradient transport. (c) 2005 American Institute of Physics....

  8. Headway statistics of public transport in Mexican cities 05.65.+b Self-organized systems; 45.70.Vn Granular models of complex systems; traffic flow;

    CERN Document Server

    Krbalek, M

    2003-01-01

    We present a cellular automaton simulating the behaviour of public bus transport in several Mexican cities. The headway statistics obtained from the model is compared to the measured time intervals between subsequent bus arrivals to a given bus stop and to a spacing distribution resulting from a random matrix theory. (letter to the editor)

  9. A Multilayer perspective for the analysis of urban transportation systems

    OpenAIRE

    Aleta, Alberto; Meloni, Sandro; Moreno, Yamir

    2017-01-01

    Public urban mobility systems are composed by several transportation modes connected together. Most studies in urban mobility and planning often ignore the multi-layer nature of transportation systems considering only aggregated versions of this complex scenario. In this work we present a model for the representation of the transportation system of an entire city as a multiplex network. Using two different perspectives, one in which each line is a layer and one in which lines of the same tran...

  10. TRANSPORT PROPERTIES OF THE STRONGLY CORRELATED SYSTEMS

    Directory of Open Access Journals (Sweden)

    T.Domanski

    2004-01-01

    Full Text Available The transport properties of various systems are studied here in the context of three different models. These are: - the disordered Hubbard model applicable to correlated binary alloys with a general disorder, - the Anderson model used in describing the Kondo physics of a quantum dot connected to the external superconducting leads, and - the Ranninger-Robaszkiewicz model applied to the study of optical properties of the system with preformed electron pairs above the temperature of transition to the superconducting state. We calculate the density of states, specific heat, the Wilson ratio and conductivity of the correlated binary alloy with off-diagonal disorder. We investigate the conditions under which the Kondo peak appears in the density of states and in the conductance of a dot coupled to the external superconducting leads. We analyze the effect of the pseudogap on the optical spectra in the high temperature superconductors described by the boson-fermion model.

  11. Business Models For Transport eBusiness

    OpenAIRE

    Dragan Cisic; Ivan Franciskovic; Ana Peric

    2003-01-01

    In this paper authors are presenting expectations from electronic commerce and its connotations on transport logistics. Based on trends, the relations between the companies in the international transport have to be strengthened using Internet business models. In the paper authors are investigating e-business information models for usage in transport

  12. Coupled modelling (transport-reaction) of the fluid-clay interactions and their feed back on the physical properties of the bentonite engineered clay barrier system

    International Nuclear Information System (INIS)

    Marty, N.

    2006-11-01

    The originality of this work is to process feed back effects of mineralogical and chemical modifications of clays, in storage conditions, on their physical properties and therefore on their transport characteristics (porosity, molecular diffusion, permeability). These feed back effects are modelled using the KIRMAT code (Kinetic of Reaction and MAss Transfer) developed from the kinetic code KINDIS by adding the effect of water renewal in the mineral-solution reactive cells. KIRMAT resolves mass balance equations associated with mass transport together with the geochemical reactions in a 1D approach. After 100 000 years of simulated interaction at 100 C, with the fluid of the Callovo-Oxfordian geological level (COX) and with iron provided by the steel overpack corrosion, the montmorillonite of the clay barrier is only partially transformed (into illite, chlorite, saponite...). Only outer parts of the modelled profile seem to be significantly affected by smectite dissolution processes, mainly at the interface with the geological environment. The modifications of physical properties show a closure of the porosity at the boundaries of the barrier, by creating a decrease of mass transport by molecular diffusion, essentially at the interface with the iron. Permeability laws applied to this system show a decrease of the hydraulic conductivity correlated with the porosity evolution. Near the COX, the swelling pressure of the clays from the barrier decreases. In the major part of the modelled profile, the engineered clay barrier system seems to keep its initial physical properties (porosity, molecular diffusion, permeability, swelling pressure) and functionalities. (author)

  13. Road Transportable Analytical Laboratory system

    International Nuclear Information System (INIS)

    Finger, S.M.; Keith, V.F.; Spertzel, R.O.; De Avila, J.C.; O'Donnell, M.; Vann, R.L.

    1993-09-01

    This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE's internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex

  14. The Time Delay Filtering Method for Cancelling Vibration on Overhead Transportation Systems Modelled as a Physical Pendulum

    Directory of Open Access Journals (Sweden)

    G. Peláez

    2007-01-01

    Full Text Available An investigation of the response of a physical pendulum to time delay filtered inputs was conducted. It was shown that the physical pendulum model is more accurate than the simple pendulum for modelling the dynamic response of overhead cranes with loads hanging from hooks. Based on the physical pendulum model a Specified Time Delay filter for an experimental mini overhead crane was synthesized. While somewhat limited in the scope by the hardware conditions placed in the system, the results provide basic insights into the successful application of the Time Delay Filtering method to overhead cranes.

  15. Exploring an aquifer system by integrating hydraulic, hydrogeologic and environmental tracer data in a three-dimensional hydrodynamic transport model

    Science.gov (United States)

    Mattle, N.; Kinzelbach, W.; Beyerle, U.; Huggenberger, P.; Loosli, H. H.

    2001-02-01

    This article presents a numerical model of a part of an aquifer that is recharged by infiltration from the Swiss pre-Alpine river Töss in the Linsental (north-eastern Switzerland). The nearby city of Winterthur makes use of this aquifer as a resource of drinking water. The presented model is part of a larger interdisciplinary research program undertaken with the goal to evaluate the possible impacts of a planned revitalization of the severely canalized river Töss. Above all it should show the extent of decrease of the groundwater residence time if the river bed is allowed to move towards the drinking water wells. The flow model was constrained and calibrated by transport modelling of tritiogenic 3He. This tracer reflects both the aging of the water (by accumulation of 3He resulting from tritium-decay) as well as the two different components of the mixture (river water free of tritiogenic 3He due to degassing, and groundwater enriched in 3He due to accumulation). By simulating a Dirac-pulse-shaped input of a conservative tracer at different sources (river cells or upstream flux boundary cells) it is possible to determine the age distributions as well as the mixing ratios of the two types of water at the two pumping stations within the model area. The same calculations for a hypothetical river course passing directly beside the pumping stations indicate a decrease of the mean residence time of the pumped water together with an increase of the amount of the younger river water component.

  16. Use of Models in Urban Transportation Planning

    Science.gov (United States)

    1973-04-01

    The report describes the most commonly used models in urban transportation planning. A background on urban transportation planning is given including changes in planning objectives and the effects of Federal legislation. General concepts and problems...

  17. Radioisotope Thermoelectric Generator Transport Trailer System

    International Nuclear Information System (INIS)

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A.

    1994-01-01

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System system 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the US Department of Energy to be in accordance with Title 10, Code of federal Regulations, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware

  18. Performances of the HL (Hyperloop) transport system

    NARCIS (Netherlands)

    van Goeverden, C.D.; Milakis, D.; Janic, M.; Konings, J.W.; Cools, M.; Limbourg, S.

    2017-01-01

    This paper deals with an analysis of performances of the HL (Hyperloop) transport system considered as an advanced transport alternative to the existing APT (Air Passenger Transport) and HSR (High Speed Rail) systems. The considered performances are operational, financial, social and environmental.

  19. The development of the CRWMS Transportation System

    International Nuclear Information System (INIS)

    Conroy, M.; Lovett, P.M.; Dawson, D.M.

    1993-01-01

    The Transportation System of the Civilian Radioactive Waste Management System (CRWMS) is being developed using a system engineering approach to ensure it is properly integrated into the CRWMS. The Transportation Systems and its interfaces with the other system elements within the CRWMS are being developed, identified, and documented in requirements documents. The basic architecture of the Transportation System is divided into five segments. These segments are: (1) Planning and Control; (2) Transportation Cask Systems; (3) Carriage Services Support; (4) Service and Maintenance Support; and (5) Field Operations

  20. One-Dimensional Reactive Transport Modeling of CO2 Storage Systems - Change in Cap Rock Porosity Triggered by Pressure and Temperature Dependent CO2-Water-Rock Interactions

    Science.gov (United States)

    Hemme, C.; van Berk, W.

    2015-12-01

    In carbon capture and storage (CCS) systems supercritical CO2 is injected into a reservoir and dissolves in the reservoir brine. Subsequently, CO2(aq) diffuses into the cap rock to regions of lower total pressure and temperature and triggers CO2-water-rock interactions that are coupled with mass transport and result in precipitation and/or dissolution of minerals along the CO2 migration path. Such hydrogeochemical interactions change porosities and are responsible for the improvement or deterioration of the long term integrity of the system. This study presents a semi-generic hydrogeochemical model based on chemical equilibrium thermodynamics, data from several CO2 storage systems, and plausible assumptions regarding non-available data. One-dimensional reactive transport modeling is performed by using the U.S.G.S. PHREEQC code (3.1.4-8929; phreeqc.dat database) to identify and quantify the loss or gain of total porosity affected by hydrogeochemical reactions driven by diffusive mass transport exposed to pressure and temperature gradients. A fine spatial and temporal discretization, the use of non-reactive tracers, and a broad variety of modeling scenarios enable the calculation of the relevant timescale for simulations of long-term storage of CO2 and the consideration of the pressure dependent mass action law constants along the CO2 migration path. Modeling results show that the relevant timescale for simulations of long-term storage of CO2 is in the range of 106 years, and that pressure/temperature conditions, heterogeneities (veins and fractures) and the mineralogical composition of the cap rock have the strongest influence on the increase in cap rock porosity (maximum increase from initial 5 % to 7.5 %). Critical parameter combinations - total pressure effects are crucial - could put long-term integrity at risks. Nevertheless, a wide range of conditions and parameter combinations for safe CO2 storage is identified by other modeling scenarios.

  1. Transport Models for Inland and Coastal Waters

    Science.gov (United States)

    Hamilton, Peter

    This proceedings volume originates from a symposium held at Berkeley, California, in August 1980. The purpose of the symposium was to assess the ability of models to predict surface water flow and the transport of dissolved substances in natural systems. The authors were invited, after an initial call for papers, by a Scientific Committee of the International Association for Hydraulic Research.In this context, predictive modeling is limited to hydrodynamic and transport models as applied to rivers, estuaries, shallow coastal waters, lakes, and reservoirs. This is a large subject, though evidently not the whole story on predictive techniques applied to natural water bodies, and many different models are described with applications to a wide variety of natural systems. There is relatively little overlap of material between chapters. It is noteworthy that 21 out of 24 authors of the chapters are affiliated with institutions outside the United States, and many of these are from large European hydraulic laboratories. A number of the chapters summarize numerical modeling studies undertaken by these institutions and so provide the U.S. reader with valuable references to the European open literature and laboratory technical reports. The latter are not usually readily available in the United States. This bias reflects a greater willingness of European engineers to employ sophisticated hydrodynamic numerical models as tools for the solution of engineering and environmental problems of natural water bodies.

  2. Manless radioactive waste transporting system

    International Nuclear Information System (INIS)

    Yamada, Hitoshi; Soya, Masataka.

    1996-01-01

    The system of the present invention comprises a self-forklift for transporting vessels which contain radioactive wastes generated in a power facility to a storage warehouse and a unmanned remote control salvaging vehicle for drawing out the forklift when it is disabled in the storage warehouse for repair. Namely, the self forklift runs by itself on a predetermined route to transport and unload the vessels to a predetermined position in the storage warehouse. When the self forklift is stopped by failure in the storage warehouse, the unmanned salvaging vehicle takes the self forklift to the outside by operator's remote control while observing a monitor of an TV camera attached to the vehicle. In this case, the self forklift has a salvaging hook at a position of the body corresponding to a driving front wheel. The unmanned salvaging vehicle has a hoisting hook which enables the self forklift to move only with the front wheel as a loading wheel while raising the back wheel away from the floor surface. The self forklift is connected to the unmanned salvaging vehicle by both of the hooks. (I.S.)

  3. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2009-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating......-based graphs which function as risk-related decision support for the appraised transport infrastructure project....

  4. SDDOT transportation systems management & operations program plan.

    Science.gov (United States)

    2016-06-01

    The objective of this project is the development of a comprehensive Transportation Systems Management and : Operations (TSM&O) Program Plan for the South Dakota Department of Transportation. This plan guides : business planning and strategic decision...

  5. Anomalous transport in mirror systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1979-01-01

    As now being explored for fusion applications confinement systems based on the mirror principle embody two kinds of plasma regimes. These two regimes are: (a) high-beta plasmas, stabilized against MHD and other low frequency plasma instabilities by magnetic-well fields, but characterized by non-Maxwellian ion distributions; (b) near-Maxwellian plasmas, confined electrostatically (as in the tandem mirror) or in a field-reversed region within the mirror cell. Common to both situations are the questions of anomalous transport owing to high frequency instabilities in the non-maxwellian portions of the plasmas. This report will summarize the status of theory and of experimental data bearing on these questions, with particular reference to the high temperature regimes of interest for fusion power

  6. Radiopharmaceutical transport system in France

    International Nuclear Information System (INIS)

    Brenot, J.; Gilles, J.P.; Vinarnick, L.

    1986-06-01

    Radiopharmaceuticals are transported in type A package, activities are low and distributed among more than 200 000 packages sent throughout France. Impact of ICRP recommendations and of French regulations on packaging, storage, handling and transport is underlined. Road, rail or air transport are determined by geographical consideration and importance of each means of transport concerning quantities or mileage are easily deduced. Risks for normal conditions are evaluated. Accidents or incidents are rare and statistic analysis non-significant. 7 refs [fr

  7. Development of suitability maps for ground-coupled heat pump systems using groundwater and heat transport models

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Hikari; Itoi, Ryuichi [Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Inatomi, Tadasuke [YBM Co. Ltd., Kishiyama 589-10 Kitahata, Karatsu 847-1211 (Japan); Uchida, Youhei [Geological Survey of Japan, AIST Tsukuba Central 7, Tsukuba 305-8567 (Japan)

    2007-10-15

    The thermophysical properties of subsurface materials (soils, sediments and rocks) and groundwater flow strongly affect the heat exchange rates of ground heat exchangers (GHEs). These rates can be maximized and the installation costs of the ground-coupled heat pump (GCHP) systems reduced by developing suitability maps based on local geological and hydrological information. Such maps were generated for the Chikushi Plain (western Japan) using field-survey data and a numerical modeling study. First, a field-wide groundwater model was developed for the area and the results matched against measured groundwater levels and vertical temperature profiles. Single GHE models were then constructed to simulate the heat exchange performance at different locations in the plain. Finally, suitability maps for GCHP systems were prepared using the results from the single GHE models. Variations in the heat exchange rates of over 40% revealed by the map were ascribed to differences in the GHE locations, confirming how important it is to use appropriate thermophysical data when designing GCHP systems. (author)

  8. Computer supported estimation of input data for transportation models

    OpenAIRE

    Cenek, Petr; Tarábek, Peter; Kopf, Marija

    2010-01-01

    Control and management of transportation systems frequently rely on optimization or simulation methods based on a suitable model. Such a model uses optimization or simulation procedures and correct input data. The input data define transportation infrastructure and transportation flows. Data acquisition is a costly process and so an efficient approach is highly desirable. The infrastructure can be recognized from drawn maps using segmentation, thinning and vectorization. The accurate definiti...

  9. Intelligent transportation systems problems and perspectives

    CERN Document Server

    Pamuła, Wiesław

    2016-01-01

    This book presents a discussion of problems encountered in the deployment of Intelligent Transport Systems (ITS). It puts emphasis on the early tasks of designing and proofing the concept of integration of technologies in Intelligent Transport Systems. In its first part the book concentrates on the design problems of urban ITS. The second part of the book features case studies representative for the different modes of transport. These are freight transport, rail transport and aerospace transport encompassing also space stations. The book provides ideas for deployment which may be developed by scientists and engineers engaged in the design of Intelligent Transport Systems. It can also be used in the training of specialists, students and post-graduate students in universities and transport high schools.    .

  10. Logistics and Transport - a conceptual model

    DEFF Research Database (Denmark)

    Jespersen, Per Homann; Drewes, Lise

    2004-01-01

    This paper describes how the freight transport sector is influenced by logistical principles of production and distribution. It introduces new ways of understanding freight transport as an integrated part of the changing trends of mobility. By introducing a conceptual model for understanding...... the interaction between logistics and transport, it points at ways to over-come inherent methodological difficulties when studying this relation...

  11. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  12. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2012-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating......-based graphs which functions as risk-related decision support for the appraised transport infrastructure project. The presentation of RSF is demonstrated by using an appraisal case concerning a new airfield in the capital of Greenland, Nuuk....

  13. Sustainable Transport Systems: Linkages Between Environmental Issues, Public Transport, Non-Motorized Transport And Safety

    Science.gov (United States)

    2000-10-01

    A sustainable transport system must provide mobility and accessibility to all urban residents in a safe and end environmentally friendly mode of transport. This is a complex and difficult task when the needs and demands of people belonging to differe...

  14. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  15. Quantum Transport in Strongly Correlated Systems

    DEFF Research Database (Denmark)

    Bohr, Dan

    2007-01-01

    the density matrix renormalization group (DMRG) method. We present two DMRG setups for calculating the linear conductance of strongly correlated nanostructures in the infinitesimal source-drain voltage regime. The first setup describes the leads by modified real-space tight-binding chains, whereas the second...... screening plays a much less significant role than in bulk systems due to the reduced size of the objects, therefore making it necessary to consider the importance of correlations between electrons. The work presented in this thesis deals with quantum transport through strongly correlated systems using....... Thus both coherence and correlation effects are important in this model, and the methods applied should be able to handle both these effects rigorously. We present the DMRG setup for this model and benchmark against existing Greens function results for the model. Then we present initial DMRG results...

  16. A Sediment Transport Model for Sewers

    DEFF Research Database (Denmark)

    Mark, Ole; Larsson, Johan; Larsen, Torben

    1993-01-01

    This paper describes a mathematical model for transport processes in sewers. The model consists of three sub models, a surface model for the description of the buildup and the washoff of sediment particles from the surface area, a morphological model and an advection-dispersion model. The model...

  17. Fucus as a Model System to Study the Role of Auxin Transport and the Actin Cytoskeleton in Gravity Response

    Science.gov (United States)

    Muday, Gloria K.

    2003-01-01

    The overarching goal of this proposal was to examine the mechanisms for the cellular asymmetry in auxin transport proteins. As auxin transport polarity changes in response to reorientation of algal and plant cells relative to the gravity vector, it was critical to ask how auxin transport polarity is established and how this transport polarity may change in response to gravity stimulation. The experiments conducted with this NASA grant fell into two categories. The first area of experimentation was to explore the biochemical interactions between an auxin transport protein and the actin cytoskeleton. These experiments used biochemical techniques, including actin affinity chromatography, to demonstrate that one auxin transport protein interacts with the actin cytoskeleton. The second line of experiments examined whether in the initially symmetrical single celled embryos of Fucus distichus, whether auxin regulates development and whether gravity is a cue to control the morphogenesis of these embryos and whether gravi-morphogenesis is auxin dependent. Results in these two areas are summarized separately below. As a result of this funding, in combination with results from other investigators, we have strong evidence for an important role for the actin cytoskeleton in both establishing and change auxin transport polarity. It is also clear that Fucus distichus embryos are auxin responsive and gravity controls their morphogenesis.

  18. Evaluation of intelligent transport systems impact on school transport safety

    Directory of Open Access Journals (Sweden)

    Jankowska-Karpa Dagmara

    2017-01-01

    Full Text Available The integrated system of safe transport of children to school using Intelligent Transport Systems was developed and implemented in four locations across Europe under the Safeway2School (SW2S project, funded by the EU. The SW2S system evaluation included speed measurements and an eye-tracking experiment carried out among drivers who used the school bus route, where selected elements of the system were tested. The subject of the evaluation were the following system elements: pedestrian safety system at the bus stop (Intelligent Bus Stop and tags for children, Driver Support System, applications for parents’ and students’ mobile phones, bus stop inventory tool and data server. A new sign designed for buses and bus stops to inform about child transportation/children waiting at the bus stop was added to the system. Training schemes for system users were also provided. The article presents evaluation results of the impact of selected elements of the SW2S system on school transport safety in Poland.

  19. Conceptual design of automated freight transport systems

    NARCIS (Netherlands)

    Pielage, B.A.

    2005-01-01

    The conceptual design of automated freight transport systems is a challenging matter. It involves many different parties, types of people and disciplines which all have to work together to develop a system which is often new and complex. Automated freight transport systems typically have a long

  20. Magnetic levitation -The future transport system

    International Nuclear Information System (INIS)

    Rairan, Danilo

    2000-01-01

    The paper made a recount of the main advantages and disadvantages of the traditional systems of transport with base in electric power and it shows as the systems that use the magnetic levitation they are the future of the transport. Additionally it presents the physical principle of operation of the two main systems developed at the present time

  1. Integrated transport and renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Nørgaard, P.

    2008-01-01

    No single technology can solve the problem of ever increasing CO2 emissions from transport. Here, a coherent effort to integrate transport into energyplanning is proposed, using multiple means promoting sustainable transport. It is concluded that a 100 per cent renewable energy transport system...... is possible but is connected to significant challenges in the path towards it. Biomass is a limited resource and it is important to avoid effecting the production of food. The integration of the transport with the energy system is crucial as is a multi-pronged strategy. Short term solutions have to consider...

  2. Certification of automated transport systems

    NARCIS (Netherlands)

    Dijke, J.P. van; Schijndel-de Nooij, M. van; Nashashibi, F.; Fortelle, A. de la

    2012-01-01

    The CityMobil project “Towards advanced transport for the urban environment” aims at achieving a more effective organisation of urban transport, resulting in a more rational use of motorised traffic with less congestion and pollution, safer driving, a higher quality of living and an enhanced

  3. Parameter and observation importance in modelling virus transport in saturated porous media - Investigations in a homogenous system

    Science.gov (United States)

    Barth, G.R.; Hill, M.C.

    2005-01-01

    This paper evaluates the importance of seven types of parameters to virus transport: hydraulic conductivity, porosity, dispersivity, sorption rate and distribution coefficient (representing physical-chemical filtration), and in-solution and adsorbed inactivation (representing virus inactivation). The first three parameters relate to subsurface transport in general while the last four, the sorption rate, distribution coefficient, and in-solution and adsorbed inactivation rates, represent the interaction of viruses with the porous medium and their ability to persist. The importance of four types of observations to estimate the virus-transport parameters are evaluated: hydraulic heads, flow, temporal moments of conservative-transport concentrations, and virus concentrations. The evaluations are conducted using one- and two-dimensional homogeneous simulations, designed from published field experiments, and recently developed sensitivity-analysis methods. Sensitivity to the transport-simulation time-step size is used to evaluate the importance of numerical solution difficulties. Results suggest that hydraulic conductivity, porosity, and sorption are most important to virus-transport predictions. Most observation types provide substantial information about hydraulic conductivity and porosity; only virus-concentration observations provide information about sorption and inactivation. The observations are not sufficient to estimate these important parameters uniquely. Even with all observation types, there is extreme parameter correlation between porosity and hydraulic conductivity and between the sorption rate and in-solution inactivation. Parameter estimation was accomplished by fixing values of porosity and in-solution inactivation.

  4. Americium, Cesium, and Plutonium Colloid-Facilitated Transport in a Groundwater/Bentonite/Fracture Fill Material System: Column Experiments and Model Results

    Science.gov (United States)

    Dittrich, T. M.; Boukhalfa, H.; Reimus, P. W.

    2014-12-01

    The objective of this study was to investigate and quantify the effects of desorption kinetics and colloid transport on radionuclides with different sorption affinities. We focused on quantifying transport mechanisms important for upscaling in time and distance. This will help determine the long-term fate and transport of radionuclides to aid in risk assessments. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model crystalline rock repository system because the system has been thoroughly studied and field experiments involving radionuclides have already been conducted. Working on this system provides a unique opportunity to compare lab experiments with field-scale observations. Weathered fracture fill material (FFM) and bentonite used as backfill at the GTS were characterized (e.g., BET, SEM/EDS, QXRD), and batch and breakthrough column experiments were conducted. Solutions were prepared in synthetic groundwaters that matched the natural water chemistry. FFM samples were crushed, rinsed, sieved (150-355 μm), and equilibrated with synthetic groundwater. Bentonite was crushed, sodium-saturated, equilibrated with synthetic groundwater, and settled to yield a stable suspension. Suspensions were equilibrated with Am, Cs, or Pu. All experiments were conducted with Teflon®materials to limit sorption to system components. After radionuclide/colloid injections reached stability, radionuclide-free solutions were injected to observe the desorption and release behavior. Aliquots of effluent were measured for pH, colloid concentration, and total and dissolved radionuclides. Unanalyzed effluent from the first column was then injected through a second column of fresh material. The process was repeated for a third column and the results of all three breakthrough curves were modeled with a multi-site/multi-rate MATLAB code to elucidate the sorption rate coefficients and binding site densities of the bentonite colloids and

  5. Impact of Radiatively Interactive Dust Aerosols on Dust Transport and Mobilization in the NASA Goddard Earth Observing System (GEOS-5) Earth Model

    Science.gov (United States)

    Colarco, P. R.; Rocha Lima, A.; Darmenov, A.; Bloecker, C.

    2017-12-01

    Mineral dust aerosols scatter and absorb solar and infrared radiation, impacting the energy budget of the Earth system which in turns feeds back on the dynamical processes responsible for mobilization of dust in the first place. In previous work with radiatively interactive aerosols in the NASA Goddard Earth Observing System global model (GEOS-5) we found a positive feedback between dust absorption and emissions. Emissions were the largest for the highest shortwave absorption considered, which additionally produced simulated dust transport in the best agreement with observations. The positive feedback found was in contrast to other modeling studies which instead found a negative feedback, where the impact of dust absorption was to stabilize the surface levels of the atmosphere and so reduce wind speeds. A key difference between our model and other models was that in GEOS-5 we simulated generally larger dust particles, with correspondingly larger infrared absorption that led to a pronounced difference in the diurnal cycle of dust emissions versus simulations where these long wave effects were not considered. In this paper we seek to resolve discrepancies between our previous simulations and those of other modeling groups. We revisit the question of dust radiative feedback on emissions with a recent version of the GEOS-5 system running at a higher spatial resolution and including updates to the parameterizations for dust mobilization, initial dust particle size distribution, loss processes, and radiative transfer, and identify key uncertainties that remain based on dust optical property assumptions.

  6. Model for radionuclide transport in running waters

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Karin; Elert, Mark [Kemakta Konsult AB, Stockholm (Sweden)

    2005-11-15

    Two sites in Sweden are currently under investigation by SKB for their suitability as places for deep repository of radioactive waste, the Forsmark and Simpevarp/Laxemar area. As a part of the safety assessment, SKB has formulated a biosphere model with different sub-models for different parts of the ecosystem in order to be able to predict the dose to humans following a possible radionuclide discharge from a future deep repository. In this report, a new model concept describing radionuclide transport in streams is presented. The main difference from the previous model for running water used by SKB, where only dilution of the inflow of radionuclides was considered, is that the new model includes parameterizations also of the exchange processes present along the stream. This is done in order to be able to investigate the effect of the retention on the transport and to be able to estimate the resulting concentrations in the different parts of the system. The concentrations determined with this new model could later be used for order of magnitude predictions of the dose to humans. The presented model concept is divided in two parts, one hydraulic and one radionuclide transport model. The hydraulic model is used to determine the flow conditions in the stream channel and is based on the assumption of uniform flow and quasi-stationary conditions. The results from the hydraulic model are used in the radionuclide transport model where the concentration is determined in the different parts of the stream ecosystem. The exchange processes considered are exchange with the sediments due to diffusion, advective transport and sedimentation/resuspension and uptake of radionuclides in biota. Transport of both dissolved radionuclides and sorbed onto particulates is considered. Sorption kinetics in the stream water phase is implemented as the time scale of the residence time in the stream water probably is short in comparison to the time scale of the kinetic sorption. In the sediment

  7. The european Trans-Tools transport model

    NARCIS (Netherlands)

    Rooijen, T. van; Burgess, A.

    2008-01-01

    The paper presents the use of ArcGIS in the Transtools Transport Model, TRANS-TOOLS, created by an international consortium for the European Commission. The model describe passenger as well as freight transport in Europe with all medium and long distance modes (cars, vans, trucks, train, inland

  8. A Mercury Model of Atmospheric Transport

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Alex B. [Oregon State Univ., Corvallis, OR (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chodash, Perry A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Procassini, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-19

    Using the particle transport code Mercury, accurate models were built of the two sources used in Operation BREN, a series of radiation experiments performed by the United States during the 1960s. In the future, these models will be used to validate Mercury’s ability to simulate atmospheric transport.

  9. Dileptons from transport and hydrodynamical models

    International Nuclear Information System (INIS)

    Huovinen, P.; Koch, V.

    2000-01-01

    Transport and hydrodynamical models used to describe the expansion stage of a heavy-ion collision at the CERN SPS give different dilepton spectrum even if they are tuned to reproduce the observed hadron spectra. To understand the origin of this difference we compare the dilepton emission from transport and hydrodynamical models using similar initial states in both models. We find that the requirement of pion number conservation in a hydrodynamical model does not change the dilepton emission. Also the mass distribution from the transport model indicates faster cooling and longer lifetime of the fireball

  10. Integrated transport and renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, B.V.; Lund, H.; Nørgård, Per Bromand

    2007-01-01

    Governments worldwide aim at reducing CO2 emissions and expanding renewable energy. A key element in achieving such a goal is to use renewable energy in transport such as biofuels. However, efforts to promote single transport technologies and single fuels only represent a partial solution...... transport. It is concluded that a 100 per cent renewable energy transport system is possible but is connected to significant challenges in the path towards it. Biomass is a limited resource and it is important to avoid effecting the production. The integration of the transport with the remaining energy....... No single technology can solve the problem of ever increasing CO2 emissions from transport. Transport must be integrated into energy planning, as electricity and heating. In this paper, a coherent effort to integrate transport into energy planning is proposed, using multiple means promoting sustainable...

  11. System-Scale Model of Aquifer, Vadose Zone, and River Interactions for the Hanford 300 Area - Application to Uranium Reactive Transport

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Bacon, Diana H.; Freedman, Vicky L.; Parker, Kyle R.; Waichler, Scott R.; Williams, Mark D.

    2013-10-01

    This report represents a synthesis and integration of basic and applied research into a system-scale model of the Hanford 300 Area groundwater uranium plume, supported by the U.S. Department of Energy’s Richland Operations (DOE-RL) office. The report integrates research findings and data from DOE Office of Science (DOE-SC), Office of Environmental Management (DOE-EM), and DOE-RL projects, and from the site remediation and closure contractor, Washington Closure Hanford, LLC (WCH). The three-dimensional, system-scale model addresses water flow and reactive transport of uranium for the coupled vadose zone, unconfined aquifer, and Columbia River shoreline of the Hanford 300 Area. The system-scale model of the 300 Area was developed to be a decision-support tool to evaluate processes of the total system affecting the groundwater uranium plume. The model can also be used to address “what if” questions regarding different remediation endpoints, and to assist in design and evaluation of field remediation efforts. For example, the proposed cleanup plan for the Hanford 300 Area includes removal, treatment, and disposal of contaminated sediments from known waste sites, enhanced attenuation of uranium hot spots in the vadose and periodically rewetted zone, and continued monitoring of groundwater with institutional controls. Illustrative simulations of polyphosphate infiltration were performed to demonstrate the ability of the system-scale model to address these types of questions. The use of this model in conjunction with continued field monitoring is expected to provide a rigorous basis for developing operational strategies for field remediation and for defining defensible remediation endpoints.

  12. Two-point model for divertor transport

    International Nuclear Information System (INIS)

    Galambos, J.D.; Peng, Y.K.M.

    1984-04-01

    Plasma transport along divertor field lines was investigated using a two-point model. This treatment requires considerably less effort to find solutions to the transport equations than previously used one-dimensional (1-D) models and is useful for studying general trends. It also can be a valuable tool for benchmarking more sophisticated models. The model was used to investigate the possibility of operating in the so-called high density, low temperature regime

  13. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications

    Science.gov (United States)

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane

    2012-01-01

    The coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) enables simulations that integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean. Within the modeling system, the three-dimensional ocean circulation module (ROMS) is coupled with the wave generation and propagation model (SWAN) to allow full integration of the effect of waves on circulation and vice versa. The existing wave-current coupling component utilizes a depth dependent radiation stress approach. In here we present a new approach that uses the vortex force formalism. The formulation adopted and the various parameterizations used in the model as well as their numerical implementation are presented in detail. The performance of the new system is examined through the presentation of four test cases. These include obliquely incident waves on a synthetic planar beach and a natural barred beach (DUCK' 94); normal incident waves on a nearshore barred morphology with rip channels; and wave-induced mean flows outside the surf zone at the Martha's Vineyard Coastal Observatory (MVCO).

  14. Radioactive waste transportation systems analysis and program plan

    Energy Technology Data Exchange (ETDEWEB)

    Shappert, L.B.; Joy, D.S.; Heiskell, M.M.

    1978-03-01

    The objective of the Transportation/Logistics Study is to ensure the availability of a viable system for transporting the wastes to a federal repository in 1985. In order to accomplish this objective, a systems analysis of waste transportation has been directed by ORNL to determine the problems that must be solved and to develop a program plan that identifies which problems must first be pursued. To facilitate this overall approach and to provide for short- and long-range waste management, logistics models have been developed to determine the transportation fleet requirements and costs. Results of the study are described in this report.

  15. Radioactive waste transportation systems analysis and program plan

    International Nuclear Information System (INIS)

    Shappert, L.B.; Joy, D.S.; Heiskell, M.M.

    1978-03-01

    The objective of the Transportation/Logistics Study is to ensure the availability of a viable system for transporting the wastes to a federal repository in 1985. In order to accomplish this objective, a systems analysis of waste transportation has been directed by ORNL to determine the problems that must be solved and to develop a program plan that identifies which problems must first be pursued. To facilitate this overall approach and to provide for short- and long-range waste management, logistics models have been developed to determine the transportation fleet requirements and costs. Results of the study are described in this report

  16. Transport and Power System Scenarios for Northern Europe in 2030

    DEFF Research Database (Denmark)

    Juul, Nina; Meibom, Peter

    2009-01-01

    Increasing focus on sustainability affects all parts of the energy system. Integrating the power and transport system in future energy system planning, influences the economically optimal investments and optimal operation of the power system as well as the transport system. This work presents...... analysis of the optimal configuration and operation of the integrated power and transport system in Northern Europe. Optimal configuration and operation is obtained using the optimisation model, Balmorel [1], with a transport model extension. For electric drive vehicles with plug-in capabilities...... it is assumed that power can go both from grid-to-vehicle and vehicle-to-grid. Oil prices are assumed to be $120/barrel, and CO2 price 40 €/ton. This results in an optimal investment path with a large increase in sustainable energy; primarily wind energy, as well as an increase in the electric drive vehicles...

  17. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2000-01-01

    The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone

  18. Quantitative assessment of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    International Nuclear Information System (INIS)

    Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi

    2007-12-01

    The main objective of this work is to assess the migration behaviour of selected long-lived radionuclides through the near-surface system of Forsmark, with special focus on the evaluation of the capacity of the Quaternary deposits and sediments for radionuclide retention. The work reported here is based on data and information from Forsmark Site Descriptive Model version 1.2. From the geological point of view, the near-surface systems in the Forsmark area consist of Quaternary deposits and sediments that overlay the granitic bedrock. Glacial till is the more abundant outcropping Quaternary deposit and the remainder is made of clayey deposits. These types of near-surface sediments show distinctive hydraulic and geochemical features. The main reactive mineral in the till deposits, for the time horizons considered in this work, is calcium carbonate together with minor amounts of clay minerals (e.g. illite). The till deposits forms aquifers with relatively high hydraulic conductivities. In contrast, glacial and post-glacial clays are basically composed of illite with low to very low amounts of calcium carbonate, and containing organic matter-rich layers (gyttja), which can promote reducing conditions in the porewaters. All these clays exhibits relatively low hydraulic conductivity values. Five radionuclides have been selected for conceptualization and qualitative evaluation of retention process: U as an actinide, Se as a redox-sensitive radionuclide, Cs as a monovalent cation, Sr as a divalent cation, and I as an anion radionuclide. Overall, radionuclide retention capacity in the surface systems at Forsmark can be provided by sorption on charged surfaces of clays and oxyhydroxides, co-precipitation with sulphates, sulphides, oxyhydroxides and carbonates, and sorption on organic matter. Two-dimensional coupled hydrogeological and reactive solute transport models have been developed to simulate the geochemical behaviour of U, Cs and Sr. These three radionuclides have

  19. STARS: The Space Transportation Architecture Risk System

    Science.gov (United States)

    Greenberg, Joel S.

    1997-01-01

    Because of the need to perform comparisons between transportation systems that are likely to have significantly different levels of risk, both because of differing degrees of freedom in achieving desired performance levels and their different states of development and utilization, an approach has been developed for performing early comparisons of transportation architectures explicitly taking into account quantitative measures of uncertainty and resulting risk. The approach considers the uncertainty associated with the achievement of technology goals, the effect that the achieved level of technology will have on transportation system performance and the relationship between transportation system performance/capability and the ability to accommodate variations in payload mass. The consequences of system performance are developed in terms of expected values and associated standard deviations of nonrecurring, recurring and the present value of transportation system life cycle cost. Typical results are presented to illustrate the application of the methodology.

  20. Decarbonizing Sweden’s energy and transportation system by 2050

    DEFF Research Database (Denmark)

    Bramstoft, Rasmus; Skytte, Klaus

    2017-01-01

    Decarbonizing Sweden’s transportation sector is necessary to realize its long-term vision of eliminating net greenhouse gas (GHG) emissions from the energy system by 2050. Within this context, this study develops two scenarios for the transportation sector: one with high electrification (EVS......) and the other with high biofuel and biomethane utilization (BIOS). The energy system model STREAM is utilized to compute the socioeconomic system cost and simulate an integrated transportation, electricity, gas, fuel refinery, and heat system. The results show that electrifying a high share of Sweden’s road...... transportation yields the least systems cost. However, in the least-cost scenario (EVS), bioenergy resources account for 57% of the final energy use in the transportation sector. Further, a sensitivity analysis shows that the costs of different types of cars are the most sensitive parameters in the comparative...

  1. Decarbonizing Sweden’s energy and transportation system by 2050

    Directory of Open Access Journals (Sweden)

    Rasmus Bramstoft

    2017-01-01

    Full Text Available Decarbonizing Sweden’s transportation sector is necessary to realize its long-term vision of eliminating net greenhouse gas (GHG emissions from the energy system by 2050. Within this context, this study develops two scenarios for the transportation sector: one with high electrification (EVS and the other with high biofuel and biomethane utilization (BIOS. The energy system model STREAM is utilized to compute the socioeconomic system cost and simulate an integrated transportation, electricity, gas, fuel refinery, and heat system. The results show that electrifying a high share of Sweden’s road transportation yields the least systems cost. However, in the least-cost scenario (EVS, bioenergy resources account for 57% of the final energy use in the transportation sector. Further, a sensitivity analysis shows that the costs of different types of cars are the most sensitive parameters in the comparative analysis of the scenarios.

  2. Decarbonizing Sweden’s energy and transportation system by 2050

    DEFF Research Database (Denmark)

    Bramstoft, Rasmus; Skytte, Klaus

    2017-01-01

    ) and the other with high biofuel and biomethane utilization (BIOS). The energy system model STREAM is utilized to compute the socioeconomic system cost and simulate an integrated transportation, electricity, gas, fuel refinery, and heat system. The results show that electrifying a high share of Sweden’s road......Decarbonizing Sweden’s transportation sector is necessary to realize its long-term vision of eliminating net greenhouse gas (GHG) emissions from the energy system by 2050. Within this context, this study develops two scenarios for the transportation sector: one with high electrification (EVS...... transportation yields the least systems cost. However, in the least-cost scenario (EVS), bioenergy resources account for 57% of the final energy use in the transportation sector. Further, a sensitivity analysis shows that the costs of different types of cars are the most sensitive parameters in the comparative...

  3. Decarbonizing Sweden’s energy and transportation system by 2050

    DEFF Research Database (Denmark)

    Bramstoft, Rasmus; Skytte, Klaus

    2017-01-01

    ) and the other with high biofuel and biomethane utilization (BIOS). The energy system model STREAM is utilized to compute the socioeconomic system cost and simulate an integrated transportation, electricity, gas, fuel refinery, and heat system. The results show that electrifying a high share of Sweden’s road......Decarbonizing Sweden’s transportation sector is necessary to realize its long-term vision of eliminating net greenhouse gas (GHG) emissions from the energy system by 2050. Within this context, this study develops two scenarios for the transportation sector: one with high electrification (EVS...

  4. Transportation routing analysis geographic information system -- TRAGIS, a multimodal transportation routing tool

    International Nuclear Information System (INIS)

    Johnson, P.E.

    1995-01-01

    Over 15 years ago, Oak Ridge National Laboratory (ORNL) developed two transportation routing models: HIGHWAY, which predicts truck transportation routes, and INTERLINE, which predicts rail transportation routes. Subsequent modifications have been made to enhance each of these models. Some of these changes include population density information for routes, HM-164 routing regulations for highway route controlled quantities of radioactive materials (RAM) truck shipments, and inclusion of waterway routing into INTERLINE. The AIRPORT model, developed 2 years after the HIGHWAY and INTERLINE models, serves as an emergency response tool. This model identifies the nearest airports from a designated location. Currently, the AIRPORT model is inactive. The Transportation Management Division of the US Department of Energy held a Baseline Requirements Assessment Session on the HIGHWAY, INTERLINE, and AIRPORT models in April 1994 to bring together many users of these models and other experts in the transportation routing field to discuss these models and to decide on the capabilities that needed to be added. Of the many needs discussed, the primary one was to have the network databases within a geographic information system (GIS). As a result of the Baseline Requirements Session, the development of a new GIS model has been initiated. This paper will discuss the development of the new Transportation Routing Analysis GIS (TRAGIS) model at ORNL

  5. Quantitative assessment of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi (Amphos XXI Consulting S.L., Barcelona (Spain))

    2007-12-15

    The main objective of this work is to assess the migration behaviour of selected long-lived radionuclides through the near-surface system of Forsmark, with special focus on the evaluation of the capacity of the Quaternary deposits and sediments for radionuclide retention. The work reported here is based on data and information from Forsmark Site Descriptive Model version 1.2. From the geological point of view, the near-surface systems in the Forsmark area consist of Quaternary deposits and sediments that overlay the granitic bedrock. Glacial till is the more abundant outcropping Quaternary deposit and the remainder is made of clayey deposits. These types of near-surface sediments show distinctive hydraulic and geochemical features. The main reactive mineral in the till deposits, for the time horizons considered in this work, is calcium carbonate together with minor amounts of clay minerals (e.g. illite). The till deposits forms aquifers with relatively high hydraulic conductivities. In contrast, glacial and post-glacial clays are basically composed of illite with low to very low amounts of calcium carbonate, and containing organic matter-rich layers (gyttja), which can promote reducing conditions in the porewaters. All these clays exhibits relatively low hydraulic conductivity values. Five radionuclides have been selected for conceptualization and qualitative evaluation of retention process: U as an actinide, Se as a redox-sensitive radionuclide, Cs as a monovalent cation, Sr as a divalent cation, and I as an anion radionuclide. Overall, radionuclide retention capacity in the surface systems at Forsmark can be provided by sorption on charged surfaces of clays and oxyhydroxides, co-precipitation with sulphates, sulphides, oxyhydroxides and carbonates, and sorption on organic matter. Two-dimensional coupled hydrogeological and reactive solute transport models have been developed to simulate the geochemical behaviour of U, Cs and Sr. These three radionuclides have

  6. Multiple mode model of tokamak transport

    International Nuclear Information System (INIS)

    Singer, C.E.; Ghanem, E.S.; Bateman, G.; Stotler, D.P.

    1989-07-01

    Theoretical models for radical transport of energy and particles in tokamaks due to drift waves, rippling modes, and resistive ballooning modes have been combined in a predictive transport code. The resulting unified model has been used to simulate low confinement mode (L-mode) energy confinement scalings. Dependence of global energy confinement on electron density for the resulting model is also described. 26 refs., 1 fig., 2 tabs

  7. Multiple mode model of tokamak transport

    Energy Technology Data Exchange (ETDEWEB)

    Singer, C.E.; Ghanem, E.S.; Bateman, G.; Stotler, D.P.

    1989-07-01

    Theoretical models for radical transport of energy and particles in tokamaks due to drift waves, rippling modes, and resistive ballooning modes have been combined in a predictive transport code. The resulting unified model has been used to simulate low confinement mode (L-mode) energy confinement scalings. Dependence of global energy confinement on electron density for the resulting model is also described. 26 refs., 1 fig., 2 tabs.

  8. Limitations of sorption isotherms on modeling groundwater contaminant transport

    International Nuclear Information System (INIS)

    Silva, Eduardo Figueira da

    2007-01-01

    Design and safety assessment of radioactive waste repositories, as well as remediation of radionuclide contaminated groundwater require the development of models capable of accurately predicting trace element fate and transport. Adsorption of trace radionuclides onto soils and groundwater is an important mechanism controlling near- and far- field transport. Although surface complexation models (SCMs) can better describe the adsorption mechanisms of most radionuclides onto mineral surfaces by directly accounting for variability of system properties and mineral surface properties, isotherms are still used to model contaminant transport in groundwater, despite the much higher system dependence. The present work investigates differences between transport model results based on these two approaches for adsorption modeling. A finite element transport model is used for the isotherm model, whereas the computer program PHREEQC is used for the SCM approach. Both models are calibrated for a batch experiment, and one-dimensional transport is simulated using the calibrated parameters. At the lower injected concentrations there are large discrepancies between SCM and isotherm transport predictions, with the SCM presenting much longer tails on the breakthrough curves. Isotherms may also provide non-conservative results for time to breakthrough and for maximum concentration in a contamination plume. Isotherm models are shown not to be robust enough to predict transport behavior of some trace elements, thus discouraging their use. The results also illustrate the promise of the SCM modeling approach in safety assessment and environmental remediation applications, also suggesting that independent batch sorption measurements can be used, within the framework of the SCM, to produce a more versatile and realistic groundwater transport model for radionuclides which is capable of accounting more accurately for temporal and spatial variations in geochemical conditions. (author)

  9. The transportation operations system: A description

    International Nuclear Information System (INIS)

    Best, R.E.; Danese, F.L.; Dixon, L.D.; Peterson, R.W.; Pope, R.B.

    1990-01-01

    This paper presents a description of the system for transporting radioactive waste that may be deployed to accomplish the assigned system mission, which includes accepting spent nuclear fuel (SNF) and high-level radioactive waste (HLW) from waste generator sites and transporting them to the FWMS destination facilities. The system description presented here contains, in part, irradiated fuel and waste casks, ancillary equipments, truck, rail, and barge transporters, cask and vehicle traffic management organizations, maintenance facilities, and other operations elements. The description is for a fully implemented system, which is not expected to be achieved, however, until several years after initial operations. 6 figs

  10. Sensor Technologies for Intelligent Transportation Systems.

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali; Contreras-Castillo, Juan

    2018-04-16

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  11. Sensor Technologies for Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Juan Guerrero-Ibáñez

    2018-04-01

    Full Text Available Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  12. Uncertainty in reactive transport geochemical modelling

    International Nuclear Information System (INIS)

    Oedegaard-Jensen, A.; Ekberg, C.

    2005-01-01

    Full text of publication follows: Geochemical modelling is one way of predicting the transport of i.e. radionuclides in a rock formation. In a rock formation there will be fractures in which water and dissolved species can be transported. The composition of the water and the rock can either increase or decrease the mobility of the transported entities. When doing simulations on the mobility or transport of different species one has to know the exact water composition, the exact flow rates in the fracture and in the surrounding rock, the porosity and which minerals the rock is composed of. The problem with simulations on rocks is that the rock itself it not uniform i.e. larger fractures in some areas and smaller in other areas which can give different water flows. The rock composition can be different in different areas. In additions to this variance in the rock there are also problems with measuring the physical parameters used in a simulation. All measurements will perturb the rock and this perturbation will results in more or less correct values of the interesting parameters. The analytical methods used are also encumbered with uncertainties which in this case are added to the uncertainty from the perturbation of the analysed parameters. When doing simulation the effect of the uncertainties must be taken into account. As the computers are getting faster and faster the complexity of simulated systems are increased which also increase the uncertainty in the results from the simulations. In this paper we will show how the uncertainty in the different parameters will effect the solubility and mobility of different species. Small uncertainties in the input parameters can result in large uncertainties in the end. (authors)

  13. A model of the accident process as a tool to develop indicators for transportation system safety and traffic risks. Paper prepared for the U.S. Department of Transportation international symposium on surface transportation system performance, workshop session `safety : performance indicators and data requirements'.

    NARCIS (Netherlands)

    Asmussen, E.

    1981-01-01

    This paper deals with the development of indicators used in controlling the safety performance of a transportation system. Because of the very large and complex nature of transportation systems, effecting any changes proceeds very slowly. In addition, changes in the control variables by

  14. A model of the accident process as a tool to develop indicators for transportation system safety and traffic risks. Contribution to the Proceedings of the International Symposium on Surface Transportation System Performance, Washington D.C., May 11-13, 1981, p. 488-503. Washington D.C., U.S. Department of Transportation, 1981.

    NARCIS (Netherlands)

    Asmussen, E.

    1981-01-01

    This paper deals with the development of indicators used in controlling the safety performance of a transportation system. Because of the very large and complex nature of transportation systems,effecting any changes proceeds very slowly. In addition, changes in the control variables by

  15. 1D Thermal-Hydraulic-Chemical (THC) Reactive transport modeling for deep geothermal systems: A case study of Groß Schönebeck reservoir, Germany

    Science.gov (United States)

    Driba, D. L.; De Lucia, M.; Peiffer, S.

    2014-12-01

    Fluid-rock interactions in geothermal reservoirs are driven by the state of disequilibrium that persists among solid and solutes due to changing temperature and pressure. During operation of enhanced geothermal systems, injection of cooled water back into the reservoir disturbs the initial thermodynamic equilibrium between the reservoir and its geothermal fluid, which may induce modifications in permeability through changes in porosity and pore space geometry, consequently bringing about several impairments to the overall system.Modeling of fluid-rock interactions induced by injection of cold brine into Groß Schönebeck geothermal reservoir system situated in the Rotliegend sandstone at 4200m depth have been done by coupling geochemical modeling Code Phreeqc with OpenGeoSys. Through batch modeling the re-evaluation of the measured hydrochemical composition of the brine has been done using Quintessa databases, the results from the calculation indicate that a mineral phases comprising of K-feldspar, hematite, Barite, Calcite and Dolomite was found to match the hypothesis of equilibrium with the formation fluid, Reducing conditions are presumed in the model (pe = -3.5) in order to match the amount of observed dissolved Fe and thus considered as initial state for the reactive transport modeling. based on a measured composition of formation fluids and the predominant mineralogical assemblage of the host rock, a preliminary 1D Reactive transport modeling (RTM) was run with total time set to 30 years; results obtained for the initial simulation revealed that during this period, no significant change is evident for K-feldspar. Furthermore, the precipitation of calcite along the flow path in the brine results in a drop of pH from 6.2 to a value of 5.2 noticed over the simulated period. The circulation of cooled fluid in the reservoir is predicted to affect the temperature of the reservoir within the first 100 -150m from the injection well. Examination of porosity change in

  16. Probabilistic transport models for plasma transport in the presence of critical thresholds: Beyond the diffusive paradigma)

    Science.gov (United States)

    Sánchez, R.; van Milligen, B. Ph.; Carreras, B. A.

    2005-05-01

    It is argued that the modeling of plasma transport in tokamaks may benefit greatly from extending the usual local paradigm to accommodate scale-free transport mechanisms. This can be done by combining Lévy distributions and a nonlinear threshold condition within the continuous time random walk concept. The advantages of this nonlocal, nonlinear extension are illustrated by constructing a simple particle density transport model that, as a result of these ideas, spontaneously exhibits much of nondiffusive phenomenology routinely observed in tokamaks. The fluid limit of the system shows that the kind of equations that are appropriate to capture these dynamics are based on fractional differential operators. In them, effective diffusivities and pinch velocities are found that are dynamically set by the system in response to the specific characteristics of the fueling source and external perturbations. This fact suggests some dramatic consequences for the extrapolation of these transport properties to larger size systems.

  17. Probabilistic transport models for plasma transport in the presence of critical thresholds: Beyond the diffusive paradigm

    International Nuclear Information System (INIS)

    Sanchez, R.; Milligen, B.Ph. van; Carreras, B.A.

    2005-01-01

    It is argued that the modeling of plasma transport in tokamaks may benefit greatly from extending the usual local paradigm to accommodate scale-free transport mechanisms. This can be done by combining Levy distributions and a nonlinear threshold condition within the continuous time random walk concept. The advantages of this nonlocal, nonlinear extension are illustrated by constructing a simple particle density transport model that, as a result of these ideas, spontaneously exhibits much of nondiffusive phenomenology routinely observed in tokamaks. The fluid limit of the system shows that the kind of equations that are appropriate to capture these dynamics are based on fractional differential operators. In them, effective diffusivities and pinch velocities are found that are dynamically set by the system in response to the specific characteristics of the fueling source and external perturbations. This fact suggests some dramatic consequences for the extrapolation of these transport properties to larger size systems

  18. Integrated design for space transportation system

    CERN Document Server

    Suresh, B N

    2015-01-01

    The book addresses the overall integrated design aspects of a space transportation system involving several disciplines like propulsion, vehicle structures, aerodynamics, flight mechanics, navigation, guidance and control systems, stage auxiliary systems, thermal systems etc. and discusses the system approach for design, trade off analysis, system life cycle considerations, important aspects in mission management, the risk assessment, etc. There are several books authored to describe the design aspects of various areas, viz., propulsion, aerodynamics, structures, control, etc., but there is no book which presents space transportation system (STS) design in an integrated manner. This book attempts to fill this gap by addressing systems approach for STS design, highlighting the integrated design aspects, interactions between various subsystems and interdependencies. The main focus is towards the complex integrated design to arrive at an optimum, robust and cost effective space transportation system. The orbit...

  19. Modeling and simulation of emergent behavior in transportation infrastructure restoration

    Science.gov (United States)

    Ojha, Akhilesh; Corns, Steven; Shoberg, Thomas G.; Qin, Ruwen; Long, Suzanna K.

    2018-01-01

    The objective of this chapter is to create a methodology to model the emergent behavior during a disruption in the transportation system and that calculates economic losses due to such a disruption, and to understand how an extreme event affects the road transportation network. The chapter discusses a system dynamics approach which is used to model the transportation road infrastructure system to evaluate the different factors that render road segments inoperable and calculate economic consequences of such inoperability. System dynamics models have been integrated with business process simulation model to evaluate, design, and optimize the business process. The chapter also explains how different factors affect the road capacity. After identifying the various factors affecting the available road capacity, a causal loop diagram (CLD) is created to visually represent the causes leading to a change in the available road capacity and the effects on travel costs when the available road capacity changes.

  20. A multimodal transportation system routing implemented in waste collection

    Directory of Open Access Journals (Sweden)

    Masoud Rabbani

    2016-01-01

    Full Text Available Waste collection is an important municipal service that charges large expenditures to waste management (WM system. In this study, a hierarchical structure is proposed in order to minimize total cost of waste collection routing problem. Moreover, in second stage destructive environmental effects of waste transportation are minimized concurrently through taking advantage of a road/rail transportation system. In the proposed multimodal transportation system, waste packs are transferred to final destination while travel time and risk of environmental threatening is minimized. The discussed problem is formulated mathematically in two stages. In the first stage, a household waste collection routing problem is formulated while, in second stage a multimodal transportation system is routed to transfer waste packs to final destination through roads and railroads. In order to solve the proposed NP hard models, an improved genetic algorithm is developed. Comparison of the obtained results with those of GAMS for small-size samples validates the proposed models.

  1. Modeling methane fluxes in wetlands with gas-transporting plants. 1. Single-root scale

    NARCIS (Netherlands)

    Segers, R.; Leffelaar, P.A.

    2001-01-01

    Methane dynamics in a water-saturated soil layer with gas-transporting roots is modeled with a weighed set of single-root model systems. Each model system consists of a soil cylinder with a gas-transporting root along its axis or a soil sphere with a gas-transporting root at its center. The weights

  2. Modeling methane fluxes in wetlands with gas-transporting plants 2. Soil layer scale

    NARCIS (Netherlands)

    Segers, R; Rappoldt, C; Leffelaar, PA

    2001-01-01

    Methane dynamics in a water-saturated soil layer with gas-transporting roots is modeled with a weighed set of single-loot model systems. Each model system consists of a soil cylinder with a gas-transporting root along its axis or a soil sphere with a gas-transporting root at its centre. The weights

  3. Highway and interline transportation routing models

    International Nuclear Information System (INIS)

    Joy, D.S.; Johnson, P.E.

    1994-01-01

    The potential impacts associated with the transportation of hazardous materials are important issues to shippers, carriers, and the general public. Since transportation routes are a central characteristic in most of these issues, the prediction of likely routes is the first step toward the resolution of these issues. In addition, US Department of Transportation requirements (HM-164) mandate specific routes for shipments of highway controlled quantities of radioactive materials. In response to these needs, two routing models have been developed at Oak Ridge National Laboratory under the sponsorship of the U.S. Department of Energy (DOE). These models have been designated by DOE's Office of Environmental Restoration and Waste Management, Transportation Management Division (DOE/EM) as the official DOE routing models. Both models, HIGHWAY and INTERLINE, are described

  4. Multimodal transportation best practices and model element.

    Science.gov (United States)

    2014-06-01

    This report provides guidance in developing a multimodal transportation element of a local government comprehensive : plan. Two model elements were developed to address differences in statutory requirements for communities of different : sizes and pl...

  5. NODA for EPA's Updated Ozone Transport Modeling

    Science.gov (United States)

    Find EPA's NODA for the Updated Ozone Transport Modeling Data for the 2008 Ozone National Ambient Air Quality Standard (NAAQS) along with the ExitExtension of Public Comment Period on CSAPR for the 2008 NAAQS.

  6. Stochastic dynamics modeling solute transport in porous media modeling solute transport in porous media

    CERN Document Server

    Kulasiri, Don

    2002-01-01

    Most of the natural and biological phenomena such as solute transport in porous media exhibit variability which can not be modeled by using deterministic approaches. There is evidence in natural phenomena to suggest that some of the observations can not be explained by using the models which give deterministic solutions. Stochastic processes have a rich repository of objects which can be used to express the randomness inherent in the system and the evolution of the system over time. The attractiveness of the stochastic differential equations (SDE) and stochastic partial differential equations (SPDE) come from the fact that we can integrate the variability of the system along with the scientific knowledge pertaining to the system. One of the aims of this book is to explaim some useufl concepts in stochastic dynamics so that the scientists and engineers with a background in undergraduate differential calculus could appreciate the applicability and appropriateness of these developments in mathematics. The ideas ...

  7. Mathematical modeling plasma transport in tokamaks

    International Nuclear Information System (INIS)

    Quiang, Ji

    1995-01-01

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10 20 /m 3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%

  8. Transportation Routing Analysis Geographic Information System -- TRAGIS, progress on improving a routing tool

    International Nuclear Information System (INIS)

    Johnson, P.E.; Lester, P.B.

    1998-05-01

    The Transportation Routing Analysis Geographic Information System (TRAGIS) model provides a useful tool to calculate and analyze transportation routes for radioactive materials within the continental US. This paper outlines some of the features available in this model

  9. A model library for dynamic transport and fate of micropollutants in integrated urban wastewater and stormwater systems

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Benedetti, Lorenzo; Gevaert, Veerle

    2014-01-01

    The increasing efforts in reducing the emission of micropollutants (MP) into the natural aquatic environment require the development of modelling tools to support the decision making process. This article presents a library of dynamic modelling tools for estimating MP fluxes within Integrated Urb...... is presented to illustrate the potential of the use of the developed model library for developing, evaluating and comparing strategies for reduction of MP emissions from urban areas.......The increasing efforts in reducing the emission of micropollutants (MP) into the natural aquatic environment require the development of modelling tools to support the decision making process. This article presents a library of dynamic modelling tools for estimating MP fluxes within Integrated Urban...

  10. A Parallel 3D Model for the Multi-Species Low Energy Beam Transport System of the RIA Prototype ECR Ion Source VENUS

    CERN Document Server

    Qiang, Ji; Todd, Damon

    2005-01-01

    The driver linac of the proposed Rare Isotope Accelerator (RIA) requires a great variety of high intensity, high charge state ion beams. In order to design and optimize the low energy beam line optics of the RIA front end, we have developed a new parallel three-dimensional model to simulate the low energy, multi-species beam transport from the ECR ion source extraction region to the focal plane of the analyzing magnet. A multi-section overlapped computational domain has been used to break the original transport system into a number of independent subsystems. Within each subsystem, macro-particle tracking is used to obtain the charge density distribution in this subdomain. The three-dimensional Poisson equation is solved within the subdomain and particle tracking is repeated until the solution converges. Two new Poisson solvers based on a combination of the spectral method and the multigrid method have been developed to solve the Poisson equation in cylindrical coordinates for the beam extraction region and in...

  11. A Parallel 3D Model for The Multi-Species Low Energy Beam Transport System of the RIA Prototype ECR Ion Source Venus

    International Nuclear Information System (INIS)

    Qiang, J.; Leitner, D.; Todd, D.

    2005-01-01

    The driver linac of the proposed Rare Isotope Accelerator (RIA) requires a great variety of high intensity, high charge state ion beams. In order to design and to optimize the low energy beamline optics of the RIA front end,we have developed a new parallel three-dimensional model to simulate the low energy, multi-species ion beam formation and transport from the ECR ion source extraction region to the focal plane of the analyzing magnet. A multisection overlapped computational domain has been used to break the original transport system into a number of each subsystem, macro-particle tracking is used to obtain the charge density distribution in this subdomain. The three-dimensional Poisson equation is solved within the subdomain and particle tracking is repeated until the solution converges. Two new Poisson solvers based on a combination of the spectral method and the multigrid method have been developed to solve the Poisson equation in cylindrical coordinates for the beam extraction region and in the Frenet-Serret coordinates for the bending magnet region. Some test examples and initial applications will also be presented

  12. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2004-01-01

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data

  13. Unmanned aircraft systems for transportation decision support.

    Science.gov (United States)

    2016-11-30

    Our nation relies on accurate geospatial information to map, measure, and monitor transportation infrastructure and the surrounding landscapes. This project focused on the application of Unmanned Aircraft systems (UAS) as a novel tool for improving e...

  14. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system

    Science.gov (United States)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  15. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-;atmosphere–wave–sediment transport (COAWST) modeling system

    Science.gov (United States)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor'Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor'easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor'Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  16. Final Technical Report - SciDAC Cooperative Agreement: Center for Extended Magnetohydrodynamic Modeling/ Transport and Dynamics in Torodial Fusion System

    International Nuclear Information System (INIS)

    Schanck, Dalton D.

    2010-01-01

    Final technical report for research performed by Professor Dalton D. Schnack on SciDAC Cooperative Agreement: Center for Extended MHD Modeling, DE-FC02-06ER54870, for the period 7/1/06 to 2/15/08. Principal results for this period are: 1. Development of a model for computational modeling for the primitive form of the extended MMD equations. This was reported as Phys. Plasmas 13, 058103 (2006). 2. Comparison between the NIMROD and M3D codes for simulation of the nonlinear sawtooth crash in the CDXU tokamak. This was reported in Phys. Plasmas 14, 056105 (2006). 3. Demonstration of 2-fluid and gyroviscous stabilization of interchange modes using computational extended MHD models. This was reported in Phys. Rev. Letters 101, 085005 (2008). Each of these publications is attached as an Appendix of this report. They should be consulted for technical details.

  17. Argonne simulation framework for intelligent transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, T.; Doss, E.; Hanebutte, U.; Canfield, T.; Brown-VanHoozer, A.; Tentner, A.

    1996-04-01

    A simulation framework has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS). The simulator is designed to run on parallel computers and distributed (networked) computer systems; however, a version for a stand alone workstation is also available. The ITS simulator includes an Expert Driver Model (EDM) of instrumented ``smart`` vehicles with in-vehicle navigation units. The EDM is capable of performing optimal route planning and communicating with Traffic Management Centers (TMC). A dynamic road map data base is sued for optimum route planning, where the data is updated periodically to reflect any changes in road or weather conditions. The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces that includes human-factors studies to support safety and operational research. Realistic modeling of variations of the posted driving speed are based on human factor studies that take into consideration weather, road conditions, driver`s personality and behavior and vehicle type. The simulator has been developed on a distributed system of networked UNIX computers, but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of the developed simulator is that vehicles will be represented by autonomous computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. Vehicle processes interact with each other and with ITS components by exchanging messages. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

  18. Use of fatal real-life crashes to analyze a safe road transport system model, including the road user, the vehicle, and the road.

    Science.gov (United States)

    Stigson, Helena; Krafft, Maria; Tingvall, Claes

    2008-10-01

    To evaluate if the Swedish Road Administration (SRA) model for a safe road transport system, which includes the interaction between the road user, the vehicle, and the road, could be used to classify fatal car crashes according to some safety indicators. Also, to present a development of the model to better identify system weakness. Real-life crashes with a fatal outcome were classified according to the vehicle's safety rating by Euro NCAP (European Road Assessment Programme) and fitment of ESC (Electronic Stability Control). For each crash, the road was also classified according to EuroRAP (European Road Assessment Programme) criteria, and human behavior in terms of speeding, seat belt use, and driving under the influence of alcohol. Each crash was compared with the model criteria, to identify components that might have contributed to fatal outcome. All fatal crashes where a car occupant was killed that occurred in Sweden during 2004 were included: in all, 215 crashes with 248 fatalities. The data were collected from the in-depth fatal crash data of the Swedish Road Administration (SRA). It was possible to classify 93% of the fatal car crashes according to the SRA model. A number of shortcomings in the criteria were identified since the model did not address rear-end or animal collisions or collisions with stationary/parked vehicles or trailers (18 out of 248 cases). Using the further developed model, it was possible to identify that most of the crashes occurred when two or all three components interacted (in 85 of the total 230 cases). Noncompliance with safety criteria for the road user, the vehicle, and the road led to fatal outcome in 43, 27, and 75 cases, respectively. The SRA model was found to be useful for classifying fatal crashes but needs to be further developed to identify how the components interact and thereby identify weaknesses in the road traffic system. This developed model might be a tool to systematically identify which of the components are

  19. Calculating iron transport in nuclear systems

    International Nuclear Information System (INIS)

    Horowitz, J.S.; Merilo, M.; Munson, D.

    2002-01-01

    The presence of high levels of iron in the final feedwater of nuclear plants is undesirable and can have a significant contribution to plant operations and maintenance (O and M) costs. A number of options are available to reduce the iron concentration, but tend to be expensive. Recently a method was developed to quantitatively determine the contribution of each iron source, such that reduction options can be quantitatively compared. The method is based on industry experience that the majority of iron has been released by flow-accelerated corrosion (FAC). FAC is one of the most predictable forms of corrosion and a well-developed predictive model has been developed and also encoded in the CHECWORKS. A combination of CHECWORKS and supplemental calculations have been used to model the iron transport in a number of US BWRs and PWRs. The iron generated by FAC in all the normally operating piping systems has been calculated using the results of CHECWORKS predictions and a special post processor. The post processor accounts for the differences between the maximum corrosion rate calculated by CHECWORKS and the average corrosion (iron generation) rate for a pipe-fitting or length of pipe. It also calculates the amount of iron generated within the fitting or pipe. Supplemental calculations have been used to determine the iron generation from the major, in-line components - high and low pressure turbines, moisture separators, feedwater heaters and the condenser. All of the iron generation rates for the equipment and piping were appropriately summed and iron concentrations estimated throughout the steam-feedwater system. Predicted iron concentrations have agreed well with plant measurements. The availability of specific iron generation rates allows plant management to make reasoned decisions about the countermeasures to deal with iron generation and transport. The countermeasures that have been examined to reduce the amount of iron transport include installing additional water

  20. A Coupled Model of Multiphase Flow, Reactive Biogeochemical Transport, Thermal Transport and Geo-Mechanics.

    Science.gov (United States)

    Tsai, C. H.; Yeh, G. T.

    2015-12-01

    In this investigation, a coupled model of multiphase flow, reactive biogeochemical transport, thermal transport and geo-mechanics in subsurface media is presented. It iteratively solves the mass conservation equation for fluid flow, thermal transport equation for temperature, reactive biogeochemical transport equations for concentration distributions, and solid momentum equation for displacement with successive linearization algorithm. With species-based equations of state, density of a phase in the system is obtained by summing up concentrations of all species. This circumvents the problem of having to use empirical functions. Moreover, reaction rates of all species are incorporated in mass conservation equation for fluid flow. Formation enthalpy of all species is included in the law of energy conservation as a source-sink term. Finite element methods are used to discretize the governing equations. Numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results demonstrate the feasibility and capability of present model in subsurface media.

  1. Verification of the Hydrodynamic and Sediment Transport Hybrid Modeling System for Cumberland Sound and Kings Bay Navigation Channel, Georgia

    Science.gov (United States)

    1989-07-01

    different loca- tions and should not be directly evaluated. These data are provided for 72 8’ 0�PHSICAL MODEL 0*0NUMERICAL MODEL E HIGH WATER LE 6...TII. JM~ls a. Station 843 MIODEL. VERIFICATION - 1985 GEOMSETRY tt m •u - FIELD 61*110K le 4. a." -- 0 . 0 p-iOi" Plate \\1. is. in. 14. 1. Is. U. 94...STOTION 3n 4. a. L 0 MODE VEIICTO 195GOMTYw"" l -. L I 31 -6. 10. In. 14. 18. 18. a. *. 14. MIEL TIM. HMES a. Station 396 MI’ODEL VERIFICATION - 1985

  2. The WIPP transportation system: Dedicated to safety

    International Nuclear Information System (INIS)

    Ward, T.; McFadden, M.

    1993-01-01

    When developing a transportation system to transport transuranic (TRU) waste from ten widely-dispersed generator sites, the Department of Energy (DOE) recognized and addressed many challenges. Shipments of waste to the Waste Isolation Pilot Plant (WIPP) were to cover a twenty-five year period and utilize routes covering over twelve thousand miles in twenty-three states. Enhancing public safety by maximizing the payload, thus reducing the number of shipments, was the primary objective. To preclude the requirement for overweight permits, the DOE started with a total shipment weight limit of 80,000 pounds and developed an integrated transportation system consisting of a Type ''B'' package to transport the material, a lightweight tractor and trailer, stringent driver requirements, and a shipment tracking system referred to as ''TRANSCOM''

  3. Expression systems for cloned xenobiotic transporters

    International Nuclear Information System (INIS)

    Pritchard, John B.; Miller, David S.

    2005-01-01

    One challenge of modern biology is to be able to match genes and their encoded proteins with events at the molecular, cellular, tissue, and organism levels, and thus, provide a multi-level understanding of gene function and dysfunction. How well this can be done for xenobiotic transporters depends on a knowledge of the genes expressed in the tissue, the cellular locations of the gene products (do they function for uptake or efflux?), and our ability to match substrates with transporters using information obtained from cloned transporters functioning in heterologous expression systems. Clearly, making a rational choice of expression system to use for the characterization and study of cloned xenobiotic transporters is a critical part of study design. This choice requires well-defined goals, as well as an understanding of the strengths and weaknesses of candidate expression systems

  4. Modeling acute respiratory illness during the 2007 San Diego wildland fires using a coupled emissions-transport system and generalized additive modeling.

    Science.gov (United States)

    Thelen, Brian; French, Nancy H F; Koziol, Benjamin W; Billmire, Michael; Owen, Robert Chris; Johnson, Jeffrey; Ginsberg, Michele; Loboda, Tatiana; Wu, Shiliang

    2013-11-05

    A study of the impacts on respiratory health of the 2007 wildland fires in and around San Diego County, California is presented. This study helps to address the impact of fire emissions on human health by modeling the exposure potential of proximate populations to atmospheric particulate matter (PM) from vegetation fires. Currently, there is no standard methodology to model and forecast the potential respiratory health effects of PM plumes from wildland fires, and in part this is due to a lack of methodology for rigorously relating the two. The contribution in this research specifically targets that absence by modeling explicitly the emission, transmission, and distribution of PM following a wildland fire in both space and time. Coupled empirical and deterministic models describing particulate matter (PM) emissions and atmospheric dispersion were linked to spatially explicit syndromic surveillance health data records collected through the San Diego Aberration Detection and Incident Characterization (SDADIC) system using a Generalized Additive Modeling (GAM) statistical approach. Two levels of geographic aggregation were modeled, a county-wide regional level and division of the county into six sub regions. Selected health syndromes within SDADIC from 16 emergency departments within San Diego County relevant for respiratory health were identified for inclusion in the model. The model captured the variability in emergency department visits due to several factors by including nine ancillary variables in addition to wildfire PM concentration. The model coefficients and nonlinear function plots indicate that at peak fire PM concentrations the odds of a person seeking emergency care is increased by approximately 50% compared to non-fire conditions (40% for the regional case, 70% for a geographically specific case). The sub-regional analyses show that demographic variables also influence respiratory health outcomes from smoke. The model developed in this study allows a

  5. Uncertainty associated with selected environmental transport models

    International Nuclear Information System (INIS)

    Little, C.A.; Miller, C.W.

    1979-11-01

    A description is given of the capabilities of several models to predict accurately either pollutant concentrations in environmental media or radiological dose to human organs. The models are discussed in three sections: aquatic or surface water transport models, atmospheric transport models, and terrestrial and aquatic food chain models. Using data published primarily by model users, model predictions are compared to observations. This procedure is infeasible for food chain models and, therefore, the uncertainty embodied in the models input parameters, rather than the model output, is estimated. Aquatic transport models are divided into one-dimensional, longitudinal-vertical, and longitudinal-horizontal models. Several conclusions were made about the ability of the Gaussian plume atmospheric dispersion model to predict accurately downwind air concentrations from releases under several sets of conditions. It is concluded that no validation study has been conducted to test the predictions of either aquatic or terrestrial food chain models. Using the aquatic pathway from water to fish to an adult for 137 Cs as an example, a 95% one-tailed confidence limit interval for the predicted exposure is calculated by examining the distributions of the input parameters. Such an interval is found to be 16 times the value of the median exposure. A similar one-tailed limit for the air-grass-cow-milk-thyroid for 131 I and infants was 5.6 times the median dose. Of the three model types discussed in this report,the aquatic transport models appear to do the best job of predicting observed concentrations. However, this conclusion is based on many fewer aquatic validation data than were availaable for atmospheric model validation

  6. Comparing Two Numerical Models in Simulating Hydrodynamics and Sediment Transport at a Dual Inlet System, West-Central Florida

    Science.gov (United States)

    2015-05-15

    Pass, the Willmott skill was 0.989 for CMS and 0.938 for DELFT3D. Qualitatively, as compared to flow field measurements using a ship- mounted ADCP , both...offshore, providing boundary conditions for the numerical models. Several methods were used to measure the flow field. An upward-looking ADCP was...deployed in the main channel of each inlet to measured current profiles. A side-looking ADCP was deployed at each inlet to measured cross-channel

  7. The WIPP transportation system: Demonstrated readiness

    International Nuclear Information System (INIS)

    Ward, T.R.; Spooner, R.

    1991-01-01

    The Department of Energy (DOE) has developed an integrated transportation system to transport transuranic (TRU) waste from ten widely-dispersed generator sites to the Waste Isolation Pilot Plant (WIPP). The system consists of a Type B container, a specially-designed trailer, a lightweight tractor, the DOE ''TRANSCOM'' vehicle tracing system, and uniquely qualified and highly-trained drivers. In June of 1989, the National Academy of Sciences reviewed the transportation system and concluded that: ''The system proposed for transportation of TRU waste to WIPP is safer than that employed for any other hazardous material in the United States today and will reduce risk to very low levels.'' The next challenge facing the DOE was demonstrating that this system was ready to transport the TRU waste to the WIPP site in the safest manner possible. Not only did the DOE feel that it was necessary to convince itself that the system was safe, but also representatives of the 23 states through which it traveled

  8. The WIPP transportation system: Demonstrated readiness

    International Nuclear Information System (INIS)

    Ward, T.R.; Spooner, R.

    1991-01-01

    The Department of Energy (DOE) has developed an integrated transportation system to transport transuranic (TRU) waste from ten widely-dispersed generator sites to the Waste Isolation Pilot Plant (WIPP). The system consists of a Type B container, a specially- designed trailer, a lightweight tractor, the DOE ''TRANSCOM'' vehicle tracking system, and uniquely qualified and highly-trained drivers. In June of 1989, the National Academy of Sciences reviewed the transportation system and concluded that: ''The system proposed for transportation of TRU waste to WIPP is safer than that employed for any other hazardous material in the United States today and will reduce risk to very low levels'' (emphasis added). The next challenge facing the DOE was demonstrating that this system was ready to transport the TRU waste to the WIPP site efficiently and in the safest manner possible. Not only did the DOE feel that is was necessary to convince itself that the system was safe, but also representatives of the 20 states through which it would travel

  9. Transport properties site descriptive model. Guidelines for evaluation and modelling

    International Nuclear Information System (INIS)

    Berglund, Sten; Selroos, Jan-Olof

    2004-04-01

    This report describes a strategy for the development of Transport Properties Site Descriptive Models within the SKB Site Investigation programme. Similar reports have been produced for the other disciplines in the site descriptive modelling (Geology, Hydrogeology, Hydrogeochemistry, Rock mechanics, Thermal properties, and Surface ecosystems). These reports are intended to guide the site descriptive modelling, but also to provide the authorities with an overview of modelling work that will be performed. The site descriptive modelling of transport properties is presented in this report and in the associated 'Strategy for the use of laboratory methods in the site investigations programme for the transport properties of the rock', which describes laboratory measurements and data evaluations. Specifically, the objectives of the present report are to: Present a description that gives an overview of the strategy for developing Site Descriptive Models, and which sets the transport modelling into this general context. Provide a structure for developing Transport Properties Site Descriptive Models that facilitates efficient modelling and comparisons between different sites. Provide guidelines on specific modelling issues where methodological consistency is judged to be of special importance, or where there is no general consensus on the modelling approach. The objectives of the site descriptive modelling process and the resulting Transport Properties Site Descriptive Models are to: Provide transport parameters for Safety Assessment. Describe the geoscientific basis for the transport model, including the qualitative and quantitative data that are of importance for the assessment of uncertainties and confidence in the transport description, and for the understanding of the processes at the sites. Provide transport parameters for use within other discipline-specific programmes. Contribute to the integrated evaluation of the investigated sites. The site descriptive modelling of

  10. Thermal model of spent fuel transport cask

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.; Sultan, G.F.; Khalil, E.E.

    1996-01-01

    The investigation provides a theoretical model to represent the thermal behaviour of the spent fuel elements when transported in a dry shipping cask under normal transport conditions. The heat transfer process in the spent fuel elements and within the cask are modeled which include the radiant heat transfer within the cask and the heat transfer by thermal conduction within the spent fuel element. The model considers the net radiant method for radiant heat transfer process from the inner most heated element to the surrounding spent elements. The heat conduction through fuel interior, fuel-clad interface and on clad surface are also presented. (author) 6 figs., 9 refs

  11. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1986-01-01

    This report considers mass transport in the far-field of a radioactive waste repository, and detailed geochemical modelling of the ground-water in the near-field. A parallel approach to this problem of coupling transport and geochemical codes is the subject of another CEC report (ref. EUR 10226). Both studies were carried out in the framework of the CEC project MIRAGE. (Migration of radionuclides in the geosphere)

  12. Radionuclide Transport Models Under Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    G. Moridis; Q. Hu

    2001-12-20

    The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada.

  13. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2001-01-01

    The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada

  14. Regional transport model of atmospheric sulfates

    International Nuclear Information System (INIS)

    Rao, K.S.; Thomson, I.; Egan, B.A.

    1977-01-01

    As part of the Sulfate Regional Experiment (SURE) Design Project, a regional transport model of atmospheric sulfates has been developed. This quasi-Lagrangian three-dimensional grid numerical model uses a detailed SO 2 emission inventory of major anthropogenic sources in the Eastern U.S. region, and observed meteorological data during an episode as inputs. The model accounts for advective transport and turbulent diffusion of the pollutants. The chemical transformation of SO 2 and SO 4 /sup =/ and the deposition of the species at the earth's surface are assumed to be linear processes at specified constant rates. The numerical model can predict the daily average concentrations of SO 2 and SO 4 /sup =/ at all receptor locations in the grid region during the episode. Because of the spatial resolution of the grid, this model is particularly suited to investigate the effect of tall stacks in reducing the ambient concentration levels of sulfur pollutants. This paper presents the formulations and assumptions of the regional sulfate transport model. The model inputs and results are discussed. Isopleths of predicted SO 2 and SO 4 /sup =/ concentrations are compared with the observed ground level values. The bulk of the information in this paper is directed to air pollution meteorologists and environmental engineers interested in the atmospheric transport modeling studies of sulfur oxide pollutants

  15. Asymptotic time dependent neutron transport in multidimensional systems

    International Nuclear Information System (INIS)

    Nagy, M.E.; Sawan, M.E.; Wassef, W.A.; El-Gueraly, L.A.

    1983-01-01

    A model which predicts the asymptotic time behavior of the neutron distribution in multi-dimensional systems is presented. The model is based on the kernel factorization method used for stationary neutron transport in a rectangular parallelepiped. The accuracy of diffusion theory in predicting the asymptotic time dependence is assessed. The use of neutron pulse experiments for predicting the diffusion parameters is also investigated

  16. Commercial Consolidation Model Applied to Transport Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Guilherme de Aragão, J.J.; Santos Fontes Pereira, L. dos; Yamashita, Y.

    2016-07-01

    Since the 1990s, transport concessions, including public-private partnerships (PPPs), have been increasingly adopted by governments as an alternative for financing and operations in public investments, especially in transport infrastructure. The advantage pointed out by proponents of these models lies in merging the expertise and capital of the private sector to the public interest. Several arrangements are possible and have been employed in different cases. After the duration of the first PPP contracts in transportation, many authors have analyzed the success and failure factors of partnerships. The occurrence of failures in some stages of the process can greatly encumber the public administration, incurring losses to the fiscal responsibility of the competent bodies. This article aims to propose a new commercial consolidation model applied to transport infrastructure to ensure fiscal sustainability and overcome the weaknesses of current models. Initially, a systematic review of the literature covering studies on transport concessions between 1990 and 2015 is offered, where the different approaches between various countries are compared and the critical success factors indicated in the studies are identified. In the subsequent part of the paper, an approach for the commercial consolidation of the infrastructure concessions is presented, where the concessionary is paid following a finalistic performance model, which includes the overall fiscal balance of regional growth. Finally, the papers analyses the usefulness of the model in coping with the critical success factors explained before. (Author)

  17. Radionuclide Transport Models Under Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    G. Moridis; Q. Hu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive

  18. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive solutes and colloids, and

  19. Sustainable logistics and transportation optimization models and algorithms

    CERN Document Server

    Gakis, Konstantinos; Pardalos, Panos

    2017-01-01

    Focused on the logistics and transportation operations within a supply chain, this book brings together the latest models, algorithms, and optimization possibilities. Logistics and transportation problems are examined within a sustainability perspective to offer a comprehensive assessment of environmental, social, ethical, and economic performance measures. Featured models, techniques, and algorithms may be used to construct policies on alternative transportation modes and technologies, green logistics, and incentives by the incorporation of environmental, economic, and social measures. Researchers, professionals, and graduate students in urban regional planning, logistics, transport systems, optimization, supply chain management, business administration, information science, mathematics, and industrial and systems engineering will find the real life and interdisciplinary issues presented in this book informative and useful.

  20. Mathematical Model of Ion Transport in Electrodialysis Process

    Directory of Open Access Journals (Sweden)

    F.S. Rohman

    2010-10-01

    Full Text Available Mathematical models of ion transport in electrodialysis process is reviewed and their basics concept is discussed. Three scales of ion transport reviewed are: 1 ion transport in the membrane, where two approaches are used, the irreversible thermodynamics and modeling of the membrane material; 2 ion transport in a three-layer system composed of a membrane with two adjoining diffusion layers; and 3 coupling with hydraulic flow system in an electrodialysis 2D and 3D cell, where the differential equation of convectivediffusion is used. Most of the work carried out in the past implemented NP equations since relatively easily coupled with other equations describing hydrodynamic conditions and ion transport in the surrounding solutions, chemical reactions in the solutions and the membrane, boundary and other conditions. However, it is limited to point ionic transport in homogenous and uniformly - grainy phases of structure. © 2008 BCREC UNDIP. All rights reserved.[Received: 21 January 2008, Accepted: 10 March 2008][How to Cite: F.S. Rohman, N. Aziz (2008. Mathematical Model of Ion Transport in Electrodialysis Process. Bulletin of Chemical Reaction Engineering and Catalysis, 3(1-3: 3-8. doi:10.9767/bcrec.3.1-3.7122.3-8][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.3.1-3.7122.3-8 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7122 ] 

  1. Inactive trials of transport systems: phase II

    International Nuclear Information System (INIS)

    Haberlin, M.M.; Hardy, A.R.; Kennedy, S.T.

    1986-11-01

    Progress made during 1984-85 is reviewed in four sections: the design and installation of a stainless steel working floor in the mock-up of a crate handling and size reduction facility; the detailed evaluation of a single air pad of the type used on commercial air-transporter; an experimental programme designed to examine the problems associated with the operation of a commercial air-transporter; the design, manufacture and commissioning trials of two powered conveyor units which when combined complete a remotely operated transfer system for transporting crated waste into and within the mock-up facility. (author)

  2. Strategic Network Modelling for Passenger Transport Pricing

    NARCIS (Netherlands)

    Smits, E.-S.

    2017-01-01

    In the last decade the Netherlands has experienced an economic recession. Now, in 2017, the economy is picking up again. This growth does not only come with advantages because economic growth demands more from the transport system. Congestion is increasing again, the capacity of the train system is

  3. Not planning a sustainable transport system

    International Nuclear Information System (INIS)

    Finnveden, Göran; Åkerman, Jonas

    2014-01-01

    The overall objective of the Swedish transport policy is to ensure the economically efficient and sustainable provision of transport services for people and business throughout the country. More specifically, the transport sector shall, among other things, contribute to the achievement of environmental quality objectives in which the development of the transport system plays an important role in the achievement of the objectives. The aim of this study is to analyse if current transport planning supports this policy. This is done by analysing two recent cases: the National Infrastructure Plan 2010–2021, and the planning of Bypass Stockholm, a major road investment. Our results show that the plans are in conflict with several of the environmental quality objectives. Another interesting aspect of the planning processes is that the long-term climate goals are not included in the planning processes, neither as a clear goal nor as factor that will influence future transport systems. In this way, the long-term sustainability aspects are not present in the planning. We conclude that the two cases do not contribute to a sustainable transport system. Thus, several changes must be made in the processes, including putting up clear targets for emissions. Also, the methodology for the environmental assessments needs to be further developed and discussed. - Highlights: • Two cases are studied to analyse if current planning supports a sustainable transport system. • Results show that the plans are in conflict with several of the environmental quality objectives. • Long-term climate goals are not included in the planning processes. • Current practices do not contribute to a sustainable planning processes. • Methodology and process for environmental assessments must be further developed and discussed

  4. Advanced public transportation systems : evaluation guidelines

    Science.gov (United States)

    1994-01-01

    The Federal Transit Administration has developed the Advanced Public Transportation Systems (APTS) Program which is an integral part of the overall U.S. DOT Intelligent Vehicle Highway Systems (IVHS) effort. A major aim of the APTS Program is to prom...

  5. Improvement Possibilities of City Transportation System by Using PINAVIA Interchange

    OpenAIRE

    Aušrius Juozapavičius; Stanislovas Buteliauskas; Rimvydas Krasauskas

    2010-01-01

    The article analyzes transportation system problems of a common city by taking an example of Vilnius city and reveals drawbacks of street infrastructure and traffic organization which are responsible for traffic congestion and its consequences in many cities including Vilnius. A new high capacity Pinavia road interchange is presented. Mathematical model of the new interchange is described enabling transport specialists to optimize and adapt it to a given location. Unique features of the new P...

  6. Hydrogen recycle modeling in transport codes

    International Nuclear Information System (INIS)

    Howe, H.C.

    1979-01-01

    The hydrogen recycling models now used in Tokamak transport codes are reviewed and the method by which realistic recycling models are being added is discussed. Present models use arbitrary recycle coefficients and therefore do not model the actual recycling processes at the wall. A model for the hydrogen concentration in the wall serves two purposes: (1) it allows a better understanding of the density behavior in present gas puff, pellet, and neutral beam heating experiments; and (2) it allows one to extrapolate to long pulse devices such as EBT, ISX-C and reactors where the walls are observed or expected to saturate. Several wall models are presently being studied for inclusion in transport codes

  7. Combining water-rock interaction experiments with reaction path and reactive transport modelling to predict reservoir rock evolution in an enhanced geothermal system

    Science.gov (United States)

    Kuesters, Tim; Mueller, Thomas; Renner, Joerg

    2016-04-01

    Reliably predicting the evolution of mechanical and chemical properties of reservoir rocks is crucial for efficient exploitation of enhanced geothermal systems (EGS). For example, dissolution and precipitation of individual rock forming minerals often result in significant volume changes, affecting the hydraulic rock properties and chemical composition of fluid and solid phases. Reactive transport models are typically used to evaluate and predict the effect of the internal feedback of these processes. However, a quantitative evaluation of chemo-mechanical interaction in polycrystalline environments is elusive due to poorly constrained kinetic data of complex mineral reactions. In addition, experimentally derived reaction rates are generally faster than reaction rates determined from natural systems, likely a consequence of the experimental design: a) determining the rate of a single process only, e.g. the dissolution of a mineral, and b) using powdered sample materials and thus providing an unrealistically high reaction surface and at the same time eliminating the restrictions on element transport faced in-situ for fairly dense rocks. In reality, multiple reactions are coupled during the alteration of a polymineralic rocks in the presence of a fluid and the rate determining process of the overall reactions is often difficult to identify. We present results of bulk rock-water interaction experiments quantifying alteration reactions between pure water and a granodiorite sample. The rock sample was chosen for its homogenous texture, small and uniform grain size (˜0.5 mm in diameter), and absence of pre-existing alteration features. The primary minerals are plagioclase (plg - 58 vol.%), quartz (qtz - 21 vol.%), K-feldspar (Kfs - 17 vol.%), biotite (bio - 3 vol.%) and white mica (wm - 1 vol.%). Three sets of batch experiments were conducted at 200 ° C to evaluate the effect of reactive surface area and different fluid path ways using (I) powders of the bulk rock with

  8. Modeling emissions for three-dimensional atmospheric chemistry transport models.

    Science.gov (United States)

    Matthias, Volker; Arndt, Jan A; Aulinger, Armin; Bieser, Johannes; Denier Van Der Gon, Hugo; Kranenburg, Richard; Kuenen, Jeroen; Neumann, Daniel; Pouliot, George; Quante, Markus

    2018-01-24

    Poor air quality is still a threat for human health in many parts of the world. In order to assess measures for emission reductions and improved air quality, three-dimensional atmospheric chemistry transport modeling systems are used in numerous research institutions and public authorities. These models need accurate emission data in appropriate spatial and temporal resolution as input. This paper reviews the most widely used emission inventories on global and regional scale and looks into the methods used to make the inventory data model ready. Shortcomings of using standard temporal profiles for each emission sector are discussed and new methods to improve the spatio-temporal distribution of the emissions are presented. These methods are often neither top-down nor bottom-up approaches but can be seen as hybrid methods that use detailed information about the emission process to derive spatially varying temporal emission profiles. These profiles are subsequently used to distribute bulk emissions like national totals on appropriate grids. The wide area of natural emissions is also summarized and the calculation methods are described. Almost all types of natural emissions depend on meteorological information, which is why they are highly variable in time and space and frequently calculated within the chemistry transport models themselves. The paper closes with an outlook for new ways to improve model ready emission data, for example by using external databases about road traffic flow or satellite data to determine actual land use or leaf area. In a world where emission patterns change rapidly, it seems appropriate to use new types of statistical and observational data to create detailed emission data sets and keep emission inventories up-to-date. Emission data is probably the most important input for chemistry transport model (CTM) systems. It needs to be provided in high temporal and spatial resolution and on a grid that is in agreement with the CTM grid. Simple

  9. In search of sustainable transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Nijkamp, P.; Vleugel, J.

    1995-12-31

    Several options can be envisaged in order to alleviate the external costs of modern transport systems: moral conviction, strict regulations (including enforcement), user charge principles (e.g. road pricing, Pigovian taxation), sophisticated environment-friendly technologies (e.g. route guidance, zero-emission cars) and alternative modes of physical planning (e.g. compact city design). Any reduction target in environmental stress has to be assessed from both an environmental sustainability viewpoint and from a cost effectiveness viewpoint. Such an assessment may be based on evaluation criteria that are internal to the transport system or on criteria that mirror an overall systemic efficiency and sustainability. This provokes the question of the most appropriate level of reduction of environmental pollution by the transport sector compared to other economic sectors. A policy strategy aiming at a more sustainable transport system has to identify quantitative criteria which would offer guidelines on the maximum allowable contribution to environmental degradation by the transport sector. This presupposes knowledge on the total permissible pollution in a given area and in a given time frame, as well as knowledge on the share of the transport system in this total volume of pollution (for different pollutants). The aim of this paper is to develop some thoughts on the question of identifying the maximum allowable pollution share by the transport sector, assuming a critical level of maximum resource use, a maximum carrying capacity, a maximum environmental utilisation space, a maximum sustainable yield or some other critical threshold level for environmental decay. The notion of maximum environmental capacity use (MECU) is used to indicate the maximum resource use of a given environmental capital stock that - in a given time period - is compatible with both socio-economic objectives and environmental quality conditions now and in the future. 6 tabs., 24 refs.

  10. Freight Transport Time Savings and Organizational Performance: A Systemic Approach

    Directory of Open Access Journals (Sweden)

    Evangelos Sambracos

    2013-04-01

    Full Text Available This paper investigates the effect of freight transport time savings (FTTS on the performance of transport consuming companies. In the first part existing methods on FTTS valuation are critically discussed and their limitations are identified. Following, a conceptual model is built introducing an alternative approach for the valuation of FTTS that is based on the system perspective of firms, integrating the disciplines of systems thinking, performance measurement, transport and logistics decision making. Evidence from a Systems Dynamics’ simulation experiment on a retailer suggests that the effect of FTTS on performance depends highly on the structure of the firm's transport related processes and decision making process. Through the development and simulation of several scenarios concerning the reaction of the firm to the FTTS, it is concluded that the value of FTTS is sensitive to the type of the reaction and its time profile.

  11. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    Science.gov (United States)

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  12. Uncertainty calculation in transport models and forecasts

    DEFF Research Database (Denmark)

    Manzo, Stefano; Prato, Carlo Giacomo

    . Forthcoming: European Journal of Transport and Infrastructure Research, 15-3, 64-72. 4 The last paper4 examined uncertainty in the spatial composition of residence and workplace locations in the Danish National Transport Model. Despite the evidence that spatial structure influences travel behaviour...... to increase the quality of the decision process and to develop robust or adaptive plans. In fact, project evaluation processes that do not take into account model uncertainty produce not fully informative and potentially misleading results so increasing the risk inherent to the decision to be taken...

  13. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Directory of Open Access Journals (Sweden)

    Martin Gregory T

    2004-11-01

    Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the

  14. Coupled models in porous media: reactive transport and fractures

    International Nuclear Information System (INIS)

    Amir, L.

    2008-12-01

    This thesis deals with numerical simulation of coupled models for flow and transport in porous media. We present a new method for coupling chemical reactions and transport by using a Newton-Krylov method, and we also present a model of flow in fractured media, based on a domain decomposition method that takes into account the case of intersecting fractures. This study is composed of three parts: the first part contains an analysis, and implementation, of various numerical methods for discretizing advection-diffusion problems, in particular by using operator splitting methods. The second part is concerned with a fully coupled method for modeling transport and chemistry problems. The coupled transport-chemistry model is described, after discretization in time, by a system of nonlinear equations. The size of the system, namely the number of grid points times the number a chemical species, precludes a direct solution of the linear system. To alleviate this difficulty, we solve the system by a Newton-Krylov method, so as to avoid forming and factoring the Jacobian matrix. In the last part, we present a model of flow in 3D for intersecting fractures, by using a domain decomposition method. The fractures are treated as interfaces between sub-domains. We show existence and uniqueness of the solution, and we validate the model by numerical tests. (author)

  15. LCLS-II CRYOMODULE TRANSPORT SYSTEM TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Huque, Naeem [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Daly, Edward F. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); McGee, Michael W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2018-04-01

    The Cryomodules (CM) for the Linear Coherent Light Source II (LCLS-II) will be shipped to SLAC (Menlo Park, California) from JLab (Newport News, Virginia) and FNAL (Batavia, Illinois). A transportation system has been designed and built to safely transport the CMs over the road. It uses an array of helical isolator springs to attenuate shocks on the CM to below 1.5g in all directions. The system rides on trailers equipped with Air-Ride suspension, which attenuates vibration loads. The prototype LCLS-II CM (pCM) was driven 750 miles to test the transport system; shock loggers recorded the shock attenuation on the pCM and vacuum gauges were used to detect any compromises in beamline vacuum. Alignment measurements were taken before and after the trip to check whether cavity positions had shifted beyond the ± 0.2mm spec. Passband frequencies and cavity gradients were measured at 2K at the Cryomodule Test Facility (CMTF) at JLab to identify any degradation of CM performance after transportation. The transport system was found to have safely carried the CM and is cleared to begin shipments from JLab and FNAL to SLAC.

  16. Modeling of pollutant emissions from road transport; Modelisation des emissions de polluants par le transport routier

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    COPERT III (computer programme to calculate emissions from road transport) is the third version of an MS Windows software programme aiming at the calculation of air pollutant emissions from road transport. COPERT estimates emissions of all regulated air pollutants (CO, NO{sub x}, VOC, PM) produced by different vehicle categories as well as CO{sub 2} emissions on the basis of fuel consumption. This research seminar was organized by the French agency of environment and energy mastery (Ademe) around the following topics: the uncertainties and sensitiveness analysis of the COPERT III model, the presentation of case studies that use COPERT III for the estimation of road transport emissions, and the future of the modeling of road transport emissions: from COPERT III to ARTEMIS (assessment and reliability of transport emission models and inventory systems). This document is a compilation of 8 contributions to this seminar and dealing with: the uncertainty and sensitiveness analysis of the COPERT III model; the road mode emissions of the ESCOMPTE program: sensitivity study; the sensitivity analysis of the spatialized traffic at the time-aggregation level: application in the framework of the INTERREG project (Alsace); the road transport aspect of the regional air quality plan of Bourgogne region: exhaustive consideration of the road network; intercomparison of tools and methods for the inventory of emissions of road transport origin; evolution of the French park of vehicles by 2025: new projections; application of COPERT III to the French context: a new version of IMPACT-ADEME; the European ARTEMIS project: new structural considerations for the modeling of road transport emissions. (J.S.)

  17. Intelligent transportation infrastructure deployment analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Rathi, A.K. [Oak Ridge National Lab., TN (United States); Harding, J.A. [Federal Highway Administration, McLean, VA (United States)

    1997-02-01

    Much of the work on Intelligent Transportation Systems (ITS) to date has emphasized technologies, standards/protocols, architecture, user services, core infrastructure requirements, and various other technical and institutional issues. ITS implementations in the United States and elsewhere in the world have demonstrated benefits in the areas of safety, productivity, efficiency, and environmental impact. However, quantitative benefits and satisfactory cost estimates are not available or cannot be derived for many components of the ITS, whether deployed individually or in some integrated fashion. The limitations of existing analysis and evaluation capabilities coupled with the lack of strong empirical evidence presents a major knowledge and data gap for infrastructure investment decisions involving ITS alternatives. This paper describes the over-arching issues and requirements associated with the analysis capabilities required for a systematic, faithful, and rigorous evaluation of the impacts of deploying ITS in a metropolitan area. It then describes the conceptual framework of a modeling system that will provide a preliminary analysis capability to support ITS deployment analysis and evaluation.

  18. Transportation of juvenile tambaqui (Colossoma macropomum in a closed system

    Directory of Open Access Journals (Sweden)

    L. C. Gomes

    Full Text Available The objective of this study was to investigate the effect of density, duration and the use of additives to the water during the transportation of juvenile tambaqui (Colossoma macropomum and use of this data to establish a safe transportation protocol for the species. The tested products and dosages were: salt (1000, 2000 and 3000 mg/L, gypsum (100, 300 and 500 mg/L and benzocaine (10, 20 and 30 mg/L. Fish were transported in closed systems (plastic bag at different densities and time periods of up to 24 h. Fish survival (FS and water quality parameters were monitored immediately after transportation. The remaining fish were kept in floating cages in order to evaluate mortality which occurred up to 96 h after transportation (S96. The best fish density, additives dosages and time period of the transportation was estimated with a general linear model. The effect of the condition factor on FS and S96 was also evaluated. As expected, FS and S96 were significantly related to time and density. FS but not S96, were also were significantly related to treatment. FS with gypsum treatment was not different from controls and FS with table salt and benzocaine treatments were significantly reduced. The condition factor was not related to either FS or S96. FS was inversely correlated with carbon dioxide concentration. It was concluded that the additives did not improve fish transportation survival. Linear models were developed to predict the best transportation densities as a function of time.

  19. Transportation of juvenile tambaqui (Colossoma macropomum) in a closed system.

    Science.gov (United States)

    Gomes, L C; Araujo-Lima, C A R M; Chippari-Gomes, A R; Roubach, R

    2006-05-01

    The objective of this study was to investigate the effect of density, duration and the use of additives to the water during the transportation of juvenile tambaqui (Colossoma macropomum) and use of this data to establish a safe transportation protocol for the species. The tested products and dosages were: salt (1000, 2000 and 3000 mg/L), gypsum (100, 300 and 500 mg/L) and benzocaine (10, 20 and 30 mg/L). Fish were transported in closed systems (plastic bag) at different densities and time periods of up to 24 h. Fish survival (FS) and water quality parameters were monitored immediately after transportation. The remaining fish were kept in floating cages in order to evaluate mortality which occurred up to 96 h after transportation (S96). The best fish density, additives dosages and time period of the transportation was estimated with a general linear model. The effect of the condition factor on FS and S96 was also evaluated. As expected, FS and S96 were significantly related to time and density. FS but not S96, were also were significantly related to treatment. FS with gypsum treatment was not different from controls and FS with table salt and benzocaine treatments were significantly reduced. The condition factor was not related to either FS or S96. FS was inversely correlated with carbon dioxide concentration. It was concluded that the additives did not improve fish transportation survival. Linear models were developed to predict the best transportation densities as a function of time.

  20. Bacterial ferrous iron transport: the Feo system.

    Science.gov (United States)

    Lau, Cheryl K Y; Krewulak, Karla D; Vogel, Hans J

    2016-03-01

    To maintain iron homeostasis within the cell, bacteria have evolved various types of iron acquisition systems. Ferric iron (Fe(3+)) is the dominant species in an oxygenated environment, while ferrous iron (Fe(2+)) is more abundant under anaerobic conditions or at low pH. For organisms that must combat oxygen limitation for their everyday survival, pathways for the uptake of ferrous iron are essential. Several bacterial ferrous iron transport systems have been described; however, only the Feo system appears to be widely distributed and is exclusively dedicated to the transport of iron. In recent years, many studies have explored the role of the FeoB and FeoA proteins in ferrous iron transport and their contribution toward bacterial virulence. The three-dimensional structures for the Feo proteins have recently been determined and provide insight into the molecular details of the transport system. A highly select group of bacteria also express the FeoC protein from the same operon. This review will provide a comprehensive look at the structural and functional aspects of the Feo system. In addition, bioinformatics analyses of the feo operon and the Feo proteins have been performed to complement our understanding of this ubiquitous bacterial uptake system, providing a new outlook for future studies. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Error estimation and adaptive chemical transport modeling

    Directory of Open Access Journals (Sweden)

    Malte Braack

    2014-09-01

    Full Text Available We present a numerical method to use several chemical transport models of increasing accuracy and complexity in an adaptive way. In largest parts of the domain, a simplified chemical model may be used, whereas in certain regions a more complex model is needed for accuracy reasons. A mathematically derived error estimator measures the modeling error and provides information where to use more accurate models. The error is measured in terms of output functionals. Therefore, one has to consider adjoint problems which carry sensitivity information. This concept is demonstrated by means of ozone formation and pollution emission.

  2. A demonstration of expert systems applications in transportation engineering : volume I, transportation engineers and expert systems.

    Science.gov (United States)

    1987-01-01

    Expert systems, a branch of artificial-intelligence studies, is introduced with a view to its relevance in transportation engineering. Knowledge engineering, the process of building expert systems or transferring knowledge from human experts to compu...

  3. Modelling of Human Transplacental Transport as Performed in Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Mathiesen, L.; Morck, T. A.; Zuri, G.

    2014-01-01

    classes of chemicals and nanoparticles for comparisons across chemical structures as well as different test systems. Our test systems are based on human material to bypass the extrapolation from animal data. By combining data from our two test systems, we are able to rank and compare the transport...... the relationships between maternal and foetal exposures to various compounds including pollutants such as polychlorinated biphenyls, polybrominated flame retardants, nanoparticles as well as recombinant human antibodies. The compounds have been studied in the human placenta perfusion model and to some extent...... in vitro with an established human monolayer trophoblast cell culture model. Results from our studies distinguish placental transport of substances by physicochemical properties, adsorption to placental tissue, binding to transport and receptor proteins and metabolism. We have collected data from different...

  4. Wireless Communications in Smart Rail Transportation Systems

    Directory of Open Access Journals (Sweden)

    César Briso-Rodríguez

    2017-01-01

    Full Text Available Railway, subway, airplane, and other transportation systems have drawn an increasing interest on the use of wireless communications for critical and noncritical services to improve performance, reliability, and passengers experience. Smart transportation systems require the use of critical communications for operation and control, and wideband services can be provided using noncritical communications. High speed train (HST is one of the best test cases for the analysis of communication links and specification of the general requirements for train control and supervision, passenger communications, and onboard and infrastructure wireless sensors. In this paper, we analyze in detail critical and noncritical networks mainly using the HST as a test case. First, the different types of links for smart rail transportation are described, specifying the main requirements of the transportation systems, communications, and their applications for different services. Then, we propose a network architecture and requirements of the communication technologies for critical and noncritical data. Finally, an analysis is made for the future technologies, including the fifth-generation (5G communications, millimeter wave (mmWave, terahertz (THz, and satellites for critical and high-capacity communications in transportation.

  5. Modeling radon transport in multistory residential buildings

    International Nuclear Information System (INIS)

    Persily, A.K.

    1993-01-01

    Radon concentrations have been studied extensively in single-family residential buildings, but relatively little work has been done in large buildings, including multistory residential buildings. The phenomena of radon transport in multistory residential buildings is made more complicated by the multizone nature of the airflow system and the numerous interzone airflow paths that must be characterized in such a system. This paper presents the results of a computer simulation of airflow and radon transport in a twelve-story residential building. Interzone airflow rates and radon concentrations were predicted using the multizone airflow and contaminant dispersal program (CON-TAM88). Limited simulations were conducted to study the influence of two different radon source terms, indoor-outdoor temperature difference and exterior wall leakage values on radon transport and radon concentration distributions

  6. Modelling anisotropic water transport in polymer composite

    Indian Academy of Sciences (India)

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were ...

  7. Climate impact of transportation A model comparison

    NARCIS (Netherlands)

    Girod, B.; Vuuren, D.P. van; Grahn, M.; Kitous, A.; Kim, S.H.; Kyle, P.

    2013-01-01

    Transportation contributes to a significant and rising share of global energy use and GHG emissions. Therefore modeling future travel demand, its fuel use, and resulting CO2 emission is highly relevant for climate change mitigation. In this study we compare the baseline projections for global

  8. Logistics Chains in Freight Transport Modelling

    NARCIS (Netherlands)

    Davydenko, I.Y.

    2015-01-01

    The flow of trade is not equal to transport flows, mainly due to the fact that warehouses and distribution facilities are used as intermediary stops on the way from production locations to the points of consumption or further rework of goods. This thesis proposes a logistics chain model, which

  9. Modeling ozone and aerosol formation and transport in the pacific northwest with the community Multi-Scale Air Quality (CMAQ) modeling system.

    Science.gov (United States)

    O'Neill, Susan M; Lamb, Brian K; Chen, Jack; Claiborn, Candis; Finn, Dennis; Otterson, Sally; Figueroa, Cristiana; Bowman, Clint; Boyer, Mike; Wilson, Rob; Arnold, Jeff; Aalbers, Steven; Stocum, Jeffrey; Swab, Christopher; Stoll, Matt; Dubois, Mike; Anderson, Mary

    2006-02-15

    The Community Multi-Scale Air Quality (CMAQ) modeling system was used to investigate ozone and aerosol concentrations in the Pacific Northwest (PNW) during hot summertime conditions during July 1-15, 1996. Two emission inventories (El) were developed: emissions for the first El were based upon the National Emission Trend 1996 (NET96) database and the BEIS2 biogenic emission model, and emissions for the second El were developed through a "bottom up" approach that included biogenic emissions obtained from the GLOBEIS model. The two simulations showed that elevated PM2.5 concentrations occurred near and downwind of the Interstate-5 corridor along the foothills of the Cascade Mountains and in forested areas of central Idaho. The relative contributions of organic and inorganic aerosols varied by region, but generally organic aerosols constituted the largest fraction of PM2.5. In wilderness areas near the 1-5 corridor, organic carbon from anthropogenic sources contributed approximately 50% of the total organic carbon with the remainder from biogenic precursors, while in wilderness areas in Idaho, biogenic organic carbon accounted for 80% of the total organic aerosol. Regional analysis of the secondary organic aerosol formation in the Columbia River Gorge, Central Idaho, and the Olympics/Puget Sound showed that the production rate of secondary organic carbon depends on local terpene concentrations and the local oxidizing capacity of the atmosphere, which was strongly influenced by anthropogenic emissions. Comparison with observations from 12 IMPROVE sites and 21 ozone monitoring sites showed that results from the two El simulations generally bracketed the average observed PM parameters and that errors calculated for the model results were within acceptable bounds. Analysis across all statistical parameters indicated that the NW-AIRQUEST El solution performed better at predicting PM2.5, PM1, and beta(ext) even though organic carbon PM was over-predicted, and the NET96 El

  10. Ion transport membrane module and vessel system

    Energy Technology Data Exchange (ETDEWEB)

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  11. Ion transport membrane module and vessel system

    Energy Technology Data Exchange (ETDEWEB)

    Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; Van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson [West Jordan, UT

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  12. Ion transport membrane module and vessel system

    Energy Technology Data Exchange (ETDEWEB)

    Stein, VanEric Edward [Allentown, PA; Carolan, Michael Francis [Allentown, PA; Chen, Christopher M [Allentown, PA; Armstrong, Phillip Andrew [Orefield, PA; Wahle, Harold W [North Canton, OH; Ohrn, Theodore R [Alliance, OH; Kneidel, Kurt E [Alliance, OH; Rackers, Keith Gerard [Louisville, OH; Blake, James Erik [Uniontown, OH; Nataraj, Shankar [Allentown, PA; van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson [West Jordan, UT

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  13. Transport modeling of sorbing tracers in artificial fractures

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong Kwon; Baik, Min Hoon; Park, Chung Kyun; Cho, Young Hwan; Hahn, Phil Soo

    1998-02-01

    This study was performed as part of a fifty-man year attachment program between AECL (Atomic Energy Canada Limited) and KAERI. Three kinds of computer code, HDD, POMKAP and VAMKAP, were developed to predict transport of contaminants in fractured rock. MDDM was to calculate the mass transport of contaminants in a single fracture using a simple hydrodynamic dispersion diffusion model. POMKAP was to predict the mass transport of contaminants by a two-dimensional variable aperture model. In parallel with modeling, the validation of models was also performed through the analysis of the migration experimental data obtained in acrylic plastic and granite artificial fracture system at the Whiteshell laboratories, AECL, Canada. (author). 34 refs., 11 tabs., 76 figs.

  14. Pathogen transport in groundwater systems: contrasts with traditional solute transport

    Science.gov (United States)

    Hunt, Randall J.; Johnson, William P.

    2017-06-01

    Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.

  15. Modelling soil transport by wind in drylands

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1994-01-01

    Understanding the movement of windblown soil particles and the resulting formation of complex surface features are among the most intriguing problems in dryland research. This understanding can only be achieved trough physical and mathematical modelling and must also involve observational data and laboratory experiments. Some current mathematical models that have contributed to the basic understanding of the transportation and deposition of soil particles by wind are presented and solved in these notes. (author). 26 refs, 5 figs

  16. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    NARCIS (Netherlands)

    Locatelli, R.; Bousquet, P.; Chevallier, F.; Fortems-Cheney, A.; Szopa, S.; Saunois, M.; Agusti-Panareda, A.; Bergmann, D.; Bian, H.; Cameron-Smith, P.; Chipperfield, M.P.; Gloor, E.; Houweling, S.; Kawa, S.R.; Krol, M.C.; Patra, P.K.; Prinn, R.G.; Rigby, M.; Saito, R.; Wilson, C.

    2013-01-01

    A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise,

  17. A simplified tether model for molecular motor transporting cargo

    International Nuclear Information System (INIS)

    Fang-Zhen, Li; Li-Chun, Jiang

    2010-01-01

    Molecular motors are proteins or protein complexes which function as transporting engines in biological cells. This paper models the tether between motor and its cargo as a symmetric linear potential. Different from Elston and Peskin's work for which performance of the system was discussed only in some limiting cases, this study produces analytic solutions of the problem for general cases by simplifying the transport system into two physical states, which makes it possible to discuss the dynamics of the motor–cargo system in detail. It turns out that the tether strength between motor and cargo should be greater than a threshold or the motor will fail to transport the cargo, which was not discussed by former researchers yet. Value of the threshold depends on the diffusion coefficients of cargo and motor and also on the strength of the Brownian ratchets dragging the system. The threshold approaches a finite constant when the strength of the ratchet tends to infinity. (general)

  18. Developing intelligent transportation systems using the national ITS architecture: an executive edition for senior transportation managers

    Science.gov (United States)

    1998-02-01

    This document has been produced to provide senior transportation managers of state and local departments of transportation with practical guidance for deploying Intelligent Transportation Systems (ITS) consistent with the National ITS Architecture. T...

  19. Transformations in Air Transportation Systems For the 21st Century

    Science.gov (United States)

    Holmes, Bruce J.

    2004-01-01

    Globally, our transportation systems face increasingly discomforting realities: certain of the legacy air and ground infrastructures of the 20th century will not satisfy our 21st century mobility needs. The consequence of inaction is diminished quality of life and economic opportunity for those nations unable to transform from the 20th to 21st century systems. Clearly, new thinking is required regarding business models that cater to consumers value of time, airspace architectures that enable those new business models, and technology strategies for innovating at the system-of-networks level. This lecture proposes a structured way of thinking about transformation from the legacy systems of the 20th century toward new systems for the 21st century. The comparison and contrast between the legacy systems of the 20th century and the transformed systems of the 21st century provides insights into the structure of transformation of air transportation. Where the legacy systems tend to be analog (versus digital), centralized (versus distributed), and scheduled (versus on-demand) for example, transformed 21st century systems become capable of scalability through technological, business, and policy innovations. Where air mobility in our legacy systems of the 20th century brought economic opportunity and quality of life to large service markets, transformed air mobility of the 21st century becomes more equitable available to ever-thinner and widely distributed populations. Several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems create new foundations for 21st thinking about air transportation. One of the technological developments of importance arises from complexity science and modern network theory. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of robustness

  20. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie

    2015-10-20

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.

  1. Mathematical model of optimizing the arrival of fire units with the use of information systems for monitoring transport logistics of Voronezh city

    Directory of Open Access Journals (Sweden)

    A. V. Kochegarov

    2016-01-01

    Full Text Available In recent years, the strong pace of construction is increasing in big cities. With their growth becomes a question of the deployment of firefighters and the number of fire stations. The most effective solution is the problem of finding the optimum route of fire departments, taking into account the information transport logistics systems within the city that will allow us to arrive at the scene at any time, regardless of the degree of congestion of city roads. Prompt arrival of fire units provides the most successful fire fighting. The main objective of the study is to develop a preliminary route and the route in case of unforeseen factors affecting the time fire engine arrived. To construct the routes used to develop actively in the current methods of machine learning artificial neural networks. To construct the optimal route requires a correct prediction of the future behavior of a complex system of urban traffic based on its past behavior. Within the framework of statistical machine learning theory considered the problem of classification and regression. The learning process is to select a classification or a regression function of a predetermined broad class of such functions. After determining the prediction scheme, it is necessary to evaluate the quality of its forecasts, which are measured not on the basis of observations, and on the basis of an improved stochastic process, the result of the construction of the prediction rules. The model is verified on the basis of data collected in real departures real fire brigades, which made it possible to obtain a minimum time of arrival of fire units.

  2. Advanced technologies for intelligent transportation systems

    CERN Document Server

    Picone, Marco; Amoretti, Michele; Zanichelli, Francesco; Ferrari, Gianluigi

    2015-01-01

    This book focuses on emerging technologies in the field of Intelligent Transportation Systems (ITSs) namely efficient information dissemination between vehicles, infrastructures, pedestrians and public transportation systems. It covers the state-of-the-art of Vehicular Ad-hoc Networks (VANETs), with centralized and decentralized (Peer-to-Peer) communication architectures, considering several application scenarios. With a detailed treatment of emerging communication paradigms, including cross networking  and distributed algorithms. Unlike most of the existing books, this book presents a multi-layer overview of information dissemination systems, from lower layers (MAC) to high layers (applications). All those aspects are investigated considering the use of mobile devices, such as smartphones/tablets and embedded systems, i.e. technologies that during last years completely changed the current market, the user expectations, and communication networks. The presented networking paradigms are supported and validate...

  3. Predicted congestions never occur. On the gap between transport modeling and human behavior

    Directory of Open Access Journals (Sweden)

    Harald FREY

    2011-01-01

    Full Text Available This paper presents an introduction to meso-scale transport modeling and issues of human behaviour in transport systems. Along with other examples of the human ability to learn in transport systems we look at the comparison of real life data and the prediction of modeling tools for the closure of Vienna’s inner ring road during the 2008 European Football Championship (EURO 2008. Some light is shed on the scientific question, whether currently used modeling tools are able to adequately reproduce the real-life behaviour of human beings in the transport system and should be used for transport policy decision making.

  4. Molecular modeling of auxin transport inhibitors

    International Nuclear Information System (INIS)

    Gardner, G.; Black-Schaefer, C.; Bures, M.G.

    1990-01-01

    Molecular modeling techniques have been used to study the chemical and steric properties of auxin transport inhibitors. These bind to a specific site on the plant plasma membrane characterized by its affinity for N-1-naphthylphthalamic acid (NPA). A three-dimensional model was derived from critical features of ligands for the NPA receptor, and a suggested binding conformation is proposed. This model, along with three-dimensional structural searching techniques, was then used to search the Abbott corporate database of chemical structures. Of the 467 compounds that satisfied the search criteria, 77 representative molecules were evaluated for their ability to compete for [ 3 H]NPA binding to corn microsomal membranes. Nineteen showed activity that ranged from 16 to 85% of the maximum NPA binding. Four of the most active of these, from chemical classes not included in the original compound set, also inhibited polar auxin transport through corn coleoptile sections

  5. Model prodrugs for the intestinal oligopeptide transporter

    DEFF Research Database (Denmark)

    Nielsen, C U; Andersen, R; Brodin, Birger

    2001-01-01

    The human intestinal di/tri-peptide carrier, hPepT1, has been suggested as a target for increasing intestinal transport of low permeability compounds by creating prodrugs designed for the transporter. Model ester prodrugs using the stabilized dipeptides D-Glu-Ala and D-Asp-Ala as pro...... with a pH of approximately 6.0, but still release the model drug at the intercellular and blood pH of approximately 7.4. Even though benzyl alcohol is not a low molecular weight drug molecule, these results indicate that the dipeptide prodrug principle is a promising drug delivery concept. However......, the physico-chemical properties such as electronegativity, solubility, and log P of the drug molecule may also have an influence on the potential of these kinds of prodrugs. The purpose of the present study is to investigate whether the model drug electronegativity, estimated as Taft substitution parameter...

  6. Inelastic transport theory for nanoscale systems

    DEFF Research Database (Denmark)

    Frederiksen, Thomas

    2007-01-01

    This thesis describes theoretical and numerical investigations of inelastic scat- tering and energy dissipation in electron transport through nanoscale sys- tems. A computational scheme, based on a combination of density functional theory (DFT) and nonequilibrium Green’s functions (NEGF), has been...... the conductance. The methods have been applied to a number of specific systems, includ- ing monatomic gold chains, atomic point contacts, and metal-molecule-metal configurations. These studies have clarified the inelastic effects in the elec- tron transport and characterized the vibrational modes that couple...

  7. research efforts on intelligent transportation system in nigeria

    African Journals Online (AJOL)

    user

    INTELLIGENT TRANSPORTATION SYSTEM IN NIGERIA: DEVELOPMENT OF TRIP PLANNING MODELS. O. Adeleke, et al. Nigerian Journal of Technology. Vol. 35. No. 3, July 2016. 492. Since the introduction of ITS, there has been a proliferation of interest by the various stakeholders. (government and industry) because ...

  8. Numerical modelling of ion transport in flames

    Science.gov (United States)

    Han, Jie; Belhi, Memdouh; Bisetti, Fabrizio; Mani Sarathy, S.

    2015-11-01

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model's predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018.

  9. Decentralized control of multi-agent aerial transportation system

    KAUST Repository

    Toumi, Noureddine

    2017-04-01

    Autonomous aerial transportation has multiple potential applications including emergency cases and rescue missions where ground intervention may be difficult. In this context, the following work will address the control of multi-agent Vertical Take-off and Landing aircraft (VTOL) transportation system. We develop a decentralized method. The advantage of such a solution is that it can provide better maneuverability and lifting capabilities compared to existing systems. First, we consider a cooperative group of VTOLs transporting one payload. The main idea is that each agent perceive the interaction with other agents as a disturbance while assuming a negotiated motion model and imposing certain magnitude bounds on each agent. The theoretical model will be then validated using a numerical simulation illustrating the interesting features of the presented control method. Results show that under specified disturbances, the algorithm is able to guarantee the tracking with a minimal error. We describe a toolbox that has been developed for this purpose. Then, a system of multiple VTOLs lifting payloads will be studied. The algorithm assures that the VTOLs are coordinated with minimal communication. Additionally, a novel gripper design for ferrous objects is presented that enables the transportation of ferrous objects without a cable. Finally, we discuss potential connections to human in the loop transportation systems.

  10. Internally shielded beam transport and support system

    International Nuclear Information System (INIS)

    Schildkamp, W.; Brewer, H.

    1996-01-01

    Due to environmental concerns, the Advanced Photon Source has a policy that disallows any exposed lead within the facility. This creates a real problem for the beam transport system, not so much for the pipe but for the flexible coupling (bellows) sections. A complete internally shielded x-ray transport system, consisting of long transport lines joined by flexible coupling sections, has been designed for CARS sector 14 to operate either at high vacuum or as a helium flight tube. It can effectively shield against air scattering of wiggler or undulator white beam with proper placement of apertures, collimators, and masks for direct beam control. The system makes use of male- and female-style fittings that create a labyrinth allowing for continuous shielding through the flexible coupling sections. These parts are precision machined from a ternary hypereutectic lead alloy (cast under 15 inches of head pressure to assure a pinhole-free casting) then pressed into either end (rotatable vacuum flanges) of the bellows assembly. The transport pipe itself consists of a four part construction using a stepped transition ring (Z-ring) to connect an inner tube to the vacuum flange and also to a protective and supportive outer tube. The inner tube is wrapped with 1/16 double-prime pure lead sheet to a predetermined thickness following the shape of the stepped transition ring for continuous shielding. This design has been prototyped and radiation tested. copyright 1996 American Institute of Physics

  11. Modelling contaminant transport in saturated aquifers

    International Nuclear Information System (INIS)

    Lakshminarayana, V.; Nayak, T.R.

    1990-01-01

    With the increase in population and industrialization the problem of pollution of groundwater has become critical. The present study deals with modelling of pollutant transport through saturated aquifers. Using this model it is possible to predict the concentration distribution, spatial as well as temporal, in the aquifer. The paper also deals with one of the methods of controlling the pollutant movement, namely by pumping wells. A simulation model is developed to determine the number, location and rate of pumping of a number of wells near the source of pollution so that the concentration is within acceptable limits at the point of interest. (Author) (18 refs., 14 figs., tab.)

  12. IOT Based Smart Public Transport System

    Directory of Open Access Journals (Sweden)

    Parag Gawade

    2017-07-01

    Full Text Available Internet of Things IoT joins the objects of this present reality to the virtual world and empowers at whatever time anyplace network for anything that has a turn ON and turn OFF switch. It constitutes to a world where physical things and humans and other living things and virtual information and situations collaborate with each other. Substantial measure of information is created as expansive number of gadgets is associated with the web. So this expansive measure of information must be controlled and changed over to helpful data keeping in mind the end goal to create productive frameworks. In this paper we concentrate on to a urban IoT framework that is utilized to construct Intelligent Transportation System ITS. IoT based intelligent transportation systems are intended to bolster the Smart City vision which intends to utilize the progressed and capable communication systems for the organization of the city and the residents.

  13. Coupling of Groundwater Transport and Plant Uptake Models

    DEFF Research Database (Denmark)

    Rein, Arno; Bauer-Gottwein, Peter; Trapp, Stefan

    2010-01-01

    Plants significantly influence contaminant transport and fate. Important processes are uptake of soil and groundwater contaminants, as well as biodegradation in plants and their root zones. Models for the prediction of chemical uptake into plants are required for the setup of mass balances...... in environmental systems at different scale. Feedback mechanisms between plants and hydrological systems can play an important role, however having received little attention to date. Here, a new model concept for dynamic plant uptake models applying analytical matrix solutions is presented, which can be coupled...... to groundwater transport simulation tools. Exemplary simulations of plant uptake were carried out, in order to estimate concentrations in the soilplant- air system and the influence of plants on contaminant mass fluxes from soil to groundwater....

  14. Modeling tritium transport in the environment

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1986-01-01

    A model of tritium transport in the environment near an atmospheric source of tritium is presented in the general context of modeling material cycling in ecosystems. The model was developed to test hypotheses about the process involved in tritium cycling. The temporal and spatial scales of the model were picked to allow comparison to environmental monitoring data collected in the vicinity of the Savannah River Plant. Initial simulations with the model showed good agreement with monitoring data, including atmospheric and vegetation tritium concentrations. The model can also simulate values of tritium in vegetation organic matter if the key parameter distributing the source of organic hydrogen is varied to fit the data. However, because of the lack of independent conformation of the distribution parameter, there is still uncertainty about the role of organic movement of tritium in the food chain, and its effect on the dose to man

  15. Green Transport Balanced Scorecard Model with Analytic Network Process Support

    Directory of Open Access Journals (Sweden)

    David Staš

    2015-11-01

    Full Text Available In recent decades, the performance of economic and non-economic activities has required them to be friendly with the environment. Transport is one of the areas having considerable potential within the scope. The main assumption to achieve ambitious green goals is an effective green transport evaluation system. However, these systems are researched from the industrial company and supply chain perspective only sporadically. The aim of the paper is to design a conceptual framework for creating the Green Transport (GT Balanced Scorecard (BSC models from the viewpoint of industrial companies and supply chains using an appropriate multi-criteria decision making method. The models should allow green transport performance evaluation and support of an effective implementation of green transport strategies. Since performance measures used in Balanced Scorecard models are interdependent, the Analytic Network Process (ANP was used as the appropriate multi-criteria decision making method. The verification of the designed conceptual framework was performed on a real supply chain of the European automotive industry.

  16. Consistency between 2D-3D Sediment Transport models

    Science.gov (United States)

    Villaret, Catherine; Jodeau, Magali

    2017-04-01

    Sediment transport models have been developed and applied by the engineering community to estimate transport rates and morphodynamic bed evolutions in river flows, coastal and estuarine conditions. Environmental modelling systems like the open-source Telemac modelling system include a hierarchy of models from 1D (Mascaret), 2D (Telemac-2D/Sisyphe) and 3D (Telemac-3D/Sedi-3D) and include a wide range of processes to represent sediment flow interactions under more and more complex situations (cohesive, non-cohesive and mixed sediment). Despite some tremendous progresses in the numerical techniques and computing resources, the quality/accuracy of model results mainly depend on the numerous choices and skills of the modeler. In complex situations involving stratification effects, complex geometry, recirculating flows… 2D model assumptions are no longer valid. A full 3D turbulent flow model is then required in order to capture the vertical mixing processes and to represent accurately the coupled flow/sediment distribution. However a number of theoretical and numerical difficulties arise when dealing with sediment transport modelling in 3D which will be high-lighted : (1) Dependency of model results to the vertical grid refinement and choice of boundary conditions and numerical scheme (2) The choice of turbulence model determines also the sediment vertical distribution which is governed by a balance between the downward settling term and upward turbulent diffusion. (3) The use of different numerical schemes for both hydrodynamics (mean and turbulent flow) and sediment transport modelling can lead to some inconsistency including a mismatch in the definition of numerical cells and definition of boundary conditions. We discuss here those present issues and present some detailed comparison between 2D and 3D simulations on a set of validation test cases which are available in the Telemac 7.2 release using both cohesive and non-cohesive sediments.

  17. Planning for intelligent transportation systems in small urban areas.

    Science.gov (United States)

    1997-01-01

    Intelligent transportation systems (ITS) has been a primary program focus of the U.S. Department of Transportation since its origination in the Intermodal Surface Transportation Efficiency Act of 1991. The federal ITS program funded early deployment ...

  18. Guide to federal intelligent transportation system (ITS) research.

    Science.gov (United States)

    2013-01-01

    The U.S. Department of Transportations (USDOT) Intelligent Transportation System (ITS) Program aims to bring connectivity to transportation through the use of advanced wireless technologies powerful technologies that enable transformative chan...

  19. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  20. Modelling radioiodine transport across a capillary fringe

    International Nuclear Information System (INIS)

    Mathias, Simon A.; Butler, Adrian P.; Wheater, Howard S.

    2008-01-01

    Due to its long radioactive half-life, iodine-129 is considered to be an important radionuclide in the context of underground radioactive waste disposal safety assessment. Iodine speciates as iodide (I - ) in reducing conditions and iodate (IO 3 - ) in oxidizing conditions. As iodate is more reactive, it is much less mobile than iodide. Consequently, in considering vertically upward transport within a soil profile, iodine will tend to accumulate at the top of the capillary fringe. In this paper, a model of iodine transport across a capillary fringe is developed by coupling equations for variably saturated flow, oxygen dynamics and rate-limited sorption. Model parameters are obtained by consideration of literature values, calibration on soil column data and other supporting laboratory experiments. The results demonstrate the importance of rate kinetics on the migration and bioavailability of radioiodine in the near-surface environment

  1. Modelling radioiodine transport across a capillary fringe.

    Science.gov (United States)

    Mathias, Simon A; Butler, Adrian P; Wheater, Howard S

    2008-04-01

    Due to its long radioactive half-life, iodine-129 is considered to be an important radionuclide in the context of underground radioactive waste disposal safety assessment. Iodine speciates as iodide (I-) in reducing conditions and iodate (IO3-) in oxidizing conditions. As iodate is more reactive, it is much less mobile than iodide. Consequently, in considering vertically upward transport within a soil profile, iodine will tend to accumulate at the top of the capillary fringe. In this paper, a model of iodine transport across a capillary fringe is developed by coupling equations for variably saturated flow, oxygen dynamics and rate-limited sorption. Model parameters are obtained by consideration of literature values, calibration on soil column data and other supporting laboratory experiments. The results demonstrate the importance of rate kinetics on the migration and bioavailability of radioiodine in the near-surface environment.

  2. Small Aircraft Transportation System Concept and Technologies

    Science.gov (United States)

    Holmes, Bruce J.; Durham, Michael H.; Tarry, Scott E.

    2005-01-01

    This paper summarizes both the vision and the early public-private collaborative research for the Small Aircraft Transportation System (SATS). The paper outlines an operational definition of SATS, describes how SATS conceptually differs from current air transportation capabilities, introduces four SATS operating capabilities, and explains the relation between the SATS operating capabilities and the potential for expanded air mobility. The SATS technology roadmap encompasses on-demand, widely distributed, point-to-point air mobility, through hired-pilot modes in the nearer-term, and through self-operated user modes in the farther-term. The nearer-term concept is based on aircraft and airspace technologies being developed to make the use of smaller, more widely distributed community reliever and general aviation airports and their runways more useful in more weather conditions, in commercial hired-pilot service modes. The farther-term vision is based on technical concepts that could be developed to simplify or automate many of the operational functions in the aircraft and the airspace for meeting future public transportation needs, in personally operated modes. NASA technology strategies form a roadmap between the nearer-term concept and the farther-term vision. This paper outlines a roadmap for scalable, on-demand, distributed air mobility technologies for vehicle and airspace systems. The audiences for the paper include General Aviation manufacturers, small aircraft transportation service providers, the flight training industry, airport and transportation authorities at the Federal, state and local levels, and organizations involved in planning for future National Airspace System advancements.

  3. Analysis on the Synergy Evolutionary Development of the Collecting, Distributing, and Transporting System of Railway Heavy Haul Transportation

    Directory of Open Access Journals (Sweden)

    Fenling Feng

    2012-01-01

    Full Text Available A synergy evolutionary model of the collecting, distributing, and transporting system of railway heavy haul transportation is built by introducing synergy-related concepts and applying synergy evolutionary theory. Then spline interpolation method, numerical differential five-point formula, and method of least squares are used to solve synergistic coefficient, while fourth-order Rugge-kutta method and fourth-order Adams linear implicit formula method are used to solve coevolutionary curve of the system. Finally, the heavy load transportation of Daqin Railway is an example of the empirical analysis. The research result shows that the degree of order of the system and its three subsystems—collecting, transporting, and distributing—increases as the synergetic coefficient of the subsystems increases; otherwise, the degree of the order will decrease. It also shows that this model can better analyze the coevolutionary process of the heavy load collecting, distributing, and transporting system of Daqin Railway, with its rationality and applicability verified.

  4. Road Transportable Analytical Laboratory (RTAL) system

    International Nuclear Information System (INIS)

    1993-01-01

    The goal of this contractual effort is the development and demonstration of a Road Transportable Analytical Laboratory (RTAL) system to meet the unique needs of the Department of Energy (DOE) for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system will be designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganics, and explosive materials. The planned laboratory system will consist of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site's specific needs

  5. Modelling sediment clasts transport during landscape evolution

    Science.gov (United States)

    Carretier, Sébastien; Martinod, Pierre; Reich, Martin; Godderis, Yves

    2016-03-01

    Over thousands to millions of years, the landscape evolution is predicted by models based on fluxes of eroded, transported and deposited material. The laws describing these fluxes, corresponding to averages over many years, are difficult to prove with the available data. On the other hand, sediment dynamics are often tackled by studying the distribution of certain grain properties in the field (e.g. heavy metals, detrital zircons, 10Be in gravel, magnetic tracers). There is a gap between landscape evolution models based on fluxes and these field data on individual clasts, which prevent the latter from being used to calibrate the former. Here we propose an algorithm coupling the landscape evolution with mobile clasts. Our landscape evolution model predicts local erosion, deposition and transfer fluxes resulting from hillslope and river processes. Clasts of any size are initially spread in the basement and are detached, moved and deposited according to probabilities using these fluxes. Several river and hillslope laws are studied. Although the resulting mean transport rate of the clasts does not depend on the time step or the model cell size, our approach is limited by the fact that their scattering rate is cell-size-dependent. Nevertheless, both their mean transport rate and the shape of the scattering-time curves fit the predictions. Different erosion-transport laws generate different clast movements. These differences show that studying the tracers in the field may provide a way to establish these laws on the hillslopes and in the rivers. Possible applications include the interpretation of cosmogenic nuclides in individual gravel deposits, provenance analyses, placers, sediment coarsening or fining, the relationship between magnetic tracers in rivers and the river planform, and the tracing of weathered sediment.

  6. Turbulence modification and multiphase turbulence transport modeling

    International Nuclear Information System (INIS)

    Besnard, D.C.; Kataoka, I.; Serizawa, A.

    1991-01-01

    It is shown here that in the derivation of turbulence transport models for multiphase flows, terms naturally appear that can be interpreted as related to turbulence modification of one field by the other. We obtain two such terms, one suggesting turbulence enhancement due to instabilities in two-phase flow, the second one showing turbulence damping due to the presence of the other field, both in gas-particle and gas-liquid cases

  7. Abstracts of the symposium on unsaturated flow and transport modeling

    International Nuclear Information System (INIS)

    1982-03-01

    Abstract titles are: Recent developments in modeling variably saturated flow and transport; Unsaturated flow modeling as applied to field problems; Coupled heat and moisture transport in unsaturated soils; Influence of climatic parameters on movement of radionuclides in a multilayered saturated-unsaturated media; Modeling water and solute transport in soil containing roots; Simulation of consolidation in partially saturated soil materials; modeling of water and solute transport in unsaturated heterogeneous fields; Fluid dynamics and mass transfer in variably-saturated porous media; Solute transport through soils; One-dimensional analytical transport modeling; Convective transport of ideal tracers in unsaturated soils; Chemical transport in macropore-mesopore media under partially saturated conditions; Influence of the tension-saturated zone on contaminant migration in shallow water regimes; Influence of the spatial distribution of velocities in porous media on the form of solute transport; Stochastic vs deterministic models for solute movement in the field; and Stochastic analysis of flow and solute transport

  8. Nonreciprocal electrical transport phenomena in Rashba system

    Science.gov (United States)

    Hamamoto, Keita; Ideue, Toshiya; Koshikawa, Shota; Ezawa, Motohiko; Shimizu, Sunao; Kaneko, Yoshio; Tokura, Yoshinori; Nagaosa, Naoto; Iwasa, Yoshinori

    Nonreciprocal response is a consequence of the inversion symmetry breaking where lots of physical responses have directivity. This is essentially a non-linear response like a circular dichroism and second harmonic generation in non-linear optics. The electrical resistivity, which is the most fundamental physical property of materials, also shows the nonreciprocity; the resistivity depends on the direction of the current. In this study, we have investigated the nonreciprocal electrical transport in polar semiconductor BiTeBr which has simple Rashba-type band structure. The measured nonreciprocity for this material is quantitatively reproduced by simple model; single relaxation time Boltzmann equation for Rashba Hamiltonian with in-plane Zeeman field. In this presentation, we explain mainly about the theoretical model and the analysis of the nonreciprocal electrical transport.

  9. Arterial intelligent transportation systems : infrastructure elements and traveler information requirements.

    Science.gov (United States)

    2009-08-01

    Applying Intelligent Transportation Systems (ITS) to arterial systems allows TxDOT to significantly enhance : transportation system operation efficiency and improve traffic mobility. However, no guidelines are available to : assist TxDOT staff in sel...

  10. Natural analogues and radionuclide transport model validation

    International Nuclear Information System (INIS)

    Lever, D.A.

    1987-08-01

    In this paper, some possible roles for natural analogues are discussed from the point of view of those involved with the development of mathematical models for radionuclide transport and with the use of these models in repository safety assessments. The characteristic features of a safety assessment are outlined in order to address the questions of where natural analogues can be used to improve our understanding of the processes involved and where they can assist in validating the models that are used. Natural analogues have the potential to provide useful information about some critical processes, especially long-term chemical processes and migration rates. There is likely to be considerable uncertainty and ambiguity associated with the interpretation of natural analogues, and thus it is their general features which should be emphasized, and models with appropriate levels of sophistication should be used. Experience gained in modelling the Koongarra uranium deposit in northern Australia is drawn upon. (author)

  11. Backcasting sustainable freight transport systems for Europe in 2050

    International Nuclear Information System (INIS)

    Mattila, Tuomas; Antikainen, Riina

    2011-01-01

    European freight transport emissions and fuel consumption are projected to increase. This study focuses on long distance freight transport (LDFT) and explores possible sustainable futures through quantitative modeling. The evaluation was part of European foresight process between researchers, policy makers and freight companies (FREIGHTVISION). Greenhouse gas (GHG) emissions and energy demand of road, rail and inland waterways were estimated for an EU-27 in 2005. Development was extrapolated to 2050 based on technology and freight performance forecasts. Stakeholders found the forecasted GHG emissions and fossil fuel share unsustainable, so alternative futures were developed with backcasting. The developed emission model was run with random parameter combinations to screen a set of sustainable futures, with an 80% reduction of GHG emissions and fossil fuel share. Freight transport performance was not controlled in the backcasts, but several sustainable futures were found if significant changes in transport efficiency and energy mix are implemented. In spite of agreeing on the importance of reducing emissions, stakeholders had difficulties in choosing a preferred technological future. Simple models were found to be an effective tool for communicating the influence of various measures. Further research is recommended to screen preferable technological roadmaps from the broad range of available futures. - Research highlights: → Sustainable transport systems were explored with modeling and stakeholder workshops. → Backcasting identified technological options for reducing greenhouse gas emissions by 80%. → Improving road vehicle efficiency, engine efficiency and fuel mix showed the greatest potential.

  12. Ground-water transport model selection and evaluation guidelines

    International Nuclear Information System (INIS)

    Simmons, C.S.; Cole, C.R.

    1983-01-01

    Guidelines are being developed to assist potential users with selecting appropriate computer codes for ground-water contaminant transport modeling. The guidelines are meant to assist managers with selecting appropriate predictive models for evaluating either arid or humid low-level radioactive waste burial sites. Evaluation test cases in the form of analytical solutions to fundamental equations and experimental data sets have been identified and recommended to ensure adequate code selection, based on accurate simulation of relevant physical processes. The recommended evaluation procedures will consider certain technical issues related to the present limitations in transport modeling capabilities. A code-selection plan will depend on identifying problem objectives, determining the extent of collectible site-specific data, and developing a site-specific conceptual model for the involved hydrology. Code selection will be predicated on steps for developing an appropriate systems model. This paper will review the progress in developing those guidelines. 12 references

  13. Analytical modelling of hydrogen transport in reactor containments

    International Nuclear Information System (INIS)

    Manno, V.P.

    1983-09-01

    A versatile computational model of hydrogen transport in nuclear plant containment buildings is developed. The background and significance of hydrogen-related nuclear safety issues are discussed. A computer program is constructed that embodies the analytical models. The thermofluid dynamic formulation spans a wide applicability range from rapid two-phase blowdown transients to slow incompressible hydrogen injection. Detailed ancillary models of molecular and turbulent diffusion, mixture transport properties, multi-phase multicomponent thermodynamics and heat sink modelling are addressed. The numerical solution of the continuum equations emphasizes both accuracy and efficiency in the employment of relatively coarse discretization and long time steps. Reducing undesirable numerical diffusion is addressed. Problem geometry options include lumped parameter zones, one dimensional meshs, two dimensional Cartesian or axisymmetric coordinate systems and three dimensional Cartesian or cylindrical regions. An efficient lumped nodal model is included for simulation of events in which spatial resolution is not significant. Several validation calculations are reported

  14. Flavonoid metabolites transport across a human BBB model.

    Science.gov (United States)

    Faria, Ana; Meireles, Manuela; Fernandes, Iva; Santos-Buelga, Celestino; Gonzalez-Manzano, Susana; Dueñas, Montserrat; de Freitas, Victor; Mateus, Nuno; Calhau, Conceição

    2014-04-15

    This study aimed to evaluate the transmembrane transport of different flavonoids (flavan-3-ols, anthocyanins and flavonols) and some of their metabolites (methylated and conjugated with glucuronic acid) across hCMEC/D3 cells (a blood-brain barrier (BBB) model). Further metabolism of the tested compounds was assayed and their transport modulated in an attempt to elucidate the mechanisms behind this process. The transport across hCMEC/D3 cells was monitored in basolateral media at 1, 3 and 18 h by HPLC-DAD/MS. All the flavonoids and their metabolites were transported across hCMEC/D3 cells in a time-dependent manner. In general, the metabolites showed higher transport efficiency than the native flavonoid. No further biotransformation of the metabolites was found as consequence of cellular metabolism. Anthocyanins and their metabolites crossed this BBB cell model in a lipophilicity-dependent way. Quercetin transport was influenced by phosphatase modulators, suggesting a phosphorylation/dephosphorylation regulation mechanism. Overall, this work suggests that flavonoids are capable of crossing the BBB and reaching the central nervous system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The Efficiency of the Bimodal System Transportation

    Directory of Open Access Journals (Sweden)

    Nada Štrumberger

    2012-10-01

    Full Text Available The development of fast railway results in an increased applicationof Trailer Train bimodal system transportation. Thetraffic costs are multiply reduced, particularly the variablecosts. On the other hand the environmental pollution from exhaustgases is also reduced. Therefore, by the year 2010 cargotransport should be preponderant~v used which would be characterisedby fast electric trains producing less noise, at lowercosts and with clean environment.

  16. Cotton Transportation and Logistics: A Dynamic System

    OpenAIRE

    Robinson, John R.; Park, John L.; Fuller, Stephen

    2007-01-01

    The paper reviews the evolution of U.S. cotton transportation and logistics patterns over the last three decades. There have been many forces of change over this time period, with the largest change being a shift from primarily domestic market destinations to the international market. We describe the pre-1999 system and flow patterns when domestic consumption of U.S. cotton was dominant. We contrast this with current flow patterns as measured by available secondary export data and a sample of...

  17. Optimized trajectory planning for Cybernetic Transportation Systems

    OpenAIRE

    Garrido, Fernando; Gonzalez Bautista, David; Milanés, Vicente; Pérez, Joshué; Nashashibi, Fawzi

    2016-01-01

    International audience; This paper describes the development of an optimized path planning algorithm for automated vehicles in urban environments. This path planning is developed on the basis of urban environments, where Cybernetic Transportation Systems (CTS) will operate. Our approach is mainly affected by vehicle's kinematics and physical road constraints. Based on this assumptions, computational time for path planning can be significantly reduced by creating an off-line database that alre...

  18. Development of cask and transportation system

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Do, Jae Bum; Lee, Heung Young

    1990-03-01

    Transportation of spent fuels to the AFR interim storage facility and disposal repository are necessary in Korea. Therefore, an emphasis has been concentrated to develop the design and fabrication technology of commercial casks. A conceptual design of the temperature and deformation measuring systems in the cask, which will be used for mock-up tests has been performed. Preliminary design data of the cask for 7 spent PWR fuels have been obtained in the course of study. (author)

  19. Assateague Island National Seashore alternative transportation systems planning study and business plan for alternative transportation

    Science.gov (United States)

    2012-08-31

    The purpose of this study was to (1) study the potential expansion of existing alternative transportation systems (bicycle facilities) and development of new alternative transportation systems in and around the Maryland District of Assateague Island ...

  20. Cargo transportation by airships: A systems study

    Science.gov (United States)

    Huang, C. J.; Dalton, C.

    1976-01-01

    A systems engineering study of a lighter than air airship transportation system was conducted. The feasibility of the use of airships in hauling cargo was demonstrated. Social, legal, environmental and political factors were considered as well as the technical factors necessary to design an effective airship transportation system. In order to accomplish an effective airship transportation program two phases of implementation were recommended. Phase I would involve a fleet of rigid airships of 3.5 million cubic feet displacement capable of carrying 25 tons of cargo internal to the helium-filled gas bag. The Phase I fleet would demonstrate the economic and technical feasibility of modern-day airships while providing a training capability for the construction and operation of larger airships. The Phase II portion would be a fleet of rigid airships of 12 million cubic feet displacement capable of carrying a cargo of 100 tons a distance of 2,000 miles at a cruising speed of 60 mph. An economic analysis is given for a variety of missions for both Phase I and Phase II airships.

  1. Evaluation of alternative public transportation systems in Izmit urban transportation via axiomatic design method

    Directory of Open Access Journals (Sweden)

    Gülşen AKMAN

    2016-02-01

    Full Text Available In the world and in our country, most of urban transportation is performed by public transportation. Public transportation is a system which provides transportation easiness and opportunity to people, not to vehicles. Therefore, giving priority to public transportation system is necessary in organizing urban transportation. In this study, in order to reduce traffic intensity and to facilitate passenger transportation in Izmit urban transportation, It is tried to determine appropriate public transportation system. For this, firstly, alternatives which could be used for public transportation were determined. These alternatives are metro, metrobus, tram, light rail system and monorail. Afterwards, the variables affecting decision making about public transportation were determined. These variables are cost, transportation line features, vehicle characteristics, sensitivity to environment and customer satisfaction. Lastly, most appropriate public transportation system is proposed by using the axiomatic design method. As a result, light trail system and metrobus are determined as the most appropriate alternatives for Izmit public transportation system.Keywords: Urban transportation, Multi criteria decision making, Axiomatic design

  2. Land transportation model for supply chain manufacturing industries

    Science.gov (United States)

    Kurniawan, Fajar

    2017-12-01

    Supply chain is a system that integrates production, inventory, distribution and information processes for increasing productivity and minimize costs. Transportation is an important part of the supply chain system, especially for supporting the material distribution process, work in process products and final products. In fact, Jakarta as the distribution center of manufacturing industries for the industrial area. Transportation system has a large influences on the implementation of supply chain process efficiency. The main problem faced in Jakarta is traffic jam that will affect on the time of distribution. Based on the system dynamic model, there are several scenarios that can provide solutions to minimize timing of distribution that will effect on the cost such as the construction of ports approaching industrial areas other than Tanjung Priok, widening road facilities, development of railways system, and the development of distribution center.

  3. Review of modeling and control during transport airdrop process

    Directory of Open Access Journals (Sweden)

    Bin Xu

    2016-12-01

    Full Text Available This article presents the review of modeling and control during the airdrop process of transport aircraft. According to the airdrop height, technology can be classified into high and low altitude airdrop and in this article, the research is reviewed based on the two scenarios. While high altitude airdrop is mainly focusing on the precise landing control of cargo, the low altitude flight airdrop is on the control of transport aircraft dynamics to ensure flight safety. The history of high precision airdrop system is introduced first, and then the modeling and control problem of the ultra low altitude airdrop in transport aircraft is presented. Finally, the potential problems and future direction of low altitude airdrop are discussed.

  4. Modeling VOC transport in simulated waste drums

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1993-06-01

    A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the VOC permeability had been measured. Permeabilities for five VOCs [methylene chloride, 1,1,2-trichloro-1,2,2-trifluoroethane (Freon-113), 1,1,1-trichloroethane, carbon tetrachloride, and trichloroethylene] were measured across a polyethylene bag. Comparison of model and experimental results of VOC concentration as a function of time indicate that model accurately accounts for significant VOC transport mechanisms in a lab-scale waste drum

  5. The Place of Railway Transport in Romania’s Transport System

    OpenAIRE

    Dãneci-Pãtrãu Daniel; Coca Carmen Elena

    2012-01-01

    The transport activity in all its forms represents one of the most complex sections of an economy, but also an important factor of influence over the quality of life, that is why current preoccupations of international organisms are oriented towards measures meant to develop performing transport systems and compatible with the environment. In the article the main activities and resources of Romania’s railway transport system are presented , the place of the railway transport in the transport ...

  6. Modeling of radon transport in unsaturated soil

    International Nuclear Information System (INIS)

    Chen, C.; Thomas, D.M.; Green, R.

    1995-01-01

    This study applies a recently developed model, LEACHV, to simulate transport of radon through unsaturated soil and compares calculated soil radon activities against field-measured values. For volatile and gas phase transport, LEACHV is modified from LEACHP, a pesticide version of LEACHM, as well-documented one-dimensional model for water and chemical movement through unsaturated soil. LEACHV adds consideration of air temperature changes and air flow driven by barometric pressure change to the other soil variables currently used in LEACHP. It applies diurnal barometric pressure and air temperature changes to reflect more accurately the typical field conditions, Sensitivity analysis and simulated results have clearly demonstrated the relative importance of barometric pressure change, rainfall events, changes in water content, gas advection, and radon source term in radon transport process. Comparisons among simulated results illustrated that the importance of barometric pressure change and its pumping phenomenon produces both fluctuation in soil gas radon activities and an elevation of the long-term average radon activity in shallow soils of an equal magnitude to the disturbed source parameter. Comparisons between measured and simulated soil radon activities showed that LEACHV can provide realistic estimates of radon activity concentration in the soil profile. 41 refs., 10 figs., 2 tabs

  7. Documentation and verification of VST2D; a model for simulating transient, Variably Saturated, coupled water-heat-solute Transport in heterogeneous, anisotropic 2-Dimensional, ground-water systems with variable fluid density

    Science.gov (United States)

    Friedel, Michael J.

    2001-01-01

    This report describes a model for simulating transient, Variably Saturated, coupled water-heatsolute Transport in heterogeneous, anisotropic, 2-Dimensional, ground-water systems with variable fluid density (VST2D). VST2D was developed to help understand the effects of natural and anthropogenic factors on quantity and quality of variably saturated ground-water systems. The model solves simultaneously for one or more dependent variables (pressure, temperature, and concentration) at nodes in a horizontal or vertical mesh using a quasi-linearized general minimum residual method. This approach enhances computational speed beyond the speed of a sequential approach. Heterogeneous and anisotropic conditions are implemented locally using individual element property descriptions. This implementation allows local principal directions to differ among elements and from the global solution domain coordinates. Boundary conditions can include time-varying pressure head (or moisture content), heat, and/or concentration; fluxes distributed along domain boundaries and/or at internal node points; and/or convective moisture, heat, and solute fluxes along the domain boundaries; and/or unit hydraulic gradient along domain boundaries. Other model features include temperature and concentration dependent density (liquid and vapor) and viscosity, sorption and/or decay of a solute, and capability to determine moisture content beyond residual to zero. These features are described in the documentation together with development of the governing equations, application of the finite-element formulation (using the Galerkin approach), solution procedure, mass and energy balance considerations, input requirements, and output options. The VST2D model was verified, and results included solutions for problems of water transport under isohaline and isothermal conditions, heat transport under isobaric and isohaline conditions, solute transport under isobaric and isothermal conditions, and coupled water

  8. Modeling tracer transport in randomly heterogeneous porous media by nonlocal moment equations: Anomalous transport

    Science.gov (United States)

    Morales-Casique, E.; Lezama-Campos, J. L.; Guadagnini, A.; Neuman, S. P.

    2013-05-01

    Modeling tracer transport in geologic porous media suffers from the corrupt characterization of the spatial distribution of hydrogeologic properties of the system and the incomplete knowledge of processes governing transport at multiple scales. Representations of transport dynamics based on a Fickian model of the kind considered in the advection-dispersion equation (ADE) fail to capture (a) the temporal variation associated with the rate of spreading of a tracer, and (b) the distribution of early and late arrival times which are often observed in field and/or laboratory scenarios and are considered as the signature of anomalous transport. Elsewhere we have presented exact stochastic moment equations to model tracer transport in randomly heterogeneous aquifers. We have also developed a closure scheme which enables one to provide numerical solutions of such moment equations at different orders of approximations. The resulting (ensemble) average and variance of concentration fields were found to display a good agreement against Monte Carlo - based simulation results for mildly heterogeneous (or well-conditioned strongly heterogeneous) media. Here we explore the ability of the moment equations approach to describe the distribution of early arrival times and late time tailing effects which can be observed in Monte-Carlo based breakthrough curves (BTCs) of the (ensemble) mean concentration. We show that BTCs of mean resident concentration calculated at a fixed space location through higher-order approximations of moment equations display long tailing features of the kind which is typically associated with anomalous transport behavior and are not represented by an ADE model with constant dispersive parameter, such as the zero-order approximation.

  9. Development of cask and transportation system

    International Nuclear Information System (INIS)

    Ro, Seong Gy; Kang, Hee Dong; Lee, Heung Young; Seo, Ki Suk; Koo, Jung Hoe; Jung, Sung Hwan; Yoon, Jung Hyun; Lee, Ju Chan; Bang, Kyung Sik; Baek, Chang Yeol

    1992-03-01

    The major goal of this project is to establish the safe transport system and obtain the necessary data for cask development by during research work for the design and safety test of shipping cask. The analysis technique using computer code for design has been studied in the field of structure, thermal and shielding analysis in this study. And also the test and measurement technology was developed for the measuring system of drop and fire test. It is expected that research activity ensured in this job will enable us to ultilize the basic data for the cask development. (Author)

  10. Continuous improvement of the BNFL transport integrated management system

    International Nuclear Information System (INIS)

    Hale, J.A.

    1998-01-01

    The integrated Management System of BNFL Transport and Pacific Nuclear Transport Limited (PNTL) is subject to continuous improvement by the application of established improvement techniques adopted by BNFL. The technique currently being used is the application of a Total Quality Management (TQM) philosophy, involving the identification of key processes, benchmarking against existing measures, initiating various improvement projects and applying process changes within the Company. The measurement technique being used is based upon the European Foundation for Quality Management Model (EFQM). A major initiative was started in 1996 to include the requirements of the Environmental Management Systems standard ISO 14001 within the existing integrated management system. This resulted in additional activities added to the system, modification to some existing activities and additional training for personnel. The system was audited by a third party certification organisation, Lloyds Register Quality Assurance (LRQA), during 1997. This paper describes the arrangements to review and update the integrated management system of BNFL Transport and PNTL to include the requirements of the environmental standard ISO 14001 and it also discusses the continuous improvement process adopted by BNFL Transport. (authors)

  11. Miniature Heat Transport System for Nanosatellite Technology

    Science.gov (United States)

    Douglas, Donya M,

    1999-01-01

    The scientific understanding of key physical processes between the Sun and the Earth require simultaneous measurements from many vantage points in space. Nano-satellite technologies will enable a class of constellation missions for the NASA Space Science Sun-Earth Connections. This recent emphasis on the implementation of smaller satellites leads to a requirement for development of smaller subsystems in several areas. Key technologies under development include: advanced miniaturized chemical propulsion; miniaturized sensors; highly integrated, compact electronics; autonomous onboard and ground operations; miniatures low power tracking techniques for orbit determination; onboard RF communications capable of transmitting data to the ground from far distances; lightweight efficient solar array panels; lightweight, high output battery cells; lightweight yet strong composite materials for the nano-spacecraft and deployer-ship structures. These newer smaller systems may have higher power densities and higher thermal transport requirements than seen on previous small satellites. Furthermore, the small satellites may also have a requirement to maintain thermal control through extended earth shadows, possibly up to 8 hours long. Older thermal control technology, such as heaters, thermostats, and heat pipes, may not be sufficient to meet the requirements of these new systems. Conversely, a miniature two-phase heat transport system (Mini-HTS) such as a Capillary Pumped Loop (CPL) or Loop Heat Pipe (LBP) is a viable alternative. A Mini-HTS can provide fine temperature control, thermal diode action, and a highly efficient means of heat transfer. The Mini-HTS would have power capabilities in the range of tens of watts or less and provide thermal control over typical spacecraft ranges. The Mini-HTS would allow the internal portion of the spacecraft to be thermally isolated from the external radiator, thus protecting the internal components from extreme cold temperatures during an

  12. A ballistic transport model for electronic excitation following particle impact

    Science.gov (United States)

    Hanke, S.; Heuser, C.; Weidtmann, B.; Wucher, A.

    2018-01-01

    We present a ballistic model for the transport of electronic excitation energy induced by keV particle bombardment onto a solid surface. Starting from a free electron gas model, the Boltzmann transport equation (BTE) is employed to follow the evolution of the temporal and spatial distribution function f (r → , k → , t) describing the occupation probability of an electronic state k → at position r → and time t. Three different initializations of the distribution function are considered: i) a thermal distribution function with a locally and temporally elevated electron temperature, ii) a peak excitation at a specific energy above the Fermi level with a quasi-isotropic distribution in k-space and iii) an anisotropic peak excitation with k-vectors oriented in a specific transport direction. While the first initialization resembles a distribution function which may, for instance, result from electronic friction of moving atoms within an ion induced collision cascade, the peak excitation can in principle result from an autoionization process after excitation in close binary collisions. By numerically solving the BTE, we study the electronic energy exchange along a one dimensional transport direction to obtain a time and space resolved excitation energy distribution function, which is then analyzed in view of general transport characteristics of the chosen model system.

  13. A state-of-the-art review of transportation systems evaluation techniques relevant to air transportation, volume 1. [urban planning and urban transportation using decision theory

    Science.gov (United States)

    Haefner, L. E.

    1975-01-01

    Mathematical and philosophical approaches are presented for evaluation and implementation of ground and air transportation systems. Basic decision processes are examined that are used for cost analyses and planning (i.e, statistical decision theory, linear and dynamic programming, optimization, game theory). The effects on the environment and the community that a transportation system may have are discussed and modelled. Algorithmic structures are examined and selected bibliographic annotations are included. Transportation dynamic models were developed. Citizen participation in transportation projects (i.e, in Maryland and Massachusetts) is discussed. The relevance of the modelling and evaluation approaches to air transportation (i.e, airport planning) is examined in a case study in St. Louis, Missouri.

  14. FFTF Heat Transport System (HTS) component and system design

    International Nuclear Information System (INIS)

    Young, M.W.; Edwards, P.A.

    1980-01-01

    The FFTF Heat Transport Systems and Components designs have been completed and successfully tested at isothermal conditions up to 427 0 C (800 0 F). General performance has been as predicted in the design analyses. Operational flexibility and reliability have been outstanding throughout the test program. The components and systems have been demonstrated ready to support reactor powered operation testing planned later in 1980

  15. Holonic Models for Traffic Control Systems

    Science.gov (United States)

    Ciufudean, Calin; Filote, Constantin

    This paper proposes a new time-placed net model for traffic control systems, respectively railway control traffic systems. This model can be interpreted as a holonic one, and contains three modules: Transport Planning Module, Transport Control Module and Priority Control Module. For railway traffic systems we introduce a strategy in a timed-place Petri net model to solve collision and traffic jam problems.

  16. 3 Lectures: "Lagrangian Models", "Numerical Transport Schemes", and "Chemical and Transport Models"

    Science.gov (United States)

    Douglass, A.

    2005-01-01

    The topics for the three lectures for the Canadian Summer School are Lagrangian Models, numerical transport schemes, and chemical and transport models. In the first lecture I will explain the basic components of the Lagrangian model (a trajectory code and a photochemical code), the difficulties in using such a model (initialization) and show some applications in interpretation of aircraft and satellite data. If time permits I will show some results concerning inverse modeling which is being used to evaluate sources of tropospheric pollutants. In the second lecture I will discuss one of the core components of any grid point model, the numerical transport scheme. I will explain the basics of shock capturing schemes, and performance criteria. I will include an example of the importance of horizontal resolution to polar processes. We have learned from NASA's global modeling initiative that horizontal resolution matters for predictions of the future evolution of the ozone hole. The numerical scheme will be evaluated using performance metrics based on satellite observations of long-lived tracers. The final lecture will discuss the evolution of chemical transport models over the last decade. Some of the problems with assimilated winds will be demonstrated, using satellite data to evaluate the simulations.

  17. Transport in low-dimensional mesoscopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Syzranov, Sergey

    2011-05-05

    The work is devoted to the physics of graphene-based optoelectronics and arrays of Josephson junctions. The first part deals with transport in a graphene p-n junction irradiated by an electromagnetic field. The photocurrent in such device is calculated analytically and compared to those observed in the recent experiments on graphene photodetectors. It is shown that in a clean effectively one-dimensional junction the photocurrent oscillates as a function of gate voltages due to the interference between electron paths accompanied by the resonant photon absorption. The second part of the thesis is devoted to the construction of a Drude-like theory for the transport of Cooper pairs in weakly disordered Josephson networks and to finding the conductivity and the characteristic temperature of the commencement of strong localization. Also, it is shown that the low-temperature superconductor-insulator transition is necessarily of the first order in all 3D and in most 2D systems.

  18. Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport.

    Science.gov (United States)

    Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2017-05-15

    The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4min over ∼3h in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. Copyright © 2017. Published by Elsevier Inc.

  19. Tomorrow's Transportation Market : Developing an Innovative, Seamless Transportation System

    Science.gov (United States)

    2013-04-17

    With the cost of congestion in the United States estimated to be in the order of $121 billion, transportation planners are under increasing pressure to improve conditions and meet projected demand increases. Harnessing emerging technologies to develo...

  20. Transport and Dynamics in Toroidal Fusion Systems

    International Nuclear Information System (INIS)

    Sovinec, Carl

    2016-01-01

    The study entitled, 'Transport and Dynamics in Toroidal Fusion Systems,' (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the 'sawtooth' collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to 'monster' or 'giant' sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposed electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two

  1. Transport and Dynamics in Toroidal Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sovinec, Carl [Univ. of Wisconsin, Madison, WI (United States)

    2016-09-07

    The study entitled, "Transport and Dynamics in Toroidal Fusion Systems," (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the "sawtooth" collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to "monster" or "giant" sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposed electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two-fluid effects on interchange dynamics, where

  2. Intelligent transportation systems national investment and market analysis : executive summary

    Science.gov (United States)

    1997-05-01

    The United States transportation system is unparalleled. Yet, today, the system is straining to meet the growing demand for transportation. Planners are faced with increasing congestion, limited funds, equally limited rights-of-way, and concern fo...

  3. The Bureau of Land Management alternative transportation systems inventory report.

    Science.gov (United States)

    2010-05-21

    The U.S. Department of the Interior (DOI) engaged the Volpe National Transportation Systems Center (Volpe Center) to complete an inventory of Alternative Transportation Systems (ATS) for the Bureau of Land Management (BLM). The purpose of the ATS inv...

  4. A quasilinear model for solute transport under unsaturated flow

    International Nuclear Information System (INIS)

    Houseworth, J.E.; Leem, J.

    2009-01-01

    We developed an analytical solution for solute transport under steady-state, two-dimensional, unsaturated flow and transport conditions for the investigation of high-level radioactive waste disposal. The two-dimensional, unsaturated flow problem is treated using the quasilinear flow method for a system with homogeneous material properties. Dispersion is modeled as isotropic and is proportional to the effective hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The solutions for both flow and transport scalar potentials take the form of Fourier series. The particular solution given here is for two sources of flow, with one source containing a dissolved solute. The solution method may easily be extended, however, for any combination of flow and solute sources under steady-state conditions. The analytical results for multidimensional solute transport problems, which previously could only be solved numerically, also offer an additional way to benchmark numerical solutions. An analytical solution for two-dimensional, steady-state solute transport under unsaturated flow conditions is presented. A specific case with two sources is solved but may be generalized to any combination of sources. The analytical results complement numerical solutions, which were previously required to solve this class of problems.

  5. Modeling in transport phenomena a conceptual approach

    CERN Document Server

    Tosun, Ismail

    2007-01-01

    Modeling in Transport Phenomena, Second Edition presents and clearly explains with example problems the basic concepts and their applications to fluid flow, heat transfer, mass transfer, chemical reaction engineering and thermodynamics. A balanced approach is presented between analysis and synthesis, students will understand how to use the solution in engineering analysis. Systematic derivations of the equations and the physical significance of each term are given in detail, for students to easily understand and follow up the material. There is a strong incentive in science and engineering to

  6. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1985-01-01

    This contract stipulated separate pieces of work to consider mass transport in the far-field of a repository, and more detailed geochemical modelling of the groundwater in the near-field. It was envisaged that the far-field problem would be tackled by numerical solutions to the classical advection-diffusion equation obtained by the finite element method. For the near-field problem the feasibility of coupling existing geochemical equilibrium codes to the three dimensional groundwater flow codes was to be investigated. This report is divided into two sections with one part devoted to each aspect of this contract. (author)

  7. A disaggregate freight transport model of transport chain and shipment size choice

    NARCIS (Netherlands)

    Windisch, E.; De Jong, G.C.; Van Nes, R.; Hoogendoorn, S.P.

    2010-01-01

    The field of freight transport modelling is relatively young compared to passenger transport modelling. However, some key issues in freight policy, like growing freight shares on the road, advanced logistics concepts or emerging strict freight transport regulations, have been creating increasing

  8. Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York

    International Nuclear Information System (INIS)

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

    1982-12-01

    SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides ( 137 Cs, 90 Sr, 239 240 Pu, and 3 H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay

  9. How uncertainty in socio-economic variables affects large-scale transport model forecasts

    DEFF Research Database (Denmark)

    Manzo, Stefano; Nielsen, Otto Anker; Prato, Carlo Giacomo

    2015-01-01

    time, especially with respect to large-scale transport models. The study described in this paper contributes to fill the gap by investigating the effects of uncertainty in socio-economic variables growth rate projections on large-scale transport model forecasts, using the Danish National Transport......A strategic task assigned to large-scale transport models is to forecast the demand for transport over long periods of time to assess transport projects. However, by modelling complex systems transport models have an inherent uncertainty which increases over time. As a consequence, the longer...... the period forecasted the less reliable is the forecasted model output. Describing uncertainty propagation patterns over time is therefore important in order to provide complete information to the decision makers. Among the existing literature only few studies analyze uncertainty propagation patterns over...

  10. Application of a LUTI model for the assessment of land use plans and public transport investments

    NARCIS (Netherlands)

    de Bok, Michiel; Geurs, Karst Teunis; Zondag, Barry; Viegas, J.M.; Macario, R.

    2010-01-01

    Integrated land-use and transport interaction models (LUTI) are praised for their ability to evaluate land-use and transport planning in an integrated and consistent modeling system. However, applications of empirically estimated land use models are rare. This paper will present the application of

  11. Transport of Pathogen Surrogates in Soil Treatment Units: Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Morales

    2014-04-01

    Full Text Available Segmented mesocosms (n = 3 packed with sand, sandy loam or clay loam soil were used to determine the effect of soil texture and depth on transport of two septic tank effluent (STE-borne microbial pathogen surrogates—green fluorescent protein-labeled E. coli (GFPE and MS-2 coliphage—in soil treatment units. HYDRUS 2D/3D software was used to model the transport of these microbes from the infiltrative surface. Mesocosms were spiked with GFPE and MS-2 coliphage at 105 cfu/mL STE and 105–106 pfu/mL STE, respectively. In all soils, removal rates were >99.99% at 25 cm. The transport simulation compared (1 optimization; and (2 trial-and-error modeling approaches. Only slight differences between the transport parameters were observed between these approaches. Treating both the die-off rates and attachment/detachment rates as variables resulted in an overall better model fit, particularly for the tailing phase of the experiments. Independent of the fitting procedure, attachment rates computed by the model were higher in sandy and sandy loam soils than clay, which was attributed to unsaturated flow conditions at lower water content in the coarser-textured soils. Early breakthrough of the bacteria and virus indicated the presence of preferential flow in the system in the structured clay loam soil, resulting in faster movement of water and microbes through the soil relative to a conservative tracer (bromide.

  12. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    International Nuclear Information System (INIS)

    Karvonen, T.

    2013-11-01

    shafts and 10 l/min from intersection of HZ20-zones and central tunnel leading to eastern panel 9. Decrease in pressure heads near ONKALO caused by HZ19 and HZ20 systems, zone HZ056 and some local zones were compared against corresponding measured values. Measured and computed drawdowns in HZ19 and HZ20 zones were in good agreement with each other. Long-term pumping experiment in OL-KR06 started during 2001. The modelling results indicated that the contribution of sea water from total pumping rate from OL-KR06 was around 1 %. The model results also showed salinity upconing in zones HZ21 and HZ21B. The code verification of the salt transport model was carried out by comparing the SHYD results with the FEFTRA results for three different test cases. Computed SHYD results agreed quite well with the FEFTRA simulations in the Elder's and Henry's cases and provided slightly smaller salt water upconing in the pumping case compared to FEFTRA probably due to coarser grid resolution around the pumping well. (orig.)

  13. Intermodal transport as an integral part of logistics system

    Directory of Open Access Journals (Sweden)

    Agnieszka Bitkowska

    2016-06-01

    Full Text Available The experience of companies that are successful in the carriage of goods prove that intermodal transport is now a major factor in determining the success of logistics system. A modern approach to the transport is based on intermodal transport. The article is based on the method of external observation. It presents the essence of intermodal transport and its benefits. It specifies transportation as an integral part of logistics system.

  14. Selected legal and regulatory concerns affecting domestic energy transportation systems

    International Nuclear Information System (INIS)

    Schuller, C.R.

    1979-07-01

    This report provides assessments of eight legal and regulatory concerns that may affect energy material transportation in the US during the rest of the century: state authority to regulate nuclear materials transport, divestiture of petroleum pipelines from major integrated oil companies, problems affecting the natural gas transportation system, capabilities of energy transportation systems during emergencies, Federal coal pipeline legislation, ability of Federal agencies to anticipate railroad difficulties, abandonment of uneconomic railroad lines, and impact of the Panama Canal treaty upon US energy transportation

  15. Conceptual and Numerical Models for UZ Flow and Transport

    International Nuclear Information System (INIS)

    Liu, H.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models

  16. IMPROVEMENT OF THE «CARRIAGE-CARGO» SYSTEM MOTION MATHEMATICAL MODEL FOR SOLVING THE PROBLEM OF LIFTING AND TRANSPORT MACHINES CONTROL

    Directory of Open Access Journals (Sweden)

    О. Hryhorov

    2017-06-01

    Full Text Available The article deals with the study of a mathematical model that describes the cable crane «carriage-cargo» system motion, taking into account the carriage movement resistance, the wind strength and the friction forces. The obtained system equations can be used to build the controllability function for the «carriage-cargo» system and determine the cable crane control by minimizing the operation cycle time by cargo oscillation damping.

  17. Conceptual design of a Mars transportation system

    Science.gov (United States)

    1992-08-01

    In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.

  18. Operating systems in the air transportation environment.

    Science.gov (United States)

    Cherry, G. W.

    1971-01-01

    Consideration of the problems facing air transport at present, and to be expected in the future. In the Northeast Corridor these problems involve community acceptance, airway and airport congestion and delays, passenger acceptance, noise reduction, and improvements in low-density short-haul economics. In the development of a superior short-haul operating system, terminal-configured vs cruise-configured vehicles are evaluated. CTOL, STOL, and VTOL aircraft of various types are discussed. In the field of noise abatement, it is shown that flight procedural techniques are capable of supplementing ?quiet engine' technology.

  19. The transport performance evaluation system building of logistics enterprises

    Directory of Open Access Journals (Sweden)

    Xueli Wang

    2013-09-01

    Full Text Available Purpose: modern logistics has a significant role in today’s society, logistics cost accounts for 35% to 50% of total logistics costs, so it’s great significance to improve the transport performance of logistics enterprises. Design/methodology/approach: the authors select the transportation performance evaluation index of logistics enterprise, with the aid of the fuzzy theory and analytic hierarchy process (AHP, adopt the combining method of quantitative and qualitative analysis, construct the transport performance evaluation system of logistics enterprises. Findings: the choice of transport performance evaluation indicator system for Logistics enterprise is in a state of "high", which indicates the indicator selection is reasonable. Research limitations/implications: the selected indicators with experts’ subjective factors can not accurately quantify. Practical implications: it has important practical significance to promote the development of modern logistics enterprises and save social cost. Originality/value: current research methods mainly include the PDCA cycle model, key performance indicators (KPI and benchmarking method, principal component analysis method, etc. The authors for the first time with the aid of fuzzy theory and analytic hierarchy process (AHP, adopt the combining method of quantitative and qualitative research on transport performance problems.

  20. A Lagrangian mixing frequency model for transported PDF modeling

    Science.gov (United States)

    Turkeri, Hasret; Zhao, Xinyu

    2017-11-01

    In this study, a Lagrangian mixing frequency model is proposed for molecular mixing models within the framework of transported probability density function (PDF) methods. The model is based on the dissipations of mixture fraction and progress variables obtained from Lagrangian particles in PDF methods. The new model is proposed as a remedy to the difficulty in choosing the optimal model constant parameters when using conventional mixing frequency models. The model is implemented in combination with the Interaction by exchange with the mean (IEM) mixing model. The performance of the new model is examined by performing simulations of Sandia Flame D and the turbulent premixed flame from the Cambridge stratified flame series. The simulations are performed using the pdfFOAM solver which is a LES/PDF solver developed entirely in OpenFOAM. A 16-species reduced mechanism is used to represent methane/air combustion, and in situ adaptive tabulation is employed to accelerate the finite-rate chemistry calculations. The results are compared with experimental measurements as well as with the results obtained using conventional mixing frequency models. Dynamic mixing frequencies are predicted using the new model without solving additional transport equations, and good agreement with experimental data is observed.

  1. CFD modelling of insulation debris transport phenomena in water flow

    Energy Technology Data Exchange (ETDEWEB)

    Krepper, Eeckhard; Cartland-Glover, Gregory; Grahn, Alexander [Forschungszentrum Rossendorf e.V., Dresden (Germany). Inst. fuer Sicherheitsforschung

    2009-11-15

    The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during all types of loss of coolant accidents. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Goerlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Goerlitz, the theoretical modelling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modelling are described and feasibility studies are presented. (orig.)

  2. Simplified analytical model for radionuclide transport simulation in the geosphere

    International Nuclear Information System (INIS)

    Hiromoto, G.

    1996-01-01

    In order to evaluate postclosure off-site doses from a low-level radioactive waste disposal facilities, an integrated safety assessment methodology has being developed at Instituto de Pesquisas Energeticas e Nucleares. The source-term modelling approach adopted in this system is described and the results obtained in the IAEA NSARS 'The Safety Assessment of Near-Surface Radioactive Waste Disposal Facilities' programme for model intercomparison studies are presented. The radionuclides released from the waste are calculated using a simple first order kinetics model, and the transport, through porous media below the waste is determined by using an analytical solution of the mass transport equation. The methodology and the results obtained in this work are compared with those reported by others participants of the NSARS programme. (author). 4 refs., 4 figs

  3. Third-order TRANSPORT: A computer program for designing charged particle beam transport systems

    International Nuclear Information System (INIS)

    Carey, D.C.; Brown, K.L.; Rothacker, F.

    1995-05-01

    TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. This report discusses the following topics on TRANSPORT: Mathematical formulation of TRANSPORT; input format for TRANSPORT; summaries of TRANSPORT elements; preliminary specifications; description of the beam; physical elements; other transformations; assembling beam lines; operations; variation of parameters for fitting; and available constraints -- the FIT command

  4. Third-order TRANSPORT: A computer program for designing charged particle beam transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Carey, D.C. [Fermi National Accelerator Lab., Batavia, IL (United States); Brown, K.L.; Rothacker, F. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1995-05-01

    TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. This report discusses the following topics on TRANSPORT: Mathematical formulation of TRANSPORT; input format for TRANSPORT; summaries of TRANSPORT elements; preliminary specifications; description of the beam; physical elements; other transformations; assembling beam lines; operations; variation of parameters for fitting; and available constraints -- the FIT command.

  5. Documentation of TRU biological transport model (BIOTRAN)

    International Nuclear Information System (INIS)

    Gallegos, A.F.; Garcia, B.J.; Sutton, C.M.

    1980-01-01

    Inclusive of Appendices, this document describes the purpose, rationale, construction, and operation of a biological transport model (BIOTRAN). This model is used to predict the flow of transuranic elements (TRU) through specified plant and animal environments using biomass as a vector. The appendices are: (A) Flows of moisture, biomass, and TRU; (B) Intermediate variables affecting flows; (C) Mnemonic equivalents (code) for variables; (D) Variable library (code); (E) BIOTRAN code (Fortran); (F) Plants simulated; (G) BIOTRAN code documentation; (H) Operating instructions for BIOTRAN code. The main text is presented with a specific format which uses a minimum of space, yet is adequate for tracking most relationships from their first appearance to their formulation in the code. Because relationships are treated individually in this manner, and rely heavily on Appendix material for understanding, it is advised that the reader familiarize himself with these materials before proceeding with the main text

  6. Documentation of TRU biological transport model (BIOTRAN)

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.F.; Garcia, B.J.; Sutton, C.M.

    1980-01-01

    Inclusive of Appendices, this document describes the purpose, rationale, construction, and operation of a biological transport model (BIOTRAN). This model is used to predict the flow of transuranic elements (TRU) through specified plant and animal environments using biomass as a vector. The appendices are: (A) Flows of moisture, biomass, and TRU; (B) Intermediate variables affecting flows; (C) Mnemonic equivalents (code) for variables; (D) Variable library (code); (E) BIOTRAN code (Fortran); (F) Plants simulated; (G) BIOTRAN code documentation; (H) Operating instructions for BIOTRAN code. The main text is presented with a specific format which uses a minimum of space, yet is adequate for tracking most relationships from their first appearance to their formulation in the code. Because relationships are treated individually in this manner, and rely heavily on Appendix material for understanding, it is advised that the reader familiarize himself with these materials before proceeding with the main text.

  7. Car sharing demand estimation and urban transport demand modelling using stated preference techniques

    OpenAIRE

    Catalano, Mario; Lo Casto, Barbara; Migliore, Marco

    2008-01-01

    The research deals with the use of the stated preference technique (SP) and transport demand modelling to analyse travel mode choice behaviour for commuting urban trips in Palermo, Italy. The principal aim of the study was the calibration of a demand model to forecast the modal split of the urban transport demand, allowing for the possibility of using innovative transport systems like car sharing and car pooling. In order to estimate the demand model parameters, a specific survey was carried ...

  8. Modeling of Species Transport and Macrosegregation in Heavy Steel Ingots

    Science.gov (United States)

    Li, Wensheng; Shen, Houfa; Zhang, Xiong; Liu, Baicheng

    2014-04-01

    In the current study, two significant phenomena involved in heavy steel ingot casting, i.e., species transport and macrosegregation, were numerically simulated. First, a ladle-tundish-mold species transport model describing the entire multiple pouring process of heavy steel ingots was proposed. Carbon distribution and variation in both the tundish and the mold of a 292-ton steel ingot were predicted. Results indicate high carbon concentration in the bottom of the mold while low concentration carbon at the top of mold after the pouring process. Such concentration distribution helps in reducing both negative segregation in the bottom of the solidified ingot and positive segregation at the top. Second, a two-phase multiscale macrosegregation model was used to simulate the solidification process of industrial steel ingots. This model takes into account heat transfer, fluid flow, solute transport, and equiaxed grain motion on a system scale, as well as grain nucleation and growth on a microscopic scale. The model was first used to analyze a three-dimensional industry-scale steel ingot as a benchmark. Then, it was applied to study macrosegregation formation in a 53-ton steel ingot. Macrosegregation predicted by the numerical model was presented and compared with experimental measurements. Typical macrosegregation patterns in heavy steel ingots are found to be well reproduced with the two-phase model.

  9. Parameter optimization for surface flux transport models

    Science.gov (United States)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  10. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    Science.gov (United States)

    Locatelli, R.; Bousquet, P.; Chevallier, F.; Fortems-Cheney, A.; Szopa, S.; Saunois, M.; Agusti-Panareda, A.; Bergmann, D.; Bian, H.; Cameron-Smith, P.; Chipperfield, M. P.; Gloor, E.; Houweling, S.; Kawa, S. R.; Krol, M.; Patra, P. K.; Prinn, R. G.; Rigby, M.; Saito, R.; Wilson, C.

    2013-10-01

    A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System) inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure) is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr-1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr-1 in North America to 7 Tg yr-1 in Boreal Eurasia (from 23 to 48%, respectively). At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly question the consistency of

  11. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    Directory of Open Access Journals (Sweden)

    R. Locatelli

    2013-10-01

    Full Text Available A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr−1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr−1 in North America to 7 Tg yr−1 in Boreal Eurasia (from 23 to 48%, respectively. At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly

  12. Hopping transport in hostile reaction-diffusion systems

    Science.gov (United States)

    Missel, Andrew R.; Dahmen, Karin A.

    2009-02-01

    We investigate transport in a disordered reaction-diffusion model consisting of particles which are allowed to diffuse, compete with one another (2A→A) , give birth in small areas called “oases” (A→2A) , and die in the “desert” outside the oases (A→0) . This model has previously been used to study bacterial populations in the laboratory and is related to a model of plankton populations in the oceans. We first consider the nature of transport between two oases: In the limit of high growth rate, this is effectively a first passage process, and we are able to determine the first passage time probability density function in the limit of large oasis separation. This result is then used along with the theory of hopping conduction in doped semiconductors to estimate the time taken by a population to cross a large system.

  13. Machine learning in updating predictive models of planning and scheduling transportation projects

    Science.gov (United States)

    1997-01-01

    A method combining machine learning and regression analysis to automatically and intelligently update predictive models used in the Kansas Department of Transportations (KDOTs) internal management system is presented. The predictive models used...

  14. A mathematical model for transporting the biomass to biomass based power plant

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jagtar [Mechanical Engineering Department, SLIET Longowal, District Sangrur, Punjab (India); Panesar, B.S. [Project Professional, SCS Engineers, 11260 Roger Bacon Drive, 300, Virginia 20190 (United States); Sharma, S.K. [Mechanical Engineering Department, NIT Kurukshetra, Haryana (India)

    2010-04-15

    In Punjab, million of tons of agricultural biomass are being generated every year, but it is spatially scattered. The spatial distribution of this resource and the associated costs on collection and transportation are the major bottleneck in the success of biomass energy-conversion facilities. This paper deals with the mathematical model for collection and transporting the biomass from fields to biomass based power plant. The unit transport cost was calculated by using this model. Four systems of transport were conceptualized for two transport modes (tractor with wagon and truck). Three types of agricultural biomass (loose, baled and briquetted) were considered for transport analysis. For all modes of transport, it was observed that unit cost of transport decreases with increase in distance. The transport cost was least for briquetted biomass as compared to loose and baled biomass. (author)

  15. A new turbulence-based model for sand transport

    Science.gov (United States)

    Mayaud, Jerome; Wiggs, Giles; Bailey, Richard

    2016-04-01

    saltation system that has been reported in previous studies. Whilst the inclusion of both the u and w flow components is a key conceptual element of our new model, similar to recent field studies (e.g. Schönfeldt & von Löwis, 2003; Wiggs & Weaver, 2012; Chapman et al., 2013), we find that fluctuations in w are relatively unimportant for driving saltation, because wind-driven flux is more strongly associated with a positive u component. The best predictions of total sand transport are achieved using our turbulence model at a temporal resolution of 4 s in cases of partially developed saltation, and at a resolution of 1 min in cases of well-developed saltation. The proposed approach could prove to be significant for integrating turbulent transport processes into long-term, macro-scale landscape modelling of drylands References Chapman, C., Walker, I. J., Hesp, P. A., Bauer, B. O., Davidson-Arnott, R. G. D., & Ollerhead, J. (2013). Reynolds stress and sand transport over a foredune. Earth Surface Processes and Landforms, 38(14), 1735-1747. Dong, Z., Liu, X., Wang, H. & Wang, X. (2003). Aeolian sand transport: a wind tunnel model. Sedimentary Geology, 161, 71-83. Radok, U. (1977). Snow drift. Journal of Glaciology, 19, 123-139. Schönfeldt, H. J., & von Löwis, S. (2003). Turbulence-driven saltation in the atmospheric surface layer. Meteorologische Zeitschrift, 12(5), 257-268. Wiggs, G. F. S. & Weaver, C. M. (2012). Turbulent flow structures and aeolian sediment transport over a barchan sand dune. Geophysical Research Letters, 39(5), 1-7.

  16. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1993-01-01

    This paper addresses spent fuel and high level waste transportation history and prospects, discusses accident histories of radioactive material transport, discusses emergency responder needs and provides a general description of the Transportation Intelligent Monitoring System (TRANSIMS) design. The key objectives of the monitoring system are twofold: (1) to facilitate effective emergency response to accidents involving a radioactive waste transportation package, while minimizing risk to the public and emergency first-response personnel, and (2) to allow remote monitoring of transportation vehicle and payload conditions to enable research into radioactive material transportation for normal and accident conditions. (J.P.N.)

  17. Effects of orbital forcing on atmosphere and ocean heat transports in Holocene and Eemian climate simulations with a comprehensive Earth system model

    Directory of Open Access Journals (Sweden)

    N. Fischer

    2010-03-01

    Full Text Available Orbital forcing does not only exert direct insolation effects, but also alters climate indirectly through feedback mechanisms that modify atmosphere and ocean dynamics and meridional heat and moisture transfers. We investigate the regional effects of these changes by detailed analysis of atmosphere and ocean circulation and heat transports in a coupled atmosphere-ocean-sea ice-biosphere general circulation model (ECHAM5/JSBACH/MPI-OM. We perform long term quasi equilibrium simulations under pre-industrial, mid-Holocene (6000 years before present – yBP, and Eemian (125 000 yBP orbital boundary conditions. Compared to pre-industrial climate, Eemian and Holocene temperatures show generally warmer conditions at higher and cooler conditions at lower latitudes. Changes in sea-ice cover, ocean heat transports, and atmospheric circulation patterns lead to pronounced regional heterogeneity. Over Europe, the warming is most pronounced over the north-eastern part in accordance with recent reconstructions for the Holocene. We attribute this warming to enhanced ocean circulation in the Nordic Seas and enhanced ocean-atmosphere heat flux over the Barents Shelf in conduction with retreat of sea ice and intensified winter storm tracks over northern Europe.

  18. Stochastic transport in complex systems from molecules to vehicles

    CERN Document Server

    Schadschneider, Andreas; Nishinari, Katsuhiro

    2011-01-01

    What is common between a motor protein, an ant and a vehicle? Each can be modelled as a"self-propelled particle"whose forward movement can be hindered by another in front of it. Traffic flow of such interacting driven"particles"has become an active area of interdisciplinary research involving physics, civil engineering and computer science. We present a unified pedagogical introduction to the analytical and computational methods which are currently used for studying such complex systems far from equilibrium. We also review a number of applications ranging from intra-cellular molecular motor transport in living systems to ant trails and vehicular traffic. Researchers working on complex systems, in general, and on classical stochastic transport, in particular, will find the pedagogical style, scholarly critical overview and extensive list of references extremely useful.

  19. Ecosystem element transport model for Lake Eckarfjaerden

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, L.; Bradshaw, C. [The Department of Ecology, Environment and Plant Sciences, Stockholm University (Sweden); Andersson, E.; Kautsky, U. [Swedish Nuclear Fuel and Waste Management Co. - SKB (Sweden)

    2014-07-01

    The ecosystem transport model of elements was developed for Lake Eckarfjaerden located in the Forsmark area in Sweden. Forsmark has currently a low level repository (SFR) and a repository for spent fuel is planned. A large number of data collected during site-investigation program 2002-2009 for planning the repository were available for the creation of the compartment model based on carbon circulation, physical and biological processes (e.g. primary production, consumption, respiration). The model is site-specific in the sense that the food web model is adapted to the actual food web at the site, and most estimates of biomass and metabolic rates for the organisms and meteorological data originate from site data. The functional organism groups of Lake Eckarfjaerden were considered as separate compartments: bacterio-plankton, benthic bacteria, macro-algae, phytoplankton, zooplankton, fish, benthic fauna. Two functional groups of bacteria were taken into account for the reason that they have the highest biomass of all functional groups during the winter, comprising 36% of the total biomass. Effects of ecological parameters, such as bacteria and algae biomass, on redistribution of a hypothetical radionuclide release in the lake were examined. The ecosystem model was used to estimate the environmental transfer of several elements (U, Th, Ra) and their isotopes (U-238, U-234,Th-232, Ra-226) to various aquatic organisms in the lake, using element-specific distribution coefficients for suspended particle and sediment. Results of chemical analyses of the water, sediment and biota were used for model validation. The model gives estimates of concentration factors for fish based on modelling rather on in situ measurement, which reduces the uncertainties for many radionuclides with scarce of data. Document available in abstract form only. (authors)

  20. Modelling of sediment transport at Muria peninsula coastal, Jepara

    International Nuclear Information System (INIS)

    Heni Susiati; Yarianto SBS; Wahyu Pandoe; Eko Kusratmoko; Aris Poniman

    2010-01-01

    Modelling of transport sediment modelling at Muria Peninsula have been done. In this study we had been used mathematical model that consist of hydrodynamics and sediment transport . Data input for modelling has been used tidal, monsoon wind, and river debit. Simulation result of sediment transport modelling showed that tides pattern and seasonal variations are the main causes of variations in the suspended sediment distribution in Muria Peninsula. (author)

  1. ALGE3D: A Three-Dimensional Transport Model

    Science.gov (United States)

    Maze, G. M.

    2017-12-01

    Of the top 10 most populated US cities from a 2015 US Census Bureau estimate, 7 of the cities are situated near the ocean, a bay, or on one of the Great Lakes. A contamination of the water ways in the United States could be devastating to the economy (through tourism and industries such as fishing), public health (from direct contact, or contaminated drinking water), and in some cases even infrastructure (water treatment plants). Current national response models employed by emergency response agencies have well developed models to simulate the effects of hazardous contaminants in riverine systems that are primarily driven by one-dimensional flows; however in more complex systems, such as tidal estuaries, bays, or lakes, a more complex model is needed. While many models exist, none are capable of quick deployment in emergency situations that could contain a variety of release situations including a mixture of both particulate and dissolved chemicals in a complex flow area. ALGE3D, developed at the Department of Energy's (DOE) Savannah River National Laboratory (SRNL), is a three-dimensional hydrodynamic code which solves the momentum, mass, and energy conservation equations to predict the movement and dissipation of thermal or dissolved chemical plumes discharged into cooling lakes, rivers, and estuaries. ALGE3D is capable of modeling very complex flows, including areas with tidal flows which include wetting and drying of land. Recent upgrades have increased the capabilities including the transport of particulate tracers, allowing for more complete modeling of the transport of pollutants. In addition the model is capable of coupling with a one-dimension riverine transport model or a two-dimension atmospheric deposition model in the event that a contamination event occurs upstream or upwind of the water body.

  2. Transport systems research vehicle color display system operations manual

    Science.gov (United States)

    Easley, Wesley C.; Johnson, Larry E.

    1989-01-01

    A recent upgrade of the Transport Systems Research Vehicle operated by the Advanced Transport Operating Systems Program Office at the NASA Langley Research Center has resulted in an all-glass panel in the research flight deck. Eight ARINC-D size CRT color displays make up the panel. A major goal of the display upgrade effort was ease of operation and maintenance of the hardware while maintaining versatility needed for flight research. Software is the key to this required versatility and will be the area demanding the most detailed technical design expertise. This document is is intended to serve as a single source of quick reference information needed for routine operation and system level maintenance. Detailed maintenance and modification of the display system will require specific design documentation and must be accomplished by individuals with specialized knowledge and experience.

  3. Development of Numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    Hinds, J.

    2001-01-01

    This Analysis/Model Report (AMR) describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain. Numerical grid generation is an integral part of the development of a complex, three-dimensional (3-D) model, such as the Unsaturated-Zone Flow and Transport Model (UZ Model) of Yucca Mountain. The resulting numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal loading conditions. Revision 00 of the work described herein follows the planning and work direction outlined in the ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (CRWMS M and O 1999c). The technical scope, content, and management of ICN 01 of this AMR is currently controlled by the planning document, ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001 b, Addendum B, Section 4.1). The steps involved in numerical grid development include: (1) defining the location of important calibration features, (2) determining model grid layers and fault geometry based on the Geologic Framework Model (GFM), the Integrated Site Model (ISM), and definition of hydrogeologic units (HGUs), (3) analyzing and extracting GFM and ISM data pertaining to layer contacts and property distributions, (4) discretizing and refining the two-dimensional (2-D), plan-view numerical grid, (5) generating the 3-D grid with finer resolution at the repository horizon and within the Calico Hills nonwelded (CHn) hydrogeologic unit, and (6) formulating the dual-permeability mesh. The

  4. Corporate Average Fuel Economy Compliance and Effects Modeling System Documentation

    Science.gov (United States)

    2009-04-01

    The Volpe National Transportation Systems Center (Volpe Center) of the United States Department of Transportation's Research and Innovative Technology Administration has developed a modeling system to assist the National Highway Traffic Safety Admini...

  5. Sensor system for fuel transport vehicle

    Science.gov (United States)

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  6. Road Transportable Analytical Laboratory system. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Finger, S.M.; Keith, V.F.; Spertzel, R.O.; De Avila, J.C.; O`Donnell, M.; Vann, R.L.

    1993-09-01

    This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE`s internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex.

  7. Modelling Emission of Pollutants from transportation using mobile sensing data

    DEFF Research Database (Denmark)

    Lehmann, Anders

    to use data acquired from smartphones to im- prove transportation related air quality models and models for climate gas emission from transportation. These models can be used for planning of transportation net- works, monitoring of air quality, and automate transport related green accounting. More...... accurate transportation models can be obtained by using observed travel routes, acquired from smartphone data, rather than indirectly computed routes, as input to a model of route choice in a transportation network. Smartphone data can also be used to gain detailed knowledge of the driving style...... scientific contributions of the dissertation are: • Algorithm for origin destination demand matrix creation from smartphone data. • The development of a novel map matching algorithm suitable for a database. • Using user experienced routes as a seed for a transport model. • Driving mode detection from...

  8. Ensuring sustainability of the city transportation system: problems and solutions (ICSC

    Directory of Open Access Journals (Sweden)

    Makarova Irina

    2016-01-01

    Full Text Available Ways to increase sustainability of the city transportation system and, particularly, measures to promote safe public transport and non-motorized means of transport are considered in the article. Analysis of the existing positive experience shows that complex decisions for a sustainable development of the city transportation system are necessary. Technical and organizational ways to increase the transportation system’s sustainability and safety are studied. The results of solution of separate tasks, aimed at completing the goal, are presented: defining transport preferences of the citizens of Naberezhnye Chelny, perspective model of bus route network, a model of an adaptive smart-bicycle. It is shown that the proposed solutions for strategic and operational management will help to enhance efficiency and safety of transportation system.

  9. Modeling Phosphorus Transport and Cycling in the Greater Everglades Ecosystem

    Science.gov (United States)

    James, A. I.; Grace, K. A.; Jawitz, J. W.; Muller, S.; Munoz-Carpena, R.; Flaig, E. G.

    2005-12-01

    A solute transport model was used to predict phosphorus mobility in the northern Everglades. Over the past several decades, agricultural drainage waters discharged into the northern Everglades, have been enriched in phosphorus (P) relative to the historic rainfall-driven inputs. While methods of reducing total P concentrations in the discharge water have been actively pursued through implementation of agricultural Best Management Practices (BMPs), a major parallel effort has focused on the construction of a network of constructed wetlands for P removal before these waters enter the Everglades. This study describes the development of a water quality model for P transport and cycling and its application to a large constructed wetland: Stormwater Treatment Area 1 West (STA 1W), located southeast of Lake Okeechobee on the eastern perimeter of the Everglades Agricultural Area (EAA). In STA 1W agricultural nutrients such as phosphorus (P) are removed from EAA runoff before entering the adjacent Water Conservation Areas (WCAs) and the Everglades. STA 1W is divided by levees into 4 cells, which are flooded for most of the year; thus the dominant mechanism for flow and transport is overland flow. P is removed either through deposition into sediments or is taken up by plants; in either case the soils end up being significantly enriched in P. The model has been applied and calibrated to several years of water quality data from Cell 4 within STA 1W. Most existing P models have been applied to agricultural/upland systems, with only a few relevant to treatment wetlands such as STA 1W. To ensure sufficient flexibility in selecting appropriate system components and reactions, the model has been designed to incorporate a wide range of user-selectable mechanisms for P uptake and release parameters between soils and inflowing water. The model can track a large number of mobile and nonmobile components and utilizes a Godunov-style operator-splitting technique for the transported

  10. Propagating fronts in reaction-transport systems with memory

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, A. [Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314 (United States)], E-mail: ayadav1@lsu.edu; Fedotov, Sergei [School of Mathematics, University of Manchester, Manchester M60 1DQ (United Kingdom)], E-mail: sergei.fedotov@manchester.ac.uk; Mendez, Vicenc [Grup de Fisica Estadistica, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)], E-mail: vicenc.mendez@uab.es; Horsthemke, Werner [Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314 (United States)], E-mail: whorsthe@smu.edu

    2007-11-26

    In reaction-transport systems with non-standard diffusion, the memory of the transport causes a coupling of reactions and transport. We investigate the effect of this coupling for systems with Fisher-type kinetics and obtain a general analytical expression for the front speed. We apply our results to the specific case of subdiffusion.

  11. Scaling of flow and transport behavior in heterogeneous groundwater systems

    Science.gov (United States)

    Scheibe, Timothy; Yabusaki, Steven

    1998-11-01

    Three-dimensional numerical simulations using a detailed synthetic hydraulic conductivity field developed from geological considerations provide insight into the scaling of subsurface flow and transport processes. Flow and advective transport in the highly resolved heterogeneous field were modeled using massively parallel computers, providing a realistic baseline for evaluation of the impacts of parameter scaling. Upscaling of hydraulic conductivity was performed at a variety of scales using a flexible power law averaging technique. A series of tests were performed to determine the effects of varying the scaling exponent on a number of metrics of flow and transport behavior. Flow and transport simulation on high-performance computers and three-dimensional scientific visualization combine to form a powerful tool for gaining insight into the behavior of complex heterogeneous systems. Many quantitative groundwater models utilize upscaled hydraulic conductivity parameters, either implicitly or explicitly. These parameters are designed to reproduce the bulk flow characteristics at the grid or field scale while not requiring detailed quantification of local-scale conductivity variations. An example from applied groundwater modeling is the common practice of calibrating grid-scale model hydraulic conductivity or transmissivity parameters so as to approximate observed hydraulic head and boundary flux values. Such parameterizations, perhaps with a bulk dispersivity imposed, are then sometimes used to predict transport of reactive or non-reactive solutes. However, this work demonstrates that those parameters that lead to the best upscaling for hydraulic conductivity and head do not necessarily correspond to the best upscaling for prediction of a variety of transport behaviors. This result reflects the fact that transport is strongly impacted by the existence and connectedness of extreme-valued hydraulic conductivities, in contrast to bulk flow which depends more strongly on

  12. Picosecond excitation transport in disordered systems

    International Nuclear Information System (INIS)

    Hart, D.E.

    1987-11-01

    Time-resolved fluorescence decay profiles are used to study excitation transport in 2- and 3-dimensional disordered systems. Time-correlated single photon counting detection is used to collect the fluorescence depolarization data. The high signal-to-noise ratios afforded by this technique makes it possible to critically examine current theories of excitation transport. Care has been taken to eliminate or account for the experimental artifacts common to this type of study. Solutions of 3,3'-diethyloxadicarbocyanine iodide (DODCI) in glycerol serve as a radomly distributed array of energy donors in 3-dimensions. A very thin sample cell (/approximately/ 2 μm) is used to minimize the effects of fluorescence self-absorption on the decay kinetics. Evidence of a dynamic shift of the fluorescence spectrum of DODCI in glycerol due to solvent reorganization is presented. The effects of excitation trapping on the decay profiles is minimized in the data analysis procedure. The 3-body theory of Gochanour, Andersen, and Fayer (GAF) and the far less complex 2-particle analytic theory of Huber, Hamilton, and Barnett yield indistinguishable fits to the data over the wide dynamic range of concentrations and decay times studied

  13. A simulation model for intermodal freight transportation in Louisiana.

    Science.gov (United States)

    2015-01-01

    With increased emphasis on intermodal transportation development, the issue of how to evaluate an intermodal freight transportation system and provide intermodal solutions has been receiving intensive attention. In order to improve freight flow effic...

  14. Modelling total solar irradiance using a flux transport model

    Science.gov (United States)

    Dasi Espuig, Maria; Jiang, Jie; Krivova, Natalie; Solanki, Sami

    2014-05-01

    Reconstructions of solar irradiance into the past are of considerable interest for studies of solar influence on climate. Models based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic field have been the most successful in reproducing the measured irradiance variations. Our SATIRE-S model is one of these. It uses solar full-disc magnetograms as an input, and these are available for less than four decades. Thus, to reconstruct the irradiance back to times when no observed magnetograms are available, we combine the SATIRE-S model with synthetic magnetograms, produced using a surface flux transport model. The model is fed with daily, observed or modelled statistically, records of sunspot positions, areas, and tilt angles. To describe the secular change in the irradiance, we used the concept of overlapping ephemeral region cycles. With this technique TSI can be reconstructed back to 1700.

  15. Computational modeling of drug transport across the in vitro cornea.

    Science.gov (United States)

    Pak, Joseph; Chen, Z J; Sun, Kay; Przekwas, Andrzej; Walenga, Ross; Fan, Jianghong

    2018-01-01

    A novel quasi-3D (Q3D) modeling approach was developed to model networks of one dimensional structures like tubes and vessels common in human anatomy such as vascular and lymphatic systems, neural networks, and respiratory airways. Instead of a branching network of the same tissue type, this approach was extended to model an interconnected stack of different corneal tissue layers with membrane junction conditions assigned between the tissues. The multi-laminate structure of the cornea presents a unique barrier design and opportunity for investigation using Q3D modeling. A Q3D model of an in vitro rabbit cornea was created to simulate the drug transport across the cornea, accounting for transcellular and paracellular pathways of passive and convective drug transport as well as physicochemistry of lipophilic partitioning and protein binding. Lipophilic Rhodamine B and hydrophilic fluorescein were used as drug analogs. The model predictions for both hydrophilic and lipophilic tracers were able to match the experimental measurements along with the sharp discontinuities at the epithelium-stroma and stroma-endothelium interfaces. This new modeling approach was successfully applied towards pharmacokinetic modeling for use in topical ophthalmic drug design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Modelling of radionuclide transport in forests: Review and future perspectives

    International Nuclear Information System (INIS)

    Shaw, G.; Schell, W.; Linkov, I.

    1997-01-01

    Ecological modeling is a powerful tool which can be used to synthesize information on the dynamic processes which occur in ecosystems. Models of radionuclide transport in forests were first constructed in the mid-1960's, when the consequences of global fallout from nuclear weapons tests and waste disposal in the environment were of great concern. Such models were developed based on site-specific experimental data and were designed to address local needs. These models had a limited applicability in evaluating distinct ecosystems and deposition scenarios. Given the scarcity of information, the same experimental data sets were often used both for model calibration and validation, an approach which clearly constitutes a methodological error. Even though the carry modeling attempts were far from being faultless, they established a useful conceptual approach in that they tried to capture general processes in ecosystems and thus had a holistic nature. Later, radioecological modeling attempted to reveal ecosystem properties by separating the component parts from the whole system, as an approach to simplification. This method worked well for radionuclide transport in agricultural ecosystems, in which the biogeochemistry of radionuclide cycling is relatively well understood and can be influenced by fertilization. Several models have been successfully developed and applied to human dose evaluation and emergency response to contaminating events in agricultural lands

  17. Wireless Battery Management System of Electric Transport

    Science.gov (United States)

    Rahman, Ataur; Rahman, Mizanur; Rashid, Mahbubur

    2017-11-01

    Electric vehicles (EVs) are being developed and considered as the future transportation to reduce emission of toxic gas, cost and weight. The battery pack is one of the main crucial parts of the electric vehicle. The power optimization of the battery pack has been maintained by developing a two phase evaporative thermal management system which operation has been controlled by using a wireless battery management system. A large number of individual cells in a battery pack have many wire terminations that are liable for safety failure. To reduce the wiring problem, a wireless battery management system based on ZigBee communication protocol and point-to-point wireless topology has been presented. Microcontrollers and wireless modules are employed to process the information from several sensors (voltage, temperature and SOC) and transmit to the display devices respectively. The WBMS multistage charge balancing system offering more effective and efficient responses for several numbers of series connected battery cells. The concept of double tier switched capacitor converter and resonant switched capacitor converter is used for reducing the charge balancing time of the cells. The balancing result for 2 cells and 16 cells are improved by 15.12% and 25.3% respectively. The balancing results are poised to become better when the battery cells are increased.

  18. System of automated design of conveyor transportation

    Energy Technology Data Exchange (ETDEWEB)

    Zamula, V.G.

    1981-01-01

    SAPR KT automated design system, developed by Giprokoks, permits multi-variational evaluation of belt conveyor transportation and selection of the optimum solution. Using SAPR KT in the Giprokoks firm economizes yearly 266,000 rubles. The system permits labor productivity of the designing personnel to be increased by 20%, and the cost of investment to be reduced by about 27%. Designing a variant of belt conveyor operation using the computer program takes 10 to 15 minutes. SAPR KT can be used to design conveyors with a belt 0.65 to 1.6 m wide, driven by one electric motor. Such conveyors are used in coking plants. A scheme of the design system is given. The most important blocks are characterized: TRASS (elements of conveyor scheme geometrics), BV (width and speed of belt), NB (power of the motor) PRIVB (dimensions of driving drum), LENTA (belt design), DVIG (parameters of electric motor), SNEMA (dimensions of conveyor system), OBOR (idlers) and METAL (elements of steel construction). (In Russian)

  19. 77 FR 51845 - Intelligent Transportation Systems Program Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-08-27

    ... DEPARTMENT OF TRANSPORTATION Intelligent Transportation Systems Program Advisory Committee; Notice.... Department of Transportation. ACTION: Notice. The Intelligent Transportation Systems (ITS) Program Advisory..., development, and implementation of intelligent transportation systems. Through its sponsor, the ITS Joint...

  20. 77 FR 20872 - Intelligent Transportation Systems Program Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-04-06

    ... DEPARTMENT OF TRANSPORTATION Intelligent Transportation Systems Program Advisory Committee; Notice.... Department of Transportation. ACTION: Notice. The Intelligent Transportation Systems (ITS) Program Advisory..., development, and implementation of intelligent transportation systems. Through its sponsor, the ITS Joint...