THE APPLICATION OF TIDAL SIGNAL EXCLUSION SCHEME FROM INITIALIZATION IN A GENERAL CIRCULATION MODEL
Institute of Scientific and Technical Information of China (English)
杨学胜; 王军; 陈谊
2004-01-01
In this paper, some corrections was made to the assumption that the forcing is quasi-static, which is the basis of the nonlinear diabatic initialization scheme adopted by a global model T106L19. Thus the tidal signal is expressed and excluded from the initialization scheme. It shows that the new scheme captures the semi-diurnal pressure variation and is much closer to the uninitialized field. Compared with the standard initialization scheme, both the anomaly correlation coefficients and RMS of 500 hPa geopotential height simulated under the new scheme have improved significantly.
Tidal Response of Preliminary Jupiter Model
Wahl, Sean M.; Hubbard, William B.; Militzer, Burkhard
2016-11-01
In anticipation of improved observational data for Jupiter’s gravitational field, from the Juno spacecraft, we predict the static tidal response for a variety of Jupiter interior models based on ab initio computer simulations of hydrogen-helium mixtures. We calculate hydrostatic-equilibrium gravity terms, using the non-perturbative concentric Maclaurin Spheroid method that eliminates lengthy expansions used in the theory of figures. Our method captures terms arising from the coupled tidal and rotational perturbations, which we find to be important for a rapidly rotating planet like Jupiter. Our predicted static tidal Love number, {k}2=0.5900, is ˜10% larger than previous estimates. The value is, as expected, highly correlated with the zonal harmonic coefficient J 2, and is thus nearly constant when plausible changes are made to the interior structure while holding J 2 fixed at the observed value. We note that the predicted static k 2 might change, due to Jupiter’s dynamical response to the Galilean moons, and find reasons to argue that the change may be detectable—although we do not present here a theory of dynamical tides for highly oblate Jovian planets. An accurate model of Jupiter’s tidal response will be essential for interpreting Juno observations and identifying tidal signals from effects of other interior dynamics of Jupiter’s gravitational field.
Ocean tidal signals in observatory and satellite magnetic measurements
DEFF Research Database (Denmark)
Maus, S.; Kuvshinov, A.
2004-01-01
, and P1 periods turn out to be dominated by unrelated external fields. In contrast, observed lunar M2 and N2 tidal signals are in fair agreement with predictions from motional induction. The lunar diurnal O1 signal, visible at some observatories, could be caused by ocean flow but disagrees in amplitude...
VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS
Energy Technology Data Exchange (ETDEWEB)
Dobos, Vera [Konkoly Thege Miklos Astronomical Institute, Research Centre of Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Konkoly Thege Miklós út 15-17, Budapest (Hungary); Turner, Edwin L., E-mail: dobos@konkoly.hu [Department of Astrophysical Sciences, Princeton University, 08544, 4 Ivy Lane, Peyton Hall, Princeton, NJ (United States)
2015-05-01
Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat.
Ocean tidal signals in observatory and satellite magnetic measurements
DEFF Research Database (Denmark)
Maus, S.; Kuvshinov, A.
2004-01-01
Ocean flow moves sea water through the Earth's magnetic field, inducing electric fields, currents and secondary magnetic fields. These motionally induced magnetic fields have a potential for the remote sensing of ocean flow variability. A first goal must be to gain a better understanding...... of magnetic field generation by tidal ocean flow. We predict the motionally induced magnetic fields for the six major tidal constituents and compare their amplitudes with the spectra of night time observatory and satellite magnetic measurements for the Indian Ocean. The magnetic variations at the solar S2, K1......, and P1 periods turn out to be dominated by unrelated external fields. In contrast, observed lunar M2 and N2 tidal signals are in fair agreement with predictions from motional induction. The lunar diurnal O1 signal, visible at some observatories, could be caused by ocean flow but disagrees in amplitude...
Viscoelastic Models of Tidally Heated Exomoons
Dobos, Vera
2015-01-01
Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life is intensely studied on Solar System moons such as Europa or Enceladus, where the surface ice layer covers tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. For studying the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models, because it takes into account the temperature dependency of the tidal heat flux, and the melting of the inner material. With the use of this model we introduced the circumplanetary Tidal Temperate Zone (TTZ), that strongly depends on the orbital period of the moon, and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ usi...
The tidal signal in inverted echo-sounder records
Cartwright, D. E.
1982-06-01
Four IES records of several months duration from the western equatorial Atlantic are analysed with principal interest in their tidal content. Spectral noise level in the tidal bands is some two orders of magnitude higher than in comparable sea-level records, but the main constituents of both diurnal and semi-diurnal tides stand out with usable coherence with the tidal potential. A mid-ocean record, FLAVIA, gives amplitudes and phases that correspond closely with the surface tide, but three other records in a region of disturbed bathymetry near the continental shelf give amplitudes and phases which differ from the expected surface effect, indicating relatively strong coherent internal tides in the region as well as an evident incoherent tidal signal. Two of the latter records also show second-harmonic distortion, which is characteristic of internal tides, in the present case corresponding to a steeppened forward face of the internal wave. Theory, following the analysis of LONG (1972 Tellus, 24, 88-89), suggests that this form of wave steepening is due to the steady shear in the surface layer. The physical theory of acoustic time-delay in vertical transmission through long internal waves with and without surface elevation is analysed quantitatively. In the region studied a pure internal tide of amplitude 10 m at 200-m depth would produce the observed changes in tidal signal. Wave amplitudes resulting from tidal flow over a 2.4-km high ridge, computed from the linear theory of ZEILON (1912 Kungliga Svenska Vetenskapsakademiens Handligar, 47, 1-45), are only about 1.2 m maximum, but the theory does suggest a likely mechanism for producing coherent internal tidal motion, possibly by invoking the shelf edge.
Tidal Response of Preliminary Jupiter Model
Wahl, Sean M; Hubbard, Willam B.; Militzer, Burkhard
2016-01-01
In anticipation of improved observational data for Jupiter's gravitational field from the Juno spacecraft, we predict the static tidal response for a variety of Jupiter interior models based on ab initio computer simulations of hydrogen-helium mixtures. We calculate hydrostatic-equilibrium gravity terms using the non-perturbative concentric Maclaurin Spheroid (CMS) method that eliminates lengthy expansions used in the theory of figures. Our method captures terms arising from the coupled tidal...
Tidal imprint on the gravitational signal emitted by BH-NS coalescing binaries
Ferrari, V; Pannarale, F
2008-01-01
We compute the gravitational signal emitted in the latest phases of the coalescence of a binary system composed of a stellar mass black hole and a neutron star, prior to merging. Tidal interactions are taken into account by means of the affine model approach, in which the neutron star is viewed as a deformable ellipsoid. We compare the orbital and the tidal contributions to the signal, assuming that the star moves in a region where, although very close to the black hole, it has not been disrupted yet. We show that during the last revolutions the star is a non-spherical oscillating object. Indeed, the non-radial oscillations of the star are excited and produce a multiple peak structure in the emitted signal, due to mode coupling, and to the coupling between orbital motion and tidal interaction. This model could be a useful tool to provide reliable initial conditions for numerical relativity simulations of merging processes.
Tidally Heated Terrestrial Exoplanets: Viscoelastic Response Models
Henning, Wade G; Sasselov, Dimitar D; 10.1088/0004-637X/707/2/1000
2009-01-01
Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a Hot Earth and Hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid, and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale parti...
Tidal Response of Preliminary Jupiter Model
Wahl, Sean M; Militzer, Burkhard
2016-01-01
In anticipation of improved observational data for Jupiter's gravitational field from the Juno spacecraft, we predict the static tidal response for a variety of Jupiter interior models based on ab initio computer simulations of hydrogen-helium mixtures. We calculate hydrostatic-equilibrium gravity terms using the non-perturbative concentric Maclaurin Spheroid (CMS) method that eliminates lengthy expansions used in the theory of figures. Our method captures terms arising from the coupled tidal and rotational perturbations, which we find to be important for a rapidly-rotating planet like Jupiter. Our predicted static tidal Love number $k_2 = 0.5900$ is $\\sim$10\\% larger than previous estimates. The value is, as expected, highly correlated with the zonal harmonic coefficient $J_2$, and is thus nearly constant when plausible changes are made to interior structure while holding $J_2$ fixed at the observed value. We note that the predicted static $k_2$ might change due to Jupiter's dynamical response to the Galilea...
Modeling the hydrodynamics in tidal networks
Alebregtse, N.C.
2016-01-01
This thesis covers tidal propagation through networks of channels. Such networks are widespread and are often subject to discordant human and natural interests. First, the effect of a secondary channel on the tides in a main channel is explained with the use of an idealized model and the responsible
Three-dimensional semi-idealized model for tidal motion in tidal estuaries
Kumar, M.; Schuttelaars, H.M.; Roos, P.C.; Möller, M.
2015-01-01
In this paper, a three-dimensional semi-idealized model for tidal motion in a tidal estuary of arbitrary shape and bathymetry is presented. This model aims at bridging the gap between idealized and complex models. The vertical profiles of the velocities are obtained analytically in terms of the firs
Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary
DEFF Research Database (Denmark)
Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.
2016-01-01
, there are no reports that these signals have been used to infer subsurface structure. We use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. Themodel derived from more than 12 years of satellite data reveals...... a ≈72-km-thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere....
3-D modelling the electric field due to ocean tidal flow and comparison with observations
DEFF Research Database (Denmark)
Kuvshinov, A.; Junge, A.; Utada, H.
2006-01-01
of the global distribution of the electric signal due to tidal ocean flow. We simulate the electric signals for two tidal constituents - lunar semidiurnal (M2) and diurnal (O1) tides. We assume a realistic Earth's conductivity model with a surface thin shell and 1-D mantle underneath. Simulations demonstrate......The tidal motion of the ocean water through the ambient magnetic field, generates secondary electric field. This motionally induced electric field can be detected in the sea or inland and has a potential for electrical soundings of the Earth. A first goal of the paper is to gain an understanding...
Modelling Galaxy Merger Timescales and Tidal Destruction
Simha, Vimal
2016-01-01
We present a model for the dynamical evolution of subhaloes based on an approach combining numerical and analytical methods. Our method is based on tracking subhaloes in an N-body simulation up to the last point that it can be resolved, and applying an analytic prescription for its merger timescale that takes dynamical friction and tidal disruption into account. When applied to cosmological N-body simulations with mass resolutions that differ by two orders of magnitude, the technique produces halo occupation distributions that agree to within 3%.
Detection of the special gravity signals in sub-tidal band by using wavelet technique
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Based on the 5-year length of tidal gravity observations recorded with a superconducting gravimeter at Wuhan International Tidal Gravity Reference Station, the special gravity signals associated with the possible Earth's solid inner core translational oscillations in sub-tidal bands are detected and studied by using for the first time a wavelet transformation technique. The analysis is conducted on gravity residuals after removing the synthetic tidal gravity signals and air pressure perturbation from original observations, demonstrating that there exist gravity oscillation signals at 4-6 h bands with amplitude of nGal level. However, it is found that the frequency and amplitude of such kind of oscillation signals change with time, and the analysis shows that these oscillation signals are provoked probably by some non-continuous source with very low amplitude.
A new high resolution tidal model in the arctic ocean
DEFF Research Database (Denmark)
Cancet, M.; Andersen, Ole Baltazar; Lyard, F.
The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence......-growing maritime and industrial activities in this region. NOVELTIS and DTU Space have developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of the CryoSat Plus for Ocean (CP4O) ESA project. In particular, this atlas benefits from the assimilation of the most complete satellite...... for assimilation and validation. This paper presents the performances of this new regional tidal model in the Arctic Ocean, compared to the existing global tidal models....
Simultaneous perturbation stochastic approximation for tidal models
Altaf, M.U.
2011-05-12
The Dutch continental shelf model (DCSM) is a shallow sea model of entire continental shelf which is used operationally in the Netherlands to forecast the storm surges in the North Sea. The forecasts are necessary to support the decision of the timely closure of the moveable storm surge barriers to protect the land. In this study, an automated model calibration method, simultaneous perturbation stochastic approximation (SPSA) is implemented for tidal calibration of the DCSM. The method uses objective function evaluations to obtain the gradient approximations. The gradient approximation for the central difference method uses only two objective function evaluation independent of the number of parameters being optimized. The calibration parameter in this study is the model bathymetry. A number of calibration experiments is performed. The effectiveness of the algorithm is evaluated in terms of the accuracy of the final results as well as the computational costs required to produce these results. In doing so, comparison is made with a traditional steepest descent method and also with a newly developed proper orthogonal decompositionbased calibration method. The main findings are: (1) The SPSA method gives comparable results to steepest descent method with little computational cost. (2) The SPSA method with little computational cost can be used to estimate large number of parameters.
Tidal Modulation of Ice-shelf Flow: a Viscous Model of the Ross Ice Shelf
Brunt, Kelly M.; MacAyeal, Douglas R.
2014-01-01
Three stations near the calving front of the Ross Ice Shelf, Antarctica, recorded GPS data through a full spring-neap tidal cycle in November 2005. The data revealed a diurnal horizontal motion that varied both along and transverse to the long-term average velocity direction, similar to tidal signals observed in other ice shelves and ice streams. Based on its periodicity, it was hypothesized that the signal represents a flow response of the Ross Ice Shelf to the diurnal tides of the Ross Sea. To assess the influence of the tide on the ice-shelf motion, two hypotheses were developed. The first addressed the direct response of the ice shelf to tidal forcing, such as forces due to sea-surface slopes or forces due to sub-ice-shelf currents. The second involved the indirect response of ice-shelf flow to the tidal signals observed in the ice streams that source the ice shelf. A finite-element model, based on viscous creep flow, was developed to test these hypotheses, but succeeded only in falsifying both hypotheses, i.e. showing that direct tidal effects produce too small a response, and indirect tidal effects produce a response that is not smooth in time. This nullification suggests that a combination of viscous and elastic deformation is required to explain the observations.
A simple approach to adjust tidal forcing in fjord models
Hjelmervik, Karina; Kristensen, Nils Melsom; Staalstrøm, André; Røed, Lars Petter
2017-07-01
To model currents in a fjord accurate tidal forcing is of extreme importance. Due to complex topography with narrow and shallow straits, the tides in the innermost parts of a fjord are both shifted in phase and altered in amplitude compared to the tides in the open water outside the fjord. Commonly, coastal tide information extracted from global or regional models is used on the boundary of the fjord model. Since tides vary over short distances in shallower waters close to the coast, the global and regional tidal forcings are usually too coarse to achieve sufficiently accurate tides in fjords. We present a straightforward method to remedy this problem by simply adjusting the tides to fit the observed tides at the entrance of the fjord. To evaluate the method, we present results from the Oslofjord, Norway. A model for the fjord is first run using raw tidal forcing on its open boundary. By comparing modelled and observed time series of water level at a tidal gauge station close to the open boundary of the model, a factor for the amplitude and a shift in phase are computed. The amplitude factor and the phase shift are then applied to produce adjusted tidal forcing at the open boundary. Next, we rerun the fjord model using the adjusted tidal forcing. The results from the two runs are then compared to independent observations inside the fjord in terms of amplitude and phases of the various tidal components, the total tidal water level, and the depth integrated tidal currents. The results show improvements in the modelled tides in both the outer, and more importantly, the inner parts of the fjord.
Validation of Numerical Shallow Water Models for Tidal Lagoons
Energy Technology Data Exchange (ETDEWEB)
Eliason, D.; Bourgeois, A.
1999-11-01
An analytical solution is presented for the case of a stratified, tidally forced lagoon. This solution, especially its energetics, is useful for the validation of numerical shallow water models under stratified, tidally forced conditions. The utility of the analytical solution for validation is demonstrated for a simple finite difference numerical model. A comparison is presented of the energetics of the numerical and analytical solutions in terms of the convergence of model results to the analytical solution with increasing spatial and temporal resolution.
Modeling the Ocean Tide for Tidal Power Generation Applications
Kawase, M.; Gedney, M.
2014-12-01
Recent years have seen renewed interest in the ocean tide as a source of energy for electrical power generation. Unlike in the 1960s, when the tidal barrage was the predominant method of power extraction considered and implemented, the current methodology favors operation of a free-stream turbine or an array of them in strong tidal currents. As tidal power generation moves from pilot-scale projects to actual array implementations, numerical modeling of tidal currents is expected to play an increasing role in site selection, resource assessment, array design, and environmental impact assessment. In this presentation, a simple, coupled ocean/estuary model designed for research into fundamental aspects of tidal power generation is described. The model consists of a Pacific Ocean-size rectangular basin and a connected fjord-like embayment with dimensions similar to that of Puget Sound, Washington, one of the potential power generation sites in the United States. The model is forced by an idealized lunar tide-generating potential. The study focuses on the energetics of a tidal system including tidal power extraction at both global and regional scales. The hyperbolic nature of the governing shallow water equations means consequence of tidal power extraction cannot be limited to the local waters, but is global in extent. Modeling power extraction with a regional model with standard boundary conditions introduces uncertainties of 3 ~ 25% in the power extraction estimate depending on the level of extraction. Power extraction in the model has a well-defined maximum (~800 MW in a standard case) that is in agreement with previous theoretical studies. Natural energy dissipation and tidal power extraction strongly interact; for a turbine array of a given capacity, the higher the level of natural dissipation the lower the power the array can extract. Conversely, power extraction leads to a decrease in the level of natural dissipation (Figure) as well as the tidal range and the
Kumar, Mohit; Schuttelaars, H.M.; Roos, P.C.; Möller, M.
2016-01-01
In this paper, a three-dimensional semi-idealized model for tidal motion in a tidal estuary of arbitrary shape and bathymetry is presented. This model aims at bridging the gap between idealized and complex models. The vertical profiles of the velocities are obtained analytically in terms of the firs
Structural and tidal models of Titan and inferences on cryovolcanism
Sohl, F.; Solomonidou, A.; Wagner, F.W.; Coustenis, A.; Hussmann, H.; Schulze-Makuch, D.
2014-01-01
Titan, Saturn's largest satellite, is subject to solid body tides exerted by Saturn on the timescale of its orbital period. The tide-induced internal redistribution of mass results in tidal stress variations, which could play a major role for Titan's geologic surface record. We construct models of Titan's interior that are consistent with the satellite's mean density, polar moment-of-inertia factor, obliquity, and tidal potential Love number k2 as derived from Cassini observations of Titan's ...
A new high resolution tidal model in the arctic ocean
DEFF Research Database (Denmark)
Cancet, M.; Andersen, Ole Baltazar; Lyard, F.
The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence, the accu......The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence...... of the tides improves the quality of the high latitudes altimeter sea surface heights and of all derived products, such as the altimetry-derived geostrophic currents, the mean sea surface and the mean dynamic topography. In addition, accurate tidal models are highly strategic information for ever......-growing maritime and industrial activities in this region. NOVELTIS and DTU Space have developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of the CryoSat Plus for Ocean (CP4O) ESA project. In particular, this atlas benefits from the assimilation of the most complete satellite...
Tidal Movement of Nioghalvfjerdsfjorden Glacier, Northeast Greenland: Observations and Modelling
DEFF Research Database (Denmark)
Reeh, Niels; Mayer, C.; Olesen, O. B.
2000-01-01
, 1997 and 1998. As part of this work, tidal-movement observations were carried out by simultaneous differential global positioning system (GPS) measurements at several locations distributed on the glacier surface. The GPS observations were performed continuously over several tidal cycles. At the same....... The observations show that the main part of the glacier tongue responds as a freely floating plate to the phase and amplitude of the local tide in the sea. However, kilometre-wide flexure zones exist along the marginal and upstream grounding lines. Attempts to model the observed tidal deflection and tilt patterns...... in the flexure zone by elastic-beam theory are unsuccessful, in contrast to previous findings by other investigators. The strongest disagreement between our measurements and results derived from elastic-beam theory is a significant variation of the phase of the tidal records with distance from the grounding line...
EM-raying the ocean or climate change impact on tidal electromagnetic signals
Saynisch, Jan; Petereit, Johannes; Irrgang, Christopher; Thomas, Maik
2017-04-01
We present an electrometer/magnetometer based method to detect climate induced trends in the oceans. The method utilizes ocean tides. Ocean tides generate electromagnetic signals which are strictly periodic and therefore well separable in terrestrial and spaceborne magnetometer observations. We simulate the change of the tidal electromagnetic signals under different climate scenarios. Frequency, phase, sea surface elevation and path of tidal waves proofed to be very robust under climate change. However, the tidal electromagnetic amplitudes are sensitive to the sea water conductivity of the entire water column. Conductivity itself is a function of the local sea water salinity and temperature, properties that do change considerably in space and time. We compare the impact of global warming and glacial melting on the electromagnetic signals of the major tides. We present the expected amplitude change distributions at sea level and at satellite height.
Tidal Downsizing model. I. Numerical methods: saving giant planets from tidal disruptions
Nayakshin, Sergei
2014-01-01
Tidal Downsizing (TD) is a recently developed planet formation theory that supplements the classical Gravitational disc Instability (GI) model with planet migration inward and tidal disruptions of GI fragments in the inner regions of the disc. Numerical methods for a detailed population synthesis of TD planets are presented here. As an example application, the conditions under which GI fragments collapse faster than they migrate into the inner $a\\sim$ few AU disc are considered. It is found that most gas fragments are tidally or thermally disrupted unless (a) their opacity is $\\sim 3$ orders of magnitude less than the interstellar dust opacity at metallicities typical of the observed giant planets, or (b) the opacity is high but the fragments accrete large dust grains (pebbles) from the disc. Case (a) models produce very low mass solid cores ($M_{\\rm core} < 0.1$ Earth masses) and follow a negative correlation of giant planet frequency with host star metallicity. In contrast, case (b) models produce massiv...
Long-Term Morphological Modeling of Barrier Island Tidal Inlets
Directory of Open Access Journals (Sweden)
Richard Styles
2016-09-01
Full Text Available The primary focus of this study is to apply a two-dimensional (2-D coupled flow-wave-sediment modeling system to simulate the development and growth of idealized barrier island tidal inlets. The idealized systems are drawn from nine U.S. coastal inlets representing Pacific Coast, Gulf Coast and Atlantic Coast geographical and climatological environments. A morphological factor is used to effectively model 100 years of inlet evolution and the resulting morphological state is gauged in terms of the driving hydrodynamic processes. Overall, the model performs within the range of established theoretically predicted inlet cross-sectional area. The model compares favorably to theoretical models of maximum inlet currents, which serve as a measure of inlet stability. Major morphological differences are linked to inlet geometry and tidal forcing. Narrower inlets develop channels that are more aligned with the inlet axis while wider inlets develop channels that appear as immature braided channel networks similar to tidal flats in regions with abundant sediment supply. Ebb shoals with strong tidal forcing extend further from shore and spread laterally, promoting multi-lobe development bisected by ebb shoal channels. Ebb shoals with moderate tidal forcing form crescent bars bracketing a single shore-normal channel. Longshore transport contributes to ebb shoal asymmetry and provides bed material to help maintain the sediment balance in the bay.
Tidal Models In A New Era of Satellite Gravimetry
Ray, Richard D.; Rowlings, David D.; Edbert, G. D.; Chao, Benjamin F. (Technical Monitor)
2002-01-01
The high precision gravity measurements to be made by recently launched (and recently approved) satellites place new demands on models of Earth, atmospheric, and oceanic tides. The latter is the most problematic. The ocean tides induce variations in the Earth's geoid by amounts that far exceed the new satellite sensitivities, and tidal models must be used to correct for this. Two methods are used here to determine the standard errors in current ocean tide models. At long wavelengths these errors exceed the sensitivity of the GRACE mission. Tidal errors will not prevent the new satellite missions from improving our knowledge of the geopotential by orders of magnitude, but the errors may well contaminate GRACE estimates of temporal variations in gravity. Solar tides are especially problematic because of their long alias periods. The satellite data may be used to improve tidal models once a sufficiently long time series is obtained. Improvements in the long-wavelength components of lunar tides are especially promising.
Simulating tidal turbines with mesh optimisation and RANS turbulence models
Abolghasemi, A.; Piggott, M.D.; Spinneken, J.; Vire, A.; Cotter, C.J.
2015-01-01
A versatile numerical model for the simulation of flow past horizontal axis tidal turbines has been developed. Currently most large-scale marine models employed to study marine energy use the shallow water equations and therefore can fail to account for important turbulent physics. The model present
Stark, J.; Meire, P.; Temmerman, S.
2017-03-01
The eco-geomorphological development of tidal marshes, from initially low-elevated bare tidal flats up to a high-elevated marsh and its typical network of channels and creeks, induces long-term changes in tidal hydrodynamics in a marsh, which will have feedback effects on the marsh development. We use a two-dimensional hydrodynamic model of the Saeftinghe marsh (Netherlands) to study tidal hydrodynamics, and tidal asymmetry in particular, for model scenarios with different input bathymetries and vegetation coverages that represent different stages of eco-geomorphological marsh development, from a low elevation stage with low vegetation coverage to a high and fully vegetated marsh platform. Tidal asymmetry is quantified along a 4 km marsh channel by (1) the difference in peak flood and peak ebb velocities, (2) the ratio between duration of the rising tide and the falling tide and (3) the time-integrated dimensionless bed shear stress during flood and ebb. Although spatial variations in tidal asymmetry are large and the different indicators for tidal asymmetry do not always respond similarly to eco-geomorphological changes, some general trends can be obtained. Flood-dominance prevails during the initial bare stage of a low-lying tidal flat. Vegetation establishment and platform expansion lead to marsh-scale flow concentration to the bare channels, causing an increase in tidal prism in the channels along with a less flood-dominant asymmetry of the horizontal tide. The decrease in flood-dominance continues as the platform grows vertically and the sediment-demand of the platform decreases. However, when the platform elevation gets sufficiently high in the tidal frame and part of the spring-neap cycle is confined to the channels, the discharge in the channels decreases and tidal asymmetry becomes more flood-dominant again, indicating an infilling of the marsh channels. Furthermore, model results suggest that hydro-morphodynamic feedbacks based on tidal prism to channel
Observations and modeling of a tidal inlet dye tracer plume
Feddersen, Falk; Olabarrieta, Maitane; Guza, R. T.; Winters, D.; Raubenheimer, Britt; Elgar, Steve
2016-10-01
A 9 km long tracer plume was created by continuously releasing Rhodamine WT dye for 2.2 h during ebb tide within the southern edge of the main tidal channel at New River Inlet, NC on 7 May 2012, with highly obliquely incident waves and alongshore winds. Over 6 h from release, COAWST (coupled ROMS and SWAN, including wave, wind, and tidal forcing) modeled dye compares well with (aerial hyperspectral and in situ) observed dye concentration. Dye first was transported rapidly seaward along the main channel and partially advected across the ebb-tidal shoal until reaching the offshore edge of the shoal. Dye did not eject offshore in an ebb-tidal jet because the obliquely incident breaking waves retarded the inlet-mouth ebb-tidal flow and forced currents along the ebb shoal. The dye plume largely was confined to <4 m depth. Dye was then transported downcoast in the narrow (few 100 m wide) surfzone of the beach bordering the inlet at 0.3 m s-1 driven by wave breaking. Over 6 h, the dye plume is not significantly affected by buoyancy. Observed dye mass balances close indicating all released dye is accounted for. Modeled and observed dye behaviors are qualitatively similar. The model simulates well the evolution of the dye center of mass, lateral spreading, surface area, and maximum concentration, as well as regional ("inlet" and "ocean") dye mass balances. This indicates that the model represents well the dynamics of the ebb-tidal dye plume. Details of the dye transport pathways across the ebb shoal are modeled poorly perhaps owing to low-resolution and smoothed model bathymetry. Wave forcing effects have a large impact on the dye transport.
Parameter identification in tidal models with uncertain boundaries
Bagchi, Arunabha; ten Brummelhuis, P.G.J.; ten Brummelhuis, Paul
1994-01-01
In this paper we consider a simultaneous state and parameter estimation procedure for tidal models with random inputs, which is formulated as a minimization problem. It is assumed that some model parameters are unknown and that the random noise inputs only act upon the open boundaries. The
Parameter identification in tidal models with uncertain boundaries
Bagchi, Arunabha; Brummelhuis, ten Paul
1994-01-01
In this paper we consider a simultaneous state and parameter estimation procedure for tidal models with random inputs, which is formulated as a minimization problem. It is assumed that some model parameters are unknown and that the random noise inputs only act upon the open boundaries. The hyperboli
Structural and tidal models of Titan and inferences on cryovolcanism
Sohl, F.; Solomonidou, A.; Wagner, F. W.; Coustenis, A.; Hussmann, H.; Schulze-Makuch, D.
2014-05-01
Titan, Saturn's largest satellite, is subject to solid body tides exerted by Saturn on the timescale of its orbital period. The tide-induced internal redistribution of mass results in tidal stress variations, which could play a major role for Titan's geologic surface record. We construct models of Titan's interior that are consistent with the satellite's mean density, polar moment-of-inertia factor, obliquity, and tidal potential Love number k2 as derived from Cassini observations of Titan's low-degree gravity field and rotational state. In the presence of a global liquid reservoir, the tidal gravity field is found to be consistent with a subsurface water-ammonia ocean more than 180 km thick and overlain by an outer ice shell of less than 110 km thickness. The model calculations suggest comparatively low ocean ammonia contents of less than 5 wt % and ocean temperatures in excess of 255 K, i.e., higher than previously thought, thereby substantially increasing Titan's potential for habitable locations. The calculated diurnal tidal stresses at Titan's surface amount to 20 kPa, almost comparable to those expected at Enceladus and Europa. Tidal shear stresses are concentrated in the polar areas, while tensile stresses predominate in the near-equatorial, midlatitude areas of the sub- and anti-Saturnian hemispheres. The characteristic pattern of maximum diurnal tidal stresses is largely compliant with the distribution of active regions such as cryovolcanic candidate areas. The latter could be important for Titan's habitability since those may provide possible pathways for liquid water-ammonia outbursts on the surface and the release of methane in the satellite's atmosphere.
Kumar, Mohit; Schuttelaars, Henk M.; Roos, Pieter C.; Möller, Matthias
2016-01-01
In this paper, a three-dimensional semi-idealized model for tidal motion in a tidal estuary of arbitrary shape and bathymetry is presented. This model aims at bridging the gap between idealized and complex models. The vertical profiles of the velocities are obtained analytically in terms of the first-order and the second-order partial derivatives of surface elevation, which itself follows from an elliptic partial differential equation. The surface elevation is computed numerically using the finite element method and its partial derivatives are obtained using various methods. The newly developed semi-idealized model allows for a systematic investigation of the influence of geometry and bathymetry on the tidal motion which was not possible in previously developed idealized models. The new model also retains the flexibility and computational efficiency of previous idealized models, essential for sensitivity analysis. As a first step, the accuracy of the semi-idealized model is investigated. To this end, an extensive comparison is made between the model results of the semi-idealized model and two other idealized models: a width-averaged model and a three-dimensional idealized model. Finally, the semi-idealized model is used to understand the influence of local geometrical effects on the tidal motion in the Ems estuary. The model shows that local convergence and meandering effects can have a significant influence on the tidal motion. Finally, the model is applied to the Ems estuary. The model results agree well with observations and results from a complex numerical model.
Modeling tidal dynamics in a mangrove creek catchment in Delft3D
Horstman, E.M.; Dohmen-Janssen, C.M.; Hulscher, S.J.M.H.; Bonneton, P.; Garlan, T.
2013-01-01
Modeling tidal dynamics in mangroves is of great use in studying the effects of changes in e.g. vegetation cover or tidal forcing. Process based models, taking into account vegetation drag and turbulence, have not yet been applied to study tidal dynamics in mangrove forests. We compare three differe
Damour, Thibault; Villain, Loic
2012-01-01
The gravitational wave signal from a binary neutron star inspiral contains information on the nuclear equation of state. This information is contained in a combination of the tidal polarizability parameters of the two neutron stars and is clearest in the late inspiral, just before merger. We use the recently defined tidal extension of the effective one-body formalism to construct a controlled analytical description of the frequency-domain phasing of neutron star inspirals up to merger. Exploiting this analytical description we find that the tidal polarizability parameters of neutron stars can be measured by the advanced LIGO-Virgo detector network from gravitational wave signals having a reasonable signal-to-noise ratio of $\\rho=16$. This measurability result seems to hold for all the nuclear equations of state leading to a maximum mass larger than $1.97M_\\odot$. We also propose a promising new way of extracting information on the nuclear equation of state from a coherent analysis of an ensemble of gravitatio...
Testing the tidal alignment model of galaxy intrinsic alignment
Blazek, Jonathan; Seljak, Uros
2011-01-01
Weak gravitational lensing has become a powerful probe of large-scale structure and cosmological parameters. Precision weak lensing measurements require an understanding of the intrinsic alignment of galaxy ellipticities, which can in turn inform models of galaxy formation. It is hypothesized that elliptical galaxies align with the background tidal field and that this alignment mechanism dominates the correlation between ellipticities on cosmological scales (in the absence of lensing). We use recent large-scale structure measurements from the Sloan Digital Sky Survey to test this picture with several statistics: (1) the correlation between ellipticity and galaxy overdensity, w_{g+}; (2) the intrinsic alignment auto-correlation functions; (3) the correlation functions of curl-free, E, and divergence-free, B, modes (the latter of which is zero in the linear tidal alignment theory); (4) the alignment correlation function, w_g(r_p,theta), a recently developed statistic that generalizes the galaxy correlation func...
Greb, S.F.; Archer, A.W.; Deboer, D.G.
2011-01-01
Turnagain Arm is a macrotidal fjord-style estuary. Glacier Creek is a small, glacially fed stream which enters the estuary tangentially near Girdwood, Alaska. Trenches and daily sedimentation measurements were made in a mudflat along the fluvio-estuarine transition of Glacier Creek during several summers since 2003. Each year, the flats appear to erode during the winter and then accrete vertically in the spring and summer. In each of the years studied, tidal laminae in vertically thickening and thinning laminae bundles were deposited by twice daily tides in neap-spring tidal cycles. In 2004, bundles of thickening and thinning laminae couplets were noted in trenches cut into the flats. Five laminae bundles alternated between thicker and thinner bundles, corresponding to the perigean (high spring) and apogean (low spring) tides. Well-preserved apogean-perigean cycles have rarely been documented in modern tidal flat sediments. At this location, vertical accretion of tidal rhythmites with well-developed neap-spring cyclicity is possible because of the near-complete removal of the flat from the previous year, which creates accommodation space for vertical accretion without significant reworking. Macrotidal conditions, no reworking by infaunal invertebrates, protection from the main tidal channel by a gravel bar and protection from storm waves and fluvial erosion by a recess in the sedge marsh that surrounds the flats all aid in preservation of rhythmites during aggradation. The position of the flats relative to tidal range allows for accumulation of complete spring cycles and incomplete neap cycles. In the summer of 2004, apogee and perigee were closely aligned with the new and full moons, resulting in successive strong perigee and apogee tides which probably aided in the accumulation of successive thick-thin spring cycles encoding the apogean and perigean tidal cycle. The apogean-perigean signal was not observed in subsequent years. ?? 2011 The Authors.
ASASSN-14li: A Model Tidal Disruption Event
Krolik, Julian; Svirski, Gilad; Cheng, Roseanne M
2016-01-01
ASASSN-14li is a recently-discovered tidal disruption event with an exceptionally rich data-set: spectra and lightcurves in soft X-rays, UV, optical, and radio. To understand its emission properties in all these bands, we have extended our model for post-tidal disruption accretion and photon production to estimate both soft X-ray radiation produced by the prompt accretion phase and synchrotron emission associated with the bow shock driven through an external medium by the unbound tidal debris, as well as optical and UV light. We find that fiducial values of the stellar mass ($1 M_\\odot$) and black hole mass ($10^{6.5} M_{\\odot}$) yield: quantitative agreement with the optical/UV luminosity, lightcurve, and color temperature; approximate agreement with the somewhat uncertain soft X-ray spectrum and lightcurve; and quantitative agreement with the radio luminosity, spectrum and lightcurve. Equipartition analysis of the radio data implies that the radio-emitting region expands with a constant speed, and its magni...
Analytic modeling of tidal effects in the relativistic inspiral of binary neutron stars.
Baiotti, Luca; Damour, Thibault; Giacomazzo, Bruno; Nagar, Alessandro; Rezzolla, Luciano
2010-12-31
To detect the gravitational-wave (GW) signal from binary neutron stars and extract information about the equation of state of matter at nuclear density, it is necessary to match the signal with a bank of accurate templates. We present the two longest (to date) general-relativistic simulations of equal-mass binary neutron stars with different compactnesses, C=0.12 and C=0.14, and compare them with a tidal extension of the effective-one-body (EOB) model. The typical numerical phasing errors over the ≃22 GW cycles are Δϕ≃±0.24 rad. By calibrating only one parameter (representing a higher-order amplification of tidal effects), the EOB model can reproduce, within the numerical error, the two numerical waveforms essentially up to the merger. By contrast, the third post-Newtonian Taylor-T4 approximant with leading-order tidal corrections dephases with respect to the numerical waveforms by several radians.
Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts
Energy Technology Data Exchange (ETDEWEB)
Yang, Zhaoqing; Wang, Taiping; Copping, Andrea; Geerlofs, Simon H.
2014-09-30
In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.
Effects of tidal gravitational fields in clustering dark energy models
Pace, Francesco; Reischke, Robert; Meyer, Sven; Schäfer, Björn Malte
2017-04-01
We extend a previous work by Reischke et al. by studying the effects of tidal shear on clustering dark energy models within the framework of the extended spherical collapse model and using the Zel'dovich approximation. As in previous works on clustering dark energy, we assumed a vanishing effective sound speed describing the perturbations in dark energy models. To be self-consistent, our treatment is valid only on linear scales since we do not intend to introduce any heuristic models. This approach makes the linear overdensity δc mass dependent and similarly to the case of smooth dark energy, its effects are predominant at small masses and redshifts. Tidal shear has effects of the order of per cent or less, regardless of the model and preserves a well-known feature of clustering dark energy: When dark energy perturbations are included, the models resemble better the Lambda cold dark matter evolution of perturbations. We also showed that effects on the comoving number density of haloes are small and qualitatively and quantitatively in agreement with what were previously found for smooth dark energy models.
Schnepf, N. R.; Kuvshinov, A.; Sabaka, T.
2015-01-01
A few studies convincingly demonstrated that the magnetic fields induced by the lunar semidiurnal (M2) ocean flow can be identified in satellite observations. This result encourages using M2 satellite magnetic data to constrain subsurface electrical conductivity in oceanic regions. Traditional satellite-based induction studies using signals of magnetospheric origin are mostly sensitive to conducting structures because of the inductive coupling between primary and induced sources. In contrast, galvanic coupling from the oceanic tidal signal allows for studying less conductive, shallower structures. We perform global 3-D electromagnetic numerical simulations to investigate the sensitivity of M2 signals to conductivity distributions at different depths. The results of our sensitivity analysis suggest it will be promising to use M2 oceanic signals detected at satellite altitude for probing lithospheric and upper mantle conductivity. Our simulations also suggest that M2 seafloor electric and magnetic field data may provide complementary details to better constrain lithospheric conductivity.
Modeling The Optical Emission Of Tidal Disruption Events
Lodato, Giuseppe; Bonnerot, C.; Rossi, E.; Franchini, A.
2016-10-01
In this talk, i will present some new advances in the theory of Tidal Disruption Events (TDE). TDEs occur when a star approaches a SMBH close enough to be torn apart by the black hole tidal field. The rapid accretion of the stellar debris produce a luminous, possibly super-Eddington flare, lighting up an otherwise quiescent black hole. In this talk, I will present some recent results concerning the formation and early evolution of an accretion disc formed by the stellar debris. The structure of the disc is strongly dependent on the thermal state of the gas, with efficient or inefficient cooling giving rise to either a thin disc or an extended torus/envelope surrounding the black hole. I will present the results of numerical simulations confirming this picture and including relativistic effects, which are essential for the formation of the disc. Finally, I will discuss the possible development of quasi periodic signals arising from Lense-Thirring precession around a spinning black hole.
Modeling effects of secondary tidal basins on estuarine morphodynamics
Nnafie, Abdel; Van Oyen, Tomas; De Maerschalck, Bart
2017-04-01
Many estuaries are situated in very densely populated areas with high economic activities that often conflict with their ecological values. For centuries, geometry and bathymetry of estuaries have been drastically modified trough engineering works such as embanking, sand extraction, channel deepening, land reclamations, etc. It is generally recognized that these works may increase the tidal range (e.g., Scheldt, Ems, Elbe) and turbidity (e.g., Loire, Ems) in estuaries [cf. Kerner, 2007; Wang et al., 2009; Winterwerp and Wang, 2013; Van Maren et al., 2015b,a]. In recent years, construction of secondary basins (also called retention basins) has gained increasing popularity among coastal managers to reduce tidal range and turbidity [Donner et al., 2012]. Previous studies have shown that location, geometry and number of secondary basins have a significant impact on tidal characteristics and sediment transport [Alebregtse and de Swart, 2014; Roos and Schuttelaars, 2015]. However, knowledge on how these secondary basins affect the morphodynamic development of estuaries on long time scales (order decades to centuries) is still lacking. The specific objectives of this study are twofold. First, to investigate effects of secondary basins on the long-term morphodynamic evolution of estuaries. In particular, effects of the presence of such a basin on the morphodynamic evolution of the main channel in the estuary and the physics underlying channel migration will be examined. For this, the Western Scheldt estuary (situated in the Netherlands) is used as a case study, which used to consist of multiple secondary tidal basins that were located at different positions in the estuary, and which have been gradually closed off between 1800 and 1968. Second, to systematically quantify sensitivity of model results to location, geometry, and to number of secondary basins. To this end, the state-of-the- art numerical model Delft3D is used, which has been successfully applied to
Modelling sediment transport processes in macro-tidal estuary
Institute of Scientific and Technical Information of China (English)
Rauen; William; B.
2009-01-01
This paper outlines a numerical modeling study to predict the sediment transport processes in a macro-tidal estuary, namely the Mersey Estuary, UK. An integrated numerical model study is conducted to investigate the interaction between the hydrodynamic, morphological and sediment transport processes occurring in the estuary. The numerical model widely used in environmental sediment transport studies worldwide, namely ECOMSED is used to simulate flow and sediment transport in estuary. A wetting and drying scheme is proposed and applied to the model, which defines "dry" cells as regions with a thin film of fluid O (cm). The primitive equations are solved in the thin film as well as in other regular wet cells. A model for the bed load transport is included in the code to account for the dynamics of the mobile bed boundary. The bed evolution due to bed load transport which is calculated according to van Rijn (1984a) is obtained by solving the sediment mass-balance equation. An estuary-related laboratory flume experiment is used to verify the model. Six sets of field measured hydrodynamic data are used to verify the corresponding predictions of the model, with the model-predicted water elevations and salinity levels generally agreeing well with the field measurements. The numerical model results show that in the Mersey Estuary both the tidal level and river discharge affect significantly the sediment transport. Reasonable agreement between the model results and field data has been obtained, indicating that the model can be used as computer-based tool for the environment management of estuarine system.
Truncated $\\gamma$-exponential models for tidal stellar systems
Gomez-Leyton, Y J
2016-01-01
We introduce a parametric family of models to characterize the properties of astrophysical systems in a quasi-stationary evolution under the incidence evaporation. We start from an one-particle distribution $f_{\\gamma}\\left(\\mathbf{q},\\mathbf{p}|\\beta,\\varepsilon_{s}\\right)$ that considers an appropriate deformation of Maxwell-Boltzmann form with inverse temperature $\\beta$, in particular, a power-law truncation at the scape energy $\\varepsilon_{s}$ with exponent $\\gamma>0$. This deformation is implemented using a generalized $\\gamma$-exponential function obtained from the \\emph{fractional integration} of ordinary exponential. As shown in this work, this proposal generalizes models of tidal stellar systems that predict particles distributions with \\emph{isothermal cores and polytropic haloes}, e.g.: Michie-King models. We perform the analysis of thermodynamic features of these models and their associated distribution profiles. A nontrivial consequence of this study is that profiles with isothermal cores and p...
High-resolution modeling assessment of tidal stream resource in Western Passage of Maine, USA
Yang, Zhaoqing; Wang, Taiping; Feng, Xi; Xue, Huijie; Kilcher, Levi
2017-04-01
Although significant efforts have been taken to assess the maximum potential of tidal stream energy at system-wide scale, accurate assessment of tidal stream energy resource at project design scale requires detailed hydrodynamic simulations using high-resolution three-dimensional (3-D) numerical models. Extended model validation against high quality measured data is essential to minimize the uncertainties of the resource assessment. Western Passage in the State of Maine in U.S. has been identified as one of the top ranking sites for tidal stream energy development in U.S. coastal waters, based on a number of criteria including tidal power density, market value and transmission distance. This study presents an on-going modeling effort for simulating the tidal hydrodynamics in Western Passage using the 3-D unstructured-grid Finite Volume Community Ocean Model (FVCOM). The model domain covers a large region including the entire the Bay of Fundy with grid resolution varies from 20 m in the Western Passage to approximately 1000 m along the open boundary near the mouth of Bay of Fundy. Preliminary model validation was conducted using existing NOAA measurements within the model domain. Spatial distributions of tidal power density were calculated and extractable tidal energy was estimated using a tidal turbine module embedded in FVCOM under different tidal farm scenarios. Additional field measurements to characterize resource and support model validation were discussed. This study provides an example of high resolution resource assessment based on the guidance recommended by the International Electrotechnical Commission Technical Specification.
A two-dimensional hydrodynamic model of a tidal estuary
Walters, Roy A.; Cheng, Ralph T.
1979-01-01
A finite element model is described which is used in the computation of tidal currents in an estuary. This numerical model is patterned after an existing algorithm and has been carefully tested in rectangular and curve-sided channels with constant and variable depth. One of the common uncertainties in this class of two-dimensional hydrodynamic models is the treatment of the lateral boundary conditions. Special attention is paid specifically to addressing this problem. To maintain continuity within the domain of interest, ‘smooth’ curve-sided elements must be used at all shoreline boundaries. The present model uses triangular, isoparametric elements with quadratic basis functions for the two velocity components and a linear basis function for water surface elevation. An implicit time integration is used and the model is unconditionally stable. The resultant governing equations are nonlinear owing to the advective and the bottom friction terms and are solved iteratively at each time step by the Newton-Raphson method. Model test runs have been made in the southern portion of San Francisco Bay, California (South Bay) as well as in the Bay west of Carquinez Strait. Owing to the complex bathymetry, the hydrodynamic characteristics of the Bay system are dictated by the generally shallow basins which contain deep, relict river channels. Great care must be exercised to ensure that the conservation equations remain locally as well as globally accurate. Simulations have been made over several representative tidal cycles using this finite element model, and the results compare favourably with existing data. In particular, the standing wave in South Bay and the progressive wave in the northern reach are well represented.
Energy Technology Data Exchange (ETDEWEB)
Yang, Zhaoqing; Wang, Taiping
2016-06-24
This paper presents a modeling study conducted to evaluate tidal-stream energy extraction and its associated potential environmental impacts using a three-dimensional unstructured-grid coastal ocean model, which was coupled with a water-quality model and a tidal-turbine module.
Mechanics and rates of tidal inlet migration: Modeling and application to natural examples
Nienhuis, Jaap H.; Ashton, Andrew D.
2016-11-01
Tidal inlets on barrier coasts can migrate alongshore hundreds of meters per year, often presenting great management and engineering challenges. Here we perform model experiments with migrating tidal inlets in Delft3D-SWAN to investigate the mechanics and rates of inlet migration. Model experiments with obliquely approaching waves suggest that tidal inlet migration occurs due to three mechanisms: (1) littoral sediment deposition along the updrift inlet bank, (2) wave-driven sediment transport preferentially eroding the downdrift bank of the inlet, and (3) flood-tide-driven flow preferentially cutting along the downdrift inlet bank because it is less obstructed by flood-tidal delta deposits. To quantify tidal inlet migration, we propose and apply a simple mass balance framework of sediment fluxes around inlets that includes alongshore sediment bypassing and flood-tidal delta deposition. In model experiments, both updrift littoral sediment and the eroded downdrift inlet bank are sediment sources to the growing updrift barrier and the flood-tidal delta, such that tidal inlets can be net sink of up to 150% of the littoral sediment flux. Our mass balance framework demonstrates how, with flood-tidal deltas acting as a littoral sediment sink, migrating tidal inlets can drive erosion of the downdrift barrier beach. Parameterizing model experiments, we propose a predictive model of tidal inlet migration rates based upon the relative momentum flux of the inlet jet and the alongshore radiation stress; we then compare these predicted migration rates to 22 natural tidal inlets along the U.S. East Coast and find good agreement.
Tidal interactions - crude body model in dynamical investigations
Gabryszewski, Ryszard
2011-01-01
The paper presents results of investigations of small bodies dynamics in a vicinity of giant planets. We used the most simple body model: gravitationally bounded, rotating contact binary affected by the tidal force acting from a planet. Spin variations of such binaries were extensively studied during planetary close encounters. Two main types of dynamical behaviour were observed: (i) huge but interim fluctuations of the angular velocity and (ii) permanent changes of a rotation during a close approach. The first type is observed mainly for fast rotators, while the second one was encountered in a population of slowly spinning objects with periods longer than 12 hours. Conclusions on usability of such crude physical body models in dynamical investigations and a comparison to previous results were attached. The results allow us to formulate a thesis explaining the phenomenon of creation of the extremely slow rotators and an observational excess of such type of objects.
Wei, Xiaojie; Steel, Ronald J.; Ravnås, Rodmar; Jiang, Zaixing; Olariu, Cornel; Li, Zhiyang
2016-04-01
Detailed observations on the Rannoch Formation in several deep Viking Graben wells indicate that the 'classical' wave-dominated Brent delta-front shows coupled storm-tide processes. The tidal signals are of three types: I): alternations of thick cross-laminated sandstone and thin mud-draped sandstone, whereby double mud drapes are prominent but discretely distributed, II): a few tidal bundles within bottomsets and foresets of up to 10 cm-thick sets cross-strata, and III): dm-thick heterolithic lamination showing multiple, well-organized sand-mud couplets. During progradation of the Brent Delta, the Rannoch shoreline system passed upward from 1) a succession dominated by clean-water, storm-event sets and cosets frequently and preferentially interbedded with type I tidal beds, and occasional types II and III tidal deposits, toward 2) very clean storm-event beds less frequently separated by types II and III tidal beds, and then into 3) a thin interval showing muddier storm-event beds mainly alternating with type II tidal beds. It is likely that those variations in preservation bias of storm and tidal beds in each facies succession result from combined effects of 1) the frequency and duration of storms; 2) river discharge; and 3) the absolute and relative strength of tides. Tidal deposits are interpreted as inter-storm, fair-weather deposits, occurred preferentially in longer intermittent fair-weather condition and periods of lower river discharge, and well-pronounced in the distal-reach of delta-front. The formation and preservation of tidal signals between storm beds, indicate that the studied Rannoch Formation was most likely a storm-dominated, tide-influenced delta front 1) near the mouth of a large Brent river, where a significant tidal prism and high tidal range might be expected, and 2) in a setting where there were relatively high sedimentation rates associated with high local subsidence rates, so that the storm waves did not completely rework the inter
Yuan, Bing; de Swart, Huib E.; Panadès, Carles
2016-09-01
Tidal sand ridges and long bed waves are large-scale bedforms that are observed on continental shelves. They differ in their wavelength and in their orientation with respect to the principal direction of tidal currents. Previous studies indicate that tidal sand ridges appear in areas where tidal currents are above 0.5 m s-1, while long bed waves occur in regions where the maximum tidal current velocity is slightly above the critical velocity for sand erosion and the current is elliptical. An idealized nonlinear numerical model was developed to improve the understanding of the initial formation of these bedforms. The model governs the feedbacks between tidally forced depth-averaged currents and the sandy bed on the outer shelf. The effects of different formulations of bed shear stress and sand transport, tidal ellipticity and different tidal constituents on the characteristics of these bedforms (growth rate, wavelength, orientation of the preferred bedforms) during their initial formation were examined systematically. The results show that the formulations for bed shear stress and slope-induced sand transport are not critical for the initial formation of these bedforms. For tidal sand ridges, under rectilinear tidal currents, increasing the critical bed shear stress for sand erosion decreases the growth rate and the wavelength of the preferred bedforms significantly, while the orientation angle slightly decreases. The dependence of the growth rate, wavelength and the orientation of the preferred bedforms on the tidal ellipticity is non-monotonic. A decrease in tidal frequency results in preferred bedforms with larger wavelength and smaller orientation angle, while their growth rate hardly changes. In the case of joint diurnal and semidiurnal tides, or spring-neap tides, the characteristics of the bedforms are determined by the dominant tidal constituent. For long bed waves, the number of anticyclonically/cyclonically oriented bedforms with respect to the principal
Tidal Analysis Using Time–Frequency Signal Processing and Information Clustering
Directory of Open Access Journals (Sweden)
Antonio M. Lopes
2017-07-01
Full Text Available Geophysical time series have a complex nature that poses challenges to reaching assertive conclusions, and require advanced mathematical and computational tools to unravel embedded information. In this paper, time–frequency methods and hierarchical clustering (HC techniques are combined for processing and visualizing tidal information. In a first phase, the raw data are pre-processed for estimating missing values and obtaining dimensionless reliable time series. In a second phase, the Jensen–Shannon divergence is adopted for measuring dissimilarities between data collected at several stations. The signals are compared in the frequency and time–frequency domains, and the HC is applied to visualize hidden relationships. In a third phase, the long-range behavior of tides is studied by means of power law functions. Numerical examples demonstrate the effectiveness of the approach when dealing with a large volume of real-world data.
Numerical modelling of tides and tidal currents in the Gulf of Kutch
Digital Repository Service at National Institute of Oceanography (India)
Unnikrishnan, A.S.
An application of a two-dimensional tidal model to study the tidal regime in the Gulf of Kutch is made. This is with a view to synthesise various information on tides and currents that are available in the Gulf. A comparison of surface elevations...
Modeling the effect of nonuniform sediment on the dynamics of offshore tidal sandbanks
Roos, Pieter C.; Wemmenhove, Rik; Hulscher, Suzanne J. M. H.; Hoeijmakers, Harry W. M.; Kruyt, N. P.
2007-01-01
[1] Tidal sandbanks are large-scale bed features present in many shallow shelf seas. Here we investigate the effect of nonuniform sediment on their dynamics, with a particular aim to explain observed surficial grain size variations over tidal sandbanks from a process-based modeling perspective. To t
Explicitly modelled deep-time tidal dissipation and its implication for Lunar history
Green, J. A. M.; Huber, M.; Waltham, D.; Buzan, J.; Wells, M.
2017-03-01
Dissipation of tidal energy causes the Moon to recede from the Earth. The currently measured rate of recession implies that the age of the Lunar orbit is 1500 My old, but the Moon is known to be 4500 My old. Consequently, it has been proposed that tidal energy dissipation was weaker in the Earth's past, but explicit numerical calculations are missing for such long time intervals. Here, for the first time, numerical tidal model simulations linked to climate model output are conducted for a range of paleogeographic configurations over the last 252 My. We find that the present is a poor guide to the past in terms of tidal dissipation: the total dissipation rates for most of the past 252 My were far below present levels. This allows us to quantify the reduced tidal dissipation rates over the most resent fraction of lunar history, and the lower dissipation allows refinement of orbitally-derived age models by inserting a complete additional precession cycle.
Analytic modelling of tidal effects in the relativistic inspiral of binary neutron stars
Baiotti, Luca; Giacomazzo, Bruno; Nagar, Alessandro; Rezzolla, Luciano
2010-01-01
To detect the gravitational-wave signal from binary neutron stars and extract information about the equation of state of matter at nuclear density, it is necessary to match the signal with a bank of accurate templates. We have performed the longest (to date) general-relativistic simulations of binary neutron stars with different compactnesses and used them to constrain a tidal extension of the effective-one-body model so that it reproduces the numerical waveforms accurately and essentially up to the merger. The typical errors in the phase over the $\\simeq 22$ gravitational-wave cycles are $\\Delta \\phi\\simeq \\pm 0.24$ rad, thus with relative phase errors $\\Delta \\phi/\\phi \\simeq 0.2%$. We also show that with a single choice of parameters, the effective-one-body approach is able to reproduce all of the numerically-computed phase evolutions, in contrast with what found when adopting a tidally corrected post-Newtonian Taylor-T4 expansion.
Horii, Takanori; Ueki, Iwao; Syamsudin, Fadli; Sofian, Ibnu; Ando, Kentaro
2016-04-01
Sea level variations along the coasts of Sumatra and Java were investigated to determine the coastal upwelling signal that is linked to local sea surface temperature (SST) variability. We used Indonesian tidal station data together with satellite SST data and atmospheric reanalysis data. The sea level variations along the southern coast of Java have a significant coherence with remote wind, local wind, and local SST variations, with an intraseasonal time scale of 20-50 days. Assuming that a coastal upwelling signal would appear as a sea level drop (SLD), we focused on intraseasonal-scale SLD events in the data. Significant upwelling signals are frequently observed during both the boreal summer and winter. To evaluate the impact of the coastal upwelling on local SST, we examined statistical relationships between sea level and SST variations. The results demonstrated that events that occurred during April-August were associated with local SST cooling. The horizontal distribution of the SST cooling was analogous with annual mean SST, suggesting the importance of intraseasonal-scale coastal upwelling in forming the climatic conditions of the southeastern tropical Indian Ocean.
Tidal Downsizing model - IV. Destructive feedback in planets
Nayakshin, Sergei
2016-09-01
The role of negative feedback from a massive solid core on its massive gas envelope in the Tidal Downsizing scenario of planet formation is investigated via one-dimensional planet evolution models followed by population synthesis calculations. It is shown that cores more massive than ˜10 M⊕ release enough energy to reverse contraction of their parent gas envelopes, culminating in their destruction. This process may help to explain why observed gas giant planets are so rare, why massive cores are so ubiquitous, and why there is a sharp rollover in the core mass function above ˜20 M⊕. Additionally, the short time-scales with which these massive cores are assembled in TD may help explain formation route of Uranus, Neptune and the suspected HL Tau planets. Given the negative role of cores in assembly of gas giants in the model, an antimony is found between massive cores and gas giants: cores in survived gas giant planets are on average less massive than cores free of massive envelopes. In rare circumstances when core feedback self-regulates, extremely metal-rich gas giants, such as CoRoT-20b, a gas giant made of heavy elements by up to ˜50 per cent, can be made.
The tidal model. The healing potential of metaphor within a patient's narrative.
Barker, Phil
2002-07-01
1. The human experience of growth and development is a fluid phenomenon, occurring in small, barely visible changes. 2. The Tidal Model embraces a patient's expression of his or her experience by focusing on the lived experience of the narrative and its personally meaningful metaphors and symbols. 3. To re-empower a patient, the Tidal Model assessment is written in the patient's own voice and all care planning is conducted conjointly. 4. The Tidal Model was developed from empirical studies of the perceived need for nursing and the process of empowerment in clinical nursing practice.
Numerical Simulation of Tidal Evolution of a Viscoelastic Body Modeled with a Mass-Spring Network
Frouard, Julien; Efroimsky, Michael; Giannella, David
2016-01-01
We use a damped mass-spring model within an N-body code, to simulate the tidal evolution of the spin and orbit of a viscoelastic spherical body moving around a point-mass perturber. The damped spring-mass model represents a Kelvin-Voigt viscoelastic solid. We derive the tidal quality function (the dynamical Love number $\\,k_2\\,$ divided by the tidal quality factor $\\,Q\\,$) from the numerically computed tidal drift of the semimajor axis of the binary. The obtained shape of $\\,k_2/Q\\,$, as a function of the principal tidal frequency, reproduces the typical kink shape predicted by Efroimsky (2012a; CeMDA 112$\\,:\\,$283) for the tidal response of near-spherical homogeneous viscoelastic rotators. Our model demonstrates that we can directly simulate the tidal evolution of viscoelastic objects. This opens the possibility for investigating more complex situations, since the employed spring-mass N-body model can be generalised to inhomogeneous and/or non-spherical bodies.
On the Tidal Evolution of the Earth-Moon System: A Cosmological Model
Directory of Open Access Journals (Sweden)
Arbab A. I.
2009-01-01
Full Text Available We have presented a cosmological model for the tidal evolution of the Earth-Moon system. We have found that the expansion of the universe has immense consequences on our local systems. The model can be compared with the present observational data. The close approach problem inflicting the known tidal theory is averted in this model. We have also shown that the astronomical and geological changes of our local systems are of the order of Hubble constant.
On the Tidal Evolution of the Earth-Moon System: A Cosmological Model
Directory of Open Access Journals (Sweden)
Arbab A. I.
2009-01-01
Full Text Available We have presented a cosmological model for the tidal evolution of the Earth-Moon system. We have found that the expansion of the universe has immense consequences on our local systems. The model can be compared with the present observational data. The close approach problem inflicting the known tidal theory is averted in this model. We have also shown that the astronomical and geological changes of our local systems are of the order of Hubble constant.
Modeling the dynamics of tidally-interacting binary neutron stars up to merger
Bernuzzi, Sebastiano; Dietrich, Tim; Damour, Thibault
2014-01-01
We propose an effective-one-body (EOB) model that describes the general relativistic dynamics of neutron star binaries from the early inspiral up to merger. Our EOB model incorporates an enhanced attractive tidal potential motivated by recent analytical advances in the post-Newtonian and gravitational self-force description of relativistic tidal interactions. No fitting parameters are introduced for the description of tidal interaction in the late, strong-field dynamics. We compare the model dynamics (described by the gauge invariant relation between binding energy and orbital angular momentum), and the gravitational wave phasing, with new high-resolution multi-orbit numerical relativity simulations of equal-mass configurations with different equations of state. We find agreement essentially within the uncertainty of the numerical data for all the configurations. Our model is the first semi-analytical model which captures the tidal amplification effects close to merger. It thereby provides the most accurate a...
Analytical models for the groundwater tidal prism and associated benthic water flux
King, Jeffrey N.; Mehta, Ashish J.; Dean, Robert G.
2010-01-01
The groundwater tidal prism is defined as the volume of water that inundates a porous medium, forced by one tidal oscillation in surface water. The pressure gradient that generates the prism acts on the subterranean estuary. Analytical models for the groundwater tidal prism and associated benthic flux are presented. The prism and flux are shown to be directly proportional to porosity, tidal amplitude, and the length of the groundwater wave; flux is inversely proportional to tidal period. The duration of discharge flux exceeds the duration of recharge flux over one tidal period; and discharge flux continues for some time following low tide. Models compare favorably with laboratory observations and are applied to a South Atlantic Bight study area, where tide generates an 11-m3 groundwater tidal prism per m of shoreline, and drives 81 m3 s −1 to the study area, which describes 23% of an observational estimate. In a marine water body, the discharge component of any oscillatory benthic water flux is submarine groundwater discharge. Benthic flux transports constituents between groundwater and surface water, and is a process by which pollutant loading and saltwater intrusion may occur in coastal areas.
Tidally modulated eruptions on Enceladus: Cassini ISS observations and models
Energy Technology Data Exchange (ETDEWEB)
Nimmo, Francis [Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064 (United States); Porco, Carolyn; Mitchell, Colin, E-mail: carolyn@ciclops.org [CICLOPS, Space Science Institute, Boulder, CO 80304 (United States)
2014-09-01
We use images acquired by the Cassini Imaging Science Subsystem (ISS) to investigate the temporal variation of the brightness and height of the south polar plume of Enceladus. The plume's brightness peaks around the moon's apoapse, but with no systematic variation in scale height with either plume brightness or Enceladus' orbital position. We compare our results, both alone and supplemented with Cassini near-infrared observations, with predictions obtained from models in which tidal stresses are the principal control of the eruptive behavior. There are three main ways of explaining the observations: (1) the activity is controlled by right-lateral strike slip motion; (2) the activity is driven by eccentricity tides with an apparent time delay of about 5 hr; (3) the activity is driven by eccentricity tides plus a 1:1 physical libration with an amplitude of about 0.°8 (3.5 km). The second hypothesis might imply either a delayed eruptive response, or a dissipative, viscoelastic interior. The third hypothesis requires a libration amplitude an order of magnitude larger than predicted for a solid Enceladus. While we cannot currently exclude any of these hypotheses, the third, which is plausible for an Enceladus with a subsurface ocean, is testable by using repeat imaging of the moon's surface. A dissipative interior suggests that a regional background heat source should be detectable. The lack of a systematic variation in plume scale height, despite the large variations in plume brightness, is plausibly the result of supersonic flow; the details of the eruption process are yet to be understood.
Numerical Modeling of Tidal Effects in Polytropic Accretion Discs
Godon, P.
1996-01-01
A two-dimensional time-dependent hybrid Fourier-Chebyshev method of collocation is developed and used for the study of tidal effects in accretion discs, under the assumption of a polytropic equation of state and a standard alpha viscosity prescription.
van Maanen, Barend; Coco, Giovanni; Bryan, Karin
2016-04-01
The evolution of tidal basins and estuaries in tropical and subtropical regions is often influenced by the presence of mangrove forests. These forests are amongst the most productive environments in the world and provide important ecosystem services. However, these intertidal habitats are also extremely vulnerable and are threatened by climate change impacts such as sea level rise. It is therefore of key importance to improve our understanding of how tidal systems occupied by mangrove vegetation respond to rising water levels. An ecomorphodynamic model was developed that simulates morphological change and mangrove forest evolution as a result of mutual feedbacks between physical and biological processes. The model accounts for the effects of mangrove trees on tidal flow patterns and sediment dynamics. Mangrove growth is in turn controlled by hydrodynamic conditions. Under stable water levels, model results indicate that mangrove trees enhance the initiation and branching of tidal channels, partly because the extra flow resistance in mangrove forests favours flow concentration, and thus sediment erosion in between vegetated areas. The landward expansion of the channels, on the other hand, is reduced. Model simulations including sea level rise suggest that mangroves can potentially enhance the ability of the soil surface to maintain an elevation within the upper portion of the intertidal zone. While the sea level is rising, mangroves are migrating landward and the channel network tends to expand landward too. The presence of mangrove trees, however, was found to hinder both the branching and headward erosion of the landward expanding channels. Simulations are performed according to different sea level rise scenarios and with different tidal range conditions to assess which tidal environments are most vulnerable. Changes in the properties of the tidal channel networks are being examined as well. Overall, model results highlight the role of mangroves in driving the
Directory of Open Access Journals (Sweden)
Gaurav Savant
2014-01-01
Full Text Available The adaptive hydraulics (AdH numerical code was applied to study tidal propagation in the Lower Columbia River (LCR estuary. The results demonstrate the readiness of this AdH model towards the further study of hydrodynamics in the LCR. The AdH model accurately replicated behavior of the tide as it propagated upstream into the LCR system. Results show that the MSf tidal component and the M4 overtidal component are generated in the middle LCR and contain a substantial amount of tidal energy. An analysis was performed to determine the causes of MSf tide amplification, and it was found that approximately 80% of the amplification occurs due to nonlinear interaction between the M2 and the S2 tidal components.
A Hydrodynamic Modelling Framework for Strangford Lough Part 1: Tidal Model
Directory of Open Access Journals (Sweden)
Louise Kregting
2014-01-01
Full Text Available Hydrodynamic models are a powerful tool that can be used by a wide range of end users to assist in predicting the effects of both physical and biological processes on local environmental conditions. This paper describes the development of a tidal model for Strangford Lough, Northern Ireland, a body of water renowned for the location of the first grid-connected tidal turbine, SeaGen, as well as the UK’s third Marine Nature Reserve. Using MIKE 21 modelling software, the development, calibration and performance of the model are described in detail. Strangford Lough has a complex flow pattern with high flows through the Narrows (~3.5 m/s linking the main body of the Lough to the Irish Sea and intricate flow patterns around the numerous islands. With the aid of good quality tidal and current data obtained throughout the Lough during the model development, the surface elevation and current magnitude between the observed and numerical model were almost identical with model skill >0.98 and >0.84 respectively. The applicability of the model is such that it can be used as an important tool for the prediction of important ecological processes as well as engineering applications within Strangford Lough.
Digital Repository Service at National Institute of Oceanography (India)
Manoj, N.T.
in shallow in- let/estuarine systems part I: Observations. Estuarine Coastal and Shelf Science, 21: 185–205, 1985. C. Bell, J. M. Vassie, and P. L. Woodworth. POL/PSMSL Tidal Analysis Software Kit 2000. Permanent Service for Mean Sea Level, CCMS Proudman... Particle Tracking Techniques Applied to Southern Australian Coastal Seas. Ph.D. thesis, De- partment of Applied Mathematics, The University of Adelaide, Australia., 2000. P. Hamilton. A numerical model of the vertical circulation of tidal estuaries and its...
Transport estimates in the Strait of Gibraltar with a tidal inverse model
Baschek, Burkard; Send, Uwe; Lafuente, Jesus Garcia; Candela, Julio
2001-12-01
To estimate the volume transport through the Strait of Gibraltar and to study the spatial structure of the time-variable flow, a varying number of current meter moorings were maintained at the eastern entrance of the strait between October 1994 and April 1998, and was complemented with intensive shipboard measurements during the European Union project Canary Island Azores Gibraltar Experiment (CANIGO). A tidal inverse model is used to merge these data sets in order to investigate the flow at the eastern entrance of the strait. The two-dimensional structure of the tidal flow was described by simple analytical functions. Harmonics with the seven most important tidal frequencies were used as temporal functions. With this model, the tidal currents can be predicted for any time and location at the eastern entrance of the strait, and more than 92% of the variance of the lower layer flow is explained. It was used to remove the tidal currents from the individual measurements and to calculate the mean flow through the strait from the residuals. Combined with a similar inverse model for determining the depth of the interface between Mediterranean and Atlantic water, the volume transport was estimated to be 0.81±0.07 Sv for the upper layer and -0.76±0.07 Sv for the lower layer. The correlation of the tidal currents and the fluctuations of the interface accounts for ˜7% of the transport at the eastern entrance.
Institute of Scientific and Technical Information of China (English)
SUN; Heping; Ducarme; Bernard; XU; Houze; Vandercoilden
2005-01-01
The adaptability of recent ocean tidal models and Earth tidal models is investigated comprehensively by means of 22 high precision tidal gravity observation series at 20 stations of the Global Geodynamics Project. Careful preprocessing of the original observations was carried out using international standard algorithms and the tidal gravity parameters were computed. The gravity load vectors of 8 main constituents are obtained based on loading computation theory and various global ocean models. The loading corrections of 14 secondary constituents are obtained based on a two-dimensional interpolation technique. Considering different characteristics of the wave amplitude, a method of "non-identical weighted mean" is developed for computing the averaged observed residual and remaining residual vectors at each station. The efficiency of the loading correction and the discrepancy between corrected amplitude factors and theoretical ones are analyzed. Meanwhile the calibration problem of the instruments is also discussed. After loading correction, the averaged tidal gravity parameters for all stations are obtained. The results show that the discrepancies between the global mean amplitude factors and theoretical values are less than 0.3%, the largest calibration error of the instruments is less than 0.5%. On the other hand, there are indications that the slight phase advance of K1 with respect to O1 in Mathews' theory could be verified by ground based tidal gravity observations.
Extracting Ocean-Generated Tidal Magnetic Signals from Swarm Data through Satellite Gradiometry
DEFF Research Database (Denmark)
Sabaka, Terence J.; Tyler, Robert H.; Olsen, Nils
2016-01-01
Ocean-generated magnetic field models of the Principal Lunar, M2, and the Larger Lunar elliptic, N2, semi-diurnal tidal constituents were estimated through a “Comprehensive Inversion" of the first 20.5 months of magnetic measurements from ESA's Swarm satellite constellation mission. While the con...
Extracting Ocean-Generated Tidal Magnetic Signals from Swarm Data through Satellite Gradiometry
DEFF Research Database (Denmark)
Sabaka, Terence J.; Tyler, Robert H.; Olsen, Nils
2016-01-01
Ocean-generated magnetic field models of the Principal Lunar, M2, and the Larger Lunar elliptic, N2, semi-diurnal tidal constituents were estimated through a “Comprehensive Inversion" of the first 20.5 months of magnetic measurements from ESA's Swarm satellite constellation mission. While the con...
Integration of Tidal Prism Model and HSPF for simulating indicator bacteria in coastal watersheds
Sobel, Rose S.; Rifai, Hanadi S.; Petersen, Christina M.
2017-09-01
Coastal water quality is strongly influenced by tidal fluctuations and water chemistry. There is a need for rigorous models that are not computationally or economically prohibitive, but still allow simulation of the hydrodynamics and bacteria sources for coastal, tidally influenced streams and bayous. This paper presents a modeling approach that links a Tidal Prism Model (TPM) implemented in an Excel-based modeling environment with a watershed runoff model (Hydrologic Simulation Program FORTRAN, HSPF) for such watersheds. The TPM is a one-dimensional mass balance approach that accounts for loading from tidal exchange, runoff, point sources and bacteria die-off at an hourly time step resolution. The novel use of equal high-resolution time steps in this study allowed seamless integration of the TPM and HSPF. The linked model was calibrated to flow and E. Coli data (for HSPF), and salinity and enterococci data (for the TPM) for a coastal stream in Texas. Sensitivity analyses showed the TPM to be most influenced by changes in net decay rates followed by tidal and runoff loads, respectively. Management scenarios were evaluated with the developed linked models to assess the impact of runoff load reductions and improved wastewater treatment plant quality and to determine the areas of critical need for such reductions. Achieving water quality standards for bacteria required load reductions that ranged from zero to 90% for the modeled coastal stream.
DEVELOPMENT OF COUPLED 1D-2D MATHEMATICAL MODELS FOR TIDAL RIVERS
Institute of Scientific and Technical Information of China (English)
XU Zu-xin; YIN Hai-long
2004-01-01
Some coupled 1D-2D hydrodynamic and water quality models depicting tidal water bodies with complex topography were presented. For the coupled models, finite element method was used to solve the governing equations so as to study tidal rivers with complex topography. Since the 1D and 2D models were coupled, the principle of model coupling was proposed to account appropriately for the factors of water level, flow and pollutant flux and the related dynamical behavior was simulated. Specifically the models were used to probe quantitative pollution contribution of receiving water from neighboring Jiangsu and Zhejiang Provinces to the pollution in the Huangpu River passing through Shanghai City. Numerical examples indicated that the developed coupled 1D-2D models are applicable in tidal river network region of Shanghai.
Bolla Pittaluga, M.; Seminara, G.; Tambroni, N.
2003-04-01
Idrauliche, Bologna, 21-23 Settembre. Bolla Pittaluga, M. 2003. Long term morphodynamic equilibrium of tidal channels: the role of overtides, settling lag and sediment supply. Submitted for publication on Water Resour. Res. Lanzoni, S. and Seminara, G. 2002. Long term evolution and morphodynamic equilibrium of tidal channels, J. Geoph. Res. , 107 (C1),1-13. Marani, M., Lanzoni, S., Zandolin, D., Seminara, G. and Rinaldo, A. 2002. Tidal meanders. Water Resour. Res., 38, 1225- 1239. Schuttelaars, H. M. and de Swart, H. E. 1996. An idealized long-term morphodynamic model of a tidal embayment, Eur. J. Mech., B/Fluids, 15, 55-80. Seminara, G. and Tubino, M. 2001. Sand bars in tidal channels. Part one: free bars. J. Fluid Mech., 440, 49-74. Solari, L., Seminara, G., Lanzoni, S., Marani, M. and Rinaldo, A. 2002. Sand bars in tidal channels. Part 2 Tidal meanders, J. Fluid Mech., 451, 203-238. Solari, L. and Toffolon, M. 2001. Equilibrium bottom topography in tidal meandering channel: preliminary results. In: IAHR-RCEM Symposium 2001, Japan. Tambroni, N., Bolla Pittaluga, M. and Seminara, G. 2003 a. Long term morphodynamic equilibrium of tidal channels: experimental observations. Submitted for publication on Water Resour. Res. Tambroni, N., Lanzoni, S and Seminara, G. 2003 b. Effect of tidal flats on tide propagation in convergent channels. EGS meeting , Nice.
Directory of Open Access Journals (Sweden)
Ming-Hsi Hsu
2013-04-01
Full Text Available Tidal stream speeds in straits are accelerated because of geographic and bathymetric features. For instance, narrow channels and shallows can cause high tidal stream energy. In this study, water level and tidal current were simulated using a three-dimensional semi-implicit Eulerian-Lagrangian finite-element model to investigate the complex tidal characteristics in the Taiwan Strait and to determine potential locations for harnessing tidal stream energy. The model was driven by nine tidal components (M2, S2, N2, K2, K1, O1, P1, Q1, and M4 at open boundaries. The modeling results were validated with the measured data, including water level and tidal current. Through the model simulations, we found that the highest tidal currents occurred at the Penghu Channel in the Taiwan Strait. The Penghu Channel is an appropriate location for the deployment of a tidal turbine array because of its deep and flat bathymetry. The impacts of energy extraction on hydrodynamics were assessed by considering the momentum sink approach. The simulated results indicate that only minimal impacts would occur on water level and tidal current in the Taiwan Strait if a turbine array (55 turbines was installed in the Penghu Channel.
Smith, P. J.; Beven, K.; Horsburgh, K.; Cullen, J.
2012-04-01
On rivers where the flow regime is influenced by a tidal signal the provision of accurate forecasts requires the careful coupling of predictive models for both the tidal signal and the rainfall driven river system. This paper discusses such a coupled modelling system constructed for the River Dee (UK). A series of parsimonious, physically interpretable time series models are used to represent the dynamics of the river water level at several gauging sites on the flood plain. These gauges are used operationally to help in determining the issuing of flood warnings. The simplified models are coupled and cast into a state space form. The assimilation of the observed water levels at the gauge sites to inform future forecasts is then a non-linear filter a solution to which is readily approximated. Assessment of the model forecasts against the observed data is carried out using a number of existing metrics. These suggest the model forecasts are a useful guide to the future water level. The representation of the forecast and its uncertainty to the operational staff is considered. A prototype of the sequential decision making process; based on the relative cost of 'true' or 'false' warnings; and designed to help guide the catchment manager in issuing warnings is presented.
Thermal tides and studies to tune the mechanistic tidal model using UARS observations
Directory of Open Access Journals (Sweden)
V. A. Yudin
Full Text Available Monthly simulations of the thermal diurnal and semidiurnal tides are compared to High-Resolution Doppler Imager (HRDI and Wind Imaging Interferometer (WINDII wind and temperature measurements on the Upper-Atmosphere Research Satellite (UARS. There is encouraging agreement between the observations and the linear global mechanistic tidal model results both for the diurnal and semidiurnal components in the equatorial and mid-latitude regions. This gives us the confidence to outline the first steps of an assimilative analysis/interpretation for tides, dissipation, and mean flow using a combination of model results and the global measurements from HRDI and WINDII. The sensitivity of the proposed technique to the initial guess employed to obtain a best fit to the data by tuning model parameters is discussed for the January and March 1993 cases, when the WINDII day and night measurements of the meridional winds between 90 and 110 km are used along with the daytime HRDI measurements. Several examples for the derivation of the tidal variables and decomposition of the measured winds into tidal and mean flow components using this approach are compared with previous tidal estimates and modeling results for the migrating tides. The seasonal cycle of the derived diurnal tidal amplitudes are discussed and compared with radar observation between 80 and 100 km and 40^{°}S and 40^{°}N.
Modelling channel network formation: the effect of tidal range and initial bathymetry
Coco, G.; van Maanen, B.; Bryan, K.
2010-12-01
Tidal embayments are of key importance to coastal communities because they can be used as transport routes and they are amongst the most productive ecosystems in the world. These environments can host extensive channel networks which have a strong control on the hydrodynamics and sediment transport. As a result, channel networks affect both the short- and long-term morphological evolution of tidal embayments. Despite their importance, observations of channel network formation involve large spatial and temporal scales so that detailed studies have rarely been reported. Modelling techniques have been developed which overcome the problem related to the difference in time scales over which hydrodynamic and morphodynamic processes occur. Here we use this type of models to assess the influence of tidal range and initial bathymetry on the long-term evolution of tidal basins and the formation of channel network patterns. A numerical model has been developed to simulate morphological evolution as a result of the interactions between hydrodynamics, sediment transport, and bed elevation change. Simulations were undertaken using idealised initial bathymetries consisting of an offshore area, inlet, and basin. Flow velocities are computed using an open source numerical model (ELCOM; Estuary and Lake Computer Model) that is based on the unsteady Reynolds-averaged Navier-Stokes equations for incompressible flow using the hydrostatic assumption. The computed flow velocities drive sediment transport, which is calculated using formulas widely adopted in sediment transport studies. Gradients in sediment transport rate yield morphological change which feed back into the hydrodynamic part of the model, thus coupling the different subsystems of the morphodynamic feedback loop. Model results indicate that morphodynamic interactions can cause channel initiation and potentially give rise to channel pattern development. Numerous simulations have been performed to test the sensitivity of the
Study of the turbulent wake behind a tidal turbine through different numerical models
Teymour Javaherchi Mozafari, Amir; Aliseda, Alberto; Antheaume, Sylvain; Seydel, Joseph; Polagye, Brian
2009-11-01
As developing sources of renewable energy becomes a critical priority, research in this field become more essential. A novel method to produce clean renewable energy is extraction from ocean tides via a turbine. Although energy generation from tidal currents has many similarities to wind, the balance between kinetic and potential energy is a key element in tidal channels that invalidates ``Betz's'' limit. Other practical differences arise from the concentrated nature of tidal resources which impose very close turbine spacing for economic reasons. These, together with the potential influence of geometric constraints imposed by free surface and tidal channel walls, makes the study of the turbulent wake in tidal energy extraction a very important problem in development of this technology from economical and environmental aspects. We will present numerical simulations of turbulent wake behind a well characterized two-bladed turbine using a hierarchy of different models: Actuator Disk, Virtual Blade, the Single and Multiple Reference Frame and Sliding Mesh model with various boundary conditions and inlet velocity profiles. We will compare the results, discuss the differences among these models and the potential for each one to answer questions about optimization of energy extraction and environmental impacts.
Modelling tidal influence on sea breezes with models of different complexity
Directory of Open Access Journals (Sweden)
Jana Fischereit
2016-09-01
Full Text Available Tides influence both the formation and development of sea breezes. The aim of this study is to investigate the tidal influence to decide which model complexity is needed to reproduce the main influence of tides in a numerical model of coastal meteorology. Two processes are considered: (a the influence of tides on sea breezes through the effect of tidal currents on the surface wind and (b the thermal influence through the flooding and drying of mudflats in the intertidal area. The processes are considered separately by representing the ocean in the non-hydrostatic mesoscale atmosphere model METRAS with different complexity, ranging from a homogeneous stationary surface to a shallow-water model coupled to METRAS with a two-way exchange of momentum. The model system is applied in a case study to the German Bight, where large mudflats exist at low tide.The results show that the main influence of tides originates from a change in the mudflat heat budget through flooding and drying. The influence of tidal currents on the surface wind is small. Therefore, we conclude that no coupled atmosphere-ocean model is needed to reproduce the main influence of tides on sea breezes in a numerical model. Instead, we suggest to use an atmosphere model which simulates the change of surface cover in the intertidal area and includes a realistic spatial sea surface temperature distribution. For this it is essential to simulate the change in surface cover with the correct timing because the results show that the atmosphere reacts very sensitively to that change.
Energy Technology Data Exchange (ETDEWEB)
Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.; Geerlofs, Simon H.
2014-10-01
Understanding and providing proactive information on the potential for tidal energy projects to cause changes to the physical system and to key water quality constituents in tidal waters is a necessary and cost-effective means to avoid costly regulatory involvement and late stage surprises in the permitting process. This paper presents a modeling study for evaluating the tidal energy extraction and its potential impacts on the marine environment in a real world site - Tacoma Narrows of Puget Sound, Washington State, USA. An unstructured-grid coastal ocean model, fitted with a module that simulates tidal energy devices, was applied to simulate the tidal energy extracted by different turbine array configurations and the potential effects of the extraction at local and system-wide scales in Tacoma Narrows and South Puget Sound. Model results demonstrated the advantage of an unstructured-grid model for simulating the far-field effects of tidal energy extraction in a large model domain, as well as assessing the near-field effect using a fine grid resolution near the tidal turbines. The outcome shows that a realistic near-term deployment scenario extracts a very small fraction of the total tidal energy in the system and that system wide environmental effects are not likely; however, near-field effects on the flow field and bed shear stress in the area of tidal turbine farm are more likely. Model results also indicate that from a practical standpoint, hydrodynamic or water quality effects are not likely to be the limiting factor for development of large commercial-scale tidal farms. Results indicate that very high numbers of turbines are required to significantly alter the tidal system; limitations on marine space or other environmental concerns are likely to be reached before reaching these deployment levels. These findings show that important information obtained from numerical modeling can be used to inform regulatory and policy processes for tidal energy development.
Barotropic tidal model for the Bombay High, Gulf of Khambhat and surrounding areas
Digital Repository Service at National Institute of Oceanography (India)
Unnikrishnan, A.S.; Shetye, S.R.; Michael, G.S.
A barotropic model is developed for the shelf region off the central west coast of India, which includes the regions of Bombay High and Gulf of Khambhat, in order to simulate tides and tidal currents in the region. The model is forced by a composite...
Tidal Downsizing model. II. Planet-metallicity correlations
Nayakshin, Sergei
2015-01-01
Core Accretion (CA), the de-facto accepted theory of planet formation, requires formation of massive solid cores as a prerequisite for assembly of gas giant planets. The observed metallicity correlations of exoplanets are puzzling in the context of CA. While gas giant planets are found preferentially around metal-rich host stars, planets smaller than Neptune orbit hosts with a wide range of metallicities. We propose an alternative interpretation of these observations in the framework of a recently developed planet formation hypothesis called Tidal Downsizing (TD). We perform population synthesis calculations based on TD, and find that the connection between the populations of the gas giant and the smaller solid-core dominated planets is non linear and not even monotonic. While gas giant planets formed in the simulations in the inner few AU region follow a strong positive correlation with the host star metallicity, the smaller planets do not. The simulated population of these smaller planets shows a shallow pe...
A Vertical Two-Dimensional Model to Simulate Tidal Hydrodynamics in A Branched Estuary
Institute of Scientific and Technical Information of China (English)
LIU Wen-Cheng; WU Chung-Hsing
2005-01-01
A vertical (laterally averaged) two-dimensional hydrodynamic model is developed for tides, tidal current, and salinity in a branched estuarine system. The governing equations are solved with the hydrostatic pressure distribution assumption and the Boussinesq approximation. An explicit scheme is employed to solve the continuity equations. The momentum and mass balance equations are solved implicitly in the Cartesian coordinate system. The tributaries are governed by the same dynamic equations. A control volume at the junctions is designed to conserve mass and volume transport in the finite difference schemes, based on the physical principle of continuum medium of fluid. Predictions by the developed model are compared with the analytic solutions of steady wind-driven circulatory flow and tidal flow. The model results for the velocities and water surface elevations coincide with analytic results. The model is then applied to the Tanshui River estuarine system. Detailed model calibration and verification have been conducted with measured water surface elevations,tidal current, and salinity distributions. The overall performance of the model is in qualitative agreement with the available field data. The calibrated and verified numerical model has been used to quantify the tidal prism and flushing rate in the Tanshui River-Tahan Stream, Hsintien Stream, and Keelung River.
Assessing the Performance of a Northern Gulf of Mexico Tidal Model Using Satellite Imagery
Directory of Open Access Journals (Sweden)
Stephen C. Medeiros
2013-11-01
Full Text Available Tidal harmonic analysis simulations along with simulations spanning four specific historical time periods in 2003 and 2004 were conducted to test the performance of a northern Gulf of Mexico tidal model. A recently developed method for detecting inundated areas based on integrated remotely sensed data (i.e., Radarsat-1, aerial imagery, LiDAR, Landsat 7 ETM+ was applied to assess the performance of the tidal model. The analysis demonstrates the applicability of the method and its agreement with traditional performance assessment techniques such as harmonic resynthesis and water level time series analysis. Based on the flooded/non-flooded coastal areas estimated by the integrated remotely sensed data, the model is able to adequately reproduce the extent of inundation within four sample areas from the coast along the Florida panhandle, correctly identifying areas as wet or dry over 85% of the time. Comparisons of the tidal model inundation to synoptic (point-in-time inundation areas generated from the remotely sensed data generally agree with the results of the traditional performance assessment techniques. Moreover, this approach is able to illustrate the spatial distribution of model inundation accuracy allowing for targeted refinement of model parameters.
Modelling the transverse distribution of velocity and suspended sediment in tidal estuaries
Huijts, K. M. H.
2011-01-01
An estuary is a semi-enclosed coastal body of water which has a free connection with the open sea and within which sea water is measurably diluted with fresh water derived from land drainage. Examples are the Western Scheldt River Estuary and the Chesapeake Bay. Within these environments complex patterns of velocity and suspended sediments are observed in the transversal plane (across-estuary and vertical), and sediments are trapped laterally (across-estuary). The transverse structure of velocity is relevant to the transport of salt, sediment, contaminants, oxygen and other material. High sediment concentrations affect water quality, ecology and wildlife, and may cause siltation of navigation channels and harbors. This work aims at a fundamental understanding of the transverse distributions of estuarine velocity and suspended sediment. The thesis provides two-dimensional (cross-sectional) analytical models to identify the effect of individual forcing mechanisms on the transverse distribution of velocity and suspended sediment in tidally-dominated estuaries. The models are based on the shallow water equations and sediment mass balance. Considered are the residual and the semi-diurnal tidal components of the along-estuary, across-estuary and vertical velocity and of the suspended sediment concentration. The models apply to partially to well-mixed tidal estuaries, relatively uniform along-channel conditions and weakly to moderately nonlinear flow. Horizontal density gradients are prescribed based on numerical or observational data. The analytical flows are decomposed into components induced by individual mechanisms. Considered are tides, horizontal residual density gradients, river discharge, stokes return flow, wind, the earth’s rotation, tidal variations in the across-channel density gradient and channel curvature. In addition, two tidally rectified along-channel residual flow mechanisms are considered, which result from net advection of along-channel tidal
Supharatid, Seree
2003-10-01
This paper presents the applicability of neural network (NN) modelling for forecasting and filtering problems. The multilayer feedforward (MLFF) network was first constructed to forecast the tidal-level variations at the mouth of the River Chao Phraya in Thailand. Unlike the well-known conventional harmonic analysis, the NN model uses a set of previous data for learning and then forecasting directly the time-series of tidal levels. It was found that lead time of 1 to 24 hourly tidal levels can be predicted successfully using only a short-time hourly learning data. The MLFF network was further used to establish a stage-discharge relationship for the tidal river. The results show a considerably better performance of the NN model over the conventional models. In addition, the stage-discharge relationship obtained by the NN model can indicate reasonably well the important behaviour of the tidal influences. Copyright
Toyama, H; Endo, Y; Ejima, Y; Matsubara, M; Kurosawa, S
2011-07-01
In neonates, small changes in tidal volumes (V(T)) may lead to complications. Previous studies have shown a significant difference between ventilator-measured tidal volume and tidal volume delivered (actual V(T)). We evaluated the accuracy of three different ventilators to deliver small V(T) during volume-controlled ventilation. We tested Servo 300, 840 ventilator and Evita 4 Neoflow ventilators with lung models simulating normal and injured neonatal lung compliance models. Gas volume delivered from the ventilator into the test circuit (V(TV)) and actual V(T) to the test lung were measured using Ventrak respiration monitors at set V(T) (30 ml). The gas volume increase of the breathing circuit was then calculated. Tidal volumes of the SV300 and PB840 in both lung models were similar to the set V(T) and the actual tidal volumes in the injured model (20.7 ml and 19.8 ml, respectively) were significantly less than that in the normal model (27.4 ml and 23.4 ml). PB840 with circuit compliance compensation could not improve the actual V(T). V(TV) of the EV4N in the normal and the injured models (37.8 ml and 46.6 ml) were markedly increased compared with set V(T), and actual V(T) were similar to set V(T) in the normal and injured model (30.2 ml and 31.9 ml, respectively). EV4N measuring V(T) close to the lung could match actual V(T) to almost the same value as the set V(T) however the gas volume of the breathing circuit was increased. If an accurate value for the patient's actual V(T) is needed, this V(T) must be measured by a sensor located between the Y-piece and the tracheal tube.
Effects of tidal shallowing and deepening on phytoplankton production dynamics: A modeling study
Lucas, L.V.; Cloern, J.E.
2002-01-01
Processes influencing estuarine phytoplankton growth occur over a range of time scales, but many conceptual and numerical models of estuarine phytoplankton production dynamics neglect mechanisms occurring on the shorter (e.g., intratidal) time scales. We used a numerical model to explore the influence of short time-scale variability in phytoplankton sources and sinks on long-term growth in an idealized water column that shallows and deepens with the semidiurnal tide. Model results show that tidal fluctuations in water surface elevation can determine whether long-term phytoplankton growth is positive or negative. Hourly-scale interactions influencing weekly-scale to monthly-scale phytoplankton dynamics include intensification of the depth-averaged benthic grazing effect by water column shallowing and enhancement of water column photosynthesis when solar noon coincides with low tide. Photosynthesis and benthic consumption may modulate over biweekly time scales due to spring-neap fluctuations in tidal range and the 15-d cycle of solar noon-low tide phasing. If tidal range is a large fraction of mean water depth, then tidal shallowing and deepening may significantly influence net phytoplankton growth. In such a case, models or estimates of long-term phytoplankton production dynamics that neglect water surface fluctuations may overestimate or underestimate net growth and could even predict the wrong sign associated with net growth rate.
Tidal Downsizing Model. IV. Destructive feedback in planets
Nayakshin, Sergei
2015-01-01
I argue that feedback is as important to formation of planets as it is to formation of stars and galaxies. Energy released by massive solid cores puffs up pre-collapse gas giant planets, making them vulnerable to tidal disruptions by their host stars. I find that feedback is the ultimate reason for some of the most robust properties of the observed exoplanet populations: the rarity of gas giants at all separations from $\\sim 0.1$ to $\\sim 100$~AU, the abundance of $\\sim 10 M_\\oplus$ cores but dearth of planets more massive than $\\sim 20 M_\\oplus$. Feedback effects can also explain (i) rapid assembly of massive cores at large separations as needed for Uranus, Neptune and the suspected HL Tau planets; (ii) the small core in Jupiter yet large cores in Uranus and Neptune; (iii) the existence of rare "metal monster" planets such as CoRoT-20b, a gas giant made of heavy elements by up to $\\sim 50$\\%.
What will Europa sound like? Modeling seismic background noise due to tidal cracking events
Panning, M. P.; Stähler, S. C.; Huang, H. H.; Vance, S.; Kedar, S.; Lorenz, R. D.; Pike, W. T.
2016-12-01
Seismology is a powerful tool for illuminating internal structure and dynamics in planetary bodies. With the plan for a Europa lander next decade, we have the opportunity to place a seismometer on the surface and greatly increase our knowledge of internal structure of the ocean world. In order to maximize return from such an instrument, we need to understand both predicted signals and noise. Instrument noise can be quantified well on Earth, but estimating the ambient noise of a planetary body is significantly more challenging. For Europa, we make an initial range of estimates of ambient noise due to ongoing tidally induced events within the ice shell. We estimate a range of cumulative moment releases based on tidal dissipation energy, and then create an assumed Gutenberg-Richter relationship (e.g. Golombek et al., 1992). We then use this relationship to generate random realizations of event catalogs with a length of 1 day, including all events down to a moment magnitude of -1, and generate continuous 3 component seismic records from these catalogs using a spectral element method (Instaseis/AxiSEM, van Driel et al., 2015). The seismic data are calculated using a range of thermodynamically self-consistent layered models of Europa structure, varying ice shell thickness and attenuation (e.g. Cammarano et al., 2006). The noise records are then used to define overall spectral characteristics of the noise and to test methods to take advantage of the ambient noise, such as autocorrelation techniques. Ambient noise characteristics are also compared with candidate instrument noise models which may be included in future Europa missions. F. Cammarano, V. Lekic, M. Manga, M.P. Panning, and B.A. Romanowicz (2006), "Long-period seismology on Europa: 1. Physically consistent interior models," J. Geophys. Res., 111, E12009, doi: 10.1029/2006JE002710. M. van Driel, L. Krischer, S.C. Stähler, K. Hosseini, and T. Nissen-Meyer (2015), "Instaseis: instant global seismograms based on a
Inferring tidal wetland stability from channel sediment fluxes: observations and a conceptual model
Ganju, Neil K.; Nidzieko, Nicholas J.; Kirwan, Matthew L.
2013-01-01
Anthropogenic and climatic forces have modified the geomorphology of tidal wetlands over a range of timescales. Changes in land use, sediment supply, river flow, storminess, and sea level alter the layout of tidal channels, intertidal flats, and marsh plains; these elements define wetland complexes. Diagnostically, measurements of net sediment fluxes through tidal channels are high-temporal resolution, spatially integrated quantities that indicate (1) whether a complex is stable over seasonal timescales and (2) what mechanisms are leading to that state. We estimated sediment fluxes through tidal channels draining wetland complexes on the Blackwater and Transquaking Rivers, Maryland, USA. While the Blackwater complex has experienced decades of degradation and been largely converted to open water, the Transquaking complex has persisted as an expansive, vegetated marsh. The measured net export at the Blackwater complex (1.0 kg/s or 0.56 kg/m2/yr over the landward marsh area) was caused by northwesterly winds, which exported water and sediment on the subtidal timescale; tidally forced net fluxes were weak and precluded landward transport of suspended sediment from potential seaward sources. Though wind forcing also exported sediment at the Transquaking complex, strong tidal forcing and proximity to a turbidity maximum led to an import of sediment (0.031 kg/s or 0.70 kg/m2/yr). This resulted in a spatially averaged accretion of 3.9 mm/yr, equaling the regional relative sea level rise. Our results suggest that in areas where seaward sediment supply is dominant, seaward wetlands may be more capable of withstanding sea level rise over the short term than landward wetlands. We propose a conceptual model to determine a complex's tendency toward stability or instability based on sediment source, wetland channel location, and transport mechanisms. Wetlands with a reliable portfolio of sources and transport mechanisms appear better suited to offset natural and
Baroclinic Effects on Tidal Propagation and Estuarine Circulation: an Idealized Modeling Analysis
Cao, Z.; Olabarrieta, M.
2016-02-01
This study evaluates the baroclinic effects on the propagation of a semidiurnal tide and on the estuarine circulation by applying a three-dimensional Regional Ocean Modeling System (ROMS) to an idealized estuary. Different riverine flows and tidal amplitudes are considered to generate various types of estuaries (from strongly stratified to well mixed) in the estuarine parameter space, which is based on the freshwater Froude number (Fr) and mixing number (M). Two groups of scenarios, with and without density difference between riverine flow and ocean water, are carried out. Tidal wave characteristics and residual currents of each scenario are investigated. In strongly stratified estuaries, the baroclinic effects result in a typical bidirectional estuarine circulation, with the surface water flowing downstream and bottom water flowing upstream; if no density variations are considered, the residual current will flow downstream. In well mixed estuaries, surface water goes upstream due to Stokes Drift and bottom water goes downstream as a compensating flow, which can be found in both barotropic and baroclinic simulations. In partially mixed estuaries, without considering the density variations, the estuarine circulation patterns are similar to those in well mixed estuaries; the baroclinic effects will generate a triple-directional estuarine circulation, characterized by a downstream flow below the tidal wave trough and an upstream flow close to the bottom; between the wave crest and trough the residual current is directed upstream due to the Stokes Drift. Tidal amplitude is increasingly amplified from estuary mouth to head in all scenarios, and the intensity of this amplification is larger in baroclinic simulations. The strongest baroclinic effects on the tidal propagation occur in partially mixed estuaries, where the tidal amplitude can increase up to 30% due to baroclinic effects.
A test for Io's magma ocean: Modeling tidal dissipation with a partially molten mantle
Bierson, C. J.; Nimmo, F.
2016-11-01
Magnetic induction measurements and astrometry provide constraints on the internal structure of Io, a volcanically active moon of Jupiter. We model the tidal response of a partially molten Io using an Andrade rheology which is supported by silicate deformation experiments. This model uses material properties similar to the Earth's mantle and includes feedbacks between partial melting, tidal heat production, and melt transport. We are able to satisfy constraints provided by the measured imaginary part of the tidal Love number Im(k2), the inferred depth and melt fraction of a near-surface partially molten layer, and the observed equatorial concentration of volcanic landforms. We predict a value for the real part of the tidal Love number of Re(k2) = 0.09 ± 0.02, much smaller than the value of Re(k2)≈0.5 predicted for an Io with a fluid magma ocean. Future spacecraft observations should be able to measure this value and test which model is correct.
Wetzel, Alfredo N; Cerovecki, Ivana; Hendershott, Myrl C; Karsten, Richard H; Miller, Peter D
2013-01-01
In this study the influence of stratification on surface tidal elevations in a two-layer analytical model is examined. The model assumes linearized, non-rotating, shallow-water dynamics in one dimension with astronomical forcing and allows for arbitrary topography. Both large scale (barotropic) and small scale (baroclinic) components of the surface tidal elevation are shown to be affected by stratification. It is also shown that the topography and basin boundaries affect the sensitivity of the barotropic surface tide to stratification significantly. In a companion paper it is shown that the barotropic tide in two-layer numerical models run in realistic global domains differs from its value in one-layer numerical models by amounts qualitatively consistent with analytic predictions from this paper. The analytical model also roughly predicts the sensitivity to perturbations in stratification in the two-layer domain model. Taken together, this paper and the companion paper therefore provide a framework to underst...
Bai, Sen; Lung, Wu-Seng
2006-01-01
Fecal coliform are widely used as bacterial indicator in the United States and around the world. Fecal coliform impaired water is highly possible to be polluted by pathogenic bacteria. The Tidal Basin and Washington Channel in Washington, DC are on the Total Maximum Daily Load (TMDL) list due to the high fecal coliform level. To support TMDL development, a three-dimensional numerical model of fecal coliform was developed using the EFDC framework. The model calculates the transport of fecal coliform under the influences of flap gate operations and tidal elevation. The original EFDC code was modified to calculate the die-off of fecal coliform under the impact of temperature and solar radiation intensity. The watershed contribution is expressed as storm water inflow and the load carried by the runoff. Model results show that fecal coliform vary strongly in space in both the Tidal Basin and Washington Channel. The storm water only impacts a small area around the storm water outfall in the Tidal Basin and the impacts are negligible in the Washington Channel due to dilution. The water from the Potomac River may affect the fecal coliform level in the area close to the flap gate in the Tidal Basin. The fecal coliform level in the Washington Channel is mainly controlled by the fecal coliform level in the Anacostia River, which is located at the open boundary of the Washington Channel. The potential sediment layer storage of fecal coliform was analyzed and it was found that the sediment layer fecal coliform level could be much higher than the water column fecal coliform level and becomes a secondary source under high bottom shear stress condition. The developed model built solid connection of fecal coliform source and concentration in the water column and has been used to develop TMDL.
RESEARCH ON HYDRODYNAMIC AND WATER QUALITY MODEL FOR TIDAL RIVER NETWORKS
Institute of Scientific and Technical Information of China (English)
Xu Zu-xin; Lu Shi-qiang
2003-01-01
Hydrodynamic and water quality model for tidal river network is set up with MIKE11 modeling system, according to the features of tidal river networks in plain area. The model was calibrated using the hydrological and water quality data of 1999, and the results show that the simulated values agree with the measured data very well. This model is used to numerically analyze the effects of low flow augmentation on hydrodynamic and water quality conditions of Suzhou Creek. The simulation results show that the flow augmentation can increase net discharge of Suzhou Creek and improve its ability of re-aeration; and its concentration of dissolved oxygen in the river networks can also increase correspondingly.
The influence of explicit tidal forcing in a climate ocean circulation model
Institute of Scientific and Technical Information of China (English)
YU Yi; LIU Hailong; LAN Jian
2016-01-01
The eight main tidal constituents have been implemented in the global ocean general circulation model with approximate 1° horizontal resolution. Compared with the observation data, the patterns of the tidal amplitudes and phases had been simulated fairly well. The responses of mean circulation, temperature and salinity are further investigated in the global sense. When implementing the tidal forcing, wind-driven circulations are reduced, especially those in coastal regions. It is also found that the upper cell transport of the Atlantic meridional overturning circulation (AMOC) reduces significantly, while its deep cell transport is slightly enhanced from 9×106 m3/s to 10×106 m3/s. The changes of circulations are all related to the increase of a bottom friction and a vertical viscosity due to the tidal forcing. The temperature and salinity of the model are also significantly affected by the tidal forcing through the enhanced bottom friction, mixing and the changes in mean circulation. The largest changes occur in the coastal regions, where the water is cooled and freshened. In the open ocean, the changes are divided into three layers: cooled and freshened on the surface and below 3 000 m, and warmed and salted in the middle in the open ocean. In the upper two layers, the changes are mainly caused by the enhanced mixing, as warm and salty water sinks and cold and fresh water rises; whereas in the deep layer, the enhancement of the deep overturning circulation accounts for the cold and fresh changes in the deep ocean.
Ishtiaq, K. S.; Abdul-Aziz, O. I.
2015-12-01
We developed user-friendly empirical models to predict instantaneous fluxes of CO2 and CH4 from coastal wetlands based on a small set of dominant hydro-climatic and environmental drivers (e.g., photosynthetically active radiation, soil temperature, water depth, and soil salinity). The dominant predictor variables were systematically identified by applying a robust data-analytics framework on a wide range of possible environmental variables driving wetland greenhouse gas (GHG) fluxes. The method comprised of a multi-layered data-analytics framework, including Pearson correlation analysis, explanatory principal component and factor analyses, and partial least squares regression modeling. The identified dominant predictors were finally utilized to develop power-law based non-linear regression models to predict CO2 and CH4 fluxes under different climatic, land use (nitrogen gradient), tidal hydrology and salinity conditions. Four different tidal wetlands of Waquoit Bay, MA were considered as the case study sites to identify the dominant drivers and evaluate model performance. The study sites were dominated by native Spartina Alterniflora and characterized by frequent flooding and high saline conditions. The model estimated the potential net ecosystem carbon balance (NECB) both in gC/m2 and metric tonC/hectare by up-scaling the instantaneous predicted fluxes to the growing season and accounting for the lateral C flux exchanges between the wetlands and estuary. The entire model was presented in a single Excel spreadsheet as a user-friendly ecological engineering tool. The model can aid the development of appropriate GHG offset protocols for setting monitoring plans for tidal wetland restoration and maintenance projects. The model can also be used to estimate wetland GHG fluxes and potential carbon storage under various IPCC climate change and sea level rise scenarios; facilitating an appropriate management of carbon stocks in tidal wetlands and their incorporation into a
Reduced order model for binary neutron star waveforms with tidal interactions
Lackey, Benjamin; Bernuzzi, Sebastiano; Galley, Chad
2016-03-01
Observations of inspiralling binary neutron star (BNS) systems with Advanced LIGO can be used to determine the unknown neutron-star equation of state by measuring the phase shift in the gravitational waveform due to tidal interactions. Unfortunately, this requires computationally efficient waveform models for use in parameter estimation codes that typically require 106-107 sequential waveform evaluations, as well as accurate waveform models with phase errors less than 1 radian over the entire inspiral to avoid systematic errors in the measured tidal deformability. The effective one body waveform model with l = 2 , 3, and 4 tidal multipole moments is currently the most accurate model for BNS systems, but takes several minutes to evaluate. We develop a reduced order model of this waveform by constructing separate orthonormal bases for the amplitude and phase evolution. We find that only 10-20 bases are needed to reconstruct any BNS waveform with a starting frequency of 10 Hz. The coefficients of these bases are found with Chebyshev interpolation over the waveform parameter space. This reduced order model has maximum errors of 0.2 radians, and results in a speedup factor of more than 103, allowing parameter estimation codes to run in days to weeks rather than decades.
Exomoon Climate Models with the Carbonate-Silicate Cycle and Viscoelastic Tidal Heating
Forgan, Duncan
2016-01-01
The habitable zone for exomoons with Earth-like properties is a non-trivial manifold, compared to that of Earth-like exoplanets. The presence of tidal heating, eclipses and planetary illumination in the exomoon energy budget combine to produce both circumstellar and circumplanetary habitable regions. Analytical calculations suggest that the circumplanetary habitable region is defined only by an inner edge (with its outer limits determined by orbital stability). Subsequent calculations using 1D latitudinal climate models indicated that the combined effect of eclipses and ice-albedo feedback can produce an outer edge to the circumplanetary habitable zone. But is this outer edge real, or an artefact of the climate model's relative simplicity? We present an upgraded 1D climate model of Earth-like exomoon climates, containing the carbonate-silicate cycle and viscoelastic tidal heating. We conduct parameter surveys of both the circumstellar and circumplanetary habitable zones, and we find that the outer circumplane...
Marani, Marco; Lanzoni, Stefano; Zandolin, Diego; Seminara, Giovanni; Rinaldo, Andrea
2002-11-01
Observational evidence is presented on the geometry of meandering tidal channels evolved within coastal wetlands characterized by different tidal, hydrodynamic, topographic, vegetational and ecological features. New insight is provided on the geometrical properties of tidal meanders, with possible dynamic implications on their evolution. In particular, it is shown that large spatial gradients of leading flow rates induce important spatial variabilities of meander wavelengths and widths, while their ratio remains remarkably constant in the range of scales of observation. This holds regardless of changes in width and wavelength up to two orders of magnitude. This suggests a locally adapted evolution, involving the morphological adjustment to the chief landforming events driven by local hydrodynamics. The spectral analysis of local curvatures reveals that Kinoshita's model curve does not fit tidal meanders due to the presence of even harmonics, in particular the second mode. Geometric parameters are constructed that are suitable to detect possible geomorphic signatures of the transitions from ebb- to flood-dominated hydrodynamics, here related to the skewness of the tidal meander. Trends in skewness, however, prove elusive to measure and fail to show detectable patterns. We also study comparatively the spatial patterns of evolution of the ratios of channel width to depth, and the ratio of width to local radius of curvature. Interestingly, the latter ratio exhibits consistency despite sharp differences in channel incision. Since the degree of incision, epitomized by the width-to-depth ratio, responds to the relevant erosion and migrations mechanisms and is much sensitive to vegetation and sediment properties, it is noticeable that we observe a great variety of landscape carving modes and yet recurrent planar features like constant width/curvature and wavelength/width ratios.
Horstman, E. M.; Dohmen-Janssen, C. M.; Bouma, T. J.; Hulscher, S. J. M. H.
2015-01-01
Tidal-scale biophysical interactions establish particular flow routing and sedimentation patterns in coastal mangroves. Sluggish water flows through the mangrove vegetation and enhanced sediment deposition are essential to maintain these valuable ecosystems, thereby enabling their contribution to coastal protection and stabilization. Spatially explicit field observations of tidal-scale flow routing and sediment deposition were obtained in an elevated mangrove stand dissected by tidal creeks, located in the Trang river estuary at the Thai Andaman coast. An accurate and efficient depth-averaged process-based numerical model of this field site was developed in Delft3D to study the contributions of various biogeophysical mangrove settings to the observed tidal dynamics and to study the impacts of changes of these environmental conditions. The creeks are found to form the major pathway for the tidal inflow during the lower tides, while the sheltered interior of the forest is an effective sediment sink during the higher tides. A numerical sensitivity analysis of the initial response-or adaptive capacity-of the studied mangrove system to instantaneous environmental changes reveals the stable state of the study site: deposition rates are largely imposed by the topography and relative elevation, while they are rather independent of the vegetation density. Deeper inundations of the mangroves favor sheet flows through the forest and spatially averaged deposition rates decrease, particularly when this coincides with decreasing vegetation densities. Moreover, the sediment trapping efficiency is found to reduce significantly with diminishing sediment inputs and with mangrove area losses. These results clearly indicate the sensitivity of mangroves' ecosystem engineering ability-in terms of sedimentation-to climate change and anthropogenic threats.
A GRAPH BASED MODEL FOR THE DETECTION OF TIDAL CHANNELS USING MARKED POINT PROCESSES
Directory of Open Access Journals (Sweden)
A. Schmidt
2015-08-01
Full Text Available In this paper we propose a new method for the automatic extraction of tidal channels in digital terrain models (DTM using a sampling approach based on marked point processes. In our model, the tidal channel system is represented by an undirected, acyclic graph. The graph is iteratively generated and fitted to the data using stochastic optimization based on a Reversible Jump Markov Chain Monte Carlo (RJMCMC sampler and simulated annealing. The nodes of the graph represent junction points of the channel system and the edges straight line segments with a certain width in between. In each sampling step, the current configuration of nodes and edges is modified. The changes are accepted or rejected depending on the probability density function for the configuration which evaluates the conformity of the current status with a pre-defined model for tidal channels. In this model we favour high DTM gradient magnitudes at the edge borders and penalize a graph configuration consisting of non-connected components, overlapping segments and edges with atypical intersection angles. We present the method of our graph based model and show results for lidar data, which serve of a proof of concept of our approach.
Multiscale Signal Analysis and Modeling
Zayed, Ahmed
2013-01-01
Multiscale Signal Analysis and Modeling presents recent advances in multiscale analysis and modeling using wavelets and other systems. This book also presents applications in digital signal processing using sampling theory and techniques from various function spaces, filter design, feature extraction and classification, signal and image representation/transmission, coding, nonparametric statistical signal processing, and statistical learning theory. This book also: Discusses recently developed signal modeling techniques, such as the multiscale method for complex time series modeling, multiscale positive density estimations, Bayesian Shrinkage Strategies, and algorithms for data adaptive statistics Introduces new sampling algorithms for multidimensional signal processing Provides comprehensive coverage of wavelets with presentations on waveform design and modeling, wavelet analysis of ECG signals and wavelet filters Reviews features extraction and classification algorithms for multiscale signal and image proce...
Zhang, Jicai; Lu, Xianqing; Wang, Ping; Wang, Ya Ping
2011-04-01
Data assimilation technique (adjoint method) is applied to study the similarities and the differences between the Ekman (linear) and the Quadratic (nonlinear) bottom friction parameterizations for a two-dimensional tidal model. Two methods are used to treat the bottom friction coefficient (BFC). The first method assumes that the BFC is a constant in the entire computation domain, while the second applies the spatially varying BFCs. The adjoint expressions for the linear and the nonlinear parameterizations and the optimization formulae for the two BFC methods are derived based on the typical Largrangian multiplier method. By assimilating the model-generated 'observations', identical twin experiments are performed to test and validate the inversion ability of the presented methodology. Four experiments, which employ the linear parameterization, the nonlinear parameterizations, the constant BFC and the spatially varying BFC, are carried out to simulate the M 2 tide in the Bohai Sea and the Yellow Sea by assimilating the TOPEX/Poseidon altimetry and tidal gauge data. After the assimilation, the misfit between model-produced and observed data is significantly decreased in the four experiments. The simulation results indicate that the nonlinear Quadratic parameterization is more accurate than the linear Ekman parameterization if the traditional constant BFC is used. However, when the spatially varying BFCs are used, the differences between the Ekman and the Quadratic approaches diminished, the reason of which is analyzed from the viewpoint of dissipation rate caused by bottom friction. Generally speaking, linear bottom friction parameterizations are often used in global tidal models. This study indicates that they are also applicable in regional ocean tidal models with the combination of spatially varying parameters and the adjoint method.
MODEL OF SEA ICE BREAKUP ON SHALLOW BEACH DUE TO TIDAL FLUCTUATION
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
There are many factors that may lead to the breakup of shore fast ice, such as wind, wave, tide and so on.This paper mainly analyzed the ice breakup on the shallow beach due to tidal fluctuation.The theoretical model was set up and the fitting range was given.The calculated result shows that the slope angle α, the ice thickness h, and the ice length l are key factors in determining the ice breakup length lp.
A comparative study of physical and numerical modeling of tidal network ontogeny
Zhou, Zeng; Olabarrieta, Maitane; Stefanon, Luana; D'Alpaos, Andrea; Carniello, Luca; Coco, Giovanni
2014-04-01
We investigate the initiation and long-term evolution of tidal networks by comparing controlled laboratory experiments and their associated scaling laws with outputs from a numerical model. We conducted numerical experiments at both the experimental laboratory scale (ELS) and natural estuary scale (NES) and compared these simulations with experimental data and field observations. Sensitivity tests show that initial bathymetry, frictional parametrization, sediment transport, and bed slope terms play an important role in determining the morphodynamic evolution and the final landscape. Consistent with experimental observations, the morphodynamic feedbacks between flow, sediment transport, and bathymetry gradually lead the system to a less dynamic state, finally reaching a stable network configuration. In both the ELS and NES simulations, the initially planar lagoon with large intertidal areas is subject to erosion, indicating ebb-dominance. Based on quantitative analyses of the ELS and the NES simulations (e.g., geometric characteristics and relationship between modified tidal prism and cross-sectional area), we conclude that numerical simulations are consistent with laboratory experiments and show that both type of models provide a realistic, albeit simplified, representation of natural systems. The combination of laboratory and numerical experiments also allowed us to explore the possibility of reaching a long-term morphodynamic equilibrium. Both the physical and numerical models approach a dynamic equilibrium characterized by negligible gradients in sediment fluxes. The equilibrium configuration appears to be consistent with traditional relationships linking tidal prism and cross-sectional area of the inlet. Finally, this contribution highlights the significance of complementary research between experimental and numerical modeling in investigating long-term morphodynamics of tidal networks.
Process-based modelling of tidally-influenced estuarine morphodynamics and bar architecture
van de Lageweg, Wietse; Feldman, Howard
2017-04-01
Estuaries represent one of the most dynamic environments on Earth with continuously changing channels and shoals of sand and mud that are driven by ebb and flood currents that interact with chemical and biological processes. These transition zones between terrestrial and marine environments generally have complex bar depositional patterns due to the dominance of river processes in proximal areas transitioning to the dominance of oceanic processes in distal areas. Although modern estuaries have been studied for many years, it is largely unknown in which manner basin geometry and tidal range impact bar formation, and how this would affect the subsurface architecture. This study applies the morphodynamic model Delft3D to test models of estuarine bar morphology and stratigraphy along the fluvial-tidal transition. Observations from the modern Columbia River estuary and idealized estuaries are combined to systematically evaluate estuarine hydrodynamics, bar formation and bar preservation. A unique aspect of the methodology is that morphological as well as subsurface data are collected, thus enabling the estuarine bar morphodynamics to be related explicitly to the associated depositional product. Model results highlight the complex and dynamic flow patterns in the Columbia River estuary, which are consistent with observations from local tide gauges. By systematically varying tidal range and basin width, it is shown that estuarine bar dimensions are primarily affected by estuary width, and that tidal range has a secondary effect. An increase in estuary width results in a higher bar braiding index, a larger number of bars as well as longer bars, wider bars and thicker bar deposits. Synthetic architectures that can be compared directly to the sedimentary record show a high degree of fragmentation within estuarine bars. Statistical distributions summarising the internal structure of estuarine bars provide much-needed quantification of the preservation of estuarine bars and
Experimental earth tidal models in considering nearly diurnal free wobble of the Earth's liquid core
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Based on the 28 series of the high precision and high minute sampling tidal gravity observations at 20 stations in Global Geodynamics Project (GGP) network, the resonant parameters of the Earth's nearly diurnal free wobble (including the eigenperiods, resonant strengths and quality factots) are precisely determined. The discrepancy of the eigenperiod between observed and theoretical values is studied, the important conclusion that the real dynamic ellipticity of the liquid core is about 5% larger than the one under the static equilibrium assumption is approved by using our gravity technique. The experimental Earth's tidal gravity models with considering the nearly diurnal free wobble of the Earth's liquid core are constructed in this study. The numerical results show that the difference among three experimental models is less than 0.1%, and the largest discrepancy compared to those widely used nowdays given by Dehant (1999) and Mathews (2001) is only about 0.4%. It can provide with the most recent real experimental tidal gravity models for the global study of the Earth's tides, geodesy and space techniques and so on.
Tidal Interaction between a Fluid Star and a Kerr Black Hole Relativistic Roche-Riemann Model
Wiggins, P; Wiggins, Paul; Lai, Dong
1999-01-01
We present a semi-analytic study of the equilibrium models of close binary systems containing a fluid star (mass $m$ and radius $R_0$) and a Kerr black hole (mass $M$) in circular orbit. We consider the limit $M\\gg m$ where spacetime is described by the Kerr metric. The tidally deformed star is approximated by an ellipsoid, and satisfies the polytropic equation of state. The models also include fluid motion in the stellar interior, allowing binary models with nonsynchronized stellar spin (as expected for coalescing neutron star--black hole binaries) to be constructed. Tidal disruption occurs at orbital radius $r_{\\rm tide}\\sim R_0(M/m)^{1/3}$, but the dimensionless ratio of the black hole as well as on the equation of state and the internal rotation of the star. We find that the general relativistic tidal field disrupts the star at a larger $\\hat r_{\\rm tide}$ than the Newtonian tide; the difference is particularly prominent if the disruption occurs in the vicinity of the black hole's horizon. In general, $\\h...
Meurers, B.; van Camp, M.; Petermans, T.
2005-12-01
We investigate how far tidal analysis results can be improved when a rain fall admittance model is applied on the superconducting gravity (SG) data. For that purpose both Vienna and Membach data have been analysed with and without a priori rain fall correction. In Membach the residual drop for most events (80%) can be explained by the rain water load, while in Vienna only 50% of all events fit the model in detail. In the other cases the Newtonian effect of vertical air mass redistribution (vertical density variation without air pressure change), predominantly connected with high vertical convection activity, e.g. thunderstorms, plays an essential role: short-term atmospheric signals show up steep gravity residual decreases of a few nms-2 within 10 - 60 min, well correlated with outdoor air temperature in most cases. However, even in those cases the water load model is able to explain the dominating part of the residual drop especially during heavy rain fall. In Vienna more than 110 events have been detected over 10 years. 84% of them are associated with heavy rain starting at or up to 10 min later than the residual drop while the rest (16%) shows no or only little rainfall. The magnitude of the gravity drop depends on the total amount of rainfall accumulated during the meteorological event. Step like signals deteriorate the frequency spectrum estimates. This even holds for tidal analysis. As the drops are of physical origin, they should not be eliminated blindly but corrected using water load modeling constrained by high temporal resolution (1 min) rain data. 3D modeling of the water mass load due to a rain event is based on the following assumptions: (1) Rain water intrudes into the uppermost soil layer (close to the topography surface) and remains there at least until rain has stopped. This is justified for a period of some hours after the rainfall as evapotranspiration is not yet effective. (2) No run-off except of sealed areas or building roofs, where water can
Digital Repository Service at National Institute of Oceanography (India)
Balachandran, K.K.; Reddy, G.S.; Revichandran, C.; Srinivas, K.; Vijayan, P.R.; Thottam, T.J.
Tidal circulation in the Cochin Estuary, a moderately polluted estuary along the southwest coast of India, was studied using a 2D hydrodynamic model. The predicted tides and currents showed very good agreement with measured tides. Particle...
Tidal dynamics of the Terminos Lagoon, Mexico: observations and 3D numerical modelling
Contreras Ruiz Esparza, Adolfo; Douillet, Pascal; Zavala-Hidalgo, Jorge
2014-09-01
The tidal circulation patterns in the Terminos Lagoon were studied based on the analysis of 1 year of measurements and numerical simulations using a baroclinic 3D hydrodynamic model, the MARS3D. A gauging network was installed consisting of six self-recording pressure-temperature sensors, a tide gauge station and two current profilers, with pressure and temperature sensors moored in the main lagoon inlets. Model simulations were validated against current and sea level observations and were used to analyse the circulation patterns caused by the tidal forcing. The numerical model was forced with eight harmonic components, four diurnal ( K 1, O 1, P 1, Q 1) and four semi-diurnal ( M 2, S 2, N 2, K 2), extracted from the TPX0.7 database. The tidal patterns in the study area vary from mixed, mainly diurnal in the two main inlets of the lagoon, to diurnal in its interior. The tidal residual circulation inside the lagoon is dominated by a cyclonic gyre. The results indicate a net flux from the southwest Ciudad del Carmen inlet (CdC) towards the northeast Puerto Real inlet (PtR) along the southern side of the lagoon and the opposite in the northern side. The results indicate two areas of strong currents in the vicinity of the inlets and weak currents inside the lagoon. The area of strong currents in the vicinity of the CdC inlet is larger than that observed in the PtR inlet. Nevertheless, the current analysis indicates that the highest current speeds, which can reach a magnitude of 1.9 m s-1, occurred in PtR. A further analysis of the tide distortion in the inlets revealed that both passages are ebb dominated.
Tidal simulation using regional ocean modeling systems (ROMS)
Wang, Xiaochun; Chao, Yi; Li, Zhijin; Dong, Changming; Farrara, John; McWilliams, James C.; Shum, C. K.; Wang, Yu; Matsumoto, Koji; Rosenfeld, Leslie K.; Paduan, Jeffrey D.
2006-01-01
The purpose of our research is to test the capability of ROMS in simulating tides. The research also serves as a necessary exercise to implement tides in an operational ocean forecasting system. In this paper, we emphasize the validation of the model tide simulation. The characteristics and energetics of tides of the region will be reported in separate publications.
Computational Actuator Disc Models for Wind and Tidal Applications
Directory of Open Access Journals (Sweden)
B. Johnson
2014-01-01
Full Text Available This paper details a computational fluid dynamic (CFD study of a constantly loaded actuator disc model featuring different boundary conditions; these boundary conditions were defined to represent a channel and a duct flow. The simulations were carried out using the commercially available CFD software ANSYS-CFX. The data produced were compared to the one-dimensional (1D momentum equation as well as previous numerical and experimental studies featuring porous discs in a channel flow. The actuator disc was modelled as a momentum loss using a resistance coefficient related to the thrust coefficient (CT. The model showed good agreement with the 1D momentum theory in terms of the velocity and pressure profiles. Less agreement was demonstrated when compared to previous numerical and empirical data in terms of velocity and turbulence characteristics in the far field. These models predicted a far larger velocity deficit and a turbulence peak further downstream. This study therefore demonstrates the usefulness of the duct boundary condition (for computational ease for representing open channel flow when simulating far field effects as well as the importance of turbulence definition at the inlet.
Hydrodynamic and Sediment Modelling within a Macro Tidal Estuary: Port Curtis Estuary, Australia
Directory of Open Access Journals (Sweden)
Ryan J. K. Dunn
2015-07-01
Full Text Available An understanding of sediment transport processes and resultant concentration dynamics in estuaries is of great importance to engineering design awareness and the management of these environments. Predictive modelling approaches provide an opportunity to investigate and address potential system responses to nominated events, changes, or conditions of interest, often on high temporal and spatial resolution scales. In this study, a three-dimensional hydrodynamic model and wave model were validated and applied to generate forcing conditions for input into a sediment transport model for the period 7 May 2010–30 October 2010 within a macro tidal estuary, Port Curtis estuary (Australia. The hydrodynamic model was verified against surface and near-bottom current measurements. The model accurately reproduced the variations of surface and near-bottom currents at both a mid-estuary and upper-estuary location. Sediment transport model predictions were performed under varying meteorological conditions and tidal forcing over a 180-day period and were validated against turbidity data collected at six stations within Port Curtis estuary. The sediment transport model was able to predict both the magnitudes of the turbidity levels and the modulation induced by the neap and spring tides and wind-wave variations. The model-predicted (converted turbidity levels compared favourably with the measured surface water turbidity levels at all six stations. The study results have useful practical application for Port Curtis estuary, including providing predictive capabilities to support the selection of locations for monitoring/compliance sites.
The Effect of Surface Waves on the Performance Characteristics of a Model Tidal Turbine
Flack, K.; Luznik, L.; Lust, E.; Taylor, K.
2011-12-01
A 0.5 m diameter 3-bladed horizontal axis model tidal turbine has been designed and tested at the United States Naval Academy Hydrodynamics Laboratory. The blades section for the turbine is based on the E387 foil and includes a 50% taper and 20 degree twist from root to tip. Tests were conducted in the 120 ft tow tank for a range of tow speeds of 0.5 - 1.5 m/s. The experimental rig consists of the following parts: a 90 degree gear box attached to the turbine shaft, a rotary encoder to measure RPM, a torque meter, and a differential electromagnetic brake to apply a load to the shaft. The turbine was placed 1 diameter below the free surface. Preliminary results show excellent agreement of the experimentally measured power coefficient as a function of tip-speed ratio with predicted results from blade-element-momentum theory. Additional experiments are being conducted which include the influence of surface waves on tidal turbine performance. A full uncertainty analysis of the experimental results will also be included. This is part of larger effort at the Naval Academy to develop a testing program for tidal turbine research in the large tow tank facilities.
Directory of Open Access Journals (Sweden)
Peng Zhang
2014-03-01
Full Text Available Numerical models being one of the major tools for sediment dynamic studies in complex coastal waters are now benefitting from remote sensing images that are easily available for model inputs. The present study explored various methods of integrating remote sensing ocean color data into a numerical model to improve sediment transport prediction in a tide-dominated bay in Hong Kong, Deep Bay. Two sea surface sediment datasets delineated from satellite images from the Moderate Resolution Imaging Spectra-radiometer (MODIS were assimilated into a coastal ocean model of the bay for one tidal cycle. It was found that remote sensing sediment information enhanced the sediment transport model ability by validating the model results with in situ measurements. Model results showed that root mean square errors of forecast sediment both at the surface layer and the vertical layers from the model with satellite sediment assimilation are reduced by at least 36% over the model without assimilation.
Directory of Open Access Journals (Sweden)
Ali P. Yunus
2016-04-01
Full Text Available Sea-level rise (SLR from global warming may have severe consequences for coastal cities, particularly when combined with predicted increases in the strength of tidal surges. Predicting the regional impact of SLR flooding is strongly dependent on the modelling approach and accuracy of topographic data. Here, the areas under risk of sea water flooding for London boroughs were quantified based on the projected SLR scenarios reported in Intergovernmental Panel on Climate Change (IPCC fifth assessment report (AR5 and UK climatic projections 2009 (UKCP09 using a tidally-adjusted bathtub modelling approach. Medium- to very high-resolution digital elevation models (DEMs are used to evaluate inundation extents as well as uncertainties. Depending on the SLR scenario and DEMs used, it is estimated that 3%–8% of the area of Greater London could be inundated by 2100. The boroughs with the largest areas at risk of flooding are Newham, Southwark, and Greenwich. The differences in inundation areas estimated from a digital terrain model and a digital surface model are much greater than the root mean square error differences observed between the two data types, which may be attributed to processing levels. Flood models from SRTM data underestimate the inundation extent, so their results may not be reliable for constructing flood risk maps. This analysis provides a broad-scale estimate of the potential consequences of SLR and uncertainties in the DEM-based bathtub type flood inundation modelling for London boroughs.
Thanassoulas, Constantine
2008-01-01
It is postulated that the preseismic electric signals (SES) are generated by the piezoelectric mechanism applied on small rock grains - blocks during their stress load until fracturing. Specifically, the square electric train pulses are generated by the combination of a stress increase phase which generates a positive piezostimulated polarized current pulse (PSPC) followed, in a short time, by the stress decrease phase at fracturing level which generates a negative piezostimulated depolarized current pulse (PSDC). Moreover, it is shown that the SES signals are closely related to the tidally triggered lithospheric stress maxima - minima. Examples of SES signals are presented in relation to the tidally triggered lithospheric oscillation (k2, S2, M1) of T = 12hours / 14 days, while some comments are made as far as it concerns their use in short-term earthquake prediction.
On luminescence bleaching of tidal channel sediments
DEFF Research Database (Denmark)
Fruergaard, Mikkel; Pejrup, Morten; Murray, Andrew S.
2015-01-01
We investigate the processes responsible for bleaching of the quartz OSL signal from tidal channel sediment. Tidal dynamics are expected to play an important role for complete bleaching of tidal sediments. However, no studies have examined the amount of reworking occurring in tidal channels and o...
Langbein, J. O.
2015-12-01
The 24 August 2014 Mw 6.0 South Napa, California earthquake produced significant offsets on 12 borehole strainmeters in the San Francisco Bay area. These strainmeters are located between 24 and 80 km from the source and the observed offsets ranged up to 400 parts-per-billion (ppb), which exceeds their nominal precision by a factor of 100. However, the observed offsets in tidally-calibrated strains have RMS deviation of 130 ppb from strains predicted by previously published moment tensor derived from seismic data. Here, I show that the large misfit can be reduced by a combination of better tidal calibration and better modeling of the strain field from the earthquake. Borehole strainmeters require in-situ calibration, which historically has been accomplished by comparing their measurements of Earth tides with the strain-tides predicted by a model. Although borehole strainmeters accurately measure the deformation within the borehole, the long-wavelength strain signals from tides or other tectonic processes recorded in the borehole are modified by the presence of the borehole and the elastic properties of the grout and the instrument. Previous analyses of surface-mounted, strainmeter data and their relationship with the predicted tides suggest that tidal models could be in error by 30%. The poor fit of the borehole strainmeter data from this earthquake can be improved by simultaneously varying the components of the model tides up to 30% and making small adjustments to the point-source model of the earthquake, which reduces the RMS misfit from 130 to 18 ppb. This suggests that calibrations derived solely from tidal models limits the accuracy of borehole strainmeters. On the other hand, the revised calibration derived here becomes testable on strain measurements from future, large Bay area events.
Representation of horizontal strain due to tidal bending by observation and modeling
Rack, Wolfgang; King, Matt; Marsh, Oliver; Wild, Christian; Floricioiu, Dana
2017-04-01
An important control of ice sheet mass balance is the ice dynamics in the grounding zones around Antarctica. On many outflow glaciers a large temporal variability in ice flow has been observed, which is at least partly related to tides. Here we investigate the tide induced short term ice deformation in an ice shelf grounding zone and the related bending stresses and strain. We make use of the arguably most precise measurement method, differential SAR interferometry, in combination with ground based measurements and model assumptions for tidal bending. Ground validation and satellite data have been acquired within a dedicated field campaign. The Southern McMurdo Ice Shelf in the Western Ross Ice Shelf region was chosen as the experiment site. This area is optimal for the data interpretation because of a simple grounding line configuration, small ice flux, and favourable satellite imaging geometry. It is also a safe area which allowed the installation of tiltmeters and GPS stations, and glaciological measurements such as ice thickness and snow accumulation. From November 2014 to January 2015 the tidal movement was recorded over a period of 2.5 months. TerrSAR-X radar images have been acquired over the same period as a basis to derive ice shelf flexure maps. Despite the viscoelastic effects in ice shelf bending a simple elastic bending model for a beam of finite ice thickness can largely explain the GPS-observed surface strain. Using the same model and taking into account the viewing geometry of the satellite radar, it is now possible to separate horizontal and vertical displacement components in the satellite data. As a result we can obtain more realistic ice shelf flexure profiles from the interferometric SAR measurement. The newly derived flexure profiles are therefore more suitable to recover viscoelastic effects of tidal bending in grounding zones of ice shelves and outlet glaciers. These effects would have otherwise remained unnoticed.
Towards a Low-Cost Modelling System for Optimising the Layout of Tidal Turbine Arrays
Directory of Open Access Journals (Sweden)
Stephen Nash
2015-11-01
Full Text Available In the long-term, tidal turbines will most likely be deployed in farms/arrays where energy extraction by one turbine may significantly affect the energy available to another turbine. Given the prohibitive cost of experimental and/or field investigations of such turbine interactions, numerical models can play a significant role in determining the optimum layout of tidal turbine arrays with respect to energy capture. In the present research, a low-cost modelling solution for optimising turbine array layouts is presented and assessed. Nesting is used in a far-field model to telescope spatial resolution down to the scale of the turbines within the turbine array, allowing simulation of the interactions between adjacent turbines as well as the hydrodynamic impacts of individual turbines. The turbines are incorporated as momentum sinks. The results show that the model can compute turbine wakes with similar far-field spatial extents and velocity deficits to those measured in published experimental studies. The results show that optimum spacings for multi-row arrays with regard to power yield are 3–4 rotor diameters (RD across-stream and 1–4 RD along-stream, and that turbines in downstream rows should be staggered to avoid wake effects of upstream turbines and to make use of the accelerated flows induced by adjacent upstream turbines.
Modeling the growth and migration of sandy shoals on ebb-tidal deltas
Ridderinkhof, W.; de Swart, H. E.; van der Vegt, M.; Hoekstra, P.
2016-01-01
Coherent sandy shoals that migrate toward the downdrift coast are observed on many ebb-tidal deltas. In this study, processes that cause the growth and migration of shoals on ebb-tidal deltas are identified. Moreover, the effect of the incident wave energy and the tidal prism of an inlet on the migr
Sassi, M.G.; Gerkema, T.; Duran-Matute, M.; Nauw, J.J.
2016-01-01
At tidal inlets, large amounts of water are exchanged with the adjacent sea during the tidal cycle.The residual flows, the net effect of ebb and flood, are generally small compared with the gross flux;they vary in magnitude and sign from one tidal period to the other; and their long-term mean
Modeling the Paranagua Estuarine Complex, Brazil: tidal circulation and cotidal charts
Directory of Open Access Journals (Sweden)
Ricardo de Camargo
2003-01-01
Full Text Available The tidal circulation in Paranagua Bay (Parana State, Southern Brazil was studied based on the Princeton Ocean Model. The model domain covered the near shore region and the estuarine area, with about 1 km grid resolution in cross-shore and along-shore directions. Homogeneous and diagnostic distributions for temperature and salinity were used and 12 tidal constituents were considered to specify the elevations at the open boundaries. Tidal analysis of 29-days time series of elevations and currents for each grid point generated corange and cophase lines as well as the correspondent axes of the current ellipses for each constituent. These computed values reproduced well the observed amplifications and phase lags of surface elevations and currents. Residual flows show the formation of tidal eddies, related to coastal geometry and bottom topography.A circulação de maré na Baía de Paranaguá (Estado do Paraná, sul do Brasil foi estudada através do Princeton Ocean Model. O domino do modelo abrange a região costeira adjacente e a área estuarina, com resolução de aproximadamente I km nas direções perpendicular e paralela à costa. Distribuições homogêneas e diagnosticas para temperatura e salinidade foram usadas e 12 constituintes de maré especificaram as elevações de superfície nos contornos abertos. Análises de maré de séries temporais de 29 dias de elevações e correntes para cada ponto de grade geraram linhas cotidais de amplitude e de fase, assim como elipses de correntes, para cada constituinte. Os valores obtidos pelo modelo reproduziram satisfatoriamente as amplificações e defasagens observadas nas elevações e correntes de superfície. Fluxos residuais mostram a formação de vórtices de maré, relacionados com a geometria da costa e a topografia do fundo.
A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis
Directory of Open Access Journals (Sweden)
Ian Masters
2015-07-01
Full Text Available To fully understand the performance of tidal stream turbines for the development of ocean renewable energy, a range of computational models is required. We review and compare results from several models of horizontal axis turbines at different spatial scales. Models under review include blade element momentum theory (BEMT, blade element actuator disk, Reynolds averaged Navier Stokes (RANS CFD (BEM-CFD, blade-resolved moving reference frame and coastal models based on the shallow water equations. To evaluate the BEMT, a comparison is made to experiments with three different rotors. We demonstrate that, apart from the near-field wake, there are similarities in the results between the BEM-CFD approach and a coastal area model using a simplified turbine fence at a headland case.
Byrd, Kristin B.; Windham-Myers, Lisamarie; Leeuw, Thomas; Downing, Bryan D.; Morris, James T.; Ferner, Matthew C.
2016-01-01
Reducing uncertainty in data inputs at relevant spatial scales can improve tidal marsh forecasting models, and their usefulness in coastal climate change adaptation decisions. The Marsh Equilibrium Model (MEM), a one-dimensional mechanistic elevation model, incorporates feedbacks of organic and inorganic inputs to project elevations under sea-level rise scenarios. We tested the feasibility of deriving two key MEM inputs—average annual suspended sediment concentration (SSC) and aboveground peak biomass—from remote sensing data in order to apply MEM across a broader geographic region. We analyzed the precision and representativeness (spatial distribution) of these remote sensing inputs to improve understanding of our study region, a brackish tidal marsh in San Francisco Bay, and to test the applicable spatial extent for coastal modeling. We compared biomass and SSC models derived from Landsat 8, DigitalGlobe WorldView-2, and hyperspectral airborne imagery. Landsat 8-derived inputs were evaluated in a MEM sensitivity analysis. Biomass models were comparable although peak biomass from Landsat 8 best matched field-measured values. The Portable Remote Imaging Spectrometer SSC model was most accurate, although a Landsat 8 time series provided annual average SSC estimates. Landsat 8-measured peak biomass values were randomly distributed, and annual average SSC (30 mg/L) was well represented in the main channels (IQR: 29–32 mg/L), illustrating the suitability of these inputs across the model domain. Trend response surface analysis identified significant diversion between field and remote sensing-based model runs at 60 yr due to model sensitivity at the marsh edge (80–140 cm NAVD88), although at 100 yr, elevation forecasts differed less than 10 cm across 97% of the marsh surface (150–200 cm NAVD88). Results demonstrate the utility of Landsat 8 for landscape-scale tidal marsh elevation projections due to its comparable performance with the other sensors
Liu, Zhiqiang; Gan, Jianping
2016-08-01
In limited-area ocean models, open boundary conditions (OBCs) often create dynamic inconsistencies and perform poorly in resolving tidal or subtidal flow when both forces exist. Orlanski-type radiation OBCs are reasonably efficient at treating the subtidally forced flow, and Flather-type OBCs are commonly adapted for the tidally forced flow. However, neither of them performs well when tidal and subtidal forces simultaneously drive the flows. We have developed a novel OBC that integrates the active OBC in Gan and Allen (2005) and a Flather-type OBC. This new OBC accommodates the concurrent Tidal and Subtidal (TST) forcing, and the respective tidal or subtidal forcing, at the open boundary of a limited-area model. This new TST-OBC treats the tidal component with a Flather-type OBC, and it separates subtidal barotropic and baroclinic components into local (forced) and global (unforced) components. Then an unforced Orlanski-type OBC can be applied to the global part. We applied the TST-OBC to all model variables to reduce dynamic inconsistence. Using the Regional Ocean Modeling System, we applied the TST-OBC to the shallow East China Sea shelf where strong tidal and subtidal forces over complex topography govern the circulation. Our numerical experiments and analyses suggest that the TST-OBC was robust for both concurrent tidal-subtidal forcing and solely tidal or subtidal forcing at the open boundary. It reduced spurious energy reflection, and, overall, it performed better than an Orlanski-type or Flather-type OBC in reproducing realistic tidal and subtidal shelf circulation.
Lee, Young-Hee; Ahn, Kwang-Deuk; Lee, Yong Hee
2016-12-01
We have developed a parametrization of tidal effects for use in the Noah land-surface model and have validated the land-surface model using observations taken over a tidal flat of the western coast of South Korea. The parametrization is based on the energy budget of a water layer with varying thickness above the soil. During flood tide, heat transfer by the moving water is considered in addition to the surface energy budget. In addition, partial penetration of solar radiation through the water layer is considered in the surface energy budget, and the water thickness varying with time is used as an additional input. Seven days with clear-sky conditions and westerly winds during the daytime are selected for validation of the model. Two simulations are performed in an offline mode: a control simulation without the tidal effect (CONTROL) and a simulation with the tidal effect (TIDE). Comparisons of results have been made with eddy-covariance measurements and soil temperature data for the tidal flats. Observations show that inundation significantly reduces both sensible and latent heat fluxes during daytime, which is well simulated in the TIDE simulation. The diurnal variation and magnitude of soil temperature are better simulated in the TIDE than in the CONTROL simulation. Some underestimation of the latent heat flux over the water surface is partly attributed to the use of one layer of water and the underestimated roughness length at this site. In addition, other model deficiencies are discussed.
Lee, Young-Hee; Ahn, Kwang-Deuk; Lee, Yong Hee
2016-06-01
We have developed a parametrization of tidal effects for use in the Noah land-surface model and have validated the land-surface model using observations taken over a tidal flat of the western coast of South Korea. The parametrization is based on the energy budget of a water layer with varying thickness above the soil. During flood tide, heat transfer by the moving water is considered in addition to the surface energy budget. In addition, partial penetration of solar radiation through the water layer is considered in the surface energy budget, and the water thickness varying with time is used as an additional input. Seven days with clear-sky conditions and westerly winds during the daytime are selected for validation of the model. Two simulations are performed in an offline mode: a control simulation without the tidal effect (CONTROL) and a simulation with the tidal effect (TIDE). Comparisons of results have been made with eddy-covariance measurements and soil temperature data for the tidal flats. Observations show that inundation significantly reduces both sensible and latent heat fluxes during daytime, which is well simulated in the TIDE simulation. The diurnal variation and magnitude of soil temperature are better simulated in the TIDE than in the CONTROL simulation. Some underestimation of the latent heat flux over the water surface is partly attributed to the use of one layer of water and the underestimated roughness length at this site. In addition, other model deficiencies are discussed.
Numerical modelling to assess maintenance strategy management options for a small tidal inlet
Shaeri, Saeed; Tomlinson, Rodger; Etemad-Shahidi, Amir; Strauss, Darrell
2017-03-01
Small tidal inlets are found to be more sensitive to anthropogenic alteration than their larger counterparts. Such alterations, although typically supported by technical design reports, sometimes require amendments or modification. One of the most suitable tools to conduct the necessary studies in this regard is numerical modelling, since the behaviour of the inlet system in response to proposed remedial actions, can easily be identified. In this paper, various alternative proposals are investigated to determine the most practical and viable option to mitigate the need for ongoing maintenance at a typical small, jettied tidal inlet. The main tool to investigate the alternatives is the hydro-sedimentological modelling of the inlet system, which was performed using the Delft3D software package. The proposed alternative entrance modifications were based upon structural alterations of the inlet system (such as a jetty extension or submerged weir) and non-structural scenarios (such as a change of the time of the dredging campaign or the deposition location of the dredged material). It was concluded that whilst a detailed study is inevitable in order to achieve a comprehensive design plan, based upon the results of this study the construction of a submerged weir at the entrance channel can satisfy the needs of most of the stakeholders, with justifiable costs over a longer period.
Numerically modelling tidal dissipation with bottom drag in the oceans of Titan and Enceladus
Hay, Hamish C. F. C.; Matsuyama, Isamu
2017-01-01
Icy satellites that contain subsurface oceans require sufficient thermal energy to prevent the liquid portion of their interiors from freezing. We develop a numerical finite difference model to solve the Laplace Tidal Equations on a sphere in order to simulate tidal flow and thermal energy dissipation in these oceans, neglecting the presence of an icy lid. The model is applied to Titan and Enceladus, where we explore how Rayleigh (linear) and bottom (quadratic) drag terms affect dissipation. The latter drag regime can only be applied numerically. We find excellent agreement between our results and recent analytical work. Obliquity tide Rossby-wave resonant features become independent of ocean thickness under the bottom drag regime for thick oceans. We show that for Titan, dissipation from this Rossby-wave resonance can act to dampen the rate of outward orbital migration by up to 40% for Earth-like values of bottom drag coefficient. Gravity-wave resonances can act to cause inward migration, although this is unlikely due to the thin oceans required to form such resonances. The same is true of all eccentricity tide resonances on Enceladus, such that dissipation becomes negligible for thick oceans under the bottom drag regime.
Tidal debris of dwarf spheroidals as a probe of structure formation models
Mayer, L; Quinn, T; Governato, F; Stadel, J; Mayer, Lucio; Moore, Ben; Quinn, Thomas; Governato, Fabio; Stadel, Joachim
2002-01-01
Recent observations suggest that Carina and other nearby dwarf spheroidal galaxies are surrounded by unbound stars tidally stripped by the Milky Way. We run high-resolution N-Body simulations of dwarf galaxies orbiting within the Milky Way halo to determine if such observations can be explained with dark matter potentials as those implied by current structure formation models. We show that tidal forces acting on dwarfs with constant density cores or with cuspy profiles having a low concentration parameter ($c < 5$) lead to flat outer stellar density profiles like that of Carina for a variety of orbital configurations. On the contrary, it is more difficult to remove stars from cuspy dark matter halos with concentrations as high as predicted by CDM models at the mass scale of dwarf galaxies ($c \\simgt 10$) and the data can only be reproduced assuming nearly radial orbits. Our simulations show that Carina is losing mass at a fractional rate $< 0.1$ Gyr$^{-1}$ and its mass-to-light ratio could be inflated b...
Franz, G.; Pinto, L.; Ascione, I.; Mateus, M.; Fernandes, R.; Leitão, P.; Neves, R.
2014-12-01
Cohesive sediment dynamics in estuarine systems is a major issue in water quality and engineering problems. Numerical models can help to assess the complex dynamics of cohesive sediments, integrating the information collected in monitoring studies. Following a numerical approach we investigated the main factors that influence the cohesive sediment dynamics in an estuarine system composed of large mudflats (Tagus estuary, Portugal). After a spin up period of the bottom layer and considering the combined effect of waves and currents on the bottom shear stress, the dynamics of cohesive sediment during the fortnightly and daily erosion-sedimentation cycle was properly reproduced by the model. The results of cohesive suspended sediments were validated with data from sixteen monitoring stations located along the estuary and turbidity data measured by two multiparametric probes. The hydrodynamics were previously validated by harmonic analysis and with ADCP data. Although tidal currents are the major cause of cohesive sediment erosion, the results suggest that wind waves also play an important role. The simulated sediment mass involved in the fortnightly tidal cycle was in the same order of magnitude of the annual load from the rivers, as observed in previous studies based on field data.
Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.; Takekawa, John
2016-01-01
Airborne light detection and ranging (lidar) is a valuable tool for collecting large amounts of elevation data across large areas; however, the limited ability to penetrate dense vegetation with lidar hinders its usefulness for measuring tidal marsh platforms. Methods to correct lidar elevation data are available, but a reliable method that requires limited field work and maintains spatial resolution is lacking. We present a novel method, the Lidar Elevation Adjustment with NDVI (LEAN), to correct lidar digital elevation models (DEMs) with vegetation indices from readily available multispectral airborne imagery (NAIP) and RTK-GPS surveys. Using 17 study sites along the Pacific coast of the U.S., we achieved an average root mean squared error (RMSE) of 0.072 m, with a 40–75% improvement in accuracy from the lidar bare earth DEM. Results from our method compared favorably with results from three other methods (minimum-bin gridding, mean error correction, and vegetation correction factors), and a power analysis applying our extensive RTK-GPS dataset showed that on average 118 points were necessary to calibrate a site-specific correction model for tidal marshes along the Pacific coast. By using available imagery and with minimal field surveys, we showed that lidar-derived DEMs can be adjusted for greater accuracy while maintaining high (1 m) resolution.
Dupont, Geneviève; Kirk, Vivien; Sneyd, James
2016-01-01
This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles;Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin;Vivien Kirk is an Associate Professor in the Depar...
Water quality modeling for a tidal river network: A case study of the Suzhou River
Institute of Scientific and Technical Information of China (English)
Le FENG; Deguan WANG; Bin CHEN
2011-01-01
Combined with the basic characteristics of Suzhou plain river network,two modules are established,one of which is the hydrodynamic module using the water level node method involving gate operation,while the other is the water quality module based on the principle of WASP5 (water quality analysis simulation program5).These two modules were coupled and verified by the monitoring data of Suzhou River network.The results showed that calculation errors ofNH+4 -N and DO for the model were in the ranges of-15％-13％ and -18％-16％,respectively.Despite of the deviations between the monitoring data and simulation result,the calculation accuracy of the model conforms to the practical engineering requirement.Therefore,the proposed coupling model may be useful for water quality simulation and assessment for river network under tidal influences.
Humanism in forensic psychiatry: the use of the tidal nursing model
DEFF Research Database (Denmark)
Jacob, Jean Daniel; Holmes, Dave; Buus, Niels
2008-01-01
the incapability of such a philosophy to acknowledge the power relationships between individuals and its inability to explain the day-to-day realities experienced in forensic nursing, where the possibility of interpersonal violence reshapes nursing care. The tidal model will be discussed in detail as an example......The humanist school of thought, which finds resonance in many conceptual models and theories designed to guide nursing practice, needs to be understood in the context of the total institution, where the individual is subjected to a mortification of the self, and denied autonomy. This article...... will engage in a critical reflection on how humanism has influenced nursing theorists and the subsequent production of conceptual models and theories, especially as they relate to the field of forensic psychiatric nursing. Although humanism provides optimism for nurse-patient relations, this article explores...
Water quality modeling for a tidal river network: A case study of the Suzhou River
Feng, Le; Wang, Deguan; Chen, Bin
2011-12-01
Combined with the basic characteristics of Suzhou plain river network, two modules are established, one of which is the hydrodynamic module using the water level node method involving gate operation, while the other is the water quality module based on the principle of WASP5 (water quality analysis simulation program5). These two modules were coupled and verified by the monitoring data of Suzhou River network. The results showed that calculation errors of NH{4/+}-N and DO for the model were in the ranges of -15%-13% and -18%-16%, respectively. Despite of the deviations between the monitoring data and simulation result, the calculation accuracy of the model conforms to the practical engineering requirement. Therefore, the proposed coupling model may be useful for water quality simulation and assessment for river network under tidal influences.
Tidal heating and mass loss in neutron star binaries - Implications for gamma-ray burst models
Meszaros, P.; Rees, M. J.
1992-01-01
A neutron star in a close binary orbit around another neutron star (or stellar-mass black hole) spirals inward owing to gravitational radiation. We discuss the effects of tidal dissipation during this process. Tidal energy dissipated in the neutron star's core escapes mainly as neutrinos, but heating of the crust, and outward diffusion of photons, blows off the outer layers of the star. This photon-driven mass loss precedes the final coalescence. The presence of this eject material impedes the escape of gamma-rays created via neutrino interactions. If an e(+) - e(-) fireball, created in the late stages of coalescence, were loaded with (or surrounded by) material with the mean column density of the ejecta, it could not be an efficient source of gamma-rays. Models for cosmologically distant gamma-rays burst that involve neutron stars must therefore be anisotropic, so that the fireball expands preferentially in directions where the column density of previously blown-off material is far below the spherically averaged value which we have calculated. Some possible 'scenarios' along these lines are briefly discussed.
Tidal heating and mass loss in neutron star binaries - Implications for gamma-ray burst models
Meszaros, P.; Rees, M. J.
1992-01-01
A neutron star in a close binary orbit around another neutron star (or stellar-mass black hole) spirals inward owing to gravitational radiation. We discuss the effects of tidal dissipation during this process. Tidal energy dissipated in the neutron star's core escapes mainly as neutrinos, but heating of the crust, and outward diffusion of photons, blows off the outer layers of the star. This photon-driven mass loss precedes the final coalescence. The presence of this eject material impedes the escape of gamma-rays created via neutrino interactions. If an e(+) - e(-) fireball, created in the late stages of coalescence, were loaded with (or surrounded by) material with the mean column density of the ejecta, it could not be an efficient source of gamma-rays. Models for cosmologically distant gamma-rays burst that involve neutron stars must therefore be anisotropic, so that the fireball expands preferentially in directions where the column density of previously blown-off material is far below the spherically averaged value which we have calculated. Some possible 'scenarios' along these lines are briefly discussed.
Modeling the spatial distribution of fragments formed from tidally disrupted stars
Girma, Eden; Guillochon, James
2017-01-01
Roughly once every 104 years, a star passes close enough to the supermassive black hole Sgr A* at the center of the Milky Way to be pulled apart by the black hole’s tidal forces. The star is then ‘spaghettified’ into a long stream of mass, with approximately one half being bound to Sgr A* and the other half unbound. Hydrodynamical simulations of this process have revealed that within this stream, the local self-gravity dominates the tidal field of Sgr A*. This residual self-gravity allows for planetary-mass fragments to form along the stream that are then shot out into the galaxy at velocities determined by a spread of binding energies. We develop a Monte Carlo code in Python that models and plots the evolving position of these fragments for a variety of initial conditions that are likely realized in nature. This code utilizes an n-body integrator to differentially solve for the position, velocity, and acceleration of each fragment at every time step. We find that the while the most unbound fragments seem to escape the galaxy entirely, there could potentially be fragments travelling within a few hundred parsecs of our solar system.
Yoo, J.; Shin, S.; Jun, K.; Shim, J.
2011-12-01
Surf-zone wave dynamics are one of important driving forces in coastal morphology by inducing beach erosions and sediment transports in inter-tidal shallow water areas, due to active wave breaking, energetic turbulence and violent near-bed velocities. Morphological beach changes are also considerably associated with other surf-zone hydro-dynamics such as nearshore wave transformation, water levels, wave run-up, set-up and coastal currents. In earlier studies, the COBRAS model (a RANS model, developed by Lin and Liu of Cornell University) has been used to investigate such beach processes with reasonable success, mostly, in wave dominant micro-tidal environments. The model solves the RANS equations using VOF method and k-epsilon closure scheme. Recently, intensive field experiments were carried out at a macro-tide environment (i.e. the Mallipo sand beach located in the west coast of Korea, having a large inter-tidal range of 7 m to investigate the complicated surf zone hydro-dynamics under interactions of coastal waves, strong tidal currents, and nearshore bathymetries. The field observation data are used to evaluate the capability of the RANS model to predict the cross-shore variations of free surface, wave set-up, wave run-up, and velocities on the Mallipo Beach. Since the dataset of water surface elevations includes both waves and tides, the COBRAS model was tried to simulate waves accompanied with tidal currents. The measured water surface elevation data were divided into wave and tidal components, in order to be used as inputs of the model. Comparisons of the measurements and the predictions show (1) performance of the model for the wave transformation, wave set-up, and wave run-up on the macro-tidal beach, (2) predictive capability for the turbulence closure scheme in the surf and swash zones, and (3) overall skills to predict under-tows and tidal currents. Acknowledgement This work was supported by the KORDI (Grant PE98572, PE98573 and PM56300). This work was
Delandmeter, Philippe; Lambrechts, Jonathan; Marmorino, George O.; Legat, Vincent; Wolanski, Eric; Remacle, Jean-François; Chen, Wei; Deleersnijder, Eric
2017-07-01
Interaction of tidal flow with a complex topography and bathymetry including headlands, islands, coral reefs and shoals create a rich submesoscale field of tidal jets, vortices, unsteady wakes, lee eddies and free shear layers, all of which impact marine ecology. A unique and detailed view of the submesoscale variability in a part of the Great Barrier Reef lagoon, Australia, that includes a number of small islands was obtained by using a "stereo" pair of 2-m-resolution visible-band images that were acquired just 54 s apart by the WorldView-3 satellite. Near-surface current and vorticity were extracted at a 50-m-resolution from those data using a cross-correlation technique and an optical-flow method, each yielding a similar result. The satellite-derived data are used to test the ability of the second-generation Louvain-la-Neuve ice-ocean model (SLIM), an unstructured-mesh, finite element model for geophysical and environmental flows, to reproduce the details of the currents in the region. The model succeeds in simulating the large-scale (> 1 km) current patterns, such as the main current and the width and magnitude of the jets developing in the gaps between the islands. Moreover, the order of magnitude of the vorticity and the occurrence of some vortices downstream of the islands are correctly reproduced. The smaller scales (topography that has reefs, islands and shoals, and is a potential resource that could be more widely used to assess the predictive ability of coastal circulation models.
High-Accuracy Tidal Flat Digital Elevation Model Construction Using TanDEM-X Science Phase Data
Lee, Seung-Kuk; Ryu, Joo-Hyung
2017-01-01
This study explored the feasibility of using TanDEM-X (TDX) interferometric observations of tidal flats for digital elevation model (DEM) construction. Our goal was to generate high-precision DEMs in tidal flat areas, because accurate intertidal zone data are essential for monitoring coastal environment sand erosion processes. To monitor dynamic coastal changes caused by waves, currents, and tides, very accurate DEMs with high spatial resolution are required. The bi- and monostatic modes of the TDX interferometer employed during the TDX science phase provided a great opportunity for highly accurate intertidal DEM construction using radar interferometry with no time lag (bistatic mode) or an approximately 10-s temporal baseline (monostatic mode) between the master and slave synthetic aperture radar image acquisitions. In this study, DEM construction in tidal flat areas was first optimized based on the TDX system parameters used in various TDX modes. We successfully generated intertidal zone DEMs with 57-m spatial resolutions and interferometric height accuracies better than 0.15 m for three representative tidal flats on the west coast of the Korean Peninsula. Finally, we validated these TDX DEMs against real-time kinematic-GPS measurements acquired in two tidal flat areas; the correlation coefficient was 0.97 with a root mean square error of 0.20 m.
Habitat modeling and genetic signatures of postglacial recolonization for tidal estuaries
Dolby, G. A.; Jacobs, D. K.
2014-12-01
Pleistocene glacial cycles are a foremost influence on the genetic diversity and species distribution patterns observed today. Though much work has centered on biotic response to such climatic forcing, little of it has regarded estuarine or other aquatic coastal taxa whose habitat formation is a function of sea level, hydrography, and coastal geomorphology. These physical parameters required for habitat formation suggest that glacial cycles impart a significant effect on such taxa through glacially driven eustatic changes. Additionally, the steepened coastline and rainfall-limited Mediterranean climate suggest limited glacial habitat for estuarine species in southern and Baja California. Here we present GIS modeled habitat for tidal estuaries for three co-distributed estuarine fishes (Gillichthys mirabilis, Quietula y-cauda, Fundulus parvipinnis) since the last glacial maximum. Parameterization of sea level and slope enables biologically relevant temporal resolution of near-millennial scale. At lowstand our approach reveals two refuges along the coast at 1000km distance from each other, with habitat rapidly increasing 15 - 12 ka during meltwater pulse 1A. Habitat area peaked in the early Holocene and began decreasing with the current stillstand roughly 7 ka, probably as a result of coastal maturation towards less tidal systems. To target the postglacial recolonization process we applied discriminant function analysis to highly polymorphic microsatellite data to partition out the alleles associated with refuges identified a priori by habitat modeling. The frequencies of these alleles were calculated for all individuals at intervening populations and regressed against geographic distance. This analysis revealed nonlinear mixing curves, suggesting uneven allelic mixing efficiency along the coastline, perhaps as a result of differential habitat origination times as indicated by the habitat models. These results highlight the dynamism of estuarine habitat in recent
Exarchou, E.; Von Storch, J.-S.; Jungclaus, J.
2012-04-01
We implement a tidal mixing scheme that parameterizes diapycnal diffusivity depending on the location of energy dissipation over rough topography in the ocean general circulation model MPIOM. The tidal mixing scheme requires a bottom roughness map that can be calculated depending on the scales of topographic features one wants to focus on. Here, we examine the sensitivity of the modeled circulations to different spatial scales of the modeled bottom roughness. We compare three simulations that include the tidal mixing scheme using bottom roughness calculated at three different spatial scales, ranging from 15 to 200 km. We find that with decreasing spatial scales at which roughness is calculated, the roughness values increase in the deep ocean and decrease in coastal or shallow regions. The diffusivities produced by the three experiments, therefore, have not only different spatial structures but different vertical structures as well, with stronger bottom diffusivities for smaller scales of roughness. The lower limb of the Atlantic overturning and the bottom water transport in the Pacific Ocean are stronger for stronger bottom diffusivities, suggesting a 1/2 power law scaling between overturning strength and diffusivity. Such a relation does not hold for the upper limb of the Atlantic. All tidal simulations significantly increase the Indo-Pacific bottom water transport, improving the model solution in the Indo-Pacific Ocean.
Mathematical Modelling Plant Signalling Networks
Muraro, D.
2013-01-01
During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.
Energy Technology Data Exchange (ETDEWEB)
Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš
2015-08-01
We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.
Ribstein, B.; Achatz, U.
2016-09-01
Gravity waves (GWs) play an important role in atmospheric dynamics. Due to their short wavelengths, they must be parameterized in current weather and forecast models, which cannot resolve them explicitly. We are here the first to report the possibility and the implication of having an online GW parameterization in a linear but global model that incorporates their horizontal propagation, the effects of transients and of horizontal background gradients on GW dynamics. The GW parameterization is based on a ray-tracer model with a spectral formulation that is safe against numerical instabilities due to caustics. The global model integrates the linearized primitive equations to obtain solar tides (STs), with a seasonally dependent reference climatology, forced by a climatological daily cycle of the tropospheric and stratospheric heating, and the (instantaneous) GW momentum and buoyancy flux convergences resulting from the ray tracer. Under a more conventional "single-column" approximation, where GWs only propagate vertically and do not respond to horizontal gradients of the resolved flow, GW impacts are shown to be significantly changed in comparison with "full" experiments, leading to significant differences in ST amplitudes and phases, pointing at a sensitive issue of GW parameterizations in general. In the full experiment, significant semidiurnal STs arise even if the tidal model is only forced by diurnal heating rates. This indicates that an important part of the tidal signal is forced directly by GWs via their momentum and buoyancy deposition. In general, the effect of horizontal GW propagation and the GW response to horizontal large-scale flow gradients is rather observed in nonmigrating than in migrating tidal components.
D'Alpaos, Andrea; Lanzoni, Stefano; Marani, Marco; Rinaldo, Andrea
2007-03-01
We propose an ecomorphodynamic model which conceptualizes the chief land-forming processes operating on the intertwined, long-term evolution of marsh platforms and embedded tidal networks. The rapid network incision (previously addressed by the authors) is decoupled from the geomorphological dynamics of intertidal areas, governed by sediment erosion and deposition and crucially affected by the presence of vegetation. This allows us to investigate the response of tidal morphologies to different scenarios of sediment supply, colonization by halophytes, and changing sea level. Different morphological evolutionary regimes are shown to depend on marsh ecology. Marsh accretion rates, enhanced by vegetation growth, and the related platform elevations tend to decrease with distance from the creek, measured along suitably defined flow paths. The negative feedback between surface elevation and its inorganic accretion rate is reinforced by the relation between plant productivity and soil elevation in Spartina-dominated marshes and counteracted by positive feedbacks in multispecies-vegetated marshes. When evolving under constant sea level, unvegetated and Spartina-dominated marshes asymptotically tend to mean high water level (MHWL), different from multiple vegetation species marshes, which can make the evolutionary transition to upland. Equilibrium configurations below MHWL can be reached under constant rates of sea level rise, depending on sediment supply and vegetation productivity. Our analyses on marine regressions and transgressions show that when the system is in a supply-limited regime, network retreat and expansion (associated with regressions and transgressions, respectively) tend to be cyclic. Conversely, in a transport-limited regime, network reexpansion following a regression tends to take on a new configuration, showing a hysteretic behavior.
Humanism in forensic psychiatry: the use of the tidal nursing model.
Jacob, Jean Daniel; Holmes, Dave; Buus, Niels
2008-09-01
The humanist school of thought, which finds resonance in many conceptual models and theories designed to guide nursing practice, needs to be understood in the context of the total institution, where the individual is subjected to a mortification of the self, and denied autonomy. This article will engage in a critical reflection on how humanism has influenced nursing theorists and the subsequent production of conceptual models and theories, especially as they relate to the field of forensic psychiatric nursing. Although humanism provides optimism for nurse-patient relations, this article explores the incapability of such a philosophy to acknowledge the power relationships between individuals and its inability to explain the day-to-day realities experienced in forensic nursing, where the possibility of interpersonal violence reshapes nursing care. The tidal model will be discussed in detail as an example of a recently developed humanistic nursing model. Viewed from this perspective, it is clear that humanistic philosophy and its subsequent models of care are in discordance with the highly specialized field of forensic nursing.
Final report for sea-level rise response modeling for San Francisco Bay estuary tidal marshes
Takekawa, John Y.; Thorne, Karen M.; Buffington, Kevin J.; Spragens, Kyle A.; Swanson, Kathleen M.; Drexler, Judith Z.; Schoellhamer, David H.; Overton, Cory T.; Casazza, Michael L.
2013-01-01
The International Panel on Climate Change has identified coastal ecosystems as areas that will be disproportionally affected by climate change. Current sea-level rise projections range widely with 0.57 to 1.9 meters increase in mea sea level by 2100. The expected accelerated rate of sea-level rise through the 21st century will put many coastal ecosystems at risk, especially those in topographically low-gradient areas. We assessed marsh accretion and plant community state changes through 2100 at 12 tidal salt marshes around San Francisco Bay estuary with a sea-level rise response model. Detailed ground elevation, vegetation, and water level data were collected at all sites between 2008 and 2011 and used as model inputs. Sediment cores (taken by Callaway and others, 2012) at four sites around San Francisco Bay estuary were used to estimate accretion rates. A modification of the Callaway and others (1996) model, the Wetland Accretion Rate Model for Ecosystem Resilience (WARMER), was utilized to run sea-level rise response models for all sites. With a mean sea level rise of 1.24 m by 2100, WARMER projected that the vast majority, 95.8 percent (1,942 hectares), of marsh area in our study will lose marsh plant communities by 2100 and to transition to a relative elevation range consistent with mudflat habitat. Three marshes were projected to maintain marsh vegetation to 2100, but they only composed 4.2 percent (85 hectares) of the total marsh area surveyed.
Reconstructing Boolean Models of Signaling
Karp, Richard M.
2013-01-01
Abstract Since the first emergence of protein–protein interaction networks more than a decade ago, they have been viewed as static scaffolds of the signaling–regulatory events taking place in cells, and their analysis has been mainly confined to topological aspects. Recently, functional models of these networks have been suggested, ranging from Boolean to constraint-based methods. However, learning such models from large-scale data remains a formidable task, and most modeling approaches rely on extensive human curation. Here we provide a generic approach to learning Boolean models automatically from data. We apply our approach to growth and inflammatory signaling systems in humans and show how the learning phase can improve the fit of the model to experimental data, remove spurious interactions, and lead to better understanding of the system at hand. PMID:23286509
An Exact Equilibrium Model of an Unbound Stellar System in a Tidal Field
Fellhauer, M
2005-01-01
Star clusters and dwarf galaxies gradually dissolve as they move in the potential of their host galaxy. Once their density falls below a certain critical density (which is comparable with the background density of the galaxy) it is often assumed that their evolution is completed. In fact the remnant of such a system forms a distribution of stars which are unbound to each other and which move on similar orbits in their host potential. With this motivation we study the evolution of an idealised unbound system and follow its expansion and dissolution in the tidal field of a model galaxy. Initially the stars are uniformly distributed (with a density below the critical density) within an ellipsoidal volume. The system itself travels on a circular orbit within a galaxy modelled as an isothermal sphere. The initial velocities of the stars are chosen by assuming that they move on (three-dimensional) epicycles with guiding centre at the centre of the ellipsoid, though the usual epicyclic theory is altered to account f...
THREE-DIMENSIONAL NUMERICAL MODEL FOR WINDING TIDAL RIVER WITH BRANCHES
Institute of Scientific and Technical Information of China (English)
YANG Li-ling; WANG Yun-hong; ZHU Zhi-xia; XU Feng-jun; DENG Jia-quan; YANG Fang
2007-01-01
Natural rivers are usually winding with branches and shoals, which are difficult to be simulated with rectangular grids. A 3-D current numerical model was established based on the orthogonal curvilinear coordinate system and vertical σ coordinate system. The equations were discretisized using a semi-implicit scheme. The "predictor" and "corrector" steps were applied for the horizontal momentum equations to meet the basic requirement that the depth-integrated currents obtained from the equations for 2-D and 3-D modes have identical values. And a modification of traditional method of dry/wet discriminance was proposed to determine accurately the boundary and ensure the continuity of variable boundary in the simulation. This model was verified with the data measured in a winding tidal river with branches in April, 2004. The simulated data of water levels and velocities agree well with the measured ones, and the computed results reveal well the practical flow characteristics, including the vertical secondary flow in a winding reach.
Nayakshin, Sergei
2015-01-01
We present improved population synthesis calculations in the context of the Tidal Downsizing (TD) hypothesis for planet formation. Our models provide natural explanations and/or quantitative match to exoplanet observations in the following categories: (i) most abundant planets being super-Earths; (ii) cores more massive than $\\sim 5-15 M_\\oplus$ are enveloped by massive metal-rich atmospheres; (iii) the frequency of occurrence of close-in gas giant planets correlates strongly with metallicity of the host star; (iv) no such correlation is found for sub-Neptune planets; (v) presence of massive cores in giant planets; (vi) the composition of gas giant planets is over-abundant in metals compared to their host stars; (vii) this over-abundance decreases with planet's mass, as observed; (viii) a deep valley in the planet mass function between masses of $\\sim 10-20 M_\\oplus$ and $\\sim 100 M_\\oplus$. We provide a number of observational predictions distinguishing the model from Core Accretion: (a) composition of the m...
Spanoudaki, Katerina; Bockelmann-Evans, Bettina; Schaefer, Florian; Kampanis, Nikolaos; Nanou-Giannarou, Aikaterini; Stamou, Anastasios; Falconer, Roger
2015-04-01
Surface water and groundwater are integral components of the hydrologic continuum and the interaction between them affects both their quantity and quality. However, surface water and groundwater are often considered as two separate systems and are analysed independently. This separation is partly due to the different time scales, which apply in surface water and groundwater flows and partly due to the difficulties in measuring and modelling their interactions (Winter et al., 1998). Coastal areas in particular are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes. Accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands, for example, requires the use of integrated surface water-groundwater models. In the past few decades a large number of mathematical models and field methods have been developed in order to quantify the interaction between groundwater and hydraulically connected surface water bodies. Field studies may provide the best data (Hughes, 1995) but are usually expensive and involve too many parameters. In addition, the interpretation of field measurements and linking with modelling tools often proves to be difficult. In contrast, experimental studies are less expensive and provide controlled data. However, experimental studies of surface water-groundwater interaction are less frequently encountered in the literature than filed studies (e.g. Ebrahimi et al., 2007; Kuan et al., 2012; Sparks et al., 2013). To this end, an experimental model has been constructed at the Hyder Hydraulics Laboratory at Cardiff University to enable measurements to be made of groundwater transport through a sand embankment between a tidal water body such as an estuary and a non-tidal water body such as a wetland. The transport behaviour of a conservative tracer was studied for a constant water level on the wetland side of the embankment, while running a
A three-dimensional model of tidal currents in the mouth of the Tagus estuary
Fortunato, AndréB.; Baptista, António M.; Luettich, Richard A.
1997-12-01
Three-dimensional simulations of barotropic tides are used to investigate the complex circulation at the mouth of the Tagus estuary. Comparison with field data shows that elevations are well represented in the main area of interest, but velocities are slightly over-predicted due to a simplified treatment of intertidal flats. Model results show the existence of strong velocity phase lags (up to 1.75 hours for the semi-diurnal constituents) between the shallow areas and the deep channel. These phase lags are partially responsible for the generation by advective accelerations of a strong residual velocity field (velocities reach 0.5 m s -1) with well defined eddies. The interaction between the residual and tidal velocity fields in turn generates strong chaotic stirring. Localized sigma coordinates (LSC), a recently proposed method which allows the number of nodes per vertical to vary horizontally, are used for the first time in a three-dimensional application. A previously proposed criterion for the horizontal distribution of the total number of vertical nodes is shown to be inadequate when advective accelerations are important. However, with an alternative criterion, the use of LSC reduces maximum errors by a factor of two relative to traditional sigma coordinates.
El-Kadi, Aly I.
2001-09-01
A model is developed for hydrocarbon biodegradation, which includes saturated and unsaturated flow, multi-species transport, heat transport, and bacterial growth processes. Numerical accuracy of the model was tested against analytical solutions. The model was also verified against laboratory results for a saturated-flow problem and reasonable match was obtained. Expressions are proposed for inhibition due to water content and temperature fluctuations. Bioactivities under cyclic water content variation were studied under no-flow conditions. A quantitative approach was used to reconcile some of the apparent contradictory conclusions regarding the efficiency of biodegradation of soils under wetting and drying conditions. The efficiency depends on the nature of the oxygenation process. For cases involving the presence of dissolved oxygen and the absence of O 2 vapor, subjecting the soil to constant water content close to its optimal value for degradation is most efficient. However, wetting and drying can enhance degradation if O 2 is only provided through aeration or direct contact between air and the medium. Also presented are the results of a typical field application of the model and a discussion of the effects of tides, saturation inhibition, and heat inhibition. Other inhibition factors, such as pH or salinity, can be easily incorporated in the formulation. The quantitative approach developed here can be used in assessing bioremediation not only in tidal aquifers but also in areas where water-table or temperature effects are of significance. The approach can be useful in the design of remediation strategies under water-flow or no-flow conditions involving water content and temperature fluctuations.
Tidal marsh susceptibility to sea-level rise: importance of local-scale models
Thorne, Karen M.; Buffington, Kevin J.; Elliott-Fisk, Deborah L.; Takekawa, John Y.
2015-01-01
Increasing concern over sea-level rise impacts to coastal tidal marsh ecosystems has led to modeling efforts to anticipate outcomes for resource management decision making. Few studies on the Pacific coast of North America have modeled sea-level rise marsh susceptibility at a scale relevant to local wildlife populations and plant communities. Here, we use a novel approach in developing an empirical sea-level rise ecological response model that can be applied to key management questions. Calculated elevation change over 13 y for a 324-ha portion of San Pablo Bay National Wildlife Refuge, California, USA, was used to represent local accretion and subsidence processes. Next, we coupled detailed plant community and elevation surveys with measured rates of inundation frequency to model marsh state changes to 2100. By grouping plant communities into low, mid, and high marsh habitats, we were able to assess wildlife species vulnerability and to better understand outcomes for habitat resiliency. Starting study-site conditions were comprised of 78% (253-ha) high marsh, 7% (30-ha) mid marsh, and 4% (18-ha) low marsh habitats, dominated by pickleweed Sarcocornia pacifica and cordgrass Spartina spp. Only under the low sea-level rise scenario (44 cm by 2100) did our models show persistence of some marsh habitats to 2100, with the area dominated by low marsh habitats. Under mid (93 cm by 2100) and high sea-level rise scenarios (166 cm by 2100), most mid and high marsh habitat was lost by 2070, with only 15% (65 ha) remaining, and a complete loss of these habitats by 2080. Low marsh habitat increased temporarily under all three sea-level rise scenarios, with the peak (286 ha) in 2070, adding habitat for the endemic endangered California Ridgway’s rail Rallus obsoletus obsoletus. Under mid and high sea-level rise scenarios, an almost complete conversion to mudflat occurred, with most of the area below mean sea level. Our modeling assumed no marsh migration upslope due to human
Essick, Reed; Weinberg, Nevin N
2016-01-01
Recent studies suggest that coalescing neutron stars are subject to a fluid instability involving the nonlinear coupling of the tide to $p$-modes and $g$-modes. Its influence on the inspiral dynamics and thus the gravitational wave signal is, however, uncertain because we do not know precisely how the instability saturates. Here we construct a simple, physically motivated model of the saturation that allows us to explore the instability's impact as a function of the model parameters. We find that for plausible assumptions about the saturation, current gravitational wave detectors might miss $> 70\\%$ of events if only point particle waveforms are used. Parameters such as the chirp mass, component masses, and luminosity distance might also be significantly biased. On the other hand, we find that relatively simple modifications to the point particle waveform can alleviate these problems and enhance the science that emerges from the detection of binary neutron stars.
Gravimetry and GPS observations at Belgrano II station to test ocean tidal models
Directory of Open Access Journals (Sweden)
M. Scheinert
2007-12-01
Full Text Available In the framework of a joint Argentine-German project gravimetric time series observations are being carried out at the Argentine Antarctic station Belgrano II. Two gravity meters were installed in the first half of February 2007. The set-up of the gravimeters as well as first results of the ongoing observations are discussed. Additionally, kinematic positions derived from a GPS-station at the Vahsel Bay glacier near Belgrano II can be used to get a first insight into the floating behavior of this glacier. The goal of these observations is to discriminate the effect of ocean tides and to test ocean tidal models. Since ocean tides are an important phenomenon that has to be considered in a variety of geoscientific investigations in polar regions, appropriate corrections have to be applied in the different analyses, e.g. to infer temporal mass variations from satellite data, to investigate ice-shelf dynamics and deformations, or to come up with precise station positions and velocities within a terrestrial reference system. However, the ocean tide models show larger uncertainties in the Antarctic seas and (moreover at areas covered by ice shelves and, therefore, need to be improved. This joint Argentine-German project is a contribution to the International Polar Year 2007/2008 and its project POLENET. After completion of the recordings at Belgrano II by the end of 2007 it is planned to move the equipment to San Mart ín in order to get a second gravimetric time series during the year 2008.
A 1D model for tides waves and fine sediment in short tidal basins—Application to the Wadden Sea
van Prooijen, Bram Christiaan; Wang, Zheng Bing
2013-12-01
In order to simulate the dynamics of fine sediments in short tidal basins, like the Wadden Sea basins, a 1D cross-sectional averaged model is constructed to simulate tidal flow, depth-limited waves, and fine sediment transport. The key for this 1D model lies in the definition of the geometry (width and depth as function of the streamwise coordinate). The geometry is computed by implementing the water level and flow data, from a 2D flow simulation, and the hypsometric curve in the continuity equation. By means of a finite volume method, the shallow-water equations and sediment transport equations are solved. The bed shear stress consists of the sum of shear stresses by waves and flow, in which the waves are computed with a depth-limited growth equation for wave height and wave frequency. A new formulation for erosion of fines from a sandy bed is proposed in the transport equation for fine sediment. It is shown by comparison with 2D simulations and field measurements that a 1D schematization gives a proper representation of the dynamics in short tidal basins.
Fan, Chihhao; Ko, Chun-Han; Wang, Wei-Shen
2009-04-01
Water quality modeling has been shown to be a useful tool in strategic water quality management. The present study combines the Qual2K model with the HEC-RAS model to assess the water quality of a tidal river in northern Taiwan. The contaminant loadings of biochemical oxygen demand (BOD), ammonia nitrogen (NH(3)-N), total phosphorus (TP), and sediment oxygen demand (SOD) are utilized in the Qual2K simulation. The HEC-RAS model is used to: (i) estimate the hydraulic constants for atmospheric re-aeration constant calculation; and (ii) calculate the water level profile variation to account for concentration changes as a result of tidal effect. The results show that HEC-RAS-assisted Qual2K simulations taking tidal effect into consideration produce water quality indices that, in general, agree with the monitoring data of the river. Comparisons of simulations with different combinations of contaminant loadings demonstrate that BOD is the most import contaminant. Streeter-Phelps simulation (in combination with HEC-RAS) is also performed for comparison, and the results show excellent agreement with the observed data. This paper is the first report of the innovative use of a combination of the HEC-RAS model and the Qual2K model (or Streeter-Phelps equation) to simulate water quality in a tidal river. The combination is shown to provide an alternative for water quality simulation of a tidal river when available dynamic-monitoring data are insufficient to assess the tidal effect of the river.
Long-term process-based morphological modeling of large tidal basins
Dastgheib, A.
2012-01-01
The morphology of tidal basins includes a wide range of features developing along different spatial and temporal scales. Examples are shoals, channels, banks, dunes and ripples. Coastal engineers use their engineering tools to answer questions on the processes governing the short term (< decades)
Methodology for a Regional Tidal Model Evaluation, With Application to Central California
2009-01-01
diu nally varying cross-shelf pressure gradients (setup/setdown) res ilting in baro - tropic currents felt throughout the water colun n (Rosenfeld...moorings off Pt Sur and the AOSN moorings; Gary Egbert and Lana Erofeeva (OSU) for | roviding tidal solutions for the West Coast; and Paul Martin
Numerical modeling of tidal notch sequences on rocky coasts of the Mediterranean Basin
Schneiderwind, S.; Boulton, S. J.; Papanikolaou, I.; Kázmér, M.; Reicherter, K.
2017-05-01
Tidal notches have had the potential to form at sea level from 6.5 kyr B.P. in the Mediterranean Basin and preserve a symmetrical shape comparable to a quadric polynomial. Continuous erosion, predominantly by biological agents, affects a limestone cliff face from low- to high-tide level at evolution is beneficial for paleoseismological research.
Oreiro, F. A.; Wziontek, H.; Fiore, M. M. E.; D'Onofrio, E. E.; Brunini, C.
2017-08-01
The Argentinean-German Geodetic Observatory is located 13 km from the Río de la Plata, in an area that is frequently affected by storm surges that can vary the level of the river over ±3 m. Water-level information from seven tide gauge stations located in the Río de la Plata are used to calculate every hour an empirical model of water heights (tidal + non-tidal component) and an empirical model of storm surge (non-tidal component) for the period 01/2016-12/2016. Using the SPOTL software, the gravimetric response of the models and the tidal response are calculated, obtaining that for the observatory location, the range of the tidal component (3.6 nm/s2) is only 12% of the range of the non-tidal component (29.4 nm/s2). The gravimetric response of the storm surge model is subtracted from the superconducting gravimeter observations, after applying the traditional corrections, and a reduction of 7% of the RMS is obtained. The wavelet transform is applied to the same series, before and after the non-tidal correction, and a clear decrease in the spectral energy in the periods between 2 and 12 days is identify between the series. Using the same software East, North and Up displacements are calculated, and a range of 3, 2, and 11 mm is obtained, respectively. The residuals obtained after applying the non-tidal correction allow to clearly identify the influence of rain events in the superconducting gravimeter observations, indicating the need of the analysis of this, and others, hydrological and geophysical effects.
2014-06-01
time for reviewing instruction, searching existing data sources , gathering and maintaining the data needed, and completing and reviewing the collection...VERTICAL STRUCTURE OF TIDAL CURRENTS IN THE MOUTH OF THE COLUMBIA RIVER AND EVALUATION OF THE SELFE MODEL 5. FUNDING NUMBERS 6. AUTHOR(S) Joseph R...declination to the Earth (27.3 days) ( Disney and Overshiner 1925). Changes in the moon’s phase and distance from Earth cause changes in tidal current
Directory of Open Access Journals (Sweden)
Wen-Cheng Liu
2016-02-01
Full Text Available Climate change is one of the key factors affecting the future quality and quantity of water in rivers and tidal estuaries. A coupled three-dimensional hydrodynamic and water quality model has been developed and applied to the Danshuei River estuarine system in northern Taiwan to predict the influences of climate change on water quality. The water quality model considers state variables including nitrogen, phosphorus, organic carbon, and phytoplankton as well as dissolved oxygen, and is driven by a three-dimensional hydrodynamic model. The hydrodynamic water quality model was validated with observational salinity distribution and water quality state variables. According to the analyses of statistical error, predictions of salinity, dissolved oxygen, and nutrients from the model simulation quantitatively agreed with the observed data. The validated model was then applied to predict water quality conditions as a result of projected climate change effects. The simulated results indicated that the dissolved oxygen concentration was projected to significantly decrease whereas nutrients will increase because of climate change. Moreover, the dissolved oxygen concentration was lower than 2 mg/L in the main stream of the Danshuei River estuary and failed to meet the water quality standard. An appropriate strategy for effective water quality management for tidal estuaries is needed given the projected persistent climate trends.
Liu, Zhen; Qu, Hengliang; Shi, Hongda; Hu, Gexing; Hyun, Beom-Soo
2016-12-01
Tidal current energy is renewable and sustainable, which is a promising alternative energy resource for the future electricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2×105 and 0.01 s are selected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coefficients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analysis of the vertical tidal stream turbine.
Institute of Scientific and Technical Information of China (English)
LIU Zhen; QU Hengliang; SHI Hongda; HU Gexing; HYUN Beom-Soo
2016-01-01
Tidal current energy is renewable and sustainable, which is a promising alternative energy resource for the future elec-tricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2×105and 0.01s are se-lected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coeffi-cients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analy-sis of the vertical tidal stream turbine.
A semi-relativistic model for tidal interactions in BH-NS coalescing binaries
Energy Technology Data Exchange (ETDEWEB)
Ferrari, V; Gualtieri, L; Pannarale, F [Dipartimento di Fisica ' G Marconi' , Sapienza Universita di Roma and Sezione INFN ROMA1, Piazzale Aldo Moro 2, I-00185 Roma (Italy)
2009-06-21
We study the tidal effects of a Kerr black hole on a neutron star in black hole-neutron star (BH-NS) binary systems by using a semi-analytical approach which describes the neutron star as a deformable ellipsoid. Relativistic effects on the neutron star self-gravity are taken into account by employing a scalar potential resulting from relativistic stellar structure equations. We calculate quasi-equilibrium sequences of BH-NS binaries and the critical orbital separation at which the star is disrupted by the black hole tidal field: the latter quantity is of particular interest because when it is greater than the radius of the innermost stable circular orbit, a short gamma-ray burst scenario may develop.
Directory of Open Access Journals (Sweden)
Anzhou Cao
2013-01-01
Full Text Available Based on the theory of inverse problem, the optimization of open boundary conditions (OBCs in a 3D internal tidal model is investigated with the adjoint method. Fourier coefficients of M2 internal tide on four open boundaries, which are regarded as OBCs, are inverted simultaneously. During the optimization, the steepest descent method is used to minimize cost function. The reasonability and feasibility of the model are tested by twin experiments (TEs. In TE1, OBCs on four open boundaries are successfully inverted by using independent point (IP strategy, suggesting that IP strategy is useful in parameter estimation. Results of TE2 indicate that the model is effective even by assimilating inaccurate “observations.” Based on conclusions of TEs, the M2 internal tide around Hawaii is simulated by assimilating T/P data in practical experiment. The simulated cochart shows good agreement with that obtained from the Oregon State University tidal model and T/P observations. Careful inspection shows that the major difference between simulated results and OSU model results is short-scale fluctuations superposed on coamplitude lines, which can be treated as the surface manifestation modulated by the internal tide. The computed surface manifestation along T/P tracks is comparable to the estimation in previous work.
Indian Academy of Sciences (India)
Wei Lu; Qingchun Yang; Jordi D Martín; Ricardo Juncosa
2013-04-01
During the 1990s, groundwater overexploitation has resulted in seawater intrusion in the coastal aquifer of the Shenzhen city, China. Although water supply facilities have been improved and alleviated seawater intrusion in recent years, groundwater overexploitation is still of great concern in some local areas. In this work we present a three-dimensional density-dependent numerical model developed with the FEFLOW code, which is aimed at simulating the extent of seawater intrusion while including tidal effects and different groundwater pumping scenarios. Model calibration, using waterheads and reported chloride concentration, has been performed based on the data from 14 boreholes, which were monitored from May 2008 to December 2009. A fairly good fitness between the observed and computed values was obtained by a manual trial-and-error method. Model prediction has been carried out forward 3 years with the calibrated model taking into account high, medium and low tide levels and different groundwater exploitation schemes. The model results show that tide-induced seawater intrusion significantly affects the groundwater levels and concentrations near the estuarine of the Dasha river, which implies that an important hydraulic connection exists between this river and groundwater, even considering that some anti-seepage measures were taken in the river bed. Two pumping scenarios were considered in the calibrated model in order to predict the future changes in the water levels and chloride concentration. The numerical results reveal a decreased tendency of seawater intrusion if groundwater exploitation does not reach an upper bound of about 1.32 × 104 m3/d. The model results provide also insights for controlling seawater intrusion in such coastal aquifer systems.
Maes, J.; Stevens, M.; Breine, J.
2007-10-01
The relationship between poor water quality and migration opportunities for fish remains poorly documented, although it is an essential research step in implementing EU water legislation. In this paper, we model the environmental constraints that control the movements of anadromous and catadromous fish populations that migrate through the tidal watershed of River Scheldt, a heavily impacted river basin in Western Europe. Local populations of sturgeon, sea lamprey, sea trout, Atlantic salmon, houting and allis shad were essentially extirpated around 1900. For remaining populations (flounder, three-spined stickleback, twaite shad, thinlip mullet, European eel and European smelt), a data driven logistic model was parameterized. The presence or absence of fish species in samples taken between 1995 and 2004 was modelled as a function of temperature, dissolved oxygen concentration, river flow and season. Probabilities to catch individuals from all diadromous species but three-spined stickleback increased as a function of the interaction between temperature and dissolved oxygen. The hypoxic zone situated in the freshwater tidal part of the estuary was an effective barrier for upstream migrating anadromous spawners since it blocked the entrance to historical spawning sites upstream. Similarly, habitat availability for catadromous fish was greatly reduced and restricted to lower brackish water parts of the estuary. The model was applied to infer preliminary dissolved oxygen criteria for diadromous fish, to make qualitative predictions about future changes in fish distribution given anticipated changes in water quality and to suggest necessary measures with respect to watershed management.
Klimentowski, Jarosław; Łokas, Ewa L.; Kazantzidis, Stelios; Prada, Francisco; Mayer, Lucio; Mamon, Gary A.
2007-06-01
We study the origin and properties of the population of unbound stars in the kinematic samples of dwarf spheroidal (dSph) galaxies. For this purpose we have run a high-resolution N-body simulation of a two-component dwarf galaxy orbiting in a Milky Way potential. In agreement with the tidal stirring scenario of Mayer et al., the dwarf is placed on a highly eccentric orbit, its initial stellar component is in the form of an exponential disc and it has a NFW-like dark matter (DM) halo. After 10 Gyr of evolution the dwarf produces a spheroidal stellar component and is strongly tidally stripped so that mass follows light and the stars are on almost isotropic orbits. From this final state, we create mock kinematic data sets for 200 stars by observing the dwarf in different directions. We find that when the dwarf is observed along the tidal tails the kinematic samples are strongly contaminated by unbound stars from the tails. We also study another source of possible contamination by adding stars from the Milky Way. We demonstrate that most of the unbound stars can be removed by the method of interloper rejection proposed by den Hartog & Katgert and recently tested on simulated DM haloes. We model the cleaned-up kinematic samples using solutions of the Jeans equation with constant mass-to-light ratio (M/L) and velocity anisotropy parameter. We show that even for such a strongly stripped dwarf the Jeans analysis, when applied to cleaned samples, allows us to reproduce the mass and M/L of the dwarf with accuracy typically better than 25 per cent and almost exactly in the case when the line of sight is perpendicular to the tidal tails. The analysis was applied to the new data for the Fornax dSph galaxy. We show that after careful removal of interlopers the velocity dispersion profile of Fornax can be reproduced by a model in which mass traces light with a M/L of 11 solar units and isotropic orbits. We demonstrate that most of the contamination in the kinematic sample of
Energy Technology Data Exchange (ETDEWEB)
Klimentowski, Jaroslaw; Lokas, Ewa L.; /Warsaw, Copernicus Astron. Ctr.; Kazantzidis, Stelios; /KIPAC, Menlo Park; Prada, Francisco; /IAA, Granada; Mayer, Lucio; /Zurich,; Mamon, Gary A.; /Paris, Inst. Astrophys. /Meudon Observ.
2006-11-14
We study the origin and properties of the population of unbound stars in the kinematic samples of dwarf spheroidal galaxies. For this purpose we have run a high resolution N- body simulation of a two-component dwarf galaxy orbiting in a Milky Way potential. In agreement with the tidal stirring scenario of Mayer et al., the dwarf is placed on a highly eccentric orbit, its initial stellar component is in the form of an exponential disk and it has a NFW-like dark matter halo. After 10 Gyrs of evolution the dwarf produces a spheroidal stellar component and is strongly tidally stripped so that mass follows light and the stars are on almost isotropic orbits. From this final state, we create mock kinematic data sets for 200 stars by observing the dwarf in different directions.We find that when the dwarf is observed along the tidal tails the kinematic samples are strongly contaminated by unbound stars from the tails.We also study another source of possible contamination by adding stars from the Milky Way. We demonstrate that most of the unbound stars can be removed by the method of interloper rejection proposed by den Hartog & Katgert and recently tested on simulated dark matter haloes. We model the cleaned up kinematic samples using solutions of the Jeans equation with constant mass-to-light ratio and velocity anisotropy parameter. We show that even for such strongly stripped dwarf the Jeans analysis, when applied to cleaned samples, allows us to reproduce the mass and mass-to-light ratio of the dwarf with accuracy typically better than 25 percent and almost exactly in the case when the line of sight is perpendicular to the tidal tails. The analysis was applied to the new data for the Fornax dSph galaxy for which we find a mass-to-light ratio of 11 solar units and isotropic orbits. We demonstrate that most of the contamination in the kinematic sample of Fornax probably originates from the Milky Way.
Parametric Dwarf Spheroidal Tidal Interaction
Fleck, J J; Fleck, Jean-Julien; Kuhn, Jeff R.
2003-01-01
The time dependent tidal interaction of the Local Group Dwarf Spheroidal (dS) Galaxies with the Milky Way (MW) can fundamentally affect their dynamical properties. The model developed here extends earlier numerical descriptions of dS-MW tidal interactions. We explore the dynamical evolution of dS systems in circular or elliptical MW orbits in the framework of a parametric oscillator. An analytic model is developed and compared with more general numerical solutions and N-body simulation experiments.
Periáñez, R.
2002-05-01
The presence of 226Ra in a tidal estuary formerly affected by direct discharges from a phosphate fertilizer complex has been investigated. In general, activity levels are lower than those detected when direct discharges were carried out. However, there is still a clear contamination that can be attributed, presumably, to the disposal of Ra-containing phosphogypsum to the river and to the redissolution of radionuclides from the contaminated sediments. A numerical model of the estuary has been developed to investigate these hypothesis. The hydrodynamics are first calibrated and standard tidal analysis is carried out. The dispersion model computes instantaneous currents from the so obtained tidal constants to speed up simulations. The exchanges of 226Ra between water and the bottom sediment have been described in terms of kinetic transfer coefficients. Model results are, in general, in agreement with observations. The simulation results support the previous idea of sediments acting as a source of 226Ra to the water column.
Science Signaling Podcast for 7 June 2016: Modeling signal integration.
Janes, Kevin A; VanHook, Annalisa M
2016-06-07
This Podcast features an interview with Kevin Janes, senior author of a Research Article that appears in the 7 June 2016 issue of Science Signaling, about a statistical modeling method that can extract useful information from complex data sets. Cells exist in very complex environments. They are constantly exposed to growth factors, hormones, nutrients, and many other factors that influence cellular behavior. When cells integrate information from multiple stimuli, the resulting output does not necessarily reflect a simple additive effect of the responses to each individual stimulus. Chitforoushzadeh et al employed a statistical modeling approach that maintained the multidimensional nature of the data to analyze the responses of colonic epithelial cells to various combinations of the proinflammatory cytokine TNF, the growth factor EGF, and insulin. As the model predicted, experiments confirmed that insulin suppressed TNF-induced proinflammatory signaling through a mechanism that involved the transcription factor GATA6.Listen to Podcast. Copyright © 2016, American Association for the Advancement of Science.
Determining Tidal Phase Differences from X-Band Radar Images
Newman, Kieran; Bell, Paul; Brown, Jennifer; Plater, Andrew
2017-04-01
Introduction Previous work by Bell et. al. (2016) has developed a method using X-band marine radar to measure intertidal bathymetry, using the waterline as a level over a spring-neap tidal cycle. This has been used in the Dee Estuary to give a good representation of the bathymetry in the area. However, there are some sources of inaccuracy in the method, as a uniform spatial tidal signal is assumed over the entire domain. Motivation The method used by Bell et. al. (2016) applies a spatially uniform tidal signal to the entire domain. This fails to account for fine-scale variations in water level and tidal phase. While methods are being developed to account for small-scale water level variations using high resolution modelling, a method to determine tidal phase variations directly from the radar intensity images could be advantageous operationally. Methods The tidal phase has been computed using two different methods, with hourly averaged images from 2008. In the first method, the cross-correlation between each raw pixel time series and a tidal signal at a number of lags is calculated, and the lag with the highest correlation to the pixel series is recorded. For the second method, the same method of correlation is used on signals generated by tracking movement of buoys, which show up strongly in the radar image as they move on their moorings with the tidal currents. There is a broad agreement between the two methods, but validation is needed to determine the relative accuracy. The phase has also been calculated using a Fourier decomposition, and agrees broadly with the above methods. Work also needs to be done to separate areas where the recorded phase is due to tidal current (mostly subtidal areas) or due to elevation (mostly the wetting/drying signal in intertidal areas), by classifying radar intensities by the phases and amplitudes of the tides. Filtering out signal variations due to wind strength and attenuation of the radar signal will also be applied. Validation
Directory of Open Access Journals (Sweden)
Maria Sole Morelli
2016-10-01
Full Text Available Electroencephalographic (EEG irreducible artifacts are common and the removal of corrupted segments from the analysis may be required. The present study aims at exploring the effects of different EEG Missing Data Segment (MDS distributions on cross-correlation analysis, involving EEG and physiological signals. The reliability of cross-correlation analysis both at single subject and at group level as a function of missing data statistics was evaluated using dedicated simulations. Moreover, a Bayesian-based approach for combining the single subject results at group level by considering each subject’s reliability was introduced. Starting from the above considerations, the cross-correlation function between EEG Global Field Power (GFP in delta band and end-tidal CO2 (PETCO2 during rest and voluntary breath-hold was evaluated in six healthy subjects. The analysis of simulated data results at single subject level revealed a worsening of precision and accuracy in the cross-correlation analysis in the presence of MDS. At the group level, a large improvement in the results’ reliability with respect to single subject analysis was observed. The proposed Bayesian approach showed a slight improvement with respect to simple average results. Real data results were discussed in light of the simulated data tests and of the current physiological findings.
Tidal controls on riverbed denitrification along a tidal freshwater zone
Knights, Deon; Sawyer, Audrey H.; Barnes, Rebecca T.; Musial, Cole T.; Bray, Samuel
2017-01-01
In coastal rivers, tidal pumping enhances the exchange of oxygen-rich river water across the sediment-water interface, controlling nitrogen cycling in riverbed sediment. We developed a one-dimensional, fluid flow and solute transport model that quantifies the influence of tidal pumping on nitrate removal and applied it to the tidal freshwater zone (TFZ) of White Clay Creek (Delaware, USA). In field observations and models, both oxygenated river water and anoxic groundwater deliver nitrate to carbon-rich riverbed sediment. A zone of nitrate removal forms beneath the aerobic interval, which expands and contracts over daily timescales due to tidal pumping. At high tide when oxygen-rich river water infiltrates into the bed, denitrification rates decrease by 25% relative to low tide. In the absence of tidal pumping, our model predicts that the aerobic zone would be thinner, and denitrification rates would increase by 10%. As tidal amplitude increases toward the coast, nitrate removal rates should decrease due to enhanced oxygen exchange across the sediment-water interface, based on sensitivity analysis. Denitrification hot spots in TFZs are more likely to occur in less permeable sediment under lower tidal ranges and higher rates of ambient groundwater discharge. Our models suggest that tidal pumping is not efficient at removing surface water nitrate but can remove up to 81% of nitrate from discharging groundwater in the TFZ of White Clay Creek. Given the high population densities of coastal watersheds, the reactive riverbeds of TFZs play a critical role in mitigating new nitrogen loads to coasts.
A Finite Volume Method with Unstructured Triangular Grids for Numerical Modeling of Tidal Current
Institute of Scientific and Technical Information of China (English)
SHI Hong-da; LIU zhen
2005-01-01
The finite volume method (FVM) has many advantages in 2-D shallow water numerical simulation. In this study, the finite volume method is used with unstructured triangular grids to simulate the tidal currents. The Roe scheme is applied in the calculation of the intercell numerical flux, and the MUSCL method is introduced to improve its accuracy. The time integral is a two-step scheme of forecast and revision. For the verification of the present method, the Stoker's problem is calculated and the result is compared with the mathematically analytic solutions. The comparison indicates that the method is feasible. A sea area of a port is used as an example to test the method established here. The result shows that the present computational method is satisfactory, and it could be applied to the engineering fields.
Tidal hydrodynamics in a two-inlet coastal lagoon in the Gulf of California
Serrano, David; Ramírez-Félix, Evlin; Valle-Levinson, Arnoldo
2013-07-01
The aim of this study is to understand the effects of friction and advection in the hydrodynamics of a two-inlet coastal lagoon, Santa María La Reforma, in Northwest Mexico. A vertically integrated numerical model is used to describe sea level variations and tidal currents, and to study the dynamics inside the system. Observed sea level and current measurements were used to calibrate the model. Results show a ˜90 min phase lag of the tidal signal in the center of the system with respect to both inlets. Tidal currents greater than 1.0 m s-1 were recorded and modeled at both inlets. The sea level in the lagoon shows one-quarter of period of M2 out of phase (˜3 h) with respect to the velocity. Bottom friction generated the greatest M4 harmonic and largest tidal asymmetries at the narrowest section of the lagoon, ˜35 km away from the inlets. The tidal momentum balance along the main axis of the lagoon was dominated by pressure gradient and friction, describing a quasi-standing tidal wave in currents and in amplitude. This behavior resulted from waves traveling in opposite directions from the two tidal inlets, causing constructive interference in elevation but destructive interference inflow.
Directory of Open Access Journals (Sweden)
Trang Minh Duong
2012-09-01
Full Text Available Tidal inlets are of great societal importance as they are often associated with ports and harbours, industry, tourism, recreation and prime waterfront real estate. Their behaviour is governed by the delicate balance of oceanic processes (tides, waves and mean sea level, and fluvial/estuarine processes (riverflow and heat fluxes, all of which can be significantly affected by climate change (CC processes. This study investigates the potential range of CC impacts on the stability (closed/open state and locational stability via the application of a sophisticated process based morphodynamic model (Delft3D to strategically selected schematized inlet morphologies and forcing conditions. Results show that, under worst case scenario conditions, the integrated effect of climate change driven increase in mean sea level, wave height and wave angle may significantly change inlet stability condition.
Tidal disruption of inviscid planetesimals
Boss, A. P.; Cameron, A. G. W.; Benz, W.
1991-01-01
In view of previous efforts' demonstration that strongly dissipative planetesimals are immune to tidal disruption, an examination is presently conducted of the complementary case of inviscid planetesimals arising from collisions that are sufficiently energetic to entirely melt the resulting planetesimal and debris. The tidal disruption is numerically simulated by means of the smoothed particle hydrodynamics (SPH) code of Cameron and Benz (1991), concentrating on the tidal disruption of 0.01 earth-mass planetesimals passing by the earth with variations in the impact parameter at perigee and velocity at infinity. The SPH models show that tidal forces during a close encounter can efficiently convert orbital angular momentum into spin angular momentum, thereby initiating equatorial mass-shedding to inviscid planetesimals that have been spun up beyond the limit of rotational stability.
Fortini, Lucas; Cropper, Wendell P.; Zarin, Daniel J.
2015-01-01
At the Amazon estuary, the oldest logging frontier in the Amazon, no studies have comprehensively explored the potential long-term population and yield consequences of multiple timber harvests over time. Matrix population modeling is one way to simulate long-term impacts of tree harvests, but this approach has often ignored common impacts of tree harvests including incidental damage, changes in post-harvest demography, shifts in the distribution of merchantable trees, and shifts in stand composition. We designed a matrix-based forest management model that incorporates these harvest-related impacts so resulting simulations reflect forest stand dynamics under repeated timber harvests as well as the realities of local smallholder timber management systems. Using a wide range of values for management criteria (e.g., length of cutting cycle, minimum cut diameter), we projected the long-term population dynamics and yields of hundreds of timber management regimes in the Amazon estuary, where small-scale, unmechanized logging is an important economic activity. These results were then compared to find optimal stand-level and species-specific sustainable timber management (STM) regimes using a set of timber yield and population growth indicators. Prospects for STM in Amazonian tidal floodplain forests are better than for many other tropical forests. However, generally high stock recovery rates between harvests are due to the comparatively high projected mean annualized yields from fast-growing species that effectively counterbalance the projected yield declines from other species. For Amazonian tidal floodplain forests, national management guidelines provide neither the highest yields nor the highest sustained population growth for species under management. Our research shows that management guidelines specific to a region’s ecological settings can be further refined to consider differences in species demographic responses to repeated harvests. In principle, such fine
Estuary/ocean exchange and tidal mixing in a Gulf of Maine Estuary: A Lagrangian modeling study
Bilgili, Ata; Proehl, Jeffrey A.; Lynch, Daniel R.; Smith, Keston W.; Swift, M. Robinson
2005-12-01
A Lagrangian particle method embedded within a 2-D finite element code, is used to study the transport and ocean-estuary exchange processes in the well-mixed Great Bay Estuarine System in New Hampshire, USA. The 2-D finite element model, driven by residual, semi-diurnal and diurnal tidal constituents, includes the effects of wetting and drying of estuarine mud flats through the use of a porous medium transport module. The particle method includes tidal advection, plus a random walk model in the horizontal that simulates sub-grid scale turbulent transport processes. Our approach involves instantaneous, massive [O(500,000)] particle releases that enable the quantification of ocean-estuary and inter-bay exchanges in a Markovian framework. The effects of the release time, spring-neap cycle, riverine discharge and diffusion strength on the intra-estuary and estuary-ocean exchange are also investigated. The results show a rather dynamic interaction between the ocean and the estuary with a fraction of the exiting particles being caught up in the Gulf of Maine Coastal Current and swept away. Three somewhat different estimates of estuarine residence time are calculated to provide complementary views of estuary flushing. Maps of residence time versus release location uncover a strong spatial dependency of residence time within the estuary that has very important ramifications for local water quality. Simulations with and without the turbulent random walk show that the combined effect of advective shear and turbulent diffusion is very effective at spreading particles throughout the estuary relatively quickly, even at low (1 m 2/s) diffusivity. The results presented here show that a first-order Markov Chain approach has applicability and a high potential for improving our understanding of the mixing processes in estuaries.
Glomerular filtration is reduced by high tidal volume ventilation in an in vivo healthy rat model
Directory of Open Access Journals (Sweden)
A. Luque
2009-11-01
Full Text Available Mechanical ventilation has been associated with organ failure in patients with acute respiratory distress syndrome. The present study examines the effects of tidal volume (V T on renal function using two V T values (8 and 27 mL/kg in anesthetized, paralyzed and mechanically ventilated male Wistar rats. Animals were randomized into two groups of 6 rats each: V T8 (V T, 8 mL/kg; 61.50 ± 0.92 breaths/min; positive end-expiratory pressure, 3.0 cmH2O; peak airway pressure (PAW, 11.8 ± 2.0 cmH2O, and V T27 (V T, 27 mL/kg; 33.60 ± 1.56 breaths/min; positive end-expiratory pressure, none, and PAW, 22.7 ± 4.0 cmH2O. Throughout the experiment, mean PAW remained comparable between the two groups (6.33 ± 0.21 vs 6.50 ± 0.22 cmH2O. For rats in the V T27 group, inulin clearance (mL·min-1·body weight-1 decreased acutely after 60 min of mechanical ventilation and even more significantly after 90 min, compared with baseline values (0.60 ± 0.05 and 0.45 ± 0.05 vs 0.95 ± 0.07; P < 0.001, although there were no differences between groups in mean arterial pressure or gasometric variables. In the V T8 group, inulin clearance at 120 min of mechanical ventilation remained unchanged in relation to baseline values (0.72 ± 0.03 vs 0.80 ± 0.05. The V T8 and V T27 groups did not differ in terms of serum thiobarbituric acid reactive substances (3.97 ± 0.27 vs 4.02 ± 0.45 nmol/mL or endothelial nitric oxide synthase expression (94.25 ± 2.75 vs 96.25 ± 2.39%. Our results show that glomerular filtration is acutely affected by high tidal volume ventilation but do not provide information about the mechanism.
Yang, Jun
2014-01-01
In the spirit of minimal modeling of complex systems, we develop an idealized two-column model to investigate the climate of tidally locked terrestrial planets with Earth-like atmospheres in the habitable zone of M-dwarf stars. The model is able to approximate the fundamental features of the climate obtained from three-dimensional (3D) atmospheric general circulation model (GCM) simulations. One important reason for the two-column model's success is that it reproduces the high cloud albedo of the GCM simulations, which reduces the planet's temperature and delays the onset of a runaway greenhouse state. The two-column model also clearly illustrates a secondary mechanism for determining the climate: the nightside acts as a ``radiator fin'' through which infrared energy can be lost to space easily. This radiator fin is maintained by a temperature inversion and dry air on the nightside, and plays a similar role to the subtropics on modern Earth. Since 1D radiative-convective models cannot capture the effects of t...
A model for the multiwavelength radiation from tidal disruption event Swift J1644+57
Kumar, P; Bosnjak, Z; Piran, T
2013-01-01
Gamma-ray observations of a stellar tidal disruption event (TDE) detected by the Swift satellite and follow up observations in radio, mm, infrared and x-ray bands have provided a rich data set to study accretion onto massive blackholes, production of relativistic jets and their interaction with the surrounding medium. The radio and x-ray data for TDE Swift J1644+57 provide a conflicting picture regarding the energy in relativistic jet produced in this event: x-ray data suggest jet energy declining with time as t^{-5/3} whereas the nearly flat lightcurves in radio and mm bands lasting for about 100 days have been interpreted as evidence for the total energy output increasing with time. We show in this work that flat lightcurves don't require addition of energy to decelerating external shock (which produced radio and mm emission via synchrotron process), instead the flat behavior is due to inverse-Compton cooling of electrons by x-ray photons streaming through the external shock; the higher x-ray flux at earlie...
Michot, Béatrice; Meselhe, Ehab A.; Rivera-Monroy, Victor H.; Coronado-Molina, Carlos; Twilley, Robert R.
2011-07-01
Taylor Slough is one of the natural freshwater contributors to Florida Bay through a network of microtidal creeks crossing the Everglades Mangrove Ecotone Region (EMER). The EMER ecological function is critical since it mediates freshwater and nutrient inputs and controls the water quality in Eastern Florida Bay. Furthermore, this region is vulnerable to changing hydrodynamics and nutrient loadings as a result of upstream freshwater management practices proposed by the Comprehensive Everglades Restoration Program (CERP), currently the largest wetland restoration project in the USA. Despite the hydrological importance of Taylor Slough in the water budget of Florida Bay, there are no fine scale (˜1 km 2) hydrodynamic models of this system that can be utilized as a tool to evaluate potential changes in water flow, salinity, and water quality. Taylor River is one of the major creeks draining Taylor Slough freshwater into Florida Bay. We performed a water budget analysis for the Taylor River area, based on long-term hydrologic data (1999-2007) and supplemented by hydrodynamic modeling using a MIKE FLOOD (DHI, http://dhigroup.com/) model to evaluate groundwater and overland water discharges. The seasonal hydrologic characteristics are very distinctive (average Taylor River wet vs. dry season outflow was 6 to 1 during 1999-2006) with a pronounced interannual variability of flow. The water budget shows a net dominance of through flow in the tidal mixing zone, while local precipitation and evapotranspiration play only a secondary role, at least in the wet season. During the dry season, the tidal flood reaches the upstream boundary of the study area during approximately 80 days per year on average. The groundwater field measurements indicate a mostly upwards-oriented leakage, which possibly equals the evapotranspiration term. The model results suggest a high importance of groundwater contribution to the water salinity in the EMER. The model performance is satisfactory
Tidal disruption of inviscid protoplanets
Boss, Alan P.; Cameron, A. G. W.; Benz, W.
1991-01-01
Roche showed that equilibrium is impossible for a small fluid body synchronously orbiting a primary within a critical radius now termed the Roche limit. Tidal disruption of orbitally unbound bodies is a potentially important process for planetary formation through collisional accumulation, because the area of the Roche limit is considerably larger then the physical cross section of a protoplanet. Several previous studies were made of dynamical tidal disruption and different models of disruption were proposed. Because of the limitation of these analytical models, we have used a smoothed particle hydrodynamics (SPH) code to model the tidal disruption process. The code is basically the same as the one used to model giant impacts; we simply choose impact parameters large enough to avoid collisions. The primary and secondary both have iron cores and silicate mantles, and are initially isothermal at a molten temperature. The conclusions based on the analytical and numerical models are summarized.
Yasuda, I.; Tanaka, Y.; Itoh, S.; Hasumi, H.; Komatsu, K.; Osafune, S.; Yagi, M.; Tanaka, T.; Kaneko, H.; Ikeya, T.; Konda, S.; Nishioka, J.; Nakatsuka, T.; Katsumata, K.; Tatebe, H.; Watanabe, Y.; Hiroe, Y.; Nakamura, T.
2012-12-01
Direct turbulent observations in the Kuril Straits and Aleutian Straits reveal that tide-induced strong vertical mixing corresponds to strong shear of combined diurnal tidal and/or mean currents and significantly modifies the water-mass and potential vorticity distribution. Bi-decadal variability synchronized with 18.6-year period moon-tidal cycle were found in various parts of the ocean and climate indices: water-mass variability in the subarctic North Pacific, especially near the strong diurnal tide regions as Kuril Straits and Aleutian Islands, and in long-term climate indices as Pacific Decadal Oscillation (PDO) and El-Nino and Southern Oscillation (ENSO) in proxy-reconstructed records. In low-frequency part of the PDO and SOI records, negative (positive)-PDO and positive (negative)-SOI tend to occur in the 4-6-th (10-12-th) year after the maximum diurnal tide, which is consistent with the climate model experiments with locally enhanced vertical mixing around Kuril Straits showing that tidal mixing and its variability could generate bi-decadal variability in ocean and climate. Ocean and climate model experiments with parameterized tidal mixing explain some of the water-mass modifications and bi-decadal variability of water-masses and climate.
Modelling of urban traffic networkof signalized intersections
2013-01-01
This report presents how traffic network of signalized intersection in a chosen urban area called Tema is synchronized. Using a modular approach, two different types of traffic intersection commonly found in an urban area were modelled i.e. a simple intersection and a complex intersection. A direct road, even though not an intersection, was also included in the modelling because it’s commonly found in an urban area plus it connects any two intersections. Each of these scenarios was modelled u...
Transfer Rate Models for Gnutella Signaling Traffic
2006-01-01
This paper reports on transfer rate models for the Gnutella signaling protocol. New results on message-level and IP-level rates are presented. The models are based on traffic captured at the Blekinge Institute of Technology (BTH) campus in Sweden and offer several levels of granularity: message type, application layer and network layer. The aim is to obtain parsimonous models suitable for analysis and simulation of P2P workload. IEEE Explorer
Yoon, J.; Shahvari, A.
2011-12-01
This characterization and modeling study of dispersive tidal plume of brine discharge from reverse osmosis (RO) desalination system is a part of the Environmental Assessment (EA) for a new reverse osmosis system in the Coral Bay, St. John, USVI (US Virgin Island). Main foci are on developing the tidal longitudinal (perpendicular to the shoreline) and lateral (parallel to the shoreline) dispersion coefficients and subsequently characterize dispersion and mixing characterization of the negatively buoyant brine discharge plume from the proposed reverse osmosis plant to evaluate the level of salinity variations in the nearshore mixing plume in regard to existing coral reef ecosystem. An in situ dye study was conducted by a marine biologist for this purpose to estimate brine discharge plume dispersion coefficients under oscillatory tidal transport and fate flux for current and proposed plant configuration. Additional tidal and surface runoff hydrologic data, bathymetric data and brine discharge characteristics in the vicinity of the brine discharge location are reflected in this study. With estimated dispersion coefficients, eighteen brine discharge scenarios were evaluated to model anticipated dispersive characteristics under varying operational conditions and ambient tidal current conditions for average measured salinity of 33.27 PSU in loco as well as a standard 35 PSU for typical nearshore water salinity variations. Modeling results indicated that the dispersive tidal plume of design brine discharge from reverse osmosis (RO) desalination system at a discharge of 150,000 gpd would raise salinity no higher than 0.0123 PSU in receiving nearshore estuarine water (Maximum concentration at the segment 3 = 33.2822 PSU at Δt = 12 hrs and 24 hrs in diurnal tidal cycle under when the brine discharge with Base+25% concentration, 81.25 PSU at brine discharge rate of 0.0066 m3/sec, and with a minimum direct overland flow efflux at 0.003 m3/sec - this is a "worst-case" operating
Balachandran, Kizhakkepat Kalathil; Reddy, Guddemmari Sidha; Revichandran, Chenicherry; Srinivas, Kotamarpi; Vijayan, Panachikkal Ramakrishnan; Thottam, Tony Joseph
2008-11-01
Tidal circulation in the Cochin Estuary, a moderately polluted estuary along the southwest coast of India, was studied using a 2D hydrodynamic model. The predicted tides and currents showed very good agreement with measured tides. Particle trajectories and residual currents computed from the model have been used to classify the study region into three zones: northern estuary, central estuary, and southern estuary. The central estuary is dynamic, whereas the other two zones are relatively weak. An amplification of measured tides in the south estuary during March indicates the presence of standing waves caused by the hydraulic barrier at Thanneermukkom. Model results suggest that the northern and southern zones are sensitive to environmental pollution. The present level of pollution in the northern estuary is due to the direct release of industrial effluents into the river Periyar, which can be minimized if they are brought down to central estuary for disposal. The concept of different zones in the estuary will be useful to planners in protecting the vulnerable regions of this productive ecosystem from human interventions.
Patterns of flavor signals in supersymmetric models
Energy Technology Data Exchange (ETDEWEB)
Goto, T. [KEK National High Energy Physics, Tsukuba (Japan)]|[Kyoto Univ. (Japan). YITP; Okada, Y. [KEK National High Energy Physics, Tsukuba (Japan)]|[Graduate Univ. for Advanced Studies, Tsukuba (Japan). Dept. of Particle and Nucelar Physics; Shindou, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[International School for Advanced Studies, Trieste (Italy); Tanaka, M. [Osaka Univ., Toyonaka (Japan). Dept. of Physics
2007-11-15
Quark and lepton flavor signals are studied in four supersymmetric models, namely the minimal supergravity model, the minimal supersymmetric standard model with right-handed neutrinos, SU(5) supersymmetric grand unified theory with right-handed neutrinos and the minimal supersymmetric standard model with U(2) flavor symmetry. We calculate b{yields}s(d) transition observables in B{sub d} and B{sub s} decays, taking the constraint from the B{sub s}- anti B{sub s} mixing recently observed at Tevatron into account. We also calculate lepton flavor violating processes {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma} and {tau} {yields} e{gamma} for the models with right-handed neutrinos. We investigate possibilities to distinguish the flavor structure of the supersymmetry breaking sector with use of patterns of various flavor signals which are expected to be measured in experiments such as MEG, LHCb and a future Super B Factory. (orig.)
Institute of Scientific and Technical Information of China (English)
HOU Fang; BAO Xianwen; LI Benxia; LIU Qianqian
2015-01-01
In this study, we construct one 2–dimensional tidal simulation, using an unstructured Finite Volume Coastal Ocean Model (FVCOM). In the 2–D model, we simulated the tidal turbines through adding additional bottom drag in the element where the tidal turbines reside. The additional bottom drag was calculated from the relationship of the bottom friction dissipation and the rated rotor efficiency of the tidal energy turbine. This study analyzed the effect of the tidal energy turbine to the hydrodynamic environment, and calculated the amount of the extractable tidal energy resource at the Guishan Hangmen Channel, considering the rotor wake effect.
Energy Technology Data Exchange (ETDEWEB)
Yang, Jun; Abbot, Dorian S., E-mail: junyang28@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States)
2014-04-01
In the spirit of minimal modeling of complex systems, we develop an idealized two-column model to investigate the climate of tidally locked terrestrial planets with Earth-like atmospheres in the habitable zone of M-dwarf stars. The model is able to approximate the fundamental features of the climate obtained from three-dimensional (3D) atmospheric general circulation model (GCM) simulations. One important reason for the two-column model's success is that it reproduces the high cloud albedo of the GCM simulations, which reduces the planet's temperature and delays the onset of a runaway greenhouse state. The two-column model also clearly illustrates a secondary mechanism for determining the climate: the nightside acts as a 'radiator fin' through which infrared energy can be lost to space easily. This radiator fin is maintained by a temperature inversion and dry air on the nightside, and plays a similar role to the subtropics on modern Earth. Since one-dimensional radiative-convective models cannot capture the effects of the cloud albedo and radiator fin, they are systematically biased toward a narrower habitable zone. We also show that cloud parameters are the most important in the two-column model for determining the day-night thermal emission contrast, which decreases and eventually reverses as the stellar flux increases. This reversal is important because it could be detected by future extrasolar planet characterization missions, which would suggest that the planet has Earth-like water clouds and is potentially habitable.
Afterglow model for the radio emission from the jetted tidal disruption candidate Swift J1644+57
Metzger, Brian D.; Giannios, Dimitrios; Mimica, Petar
2012-03-01
The recent transient event Swift J1644+57 has been interpreted as emission from a collimated relativistic jet, powered by the sudden onset of accretion on to a supermassive black hole following the tidal disruption of a star. Here we model the radio-microwave emission as synchrotron radiation produced by the shock interaction between the jet and the gaseous circumnuclear medium (CNM). At early times after the onset of the jet (t≲ 5-10 d) a reverse shock propagates through and decelerates the ejecta, while at later times the outflow approaches the Blandford-McKee self-similar evolution (possibly modified by additional late energy injection). The achromatic break in the radio light curve of Swift J1644+57 is naturally explained as the transition between these phases. We show that the temporal indices of the pre- and post-break light curve are consistent with those predicted if the CNM has a wind-type radial density profile n∝r-2. The observed synchrotron frequencies and self-absorbed flux constrain the fraction of the post-shock thermal energy in relativistic electrons ɛe≈ 0.03-0.1, the CNM density at 1018 cm n18≈ 1-10 cm-3 and the initial Lorentz factor Γj≈ 10-20 and opening angle ? of the jet. Radio modelling thus provides robust independent evidence for a narrowly collimated outflow. Extending our model to the future evolution of Swift J1644+57, we predict that the radio flux at low frequencies (ν≲ few GHz) will begin to brighten more rapidly once the characteristic frequency νm crosses below the radio band after it decreases below the self-absorption frequency on a time-scale of months (indeed, such a transition may already have begun). Our results demonstrate that relativistic outflows from tidal disruption events provide a unique probe of the conditions in distant, previously inactive galactic nuclei, complementing studies of normal active galactic nuclei.
Logical modelling of Drosophila signalling pathways.
Mbodj, Abibatou; Junion, Guillaume; Brun, Christine; Furlong, Eileen E M; Thieffry, Denis
2013-09-01
A limited number of signalling pathways are involved in the specification of cell fate during the development of all animals. Several of these pathways were originally identified in Drosophila. To clarify their roles, and possible cross-talk, we have built a logical model for the nine key signalling pathways recurrently used in metazoan development. In each case, we considered the associated ligands, receptors, signal transducers, modulators, and transcription factors reported in the literature. Implemented using the logical modelling software GINsim, the resulting models qualitatively recapitulate the main characteristics of each pathway, in wild type as well as in various mutant situations (e.g. loss-of-function or gain-of-function). These models constitute pluggable modules that can be used to assemble comprehensive models of complex developmental processes. Moreover, these models of Drosophila pathways could serve as scaffolds for more complicated models of orthologous mammalian pathways. Comprehensive model annotations and GINsim files are provided for each of the nine considered pathways.
Scafetta, Nicola
2012-01-01
The sunspot record since 1749 is made of three major cycles (9.98, 10.9 and 11.86 yr). The side frequencies are related to the spring tidal period of Jupiter and Saturn (9.93 yr) and to the tidal sidereal period of Jupiter (11.86 yr). A simplified harmonic constituent model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals complex quasi-periodic interference/beat patterns at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. We show that equivalent synchronized cycles are found in cosmogenic records used to reconstruct solar activity and in proxy climate records throughout the Holocene. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium known as Oort, Wolf, Sporer, Maunder and Dalton minima, as well as 17 115-year long oscillations found in temperature recon...
Energy Technology Data Exchange (ETDEWEB)
Hu, Changhong; Kyozuka, Y. [Kyushu Univ., Fukuoka (Japan). Graduate School
1996-03-29
Tidal currents and drift currents in a bay with a pontoon type very large floating structure are calculated using a multi-level model. A method of solving two dimensional Poisson equation is proposed to obtain the hydrodynamic pressure under the floating structure. Vertical displacement of the floating structure due to the calculated surrounding water levels can also be calculated. Computation is performed also for tidal flows of a bay to study the effect of the vertical displacement of the pontoon. Lastly, building an airport in the Ariake Sea is assumed as an example, and the effect of the structure on tidal currents is calculated using this method. A floating airport has less effect on tidal currents and residual currents in comparison with a reclaimed island. The horizontal flow velocity under a floating structure increases more than in the case of no platoon, and the effect on the flow rate becomes smaller relatively. There is a little difference in the vertical flow rate between the case of allowing vertical displacement of the platoon and the case of restricting the displacement, but the change in the horizontal flow rate is very little. 5 refs., 11 figs.
Institute of Scientific and Technical Information of China (English)
HAN Guijun; LI Wei; HE Zhongjie; LIU Kexiu; MA Jirui
2006-01-01
In order to obtain an accurate tide description in the China Seas, the 2-dimensional nonlinear numerical Princeton Ocean Model (POM) is employed to incorporate in situ tidal measurements both from tide gauges and TOPEX/POSEIDON (T/P) derived datasets by means of the variational adjoint approach in such a way that unknown internal model parameters, bottom topography, friction coefficients and open boundary conditions, for example, are adjusted during the process. The numerical model is used as a forward model. After the along-track T/P data are processed, two classical methods, i.e. harmonic and response analysis, are implemented to estimate the tide from such datasets with a domain covering the model area extending from 0° to 41°N in latitude and from 99°E to 142°E in longitude. And the results of these two methods are compared and interpreted. The numerical simulation is performed for 16 major constituents. In the data assimilation experiments, three types of unknown parameters (water depth, bottom friction and tidal open boundary conditions in the model equations) are chosen as control variables. Among the various types of data assimilation experiments, the calibration of water depth brings the most promising results. By comparing the results with selected tide gauge data, the average absolute errors are decreased from 7.9 cm to 6.8 cm for amplitude and from 13.0° to 9.0° for phase with respect to the semidiurnal tide M2 constituent, which is the largest tidal constituent in the model area. After the data assimilation experiment is performed, the comparison between model results and tide gauge observation for water levels shows that the RMS errors decrease by 9 cm for a total of 14 stations, mostly selected along the coast of Mainland China, when a one-month period is considered, and the correlation coefficients improve for most tidal stations among these stations.
DEFF Research Database (Denmark)
Clausen, P.
2000-01-01
Brent geese Branta bernicla spring fattening around Agero, Denmark, alternate between feeding on saltmarshes and submerged Zostera beds in Limfjorden. It appeared from field observations that these alternations depended on the water level in Limfjorden. A model was developed to assess the impact ......). The models presented may be considered as tools in investigations of habitat use and carrying capacity of seagrass beds in non-tidal areas, where birds' access to feeding areas regularly may be hindered by high water levels....
Mathematical Models Light Up Plant Signaling
Chew, Y.H.; Smith, R.W.; Jones, H.J.; Seaton, D.D.; Grima, R.; Halliday, K.J.
2014-01-01
Plants respond to changes in the environment by triggering a suite of regulatory networks that control and synchronize molecular signaling in different tissues, organs, and the whole plant. Molecular studies through genetic and environmental perturbations, particularly in the model plant Arabidopsis
Stochastic models of intracellular calcium signals
Energy Technology Data Exchange (ETDEWEB)
Rüdiger, Sten, E-mail: sten.ruediger@physik.hu-berlin.de
2014-01-10
Cellular signaling operates in a noisy environment shaped by low molecular concentrations and cellular heterogeneity. For calcium release through intracellular channels–one of the most important cellular signaling mechanisms–feedback by liberated calcium endows fluctuations with critical functions in signal generation and formation. In this review it is first described, under which general conditions the environment makes stochasticity relevant, and which conditions allow approximating or deterministic equations. This analysis provides a framework, in which one can deduce an efficient hybrid description combining stochastic and deterministic evolution laws. Within the hybrid approach, Markov chains model gating of channels, while the concentrations of calcium and calcium binding molecules (buffers) are described by reaction–diffusion equations. The article further focuses on the spatial representation of subcellular calcium domains related to intracellular calcium channels. It presents analysis for single channels and clusters of channels and reviews the effects of buffers on the calcium release. For clustered channels, we discuss the application and validity of coarse-graining as well as approaches based on continuous gating variables (Fokker–Planck and chemical Langevin equations). Comparison with recent experiments substantiates the stochastic and spatial approach, identifies minimal requirements for a realistic modeling, and facilitates an understanding of collective channel behavior. At the end of the review, implications of stochastic and local modeling for the generation and properties of cell-wide release and the integration of calcium dynamics into cellular signaling models are discussed.
Mathematical Models Light Up Plant Signaling
Chew, Y.H.; Smith, R.W.; Jones, H.J.; Seaton, D.D.; Grima, R.; Halliday, K.J.
2014-01-01
Plants respond to changes in the environment by triggering a suite of regulatory networks that control and synchronize molecular signaling in different tissues, organs, and the whole plant. Molecular studies through genetic and environmental perturbations, particularly in the model plant Arabidopsis
Prediction of signal peptides and signal anchors by a hidden Markov model
DEFF Research Database (Denmark)
Krogh, Anders Stærmose; Nielsen, Henrik
1998-01-01
A hidden Markov model of signal peptides has been developed. It contains submodels for the N-terminal part, the hydrophobic region, and the region around the cleavage site. For known signal peptides, the model can be used to assign objective boundaries between these three regions. Applied to our ...... is the poor discrimination between signal peptides and uncleaved signal anchors, but this is substantially improved by the hidden Markov model when expanding it with a very simple signal anchor model....
Tidal regime in Gulf of Kutch, west coast of India, by 2D model
Digital Repository Service at National Institute of Oceanography (India)
Unnikrishnan, A; Gouveia, A; Vethamony, P.
A 2D barotropic numerical model is developed for the Gulf of Kutch with a view to synthesize available information on tides and currents in the Gulf. A comparison of model results with moored current meter observations shows that the model...
Directory of Open Access Journals (Sweden)
Haibo Chen
2013-01-01
Full Text Available Based on an internal tidal model, the practical performances of the limited-memory BFGS (L-BFGS method and two gradient descent (GD methods (the normal one with Wolfe’s line search and the simplified one are investigated computationally through a series of ideal experiments in which the open boundary conditions (OBCs are inverted by assimilating the interior observations with the adjoint method. In the case that the observations closer to the unknown boundary are included for assimilation, the L-BFGS method performs the best. As compared with the simplified GD method, the normal one really uses less iteration to reach a satisfactory solution, but its advantage over the simplified one is much smaller than expected. In the case that only the observations that are further from the unknown boundary are assimilated, the simplified GD method performs the best instead, whereas the performances of the other two methods are not satisfactory. The advanced L-BFGS algorithm and Wolfe’s line search still need to be improved when applied to the practical cases. The simplified GD method, which is controllable and easy to implement, should be regarded seriously as a choice, especially when the classical advanced optimization techniques fail or perform poorly.
Institute of Scientific and Technical Information of China (English)
X.H.Wang
2004-01-01
Floc breakup dynamics are studied by a sediment transport numerical model in an idealized tidal estuary that has a constant water depth and rapid flocculation of cohesive sediments. The focus is placed on the effects of boundary layer stratification induced by a bottom nepheloid layer on floc breakup and size distribution in the water column. In a neutrally stratified estuary, the floc size distribution follows a parabolic function with maximum values at the surface and bottom. The sediment-induced stratification in the bottom boundary layer increases the median floc sizes. Furthermore, sediment-voided convection caused by the settling lutocline generates significant turbulent kinetic energy dissipation and reduces floc size at the depth where the convective mixing happens. Below that depth, a weak local maxima in the floc size is predicted due to presence of the lutocline. The effect of sediment-stratified bottom boundary layer on the floc breakup can be consistently approximated by a linear regression between the maximal floc size and flux Richardson number.
Afterglow Model for the Radio Emission from the Jetted Tidal Disruption Candidate Swift J1644+57
Metzger, Brian D; Mimica, Petar
2011-01-01
The recent transient event Swift J1644+57 has been interpreted as emission from a collimated relativistic jet, powered by the sudden onset of accretion onto a supermassive black hole following the tidal disruption of a star. Here we model the radio-microwave emission as synchrotron radiation produced by the shock interaction between the jet and the gaseous circumnuclear medium (CNM). At early times after the onset of the jet (t < 5-10 days) a reverse shock propagates through and decelerates the ejecta, while at later times the outflow approaches the Blandford-McKee self-similar evolution (possibly modified by additional late energy injection). The achromatic break in the radio light curve of J1644+57 is naturally explained as the transition between these phases. We show that the temporal indices of the pre- and post-break light curve are consistent with those predicted if the CNM has a wind-type radial density profile n ~ 1/r^2. The observed synchrotron frequencies and self-absorbed flux constrain the frac...
Automated modelling of signal transduction networks
Directory of Open Access Journals (Sweden)
Aach John
2002-11-01
Full Text Available Abstract Background Intracellular signal transduction is achieved by networks of proteins and small molecules that transmit information from the cell surface to the nucleus, where they ultimately effect transcriptional changes. Understanding the mechanisms cells use to accomplish this important process requires a detailed molecular description of the networks involved. Results We have developed a computational approach for generating static models of signal transduction networks which utilizes protein-interaction maps generated from large-scale two-hybrid screens and expression profiles from DNA microarrays. Networks are determined entirely by integrating protein-protein interaction data with microarray expression data, without prior knowledge of any pathway intermediates. In effect, this is equivalent to extracting subnetworks of the protein interaction dataset whose members have the most correlated expression profiles. Conclusion We show that our technique accurately reconstructs MAP Kinase signaling networks in Saccharomyces cerevisiae. This approach should enhance our ability to model signaling networks and to discover new components of known networks. More generally, it provides a method for synthesizing molecular data, either individual transcript abundance measurements or pairwise protein interactions, into higher level structures, such as pathways and networks.
Evaluation of the UnTRIM model for 3-D tidal circulation
Cheng, R.T.; Casulli, V.; ,
2001-01-01
A family of numerical models, known as the TRIM models, shares the same modeling philosophy for solving the shallow water equations. A characteristic analysis of the shallow water equations points out that the numerical instability is controlled by the gravity wave terms in the momentum equations and by the transport terms in the continuity equation. A semi-implicit finite-difference scheme has been formulated so that these terms and the vertical diffusion terms are treated implicitly and the remaining terms explicitly to control the numerical stability and the computations are carried out over a uniform finite-difference computational mesh without invoking horizontal or vertical coordinate transformations. An unstructured grid version of TRIM model is introduced, or UnTRIM (pronounces as "you trim"), which preserves these basic numerical properties and modeling philosophy, only the computations are carried out over an unstructured orthogonal grid. The unstructured grid offers the flexibilities in representing complex study areas so that fine grid resolution can be placed in regions of interest, and coarse grids are used to cover the remaining domain. Thus, the computational efforts are concentrated in areas of importance, and an overall computational saving can be achieved because the total number of grid-points is dramatically reduced. To use this modeling approach, an unstructured grid mesh must be generated to properly reflect the properties of the domain of the investigation. The new modeling flexibility in grid structure is accompanied by new challenges associated with issues of grid generation. To take full advantage of this new model flexibility, the model grid generation should be guided by insights into the physics of the problems; and the insights needed may require a higher degree of modeling skill.
Storm surge and tidal range energy
Lewis, Matthew; Angeloudis, Athanasios; Robins, Peter; Evans, Paul; Neill, Simon
2017-04-01
The need to reduce carbon-based energy sources whilst increasing renewable energy forms has led to concerns of intermittency within a national electricity supply strategy. The regular rise and fall of the tide makes prediction almost entirely deterministic compared to other stochastic renewable energy forms; therefore, tidal range energy is often stated as a predictable and firm renewable energy source. Storm surge is the term used for the non-astronomical forcing of tidal elevation, and is synonymous with coastal flooding because positive storm surges can elevate water-levels above the height of coastal flood defences. We hypothesis storm surges will affect the reliability of the tidal range energy resource; with negative surge events reducing the tidal range, and conversely, positive surge events increasing the available resource. Moreover, tide-surge interaction, which results in positive storm surges more likely to occur on a flooding tide, will reduce the annual tidal range energy resource estimate. Water-level data (2000-2012) at nine UK tide gauges, where the mean tidal amplitude is above 2.5m and thus suitable for tidal-range energy development (e.g. Bristol Channel), were used to predict tidal range power with a 0D modelling approach. Storm surge affected the annual resource estimate by between -5% to +3%, due to inter-annual variability. Instantaneous power output were significantly affected (Normalised Root Mean Squared Error: 3%-8%, Scatter Index: 15%-41%) with spatial variability and variability due to operational strategy. We therefore find a storm surge affects the theoretical reliability of tidal range power, such that a prediction system may be required for any future electricity generation scenario that includes large amounts of tidal-range energy; however, annual resource estimation from astronomical tides alone appears sufficient for resource estimation. Future work should investigate water-level uncertainties on the reliability and
Evaluation of cardiac output from a tidally ventilated homogeneous lung model.
Benallal, Habib; Beck, Kenneth C; Johnson, Bruce D; Busso, Thierry
2005-10-01
We used the direct Fick measurements to validate a method for estimating cardiac output by iteratively fitting VCO(2) at the mouth to lung model values. This model was run using a series of 50, 30 and 10 breaths to test sensitivity to number of breaths used for fitting. The lung was treated as a catenary two-compartment lung model consisting of a dead space compartment connected with a single alveolar space compartment, perfused with constant pulmonary blood flow. The implemented mathematical modeling described variations in O(2) and CO(2) compartmental fractions and alveolar volume. This model also included pulmonary capillary gas exchange. Experimental data were collected from measurements performed on six healthy subjects at rest and during 20, 40, 60 and 85-90% of peak V(O)(2). The correlation between the two methods was highest and the average agreement between the methods was best using 50 breaths R = 095; P model) = 1.1Q(Fick) - 2.3). The mean difference and lower to upper limits of agreement between measured and estimated data were 0.7 l/min (-2.7 to 4.1 l/min) for cardiac output; -0.9 ml/100 ml (-1.3 to -0.5 ml/100 ml) for arterial O(2) content; -0.8 ml/100 ml (-3.8 to 2.2 ml/100 ml) for mixed venous O(2) content and -0.1 ml/100 ml (-2.9 to 2.7 ml/100 ml) for arteriovenous difference O(2) content. The cardiac output estimated by the lung model was in good agreement with the direct Fick measurements in young healthy subjects.
Morley, Caroline V.; Knutson, Heather; Line, Michael; Fortney, Jonathan J.; Thorngren, Daniel; Marley, Mark S.; Teal, Dillon; Lupu, Roxana
2017-02-01
The Neptune-mass GJ 436b is one of the most studied transiting exoplanets with repeated measurements of its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its interior. We present new observations of GJ 436b’s thermal emission at 3.6 and 4.5 μm, which reduce uncertainties in estimates of GJ 436b’s flux at those wavelengths and demonstrate consistency between Spitzer observations spanning more than 7 yr. We analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum. We use a dual-pronged modeling approach of both self-consistent and retrieval models. We vary the metallicity, intrinsic luminosity from tidal heating, disequilibrium chemistry, and heat redistribution. We also study clouds and photochemical hazes, but do not find strong evidence for either. The self-consistent and retrieval models combine to suggest that GJ 436b has a high atmospheric metallicity, with best fits at or above several hundred times solar metallicity, tidal heating warming its interior with best-fit intrinsic effective temperatures around 300–350 K, and disequilibrium chemistry. High metal enrichments (>600× solar) occur from the accretion of rocky, rather than icy, material. Assuming the interior temperature Tint ∼ 300–350 K, we find a dissipation factor Q‧ ∼ 2 × 105–106, larger than Neptune’s Q‧, implying a long tidal circularization timescale for the orbit. We suggest that Neptune-mass planets may be more diverse than imagined, with metal enhancements spanning several orders of magnitude, to perhaps over 1000× solar metallicity. High-fidelity observations with instruments like the James Webb Space Telescope will be critical for characterizing this diversity.
Lu, Xianqing; Zhang, Jicai
2006-10-01
Based on the simulation of M2 tide in the Bohai Sea, the Yellow Sea and the East China Sea, TOPEX/Poseidon altimeter data are assimilated into a 2D tidal model to study the spatially varying bottom friction coefficient (BFC) by using the adjoint method. In this study, the BFC at some grid points are selected as the independent BFC, while the BFC at other grid points can be obtained through linear interpolation with the independent BFC. Two strategies for selecting the independent BFC are discussed. In the first strategy, one independent BFC is uniformly selected from each 1°×1° area. In the second one, the independent BFC are selected based on the spatial distribution of water depth. Twin and practical experiments are carried out to compare the two strategies. In the twin experiments, the adjoint method has a strong ability of inverting the prescribed BFC distributions combined with the spatially varying BFC. In the practical experiments, reasonable simulation results can be obtained by optimizing the spatially varying independent BFC. In both twin and practical experiments, the simulation results with the second strategy are better than those with the first one. The BFC distribution obtained from the practical experiment indicates that the BFC in shallow water are larger than those in deep water in the Bohai Sea, the North Yellow Sea, the South Yellow Sea and the East China Sea individually. However, the BFC in the East China Sea are larger than those in the other areas perhaps because of the large difference of water depth or bottom roughness. The sensitivity analysis indicates that the model results are more sensitive to the independent BFC near the land.
Small Signal Circuit Model of Double Photodiodes
Institute of Scientific and Technical Information of China (English)
HAN Jian-zhong; Ni Guo-qiang; MAO Lu-hong
2004-01-01
The transmission delay of photogenerated carriers in a CMOS-process-compatible double photodiode (DPD) is analyzed by using device simulation. The DPD small signal equivalent circuit model which includes transmission delay of photogenerated carriers is given. From analysis on the frequency domain of the circuit model the device has two poles. One has the relationship with junction capacitance and the DPD's load,the other with the depth and the doping concentration of the N-well in the DPD. Different depth of the Nwell and different area of the DPDs with bandwidth were compared. The analysis results are important to design the high speed DPDs.
Model identification for dose response signal detection
Bretz, Frank; Dette, Holger; Titoff, Stefanie; Volgushev, Stanislav
2012-01-01
We consider the problem of detecting a dose response signal if several competing regression models are available to describe the dose response relationship. In particular, we re-analyze the MCP-Mod approach from Bretz et al. (2005), which has become a very popular tool for this problem in recent years. We propose an improvement based on likelihood ratio tests and prove that in linear models this approach is always at least as powerful as the MCP-Mod method. This result remains ...
Ecohydrological modeling of a tropical tidal catchment exposed to anthropogenic pressure
Lorenz, Malte; Zeunert, Stephanie; Meon, Günter
2016-04-01
The study area is the highly polluted estuary system of the Thi Vai river and its catchment, located in South Vietnam. It is part of Vietnam's core regions for the development of industrial and agricultural production. The middle and lower parts of the river form an estuary, which is strongly affected by the tide. As a result of untreated industrial waste water discharges, the Thi Vai river was considered as ecological dead from 1990 to 2008. Although the water quality of the Thi Vai has been improved due to waste water treatment and control, it must be still considered as polluted. These first successes could be rapidly negated by the ongoing development of industry, population and agriculture. Today the water quality management is solely focused on the industrial zones adjacent to the estuary. The contribution of the catchment to the water quality pollution is not considered yet. To quantify the pollution of the Thi Vai estuary and its catchment, a monitoring system for water quantity and quality was installed. The water quality of the Thi Vai estuary and its main tributaries is affected by elevated concentrations of NH4, NO2 and TSS and partly reduced DO concentrations. Within the German-Vietnamese BMBF research project EWATEC-COAST a model based management system was developed as an instrument for a sustainable improvement of the water quality of the Thi Vai estuary and the Thi Vai catchment. Among others, the system consists of the hydrodynamic water quality model DELFT 3D and the ecohydrological catchment model PANTA RHEI WQ. The ecohydrological model PANTA RHEI WQ was developed within the research project. The developed ecohydrological model allows a sub-daily time step and includes in-stream water quality procedures, accounting for the interaction of aquatic biomass, dissolved oxygen, nutrients, detritus and sediment. Therefore, the implemented water quality model overcomes deficits found in common ecohydrological models. Despite of the scarce data
Dynamic Model and Control of a New Underwater Three-Degree-of-Freedom Tidal Energy Converter
Directory of Open Access Journals (Sweden)
José A. Somolinos
2015-01-01
Full Text Available There is currently a growing interest in developing devices that can be used to exploit energy from oceans. In the recent past, the search for oil and gas at ever-greater depths has led to the evolution of devices with which these resources are extracted. These devices range from those that simply rest on the seabed to those that are fully floating and anchored to it. This trend can be considered as the basis needed to understand the future evolution of devices for harnessing depth renewable resources. This paper presents a simple dynamic modeling and a nonlinear multivariable control model-based system for a new three-degree-of-freedom underwater generator with which energy from depth marine currents is harnessed when reference trajectory tracking for the emersion maneuvers needed to carry out maintenance tasks is performed. The goodness of both the model and the proposed controller has been demonstrated through the development of various simulations in the MATLAB-Simulink environment. Additionally, the validation of the control algorithms was carried out by using the dynamic model offered by the simulation environment Orcina OrcaFlex (software for the dynamic analysis for offshore marine systems through the MATLAB-OrcaFlex interface.
Modelling Morphological Response of Large Tidal Inlet Systems to Sea Level Rise
Dissanayake, P.K.
2011-01-01
This dissertation qualitatively investigates the morphodynamic response of a large inlet system to IPCC projected relative sea level rise (RSLR). Adopted numerical approach (Delft3D) used a highly schematised model domain analogous to the Ameland inlet in the Dutch Wadden Sea. Predicted inlet evolut
Dynamic Modeling and Grid Interaction of a Tidal and River Generator
Energy Technology Data Exchange (ETDEWEB)
Muljadi, Eduard; Gevorgian, Vahan; Donegan, James; Marnagh, Cian; McEntee, Jarlath
2017-07-13
This presentation provides a high-level overview of the deployment of a river generator installed in a small system. The turbine dynamics of a river generator, electrical generator, and power converter are modeled in detail. Various simulations can be exercised, and the impact of different control algorithms, failures of power switches, and corresponding impacts can be examined.
The Thermal Phase Curve Offset on Tidally and Nontidally Locked Exoplanets: A Shallow Water Model
Penn, James; Vallis, Geoffrey K.
2017-06-01
Using a shallow water model with time-dependent forcing, we show that the peak of an exoplanet thermal phase curve is, in general, offset from the secondary eclipse when the planet is rotating. That is, the planetary hot spot is offset from the point of maximal heating (the substellar point) and may lead or lag the forcing; the extent and sign of the offset are functions of both the rotation rate and orbital period of the planet. We also find that the system reaches a steady state in the reference frame of the moving forcing. The model is an extension of the well-studied Matsuno-Gill model into a full spherical geometry and with a planetary-scale translating forcing representing the insolation received on an exoplanet from a host star. The speed of the gravity waves in the model is shown to be a key metric in evaluating the phase curve offset. If the velocity of the substellar point (relative to the planet’s surface) exceeds that of the gravity waves, then the hot spot will lag the substellar point, as might be expected by consideration of forced gravity wave dynamics. However, when the substellar point is moving slower than the internal wave speed of the system, the hottest point may lead the passage of the forcing. We provide an interpretation of this result by consideration of the Rossby and Kelvin wave dynamics, as well as, in the very slowly rotating case, a one-dimensional model that yields an analytic solution. Finally, we consider the inverse problem of constraining planetary rotation rate from an observed phase curve.
Anomalous ocean load tide signal observed in lake-level variations in Tierra del Fuego
Richter, A.; Hormaechea, J. L.; Dietrich, R.; Perdomo, R.; Fritsche, M.; Del Cogliano, D.; Liebsch, G.; Mendoza, L.
2009-03-01
We demonstrate the application of a 100 km long lake as a sensor for studying the tidal effects on Tierra del Fuego main island. The lake-level variations observed in Lago Fagnano reflect both the direct response to the tidal potential and the indirect effect of the ocean tidal loading. Modeling both contributions explains the observed tidal signal in the lake to about 70%. Underestimated model load tide amplitudes are found to be probably responsible for the remaining difference. We interpret this discrepancy as a hint for regional elastic lithosphere properties differing substantially from those represented by currently available global models.
Lettmann, Karsten; Wolff, Jörg-Olaf; Liebezeit, Gerd; Meier, Georg
2010-05-01
The 'Jade Bay' is a tidal bay located in the western part of the German Wadden Sea, southern North-Sea coast. During particularly heavy rain falls, rain water mixed with domestic waste water is discharged into the bay due to the limited capacities of the waste water treatment plant of the city of Wilhelmshaven. As the discharge point is located only a few hundred meters from a public bathing beach it is important to know spreading and dilution of the waste waters by tidal and wind-driven mixing. To model the behaviour of the waste water plumes, the unstructured mesh finite-volume model FVCOM (Chen and al., 2003) is used, which allows to cover the large area of the Jade and the nearby North Sea with a relatively high resolution near the point of discharge and a coarser resolution at the outer edges of the study side. We adapted the included sediment module of FVCOM to handle the sedimentation, decay and evolution in the bottom sediments of the discharged waste water particles, especially with respect to bacteria. Furthermore, alternative discharge points located in the interior of the Jade bay were tested, which might be more suited for a faster dilution and a smaller residence time of the waste water particles in the tidal bay.
A Numerical Modeling Framework for Cohesive Sediment Transport Driven by Waves and Tidal Currents
2013-09-30
friction due to seabed processes, hydrodynamics and seabed dynamics become highly coupled and large-scale numerical models must incorporate appropriate...wave cycles. Therefore we conclude that flow in the range of Re=600 to 700 to be classified as self -sustaining transitional flow. For higher Reynolds...directly relevant to RIVET I & II where the seabed is mainly sandy or mixed sand-mud environments. 4
Logic integer programming models for signaling networks.
Haus, Utz-Uwe; Niermann, Kathrin; Truemper, Klaus; Weismantel, Robert
2009-05-01
We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models. The arising logic statements and integer programs are analyzed and can be solved with standard software. For a restricted class of problems the logic models reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic model enables enumeration of possible time resolutions in poly-logarithmic time. Computational experiments are included.
Savaşan, Ayşegül; Çam, Olcay
2017-06-01
People with alcohol dependency have lower self-esteem than controls and when their alcohol use increases, their self-esteem decreases. Coping skills in alcohol related issues are predicted to reduce vulnerability to relapse. It is important to adapt care to individual needs so as to prevent a return to the cycle of alcohol use. The Tidal Model focuses on providing support and services to people who need to live a constructive life. The aim of the randomized study was to determine the effect of the psychiatric nursing approach based on the Tidal Model on coping and self-esteem in people with alcohol dependency. The study was semi-experimental in design with a control group, and was conducted on 36 individuals (18 experimental, 18 control). An experimental and a control group were formed by assigning persons to each group using the stratified randomization technique in the order in which they were admitted to hospital. The Coping Inventory (COPE) and the Coopersmith Self-Esteem Inventory (CSEI) were used as measurement instruments. The measurement instruments were applied before the application and three months after the application. In addition to routine treatment and follow-up, the psychiatric nursing approach based on the Tidal Model was applied to the experimental group in the One-to-One Sessions. The psychiatric nursing approach based on the Tidal Model is an approach which is effective in increasing the scores of people with alcohol dependency in positive reinterpretation and growth, active coping, restraint, emotional social support and planning and reducing their scores in behavioral disengagement. It was seen that self-esteem rose, but the difference from the control group did not reach significance. The psychiatric nursing approach based on the Tidal Model has an effect on people with alcohol dependency in maintaining their abstinence. The results of the study may provide practices on a theoretical basis for improving coping behaviors and self-esteem and
Astroparticle physics signals beyond the Standard Model
Katz, S D
2001-01-01
In this thesis two signals pointing beyond the Standard Model are discussed. The first signal is the presence of baryonic matter around us. The possibility of baryogenesis in the Minimal Supersymmetric Standard Model (MSSM) was studied. The bosonic part of the MSSM Lagrangian was put on the lattice. Finite temperature and zero temperature simulations were performed to find the jump of the Higgs length and the mass spectrum. The phase diagram of MSSM in the m_U^2 - T plane was determined. The properties of the bubble wall during the phase transition were also analyzed. The second signal that is discussed in this thesis comes from the observed cosmic rays. According to the so-called ''top-down'' scenarios, the highest energy cosmic rays can be the decay products of some metastable superheavy particle. Based on the clustering features of the detected events, first the source density was determined. Then the mass of the decaying superheavy particle was found which is in rough agreement with the grand unification ...
Adelie penguin foraging location predicted by tidal regime switching.
Directory of Open Access Journals (Sweden)
Matthew J Oliver
Full Text Available Penguin foraging and breeding success depend on broad-scale environmental and local-scale hydrographic features of their habitat. We investigated the effect of local tidal currents on a population of Adélie penguins on Humble Is., Antarctica. We used satellite-tagged penguins, an autonomous underwater vehicle, and historical tidal records to model of penguin foraging locations over ten seasons. The bearing of tidal currents did not oscillate daily, but rather between diurnal and semidiurnal tidal regimes. Adélie penguins foraging locations changed in response to tidal regime switching, and not to daily tidal patterns. The hydrography and foraging patterns of Adélie penguins during these switching tidal regimes suggest that they are responding to changing prey availability, as they are concentrated and dispersed in nearby Palmer Deep by variable tidal forcing on weekly timescales, providing a link between local currents and the ecology of this predator.
Digital Repository Service at National Institute of Oceanography (India)
Jayakumar, S.; Reddy, N.A.; Ramanamurty, M.V.; ManiMurali, R.; ArunaKumar, A.; Rao, S.
The opening and closure of coastal tidal inlets play a major role in regulating the water and sediment exchange between the river and ocean as well as in the interruption of the longshore sediment transport. The present work is an effort...
Duong, T.; Ranasinghe, R.; Luijendijk, A.; Dastgheib, A.; Roelvink, D.
2012-01-01
Tidal inlets are of great societal importance as they are often associated with ports and harbours, industry, tourism, recreation and prime waterfront real estate. Their behaviour is governed by the delicate balance of oceanic processes (tides, waves and mean sea level), and fluvial/estuarine proces
Chen, Xi; Slater, Lee
2016-06-01
Ebullition is an important pathway for transport of methane (CH4) to the atmosphere in wetlands. Water level changes have been suggested to trigger ebullition, especially in tidally flooded areas, although the controlling mechanisms remain uncertain. Bubble transport in submerged sediment represents a multiphase, dynamic interaction between gaseous and solid phases under the modulation of a liquid phase. An unvegetated sediment monolith was retrieved from an estuarine mudflat area at a tidal marsh site and maintained in a saturated state. Laboratory measurements on the mud monolith confirmed that not only ebbing tides, but also flooding tides could trigger ebullition releases of gas bubbles. We develop a Changing Stress for Simulating Ebullition (CSSE) model to describe mechanisms controlling bubble expansion in response to water level changes to unify these observations. Decreases in water level are assumed to lower the effective stress surrounding isolated trapped gas bubbles, driving upward transport via bubble expansion and deformation, with associated fracturing of overlying sediments. Increases in relative permittivity suggest that additional water invades macropores, with associated pore expansion, during the initial stage of increases in water level. We propose that subsequent matrix expansion under lowered effective stress on rising tides also leads to fracture propagation and bubble release. Our findings demonstrate the importance of effective stress changes in triggering ebullition from mudflat areas in tidal wetlands, modulated by the mechanical properties of shallow soft sediments.
Directory of Open Access Journals (Sweden)
E. D. Seldomridge
2012-02-01
Full Text Available Geomorphic characteristics have been used as scaling parameters to predict water and other fluxes in many systems. In this study, we combined geomorphic analysis with in-situ mass balance studies of nitrate retention (NR to evaluate which geomorphic scaling parameters best predicted NR in a tidal freshwater wetland ecosystem. Geomorphic characteristics were measured for 267 individual marshes that constitute the freshwater tidal wetland ecosystem of the Patuxent River, Maryland. Nitrate retention was determined from mass balance measurements conducted at the inlets of marshes of varying size (671, 5705, and 536 873 m^{2} over a period of several years. Mass balance measurements indicate that NR is proportional to total water flux over the tidal cycle. Relationships between estimated tidal prism (total water volume for spring tides and various geomorphic parameters (marsh area, total channel length, and inlet width were defined and compared to field data. From these data, NR equations were determined for each geomorphic parameter, and used to estimate NR for all marshes in the ecosystem for a reference spring (high tide. The resulting ecosystem NR estimates were evaluated for: (a accuracy and completeness of geomorphic data, (b relationship between the geomorphic parameters and hydrologic flux, and (c the ability to adapt the geomorphic parameter to varying tidal conditions. This analysis indicated that inlet width data were the most complete and provided the best estimate of ecosystem nitrate retention. Predictions based on marsh area were significantly lower than the inlet width-based predictions. Cumulative probability distributions of nitrate retention indicate that the largest 3–4 % of the marshes retained half of the total nitrate for the ecosystem.
Directory of Open Access Journals (Sweden)
E. D. Seldomridge
2012-07-01
Full Text Available Geomorphic characteristics have been used as scaling parameters to predict water and other fluxes in many systems. In this study, we combined geomorphic analysis with in-situ mass balance studies of nitrate retention (NR to evaluate which geomorphic scaling parameters best predicted NR in a tidal freshwater wetland ecosystem. Geomorphic characteristics were measured for 267 individual marshes that constitute the freshwater tidal wetland ecosystem of the Patuxent River, Maryland. Nitrate retention was determined from mass balance measurements conducted at the inlets of marshes of varying size (671, 5705, and 536 873 m^{2} over a period of several years. Mass balance measurements indicate that NR is proportional to total water flux over the tidal cycle. Relationships between estimated tidal prism (calculated water volume for spring tides and various geomorphic parameters (marsh area, total channel length, and inlet width were defined using measurements from air photos and compared to field data. From these data, NR equations were determined for each geomorphic parameter, and used to estimate NR for all marshes in the ecosystem for a reference spring (high tide. The resulting ecosystem NR estimates were evaluated for (a accuracy and completeness of geomorphic data, (b relationship between the geomorphic parameters and hydrologic flux, and (c the ability to adapt the geomorphic parameter to varying tidal conditions. This analysis indicated that inlet width data were the most complete and provided the best estimate of ecosystem nitrate retention. Predictions based on marsh area were significantly lower than the inlet width-based predictions. Cumulative probability distributions of nitrate retention indicate that the largest 3–4% of the marshes retained half of the total nitrate for the ecosystem.
Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.
2015-01-01
In this paper, we report on the adaptation and application of a one-dimensional marsh surface elevation model, the Wetland Accretion Rate Model of Ecosystem Resilience (WARMER), to explore the conditions that lead to sustainable tidal freshwater marshes in the Sacramento–San Joaquin Delta. We defined marsh accretion parameters to encapsulate the range of observed values over historic and modern time-scales based on measurements from four marshes in high and low energy fluvial environments as well as possible future trends in sediment supply and mean sea level. A sensitivity analysis of 450 simulations was conducted encompassing a range of eScholarship provides open access, scholarly publishing services to the University of California and delivers a dynamic research platform to scholars worldwide. porosity values, initial elevations, organic and inorganic matter accumulation rates, and sea-level rise rates. For the range of inputs considered, the magnitude of SLR over the next century was the primary driver of marsh surface elevation change. Sediment supply was the secondary control. More than 84% of the scenarios resulted in sustainable marshes with 88 cm of SLR by 2100, but only 32% and 11% of the scenarios resulted in surviving marshes when SLR was increased to 133 cm and 179 cm, respectively. Marshes situated in high-energy zones were marginally more resilient than those in low-energy zones because of their higher inorganic sediment supply. Overall, the results from this modeling exercise suggest that marshes at the upstream reaches of the Delta—where SLR may be attenuated—and high energy marshes along major channels with high inorganic sediment accumulation rates will be more resilient to global SLR in excess of 88 cm over the next century than their downstream and low-energy counterparts. However, considerable uncertainties exist in the projected rates of sea-level rise and sediment avail-ability. In addition, more research is needed to constrain future
Gourgue, O.; Baeyens, W.; Chen, M. S.; de Brauwere, A.; de Brye, B.; Deleersnijder, E.; Elskens, M.; Legat, V.
2013-12-01
This paper presents the sediment module designed for the two-dimensional depth-averaged and one-dimensional section-averaged components of the finite-element model SLIM (Second-generation Louvain-la-Neuve Ice-ocean Model) in the framework of its application to the tidal part of the Scheldt Basin. This sediment transport module focuses on fine-grained, cohesive sediments. It is a necessary tool to undertake environmental biogeochemical studies, in which fine sediment dynamics play a crucial role.
Tidal streams from axion miniclusters and direct axion searches
Tinyakov, Peter; Zioutas, Konstantin
2016-01-19
In some axion dark matter models a dominant fraction of axions resides in dense small-scale substructures, axion miniclusters. A fraction of these substructures is disrupted and forms tidal streams where the axion density may still be an order of magnitude larger than the average. We discuss implications of these streams for the direct axion searches. We estimate the fraction of disrupted miniclusters and the parameters of the resulting streams, and find that stream-crossing events would occur at a rate of about $1/(20 {\\rm yr})$ for 2-3 days, during which the signal in axion detectors would be amplified by a factor $\\sim 10$. These estimates suggest that the effect of the tidal disruption of axion miniclusters may be important for direct axion searches and deserves a more thorough study.
No Snowball on Habitable Tidally Locked Planets
Checlair, Jade; Menou, Kristen; Abbot, Dorian S.
2017-08-01
The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spin-orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of global glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO2 outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.
Lanzano, Alexander
2016-10-01
Given recent discoveries there is a very real potential for tidally-locked Earth-like planets to exist orbiting M stars. To determine whether these planets may be habitable it is necessary to understand the nature of their atmospheres. In our investigation we simulate the evolution of present-day Earth while placed in tidally-locked orbit (meaning the same side of the planet always faces the star) around an M dwarf star. We are particularly interested in the evolution of the planet's ozone layer and whether it will shield the planet, and therefore life, from harmful radiation.To accomplish the above objectives we use a state-of-the-art 3-D terrestrial model, the Whole Atmosphere Community Climate Model (WACCM), which fully couples chemistry and climate, and therefore allows self-consistent simulations of atmospheric constituents and their effects on a planet's climate, surface radiation and thus habitability. Preliminary results show that this model is stable and that a tidally-locked Earth is protected from harmful UV radiation produced by G stars. The next step shall be to adapt this model for an M star by including its UV and visible spectrum.This investigation will both provide an insight into the potential for habitable exoplanets and further define the nature of the habitable zones for M class stars. We will also be able to narrow the definition of the habitable zones around distant stars, which will help us identify these planets in the future. Furthermore, this project will allow for a more thorough analysis of data from past and future exoplanet observing missions by defining the atmospheric composition of Earth-like planets around a variety of types of stars.
Tidal modulation of two-layer hydraulic exchange flows
Directory of Open Access Journals (Sweden)
L. M. Frankcombe
2006-11-01
Full Text Available Time-dependent, two layer hydraulic exchange flow is studied using an idealised shallow water model. It is found that barotropic time-dependent perturbations, representing tidal forcing, increase the baroclinic exchange flux above the steady hydraulic limit, with flux increasing monotonically with tidal amplitude (measured either by height or flux amplitude over a tidal period. Exchange flux also depends on the non-dimensional tidal period, γ, which was introduced by Helfrich (1995. Resonance complicates the relationship between exchange flux and height amplitude, but, when tidal strength is characterised by flux amplitude, exchange flux is a monotonic function of γ.
Hoitink, A.J.F.; Jay, D.A.
2016-01-01
Tidal rivers are a vital and little studied nexus between physical oceanography and hydrology. It is only in the last few decades that substantial research efforts have been focused on the interactions of river discharge with tidal waves and storm surges into regions beyond the limit of salinity
Hajaali, Arthur
2017-04-01
This project has for ambition to analyse and further the general understanding on cross-flows interactions and behaviours at the mouth of a mini/small tidal hydropower plant and a river. Although, the study of these interactions could benefit and find applications in multiple hydraulic problems, this project concentrates its focus on the influence of the transposed turbulences generated by the cross-flow into the diffuser. These eddies affect the overall performance and efficiency of the bulb-turbines by minimizing the pressure recovery. In the past, these turbulences were accounted with the implementation of the Bordas-Carnot losses coefficient for the design of tidal project using bulb-turbines. The bulb turbine technology has been the interest and subject of many scientific papers but most of them concentrate and narrow their focus on the design of the rotor, blades and combiner. This project wants to focus the design of the diffuser by performing an analysis on the development of eddies and the turbulences using computational fluid dynamic (CFD) models. The Severn estuary is endowed with one of the highest tidal range around the hemisphere. The first part of the research requires to select case studies sites such as Briton-Ferry to virtually design mini-tidal plant in 0-Dimentional (D), 2D and 3D modelling to study development and behaviour of turbulences within the diffuser. The far-field model represents the marine environment prior and after the structure where bulb turbines are located. The near-field modelling has allowed researcher to study at much higher resolution and precision the design of a single turbine feeding model with predetermined and fix boundary condition. For this reason, a near-field model is required to study in depth the behaviour and evolution of the turbulence with the diffuser. One of the main challenge and advancement of this research is to find a methodology and system to link the far-field and near-field modelling to produce an
Zhu, Hong-Ming; Yu, Yu; Er, Xinzhong; Chen, Xuelei
2015-01-01
The gravitational coupling of a long wavelength tidal field with small scale density fluctuations leads to anisotropic distortions of the locally measured small scale matter correlation function. Since the local correlation function is statistically isotropic in the absence of such tidal interactions, the tidal distortions can be used to reconstruct the long wavelength tidal field and large scale density field in analogy with the cosmic microwave background lensing reconstruction. In this paper we present in detail a formalism for the cosmic tidal reconstruction and test the reconstruction in numerical simulations. We find that the density field on large scales can be reconstructed with good accuracy and the cross correlation coefficient between the reconstructed density field and the original density field is greater than 0.9 on large scales ($k\\lesssim0.1h/\\mathrm{Mpc}$). This is useful in the 21cm intensity mapping survey, where the long wavelength radial modes are lost due to foreground subtraction proces...
Klimentowski, J; Kazantzidis, S; Prada, F; Mayer, L; Mamon, G A; Klimentowski, Jaroslaw; Lokas, Ewa L.; Kazantzidis, Stelios; Prada, Francisco; Mayer, Lucio; Mamon, Gary A.
2006-01-01
We study the origin and properties of the population of unbound stars in the kinematic samples of dwarf spheroidal galaxies. For this purpose we have run a high resolution N-body simulation of a two-component dwarf galaxy orbiting in a Milky Way potential. In agreement with the tidal stirring scenario of Mayer et al., the dwarf is placed on a highly eccentric orbit, its initial stellar component is in the form of an exponential disk and it has a NFW-like dark matter halo. After 10 Gyrs of evolution the dwarf produces a spheroidal stellar component and is strongly tidally stripped so that mass follows light and the stars are on almost isotropic orbits. From this final state, we create mock kinematic data sets for 200 stars by observing the dwarf in different directions. We find that when the dwarf is observed along the tidal tails the kinematic samples are strongly contaminated by unbound stars from the tails. We also study another source of possible contamination by adding stars from the Milky Way. We demonst...
Tidal river dynamics: Implications for deltas
Hoitink, A. J. F.; Jay, D. A.
2016-03-01
Tidal rivers are a vital and little studied nexus between physical oceanography and hydrology. It is only in the last few decades that substantial research efforts have been focused on the interactions of river discharge with tidal waves and storm surges into regions beyond the limit of salinity intrusion, a realm that can extend inland hundreds of kilometers. One key phenomenon resulting from this interaction is the emergence of large fortnightly tides, which are forced long waves with amplitudes that may increase beyond the point where astronomical tides have become extinct. These can be larger than the linear tide itself at more landward locations, and they greatly influence tidal river water levels and wetland inundation. Exploration of the spectral redistribution and attenuation of tidal energy in rivers has led to new appreciation of a wide range of consequences for fluvial and coastal sedimentology, delta evolution, wetland conservation, and salinity intrusion under the influence of sea level rise and delta subsidence. Modern research aims at unifying traditional harmonic tidal analysis, nonparametric regression techniques, and the existing understanding of tidal hydrodynamics to better predict and model tidal river dynamics both in single-thread channels and in branching channel networks. In this context, this review summarizes results from field observations and modeling studies set in tidal river environments as diverse as the Amazon in Brazil, the Columbia, Fraser and Saint Lawrence in North America, the Yangtze and Pearl in China, and the Berau and Mahakam in Indonesia. A description of state-of-the-art methods for a comprehensive analysis of water levels, wave propagation, discharges, and inundation extent in tidal rivers is provided. Implications for lowland river deltas are also discussed in terms of sedimentary deposits, channel bifurcation, avulsion, and salinity intrusion, addressing contemporary research challenges.
Model human heart or brain signals
Tuncay, Caglar
2008-01-01
A new model is suggested and used to mimic various spatial or temporal designs in biological or non biological formations where the focus is on the normal or irregular electrical signals coming from human heart (ECG) or brain (EEG). The electrical activities in several muscles (EMG) or neurons or other organs of human or various animals, such as lobster pyloric neuron, guinea pig inferior olivary neuron, sepia giant axon and mouse neocortical pyramidal neuron and some spatial formations are also considered (in Appendix). In the biological applications, several elements (cells or tissues) in an organ are taken as various entries in a representative lattice (mesh) where the entries are connected to each other in terms of some molecular diffusions or electrical potential differences. The biological elements evolve in time (with the given tissue or organ) in terms of the mentioned connections (interactions) besides some individual feedings. The anatomical diversity of the species (or organs) is handled in terms o...
A Process Model of the Signal Duration Phenomenon of Vigilance
2014-10-01
A Process Model of the Signal Duration Phenomenon of Vigilance Daniel Gartenberg1, Bella Veksler2, Glenn Gunzelmann2, J. Gregory Trafton3...REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE A Process Model of the Signal Duration Phenomenon of Vigilance 5a...with shorter signal durations (see Figure 1). There is currently no process model that explains the signal duration effect found in vigilance
du Feu, R. J.; Funke, S. W.; Kramer, S. C.; Hill, J.; Piggott, M. D.
2016-12-01
The installation of tidal turbines into the ocean will inevitably affect the environment around them. However, due to the relative infancy of this sector the extent and severity of such effects is unknown. The layout of an array of turbines is an important factor in determining not only the array's final yield but also how it will influence regional hydrodynamics. This in turn could affect, for example, sediment transportation or habitat suitability. The two potentially competing objectives of extracting energy from the tidal current, and of limiting any environmental impact consequent to influencing that current, are investigated here. This relationship is posed as a multi-objective optimisation problem. OpenTidalFarm, an array layout optimisation tool, and MaxEnt, habitat sustainability modelling software, are used to evaluate scenarios off the coast of the UK. MaxEnt is used to estimate the likelihood of finding a species in a given location based upon environmental input data and presence data of the species. Environmental features which are known to impact habitat, specifically those affected by the presence of an array, such as bed shear stress, are chosen as inputs. MaxEnt then uses a maximum-entropy modelling approach to estimate population distribution across the modelled area. OpenTidalFarm is used to maximise the power generated by an array, or multiple arrays, through adjusting the position and number of turbines within them. It uses a 2D shallow water model with turbine arrays represented as adjustable friction fields. It has the capability to also optimise for user created functionals that can be expressed mathematically. This work uses two functionals; power extracted by the array, and the suitability of habitat as predicted by MaxEnt. A gradient-based local optimisation is used to adjust the array layout at each iteration. This work presents arrays that are optimised for both yield and the viability of habitat for chosen species. In each scenario
Modeling of surface myoelectric signals--Part II: Model-based signal interpretation.
Merletti, R; Roy, S H; Kupa, E; Roatta, S; Granata, A
1999-07-01
Experimental electromyogram (EMG) data from the human biceps brachii were simulated using the model described in [10] of this work. A multichannel linear electrode array, spanning the length of the biceps, was used to detect monopolar and bipolar signals, from which double differential signals were computed, during either voluntary or electrically elicited isometric contractions. For relatively low-level voluntary contractions (10%-30% of maximum force) individual firings of three to four-different motor units were identified and their waveforms were closely approximated by the model. Motor unit parameters such as depth, size, fiber orientation and length, location of innervation and tendonous zones, propagation velocity, and source width were estimated using the model. Two applications of the model are described. The first analyzes the effects of electrode rotation with respect to the muscle fiber direction and shows the possibility of conduction velocity (CV) over- and under-estimation. The second focuses on the myoelectric manifestations of fatigue during a sustained electrically elicited contraction and the interrelationship between muscle fiber CV, spectral and amplitude variables, and the length of the depolarization zone. It is concluded that a) surface EMG detection using an electrode array, when combined with a model of signal propagation, provides a useful method for understanding the physiological and anatomical determinants of EMG waveform characteristics and b) the model provides a way for the interpretation of fatigue plots.
Biogeomorphology of tidal landforms: physical and biological processes shaping the tidal landscape
Marani, M.; D'Alpaos, A.; Da Lio, C.
2011-12-01
The equilibrium states and transient dynamics of tidal landforms are the result of many concurring physical and biological forcings, such as tidal range, wind climate, sediment supply, vegetation and microphytobenthos development, and rates of relative sea level rise (RSLR). A 0D model of the coupled elevation-vegetation dynamics is used to explore the relative role of the physical and biological factors shaping these systems. We find that salt marshes exposed to large tidal ranges are more stable, and therefore more resilient to increasing rates of RSLR, than marshes subjected to low tidal ranges and that subtidal platforms in macrotidal systems are less exposed to wind-induced erosion processes than their counterparts in systems with smaller tidal fluctuations. Notably, we find that vegetation crucially affects both the equilibrium marsh elevation, through dissipation of wind waves and organic accumulation, and marsh resilience to accelerations in RSLR rates, important differences being associated with different vegetation types. Furthermore, our results show that the existence and stability of equilibrium states fundamentally depend on the local wind and tidal regime, even within the same tidal system. Finally, we propose a modelling framework to study how biological evolution lead to the emergence of tidal landforms as we know them.
Prediction of CBS tidal evolution
Dryomova, G. N.
The time series of basic processes, accompanying the tidal evolution of star components of Close Binary Systems (CBS) are predicted in the framework of evolutionary stellar models by Claret (2004). The series includes the apsidal motion period, timescale of synchronization of axial rotation of a star with the orbital revolution, the orbit circularization timescale, and the age. Data from the catalogues by Svechnikov & Perevozkina (1999) and by Torres, Andersen, Gimenez (2010) are used for testing the sensitivity of the numerical prediction algorithm.
A parametric framework for modelling of bioelectrical signals
Mughal, Yar Muhammad
2016-01-01
This book examines non-invasive, electrical-based methods for disease diagnosis and assessment of heart function. In particular, a formalized signal model is proposed since this offers several advantages over methods that rely on measured data alone. By using a formalized representation, the parameters of the signal model can be easily manipulated and/or modified, thus providing mechanisms that allow researchers to reproduce and control such signals. In addition, having such a formalized signal model makes it possible to develop computer tools that can be used for manipulating and understanding how signal changes result from various heart conditions, as well as for generating input signals for experimenting with and evaluating the performance of e.g. signal extraction methods. The work focuses on bioelectrical information, particularly electrical bio-impedance (EBI). Once the EBI has been measured, the corresponding signals have to be modelled for analysis. This requires a structured approach in order to move...
Maine Tidal Power Initiative: Environmental Impact Protocols For Tidal Power
Energy Technology Data Exchange (ETDEWEB)
Peterson, Michael Leroy [Univ. of Maine, Orono, ME; Zydlewski, Gayle Barbin [Univ. of Maine, Orono, ME; Xue, Huijie [Univ. of Maine, Orono, ME; Johnson, Teresa R. [Univ. of Maine, Orono, ME
2014-02-02
The Maine Tidal Power Initiative (MTPI), an interdisciplinary group of engineers, biologists, oceanographers, and social scientists, has been conducting research to evaluate tidal energy resources and better understand the potential effects and impacts of marine hydro-kinetic (MHK) development on the environment and local community. Project efforts include: 1) resource assessment, 2) development of initial device design parameters using scale model tests, 3) baseline environmental studies and monitoring, and 4) human and community responses. This work included in-situ measurement of the environmental and social response to the pre-commercial Turbine Generator Unit (TGU®) developed by Ocean Renewable Power Company (ORPC) as well as considering the path forward for smaller community scale projects.
Dumas, F; Le Gendre, R; Thomas, Y; Andréfouët, S
2012-01-01
Hydrodynamic functioning and water circulation of the semi-closed deep lagoon of Ahe atoll (Tuamotu Archipelago, French Polynesia) were investigated using 1 year of field data and a 3D hydrodynamical model. Tidal amplitude averaged less than 30 cm, but tide generated very strong currents (2 ms(-1)) in the pass, creating a jet-like circulation that partitioned the lagoon into three residual circulation cells. The pass entirely flushed excess water brought by waves-induced radiation stress. Circulation patterns were computed for climatological meteorological conditions and summarized with stream function and flushing time. Lagoon hydrodynamics and general overturning circulation was driven by wind. Renewal time was 250 days, whereas the e-flushing time yielded a lagoon-wide 80-days average. Tide-driven flush through the pass and wind-driven overturning circulation designate Ahe as a wind-driven, tidally and weakly wave-flushed deep lagoon. The 3D model allows studying pearl oyster larvae dispersal in both realistic and climatological conditions for aquaculture applications.
Morley, Caroline V; Line, Michael; Fortney, Jonathan J; Thorngren, Daniel; Marley, Mark S; Teal, Dillon; Lupu, Roxana
2016-01-01
The Neptune-mass GJ 436b is one of the most-studied transiting exoplanets with repeated measurements of both its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its interior. We present new observations of GJ 436b's thermal emission at 3.6 and 4.5 micron, which reduce uncertainties in estimates of GJ 436b's flux at those wavelengths and demonstrate consistency between Spitzer observations spanning more than 7 years. We analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum in tandem. We use a powerful dual-pronged modeling approach, comparing these data to both self-consistent and retrieval models. We vary the metallicity, intrinsic luminosity from tidal heating, disequilibrium chemistry, and heat redistribution. We also study the effect of clouds and photochemical hazes on the spectra, but do not find strong evidence for either. The self-con...
A model with nonzero rise time for AE signals
Indian Academy of Sciences (India)
M A Majeed; C R L Murthy
2001-10-01
Acoustic emission (AE) signals are conventionally modelled as damped or decaying sinusoidal functions. A major drawback of this model is its negligible or zero rise time. This paper proposes an alternative model, which provides for the rising part of the signal without sacriﬁcing the analytical tractability and simplicity of the conventional model. Signals obtained from the proposed model through computer programs are illustrated for demonstrating their parity with actual AE signals. Analytic expressions for the time-domain parameters, viz., peak amplitude and rise time used in conventional AE signal analysis, are also derived. The model is believed to be also of use in modelling the output signal of any transducer that has ﬁnite rise time and fall time.
Canada ocean energy atlas phase 1 : potential tidal current energy resources analysis background
Energy Technology Data Exchange (ETDEWEB)
Tarbotton, M.; Larson, M. [Triton Consultants Ltd., Vancouver, BC (Canada)
2006-05-15
This report was prepared as a background document for a preliminary tidal current resource inventory for Canadian waters. Energy calculations in the study were based on preliminary estimates of known tidal flows. The inventory was based on nautical charts, Canadian sailing directions, tide and tidal current constituent data, and numerical tidal modelling data. A finite element harmonic tidal model tool was used to provide tidal height and current velocities data for a varying number of tidal constituents. The study identified several major tidal current power resources throughout Canada. It was concluded that modelling studies should concentrate on Minas Basin in Nova Scotia; Georgia and Johnstone Straits in British Columbia; and Hudson's Strait and Ungava Bay. Modelling studies should provide estimates of extractable energy as well as provide initial assessments of the environmental impacts of tidal energy extraction in all 3 regions. 3 refs., 8 tabs., 16 figs.
Autonomous Traffic Signal Control Model with Neural Network Analogy
Ohira, T
1997-01-01
We propose here an autonomous traffic signal control model based on analogy with neural networks. In this model, the length of cycle time period of traffic lights at each signal is autonomously adapted. We find a self-organizing collective behavior of such a model through simulation on a one-dimensional lattice model road: traffic congestion is greatly diffused when traffic signals have such autonomous adaptability with suitably tuned parameters. We also find that effectiveness of the system emerges through interactions between units and shows a threshold transition as a function of proportion of adaptive signals in the model.
Signal Processing Model for Radiation Transport
Energy Technology Data Exchange (ETDEWEB)
Chambers, D H
2008-07-28
This note describes the design of a simplified gamma ray transport model for use in designing a sequential Bayesian signal processor for low-count detection and classification. It uses a simple one-dimensional geometry to describe the emitting source, shield effects, and detector (see Fig. 1). At present, only Compton scattering and photoelectric absorption are implemented for the shield and the detector. Other effects may be incorporated in the future by revising the expressions for the probabilities of escape and absorption. Pair production would require a redesign of the simulator to incorporate photon correlation effects. The initial design incorporates the physical effects that were present in the previous event mode sequence simulator created by Alan Meyer. The main difference is that this simulator transports the rate distributions instead of single photons. Event mode sequences and other time-dependent photon flux sequences are assumed to be marked Poisson processes that are entirely described by their rate distributions. Individual realizations can be constructed from the rate distribution using a random Poisson point sequence generator.
Margalit, Ben
2016-01-01
We construct time-dependent one-dimensional (vertically averaged) models of accretion disks produced by the tidal disruption of a white dwarf (WD) by a binary neutron star (NS) companion. Nuclear reactions in the disk midplane burn the WD matter to increasingly heavier elements at sequentially smaller radii, releasing substantial energy which can impact the disk dynamics. A model for disk outflows is employed, by which cooling from the outflow balances other sources of heating (viscous, nuclear) in regulating the Bernoulli parameter of the midplane to a fixed value $\\lesssim 0$. We perform a comprehensive parameter study of the compositional yields and velocity distributions of the disk outflows for WDs of different initial compositions. For C/O WDs, the radial composition profile of the disk evolves self-similarly in a quasi-steady-state manner, and is remarkably robust to model parameters. The nucleosynthesis in helium WD disks does not exhibit this behavior, which instead depends sensitively on factors con...
Enceladus' tidal dissipation revisited
Tobie, Gabriel; Behounkova, Marie; Choblet, Gael; Cadek, Ondrej; Soucek, Ondrej
2016-10-01
A series of chemical and physical evidence indicates that the intense activity at Enceladus' South Pole is related to a subsurface salty water reservoir underneath the tectonically active ice shell. The detection of a significant libration implies that this water reservoir is global and that the average ice shell thickness is about 20-25km (Thomas et al. 2016). The interpretation of gravity and topography data further predicts large variations in ice shell thickness, resulting in a shell potentially thinner than 5 km in the South Polar Terrain (SPT) (Cadek et al. 2016). Such an ice shell structure requires a very strong heat source in the interior, with a focusing mechanism at the SPT. Thermal diffusion through the ice shell implies that at least 25-30 GW is lost into space by passive diffusion, implying a very efficient dissipation mechanism in Enceladus' interior to maintain such an ocean/ice configuration thermally stable.In order to determine in which conditions such a large dissipation power may be generated, we model the tidal response of Enceladus including variable ice shell thickness. For the rock core, we consider a wide range of rheological parameters representative of water-saturated porous rock materials. We demonstrate that the thinning toward the South Pole leads to a strong increase in heat production in the ice shell, with a optimal thickness obtained between 1.5 and 3 km, depending on the assumed ice viscosity. Our results imply that the heat production in the ice shell within the SPT may be sufficient to counterbalance the heat loss by diffusion and to power eruption activity. However, outside the SPT, a strong dissipation in the porous core is required to counterbalance the diffusive heat loss. We show that about 20 GW can be generated in the core, for an effective viscosity of 1012 Pa.s, which is comparable to the effective viscosity estimated in water-saturated glacial tills on Earth. We will discuss the implications of this revisited tidal
The effects of tidal range on saltmarsh morphology
Goodwin, Guillaume; Mudd, Simon
2017-04-01
Saltmarshes are highly productive coastal ecosystems that act simultaneously as flood barriers, carbon storage, pollutant filters and nurseries. As halophytic plants trap suspended sediment and decay in the settled strata, innervated platforms emerge from the neighbouring tidal flats, forming sub-vertical scarps on their eroding borders and sub-horizontal pioneer zones in areas of seasonal expansion. These evolutions are subject to two contrasting influences: stochastically generated waves erode scarps and scour tidal flats, whereas tidally-generated currents transport sediment to and from the marsh through the channel network. Hence, the relative power of waves and tidal currents strongly influences saltmarsh evolution, and regional variations in tidal range yield marshes of differing morphologies. We analyse several sheltered saltmarshes to determine how their morphology reflects variations in tidal forcing. Using tidal, topographic and spectral data, we implement an algorithm based on the open-source software LSDTopoTools to automatically identify features such as marsh platforms, tidal flats, erosion scarps, pioneer zones and tidal channels on local Digital Elevation Models. Normalised geometric properties are then computed and compared throughout the spectrum of tidal range, highlighting a notable effect on channel networks, platform geometry and wave exposure. We observe that micro-tidal marshes typically display jagged outlines and multiple islands along with wide, shallow channels. As tidal range increases, we note the progressive disappearance of marsh islands and linearization of scarps, both indicative of higher hydrodynamic stress, along with a structuration of channel networks and the increase of levee volume, suggesting higher sediment input on the platform. Future research will lead to observing and modelling the evolution of saltmarshes under various tidal forcing in order to assess their resilience to environmental change.
Wahl, Sean; Hubbard, William B.; Militzer, Burkhard
2016-10-01
The Juno gravity science system promises to provide observational data from Jupiter's gravitational field at an unprecedented precision. Meanwhile, recent ab-initio simulations on mixtures of hydrogen and helium allow for the construction of realistic interior models. The concentric Maclaurin spheroid (CMS) numerical method has been developed for efficient, non-perturbative, self-consistent calculations of shape and gravitational field of a rotating liquid body to this desired precision. Here we present a generalization of the CMS method to three dimensions and included the effect of tides from a satellite. We have identified a number of unexpected features of the static tidal response in the case where a planet's shape is dominated by the rotational bulge. In the general case, there is state mixing of the spherical-harmonic components of the response to the corresponding components of the rotational and tidal excitations. This breaks the degeneracy of the tidal love numbers knm with m, and introduces a dependence of knm on the orbital distance of the satellite. Notably for Jupiter and Saturn, the predicted value of k2 is significantly higher when the planet's high rotation rates are taken into account: k2=0.413 for Saturn and k2=0.590 for Jupiter, accounting for an ~13% and 10% increase over the non-rotating case respectively. We have also done preliminary estimates for the off-resonance dynamic response, which may lead to an additional significant increase in k2. Accurate models of tidal response will be essential for interpreting gravity observations from Juno and future studies, particularly for when filtering for signals from interior dynamics in the observed field. This work was supported by NASA's Juno project. Sean Wahl and Burkhard Militzer acknowledge the support of the National Science Foundation (astronomy and astrophysics research grant 1412646).
Tidal effects on the shoreface: Towards a conceptual framework
Dashtgard, Shahin E.; MacEachern, James A.; Frey, Shannon E.; Gingras, Murray K.
2012-11-01
Tidal processes can have a significant impact on the sedimentological and ichnological character of wave-dominated shoreface deposits. As the influence of tides increases, the resulting shoreface successions begin to depart markedly from those postulated by the conventional, wave-dominated shoreface model, which was built upon essentially non-tidal shoreline settings. In shoreface settings subject to stronger tidal flux, tides can be manifest either directly or indirectly. Direct tidal effects refer to those characteristics imparted by tidal energy (e.g., tidal currents) per se, and are best expressed in offshore and lower shoreface positions. Key evidence of direct tidal control includes uniform sediment calibres from the upper shoreface to the offshore, and little or no mud preserved in the lower shoreface. Additionally, sands in the lower shoreface and offshore tend to be intensely bioturbated. Where primary stratification is preserved, it largely comprises current-generated structures. Such shoreface deposits are referred to herein as "tide-influenced shorefaces", and are expected in settings with low storm-wave input coupled with strong tidal currents (e.g., straits). Indirect tidal influences are manifest by the lateral translation of wave zones across the shoreface profile owing to changes in water depth during the tidal cycle. This is best developed in macrotidal to megatidal settings. Indirect tidal influences are more pronounced in the upper and lower shoreface, and are recorded through the interbedding of sedimentary structures produced by shoaling waves, breakers and surf, swash-backwash, and surface runoff. The boundaries between shoreface subenvironments are correspondingly poorly defined. The foreshore in settings of elevated tidal range is also generally much thicker (typically 4 to 5 m). Bioturbation tends to be patchy in distribution across the shoreface, and dominated by vertical structures. Such systems are defined as "tidally modulated
Tidal bending of glaciers: a linear viscoelastic approach
DEFF Research Database (Denmark)
Reeh, Niels; Christensen, Erik Lintz; Mayer, Christoph;
2003-01-01
In theoretical treatments of tidal bending of floating glaciers, the glacier is usually modelled as an elastic beam with uniform thickness, resting on an elastic foundation. With a few exceptions, values of the elastic (Young's) modulus E of ice derived from tidal deflection records of floating...... glaciers are in the range 0.9-3 GPa. It has therefore been suggested that the elastic-beam model with a single value of E approximate to 1 GPa adequately describes tidal bending of glaciers.In contrast, laboratory experiments with ice give E =93 GPa, i.e. 3-10 times higher than the glacier-derived values....... This suggests that ice creep may have a significant influence on tidal bending of glaciers. Moreover, detailed tidal-deflection and tilt data from Nioghalvfjerdsfjorden glacier, northeast Greenland, cannot be explained by elastic-beam theory. We present a theory of tidal bending of glaciers based on linear...
EXPERIMENTAL INVESTIGATIONS ON LONGITUDINAL DISPERSION CHARACTERISTICS OF TIDAL RIVERS
Institute of Scientific and Technical Information of China (English)
Fan Jing-yu; Wang Dao-zeng; Zhong Bao-chang
2003-01-01
The longitudinal dispersion characteristics of tidal rivers are experimentally investigated in a water channel. The longitudinal dispersion features and influential factors on pollutant in various stages of a tidal period in natural rivers are studied, the value ranges and variation trends of the longitudinal dispersion coefficient are obtained by means of concentration measurement. The results can provide important parameters for establishing the water quality mathematical models in tidal rivers.
Tsuruyama, Tatsuaki
2014-01-01
A biological signal is transmitted by interactions between signaling molecules in the cell. To date, there have been extensive studies regarding signaling pathways using numerical simulation of kinetic equations that are based on equations of continuity and Fick's law. To obtain a mathematical formulation of cell signaling, we propose a stability kinetic model of cell biological signaling of a simple two-parameter model based on the kinetics of the diffusion-limiting step. In the present model, the signaling is regulated by the binding of a cofactor, such as ATP. Non-linearity of the kinetics is given by the diffusion fluctuation in the interaction between signaling molecules, which is different from previous works that hypothesized autocatalytic reactions. Numerical simulations showed the presence of a critical concentration of the cofactor beyond which the cell signaling molecule concentration is altered in a chaos-like oscillation with frequency, which is similar to a discontinuous phase transition in physics. Notably, we found that the frequency is given by the logarithm function of the difference of the outside cofactor concentration from the critical concentration. This implies that the outside alteration of the cofactor concentration is transformed into the oscillatory alteration of cell inner signaling. Further, mathematical stability kinetic analysis predicted a discontinuous dynamic phase transition in the critical state at which the cofactor concentration is equivalent to the critical concentration. In conclusion, the present model illustrates a unique feature of cell signaling, and the stability analysis may provide an analytical framework of the cell signaling system and a novel formulation of biological signaling.
Morphodynamics of tidal inlets in a tropical monsoon area
Lam, N.T.; Stive, M.J.F.; Verhagen, H.J.; Wang, Z.B.
2007-01-01
Morphodynamics of a tidal inlet system on a micro-tidal coast in a tropical monsoon influenced region is modelled and discussed. Influences of river flow and wave climate on the inlet morphology are investigated with the aid of process-based state-of-the-art numerical models. Seasonal and episodic b
Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system
Lam, N.T.; Stive, M.J.F.; Wang, Z.B.; Verhagen, H.J.; Thuy, V.T.T.
2008-01-01
Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system are investigated using numerical models. The ocean forcing including tidal and wave actions and sediment transport is simulated using Delft3D model. Fluvial processes in Delft3D are taken into account as results from SOBEK RU
Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system
Lam, N.T.; Stive, M.J.F.; Wang, Z.B.; Verhagen, H.J.; Thuy, V.T.T.
2008-01-01
Hydrodynamics and morphodynamics of a seasonally forced tidal inlet system are investigated using numerical models. The ocean forcing including tidal and wave actions and sediment transport is simulated using Delft3D model. Fluvial processes in Delft3D are taken into account as results from SOBEK
Constraining neutron star tidal Love numbers with gravitational wave detectors
Flanagan, Eanna E
2007-01-01
We quantify the ability of ground-based gravitational wave detectors to constrain the nuclear equation of state using the early, low frequency portion of the signal of detected neutron star - neutron star (NS-NS) inspirals. In this early adiabatic regime, the influence of a NS's internal structure on the phase of the waveform depends only on a single parameter lambda of the star related to its tidal Love number, namely the ratio of the induced quadrupole moment to the perturbing tidal gravitational field. We restrict attention to gravitational wave frequencies smaller than a cutoff frequency of 400 Hz. In this domain, f-mode frequency dependent corrections to the internal-structure signal are less than 3%, and higher order multipole corrections are less than 5%, for NS models with f-mode frequencies greater than 1 kHz. For an inspiral of two non-spinning 1.4 solar mass NSs at a signal-to-noise ratio of 20, LIGO I (LIGO II) detectors will be able to constrain lambda to lambda < 1.3 (3.3) 10^(37) g cm^2 s^2 ...
A Dynamic Stimulus-Driven Model of Signal Detection
Turner, Brandon M.; Van Zandt, Trisha; Brown, Scott
2011-01-01
Signal detection theory forms the core of many current models of cognition, including memory, choice, and categorization. However, the classic signal detection model presumes the a priori existence of fixed stimulus representations--usually Gaussian distributions--even when the observer has no experience with the task. Furthermore, the classic…
International tidal gravity reference values at Wuhan station
Institute of Scientific and Technical Information of China (English)
许厚泽; 孙和平; 徐建桥; 陶国祥
2000-01-01
The international tidal gravity reference values at Wuhan station are determined accurately based on the comprehensive analysis of the tidal gravity observations obtained from 8 instruments. By comparing these with those in the tidal models given by Dehant (1997) while considering simultaneously (i) the global satellite altimeters tidal data, and (ii) the Schwiderski global tidal data and the local ones along the coast of China, it is found that the average discrepancy of the amplitude factors and of the phase differences for four main waves are given as 5.2% and 3.6% and as 0.16?and 0.08?respectively. They are improved evidently compared to those determined in early stage, indicating the important procedures in improving the Wuhan international tidal gravity reference values when including the long-series observations obtained with a superconducting gravimeter, and when considering the influence of the ocean loading and of the nearly daily free wobble of the Earth’s core.
Newberg, Heidi Jo
Dwarf galaxies that come too close to larger galaxies suffer tidal disruption; the differential gravitational force between one side of the galaxy and the other serves to rip the stars from the dwarf galaxy so that they instead orbit the larger galaxy. This process produces "tidal streams" of stars, which can be found in the stellar halo of the Milky Way, as well as in halos of other galaxies. This chapter provides a general introduction to tidal streams, including the mechanism through which the streams are created, the history of how they were discovered, and the observational techniques by which they can be detected. In addition, their use in unraveling galaxy formation histories and the distribution of dark matter in galaxies is discussed, as is the interaction between these dwarf galaxy satellites and the disk of the larger galaxy.
Water Environment Model for Plain Tidal River Network%平原感潮河网水环境模型研究
Institute of Scientific and Technical Information of China (English)
钱海平; 张海平; 于敏; 赵建夫
2013-01-01
In response to the complex hydrological and water quality characteristics of the plain tidal river network in Pinghu City, a hydrodynamic and water quality model which can objectively reflect the characteristics of the tidal river network was developed using MIKE software. The model was applied to comprehensively improve the water environment in Pinghu City. Based on the measured data of main pollutants, namely ammonia nitrogen, COD and TP, the objective pollution load that shows water quality improvement was calculated. The results showed that the environmental quality of surface water in Pinghu City was significantly affected by the upstream water quality. Therefore, strengthening regional cooperation to improve the water environment is especially important.%针对平湖市平原感潮河网复杂的水文和水质特点,应用MIKE系列软件,建立了能客观反映感潮河网特征的水动力和水质模型,并将其用于平湖市水环境的综合整治.以主要污染物氨氮、COD、TP的实测数据为依据,计算出达到水质改善目标应削减的污染负荷.结果表明,平湖市地表水环境质量受上游来水水质的影响显著,加强基于水环境改善的区域合作尤为重要.
Signals and Systems in Biomedical Engineering Signal Processing and Physiological Systems Modeling
Devasahayam, Suresh R
2013-01-01
The use of digital signal processing is ubiquitous in the field of physiology and biomedical engineering. The application of such mathematical and computational tools requires a formal or explicit understanding of physiology. Formal models and analytical techniques are interlinked in physiology as in any other field. This book takes a unitary approach to physiological systems, beginning with signal measurement and acquisition, followed by signal processing, linear systems modelling, and computer simulations. The signal processing techniques range across filtering, spectral analysis and wavelet analysis. Emphasis is placed on fundamental understanding of the concepts as well as solving numerical problems. Graphs and analogies are used extensively to supplement the mathematics. Detailed models of nerve and muscle at the cellular and systemic levels provide examples for the mathematical methods and computer simulations. Several of the models are sufficiently sophisticated to be of value in understanding real wor...
Modeling of Nonlinear Signal Distortion in Fiber-Optical Networks
Johannisson, Pontus
2013-01-01
A low-complexity model for signal quality prediction in a nonlinear fiber-optical network is developed. The model, which builds on the Gaussian noise model, takes into account the signal degradation caused by a combination of chromatic dispersion, nonlinear signal distortion, and amplifier noise. The center frequencies, bandwidths, and transmit powers can be chosen independently for each channel, which makes the model suitable for analysis and optimization of resource allocation, routing, and scheduling in large-scale optical networks applying flexible-grid wavelength-division multiplexing.
The origin of neap-spring tidal cycles
Kvale, E.P.
2006-01-01
The origin of oceanic tides is a basic concept taught in most introductory college-level sedimentology/geology, oceanography, and astronomy courses. Tides are typically explained in the context of the equilibrium tidal theory model. Yet this model does not take into account real tides in many parts of the world. Not only does the equilibrium tidal model fail to explicate amphidromic circulation, it also does not explain diurnal tides in low latitude positions. It likewise fails to explain the existence of tide-dominated areas where neap-spring cycles are synchronized with the 27.32-day orbital cycle of the Moon (tropical month), rather than with the more familiar 29.52-day cycle of lunar phases (synodic month). Both types of neap-spring cycles can be recognized in the rock record. A complete explanation of the origin of tides should include a discussion of dynamic tidal theory. In the dynamic tidal model, tides resulting from the motions of the Moon in its orbit around the Earth and the Earth in its orbit around the Sun are modeled as products of the combined effects of a series of phantom satellites. The movement of each of these satellites, relative to the Earth's equator, creates its own tidal wave that moves around an amphidromic point. Each of these waves is referred to as a tidal constituent. The geometries of the ocean basins determine which of these constituents are amplified. Thus, the tide-raising potential for any locality on Earth can be conceptualized as the result of a series of tidal constituents specific to that region. A better understanding of tidal cycles opens up remarkable opportunities for research on tidal deposits with implications for, among other things, a more complete understanding of the tidal dynamics responsible for sediment transport and deposition, changes in Earth-Moon distance through time, and the possible influences tidal cycles may exert on organisms. ?? 2006 Elsevier B.V. All rights reserved.
MPD model for radar echo signal of hypersonic targets
Directory of Open Access Journals (Sweden)
Xu Xuefei
2014-08-01
Full Text Available The stop-and-go (SAG model is typically used for echo signal received by the radar using linear frequency modulation pulse compression. In this study, the authors demonstrate that this model is not applicable to hypersonic targets. Instead of SAG model, they present a more realistic echo signal model (moving-in-pulse duration (MPD for hypersonic targets. Following that, they evaluate the performances of pulse compression under the SAG and MPD models by theoretical analysis and simulations. They found that the pulse compression gain has an increase of 3 dB by using the MPD model compared with the SAG model in typical cases.
A numerical study of local variations in tidal regime of Tagus estuary, Portugal.
Directory of Open Access Journals (Sweden)
João Miguel Dias
Full Text Available Tidal dynamics of shallow estuaries and lagoons is a complex matter that has attracted the attention of a large number of researchers over the last few decades. The main purpose of the present work is to study the intricate tidal dynamics of the Tagus estuary, which states as the largest estuary of the Iberian Peninsula and one of the most important wetlands in Portugal and Europe. Tagus has large areas of low depth and a remarkable geomorphology, both determining the complex propagation of tidal waves along the estuary of unknown manner. A non-linear two-dimensional vertically integrated hydrodynamic model was considered to be adequate to simulate its hydrodynamics and an application developed from the SIMSYS2D model was applied to study the tidal propagation along the estuary. The implementation and calibration of this model revealed its accuracy to predict tidal properties along the entire system. Several model runs enabled the analysis of the local variations in tidal dynamics, through the interpretation of amplitude and phase patterns of the main tidal constituents, tidal asymmetry, tidal ellipses, form factor and tidal dissipation. Results show that Tagus estuary tidal dynamics is extremely dependent on an estuarine resonance mode for the semi-diurnal constituents that induce important tidal characteristics. Besides, the estuarine coastline features and topography determines the changes in tidal propagation along the estuary, which therefore result essentially from a balance between convergence/divergence and friction and advection effects, besides the resonance effects.
A numerical study of local variations in tidal regime of Tagus estuary, Portugal.
Dias, João Miguel; Valentim, Juliana Marques; Sousa, Magda Catarina
2013-01-01
Tidal dynamics of shallow estuaries and lagoons is a complex matter that has attracted the attention of a large number of researchers over the last few decades. The main purpose of the present work is to study the intricate tidal dynamics of the Tagus estuary, which states as the largest estuary of the Iberian Peninsula and one of the most important wetlands in Portugal and Europe. Tagus has large areas of low depth and a remarkable geomorphology, both determining the complex propagation of tidal waves along the estuary of unknown manner. A non-linear two-dimensional vertically integrated hydrodynamic model was considered to be adequate to simulate its hydrodynamics and an application developed from the SIMSYS2D model was applied to study the tidal propagation along the estuary. The implementation and calibration of this model revealed its accuracy to predict tidal properties along the entire system. Several model runs enabled the analysis of the local variations in tidal dynamics, through the interpretation of amplitude and phase patterns of the main tidal constituents, tidal asymmetry, tidal ellipses, form factor and tidal dissipation. Results show that Tagus estuary tidal dynamics is extremely dependent on an estuarine resonance mode for the semi-diurnal constituents that induce important tidal characteristics. Besides, the estuarine coastline features and topography determines the changes in tidal propagation along the estuary, which therefore result essentially from a balance between convergence/divergence and friction and advection effects, besides the resonance effects.
Modeling admissible behavior using event signals.
Pinzon, Luz; Jafari, Mohsen A; Hanisch, Hans-Michael; Zhao, Peng
2004-06-01
We describe here how to obtain a model for the admissible behavior of a discrete event system that is represented by a safe Petri net (PN) model. The transitions of this PN model may be controllable or uncontrollable. Also given is a sequential specification which is modeled with a special state machine. Then, using the condition and event arcs of net condition/event systems, a combined model of plant and specification is obtained. We use only the structure of this combined model to develop a method which gives the admissible behavior of the system. Thus, we avoid the complexity of a complete state enumeration.
Cycloidal tidal power generation - Phase 1
Energy Technology Data Exchange (ETDEWEB)
NONE
2004-07-01
This report summarises the findings of a project investigating the economic and technical viability of a cycloidal tidal stream generator and developing a performance prediction model to assess the applicability of cycloidal turbines to power generation. The concept of cycloidal power generation is described along with the use of the model to examine the performance of six designs in the tidal flow off the west coast of Scotland. Details are given of the estimated power generated and cost reductions using optimised designs. Areas to be examined for design optimisation are listed.
Investigation on Tidal Components in GPS Coordinates
Araszkiewicz, Andrzej; Bogusz, Janusz; Figurski, Mariusz
2009-01-01
This paper presents analyses on the GPS coordinates from sub-diurnal solutions of EPN data provided by Warsaw Military University of Technology. The aim of this research is to investigate the way the tidal models used in Bernese software (solid Earth and ocean tides as well) fit to the individual conditions of EPN stations. The 1-hour solution technique of GPS data processing was utilized to obtain coordinates of above 70 EPN stations. Additionally several Polish permanent sites with clearly seen oscillations were examined. This processing technique allowed us to recognize diurnal and sub-diurnal residual oscillations which could be next utilized for validation of the tidal models.
Modelling coloured residual noise in gravitational-wave signal processing
Energy Technology Data Exchange (ETDEWEB)
Roever, Christian [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) and Leibniz Universitaet Hannover, Hannover (Germany); Meyer, Renate [Department of Statistics, University of Auckland, Auckland (New Zealand); Christensen, Nelson, E-mail: christian.roever@aei.mpg.de [Physics and Astronomy, Carleton College, Northfield, MN (United States)
2011-01-07
We introduce a signal processing model for signals in non-white noise, where the exact noise spectrum is a priori unknown. The model is based on a Student's t distribution and constitutes a natural generalization of the widely used normal (Gaussian) model. This way, it allows for uncertainty in the noise spectrum, or more generally is also able to accommodate outliers (heavy-tailed noise) in the data. Examples are given pertaining to data from gravitational-wave detectors.
Directory of Open Access Journals (Sweden)
Smeding Lonneke
2012-03-01
Full Text Available Abstract Background Injurious mechanical ventilation (MV may augment organ injury remote from the lungs. During sepsis, myocardial dysfunction is common and increased endothelial activation and permeability can cause myocardial edema, which may, among other factors, hamper myocardial function. We investigated the effects of MV with injuriously high tidal volumes on the myocardium in an animal model of sepsis. Methods Normal rats and intraperitoneal (i.p. lipopolysaccharide (LPS-treated rats were ventilated with low (6 ml/kg and high (19 ml/kg tidal volumes (Vt under general anesthesia. Non-ventilated animals served as controls. Mean arterial pressure (MAP, central venous pressure (CVP, cardiac output (CO and pulmonary plateau pressure (Pplat were measured. Ex vivo myocardial function was measured in isolated Langendorff-perfused hearts. Cardiac expression of endothelial vascular cell adhesion molecule (VCAM-1 and edema were measured to evaluate endothelial inflammation and leakage. Results MAP decreased after LPS-treatment and Vt-dependently, both independent of each other and with interaction. MV Vt-dependently increased CVP and Pplat and decreased CO. LPS-induced peritonitis decreased myocardial function ex vivo but MV attenuated systolic dysfunction Vt-dependently. Cardiac endothelial VCAM-1 expression was increased by LPS treatment independent of MV. Cardiac edema was lowered Vt-dependently by MV, particularly after LPS, and correlated inversely with systolic myocardial function parameters ex vivo. Conclusion MV attenuated LPS-induced systolic myocardial dysfunction in a Vt-dependent manner. This was associated with a reduction in cardiac edema following a lower transmural coronary venous outflow pressure during LPS-induced coronary inflammation.
Li, Xiaorong; Li, Ming; Wolf, Judith
2017-04-01
As a response to worldwide climate change, clean non-carbon renewable energy resources have been gaining significant attention. Among a range of renewable alternatives, tidal stream energy is considered very promising; due to its consistent predictability and availability. To investigate impacts of tidal stream devices on their surroundings, prototype experiments involving small scale laboratory studies have been implemented. Computational Flow Dynamics (CFD) modelling is also commonly applied to study turbine behaviours. However, these studies focus on impacts of the turbine in the near-field scale. As a result, in order to study and predict the far-field impacts caused by the operation of turbines, large scale 2D and 3D numerical oceanography models have been used, with routines added to reflect the impacts of turbines. In comparison to 2D models, 3D models are advantageous in providing complete prediction of vertical flow structures and hence mixing in the wake of a turbine. This research aims to deliver a thorough 3D tidal stream turbine simulation system, by considering major coastal processes, i.e. current, waves and sediment transport, based on a 3D wave-current-sediment fully coupled numerical oceanography model — the Unstructured Grid Finite Volume Community Ocean Model (FVCOM). The energy extraction of turbines is simulated by adding a body force to the momentum equations. Across the water depth, the coefficient related to the additional body force is given different values according to the turbine configuration and operation to reflect the vertical variation of the turbine's impacts on the passing flow. Three turbulence perturbation terms are added to the turbulence closure to simulate the turbine-induced turbulence generation, dissipation and interference for the turbulence length-scale. Impacts of turbine operation on surface waves are also considered by modification of wave energy flux across the device. A thorough validation study is carried out in
A SURVEY ON TIDAL ANALYSIS AND FORECASTING METHODS FOR TSUNAMI DETECTION
Directory of Open Access Journals (Sweden)
Diego Reforgiato Recupero
2014-01-01
Full Text Available Accurate analysis and forecasting of tidal level are very important tasks for human activities in oceanic and coastal areas. They can be crucial in catastrophic situations like occurrences of Tsunamis in order to provide a rapid alerting to the human population involved and to save lives. Conventional tidal forecasting methods are based on harmonic analysis using the least squares method to determine harmonic parameters. However, a large number of parameters and long-term measured data are required for precise tidal level predictions with harmonic analysis. Furthermore, traditional harmonic methods rely on models based on the analysis of astronomical components and they can be inadequate when the contribution of non-astronomical components, such as the weather, is significant. Other alternative approaches have been developed in the literature in order to deal with these situations and provide predictions with the desired accuracy, with respect also to the length of the available tidal record. These methods include standard high or band pass filtering techniques, although the relatively deterministic character and large amplitude of tidal signals make special techniques, like artificial neural networks and wavelets transform analysis methods, more effective. This paper is intended to provide the communities of both researchers and practitioners with a broadly applicable, up to date coverage of tidal analysis and forecasting methodologies that have proven to be successful in a variety of circumstances, and that hold particular promise for success in the future. Classical and novel methods are reviewed in a systematic and consistent way, outlining their main concepts and components, similarities and differences, advantages and disadvantages.
Modeling laser velocimeter signals as triply stochastic Poisson processes
Mayo, W. T., Jr.
1976-01-01
Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals.
Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating
Barnes, Rory; Goldblatt, Colin; Meadows, Victoria S; Kasting, James F; Heller, Rene
2012-01-01
Traditionally stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high enough levels to induce a runaway greenhouse for a long enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses," and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits in the habitable zone (HZ). However, these planets are not habitable as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulate the evolution of hypothetical planetary systems in a quasi-continuous ...
Dissipation in rocky planets for strong tidal forcing
Clausen, N.; Tilgner, A.
2015-12-01
Aims: We plan to reproduce a previously published calculation for the tidal dissipation in Io and extend the employed model to investigate the heat transport mechanism in Io and the thickness of Io's asthenosphere. Additionally, we apply this model to an exoplanet and obtain insights into the dependencies of the modified tidal quality factor (Q') on the size of the planet and its orbital eccentricity. Methods: Tidal dissipation depends on the heat transport mechanism. For strong tidal forcing an equilibrium between heat transport by convection and heat production by tidal dissipation can be obtained that determines the tidal dissipation. By this means, we checked whether convection is the dominant heat transport mechanism in Io. The tidal dissipation also depends on the interior model of Io. We considered various asthenosphere thicknesses and determined which of these gives results compatible with observations. We determined the modified tidal quality factors (Q') for Corot 7 b for various orbital parameters, but in a way that tidal forcing is strong. We used convection and melt migration as possible heat transport mechanism. We repeated this for a hypothetical planet with the size and density of Io on the orbit of Corot 7 b. Results: We find that a heat transport dominated by convection in Io is possible, but the grain sizes need to be smaller than 2.2 mm. For larger grain sizes melt migration is the dominant heat transport mechanism. Moreover, Io's asthenosphere needs to be thicker than 100 km. The computation of the modified tidal quality factors (Q') for Corot 7 b and a planet with the size and density of Io on the orbit of Corot 7 b show that Q' is scattered over several orders of magnitude, but a value of 100 for Q' is an acceptable estimate for a rocky planet under strong tidal forcing.
DEFF Research Database (Denmark)
Grayver, Alexander V.; Munch, F. D.; Kuvshinov, Alexey V.
2017-01-01
We present a new global electrical conductivity model of Earth's mantle. The model was derived by using a novel methodology, which is based on inverting satellite magnetic field measurements from different sources simultaneously. Specifically, we estimated responses of magnetospheric origin and o...
A simple statistical signal loss model for deep underground garage
DEFF Research Database (Denmark)
Nguyen, Huan Cong; Gimenez, Lucas Chavarria; Kovacs, Istvan
2016-01-01
In this paper we address the channel modeling aspects for a deep-indoor scenario with extreme coverage conditions in terms of signal losses, namely underground garage areas. We provide an in-depth analysis in terms of path loss (gain) and large scale signal shadowing, and a propose simple...
Quantitative modelling in cognitive ergonomics: predicting signals passed at danger.
Moray, Neville; Groeger, John; Stanton, Neville
2017-02-01
This paper shows how to combine field observations, experimental data and mathematical modelling to produce quantitative explanations and predictions of complex events in human-machine interaction. As an example, we consider a major railway accident. In 1999, a commuter train passed a red signal near Ladbroke Grove, UK, into the path of an express. We use the Public Inquiry Report, 'black box' data, and accident and engineering reports to construct a case history of the accident. We show how to combine field data with mathematical modelling to estimate the probability that the driver observed and identified the state of the signals, and checked their status. Our methodology can explain the SPAD ('Signal Passed At Danger'), generate recommendations about signal design and placement and provide quantitative guidance for the design of safer railway systems' speed limits and the location of signals. Practitioner Summary: Detailed ergonomic analysis of railway signals and rail infrastructure reveals problems of signal identification at this location. A record of driver eye movements measures attention, from which a quantitative model for out signal placement and permitted speeds can be derived. The paper is an example of how to combine field data, basic research and mathematical modelling to solve ergonomic design problems.
Directory of Open Access Journals (Sweden)
Diana Stralberg
Full Text Available BACKGROUND: Tidal marshes will be threatened by increasing rates of sea-level rise (SLR over the next century. Managers seek guidance on whether existing and restored marshes will be resilient under a range of potential future conditions, and on prioritizing marsh restoration and conservation activities. METHODOLOGY: Building upon established models, we developed a hybrid approach that involves a mechanistic treatment of marsh accretion dynamics and incorporates spatial variation at a scale relevant for conservation and restoration decision-making. We applied this model to San Francisco Bay, using best-available elevation data and estimates of sediment supply and organic matter accumulation developed for 15 Bay subregions. Accretion models were run over 100 years for 70 combinations of starting elevation, mineral sediment, organic matter, and SLR assumptions. Results were applied spatially to evaluate eight Bay-wide climate change scenarios. PRINCIPAL FINDINGS: Model results indicated that under a high rate of SLR (1.65 m/century, short-term restoration of diked subtidal baylands to mid marsh elevations (-0.2 m MHHW could be achieved over the next century with sediment concentrations greater than 200 mg/L. However, suspended sediment concentrations greater than 300 mg/L would be required for 100-year mid marsh sustainability (i.e., no elevation loss. Organic matter accumulation had minimal impacts on this threshold. Bay-wide projections of marsh habitat area varied substantially, depending primarily on SLR and sediment assumptions. Across all scenarios, however, the model projected a shift in the mix of intertidal habitats, with a loss of high marsh and gains in low marsh and mudflats. CONCLUSIONS/SIGNIFICANCE: Results suggest a bleak prognosis for long-term natural tidal marsh sustainability under a high-SLR scenario. To minimize marsh loss, we recommend conserving adjacent uplands for marsh migration, redistributing dredged sediment to raise
Institute of Scientific and Technical Information of China (English)
胡建宇; HiroshiKAWAMURA; 洪华生; FumiakiKOBASHI; 谢强
2001-01-01
Some important tidal features of 8 major tidal constituents (M2, S2, K1, O1, P1,Sa, N2 and K2 ) in the china Seas and their adjacent sea areas were obtained using six years' TOPEX/POSEIDON altimeter data. The results showed that the obtained co-tidal and co-range charts for these major tidal constituents agreed well with those of previous researches using observational data from coastal tidal gauge stations and numerical models.
Comparison of Linear Prediction Models for Audio Signals
Directory of Open Access Journals (Sweden)
2009-03-01
Full Text Available While linear prediction (LP has become immensely popular in speech modeling, it does not seem to provide a good approach for modeling audio signals. This is somewhat surprising, since a tonal signal consisting of a number of sinusoids can be perfectly predicted based on an (all-pole LP model with a model order that is twice the number of sinusoids. We provide an explanation why this result cannot simply be extrapolated to LP of audio signals. If noise is taken into account in the tonal signal model, a low-order all-pole model appears to be only appropriate when the tonal components are uniformly distributed in the Nyquist interval. Based on this observation, different alternatives to the conventional LP model can be suggested. Either the model should be changed to a pole-zero, a high-order all-pole, or a pitch prediction model, or the conventional LP model should be preceded by an appropriate frequency transform, such as a frequency warping or downsampling. By comparing these alternative LP models to the conventional LP model in terms of frequency estimation accuracy, residual spectral flatness, and perceptual frequency resolution, we obtain several new and promising approaches to LP-based audio modeling.
Comparison of Linear Prediction Models for Audio Signals
Directory of Open Access Journals (Sweden)
van Waterschoot Toon
2008-01-01
Full Text Available While linear prediction (LP has become immensely popular in speech modeling, it does not seem to provide a good approach for modeling audio signals. This is somewhat surprising, since a tonal signal consisting of a number of sinusoids can be perfectly predicted based on an (all-pole LP model with a model order that is twice the number of sinusoids. We provide an explanation why this result cannot simply be extrapolated to LP of audio signals. If noise is taken into account in the tonal signal model, a low-order all-pole model appears to be only appropriate when the tonal components are uniformly distributed in the Nyquist interval. Based on this observation, different alternatives to the conventional LP model can be suggested. Either the model should be changed to a pole-zero, a high-order all-pole, or a pitch prediction model, or the conventional LP model should be preceded by an appropriate frequency transform, such as a frequency warping or downsampling. By comparing these alternative LP models to the conventional LP model in terms of frequency estimation accuracy, residual spectral flatness, and perceptual frequency resolution, we obtain several new and promising approaches to LP-based audio modeling.
Modelling of Signal - Level Crossing System
Directory of Open Access Journals (Sweden)
Daniel Novak
2006-01-01
Full Text Available The author presents an object-oriented model of a railway level-crossing system created for the purpose of functional requirements specification. Unified Modelling Language (UML, version 1.4, which enables specification, visualisation, construction and documentation of software system artefacts, was used. The main attention was paid to analysis and design phases. The former phase resulted in creation of use case diagrams and sequential diagrams, the latter in creation of class/object diagrams and statechart diagrams.
Tidal Love numbers of neutron stars
Hinderer, Tanja
2007-01-01
For a variety of fully relativistic polytropic neutron star models we calculate the star's tidal Love number k2. Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n~0.5-1.0. The equilibrium stellar model is obtained by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the linear l=2 static perturbations to the Schwarzschild spacetime following the method of Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second order differential equation for the perturbation to the metric coefficient g_tt, and matching the exterior solution to the asymptotic expansion of the metric in the star's local asymptotic rest frame gives the Love number. Our results agree well with the Newtonian results in the weak field limit. The fully relativistic values differ from the Newtonian values by up to ~24%. The Love number is potentially measurable in gravitational wave signals from inspiralling binary neutron sta...
On Tidal Inference in the Diurnal Band
Ray, R. D.
2017-01-01
Standard methods of tidal inference should be revised to account for a known resonance that occurs mostly within the K(sub 1) tidal group in the diurnal band. The resonance arises from a free rotational mode of Earth caused by the fluid core. In a set of 110 bottom-pressure tide stations, the amplitude of the P(sub 1) tidal constituent is shown to be suppressed relative to K(sub 1), which is in good agreement with the resonance theory. Standard formulas for the K(sub 1) nodal modulation remain essentially unaffected. Two examples are given of applications of the refined inference methodology: one with monthly tide gauge data and one with satellite altimetry. For some altimeter-constrained tide models, an inferred P(sub 1) constituent is found to be more accurate than a directly determined one.
Modelling and Analysis of Biochemical Signalling Pathway Cross-talk
Donaldson, Robin; 10.4204/EPTCS.19.3
2010-01-01
Signalling pathways are abstractions that help life scientists structure the coordination of cellular activity. Cross-talk between pathways accounts for many of the complex behaviours exhibited by signalling pathways and is often critical in producing the correct signal-response relationship. Formal models of signalling pathways and cross-talk in particular can aid understanding and drive experimentation. We define an approach to modelling based on the concept that a pathway is the (synchronising) parallel composition of instances of generic modules (with internal and external labels). Pathways are then composed by (synchronising) parallel composition and renaming; different types of cross-talk result from different combinations of synchronisation and renaming. We define a number of generic modules in PRISM and five types of cross-talk: signal flow, substrate availability, receptor function, gene expression and intracellular communication. We show that Continuous Stochastic Logic properties can both detect an...
An accurate and simple large signal model of HEMT
DEFF Research Database (Denmark)
Liu, Qing
1989-01-01
A large-signal model of discrete HEMTs (high-electron-mobility transistors) has been developed. It is simple and suitable for SPICE simulation of hybrid digital ICs. The model parameters are extracted by using computer programs and data provided by the manufacturer. Based on this model, a hybrid...
Semiconductor Modeling For Simulating Signal, Power, and Electromagneticintegrity
Leventhal, Roy
2006-01-01
Assists engineers in designing high-speed circuits. The emphasis is on semiconductor modeling, with PCB transmission line effects, equipment enclosure effects, and other modeling issues discussed as needed. This text addresses practical considerations, including process variation, model accuracy, validation and verification, and signal integrity.
Multiscale adaptive basis function modeling of spatiotemporal vectorcardiogram signals.
Gang Liu; Hui Yang
2013-03-01
Mathematical modeling of cardiac electrical signals facilitates the simulation of realistic cardiac electrical behaviors, the evaluation of algorithms, and the characterization of underlying space-time patterns. However, there are practical issues pertinent to model efficacy, robustness, and generality. This paper presents a multiscale adaptive basis function modeling approach to characterize not only temporal but also spatial behaviors of vectorcardiogram (VCG) signals. Model parameters are adaptively estimated by the "best matching" projections of VCG characteristic waves onto a dictionary of nonlinear basis functions. The model performance is experimentally evaluated with respect to the number of basis functions, different types of basis function (i.e., Gaussian, Mexican hat, customized wavelet, and Hermitian wavelets), and various cardiac conditions, including 80 healthy controls and different myocardial infarctions (i.e., 89 inferior, 77 anterior-septal, 56 inferior-lateral, 47 anterior, and 43 anterior-lateral). Multiway analysis of variance shows that the basis function and the model complexity have significant effects on model performances while cardiac conditions are not significant. The customized wavelet is found to be an optimal basis function for the modeling of spacetime VCG signals. The comparison of QT intervals shows small relative errors (model representations and realworld VCG signals when the model complexity is greater than 10. The proposed model shows great potentials to model space-time cardiac pathological behaviors and can lead to potential benefits in feature extraction, data compression, algorithm evaluation, and disease prognostics.
A simple statistical signal loss model for deep underground garage
DEFF Research Database (Denmark)
Nguyen, Huan Cong; Gimenez, Lucas Chavarria; Kovacs, Istvan
2016-01-01
In this paper we address the channel modeling aspects for a deep-indoor scenario with extreme coverage conditions in terms of signal losses, namely underground garage areas. We provide an in-depth analysis in terms of path loss (gain) and large scale signal shadowing, and a propose simple...... propagation model which can be used to predict cellular signal levels in similar deep-indoor scenarios. The proposed frequency-independent floor attenuation factor (FAF) is shown to be in range of 5.2 dB per meter deep....
Bayesian hierarchical modeling for detecting safety signals in clinical trials.
Xia, H Amy; Ma, Haijun; Carlin, Bradley P
2011-09-01
Detection of safety signals from clinical trial adverse event data is critical in drug development, but carries a challenging statistical multiplicity problem. Bayesian hierarchical mixture modeling is appealing for its ability to borrow strength across subgroups in the data, as well as moderate extreme findings most likely due merely to chance. We implement such a model for subject incidence (Berry and Berry, 2004 ) using a binomial likelihood, and extend it to subject-year adjusted incidence rate estimation under a Poisson likelihood. We use simulation to choose a signal detection threshold, and illustrate some effective graphics for displaying the flagged signals.
THE SIGNAL APPROACH TO MODELLING THE BALANCE OF PAYMENT CRISIS
Directory of Open Access Journals (Sweden)
O. Chernyak
2016-12-01
Full Text Available The paper considers and presents synthesis of theoretical models of balance of payment crisis and investigates the most effective ways to model the crisis in Ukraine. For mathematical formalization of balance of payment crisis, comparative analysis of the effectiveness of different calculation methods of Exchange Market Pressure Index was performed. A set of indicators that signal the growing likelihood of balance of payments crisis was defined using signal approach. With the help of minimization function thresholds indicators were selected, the crossing of which signalize increase in the probability of balance of payment crisis.
Model-based Bayesian signal extraction algorithm for peripheral nerves
Eggers, Thomas E.; Dweiri, Yazan M.; McCallum, Grant A.; Durand, Dominique M.
2017-10-01
Objective. Multi-channel cuff electrodes have recently been investigated for extracting fascicular-level motor commands from mixed neural recordings. Such signals could provide volitional, intuitive control over a robotic prosthesis for amputee patients. Recent work has demonstrated success in extracting these signals in acute and chronic preparations using spatial filtering techniques. These extracted signals, however, had low signal-to-noise ratios and thus limited their utility to binary classification. In this work a new algorithm is proposed which combines previous source localization approaches to create a model based method which operates in real time. Approach. To validate this algorithm, a saline benchtop setup was created to allow the precise placement of artificial sources within a cuff and interference sources outside the cuff. The artificial source was taken from five seconds of chronic neural activity to replicate realistic recordings. The proposed algorithm, hybrid Bayesian signal extraction (HBSE), is then compared to previous algorithms, beamforming and a Bayesian spatial filtering method, on this test data. An example chronic neural recording is also analyzed with all three algorithms. Main results. The proposed algorithm improved the signal to noise and signal to interference ratio of extracted test signals two to three fold, as well as increased the correlation coefficient between the original and recovered signals by 10-20%. These improvements translated to the chronic recording example and increased the calculated bit rate between the recovered signals and the recorded motor activity. Significance. HBSE significantly outperforms previous algorithms in extracting realistic neural signals, even in the presence of external noise sources. These results demonstrate the feasibility of extracting dynamic motor signals from a multi-fascicled intact nerve trunk, which in turn could extract motor command signals from an amputee for the end goal of
Discrete dynamic modeling of T cell survival signaling networks
Zhang, Ranran
2009-03-01
Biochemistry-based frameworks are often not applicable for the modeling of heterogeneous regulatory systems that are sparsely documented in terms of quantitative information. As an alternative, qualitative models assuming a small set of discrete states are gaining acceptance. This talk will present a discrete dynamic model of the signaling network responsible for the survival and long-term competence of cytotoxic T cells in the blood cancer T-LGL leukemia. We integrated the signaling pathways involved in normal T cell activation and the known deregulations of survival signaling in leukemic T-LGL, and formulated the regulation of each network element as a Boolean (logic) rule. Our model suggests that the persistence of two signals is sufficient to reproduce all known deregulations in leukemic T-LGL. It also indicates the nodes whose inactivity is necessary and sufficient for the reversal of the T-LGL state. We have experimentally validated several model predictions, including: (i) Inhibiting PDGF signaling induces apoptosis in leukemic T-LGL. (ii) Sphingosine kinase 1 and NFκB are essential for the long-term survival of T cells in T-LGL leukemia. (iii) T box expressed in T cells (T-bet) is constitutively activated in the T-LGL state. The model has identified potential therapeutic targets for T-LGL leukemia and can be used for generating long-term competent CTL necessary for tumor and cancer vaccine development. The success of this model, and of other discrete dynamic models, suggests that the organization of signaling networks has an determining role in their dynamics. Reference: R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, T. P. Loughran, Jr., Network Model of Survival Signaling in LGL Leukemia, PNAS 105, 16308-16313 (2008).
Directory of Open Access Journals (Sweden)
Daniel Zurita-Millán
2016-01-01
Full Text Available Vibration monitoring plays a key role in the industrial machinery reliability since it allows enhancing the performance of the machinery under supervision through the detection of failure modes. Thus, vibration monitoring schemes that give information regarding future condition, that is, prognosis approaches, are of growing interest for the scientific and industrial communities. This work proposes a vibration signal prognosis methodology, applied to a rotating electromechanical system and its associated kinematic chain. The method combines the adaptability of neurofuzzy modeling with a signal decomposition strategy to model the patterns of the vibrations signal under different fault scenarios. The model tuning is performed by means of Genetic Algorithms along with a correlation based interval selection procedure. The performance and effectiveness of the proposed method are validated experimentally with an electromechanical test bench containing a kinematic chain. The results of the study indicate the suitability of the method for vibration forecasting in complex electromechanical systems and their associated kinematic chains.
Rotzoll, Kolja; Gingerich, Stephen B.; Jenson, John W.; El-Kadi, Aly I.
2013-01-01
Tidal-signal attenuations are analyzed to compute hydraulic diffusivities and estimate regional hydraulic conductivities of the Northern Guam Lens Aquifer, Territory of Guam (Pacific Ocean), USA. The results indicate a significant tidal-damping effect at the coastal boundary. Hydraulic diffusivities computed using a simple analytical solution for well responses to tidal forcings near the periphery of the island are two orders of magnitude lower than for wells in the island’s interior. Based on assigned specific yields of ~0.01–0.4, estimated hydraulic conductivities are ~20–800 m/day for peripheral wells, and ~2,000–90,000 m/day for interior wells. The lower conductivity of the peripheral rocks relative to the interior rocks may best be explained by the effects of karst evolution: (1) dissolutional enhancement of horizontal hydraulic conductivity in the interior; (2) case-hardening and concurrent reduction of local hydraulic conductivity in the cliffs and steeply inclined rocks of the periphery; and (3) the stronger influence of higher-conductivity regional-scale features in the interior relative to the periphery. A simple numerical model calibrated with measured water levels and tidal response estimates values for hydraulic conductivity and storage parameters consistent with the analytical solution. The study demonstrates how simple techniques can be useful for characterizing regional aquifer properties.
Correia, Alexandre C M
2010-01-01
Tidal effects arise from differential and inelastic deformation of a planet by a perturbing body. The continuous action of tides modify the rotation of the planet together with its orbit until an equilibrium situation is reached. It is often believed that synchronous motion is the most probable outcome of the tidal evolution process, since synchronous rotation is observed for the majority of the satellites in the Solar System. However, in the 19th century, Schiaparelli also assumed synchronous motion for the rotations of Mercury and Venus, and was later shown to be wrong. Rather, for planets in eccentric orbits synchronous rotation is very unlikely. The rotation period and axial tilt of exoplanets is still unknown, but a large number of planets have been detected close to the parent star and should have evolved to a final equilibrium situation. Therefore, based on the Solar System well studied cases, we can make some predictions for exoplanets. Here we describe in detail the main tidal effects that modify the...
Xing, Jiuxing; Chen, Shengli
2017-08-01
A three dimensional unstructured grid model of the west coast of Britain is used to study the process of the interaction of tidal currents, tidal mixing and density gradient in the Liverpool Bay region. Calculations with M2 tidal forcing and omitting freshwater discharge show that tidal currents in the region are strong (of order 1 ms- 1), with tidal current ellipses essentially rectilinear in the surface and bottom. In the absence of tidal forcing, the freshwater is confined to a thin surface layer. With the inclusion of tidal mixing the surface layer thickens, and in the shallow water area mixed layer occupies the whole water depth. This has a significant effect of reducing its lateral spread. A detailed study of time series of velocity, salinity and turbulence reveals that at flood tide, more saline water is advected into the coastal region and rapid vertical mixing occurs, whereas at ebb tide, fresher water is advected over more saline water. The induced strong pycnocline uncouples surface and bottom layers leading to more circular tidal ellipses which rotate in opposite directions in the vertical, as found in observations. The three dimensional nature of the model reveals that this process involves both horizontal and vertical density gradients, and shows significant horizontal variability in the Liverpool Bay region.
Directory of Open Access Journals (Sweden)
Masanao Sato
Full Text Available Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible responses to pathogen attack, is such a complex network. We studied the Arabidopsis immune signaling network upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto DC3000 AvrRpt2. This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network to be activated at once. mRNA profiles for 571 immune response genes of 22 Arabidopsis immunity mutants and wild type were collected 6 hours after inoculation with Pto DC3000 AvrRpt2. The mRNA profiles were analyzed as detailed descriptions of changes in the network state resulting from the genetic perturbations. Regulatory relationships among the genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction procedure to the mRNA profile data. The resulting static network model accurately predicted 23 of 25 regulatory relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The network model revealed two striking features: (i the components of the network are highly interconnected; and (ii negative regulatory relationships are common between signaling sectors. Complex regulatory relationships, including a novel negative regulatory relationship between the early microbe-associated molecular pattern-triggered signaling sectors and the salicylic acid sector, were further validated. We propose that prevalent negative regulatory relationships among the signaling sectors make the plant immune signaling network a "sector
Adélie penguin foraging location predicted by tidal regime switching.
Oliver, Matthew J; Irwin, Andrew; Moline, Mark A; Fraser, William; Patterson, Donna; Schofield, Oscar; Kohut, Josh
2013-01-01
Penguin foraging and breeding success depend on broad-scale environmental and local-scale hydrographic features of their habitat. We investigated the effect of local tidal currents on a population of Adélie penguins on Humble Is., Antarctica. We used satellite-tagged penguins, an autonomous underwater vehicle, and historical tidal records to model of penguin foraging locations over ten seasons. The bearing of tidal currents did not oscillate daily, but rather between diurnal and semidiurnal tidal regimes. Adélie penguins foraging locations changed in response to tidal regime switching, and not to daily tidal patterns. The hydrography and foraging patterns of Adélie penguins during these switching tidal regimes suggest that they are responding to changing prey availability, as they are concentrated and dispersed in nearby Palmer Deep by variable tidal forcing on weekly timescales, providing a link between local currents and the ecology of this predator.
Tidal currents assessment in the Tagus estuary
Energy Technology Data Exchange (ETDEWEB)
Mendonca, A. (CEHIDRO, Instituto Superior Tecnico, Av. Rovisco Pais, Lisboa, (PT)); Trigo Teixeira, A. (Department of Civil Engineering and Architecture, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, Lisboa (PT))
2007-07-01
The authors present in this paper the results of an initial assessment of the potential of tidal currents to generate energy in the Tagus estuary. The work is divided into three phases. The first phase comprises the setting up and calibration of a detailed finite element model for the estuary starting in the ocean boundary. The model was calibrated and verified using water levels and current velocities for several measuring stations within the estuary. The measuring campaign took place in 1987 and was performed by Instituto Hidrografico of the Portuguese Navy. The records are of good quality and cover a period of spring and neap tides. The model give clear indication about the flow pattern within the estuary showing the places were high current velocities are likely to occur. Calculation of the tidal power on selected locations was made. The second phase consisted on the study of the requirements of tidal turbines in terms of site conditions: mainly the minimum water depth and current velocity required for installation. In addition a review was made to understand the development of tidal turbine technology. Three types of turbines were selected as having potential for the site, which usually are associated with moderate current velocity. The third and final phase was the study of the estuary 'map-use' through the construction of a GIS system that allows the identification of locations of potential conflict.
Some Mathematical Models for ELM Signal
XIE, Hua-sheng
2012-01-01
There is no wide accepted theory for ELM (Edge Localized Mode) yet. Some fusion people feel that we may never get a final theory for ELM and H-mode, since which are too complicated (also related to the unsolved turbulence problem) and with at least three time scales. The only way out is using models. (This is analogous to that we believe quantum mechanics can explain chemistry and biology, but no one can calculate DNA structure from Schrodinger equation directly.) This manuscript gives some possible mathematical approaches to it. I should declare that these are just math toys for me yet. They may inspire to good understandings of ELM and H-mode, may not. Useful or useless, I don't know. One need not take too much care of it. Just for fun and enjoying different interesting ideas.
Anelastic tidal dissipation in multi-layer planets
Remus, F; Zahn, J -P; Lainey, V
2012-01-01
Earth-like planets have viscoelastic mantles, whereas giant planets may have viscoelastic cores. The tidal dissipation of such solid regions, gravitationally perturbed by a companion body, highly depends on their rheology and on the tidal frequency. Therefore, modelling tidal interactions presents a high interest to provide constraints on planets' properties and to understand their history and their evolution, in our Solar System or in exoplanetary systems. We examine the equilibrium tide in the anelastic parts of a planet whatever the rheology, taking into account the presence of a fluid envelope of constant density. We show how to obtain the different Love numbers that describe its tidal deformation. Thus, we discuss how the tidal dissipation in solid parts depends on the planet's internal structure and rheology. Finally, we show how the results may be implemented to describe the dynamical evolution of planetary systems. The first manifestation of the tide is to distort the shape of the planet adiabatically...
Residual circulation and tidal stress in the Gulf of California
Salas-De-León, David Alberto; Carbajal-PéRez, Noel; Monreal-Gómez, Maria Adela; Barrientos-MacGregor, Gerardo
2003-10-01
Results of a three-dimensional nonlinear barotropic shelf model are used to study the effect of the M2 tidal stress on the residual current in the Gulf of California. The tidal stress summarizes the nonlinear interactions and forces the residual circulation. It is calculated following the method developed by [1975]. The vertical structure of the tidal stress reveals clearly the zones where the interaction between tidal currents and the basin geometry is strong. The highest values of tidal stress were found over the Salsipuedes sill and in the Ballenas Channel in the central archipelago and in the Colorado River Delta. Relatively high values of tidal stress were also found in deeper layers in the southern part. The high tidal stress values coincide well with the anomalous cold-water patches observed in the archipelago area, attributed to tidal mixing. The calculated residual currents show a maximum of about 15 cm s-1 in the upper layers in the archipelago area. At subsurface layers an anticyclonic circulation is observed. Divergence patterns in the upper layers suggest that M2 tide residuals contribute, to significant upward movements of water, on the west side of Tiburón island. This barotropic process may contribute to the generation of the observed cold patches.
A model for automatic identification of human pulse signals
Institute of Scientific and Technical Information of China (English)
Hui-yan WANG; Pei-yong ZHANG
2008-01-01
This paper presents a quantitative method for automatic identification of human pulse signals. The idea is to start with the extraction of characteristic parameters and then to construct the recognition model based on Bayesian networks. To identify depth, frequency and rhythm, several parameters are proposed. To distinguish the strength and shape, which cannot be represented by one or several parameters and are hard to recognize, the main time-domain feature parameters are computed based on the feature points of the pulse signal. Then the extracted parameters are taken as the input and five models for automatic pulse signal identification are constructed based on Bayesian networks. Experimental results demonstrate that the method is feasible and effective in recognizing depth, frequency, rhythm, strength and shape of pulse signals, which can be expected to facilitate the modernization of pulse diagnosis.
Phonetic perspectives on modelling information in the speech signal
Indian Academy of Sciences (India)
S Hawkins
2011-10-01
This paper reassesses conventional assumptions about the informativeness of the acoustic speech signal, and shows how recent research on systematic variability in the acoustic signal is consistent with an alternative linguistic model that is more biologically plausible and compatible with recent advances in modelling embodied visual perception and action. Standard assumptions about the information available from the speech signal, especially strengths and limitations of phonological features and phonemes, are reviewed, and compared with an alternative approach based on Firthian prosodic analysis (FPA). FPA places more emphasis than standard models on the linguistic and interactional function of an utterance, de-emphasizes the need to identify phonemes, and uses formalisms that force us to recognize that every perceptual decision is context- and task-dependent. Examples of perceptually-signiﬁcant phonetic detail that is neglected by standard models are discussed. Similarities between the theoretical approach recommended and current work on perception–action robots are explored.
Windham-Myers, L.; Drexler, J. Z.; Byrd, K. B.; Schile, L. M.
2012-12-01
Peat-accreting coastal wetlands have the potential to keep elevational pace with sea-level rise, thus providing both adaptation and mitigation for expected rises in atmospheric concentrations of greenhouse gases (GHGs). Due to oxidation and sedimentation processes, marsh elevations are generally constrained by sea level rise (1-2 mm yr-1). However, the relative importance of mineral vs. organic accretion remain poorly understood. At least four lines of evidence from the brackish-fresh region of California's SFBay-Delta suggest that potential rates of organic accretion may be underestimated in calibration datasets of the last century. First, tidal marsh elevations have been maintained with changing rates of SLR over the past 6700 years even during periods of low sediment availability. Second, the presence of fibric remnants in historic peat cores suggests that millennial preservation of autochtonous material may be greater in the absence of mineral inputs. Third, an experimental restoration of emergent marsh on subsided peat soil has generated new "proto-peat" at average rates of 4 cm y-1, nearly 40-times mean sea level rise, storing an average of 1 kg C m-2 yr-1 since 1997. Fourth, annual measurements of root production of the dominant fresh-brackish marsh species tule (Schoenoplectus acutus) show high productivity and minimal sensitivity to variable tidal range elevations and fresh-brackish salinities. Separating the relative importance of belowground productivity from decomposition in driving rates of organic accretion may be possible by assessment of fibric remnants, as an index of organic "preservation". Using three distinct peat cores from a larger study with calibrated dating and geochemistry data, fibric remnants (particles >2mm) were assessed at 10 cm intervals and compared with physical and associated geochemical down-core variability (n=230 segments). The presence of fibric remnants was reduced in the presence of sediment, as indicated by mineral content
Detection of visual signals by rats: A computational model
We applied a neural network model of classical conditioning proposed by Schmajuk, Lam, and Gray (1996) to visual signal detection and discrimination tasks designed to assess sustained attention in rats (Bushnell, 1999). The model describes the animals’ expectation of receiving fo...
Resolving Signals to Cohesion: Two Models of Bridging Inference.
Hegarty, Mary; Revlin, Russell
1999-01-01
Suggests two models of how readers create bridging inferences to resolve signals to textual cohesion. Evaluates reading times, verification accuracy, verification latency, and regressive eye fixations to support the model which views bridges as the result of a form of deduction in which the reader tacitly establishes premises that provide rational…
Modeling Signal Transduction and Lipid Rafts in Immune Cells
Prasad, Ashok
2011-03-01
Experimental evidence increasingly suggests that lipid rafts are nanometer sized cholesterol dependent dynamic assemblies enriched in sphingolipids and associated proteins. Lipid rafts are dynamic structures that break-up and reform on a relatively short time-scale, and are believed to facilitate the interactions of raft-associated proteins. The role of these rafts in signaling has been controversial, partly due to controversies regarding the existence and nature of the rafts themselves. Experimental evidence has indicated that in several cell types, especially T cells, rafts do influence signal transduction and T cell activation. Given the emerging consensus on the biophysical character of lipid rafts, the question can be asked as to what roles they possibly play in signal transduction. Here we carry out simulations of minimal models of the signal transduction network that regulates Src-family kinase dynamics in T cells and other cell types. By separately treating raft-based biochemical interactions, we find that rafts can indeed putatively play an important role in signal transduction, and in particular may affect the sensitivity of signal transduction. This illuminates possible functional consequences of membrane heterogeneities on signal transduction and points towards mechanisms for spatial control of signaling by cells.
A stand-alone tidal prediction application for mobile devices
Tsai, Cheng-Han; Fan, Ren-Ye; Yang, Yi-Chung
2017-04-01
It is essential for people conducting fishing, leisure, or research activities at the coasts to have timely and handy tidal information. Although tidal information can be found easily on the internet or using mobile device applications, this information is all applicable for only certain specific locations, not anywhere on the coast, and they need an internet connection. We have developed an application for Android devices, which allows the user to obtain hourly tidal height anywhere on the coast for the next 24 hours without having to have any internet connection. All the necessary information needed for the tidal height calculation is stored in the application. To develop this application, we first simulate tides in the Taiwan Sea using the hydrodynamic model (MIKE21 HD) developed by the DHI. The simulation domain covers the whole coast of Taiwan and the surrounding seas with a grid size of 1 km by 1 km. This grid size allows us to calculate tides with high spatial resolution. The boundary conditions for the simulation domain were obtained from the Tidal Model Driver of the Oregon State University, using its tidal constants of eight constituents: M2, S2, N2, K2, K1, O1, P1, and Q1. The simulation calculates tides for 183 days so that the tidal constants for the above eight constituents of each water grid can be extracted by harmonic analysis. Using the calculated tidal constants, we can predict the tides in each grid of our simulation domain, which is useful when one needs the tidal information for any location in the Taiwan Sea. However, for the mobile application, we only store the eight tidal constants for the water grids on the coast. Once the user activates the application, it reads the longitude and latitude from the GPS sensor in the mobile device and finds the nearest coastal grid which has our tidal constants. Then, the application calculates tidal height variation based on the harmonic analysis. The application also allows the user to input location and
Mixed-signal instrumentation for large-signal device characterization and modelling
Marchetti, M.
2013-01-01
This thesis concentrates on the development of advanced large-signal measurement and characterization tools to support technology development, model extraction and validation, and power amplifier (PA) designs that address the newly introduced third and fourth generation (3G and 4G) wideband communic
Tidal residual current and its role in the mean flow on the Changjiang Bank
Energy Technology Data Exchange (ETDEWEB)
Xuan, Jiliang; Yang, Zhaoqing; Huang, Daji; Wang, Taiping; Zhou, Feng
2016-02-01
Tidal residual current may play an important role in the mean flow in the Changjiang Bank region, in addition to other residual currents, such as the Taiwan Warm Current, the Yellow Sea Coastal Current, and the Yellow Sea Warm Current. In this paper, a detailed structure of the tidal residual current, in particular the meso-scale eddies, in the Changjiang Bank region is observed from model simulations, and its role in the mean flow is quantified using the well-validated Finite Volume Coastal Ocean Model). The tidal residual current in the Changjiang Bank region consists of two components: an anticyclonic regional-scale tidal residual circulation around the edge of the Changjiang Bank and some cyclonic meso-scale tidal residual eddies across the Changjiang Bank. The meso-scale tidal residual eddies occur across the Changjiang Bank and contribute to the regional-scale tidal residual circulation offshore at the northwest boundary and at the northeast edge of the Changjiang Bank, southeastward along the 50 m isobath. Tidal rectification is the major mechanism causing the tidal residual current to flow along the isobaths. Both components of the tidal residual current have significant effects on the mean flow. A comparison between the tidal residual current and the mean flow indicates that the contribution of the tidal residual current to the mean flow is greater than 50%.
Tidal and subtidal hydrodynamics and energetics in a constricted estuary
Zarzuelo, Carmen; López-Ruiz, Alejandro; Díez-Minguito, Manuel; Ortega-Sánchez, Miguel
2017-02-01
The dynamics of coastal plain estuaries are mainly associated with variable tidal forcing and local winds in combination with bathymetric complexity and coastline irregularity. Specific features, such as constricted areas, can potentially affect and energize the hydrodynamics of these types of systems. Particularly, tidal range and tidal currents can be significantly amplified where the incoming tidal wave becomes constricted. In this work, the impact of a narrow constriction on a mesotidal estuary was analysed at tidal and subtidal time scales. Tidal hydrodynamics, energy fluxes and energy dissipation were determined for the entire Cádiz Bay (southwestern Spain) using the Delft3D numerical model. Field observations were used to analyse tidal propagation and energy dissipation along the bay constriction and to calibrate and test the numerical model. The results indicate that the presence of the constriction transformed and distorted the tide and increased the tidal range and flow velocities along the channel, with implications on energy dissipation. The tidal currents were oriented along-channel at the central part of the constriction, although abrupt bathymetric changes at the channel inner boundary provoked a sudden rotation of the flow. Although the energy fluxes were higher for spring tides and were strongly influenced by winds, the energy dissipation was controlled by bed shear stresses and vertical dispersion. The significance of this energy dissipation was that it destabilized the water column, which resulted in a weakly stratified system with implications on water quality. At a subtidal scale, the residual water volume exchange was the result of the combined effects of the neap/spring tides, wind and waves, whereas tides were dominant at the tidal scale.
Modeling Traffic Flow and Management at Un-signalized, Signalized and Roundabout Road Intersections
Directory of Open Access Journals (Sweden)
R. Kakooza
2005-01-01
Full Text Available Traffic congestion continues to hinder economic and social development and also has a negative impact on the environment. A simple mathematical model is used to analyze the different types of road intersections in terms of their Performance in relation to managing traffic congestion and to establish the condition for stability of the road intersections after sufficiently longer periods of time (steady-state. In the analysis, single and double lane un-signalized, signalized and roundabout intersections are evaluated on the basis of their performance (expected number of vehicles and waiting time. Experimental scenarios are carefully designed to analyze the performance of the different types of intersections. It is noted that under light traffic, roundabout intersections perform better than un-signalized and signalized in terms of easing congestion. However under heavy traffic, signalized intersection perform better in terms of easing traffic congestion compared to un-signalized and roundabout intersections. It is further noted that for stability of a road intersection, the proportion of the time a road link stopping at an intersection is delayed should not exceed the utilization factor (the ratio of the arrival rate of vehicles to the product of number of service channels and service rate.
On the superposition of bedforms in a tidal channel
DEFF Research Database (Denmark)
Winter, C; Vittori, G.; Ernstsen, V.B.;
2008-01-01
High resolution bathymetric measurements reveal the super-imposition of bedforms in the Grådyb tidal inlet in the Danish Wadden Sea. Preliminary results of numerical model simulations are discussed: A linear stability model was tested to explain the large bedforms as being caused by tidal system...... instabilities. Results show comparable dimensions and migration rates. A three-dimensional morphodynamic model is shown to reproduce small scale transport rates but lacks realistic trends of morphodynamic evolution....
Directory of Open Access Journals (Sweden)
J. Xie
2011-10-01
Full Text Available The upper ocean circulation in the South China Sea (SCS is driven by the Asian monsoon, the Kuroshio intrusion through the Luzon Strait, strong tidal currents, and a complex topography. Here, we demonstrate the benefit of assimilating along-track altimeter data into a nested configuration of the HYbrid Coordinate Ocean Model that includes tides. Including tides in models is important because they interact with the main circulation. However, assimilation of altimetry data into a model including tides is challenging because tides and mesoscale features contribute to the elevation of ocean surface at different time scales and require different corrections. To address this issue, tides are filtered out of the model output and only the mesoscale variability is corrected with a computationally cheap data assimilation method: the Ensemble Optimal Interpolation (EnOI. This method uses a running selection of members to handle the seasonal variability and assimilates the track data asynchronously. The data assimilative system is tested for the period 1994–1995, during which time a large number of validation data are available. Data assimilation reduces the Root Mean Square Error of Sea Level Anomalies from 9.3 to 6.9 cm and improves the representation of the mesoscale features. With respect to the vertical temperature profiles, the data assimilation scheme reduces the errors quantitatively with an improvement at intermediate depth and deterioration at deeper depth. The comparison to surface drifters shows an improvement of surface current by approximately −9% in the Northern SCS and east of Vietnam. Results are improved compared to an assimilative system that does not include tides and a system that does not consider asynchronous assimilation.
Road Impedance Model Study under the Control of Intersection Signal
Directory of Open Access Journals (Sweden)
Yunlin Luo
2015-01-01
Full Text Available Road traffic impedance model is a difficult and critical point in urban traffic assignment and route guidance. The paper takes a signalized intersection as the research object. On the basis of traditional traffic wave theory including the implementation of traffic wave model and the analysis of vehicles’ gathering and dissipating, the road traffic impedance model is researched by determining the basic travel time and waiting delay time. Numerical example results have proved that the proposed model in this paper has received better calculation performance compared to existing model, especially in flat hours. The values of mean absolute percentage error (MAPE and mean absolute deviation (MAD are separately reduced by 3.78% and 2.62 s. It shows that the proposed model has feasibility and availability in road traffic impedance under intersection signal.
Performance Comparison of Sub Phonetic Model with Input Signal Processing
Directory of Open Access Journals (Sweden)
Dr E. Ramaraj
2006-01-01
Full Text Available The quest to arrive at a better model for signal transformation for speech has resulted in striving to develop better signal representations and algorithm. The article explores the word model which is a concatenation of state dependent senones as an alternate for phoneme. The Research Work has an objective of involving the senone with the Input signal processing an algorithm which has been tried with phoneme and has been quite successful and try to compare the performance of senone with ISP and Phoneme with ISP and supply the result analysis. The research model has taken the SPHINX IV[4] speech engine for its implementation owing to its flexibility to the new algorithm, robustness and performance consideration.
HP Memristor mathematical model for periodic signals and DC
Radwan, Ahmed G.
2012-07-28
In this paper mathematical models of the HP Memristor for DC and periodic signal inputs are provided. The need for a rigid model for the Memristor using conventional current and voltage quantities is essential for the development of many promising Memristors\\' applications. Unlike the previous works, which focuses on the sinusoidal input waveform, we derived rules for any periodic signals in general in terms of voltage and current. Square and triangle waveforms are studied explicitly, extending the formulas for any general square wave. The limiting conditions for saturation are also provided in case of either DC or periodic signals. The derived equations are compared to the SPICE model of the Memristor showing a perfect match.
Energy Technology Data Exchange (ETDEWEB)
Stelzenmuller, Nickolas [Univ of Washington; Aliseda, Alberto [Univ of Washington; Palodichuk, Michael [Univ of Washington; Polagye, Brian [Univ of Washington; Thomson, James [Univ of Washington; Chime, Arshiya [Univ of Washington; Malte, Philip [Univ of washington
2014-03-31
This technical report contains results on the following topics: 1) Testing and analysis of sub-scale hydro-kinetic turbines in a flume, including the design and fabrication of the instrumented turbines. 2) Field measurements and analysis of the tidal energy resource and at a site in northern Puget Sound, that is being examined for turbine installation. 3) Conceptual design and performance analysis of hydro-kinetic turbines operating at high blockage ratio, for use for power generation and flow control in open channel flows.
SEM++: A particle model of cellular growth, signaling and migration
Milde, Florian; Tauriello, Gerardo; Haberkern, Hannah; Koumoutsakos, Petros
2014-06-01
We present a discrete particle method to model biological processes from the sub-cellular to the inter-cellular level. Particles interact through a parametrized force field to model cell mechanical properties, cytoskeleton remodeling, growth and proliferation as well as signaling between cells. We discuss the guiding design principles for the selection of the force field and the validation of the particle model using experimental data. The proposed method is integrated into a multiscale particle framework for the simulation of biological systems.
Estimates of the global tidal range energy resource
Robins, Peter; Walkington, Ian
2017-04-01
Renewable energy generation through tidal lagoons and barrages is an attractive energy source due to tidal predictability and the potential for energy storage. Yet so far, the annual tidal range resource has only been estimated at relatively coarse spatial resolutions and without detailed investigation of the temporal variation from individual or aggregated sites. In this study, we estimate the theoretical tidal range resource of the northwest European shelf seas, using the 3D Regional Ocean Modelling System (ROMS) at roughly 1 km spatial resolution. Through tidal analysis of model output, we calculate the potential energy in both the rising and falling tides and, hence, show temporal variations in PE throughout the year. Based on a range of energy yield thresholds (rather than thresholds based on M2 range and water depth), we calculate the total annual theoretical resource from dual (flood and ebb) strategies. Using the FES global tidal model, which resolves tidal elevations at 1/16° resolution, the global resource was also estimated with the regions with the highest energy yield isolated. We discuss our estimates in relation to the yield that can actually be obtained mechanically, and in relation to the total energy flux of a region and the potential impacts of different lagoon scenarios on the local and far-field energy fluxes.
Detailed signal model of coherent wind measurement lidar
Ma, Yuechao; Li, Sining; Lu, Wei
2016-11-01
Lidar is short for light detection and ranging, which is a tool to help measuring some useful information of atmosphere. In the recent years, more and more attention was paid to the research of wind measurement by lidar. Because the accurate wind information can be used not only in weather report, but also the safety guarantee of the airplanes. In this paper, a more detailed signal model of wind measurement lidar is proposed. It includes the laser transmitting part which describes the broadening of the spectral, the laser attenuation in the atmosphere, the backscattering signal and the detected signal. A Voigt profile is used to describe the broadening of the transmitting laser spectral, which is the most common situation that is the convolution of different broadening line shapes. The laser attenuation includes scattering and absorption. We use a Rayleigh scattering model and partially-Correlated quadratic-Velocity-Dependent Hard-Collision (pCqSDHC) model to describe the molecule scattering and absorption. When calculate the particles scattering and absorption, the Gaussian particles model is used to describe the shape of particles. Because of the Doppler Effect occurred between the laser and atmosphere, the wind velocity can be calculated by the backscattering signal. Then, a two parameter Weibull distribution is used to describe the wind filed, so that we can use it to do the future work. After all the description, the signal model of coherent wind measurement lidar is decided. And some of the simulation is given by MATLAB. This signal model can describe the system more accurate and more detailed, so that the following work will be easier and more efficient.
Margalit, Ben; Metzger, Brian D.
2016-09-01
We construct time-dependent one-dimensional (vertically averaged) models of accretion discs produced by the tidal disruption of a white dwarf (WD) by a binary neutron star (NS) companion. Nuclear reactions in the disc mid-plane burn the WD matter to increasingly heavier elements at sequentially smaller radii, releasing substantial energy which can impact the disc dynamics. A model for disc outflows is employed, by which cooling from the outflow balances other sources of heating (viscous, nuclear) in regulating the Bernoulli parameter of the mid-plane to a fixed value ≲0. We perform a comprehensive parameter study of the compositional yields and velocity distributions of the disc outflows for WDs of different initial compositions. For C/O WDs, the radial composition profile of the disc evolves self-similarly in a quasi-steady-state manner, and is remarkably robust to model parameters. The nucleosynthesis in helium WD discs does not exhibit this behaviour, which instead depends sensitively on factors controlling the disc mid-plane density (e.g. the strength of the viscosity, α). By the end of the simulation, a substantial fraction of the WD mass is unbound in outflows at characteristic velocities of ˜109 cm s-1. The outflows from WD-NS merger discs contain 10-4-3 × 10-3 M⊙ of radioactive 56Ni, resulting in fast (˜ week long) dim (˜1040 erg s-1) optical transients; shock heating of the ejecta by late-time outflows may increase the peak luminosity to ˜1043 erg s-1. The accreted mass on to the NS is probably not sufficient to induce gravitational collapse, but may be capable of spinning up the NS to periods of ˜10 ms, illustrating the feasibility of this channel in forming isolated millisecond pulsars.
Stochastic Modelling as a Tool for Seismic Signals Segmentation
Directory of Open Access Journals (Sweden)
Daniel Kucharczyk
2016-01-01
Full Text Available In order to model nonstationary real-world processes one can find appropriate theoretical model with properties following the analyzed data. However in this case many trajectories of the analyzed process are required. Alternatively, one can extract parts of the signal that have homogenous structure via segmentation. The proper segmentation can lead to extraction of important features of analyzed phenomena that cannot be described without the segmentation. There is no one universal method that can be applied for all of the phenomena; thus novel methods should be invented for specific cases. They might address specific character of the signal in different domains (time, frequency, time-frequency, etc.. In this paper we propose two novel segmentation methods that take under consideration the stochastic properties of the analyzed signals in time domain. Our research is motivated by the analysis of vibration signals acquired in an underground mine. In such signals we observe seismic events which appear after the mining activity, like blasting, provoked relaxation of rock, and some unexpected events, like natural rock burst. The proposed segmentation procedures allow for extraction of such parts of the analyzed signals which are related to mentioned events.
A Quotient Space Approximation Model of Multiresolution Signal Analysis
Institute of Scientific and Technical Information of China (English)
Ling Zhang; Bo Zhang
2005-01-01
In this paper, we present a quotient space approximation model of multiresolution signal analysis and discuss the properties and characteristics of the model. Then the comparison between wavelet transform and the quotient space approximation is made. First, when wavelet transform is viewed from the new quotient space approximation perspective, it may help us to gain an insight into the essence of multiresolution signal analysis. Second, from the similarity between wavelet and quotient space approximations, it is possible to transfer the rich wavelet techniques into the latter so that a new way for multiresolution analysis may be found.
Reference analysis of the signal + background model in counting experiments
Casadei, D.
2012-01-01
The model representing two independent Poisson processes, labelled as ``signal'' and ``background'' and both contributing additively to the total number of counted events, is considered from a Bayesian point of view. This is a widely used model for the searches of rare or exotic events in presence of a background source, as for example in the searches performed by high-energy physics experiments. In the assumption of prior knowledge about the background yield, a reference prior is obtained for the signal alone and its properties are studied. Finally, the properties of the full solution, the marginal reference posterior, are illustrated with few examples.
Modeling the latent dimensions of multivariate signaling datasets
Jensen, Karin J.; Janes, Kevin A.
2012-08-01
Cellular signal transduction is coordinated by modifications of many proteins within cells. Protein modifications are not independent, because some are connected through shared signaling cascades and others jointly converge upon common cellular functions. This coupling creates a hidden structure within a signaling network that can point to higher level organizing principles of interest to systems biology. One can identify important covariations within large-scale datasets by using mathematical models that extract latent dimensions—the key structural elements of a measurement set. In this paper, we introduce two principal component-based methods for identifying and interpreting latent dimensions. Principal component analysis provides a starting point for unbiased inspection of the major sources of variation within a dataset. Partial least-squares regression reorients these dimensions toward a specific hypothesis of interest. Both approaches have been used widely in studies of cell signaling, and they should be standard analytical tools once highly multivariate datasets become straightforward to accumulate.
Constrained Overcomplete Analysis Operator Learning for Cosparse Signal Modelling
Yaghoobi, Mehrdad; Gribonval, Remi; Davies, Mike E
2012-01-01
We consider the problem of learning a low-dimensional signal model from a collection of training samples. The mainstream approach would be to learn an overcomplete dictionary to provide good approximations of the training samples using sparse synthesis coefficients. This famous sparse model has a less well known counterpart, in analysis form, called the cosparse analysis model. In this new model, signals are characterised by their parsimony in a transformed domain using an overcomplete (linear) analysis operator. We propose to learn an analysis operator from a training corpus using a constrained optimisation framework based on L1 optimisation. The reason for introducing a constraint in the optimisation framework is to exclude trivial solutions. Although there is no final answer here for which constraint is the most relevant constraint, we investigate some conventional constraints in the model adaptation field and use the uniformly normalised tight frame (UNTF) for this purpose. We then derive a practical lear...
LARGE SIGNAL DISCRETE-TIME MODEL FOR PARALLELED BUCK CONVERTERS
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
As a number of switch-combinations are involved in operation of multi-converter-system, conventional methods for obtaining discrete-time large signal model of these converter systems result in a very complex solution. A simple sampled-data technique for modeling distributed dc-dc PWM converters system (DCS) was proposed. The resulting model is nonlinear and can be linearized for analysis and design of DCS. These models are also suitable for fast simulation of these networks. As the input and output of dc-dc converters are slow varying, suitable model for DCS was obtained in terms of the finite order input/output approximation.
Tidal evolution of planets around brown dwarfs
Bolmont, Emeline; Leconte, Jérémy
2011-01-01
The tidal evolution of planets orbiting brown dwarfs (BDs) presents an interesting case study because BDs' terrestrial planet forming region is located extremely close-in. In fact, the habitable zones of BDs range from roughly 0.001 to 0.03 AU and for the lowest-mass BDs are located interior to the Roche limit. In contrast with stars, BDs spin up as they age. Thus, the corotation distance moves inward. This has important implications for the tidal evolution of planets around BDs. We used a standard equilibrium tidal model to compute the orbital evolution of a large ensemble of planet-BD systems. We tested the effect of numerous parameters such as the initial semi-major axis and eccentricity, the rotation period of the BD, the masses of both the BD and planet, and the tidal dissipation factors. We find that all planets that form at or beyond the corotation distance and with initial eccentricities smaller than \\sim 0.1 are repelled from the BD. Some planets initially interior to corotation can survive if their ...
Tidally Induced Bars of Galaxies in Clusters
Łokas, Ewa L.; Ebrová, Ivana; del Pino, Andrés; Sybilska, Agnieszka; Athanassoula, E.; Semczuk, Marcin; Gajda, Grzegorz; Fouquet, Sylvain
2016-08-01
Using N-body simulations, we study the formation and evolution of tidally induced bars in disky galaxies in clusters. Our progenitor is a massive, late-type galaxy similar to the Milky Way, composed of an exponential disk and a Navarro-Frenk-White dark matter halo. We place the galaxy on four different orbits in a Virgo-like cluster and evolve it for 10 Gyr. As a reference case, we also evolve the same model in isolation. Tidally induced bars form on all orbits soon after the first pericenter passage and survive until the end of the evolution. They appear earlier, are stronger and longer, and have lower pattern speeds for tighter orbits. Only for the tightest orbit are the properties of the bar controlled by the orientation of the tidal torque from the cluster at pericenter. The mechanism behind the formation of the bars is the angular momentum transfer from the galaxy stellar component to its halo. All of the bars undergo extended periods of buckling instability that occur earlier and lead to more pronounced boxy/peanut shapes when the tidal forces are stronger. Using all simulation outputs of galaxies at different evolutionary stages, we construct a toy model of the galaxy population in the cluster and measure the average bar strength and bar fraction as a function of clustercentric radius. Both are found to be mildly decreasing functions of radius. We conclude that tidal forces can trigger bar formation in cluster cores, but not in the outskirts, and thus can cause larger concentrations of barred galaxies toward the cluster center.
Bergmann-Wolf, I.; Dobslaw, H.; Mayer-Gürr, T.
2015-12-01
A realistically perturbed synthetic de-aliasing model consistent with the updated Earth System Model of the European Space Agency (Dobslaw et al., 2015) is now available for the years 1995 -- 2006. The data-set contains realizations of (i) errors at large spatial scales assessed individually for periods between 10 -- 30, 3 -- 10, and 1 -- 3 days, the S1 atmospheric tide, and sub-diurnal periods; (ii) errors at small spatial scales typically not covered by global models of atmosphere and ocean variability; and (iii) errors due to physical processes not represented in currently available de-aliasing products. The error magnitudes for each of the different frequency bands are derived from a small ensemble of four atmospheric and oceanic models. In order to demonstrate the plausibility of the error magnitudes chosen, we perform a variance component estimation based on daily GRACE normal equations from the ITSG-Grace2014 global gravity field series recently published by the University of Graz. All 12 years of the error model are used to calculate empirical error variance-covariance matrices describing the systematic dependencies of the errors both in time and in space individually for five continental and four oceanic regions, and daily GRACE normal equations are subsequently employed to obtain pre-factors for each of those matrices. For the largest spatial scales up to d/o = 40 and periods longer than 24 h, errors prepared for the updated ESM are found to be largely consistent with noise of a similar stochastic character contained in present-day GRACE solutions. Differences and similarities identified for all of the nine regions considered will be discussed in detail during the presentation.Dobslaw, H., I. Bergmann-Wolf, R. Dill, E. Forootan, V. Klemann, J. Kusche, and I. Sasgen (2015), The updated ESA Earth System Model for future gravity mission simulation studies, J. Geod., doi:10.1007/s00190-014-0787-8.
Vertical Distribution of Tidal Flow Reynolds Stress in Shallow Sea
Institute of Scientific and Technical Information of China (English)
SONG Zhi-yao; NI Zhi-hui; LU Guo-nian
2009-01-01
Based on the results of the tidal flow Reynolds stresses of the field observations,indoor experiments,and numerical models,the parabolic distribution of the tidal flow Reynolds stress is proposed and its coefficients are determined theoretically in this paper.Having been well verified with the field data and experimental data,the proposed distribution of Reynolds stress is also compared with numerical model results,and a good agreement is obtained,showing that this distribution can well reflect the basic features of Reynolds stress deviating from the linear distribution that is downward when the tidal flow is of acceleration,upward when the tidal flow is of deceleration.Its dynamics cause is also discussed preliminarily and the influence of the water depth is pointed out from the definition of Reynolds stress,turbulent generation,transmission,and so on.The established expression for the vertical distribution of the tidal flow Reynolds stress is not only simple and explicit,but can also well reflect the features of the tidal flow acceleration and deceleration for further study on the velocity profile of tidal flow.
Leconte, Jérémy; Baraffe, Isabelle; Levrard, Benjamin
2010-01-01
In this paper, we present the consistent evolution of short-period exoplanets coupling the tidal and gravothermal evolution of the planet. Contrarily to previous similar studies, our calculations are based on the complete tidal evolution equations of the Hut model, valid at any order in eccentricity, obliquity and spin. We demonstrate, both analytically and numerically, that, except if the system was formed with a nearly circular orbit (e<0.2), solving consistently the complete tidal equations is mandatory to derive correct tidal evolution histories. We show that calculations based on tidal models truncated at second order in eccentricity, as done in all previous studies, lead to erroneous tidal evolutions. As a consequence, tidal energy dissipation rates are severely underestimated in all these calculations and the characteristic timescales for the various orbital parameters evolutions can be wrong by up to three orders in magnitude. Based on these complete, consistent calculations, we revisit the viabili...
Multilevel complexity of calcium signaling:Modeling angiogenesis
Institute of Scientific and Technical Information of China (English)
Luca; Munaron; Marco; Scianna
2012-01-01
Intracellular calcium signaling is a universal,evolutionary conserved and versatile regulator of cell biochemistry.The complexity of calcium signaling and related cell machinery can be investigated by the use of experimental strategies,as well as by computational approaches.Vascular endothelium is a fascinating model to study the specific properties and roles of calcium signals at multiple biological levels.During the past 20 years,live cell imaging,patch clamp and other techniques have allowed us to detect and interfere with calcium signaling in endothelial cells(ECs),providing a huge amount of information on the regulation of vascularization(angiogenesis) in normal and tumoral tissues.These data range from the spatiotemporal dynamics of calcium within different cell microcompartments to those in entire multicellular and organized EC networks.Beside experimental strategies,in silico endothelial models,specifically designed for simulating calcium signaling,are contributing to our knowledge of vascular physiol-ogy and pathology.They help to investigate and predict the quantitative features of proangiogenic events moving through subcellular,cellular and supracellular levels.This review focuses on some recent developments of computational approaches for proangiogenic endothelial calcium signaling.In particular,we discuss the creation of hybrid simulation environments,which combine and integrate discrete Cellular Potts Models.They are able to capture the phenomenological mechanisms of cell morphological reorganization,migration,and intercellular adhesion,with single-cell spatiotemporal models,based on reaction-diffusion equations that describe the agonist-induced intracellular calcium events.
State-time spectrum of signal transduction logic models
MacNamara, Aidan; Terfve, Camille; Henriques, David; Peñalver Bernabé, Beatriz; Saez-Rodriguez, Julio
2012-08-01
Despite the current wealth of high-throughput data, our understanding of signal transduction is still incomplete. Mathematical modeling can be a tool to gain an insight into such processes. Detailed biochemical modeling provides deep understanding, but does not scale well above relatively a few proteins. In contrast, logic modeling can be used where the biochemical knowledge of the system is sparse and, because it is parameter free (or, at most, uses relatively a few parameters), it scales well to large networks that can be derived by manual curation or retrieved from public databases. Here, we present an overview of logic modeling formalisms in the context of training logic models to data, and specifically the different approaches to modeling qualitative to quantitative data (state) and dynamics (time) of signal transduction. We use a toy model of signal transduction to illustrate how different logic formalisms (Boolean, fuzzy logic and differential equations) treat state and time. Different formalisms allow for different features of the data to be captured, at the cost of extra requirements in terms of computational power and data quality and quantity. Through this demonstration, the assumptions behind each formalism are discussed, as well as their advantages and disadvantages and possible future developments.
The application of Yangtze Estuary Tidal Wetlands Geographic Information System
Institute of Scientific and Technical Information of China (English)
WANGJun; CHENZhenlou; XUShiyuan; WANGDongqi; LIUJie
2005-01-01
Yangtze Estuary Tidal Wetlands Geographic Information System (YETWGIS) is a comprehensive software system for environmental management and decision of Yangtze estuary tidal wetlands. Based on MapObjects components technology, Data Mining technology, mathematical modeling method and Visual Basic language, this software system has many functions such as displaying, editing, querying and searching, spatial statistics and analysis, thematic map compiling, and environmental quality evaluation. This paper firstly outlined the system structure, key techniques, and achieving methods of YETWGIS, and then, described the core modules (the thematic map compiling module and environmental quality evaluation model module) in detail. In addition, based on information entropy model, it thoroughly discussed the methods of environmental quality evaluation and indicators' weight calculation. Finally, by using YETWGIS, this paper analyzed the spatial distribution characteristics of Heavy Metal and Persistent Organic Pollutants (POPs) of the Yangtze estuary tidal wetlands in 2002, and evaluated the environmental quality of the Yangtze estuary tidal wetlands in 2003.
Signal Transduction Model of Magnetic Sensing in Cryptochrome Mediated Photoreception
Todd, Phillise Tiffeny
While migratory birds have long been known to use the Earth's magnetic field for navigation, the precise biophysical mechanism behind this magnetic sense remains unconfirmed. A leading theory of magnetoreception suggests a chemical compass model with a yet undetermined molecular reaction site and unknown magnetically sensitive reactants. The cryptochrome photoreceptor has emerged as a promising candidate site. This investigation numerically models the first order kinetics of cryptochrome mediated photoreception, in order to evaluate its ability to function as a magnetic sensor and transduce orientation information along a neural pathway. A signal-to-noise ratio is defined to quantify the threshold for the functioning of a cryptochrome-based chemical compass. The model suggests that a flavin-superoxide radical pair in cryptochrome functions as the chemical reactants for magnetoreception. Such a cryptochrome-based signal transduction model reasonably predicts the general light intensity and wavelength effects that have been experimentally observed in migratory birds.
Modelling and Analysis of Biochemical Signalling Pathway Cross-talk
Directory of Open Access Journals (Sweden)
Robin Donaldson
2010-02-01
Full Text Available Signalling pathways are abstractions that help life scientists structure the coordination of cellular activity. Cross-talk between pathways accounts for many of the complex behaviours exhibited by signalling pathways and is often critical in producing the correct signal-response relationship. Formal models of signalling pathways and cross-talk in particular can aid understanding and drive experimentation. We define an approach to modelling based on the concept that a pathway is the (synchronising parallel composition of instances of generic modules (with internal and external labels. Pathways are then composed by (synchronising parallel composition and renaming; different types of cross-talk result from different combinations of synchronisation and renaming. We define a number of generic modules in PRISM and five types of cross-talk: signal flow, substrate availability, receptor function, gene expression and intracellular communication. We show that Continuous Stochastic Logic properties can both detect and distinguish the types of cross-talk. The approach is illustrated with small examples and an analysis of the cross-talk between the TGF-b/BMP, WNT and MAPK pathways.
A computational model of human auditory signal processing and perception
DEFF Research Database (Denmark)
Jepsen, Morten Løve; Ewert, Stephan D.; Dau, Torsten
2008-01-01
A model of computational auditory signal-processing and perception that accounts for various aspects of simultaneous and nonsimultaneous masking in human listeners is presented. The model is based on the modulation filterbank model described by Dau et al. [J. Acoust. Soc. Am. 102, 2892 (1997......)] but includes major changes at the peripheral and more central stages of processing. The model contains outer- and middle-ear transformations, a nonlinear basilar-membrane processing stage, a hair-cell transduction stage, a squaring expansion, an adaptation stage, a 150-Hz lowpass modulation filter, a bandpass...
Modeling, estimation and optimal filtration in signal processing
Najim, Mohamed
2010-01-01
The purpose of this book is to provide graduate students and practitioners with traditional methods and more recent results for model-based approaches in signal processing.Firstly, discrete-time linear models such as AR, MA and ARMA models, their properties and their limitations are introduced. In addition, sinusoidal models are addressed.Secondly, estimation approaches based on least squares methods and instrumental variable techniques are presented.Finally, the book deals with optimal filters, i.e. Wiener and Kalman filtering, and adaptive filters such as the RLS, the LMS and the
Modeling signalized intersection safety with corridor-level spatial correlations.
Guo, Feng; Wang, Xuesong; Abdel-Aty, Mohamed A
2010-01-01
Intersections in close spatial proximity along a corridor should be considered as correlated due to interacted traffic flows as well as similar road design and environmental characteristics. It is critical to incorporate this spatial correlation for assessing the true safety impacts of risk factors. In this paper, several Bayesian models were developed to model the crash data from 170 signalized intersections in the state of Florida. The safety impacts of risk factors such as geometric design features, traffic control, and traffic flow characteristics were evaluated. The Poisson and Negative Binomial Bayesian models with non-informative priors were fitted but the focus is to incorporate spatial correlations among intersections. Two alternative models were proposed to capture this correlation: (1) a mixed effect model in which the corridor-level correlation is incorporated through a corridor-specific random effect and (2) a conditional autoregressive model in which the magnitude of correlations is determined by spatial distances among intersections. The models were compared using the Deviance Information Criterion. The results indicate that the Poisson spatial model provides the best model fitting. Analysis of the posterior distributions of model parameters indicated that the size of intersection, the traffic conditions by turning movement, and the coordination of signal phase have significant impacts on intersection safety.
Decoding Problem Gamblers' Signals: A Decision Model for Casino Enterprises.
Ifrim, Sandra
2015-12-01
The aim of the present study is to offer a validated decision model for casino enterprises. The model enables those users to perform early detection of problem gamblers and fulfill their ethical duty of social cost minimization. To this end, the interpretation of casino customers' nonverbal communication is understood as a signal-processing problem. Indicators of problem gambling recommended by Delfabbro et al. (Identifying problem gamblers in gambling venues: final report, 2007) are combined with Viterbi algorithm into an interdisciplinary model that helps decoding signals emitted by casino customers. Model output consists of a historical path of mental states and cumulated social costs associated with a particular client. Groups of problem and non-problem gamblers were simulated to investigate the model's diagnostic capability and its cost minimization ability. Each group consisted of 26 subjects and was subsequently enlarged to 100 subjects. In approximately 95% of the cases, mental states were correctly decoded for problem gamblers. Statistical analysis using planned contrasts revealed that the model is relatively robust to the suppression of signals performed by casino clientele facing gambling problems as well as to misjudgments made by staff regarding the clients' mental states. Only if the last mentioned source of error occurs in a very pronounced manner, i.e. judgment is extremely faulty, cumulated social costs might be distorted.
Tidal Heating in a Magma Ocean within Jupiter's Moon Io
Tyler, Robert H.; Henning, Wade G.; Hamilton, Christopher W.
2015-06-01
Active volcanism observed on Io is thought to be driven by the temporally periodic, spatially differential projection of Jupiter's gravitational field over the moon. Previous theoretical estimates of the tidal heat have all treated Io as essentially a solid, with fluids addressed only through adjustment of rheological parameters rather than through appropriate extension of the dynamics. These previous estimates of the tidal response and associated heat generation on Io are therefore incomplete and possibly erroneous because dynamical aspects of the fluid behavior are not permitted in the modeling approach. Here we address this by modeling the partial-melt asthenosphere as a global layer of fluid governed by the Laplace Tidal Equations. Solutions for the tidal response are then compared with solutions obtained following the traditional solid-material approach. It is found that the tidal heat in the solid can match that of the average observed heat flux (nominally 2.25 W m-2), though only over a very restricted range of plausible parameters, and that the distribution of the solid tidal heat flux cannot readily explain a longitudinal shift in the observed (inferred) low-latitude heat fluxes. The tidal heat in the fluid reaches that observed over a wider range of plausible parameters, and can also readily provide the longitudinal offset. Finally, expected feedbacks and coupling between the solid/fluid tides are discussed. Most broadly, the results suggest that both solid and fluid tidal-response estimates must be considered in exoplanet studies, particularly where orbital migration under tidal dissipation is addressed.
Signalling network construction for modelling plant defence response.
Directory of Open Access Journals (Sweden)
Dragana Miljkovic
Full Text Available Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2 triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be
Multiband lightcurves of tidal disruption events
Lodato, Giuseppe
2010-01-01
Unambiguous detection of the tidal disruption of a star would allow an assessment of the presence and masses of supermassive black holes in quiescent galaxies. It would also provide invaluable information on bulge scale stellar processes (such as two-body relaxation) via the rate at which stars are injected into the tidal sphere of influence of the black holes. This rate, in turn, is essential to predict gravitational radiation emission by compact object inspirals. The signature of a tidal disruption event is thought to be a fallback rate for the stellar debris onto the black hole that decreases as $t^{-5/3}$. This mass flux is often assumed to yield a luminous signal that decreases in time at the same rate. In this paper, we calculate the monochromatic lightcurves arising from such an accretion event. Differently from previous studies, we adopt a more realistic description of the fallback rate and of the super-Eddigton accretion physics. We also provide simultaneous lightcurves in optical, UV and X-rays. We ...
Models of optimum discrete signals on the vector combinatorial configurations
Directory of Open Access Journals (Sweden)
V. V. Riznyk
2016-06-01
Full Text Available Method for construction of optimum discrete signals, based on a new conceptual combinatorial model of the systems - Ideal Ring Vector sequences (clusters of the IRV is proposed. IRV clusters are cyclic ordered sequences of t- integer sub-sequences of sequence, which form perfect relationships of t-dimensional partitions over a virtual t-dimensional lattice covered surface of a finite space interval. The sums of connected sub-sequences of an IRV enumerate the set of t- coordinates specified with respect to cyclic frame reference exactly R-times. This property makes IRVs useful in applications, which need to partition multidimensional objects with the smallest possible number of intersections. There are discover a great class of new two- and multidimensional combinatorial constructions, which being in excess classic models of discrete systems with respect to number and combinatorial varieties with theoretically non-limited values of upper boundaries on order of dimensionality –IRV. It shows that remarkable properties of IRVs encoded in fine structure of torus circular symmetry. There are regarded basic properties these models and made shortest comparative analysis of the models with classical models. Indicate that the IRVs to be in exceed of difference sets multiply, and set of the classical difference sets is subset of the IRVs. Some of useful examples for constructing of the optimum discrete signals, error-correcting codes, and ring monolithic optimum vector codes using IRVs are considered. The problem statement involves development the regular method for construction of the optimum discrete signals using two- and multidimensional IRVs. The favorable technical merits of IRVs sets named “Gloria to Ukraine Stars”, which remarkable properties hold for the same set of the IRVs in varieties permutations of its terms is demonstrated, and method for design of two- or multidimensional vector signals coded based on the optimum binary monolithic
The Accuratre Signal Model and Imaging Processing in Geosynchronous SAR
Hu, Cheng
With the development of synthetic aperture radar (SAR) application, the disadvantage of low earth orbit (LEO) SAR becomes more and more apparent. The increase of orbit altitude can shorten the revisit time and enlarge the coverage area in single look, and then satisfy the application requirement. The concept of geosynchronous earth orbit (GEO) SAR system is firstly presented and deeply discussed by K.Tomiyasi and other researchers. A GEO SAR, with its fine temporal resolution, would overcome the limitations of current imaging systems, allowing dense interpretation of transient phenomena as GPS time-series analysis with a spatial density several orders of magnitude finer. Until now, the related literatures about GEO SAR are mainly focused in the system parameter design and application requirement. As for the signal characteristic, resolution calculation and imaging algorithms, it is nearly blank in the related literatures of GEO SAR. In the LEO SAR, the signal model analysis adopts the `Stop-and-Go' assumption in general, and this assumption can satisfy the imaging requirement in present advanced SAR system, such as TerraSAR, Radarsat2 and so on. However because of long propagation distance and non-negligible earth rotation, the `Stop-and-Go' assumption does not exist and will cause large propagation distance error, and then affect the image formation. Furthermore the long propagation distance will result in the long synthetic aperture time such as hundreds of seconds, therefore the linear trajectory model in LEO SAR imaging will fail in GEO imaging, and the new imaging model needs to be proposed for the GEO SAR imaging processing. In this paper, considering the relative motion between satellite and earth during signal propagation time, the accurate analysis method for propagation slant range is firstly presented. Furthermore, the difference between accurate analysis method and `Stop-and-Go' assumption is analytically obtained. Meanwhile based on the derived
Discrete echo signal modeling of ultrasound imaging systems
Chen, Ming; Zhang, Cishen
2008-03-01
In this paper, a discrete model representing the pulse-tissue interaction in the medical ultrasound scanning and imaging process is developed. The model is based on discretizing the acoustical wave equation and is in terms of convolution between the input ultrasound pulses and the tissue mass density variation. Such a model can provide a useful means for ultrasound echo signal processing and imaging. Most existing models used for ultrasound imaging are based on frequency domain transform. A disadvantage of the frequency domain transform is that it is only applicable to shift-invariant models. Thus it has ignored the shift-variant nature of the original acoustic wave equation where the tissue compressibility and mass density distributions are spatial-variant factors. The discretized frequency domain model also obscures the compressibility and mass density representations of the tissue, which may mislead the physical understanding and interpretation of the image obtained. Moreover, only the classical frequency domain filtering methods have been applied to the frequency domain model for acquiring some tissue information from the scattered echo signals. These methods are non-parametric and require a prior knowledge of frequency spectra of the transmitted pulses. Our proposed model technique will lead to discrete, multidimensional, shift-variant and parametric difference or convolution equations with the transmitted pulse pressure as the input, the measurement data of the echo signals as the output, and functions of the tissue compressibility and mass density distributions as shift-variant parameters that can be readily identified from input-output measurements. The proposed model represents the entire multiple scattering process, and hence overcomes the key limitation in the current ultrasound imaging methods.
Institute of Scientific and Technical Information of China (English)
CUI Xinmei; FANG Guohong; TENG Fei; WU Di
2015-01-01
A numerical method is designed to examine the response properties of real sea areas to open ocean forcing. The application of this method to modeling the China's adjacent seas shows that the Bohai Sea has a highest peak response frequency (PRF) of 1.52 d−1; the northern Yellow Sea has a PRF of 1.69 d−1; the Gyeonggi Bay has a high amplitude gain plateau in the frequency band roughly from 1.7 to 2.7 d−1; the Yellow Sea (includ-ing the Gyeonggi Bay), the East China Sea shelf and the Taiwan Strait have a common high amplitude gain band with frequencies around 1.76 to 1.78 d−1 and are shown to be a system that responds to the open ocean forcing in favor of amplifying the waves with frequencies in this band; the Beibu Gulf, the Gulf of Thailand and the South China Sea deep basin have PRFs of 0.91, 1.01 and 0.98 d−1 respectively. In addition, the East China Sea has a Poincare mode PRF of 3.91 d−1. The PRFs of the Bohai Sea, the northern Yellow Sea, the Bei-bu Gulf and the South China Sea can be explained by a classical quarter (half for the Bohai Sea) wavelength resonance theory. The results show that further investigations are needed for the response dynamics of the Yellow Sea-East China Sea-Taiwan Strait system, the East China Sea Poincare mode, the Taiwan Strait, and the Gulf of Thailand.
Artz, Thomas; Tesmer Née Böckmann, Sarah; Nothnagel, Axel
2011-09-01
We present an empirical model for periodic variations of diurnal and sub-diurnal Earth rotation parameters (ERPs) that was derived based on the transformation of normal equation (NEQ) systems of Very Long Baseline Interferometry (VLBI) observing sessions. NEQ systems that contain highly resolved polar motion and UT1-TAI with a temporal resolution of 15 min were generated and then transformed to the coefficients of the tidal ERP model to be solved for. To investigate the quality of this model, comparisons with empirical models from the Global Positioning System (GPS), another VLBI model and the model adopted by the conventions of the International Earth Rotation and Reference Systems Service (IERS) were performed. The absolute coefficients of these models agree almost completely within 7.5 μ as in polar motion and 0.5 μ s in UT1-TAI. Several bigger differences exist, which are discussed in this paper. To be able to compare the model estimates with results of the continuous VLBI campaigns, where signals with periods of 8 and 6 h were detected, terms in the ter- and quarter-diurnal band were included in the tidal ERP model. Unfortunately, almost no common features with the results of continuous VLBI campaigns or ERP predictions in these tidal bands can be seen.
Small signal frequency domain model of an HVDC converter
Energy Technology Data Exchange (ETDEWEB)
Osauskas, C.M.; Hume, D.J.; Wood, A.R. [UnIversity of Canterbury, Christchurch (New Zealand). Dept. of Electrical and Electronic Engineering
2001-11-01
A small-signal analytic frequency domain model of a 6-pulse HVDC converter is presented. The model consists of a set of explicit algebraic equations which relate the transfer of distortion from AC voltage, DC current and firing angle modulation, to AC current and DC voltage. The equations represent the linearisation of the transfers around a base operating point, and are derived from a piecewise linear description of the AC current and DC voltage waveforms. The model provides an understanding of the transfer of distortion by the converter and is in excellent agreement with time domain simulations. (author)
RECEIVED SIGNAL STRENGTH INDICATION MODELING IN INDOOR WIRELESS SENSOR NETWORKS
Directory of Open Access Journals (Sweden)
Edson Taira Procopio
2013-01-01
Full Text Available This study aims to identify mathematical models that represent the relation between Received Signal Strength Indication (RSSI and objects in an indoor Wireless Sensor Network (WSN. Using the Least Squares Method, four linear models have been identified: The first one relates uplink RSSI and objects; the second one relates downlink RSSI and objects; the third one relates uplink RSSI and obstacles and the fourth one relates downlink RSSI and obstacles. The obtained results, characterized by small residual values, attest the validation of all four models.
Dynamic Model of Signal Fading due to Swaying Vegetation
2009-01-01
In this contribution, we use fading measurements at 2.45, 5.25, 29, and 60 GHz, and wind speed data, to study the dynamic effects of vegetation on propagating radiowaves. A new simulation model for generating signal fading due to a swaying tree has been developed by utilizing a multiple mass-spring system to represent a tree and a turbulent wind model. The model is validated in terms of the cumulative distribution function (CDF), autocorrelation function (ACF), level crossing rate (LCR...
Tidal propagation and dissipation in the Taiwan Strait
Yu, Haiqing; Yu, Huaming; Wang, Lu; Kuang, Liang; Wang, Hui; Ding, Yang; Ito, Shin-ichi; Lawen, Johannes
2017-03-01
Previous research on tides and tidal dynamics in the Taiwan Strait (TS) is reviewed in this paper. Tidal dynamics, which is the basic and dominant hydrodynamics in this area, attracts much interest in the last 30 years and till now its physical mechanism is still in debate. In this study, the major research methods and findings of previous works on barotropic tides in the TS are summarized. Based on Finite Volume Coastal Ocean Model (FVCOM), the main tidal constituents (M2, S2, K1, O1) are well simulated with the mean root-mean-square (RMS) errors of 4.7, 2.0, 1.3 and 0.7 cm between the observed and simulated tidal constants, respectively. It has been proved that semi-diurnal tidal movement is mainly determined by the waves from the East China Sea (ECS), while waves from the ECS and the Luzon Strait (LS) play comparable roles in diurnal tidal movement in the TS by linear superposition and the interaction of these two waves is the main cause for the progressive diurnal tidal waves in the TS. Furthermore, energy analysis revealed that the M2 tidal wave system in the TS and its adjacent area south to the shoal is an standing wave system and the anti-node appears in the central TS while the wave node locates in the shoal area, which can be contributed to the interaction of the incident waves from the ECS and the topography step south to Taiwan island, while the shoal also has an impact on the whole semi-diurnal tidal wave system in the TS. This standing wave system is consistent with the little energy dissipation in the central TS and much energy dissipation in the southern TS, where the shallow water effect also contributes to the local dissipation to some extent.
Tidal Heating in Multilayered Terrestrial Exoplanets
Henning, Wade G.; Hurford, Terry
2014-01-01
The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R(sub E) is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.
Tidal resource extraction in the Pentland Firth, UK
2015-01-01
Large-scale extraction of power from tidal streams within the Pentland Firth is expected to be underway in the near future. The Inner Sound of Stroma in particular has attracted significant commercial interest. To understand potential environmental impacts of the installation of a tidal turbine array a case study based upon the Inner Sound is considered. A numerical computational fluid dynamics model, Fluidity, is used to conduct a series of depth-averaged simulations to investigate velocity ...
Maselli, Andrea; Ferrari, Valeria
2013-01-01
We study how to extract information on the neutron star equation of state from the gravitational wave signal emitted during the coalescence of a binary system composed by two neutron stars or a neutron star and a black hole. We use Post-Newtonian templates which include the tidal deformability parameter and, when tidal disruption occurs before merger, a frequency cut-off. Assuming that this signal is detected by Advanced LIGO/Virgo or ET, we evaluate the uncertainties on these parameters using different data analysis strategies based on the Fisher matrix approach, and on recently obtained analytical fits of the relevant quantities. We find that the tidal deformability is more effective than the stellar compactness to discriminate among different possible equations of state.
Linear System Models for Ultrasonic Imaging: Application to Signal Statistics
Zemp, Roger J.; Abbey, Craig K.; Insana, Michael F.
2009-01-01
Linear equations for modeling echo signals from shift-variant systems forming ultrasonic B-mode, Doppler, and strain images are analyzed and extended. The approach is based on a solution to the homogeneous wave equation for random inhomogeneous media. When the system is shift-variant, the spatial sensitivity function—defined as a spatial weighting function that determines the scattering volume for a fixed point of time—has advantages over the point-spread function traditionally used to analyze ultrasound systems. Spatial sensitivity functions are necessary for determining statistical moments in the context of rigorous image quality assessment, and they are time-reversed copies of point-spread functions for shift variant systems. A criterion is proposed to assess the validity of a local shift-invariance assumption. The analysis reveals realistic situations in which in-phase signals are correlated to the corresponding quadrature signals, which has strong implications for assessing lesion detectability. Also revealed is an opportunity to enhance near- and far-field spatial resolution by matched filtering unfocused beams. The analysis connects several well-known approaches to modeling ultrasonic echo signals. PMID:12839176
Dynamic Model of Signal Fading due to Swaying Vegetation
Directory of Open Access Journals (Sweden)
Torbjörn Ekman
2009-01-01
Full Text Available In this contribution, we use fading measurements at 2.45, 5.25, 29, and 60 GHz, and wind speed data, to study the dynamic effects of vegetation on propagating radiowaves. A new simulation model for generating signal fading due to a swaying tree has been developed by utilizing a multiple mass-spring system to represent a tree and a turbulent wind model. The model is validated in terms of the cumulative distribution function (CDF, autocorrelation function (ACF, level crossing rate (LCR, and average fade duration (AFD using measurements. The agreements found between the measured and simulated first- and second-order statistics of the received signals through vegetation are satisfactory. In addition, Ricean K-factors for different wind speeds are estimated from measurements. Generally, the new model has similar dynamical and statistical characteristics as those observed in measurements and can thus be used for synthesizing signal fading due to a swaying tree. The synthesized fading can be used for simulating different capacity enhancing techniques such as adaptive coding and modulation and other fade mitigation techniques.
Institute of Scientific and Technical Information of China (English)
康彦彦; 丁贤荣; 葛小平
2015-01-01
Tidal flats, which represent a wide land-sea interaction zone, are difficult to measure. The lack of historical topographic data has seriously affected the development and utilization of tidal flats. Using a tidal flat of radial sand ridges as an example, waterlines under different tide conditions were extracted from TM and MSS remote sensing images from around 1987, and sea surface heights were simulated with a Mike21 hydrodynamic model. Elevations were assigned to the waterlines. The digital elevation model was obtained through the terrain iteration process. The results show that, in the tidal flat of radial sand ridges, there is a strong correlation between the topographic results obtained from the waterline method and the measured data from the nautical chart, with a coefficient of determination ( R2 ) of 0. 864, a mean absolute error of 0. 37 m, and a root mean square error of 0. 41 m, indicating that the topographic results can be further used to analyze the morphologic evolution of the tidal flats.%潮滩作为陆海交互区,面积宽广,测量困难,历史地形资料缺失,已经严重影响到潮滩的开发利用。以辐射沙脊群潮滩为实验区,利用1987年前后的TM、MSS影像提取不同潮情下的系列水边线,运用Mike21水动力模型模拟遥感图像对应时刻下的瞬时海面高度,为水边线赋值,进而通过地形反复迭代得到数字高程模型。结果表明,在辐射沙脊群潮滩区,水边线法获取的地形结果与海图上测点的相关性较高,决定系数R2达0.864,绝对平均误差0.37 m,均方根误差0.41 m,地形结果可用于进一步的潮滩地貌演变分析。
Skeletal metastasis: treatments, mouse models,and the Wnt signaling
Institute of Scientific and Technical Information of China (English)
Kenneth C.Valkenburg; Matthew R.Steensma; Bart O.Williams; Zhendong Zhong
2013-01-01
Skeletal metastases result in significant morbidity and mortality.This is particularly true of cancers with a strong predilection for the bone,such as breast,prostate,and lung cancers.There is currently no reliable cure for skeletal metastasis,and palliative therapy options are limited.The Wnt signaling pathway has been found to play an integral role in the process of skeletal metastasis and may be an important clinical target.Several experimental models of skeletal metastasis have been used to find new biomarkers and test new treatments.In this review,we discuss pathologic process of bone metastasis,the roles of the Wnt signaling,and the available experimental models and treatments.
Signal attenuation as a rat model of obsessive compulsive disorder.
Goltseker, Koral; Yankelevitch-Yahav, Roni; Albelda, Noa S; Joel, Daphna
2015-01-09
In the signal attenuation rat model of obsessive-compulsive disorder (OCD), lever-pressing for food is followed by the presentation of a compound stimulus which serves as a feedback cue. This feedback is later attenuated by repeated presentations of the stimulus without food (without the rat emitting the lever-press response). In the next stage, lever-pressing is assessed under extinction conditions (i.e., no food is delivered). At this stage rats display two types of lever-presses, those that are followed by an attempt to collect a reward, and those that are not. The latter are the measure of compulsive-like behavior in the model. A control procedure in which rats do not experience the attenuation of the feedback cue serves to distinguish between the effects of signal attenuation and of extinction. The signal attenuation model is a highly validated model of OCD and differentiates between compulsive-like behaviors and behaviors that are repetitive but not compulsive. In addition the measures collected during the procedure eliminate alternative explanations for differences between the groups being tested, and are quantitative, unbiased and unaffected by inter-experimenter variability. The major disadvantages of this model are the costly equipment, the fact that it requires some technical know-how and the fact that it is time-consuming compared to other models of OCD (11 days). The model may be used for detecting the anti- or pro-compulsive effects of pharmacological and non-pharmacological manipulations and for studying the neural substrate of compulsive behavior.
Zhang, Shengpan P.; Roble, Raymond G.; Shepherd, Gordon G.
2001-10-01
Longitudinal zonally averaged Wind Imaging Interferometer (WINDII) (on UARS) night-time oxygen (O(1S)) and hydroxyl (P(3) line in the OH(8, 3) Meinel band) volume emission rates exhibit dramatic spatial and temporal variations. The recently improved thermosphere/ionosphere/mesosphere electrodynamics general circulation model (TIME-GCM) produces simulations for the two airglows through the input of (1, 1) upward propagating diurnal tides. The model simulations show excellent agreement with WINDII observations in both the local time domain and the latitudinal domain between 40°S and 40°N. The influence of diurnal tides on the two airglows in strongest in the tropical region. In the local solar time domain the emission rate and peak altitude at the equator show large tidal perturbations, but they are fairly stable at midlatitude. In the latitudinal domain there is an equatorial trough in the oxygen emission rate which exists regardless of local time and season. The hydroxyl emission rate is more dependent on local time and season. At equinox it has a prominent equatorial maximum which disappears at dawn, whereas at solstice it has a very weak equatorial maximum at dusk, changing soon after midnight to an equatorial minimum. These features of emission rates are also compared to TIME-GCM simulations for meridional wind, temperature, and atomic oxygen density, [O], with and without upward propagating diurnal tides. The results are as follows: (1) The large oscillations of the two nightglows as well the atomic oxygen density in the tropical region are driven by the diurnal propagating tides. In altitude the mesosphere and lower thermosphere is divided into two type of cells, one with meridional winds converging at the equator, higher temperature, and enhanced [O] and airglow emission rates, and the other with meridional winds diverging from the equator, lower temperature, and depleted [O] and airglow emission rates; all these are essentially related to the wavelength
Secular tidal changes in lunar orbit and Earth rotation
Williams, James G.; Boggs, Dale H.
2016-11-01
Small tidal forces in the Earth-Moon system cause detectable changes in the orbit. Tidal energy dissipation causes secular rates in the lunar mean motion n, semimajor axis a, and eccentricity e. Terrestrial dissipation causes most of the tidal change in n and a, but lunar dissipation decreases eccentricity rate. Terrestrial tidal dissipation also slows the rotation of the Earth and increases obliquity. A tidal acceleration model is used for integration of the lunar orbit. Analysis of lunar laser ranging (LLR) data provides two or three terrestrial and two lunar dissipation parameters. Additional parameters come from geophysical knowledge of terrestrial tides. When those parameters are converted to secular rates for orbit elements, one obtains d n/d t = -25.97± 0.05 ''/cent2, d a/d t = 38.30 ± 0.08 mm/year, and d i/d t = -0.5 ± 0.1 μas/year. Solving for two terrestrial time delays and an extra d e/d t from unspecified causes gives ˜ 3× 10^{-12}/year for the latter; solving for three LLR tidal time delays without the extra d e/d t gives a larger phase lag of the N2 tide so that total d e/d t = (1.50 ± 0.10)× 10^{-11}/year. For total d n/d t, there is ≤ 1 % difference between geophysical models of average tidal dissipation in oceans and solid Earth and LLR results, and most of that difference comes from diurnal tides. The geophysical model predicts that tidal deceleration of Earth rotation is -1316 ''/cent2 or 87.5 s/cent2 for UT1-AT, a 2.395 ms/cent increase in the length of day, and an obliquity rate of 9 μas/year. For evolution during past times of slow recession, the eccentricity rate can be negative.
Quantitative modelling in cognitive ergonomics: predicting signals passed at danger
Moray, Neville; Groeger, John; Stanton, Neville
2016-01-01
This paper shows how to combine field observations, experimental data, and mathematical modeling to produce quantitative explanations and predictions of complex events in human-machine interaction. As an example we consider a major railway accident. In 1999 a commuter train passed a red signal near Ladbroke Grove, UK, into the path of an express. We use the Public Inquiry Report, "black box" data, and accident and engineering reports, to construct a case history of the accident. We show how t...
Simulation model for analyzing SPUDI with actuated signals
Energy Technology Data Exchange (ETDEWEB)
Shafahi, Y.; Haghani, A.; Carter, E.C. [Univ. of Maryland, College Park, MD (United States). Dept. of Civil Engineering; Gupta, K.N.V. [SIMCO Engineering, New York, NY (United States)
1998-09-01
A time based microsimulation model is developed for analyzing the traffic operation at single point urban diamond interchanges. Features of the model include actuated signal operation, protected and permitted left turn phasing, right turn phasing with and without right turn on red, traffic in shared lanes, traffic in left turn and right turn storage lanes, car following, lane changing, gap acceptance behavior, primary and secondary queue formation and dissipation. The model accepts geometric, traffic, and signal data in an interactive mode. Input files may also be created separately without going through the interactive session. The model outputs include measures of effectiveness such as stopped delay, total delay, average speed, and maximum and average queue length. These measures of effectiveness are given for each turning movement for each approach, and for the intersection as a whole. The model outputs also show the total green time and the total yellow and all red times assigned by the actuated system to each phase during the simulation time. The model results are compared with the actual data collected in the field.
Modeling of cortical signals using echo state networks
Zhou, Hanying; Wang, Yongji; Huang, Jiangshuai
2009-10-01
Diverse modeling frameworks have been utilized with the ultimate goal of translating brain cortical signals into prediction of visible behavior. The inputs to these models are usually multidimensional neural recordings collected from relevant regions of a monkey's brain while the outputs are the associated behavior which is typically the 2-D or 3-D hand position of a primate. Here our task is to set up a proper model in order to figure out the move trajectories by input the neural signals which are simultaneously collected in the experiment. In this paper, we propose to use Echo State Networks (ESN) to map the neural firing activities into hand positions. ESN is a newly developed recurrent neural network(RNN) model. Besides its dynamic property and short term memory just as other recurrent neural networks have, it has a special echo state property which endows it with the ability to model nonlinear dynamic systems powerfully. What distinguished it from transitional recurrent neural networks most significantly is its special learning method. In this paper we train this net with a refined version of its typical training method and get a better model.
Experimental hydrodynamic study of the Qiantang River tidal bore
Institute of Scientific and Technical Information of China (English)
HUANG Jing; PAN Cun-hong; KUANG Cui-ping; ZENG Jian; CHEN Gang
2013-01-01
To study the hydrodynamics of tidal bore,a physical modeling study is carried out in a rectangular flume with considerations of the tidal bore heights,the propagation speeds,the tidal current velocities,the front steepness,and the bore shapes.After the validation with the field observations,the experimental results are analyzed,and it is shown that:(1) the greater initial ebb velocity or the larger initial water depth impedes the tidal bore propagation,(2) the maximum bore height appears at an initial ebb velocity in the range of 0.5 m/s-1.5 m/s,(3) when the Froude number exceeds 1.2,an undular bore appears,after it exceeds 1.3,a breaking bore occurs,and after it exceeds 1.7,the bore is broken.
Tidal Creek Sentinel Habitat Database
National Oceanic and Atmospheric Administration, Department of Commerce — The Ecological Research, Assessment and Prediction's Tidal Creeks: Sentinel Habitat Database was developed to support the National Oceanic and Atmospheric...
Tidal deformability of dark matter clumps
Mendes, Raissa F P
2016-01-01
We analyze the tidal deformability of a clump of dark matter particles, modelled by the collisionless Boltzmann equation. We adopt a wave-mechanical approach to the problem, in which the dynamical equations are approximated by a set of Schr\\"{o}dinger-Poisson equations, within the limit that the effective de Broglie wavelength is comparable to the spatial variation scale of the particle distribution. We argue that such a treatment allows for a smaller number of coupled differential equations and more accessible perturbative analyses, while keeping the description within the dynamical timescale relatively accurate. Moreover, it provides an approximate mapping between perturbed boson star configurations and dynamical dark matter clumps. We present an analysis of the tidal deformability of a minimally-coupled boson star to illustrate this (approximate) correspondence.
Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model
Rizvi, Farheen
2016-01-01
Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.
Scafetta, Nicola
2016-04-01
The Schwabe frequency band of the Zurich sunspot record since 1749 is found to be made of three major cycles with periods of about 9.98, 10.9 and 11.86 years. The two side frequencies appear to be closely related to the spring tidal period of Jupiter and Saturn (range between 9.5 and 10.5 years, and median 9.93 years) and to the tidal sidereal period of Jupiter (about 11.86 years). The central cycle can be associated to a quasi-11-year sunspot solar dynamo cycle that appears to be approximately synchronized to the average of the two planetary frequencies. A simplified harmonic constituent model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals complex quasi-periodic interference/beat patterns. The major beat periods occur at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. These frequencies and other oscillations appear once the model is non-linearly processed. We show that equivalent synchronized cycles are found in cosmogenic records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Sporer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima that occurred during 1900- 1920 and 1960-1980 and the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005 and a secular upward trending during the 20th century: this modulated trending agrees well with some solar proxy model, with
LHC Signals of Non-Custodial Warped 5D Models
de Blas, Jorge; Ostdiek, Bryan; de la Puente, Alejandro
2012-01-01
We study the implications at the LHC for a recent class of non-custodial warped extra-dimensional models where the AdS_5 metric is modified near the infrared brane. Such models allow for TeV Kaluza-Klein excitations without conflict with electroweak precision tests. We discuss both the production of electroweak and strong Kaluza-Klein gauge bosons. As we will show, only signals involving the third generation of quarks seem to be feasible in order to probe this scenario.
Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations
Holca-Lamarre, Raphaël; Lücke, Jörg; Obermayer, Klaus
2017-01-01
Biological and artificial neural networks (ANNs) represent input signals as patterns of neural activity. In biology, neuromodulators can trigger important reorganizations of these neural representations. For instance, pairing a stimulus with the release of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the responses of neurons to the paired stimulus. The functional roles of ACh and DA in rearranging representations remain largely unknown. Here, we address this question using a Hebbian-learning neural network model. Our aim is both to gain a functional understanding of ACh and DA transmission in shaping biological representations and to explore neuromodulator-inspired learning rules for ANNs. We model the effects of ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater neuromodulator activation are over represented in the network. We then simulate the physiological release schedules of ACh and DA. We measure the impact of neuromodulator release on the network's representation and on its performance on a classification task. We find that ACh and DA trigger distinct changes in neural representations that both improve performance. The putative ACh signal redistributes neural preferences so that more neurons encode stimulus classes that are challenging for the network. The putative DA signal adapts synaptic weights so that they better match the classes of the task at hand. Our model thus offers a functional explanation for the effects of ACh and DA on cortical representations. Additionally, our learning algorithm yields performances comparable to those of state-of-the-art optimisation methods in multi-layer perceptrons while requiring weaker supervision signals and interacting with synaptically-local weight updates. PMID:28690509
Spatial patterns of tidal heating
Beuthe, Mikael
2012-01-01
In a body periodically strained by tides, heating produced by viscous friction is far from homogeneous. I show here that the distribution of the dissipated power within a spherically stratified body is a linear combination of three angular functions. These angular functions depend only on the tidal potential whereas the radial weights are specified by the internal structure of the body. The 3D problem of predicting spatial patterns of dissipation at all radii is thus reduced to the 1D problem of computing weight functions. I compute spatial patterns in various toy models without assuming a specific rheology: a viscoelastic thin shell stratified in conductive and convective layers, an incompressible homogeneous body and a two-layer model of uniform density with a liquid or rigid core. For a body in synchronous rotation undergoing eccentricity tides, dissipation in a mantle surrounding a liquid core is highest at the poles. Within a softer layer (asthenosphere or icy layer), the same tides generate maximum heat...
Modeling Guidelines for Code Generation in the Railway Signaling Context
Ferrari, Alessio; Bacherini, Stefano; Fantechi, Alessandro; Zingoni, Niccolo
2009-01-01
Modeling guidelines constitute one of the fundamental cornerstones for Model Based Development. Their relevance is essential when dealing with code generation in the safety-critical domain. This article presents the experience of a railway signaling systems manufacturer on this issue. Introduction of Model-Based Development (MBD) and code generation in the industrial safety-critical sector created a crucial paradigm shift in the development process of dependable systems. While traditional software development focuses on the code, with MBD practices the focus shifts to model abstractions. The change has fundamental implications for safety-critical systems, which still need to guarantee a high degree of confidence also at code level. Usage of the Simulink/Stateflow platform for modeling, which is a de facto standard in control software development, does not ensure by itself production of high-quality dependable code. This issue has been addressed by companies through the definition of modeling rules imposing restrictions on the usage of design tools components, in order to enable production of qualified code. The MAAB Control Algorithm Modeling Guidelines (MathWorks Automotive Advisory Board)[3] is a well established set of publicly available rules for modeling with Simulink/Stateflow. This set of recommendations has been developed by a group of OEMs and suppliers of the automotive sector with the objective of enforcing and easing the usage of the MathWorks tools within the automotive industry. The guidelines have been published in 2001 and afterwords revisited in 2007 in order to integrate some additional rules developed by the Japanese division of MAAB [5]. The scope of the current edition of the guidelines ranges from model maintainability and readability to code generation issues. The rules are conceived as a reference baseline and therefore they need to be tailored to comply with the characteristics of each industrial context. Customization of these
Directory of Open Access Journals (Sweden)
Joseph Harari
1998-01-01
Full Text Available Foi implementado o Princeton Ocean Model (POM para a região costeira de Santos (46° - 47°W, 23°40' - 24°30'S, com grade regular de resolução == I km e 11 níveis sigrna na vertical. O modelo foi utilizado em simulações de maré, com a especificação das correspondentes oscilações nos contornos, calculadas com base em mapas cotidais da plataforma. O modelo foi processado considerando isoladamente as componentes principais lunar e solar (M2 e S2, cada qual por 5 dias, e com as 9 principais componentes de maré conjuntamente, por 31 dias. As análises de maré das séries temporais de resultados possibilitaram a composição de mapas com linhas cotidais e eixos das elipses de correntes de superfície. Esses mapas indicam as características da propagação das ondas de maré na área modelada, com as distribuições espaciais de suas elevações e correntes. Os aspectos de maior interesse no estudo realizado são: o contraste das intensidades das circulações, entre a parte mais profunda e regiões internas rasas; as marcantes diferenças de intensidade de correntes nos dois lados da Baía de Santos; a convergência / divergência das correntes nos Canais de São Vicente e de Bertioga; assimetrias de maré nas regiões rasas; e rotação anti-horária das correntes na área costeira. O modelo pode ser utilizado em previsões operacionais de marés e correntes de maré na área de estudo.The Princeton Ocean Model (p0M was implemented for the coastal region of Santos (46° - 47°W, 23°40' - 24°30'S, with a regular grid of resolution == 1 km and 11 sigrna levels in the vertical. the model was used in tidal simulations, with the specification of the correspondent oscillations at the boundaries, computed through cotidal maps of the shelf. The model runs considering separately the lunar and solar principal components (M2 and S2, for 5 days each, and the 9 principal tidal constituents composed, for 31 days. The tidal analysis of the
Rapid Manufacture Method for Tidal Stream Turbine Blade Testing Model%潮流能水轮机叶片实验原型快速制造方法研究
Institute of Scientific and Technical Information of China (English)
李冬; 王树杰; 王超
2009-01-01
提出了采用三维CAD、反求技术和快速原型(rapid prototyping,RP)技术快速制造海洋潮流能开发利用的获能装置--潮流能水轮机叶片原型的方法.应用该方法制作了实验模型进行实验,结果显示,对比已有铸造模型水轮机,采用快速成形方法制造的模型在结构强度、精度上都能满足实验要求,并且可以通过模型实验对该方法建立的不同翼型水轮机进行优化选型.%A rapid manufacture method for blade of tidal stream turbine which is the energy capture device in exploitation of tidal stream energy was put forward using CAD, reverse technology and rapid prototyping technology. Testing models were manufactured using this method. Results show that models manufactured by RP technology can meet the requirements of hydrodynamics testing both on structure strength and precision, compared with the casting turbine models. And the models with different vane shapes manufactured by RP technology can be optimized by model testing.
Using a 1-D model to reproduce diurnal SST signals
DEFF Research Database (Denmark)
Karagali, Ioanna; Høyer, Jacob L.
2014-01-01
of measurement. A generally preferred approach to bridge the gap between in situ and remotely obtained measurements is through modelling of the upper ocean temperature. This ESA supported study focuses on the implementation of the 1 dimensional General Ocean Turbulence Model (GOTM), in order to resolve...... profiles, along with the selection of the coefficients for the 2-band parametrisation of light’s penetration in the water column, hold a key role in the agreement of the modelled output with observations. To improve the surface heat budget and the distribution of heat, the code was modified to include...... Institution Upper Ocean Processes Group archive. The successful implementation of the new parametrisations is verified while the model reproduces the diurnal signals seen from in situ measurements. Special focus is given to testing and validation of different set-ups using campaign data from the Atlantic...
A Segmented Signal Progression Model for the Modern Streetcar System
Directory of Open Access Journals (Sweden)
Baojie Wang
2015-01-01
Full Text Available This paper is on the purpose of developing a segmented signal progression model for modern streetcar system. The new method is presented with the following features: (1 the control concept is based on the assumption of only one streetcar line operating along an arterial under a constant headway and no bandwidth demand for streetcar system signal progression; (2 the control unit is defined as a coordinated intersection group associated with several streetcar stations, and the control joints must be streetcar stations; (3 the objective function is built to ensure the two-way streetcar arrival times distributing within the available time of streetcar phase; (4 the available time of streetcar phase is determined by timing schemes, intersection structures, track locations, streetcar speeds, and vehicular accelerations; (5 the streetcar running speed is constant separately whether it is in upstream or downstream route; (6 the streetcar dwell time is preset according to historical data distribution or charging demand. The proposed method is experimentally examined in Hexi New City Streetcar Project in Nanjing, China. In the experimental results, the streetcar system operation and the progression impacts are shown to affect transit and vehicular traffic. The proposed model presents promising outcomes through the design of streetcar system segmented signal progression, in terms of ensuring high streetcar system efficiency and minimizing negative impacts on transit and vehicular traffic.
Computer Modeling and Simulation of Ultrasonic Signal Processing and Measurements
Directory of Open Access Journals (Sweden)
Y. B. Gandole
2012-01-01
Full Text Available The system for simulation, measurement, and processing in Graphical User Interface implementation is presented. The received signal from the simulation is compared to that of an actual measurement in the time domain. The comparison of simulated, experimental data clearly shows that acoustic wave propagation can be modeled. The feasibility has been demonstrated in an ultrasound transducer setup for material property investigations. The results of simulation are compared to experimental measurements. The simulation result has good agreement with the experimental data which confirms the validity of the model. The simulation tool therefore provides a way to predict the received signal before anything is built. Furthermore, the use of an ultrasonic simulation package allows for the development of the associated electronics to amplify and process the received ultrasonic signals. Such a virtual design and testing procedure not only can save us time and money, but also can provide better understanding on design failures and allow us to modify designs more efficiently and economically.
Modeling of Acoustic Emission Signal Propagation in Waveguides
Directory of Open Access Journals (Sweden)
Andreea-Manuela Zelenyak
2015-05-01
Full Text Available Acoustic emission (AE testing is a widely used nondestructive testing (NDT method to investigate material failure. When environmental conditions are harmful for the operation of the sensors, waveguides are typically mounted in between the inspected structure and the sensor. Such waveguides can be built from different materials or have different designs in accordance with the experimental needs. All these variations can cause changes in the acoustic emission signals in terms of modal conversion, additional attenuation or shift in frequency content. A finite element method (FEM was used to model acoustic emission signal propagation in an aluminum plate with an attached waveguide and was validated against experimental data. The geometry of the waveguide is systematically changed by varying the radius and height to investigate the influence on the detected signals. Different waveguide materials were implemented and change of material properties as function of temperature were taken into account. Development of the option of modeling different waveguide options replaces the time consuming and expensive trial and error alternative of experiments. Thus, the aim of this research has important implications for those who use waveguides for AE testing.
An extended car-following model at signalized intersections
Yu, Shaowei; Shi, Zhongke
2014-08-01
To simulate car-following behaviors better when the traffic light is red, three successive car-following data at a signalized intersection of Jinan in China were collected by using a new proposed data acquisition method and then analyzed to select input variables of the extended car-following model. An extended car-following model considering two leading cars' accelerations was proposed, calibrated and verified with field data obtained on the basis of the full velocity difference model and then a comparative model used for comparative research was also proposed and calibrated in the light of the GM model. The results indicate that the extended car-following model could fit measured data well, and that the fitting precision of the extended model is prior to the comparative model, whose mean absolute error is reduced by 22.83%. Finally a theoretical car-following model considering multiple leading cars' accelerations was put forward which has potential applicable to vehicle automation system and vehicle safety early warning system, and then the linear stability analysis and numerical simulations were conducted to analyze some observed physical features existing in the realistic traffic.
Institute of Scientific and Technical Information of China (English)
严以新; 诸裕良; 薛鸿超
1999-01-01
Based upon the long-term observation of field data, a two-dimensional numerical model is applied to simulating the tidal flow covering from the neap tide to spring tide in the radial sandbank area in the southern Yellow Sea. From the development of tidal current ridges under the hydrodynamic action, multi-purpose analysis and study are carried out, which include the propagation process of tidal wave, the distributions of tidal wave energy rate and tidal range, the tidal ellipses and traces. It is shown that the tidal current is the major dynamic factor for the formation and development of the radial sandbanks, and the differences of tidal wave energy rate and current strength determine the distinct plane shapes of ridges and troughs in this region.
Cycloidal tidal power generation - phase 2
Energy Technology Data Exchange (ETDEWEB)
NONE
2004-07-01
This report describes the second phase of a study aimed at addressing the technical and economic viability of cycloidal tidal power generation with the objective of examining design optimisation, the building and testing a scale model, and the use of an enhanced model to estimated the overall system economic performance. Details are given of the analytical and physical modelling studies, the use of Computational Fluid Dynamics (CDF) analysis to understand the fluid flow through the cycloidal unit, the optimisation of the turbine blades, and performance predictions.
EEG Signal Classification With Super-Dirichlet Mixture Model
DEFF Research Database (Denmark)
Ma, Zhanyu; Tan, Zheng-Hua; Prasad, Swati
2012-01-01
Classification of the Electroencephalogram (EEG) signal is a challengeable task in the brain-computer interface systems. The marginalized discrete wavelet transform (mDWT) coefficients extracted from the EEG signals have been frequently used in researches since they reveal features related to the...... vector machine (SVM) based classifier, the SDMM based classifier performs more stable and shows a promising improvement, with both channel selection strategies....... by the Dirichlet distribution and the distribution of the mDWT coefficients from more than one channels is described by a super-Dirichletmixture model (SDMM). The Fisher ratio and the generalization error estimation are applied to select relevant channels, respectively. Compared to the state-of-the-art support...
The interaction of tidal advection, diffusion and mussel filtration in a tidal channel
Simpson, John H.; Berx, Barbara; Gascoigne, Joanna; Saurel, Camille
2007-12-01
Time series measurements of flow and pigment concentrations (Chl) in the Menai Strait have revealed that the strong residual flow in a tidal channel (˜ 500 m 3 s - 1 ) transports phytoplankton from the open sea into the channel where much of it is consumed by suspension feeders, mainly in commercial beds of Mytilus edulis. The progressive depletion of phytoplankton along the channel results in a strong horizontal gradient of plankton and hence Chl. Tidal displacement of this gradient causes large (± 50% of mean) oscillations of Chl in the vicinity of the mussel beds. Vertical mixing by the strong tidal flows is sufficiently vigorous for most of the tidal cycle to ensure that downward diffusion can resupply the near-bed layer although there are indications of some transient depletion around slack water. This paradigm of the interaction of advection, diffusion and filtration determining the distribution of plankton and its supply to mussels has been encapsulated in a series of simple models forced only by boundary values. In the first, a 1-D model of tidal flow in the channel reproduces the principal features of the observed currents including the unusually large spatial change in phase of the currents and the variation of the residual transport with tidal range. The flow field from this physical model is used to drive a second model based on the advection diffusion equation for Chl with a source at the Irish Sea boundary and a sink over the mussel bed. This model illustrates the formation of a strong Chl gradient along the channel and simulates the amplitude and phase of the M 2 oscillations of Chl and the development of the M 4 variation apparent in the observations. This second model has been extended to 2-D over the mussel beds to allow investigation of the effects of water column mixing. The model indicates that only for a short period (˜ 30 min), close to slack water, is mixing sufficiently reduced to permit the development of a depletion boundary layer and
Tidally induced lateral dispersion of the Storfjorden overflow plume
Directory of Open Access Journals (Sweden)
F. Wobus
2013-10-01
Full Text Available We investigate the flow of brine-enriched shelf water from Storfjorden (Svalbard into Fram Strait and onto the western Svalbard Shelf using a regional set-up of NEMO-SHELF, a 3-D numerical ocean circulation model. The model is set up with realistic bathymetry, atmospheric forcing, open boundary conditions and tides. The model has 3 km horizontal resolution and 50 vertical levels in the sh-coordinate system which is specially designed to resolve bottom boundary layer processes. In a series of modelling experiments we focus on the influence of tides on the propagation of the dense water plume by comparing results from tidal and non-tidal model runs. Comparisons of non-tidal to tidal simulations reveal a hotspot of tidally induced horizontal diffusion leading to the lateral dispersion of the plume at the southernmost headland of Spitsbergen which is in close proximity to the plume path. As a result the lighter fractions in the diluted upper layer of the plume are drawn into the shallow coastal current that carries Storfjorden water onto the western Svalbard Shelf, while the dense bottom layer continues to sink down the slope. This bifurcation of the plume into a diluted shelf branch and a dense downslope branch is enhanced by tidally induced shear dispersion at the headland. Tidal effects at the headland are shown to cause a net reduction in the downslope flux of Storfjorden water into the deep Fram Strait. This finding contrasts previous results from observations of a dense plume on a different shelf without abrupt topography.
Evolution and precession of accretion disk in tidal disruption events
Directory of Open Access Journals (Sweden)
Matzner C.D.
2012-12-01
Full Text Available In a supermassive black hole (BH tidal disruption event (TDE, the tidally disrupted star feeds the BH via an accretion disk. Most often it is assumed that the accretion rate history, hence the emission light curve, tracks the rate at which new debris mass falls back onto the disk, notably the t−5/3 power law. But this is not the case when the disk evolution due to viscous spreading - the driving force for accretion - is carefully considered. We construct a simple analytical model that comprehensively describes the accretion rate history across 4 different phases of the disk evolution, in the presence of mass fallback and disk wind loss. Accretion rate evolves differently in those phases which are governed by how the disk heat energy is carried away, early on by advection and later by radiation. The accretion rate can decline as steeply as t−5/3 only if copious disk wind loss is present during the early advection-cooled phase. Later, the accretion rate history is t−8/7 or shallower. These have great implications on the TDE flare light curve. A TDE accretion disk is most likely misaligned with the equatorial plane of the spinning BH. Moreover, in the TDE the accretion rate is super- or near-Eddington thus the disk is geometrically thick, for which case the BH’s frame dragging effect may cause the disk precess as a solid body, which may manifest itself as quasi-periodic signal in the TDE light curve. Our disk evolution model predicts the disk precession period increases with time, typically as ∝ t. The results are applied to the recently jetted TDE flare Swift transient J1644 + 57 which shows numerous, quasi-periodic dips in its long-term X-ray light curve. As the current TDE sample increases, the identification of the disk precession signature provides a unique way of measuring BH spin and studying BH accretion physics.
Harnessing Tidal Energy Using Vertical Axis Tidal Turbine
Directory of Open Access Journals (Sweden)
Syed Shah Khalid
2013-01-01
Full Text Available An overview of the current design practices in the field of Renewable Energy (RE is presented; also paper delineates the background to the development of unique and novel techniques for power generation using the kinetic energy of tidal streams and other marine currents. Also this study focuses only on vertical axis tidal turbine. Tidal stream devices have been developed as an alternative method of extracting the energy from the tides. This form of tidal power technology poses less threat to the environment and does not face the same limiting factors associated with tidal barrage schemes, therefore making it a more feasible method of electricity production. Large companies are taking interest in this new source of power. There is a rush to research and work with this new energy source. Marine scientists are looking into how much these will affect the environment, while engineers are developing turbines that are harmless for the environment. In addition, the progression of technological advancements tracing several decades of R & D efforts on vertical axis turbines is highlighted.
Signatures of LCDM substructure in tidal debris
Siegal-Gaskins, Jennifer M
2007-01-01
In the past decade, surveys of the stellar component of the Galaxy such as SDSS and 2MASS have revealed a number of stellar streams. Current and future observations are rapidly increasing the precision and quantity of data available, raising the possibility of using tidal streams to constrain the distribution of dark matter in the halo. Simulations of hierarchical structure formation in LCDM cosmologies predict that the dark matter halo of a galaxy like the Milky Way contains a smooth component as well as hundreds of subhalos with masses of ~10^8 solar masses and greater, and it has been suggested that the existence of coherent tidal streams is incompatible with the expected abundance of substructure. We investigate the properties of tidal streams arising from the disruption of satellites in a variety of dark matter halo models. In general, we find that the halo shape and the specific orbital path more strongly determine the degree of disruption of the satellite than does the presence or absence of substructu...
Approximate universal relations among tidal parameters for neutron star binaries
Yagi, Kent; Yunes, Nicolás
2017-01-01
One of largest uncertainties in nuclear physics is the relation between the pressure and density of supranuclear matter: the equation of state. Some of this uncertainty may be removed through future gravitational wave observations of neutron star binaries by extracting the tidal deformabilities (or Love numbers) of neutron stars, a novel way to probe nuclear physics in the high-density regime. Previous studies have shown that only a certain combination of the individual (quadrupolar) deformabilities of each body (the so-called chirp tidal deformability) can be measured with second-generation, gravitational wave interferometers, such as Adv. LIGO, due to correlations between the individual deformabilities. To overcome this, we search for approximately universal (i.e. approximately equation-of-state independent) relations between two combinations of the individual tidal deformabilities, such that once one of them has been measured, the other can be automatically obtained and the individual ones decoupled through these relations. We find an approximately universal relation between the symmetric and the anti-symmetric combination of the individual tidal deformabilities that is equation-of-state-insensitive to 20 % for binaries with masses less than 1.7{{M}⊙} . We show that these relations can be used to eliminate a combination of the tidal parameters from the list of model parameters, thus breaking degeneracies and improving the accuracy in parameter estimation. A simple (Fisher) study shows that the universal binary Love relations can improve the accuracy in the extraction of the symmetric combination of tidal parameters by as much as an order of magnitude, making the overall accuracy in the extraction of this parameter slightly better than that of the chirp tidal deformability. These new universal relations and the improved measurement accuracy on tidal parameters not only are important to astrophysics and nuclear physics, but also impact our ability to probe
Tidal Energy Resource Assessment in Chacao Channel, Chile
Guerra, M.; Suarez, L.; Cienfuegos, R.; Thomson, J. M.
2014-12-01
The Chacao Channel, located in Los Lagos region in Chile (41º S; 73º W), is a highly energetic tidal channel, with a complex hydrodynamics resulting from the propagation of tidal waves through a narrow channel. The channel flow exhibits bi-directional tidal currents up to 4 to 5 m/s along with a high tidal range up to 6 m in its east end (Aiken, 2008: Cáceres et al., 2003). The channel has previously been identified as one of the most attractive sites in Chile for tidal energy extraction (Garrad Hassan and Partners, 2009); however this statement is based on global model predictions over coarse bathymetric information. In this investigation, the first hydrodynamic characterization of the Chacao channel is carried out in order to assess the hydrokinetic power available and to select the most interesting spots where the first tidal energy extraction devices might be installed in Chile. The Chacao channel hydrodynamic characterization and resource assessment is carried out in two stages: field measurements and numerical hydrodynamic modeling. The first stage involves a 10 m resolution multi-beam bathymetry of the channel, sea-level measurements using 6 tidal gauges distributed over the channel berms, tidal current measurements with 6 ADCPs distributed along the channel, and detailed measurements of turbulence in a specific spot in the channel using the Tidal Turbulence Mooring (TTM) developed by Thomson et al. (2013). In a second stage, numerical hydrodynamic modeling using FVCOM (Chen et al., 2003) was prepared for the entire Chacao channel region, using the field data collected in the first stage for calibration and validation of the model. The obtained results allow us to define suitable sites for marine energy extraction, finding large areas with 30 to 60 m depths where horizontal currents are above 1.5 m/s during 60% of the time of a 28 days tidal cycle, however the high levels of turbulence detected by the TTM indicate the need for more detailed studies on the
Tidal disruption event demographics
Kochanek, C. S.
2016-09-01
We survey the properties of stars destroyed in tidal disruption events (TDEs) as a function of black hole (BH) mass, stellar mass and evolutionary state, star formation history and redshift. For M_{BH} ≲ 10^7 M_{⊙}, the typical TDE is due to a M* ˜ 0.3 M⊙ M-dwarf, although the mass function is relatively flat for M_{ast } ≲ M_{⊙}. The contribution from older main-sequence stars and sub-giants is small but not negligible. From MBH ≃ 107.5-108.5 M⊙, the balance rapidly shifts to higher mass stars and a larger contribution from evolved stars, and is ultimately dominated by evolved stars at higher BH masses. The star formation history has little effect until the rates are dominated by evolved stars. TDE rates should decline very rapidly towards higher redshifts. The volumetric rate of TDEs is very high because the BH mass function diverges for low masses. However, any emission mechanism which is largely Eddington-limited for low BH masses suppresses this divergence in any observed sample and leads to TDE samples dominated by MBH ≃ 106.0-107.5 M⊙ BHs with roughly Eddington peak accretion rates. The typical fall-back time is relatively long, with 16 per cent having tfb plausible if tfb has any relation to the transient rise time. For almost any BH mass function, systematic searches for fainter, faster time-scale TDEs in smaller galaxies, and longer time-scale TDEs in more massive galaxies are likely to be rewarded.
Geographic variation in Puget Sound tidal channel planform geometry
Hood, W. Gregory
2015-02-01
Tidal channels are central elements of salt marsh hydrodynamics, sediment dynamics, and habitat. To develop allometric models predicting the number and size of tidal channels that could develop following salt marsh restoration, channels were digitized from aerial photographs of Puget Sound river delta marshes. Salt marsh area was the independent variable for all dependent channel planform metrics. Tidal channel allometry showed similar scaling exponents for channel planform metrics throughout Puget Sound, simplifying comparisons between locations. Y-intercepts of allometric relationships showed geographic variation, which multiple-regression indicated was associated with tidal range and storm significant wave height. Channel size and complexity were positively related to tidal range and negatively related to wave height. Four case studies, each with paired regions of similar tidal range and contrasting wave environments, further indicated wave environment affected channel geometry. Wave-mediated sediment delivery may be the mechanism involved, with wave-sheltered areas experiencing relative sediment deficits, such that some salt marshes in Puget Sound are already suffering sea-level rise impacts that are reflected in their channel network geometry.
Novel Higgs decay signals in R-parity violating models
Sierra, D Aristizabal; Restrepo, D; Yaguna, Carlos E
2008-01-01
In supersymmetric models the lightest Higgs boson may decay with a sizable branching ratio into a pair of light neutralinos. We analyze such decays within the context of the minimal supersymmetric standard model with R-parity violation, where the neutralino itself is unstable and decays into Standard Model fermions. We show that the R-parity violating couplings induce novel Higgs decay signals that might facilitate the discovery of the Higgs boson at colliders. At the LHC, the Higgs may be observed, for instance, through its decay -via two neutralinos- into final states containing missing energy and isolated charged leptons such as $l^\\pm l^\\mp, l^\\pm l^\\pm, 3l$, and $4l$. Another promising possibility is the search for the displaced vertices associated with the neutralino decay. We also point out that Higgs searches at the LHC might additionally provide the first evidence of R-parity violation.
Using the PLUM procedure of SPSS to fit unequal variance and generalized signal detection models.
DeCarlo, Lawrence T
2003-02-01
The recent addition of aprocedure in SPSS for the analysis of ordinal regression models offers a simple means for researchers to fit the unequal variance normal signal detection model and other extended signal detection models. The present article shows how to implement the analysis and how to interpret the SPSS output. Examples of fitting the unequal variance normal model and other generalized signal detection models are given. The approach offers a convenient means for applying signal detection theory to a variety of research.
Multinomial Logit Model of Pedestrian Crossing Behaviors at Signalized Intersections
Directory of Open Access Journals (Sweden)
Zhu-Ping Zhou
2013-01-01
Full Text Available Pedestrian crashes, making up a large proportion of road casualties, are more likely to occur at signalized intersections in China. This paper aims to study the different pedestrian behaviors of regular users, late starters, sneakers, and partial sneakers. Behavior information was observed manually in the field study. After that, the survey team distributed a questionnaire to the same participant who has been observed, to acquire detailed demographic and socioeconomic characteristics as well as attitude and preference indicators. Totally, 1878 pedestrians were surveyed at 16 signalized intersections in Nanjing. First, correlation analysis is performed to analyze each factor’s effect. Then, five latent variables including safety, conformity, comfort, flexibility, and fastness are obtained by structure equation modeling (SEM. Moreover, based on the results of SEM, a multinomial logit model with latent variables is developed to describe how the factors influence pedestrians’ behavior. Finally, some conclusions are drawn from the model: (1 for the choice of being late starters, arrival time, the presence of oncoming cars, and crosswalk length are the most important factors; (2 gender has the most significant effect on the pedestrians to be sneakers; and (3 age is the most important factor when pedestrians choose to be partial sneakers.
Non-thermal Dark Matter Models and Signals
Okada, Hiroshi; Toma, Takashi
2015-01-01
Many experiments exploring Weakly Interacting Massive Particle (WIMP) such as direct, indirect and collider searches have been carried out until now. However, its clear signal has not been found yet and it makes us to suspect that WIMP is questionable. Taking into account this situation, we propose two models in which DM relic density is produced by decay of a metastable particle. In the first model, the metastable particle is a feebly interacting massive particle which is so-called FIMP produced by freeze-in mechanism in the early universe. In the second model, the decaying particle is thermally produced as same as usual WIMP. However decay of the particle into DM is led by higher dimensional operator. As a phenomenologically interesting feature of non-thermal DM discussed in the paper, a strong sharp gamma-ray emission as an indirect detection signal occurs due to internal bremsstrahlung, although some parameter space has already been constrained by the process. Moreover together with other experimental and...
Nested high resolution models for the coastal areas of the North Indian Ocean
Wobus, Fred; Shapiro, Georgy
2017-04-01
Oceanographic processes at coastal scales require much higher horizontal resolution from both ocean models and observations as compared to deep water oceanography. Aside from a few exceptions such as land-locked seas, the hydrodynamics of coastal shallow waters is strongly influenced by the tides, which in turn control the mixing, formation of temperature fronts and other phenomena. The numerical modelling of the coastal domains requires good knowledge of the lateral boundary conditions. The application of lateral boundary conditions to ocean models is a notoriously tricky task, but can only be avoided with global ocean models. Smaller scale regional ocean models are typically nested within global models, and even smaller-scale coastal models may be nested within regional models, creating a nesting chain. However a direct nesting of a very high resolution coastal model into a coarse resolution global model results in degrading of the accuracy of the outputs due to the large difference between the model resolutions. This is why a nesting chain has to be applied, so that every increase in resolution is kept within a reasonable minimum (typically by a factor of 3 to 5 at each step). Global models are traditionally non-tidal, so at some stage of the nesting chain the tides need to be introduced. This is typically done by calculating the tidal constituents from a dedicated tidal model (e.g. TPXO) for all boundary points of a nested model. The tidal elevation at each boundary location can then be calculated from the harmonics at every model time step and the added to the parent model non-tidal SSH. This combination of harmonics-derived tidal SSH and non-tidal parent model SSH is typically applied to the nested domain using the Flather condition, together with the baroclinic velocities from the parent model. The harmonics-derived SSH cannot be added to an SSH signal that is already tidal, so the parent model SSH has to be either detided or taken from a non-tidal model
A mathematical model of traffic noise at a signalized intersection
Directory of Open Access Journals (Sweden)
Sorawit Narupiti
2005-05-01
Full Text Available This research aims at modeling interrupted flow traffic noise at a signalized intersection. The models are mathematically derived by applying the inverse square law of sound pressure incorporating with theories of traffic flow at an intersection. The traffic flow theories utilized for developing the model consist of characteristics of individual vehicle motion at intersection, shock wave model, and queuing analysis. The modelformulation is divided into two different approaches and takes into account of all regimes of vehicle movement while traversing an intersection (i.e. idling, decelerating, accelerating, and cruising conditions. The first approach assumes a constant acceleration/deceleration rate for each type of vehicle. Another appliesinconstant acceleration/deceleration which comes from speed-distance relationship. The final models are expressed in LAeq (1 hr.Eventually, the developed models are validated by collecting equivalent continuous noise level in 1 min as well as traffic parameters (i.e. red time, number of vehicle in the queue, queue length, time of queue dissipation, and final cruise speed from fifteen vehicle platoons. The noise levels predicted from the developed models are compared with the measured ones. The results show that the inconstant acceleration model gives the predicted levels closer to the measured ones than constant acceleration model. The error of inconstant acceleration model ranges from 0.1-3.9 dB(A with the average value of 2 dB(A overestimated and that of constant acceleration model ranges from 1.8-6.5 dB(A with the average value of 3 dB(A underestimated. It might be concluded that movement characteristic of vehicle is an important factor that apparently affects the accuracy of traffic noise prediction at an intersection.
Signal amplification in an agent-based herding model
Carro, Adrián; Miguel, Maxi San
2013-01-01
A growing part of the behavioral finance literature has addressed some of the stylized facts of financial time series as macroscopic patterns emerging from herding interactions among groups of agents with heterogeneous trading strategies and a limited rationality. We extend a stochastic herding formalism introduced for the modeling of decision making among financial agents, in order to take also into account an external influence. In particular, we study the amplification of an external signal imposed upon the agents by a mechanism of resonance. This signal can be interpreted as an advertising or a public perception in favor or against one of the two possible trading behaviors, thus periodically breaking the symmetry of the system and acting as a continuously varying exogenous shock. The conditions for the ensemble of agents to more accurately follow the periodicity of the signal are studied, finding a maximum in the response of the system for a given range of values of both the noise and the frequency of the...
Small-signal, continuous, exact model of PWM voltage regulators
Burkhardt, W.; Maranesi, P.; Varoli, V.
1985-02-01
The small-signal time-continuous open-loop response of buck, boost, and buck-boost pulse-width-modulation (PWM) voltage regulators using MOSFET switches in their power stages is modeled, applying a time-domain sampling theorem (Woodward, 1953) to obtain the Fourier open-loop transfer function corresponding to the comb function describing the response at the chopping instants only. The results are presented graphically along with simplified circuit diagrams of the PWM devices, and the accuracy and computational efficiency of the analytical approach are indicated.
Acquiring neural signals for developing a perception and cognition model
Li, Wei; Li, Yunyi; Chen, Genshe; Shen, Dan; Blasch, Erik; Pham, Khanh; Lynch, Robert
2012-06-01
The understanding of how humans process information, determine salience, and combine seemingly unrelated information is essential to automated processing of large amounts of information that is partially relevant, or of unknown relevance. Recent neurological science research in human perception, and in information science regarding contextbased modeling, provides us with a theoretical basis for using a bottom-up approach for automating the management of large amounts of information in ways directly useful for human operators. However, integration of human intelligence into a game theoretic framework for dynamic and adaptive decision support needs a perception and cognition model. For the purpose of cognitive modeling, we present a brain-computer-interface (BCI) based humanoid robot system to acquire brainwaves during human mental activities of imagining a humanoid robot-walking behavior. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model. The BCI system consists of a data acquisition unit with an electroencephalograph (EEG), a humanoid robot, and a charge couple CCD camera. An EEG electrode cup acquires brainwaves from the skin surface on scalp. The humanoid robot has 20 degrees of freedom (DOFs); 12 DOFs located on hips, knees, and ankles for humanoid robot walking, 6 DOFs on shoulders and arms for arms motion, and 2 DOFs for head yaw and pitch motion. The CCD camera takes video clips of the human subject's hand postures to identify mental activities that are correlated to the robot-walking behaviors. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model.
Using gaps in N-body tidal streams to probe missing satellites
Energy Technology Data Exchange (ETDEWEB)
Ngan, W. H. W.; Carlberg, R. G., E-mail: ngan@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S3H4 (Canada)
2014-06-20
We use N-body simulations to model the tidal disruption of a star cluster in a Milky-Way-sized dark matter halo, which results in a narrow stream comparable to (but slightly wider than) Pal-5 or GD-1. The mean Galactic dark matter halo is modeled by a spherical Navarro-Frenk-White potential with subhalos predicted by the ΛCDM cosmological model. The distribution and mass function of the subhalos follow the results from the Aquarius simulation. We use a matched filter approach to look for 'gaps' in tidal streams at 12 length scales from 0.1 kpc to 5 kpc, which appear as characteristic dips in the linear densities along the streams. We find that, in addition to the subhalos' perturbations, the epicyclic overdensities (EOs) due to the coherent epicyclic motions of particles in a stream also produce gap-like signals near the progenitor. We measure the gap spectra—the gap formation rates as functions of gap length—due to both subhalo perturbations and EOs, which have not been accounted for together by previous studies. Finally, we project the simulated streams onto the sky to investigate issues when interpreting gap spectra in observations. In particular, we find that gap spectra from low signal-to-noise observations can be biased by the orbital phase of the stream. This indicates that the study of stream gaps will benefit greatly from high-quality data from future missions.
Extracting sea level residual in tidally dominated estuarine environments
Brown, Jennifer M.; Bolaños, Rodolfo; Howarth, Michael J.; Souza, Alejandro J.
2012-07-01
Sea level comprises a mean level, tidal elevation and a residual elevation. Knowledge of what causes maximum water levels is often key in coastal management. However, different methods to extract deviations in water level (residuals) from modelled and observed elevation can give different results. The Dee Estuary, northwest England is a macrotidal estuary that undergoes periodic stratification. It is used here to demonstrate methods to extract the residual water level in response to the following interactive processes: tidal, river-induced stratification and flow, meteorology and waves. Using modelling techniques, the interaction and contribution of different physical processes are investigated. Classical harmonic tidal analysis, model simulations and filtering techniques have been used to "de-tide" the total elevation for short-term (approximately month long) records. Each technique gives a different result highlighting the need to select the correct method for a required study. Analysis of the residual components demonstrates that all processes inducing residuals interact with the tide generating a semi-diurnal residual component. It is suggested that modelling methods enable the full effect of tidal interaction to remain in the residual, whilst harmonic tidal analysis (partly) modify and filtering methods (fully) remove this component of the residual. The analysis methods presented and their influences on the resultant residual are applicable to other study sites. However, when applied specifically to the mouth of the Dee Estuary, the external surge is found to be the main contributor to the total residual, whilst local wind and stratification effects are of secondary importance.
Numerical Modeling of Doppler Radar Signals of Strombolian Eruptions
Gouhier, M.; Donnadieu, F.
2006-12-01
VOLDORAD is a ground-based UHF Doppler radar developed specifically for the remote sounding of volcanic eruptions. Its 23.5 cm wavelength allows us to monitor and quantify eruption intensity in real time from several km, with negligible attenuation by meteorological effects or volcanic ash. In particular, the signal can penetrate inside volcanic jets or plumes to measure the reflectivity and velocities of ejecta in several sampling volumes. The precise knowledge of these parameters is crucial to monitoring the evolution of an eruption and to provide more stringent constraints on assumptions included in models of volcanic processes. To improve our interpretation of radar signals, we have developed a numerical model simulating radar echoes from Strombolian jets. Ballistic projectiles of various sizes are accelerated upwards, over a range of angles, by gas with a given imposed initial velocity , and the equations of motion are solved with a fourth-order Runge-Kutta algorithm. The power backscattered to the radar is simulated by Rayleigh scattering from spheres. Taking into account the sounding geometry used for measurements on Etna in July 2001, our model is able to reproduce many characteristic trends of the time series and Doppler spectra measured during repeated Strombolian outbursts. Models show that measured radar velocities depend mostly on jet geometry, particle size, and initial gas velocity. For wide emission angles, measured radial velocities can be considered as the real ejecta velocities, whereas in the case of narrow vertical or asymmetrical jets, real velocity might be underestimated. However, video analyses confirm that for the majority of explosions, although most particles concentrate in the inner part of the jets, many blocks are also emitted at wide angles. For instance, maximum radial velocities recorded during the July 4 episode of Etna reached 70 m/s. The model radar signal obtained is strongly dependent on the degree of coupling between
Tidal and sub-tidal sea level variability at the northern shelf of the Brazilian Northeast Region
Directory of Open Access Journals (Sweden)
FELIPE F. FROTA
2016-01-01
Full Text Available ABSTRACT A characterization of the sea level variability at tidal and sub-tidal frequencies at the northern shore of the Brazilian Northeast shelf for the period 2009-2011 is presented. The sea level data used was obtained from the Permanent Geodetic Tide Network from the Brazilian Institute of Geography and Statistics for the Fortaleza gauge station. Local wind data was also used to assess its effects on the low-frequency sea level variability. The variability of the sea level was investigated by classical harmonic analysis and by morphology assessment over the tidal signal. The low frequencies were obtained by low-pass filtering. The tidal range oscillated with the highest value of 3.3 m during the equinox and the lowest value of 0.7 m during the solstice. Differences between the spring and neap tides were as high as 1 m. A total of 59 tidal constituents were obtained from harmonic analysis, and the regional tide was classified as semi-diurnal pure with a form number of 0.11. An assessment of the monthly variability of the main tidal constituents (M2, S2, N2, O1, and K1 indicated that the main semi-diurnal solar S2 presented the highest variability, ranging from 0.21 to 0.41 m; it was the main element altering the form number through the years. The low frequency sea-level variability is negligible, although there is a persistent signal with an energy peak in the 10-15 day period, and it cannot be explained by the effects of local winds.
Prostaglandin signaling suppresses beneficial microglial function in Alzheimer's disease models.
Johansson, Jenny U; Woodling, Nathaniel S; Wang, Qian; Panchal, Maharshi; Liang, Xibin; Trueba-Saiz, Angel; Brown, Holden D; Mhatre, Siddhita D; Loui, Taylor; Andreasson, Katrin I
2015-01-01
Microglia, the innate immune cells of the CNS, perform critical inflammatory and noninflammatory functions that maintain normal neural function. For example, microglia clear misfolded proteins, elaborate trophic factors, and regulate and terminate toxic inflammation. In Alzheimer's disease (AD), however, beneficial microglial functions become impaired, accelerating synaptic and neuronal loss. Better understanding of the molecular mechanisms that contribute to microglial dysfunction is an important objective for identifying potential strategies to delay progression to AD. The inflammatory cyclooxygenase/prostaglandin E2 (COX/PGE2) pathway has been implicated in preclinical AD development, both in human epidemiology studies and in transgenic rodent models of AD. Here, we evaluated murine models that recapitulate microglial responses to Aβ peptides and determined that microglia-specific deletion of the gene encoding the PGE2 receptor EP2 restores microglial chemotaxis and Aβ clearance, suppresses toxic inflammation, increases cytoprotective insulin-like growth factor 1 (IGF1) signaling, and prevents synaptic injury and memory deficits. Our findings indicate that EP2 signaling suppresses beneficial microglia functions that falter during AD development and suggest that inhibition of the COX/PGE2/EP2 immune pathway has potential as a strategy to restore healthy microglial function and prevent progression to AD.
Modeling the global positioning system signal propagation through the ionosphere
Bassiri, S.; Hajj, G. A.
1992-01-01
Based on realistic modeling of the electron density of the ionosphere and using a dipole moment approximation for the Earth's magnetic field, one is able to estimate the effect of the ionosphere on the Global Positioning System (GPS) signal for a ground user. The lowest order effect, which is on the order of 0.1-100 m of group delay, is subtracted out by forming a linear combination of the dual frequencies of the GPS signal. One is left with second- and third-order effects that are estimated typically to be approximately 0-2 cm and approximately 0-2 mm at zenith, respectively, depending on the geographical location, the time of day, the time of year, the solar cycle, and the relative geometry of the magnetic field and the line of sight. Given the total electron content along a line of sight, the authors derive an approximation to the second-order term which is accurate to approximately 90 percent within the magnetic dipole moment model; this approximation can be used to reduce the second-order term to the millimeter level, thus potentially improving precise positioning in space and on the ground. The induced group delay, or phase advance, due to second- and third-order effects is examined for two ground receivers located at equatorial and mid-latitude regions tracking several GPS satellites.
Hierarchic stochastic modelling applied to intracellular Ca(2+ signals.
Directory of Open Access Journals (Sweden)
Gregor Moenke
Full Text Available Important biological processes like cell signalling and gene expression have noisy components and are very complex at the same time. Mathematical analysis of such systems has often been limited to the study of isolated subsystems, or approximations are used that are difficult to justify. Here we extend a recently published method (Thurley and Falcke, PNAS 2011 which is formulated in observable system configurations instead of molecular transitions. This reduces the number of system states by several orders of magnitude and avoids fitting of kinetic parameters. The method is applied to Ca(2+ signalling. Ca(2+ is a ubiquitous second messenger transmitting information by stochastic sequences of concentration spikes, which arise by coupling of subcellular Ca(2+ release events (puffs. We derive analytical expressions for a mechanistic Ca(2+ model, based on recent data from live cell imaging, and calculate Ca(2+ spike statistics in dependence on cellular parameters like stimulus strength or number of Ca(2+ channels. The new approach substantiates a generic Ca(2+ model, which is a very convenient way to simulate Ca(2+ spike sequences with correct spiking statistics.
Increased GABAB receptor signaling in a rat model for schizophrenia.
Selten, Martijn M; Meyer, Francisca; Ba, Wei; Vallès, Astrid; Maas, Dorien A; Negwer, Moritz; Eijsink, Vivian D; van Vugt, Ruben W M; van Hulten, Josephus A; van Bakel, Nick H M; Roosen, Joey; van der Linden, Robert J; Schubert, Dirk; Verheij, Michel M M; Kasri, Nael Nadif; Martens, Gerard J M
2016-09-30
Schizophrenia is a complex disorder that affects cognitive function and has been linked, both in patients and animal models, to dysfunction of the GABAergic system. However, the pathophysiological consequences of this dysfunction are not well understood. Here, we examined the GABAergic system in an animal model displaying schizophrenia-relevant features, the apomorphine-susceptible (APO-SUS) rat and its phenotypic counterpart, the apomorphine-unsusceptible (APO-UNSUS) rat at postnatal day 20-22. We found changes in the expression of the GABA-synthesizing enzyme GAD67 specifically in the prelimbic- but not the infralimbic region of the medial prefrontal cortex (mPFC), indicative of reduced inhibitory function in this region in APO-SUS rats. While we did not observe changes in basal synaptic transmission onto LII/III pyramidal cells in the mPFC of APO-SUS compared to APO-UNSUS rats, we report reduced paired-pulse ratios at longer inter-stimulus intervals. The GABAB receptor antagonist CGP 55845 abolished this reduction, indicating that the decreased paired-pulse ratio was caused by increased GABAB signaling. Consistently, we find an increased expression of the GABAB1 receptor subunit in APO-SUS rats. Our data provide physiological evidence for increased presynaptic GABAB signaling in the mPFC of APO-SUS rats, further supporting an important role for the GABAergic system in the pathophysiology of schizophrenia.
Large-Signal DG-MOSFET Modelling for RFID Rectification
Directory of Open Access Journals (Sweden)
R. Rodríguez
2016-01-01
Full Text Available This paper analyses the undoped DG-MOSFETs capability for the operation of rectifiers for RFIDs and Wireless Power Transmission (WPT at microwave frequencies. For this purpose, a large-signal compact model has been developed and implemented in Verilog-A. The model has been numerically validated with a device simulator (Sentaurus. It is found that the number of stages to achieve the optimal rectifier performance is inferior to that required with conventional MOSFETs. In addition, the DC output voltage could be incremented with the use of appropriate mid-gap metals for the gate, as TiN. Minor impact of short channel effects (SCEs on rectification is also pointed out.
Positioning models and systems based on digital television broadcasting signals
Institute of Scientific and Technical Information of China (English)
HE Feng; WU Lenan
2007-01-01
The requirement and feasibility of the positioning system using digital television(DTV)broadcasting signals are analyzed.The principle of DTV positioning on the basis of frame synchronization is brought forward and the ranging characteristic is studied that the observables are asynchronously measured during the same epoch interval.The models of the pseudo-range observation and Doppler carrier phase integral are researched.The system observation and state equations are presented on the basis of the above models.The simulation results showed that DTV positioning technology could remarkably improve the precision of system state estimates using smoothing methods for positioning systems or integrated navigation systems.The DTV positioning that has a sub-meter level ranging error and meter level positioning accuracy can parallel with and even taken as a beneficial substitute for the tradition positioning technology.
Sediment Dynamics in Shallow Tidal Landscapes: The Role of Wind Waves and Tidal Currents
Carniello, L.; D'Alpaos, A.
2014-12-01
A precise description of sediment dynamics (resuspension and re-distribution of sediments) is crucial when investigating the long term evolution of the different morphological entities characterizing tidal landscapes. It has been demonstrated that wind waves are the main responsible for sediment resuspension in shallow micro-tidal lagoons where tidal currents, which produce shear stresses large enough to carry sediments into suspension only within the main channels, are mainly responsible for sediment redistribution. A mathematical model has been developed to describe sediment entrainment, transport and deposition due to the combined effect of tidal currents and wind waves in shallow lagoons considering both cohesive and non-cohesive sediments. The model was calibrated and tested using both in situ point observations and turbidity maps obtained analyzing satellite images. Once calibrated the model can integrate the high temporal resolution of point observations with the high spatial resolution of remote sensing, overcoming the intrinsic limitation of these two types of observations. The model was applied to the specific test case of the Venice lagoon simulating an entire year (2005) which was shown to be a "representative" year for wind and tide characteristics. The time evolution of the computed total bottom shear stresses (BSS) and suspended sediment concentration (SSC) was analyzed on the basis of a "Peaks Over Threshold" method once a critical value for shear stress and turbidity were chosen. The analyses of the numerical results enabled us to demonstrate that resuspension events can be modeled as marked Poisson processes: interarrival time, intensity of peak excesses and duration being exponentially distributed random variable. The probability distributions of the interarrival time of overthreshold exceedances in both BSS and SSC as well as their intensity and duration can be used in long-term morphodynamic studies to generate synthetic series statistically
Tidal Heating of Terrestrial Extra-Solar Planets and Implications for their Habitability
Jackson, Brian; Greenberg, Richard
2008-01-01
The tidal heating of hypothetical rocky (or terrestrial) extra-solar planets spans a wide range of values depending on stellar masses and initial orbits. Tidal heating may be sufficiently large (in many cases, in excess of radiogenic heating) and long-lived to drive plate tectonics, similar to the Earth's, which may enhance the planet's habitability. In other cases, excessive tidal heating may result in Io-like planets with violent volcanism, probably rendering them unsuitable for life. On water-rich planets, tidal heating may generate sub-surface oceans analogous to Europa's with similar prospects for habitability. Tidal heating may enhance the outgassing of volatiles, contributing to the formation and replenishment of a planet's atmosphere. To address these issues, we model the tidal heating and evolution of hypothetical extra-solar terrestrial planets. The results presented here constrain the orbital and physical properties required for planets to be habitable.
Earthquake Tidal Triggering Associated with the 2015 Eruption of Axial Seamount
Wilcock, W. S. D.; Tolstoy, M.; Waldhauser, F.; Tan, Y. J.; Garcia, C.; Arnulf, A. F.; Crone, T. J.
2016-12-01
The Ocean Observatories Initiative's real time cabled observatory at Axial Seamount includes a seven station seismic network that spans the southern half of the summit caldera. The network has been in operation since late 2014 and, in conjunction with geodetic sensors on the observatory, has recorded an exceptional data set to characterize the dynamics of the caldera through the April 2015 eruption. Prior to the eruption, earthquake rates were high and double-difference locations show that the inflation of the volcano was accommodated by deformation on an outward dipping caldera ring fault. The onset of the eruption was marked by a seismic crisis on April 24 and rapid deflation of the volcano; the caldera ring fault accommodated deflation and guided a dike beneath the east rim of the caldera. The seismic crisis was followed by a steady decline in the rates of earthquakes and deflation. Numerous seafloor explosions document the timing and location of lava flows in the caldera and on the north rift of the seamount. They ceased after about a month when the volcano started to reinflate. Efforts are presently underway to improve the resolution of hypocenters both through the use of cross-correlation-based double-difference hypocenter locations (Tan et al., this meeting) and by the incorporation of three-dimensional velocity models that account for the heterogeneous structure of the volcano. One particularly interesting aspect of the seismicity is the tidal triggering. Prior to the eruption, when the volcano is critically stressed, the earthquakes show a strong tidal triggering signal with higher rates of seismicity near low tides when faults are unclamped. Earthquake rates at the lowest tides are about six times those at the highest tides. There are also noticeable temporo-spatial patterns in the earthquake swarms that occur at each low tide suggesting that the characteristics of tidal triggering may be spatial dependent. Following the eruption, only a weak tidal
DEFF Research Database (Denmark)
Ernstsen, Verner Brandbyge; Lefebvre, Alice; Fraccascia, Serena
and the different transport pathways shaping the system is needed to assess the impact of potentially changing environmental conditions, such as accelerating sea level rise, increasing storm intensities and frequencies, or shifting wind directions. The aim of this study is to investigate the sand transport pathways...... and morphodynamics in a natural tidal inlet system, the Knudedyb tidal inlet in the Danish Wadden Sea, by coupling investigations in the sub-tidal inlet channel and the adjacent inter-tidal and supra-tidal areas to encompass the complete system. More specifically, the objective is to develop a conceptual model...
Impact of sea level rise on tidal range in Chesapeake and Delaware Bays
Lee, Serena Blyth; Li, Ming; Zhang, Fan
2017-05-01
Coastal inundation is affected not only by rising mean sea level but also by changing tides. A numerical model is developed to investigate how sea level rise and coastline changes may impact tides in two coastal-plain estuaries, Chesapeake Bay and Delaware Bay. Despite their different tidal characteristics, the two estuaries display similar responses to the sea level rise and shoreline management scenarios. When hypothetic sea walls are erected at the present coastline to prevent low-lying land from flooding, tidal range increases, with greater amplification in the upper part of the two estuaries. When low-lying land is allowed to become permanently inundated by higher sea level, however, tidal range in both estuaries decreases. Analyses of the tidal energy budget show that the increased dissipation over the shallow water and newly inundated areas compensates for the reduced dissipation in deep water, leading to smaller tidal range. The changes in the tidal range are not proportional to the changes in the mean sea level, indicating a nonlinear tidal response to sea level rise. The ratio of tidal range change to sea level rise varies between -0.05 and 0.1 in Chesapeake Bay and between -0.2 and 0.25 in Delaware Bay. The model results suggest a potential adaptation strategy that uses inundation over low-lying areas to reduce tidal range at up-estuary locations.
New Concept for Assessment of Tidal Current Energy in Jiangsu Coast, China
Directory of Open Access Journals (Sweden)
Ji-Sheng Zhang
2013-01-01
Full Text Available Tidal current energy has attracted more and more attentions of coastal engineers in recent years, mainly due to its advantages of low environmental impact, long-term predictability, and large energy potential. In this study, a two-dimensional hydrodynamic model is applied to predict the distribution of mean density of tidal current energy and to determine a suitable site for energy exploitation in Jiangsu Coast. The simulation results including water elevation and tidal current (speed and direction were validated with measured data, showing a reasonable agreement. Then, the model was used to evaluate the distribution of mean density of tidal current energy during springtide and neap tide in Jiangsu Coast. Considering the discontinuous performance of tidal current turbine, a new concept for assessing tidal current energy is introduced with three parameters: total operating time, dispersion of operating time, and mean operating time of tidal current turbine. The operating efficiency of tidal current turbine at three locations around radial submarine sand ridges was taken as examples for comparison, determining suitable sites for development of tidal current farm.
The distribution and tapping tidal energy
Directory of Open Access Journals (Sweden)
Zygmunt Kowalik
2004-09-01
Full Text Available Tidal power along tidal shores has been used for centuries to run small tidal mills. Generating electricity by tapping tidal power proved to be very successful only in the last century through the tidal power plant constructed in 1967 in La Rance, France. This used a large barrier to generate the sea level head necessary for driving turbines. Construction of such plants evolved very slowly because of prohibitive costs and concerns about the environmental impact. Developments in the construction of small, efficient and inexpensive underwater turbines admit the possibility of small scale operations that will use local tidal currents to bring electricity to remote locations. Since the generation of such electricity is concerned with the tidal energy in local water bodies, it is important to understand the site-specific energy balance, i.e., the energy flowing in through open boundaries, and the energy generated and dissipated within the local domain. The question is how to tap the tidal energy while keeping possible changes in the present tidal regimes to a minimum. The older approach of constructing barrages may still be quite useful in some locations. The basics of such tidal power plants constructed in a small bay are analyzed in order to understand the principal parameter for tidal plant evaluation, i.e., the power produced. The new approach is to place turbines - devices similar to windmills - in the pathway of tidal currents. Theoretically, the amount of power available by such turbines for electricity generation is proportional to the water density and velocity cubed of the tidal flow. The naturally dissipated tidal power due to bottom friction forces is also proportional to the cube of the velocity. Because of this similarity, the exploitation of tidal energy can be directed to reinvesting the naturally dissipated power into tidal power for the generation of electricity. This approach to tidal power exploitation is better tuned
Institute of Scientific and Technical Information of China (English)
赵婉璐; 郝瑞霞
2015-01-01
This study used half implicit three-dimensional ocean turbulence model ECOMSED(Estuarine, Coastal and Ocean Modeling System with Sediments) to build 3D tidal current numerical model of the Zhanjiang Bay upstream channel. The model uses refined orthogonal grid to joint the shoreline boundary in horizontal direction, and uses sigma coordinates to better fit bottom topography in the vertical direction. Through verification, it is shown that the simulation results are in good agreement with the measured data, suggesting that this model can well forecast the dynamic charac-teristics of Zhanjiang Bay's tidal, which provides a technical support for further study of the offshore estuary water temperature change, saltwater intrusion and sediment transport.%采用半隐式的ECOMSED(Estuarine, Coastal and Ocean Modeling System with Sediments)三维海洋紊流模式, 建立湛江湾湾顶水道的三维潮流数值模型.模型的水平方向采用加密的正交网格以贴合岸线边界, 垂向上采用σ坐标以更好地拟合海底地形.通过验证, 模拟结果与实测数据符合良好, 表明运用该模型可以较好地预报湛江湾的潮流动力特性.为进一步研究湛江湾水道附近水域的温盐变化、泥沙输运提供技术支持.
The development of attenuation compensation models of fluorescence spectroscopy signals
Dremin, Victor V.; Zherebtsov, Evgeny A.; Rafailov, Ilya E.; Vinokurov, Andrey Y.; Novikova, Irina N.; Zherebtsova, Angelina I.; Litvinova, Karina S.; Dunaev, Andrey V.
2016-04-01
This study examines the effect of blood absorption on the endogenous fluorescence signal intensity of biological tissues. Experimental studies were conducted to identify these effects. To register the fluorescence intensity, the fluorescence spectroscopy method was employed. The intensity of the blood flow was measured by laser Doppler flowmetry. We proposed one possible implementation of the Monte Carlo method for the theoretical analysis of the effect of blood on the fluorescence signals. The simulation is constructed as a four-layer skin optical model based on the known optical parameters of the skin with different levels of blood supply. With the help of the simulation, we demonstrate how the level of blood supply can affect the appearance of the fluorescence spectra. In addition, to describe the properties of biological tissue, which may affect the fluorescence spectra, we turned to the method of diffuse reflectance spectroscopy (DRS). Using the spectral data provided by the DRS, the tissue attenuation effect can be extracted and used to correct the fluorescence spectra.
Chemotaxis signaling systems in model beneficial plant-bacteria associations.
Scharf, Birgit E; Hynes, Michael F; Alexandre, Gladys M
2016-04-01
Beneficial plant-microbe associations play critical roles in plant health. Bacterial chemotaxis provides a competitive advantage to motile flagellated bacteria in colonization of plant root surfaces, which is a prerequisite for the establishment of beneficial associations. Chemotaxis signaling enables motile soil bacteria to sense and respond to gradients of chemical compounds released by plant roots. This process allows bacteria to actively swim towards plant roots and is thus critical for competitive root surface colonization. The complete genome sequences of several plant-associated bacterial species indicate the presence of multiple chemotaxis systems and a large number of chemoreceptors. Further, most soil bacteria are motile and capable of chemotaxis, and chemotaxis-encoding genes are enriched in the bacteria found in the rhizosphere compared to the bulk soil. This review compares the architecture and diversity of chemotaxis signaling systems in model beneficial plant-associated bacteria and discusses their relevance to the rhizosphere lifestyle. While it is unclear how controlling chemotaxis via multiple parallel chemotaxis systems provides a competitive advantage to certain bacterial species, the presence of a larger number of chemoreceptors is likely to contribute to the ability of motile bacteria to survive in the soil and to compete for root surface colonization.
Relativistic theory of tidal Love numbers
Binnington, Taylor; Poisson, Eric
2009-01-01
In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neut...
Spitzer Observations of Tidal Dwarf Galaxies
Higdon, Sarah J U
2007-01-01
We present Spitzer observations of Tidal Dwarf Galaxies (TDGs) in three interacting systems: NGC 5291, Arp105 and Stephan's Quintet. The spectra show bright emission from polyaromatic hydrocarbons (PAHs), nebular lines and warm molecular hydrogen, characteristic of recent episodes of star formation. The PAH emission that falls in the IRAC 8.0 micron band leads to the TDGs having an extremely red IRAC color, with [4.5] - [8.0] > 3. The emission from PAHs is characterized by a model with mainly neutral 100-C PAH atoms.
Latent resonance in tidal rivers, with applications to River Elbe
Backhaus, Jan O.
2015-11-01
We describe a systematic investigation of resonance in tidal rivers, and of river oscillations influenced by resonance. That is, we explore the grey-zone between absent and fully developed resonance. Data from this study are the results of a one-dimensional numerical channel model applied to a four-dimensional parameter space comprising geometry, i.e. length and depths of rivers, and varying dissipation and forcing. Similarity of real rivers and channels from parameter space is obtained with the help of a 'run-time depth'. We present a model-channel, which reproduces tidal oscillations of River Elbe in Hamburg, Germany with accuracy of a few centimetres. The parameter space contains resonant regions and regions with 'latent resonance'. The latter defines tidal oscillations that are elevated yet not in full but juvenile resonance. Dissipation reduces amplitudes of resonance while creating latent resonance. That is, energy of resonance radiates into areas in parameter space where periods of Eigen-oscillations are well separated from the period of the forcing tide. Increased forcing enhances the re-distribution of resonance in parameter space. The River Elbe is diagnosed as being in a state of anthropogenic latent resonance as a consequence of ongoing deepening by dredging. Deepening the river, in conjunction with the expected sea level rise, will inevitably cause increasing tidal ranges. As a rule of thumb, we found that 1 m deepening would cause 0.5 m increase in tidal range.
Jiang, Chengyu; Xue, Liang; Chang, Honglong; Yuan, Guangmin; Yuan, Weizheng
2012-01-01
This paper presents a signal processing technique to improve angular rate accuracy of the gyroscope by combining the outputs of an array of MEMS gyroscope. A mathematical model for the accuracy improvement was described and a Kalman filter (KF) was designed to obtain optimal rate estimates. Especially, the rate signal was modeled by a first-order Markov process instead of a random walk to improve overall performance. The accuracy of the combined rate signal and affecting factors were analyzed using a steady-state covariance. A system comprising a six-gyroscope array was developed to test the presented KF. Experimental tests proved that the presented model was effective at improving the gyroscope accuracy. The experimental results indicated that six identical gyroscopes with an ARW noise of 6.2 °/√h and a bias drift of 54.14 °/h could be combined into a rate signal with an ARW noise of 1.8 °/√h and a bias drift of 16.3 °/h, while the estimated rate signal by the random walk model has an ARW noise of 2.4 °/√h and a bias drift of 20.6 °/h. It revealed that both models could improve the angular rate accuracy and have a similar performance in static condition. In dynamic condition, the test results showed that the first-order Markov process model could reduce the dynamic errors 20% more than the random walk model.
Diffusion imaging with stimulated echoes: signal models and experiment design
Alexander, Daniel C
2013-01-01
Purpose: Stimulated echo acquisition mode (STEAM) diffusion MRI can be advantageous over pulsed-gradient spin-echo (PGSE) for diffusion times that are long compared to $\\ttwo$. It is important therefore for biomedical diffusion imaging applications at 7T and above where $\\ttwo$ is short. However, imaging gradients in the STEAM sequence contribute much greater diffusion weighting than in PGSE, but are often ignored during post-processing. We demonstrate here that this can severely bias parameter estimates. Method: We present models for the STEAM signal for free and restricted diffusion that account for crusher and slice-select (butterfly) gradients to avoid such bias. The butterfly gradients also disrupt experiment design, typically by skewing gradient-vectors towards the slice direction. We propose a simple compensation to the diffusion gradient vector specified to the scanner that counterbalances the butterfly gradients to preserve the intended experiment design. Results: High-field data fixed monkey brain e...
Simulation of signal transduction in model multiprotein systems
Su, Julius
2009-03-01
To simulate the dynamics of multiprotein machines, I have developed a method called multiconformer Brownian dynamics (mcBD). In this method, proteins rotate and translate via Brownian motion while their conformations are varied among a prestored set of structures on a simplified energy landscape, taking into account inter-protein interactions. As an example, I build a simple model of a G-protein coupled receptor/G-protein complex, and show that ligand binding causes conformational shifts, which induce GDP to leave, GTP to bind, and the complex to dissociate. The two proteins couple their fast fluctuations together into large-scale coordinated functional motions, resulting in signal transduction. I vary the shapes, electrostatics, and energy landscapes of the proteins independently and examine the impact this has on the system's function. In one result, increasing the binding between proteins improves the fidelity of communication, but at the expense of overall switching frequency.
Mathematical modeling and signal processing in speech and hearing sciences
Xin, Jack
2014-01-01
The aim of the book is to give an accessible introduction of mathematical models and signal processing methods in speech and hearing sciences for senior undergraduate and beginning graduate students with basic knowledge of linear algebra, differential equations, numerical analysis, and probability. Speech and hearing sciences are fundamental to numerous technological advances of the digital world in the past decade, from music compression in MP3 to digital hearing aids, from network based voice enabled services to speech interaction with mobile phones. Mathematics and computation are intimately related to these leaps and bounds. On the other hand, speech and hearing are strongly interdisciplinary areas where dissimilar scientific and engineering publications and approaches often coexist and make it difficult for newcomers to enter.
An Updated GA Signaling 'Relief of Repression' Regulatory Model
Institute of Scientific and Technical Information of China (English)
Xiu-Hua Gao; Sen-Lin Xiao; Qin-Fang Yao; Yu-Juan Wang; Xiang-Dong Fu
2011-01-01
Gibberellic acid (GA)regulates many aspects of plant growth and development. The DELLA proteins act to restrain plant growth, and GA relieves this repression by promoting their degradation via the 26S proteasome pathway.The elucidation of the crystalline structure of the GA soluble receptor GID1 protein represents an important breakthrough for understanding the way in which GA is perceived and how it induces the destabilization of the DELLA proteins. Recent advances have revealed that the DELLA proteins are involved in protein-protein interactions within various environmental and hormone signaling pathways. In this review, we highlight our current understanding of the 'relief of repression" model that aims to explain the role of GA and the function of the DELLA proteins, incorporating the many aspects of cross-talk shown to exist in the control of plant development and the response to stress.
The gravitational self-interaction of the Earth's tidal bulge
Norsen, Travis; Dreese, Mackenzie; West, Christopher
2017-09-01
According to a standard, idealized analysis, the Moon would produce a 54 cm equilibrium tidal bulge in the Earth's oceans. This analysis omits many factors (beyond the scope of the simple idealized model) that dramatically influence the actual height and timing of the tides at different locations, but it is nevertheless an important foundation for more detailed studies. Here, we show that the standard analysis also omits another factor—the gravitational interaction of the tidal bulge with itself—which is entirely compatible with the simple, idealized equilibrium model and which produces a surprisingly non-trivial correction to the predicted size of the tidal bulge. Our analysis uses ideas and techniques that are familiar from electrostatics, and should thus be of interest to teachers and students of undergraduate E&M, Classical Mechanics (and/or other courses that cover the tides), and geophysics courses that cover the closely related topic of Earth's equatorial bulge.
Directory of Open Access Journals (Sweden)
Tcheou Michel P
2007-01-01
Full Text Available The number of waveforms monitored in power systems is increasing rapidly. This creates a demand for computational tools that aid in the analysis of the phenomena and also that allow efficient transmission and storage of the information acquired. In this context, signal processing techniques play a fundamental role. This work is a tutorial reviewing the principles and applications of atomic signal modeling of electric disturbance signals. The disturbance signal is modeled using a linear combination of damped sinusoidal components which are closely related to the phenomena typically observed in power systems. The signal model obtained is then employed for disturbance signal denoising, filtering of "DC components," and compression.
Modeling the photoacoustic signal during the porous silicon formation
Ramirez-Gutierrez, C. F.; Castaño-Yepes, J. D.; Rodriguez-García, M. E.
2017-01-01
Within this work, the kinetics of the growing stage of porous silicon (PS) during the etching process was studied using the photoacoustic technique. A p-type Si with low resistivity was used as a substrate. An extension of the Rosencwaig and Gersho model is proposed in order to analyze the temporary changes that take place in the amplitude of the photoacoustic signal during the PS growth. The solution of the heat equation takes into account the modulated laser beam, the changes in the reflectance of the PS-backing heterostructure, the electrochemical reaction, and the Joule effect as thermal sources. The model includes the time-dependence of the sample thickness during the electrochemical etching of PS. The changes in the reflectance are identified as the laser reflections in the internal layers of the system. The reflectance is modeled by an additional sinusoidal-monochromatic light source and its modulated frequency is related to the velocity of the PS growth. The chemical reaction and the DC components of the heat sources are taken as an average value from the experimental data. The theoretical results are in agreement with the experimental data and hence provided a method to determine variables of the PS growth, such as the etching velocity and the thickness of the porous layer during the growing process.
Water Stage Forecasting in Tidal streams during High Water Using EEMD
Chen, Yen-Chang; Kao, Su-Pai; Su, Pei-Yi
2017-04-01
There are so many factors may affect the water stages in tidal streams. Not only the ocean wave but also the stream flow affects the water stage in a tidal stream. During high water, two of the most important factors affecting water stages in tidal streams are flood and tide. However the hydrological processes in tidal streams during high water are nonlinear and nonstationary. Generally the conventional methods used for forecasting water stages in tidal streams are very complicated. It explains the accurately forecasting water stages, especially during high water, in tidal streams is always a difficult task. The study makes used of Ensemble Empirical Model Decomposition (EEMD) to analyze the water stages in tidal streams. One of the advantages of the EEMD is it can be used to analyze the nonlinear and nonstationary data. The EEMD divides the water stage into several intrinsic mode functions (IMFs) and a residual; meanwhile, the physical meaning still remains during the process. By comparing the IMF frequency with tidal frequency, it is possible to identify if the IMF is affected by tides. Then the IMFs is separated into two groups, affected by tide or not by tide. The IMFs in each group are assembled to become a factor. Therefore the water stages in tidal streams are only affected by two factors, tidal factor and flood factor. Finally the regression analysis is used to establish the relationship between the factors of the gaging stations in the tidal stream. The available data during 15 typhoon periods of the Tanshui River whose downstream reach is in estuary area is used to illustrate the accuracy and reliability of the proposed method. The results show that the simple but reliable method is capable of forecasting water stages in tidal streams.
Estimation of River Pollution Index in a Tidal Stream Using Kriging Analysis
Directory of Open Access Journals (Sweden)
Chiang Wei
2012-08-01
Full Text Available Tidal streams are complex watercourses that represent a transitional zone between riverine and marine systems; they occur where fresh and marine waters converge. Because tidal circulation processes cause substantial turbulence in these highly dynamic zones, tidal streams are the most productive of water bodies. Their rich biological diversity, combined with the convenience of land and water transports, provide sites for concentrated populations that evolve into large cities. Domestic wastewater is generally discharged directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality of these streams. Given the complex flow dynamics of tidal streams, only a few models can effectively evaluate and identify pollution levels. This study evaluates the river pollution index (RPI in tidal streams by using kriging analysis. This is a geostatistical method for interpolating random spatial variation to estimate linear grid points in two or three dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which is typically considered as 1D in hydraulic engineering. The proposed method efficiently evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the Tanshui River downstream reach available from an estuarine area validate the accuracy and reliability of the proposed method. Results of this study demonstrate that this simple yet reliable method can effectively estimate RPI in tidal streams.
Estimation of river pollution index in a tidal stream using kriging analysis.
Chen, Yen-Chang; Yeh, Hui-Chung; Wei, Chiang
2012-08-29
Tidal streams are complex watercourses that represent a transitional zone between riverine and marine systems; they occur where fresh and marine waters converge. Because tidal circulation processes cause substantial turbulence in these highly dynamic zones, tidal streams are the most productive of water bodies. Their rich biological diversity, combined with the convenience of land and water transports, provide sites for concentrated populations that evolve into large cities. Domestic wastewater is generally discharged directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality of these streams. Given the complex flow dynamics of tidal streams, only a few models can effectively evaluate and identify pollution levels. This study evaluates the river pollution index (RPI) in tidal streams by using kriging analysis. This is a geostatistical method for interpolating random spatial variation to estimate linear grid points in two or three dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which is typically considered as 1D in hydraulic engineering. The proposed method efficiently evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the Tanshui River downstream reach available from an estuarine area validate the accuracy and reliability of the proposed method. Results of this study demonstrate that this simple yet reliable method can effectively estimate RPI in tidal streams.
Influences of tidal energy advection on the surface energy balance in a mangrove forest
Directory of Open Access Journals (Sweden)
J. G. Barr
2012-08-01
Full Text Available Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL. Forest-atmosphere energy exchanges were quantified with an eddy covariance system deployed on a flux tower. The lateral energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, tidal flows reduced the impact of high radiational loads on the mangrove forest. Including tidal energy advection in the surface energy balance improved the 30-min daytime energy closure from 73% to 82% over the study period. Also, the cumulative sum of energy output improved from 79% to 91% of energy input during the study period. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem response to changing climate and
Analysis of CHAMP scalar magnetic data to identify ocean circulation signals
DEFF Research Database (Denmark)
Manoj, C.; Maus, S.; Kuvshinov, Alexei
Unlike tidal ocean signals, the magnetic signal of ocean circulation has not yet been identified in satellite magnetic data. In particular, the steady signal of mean ocean flow is indistinguishable from time invariant crustal signals. One option, therefore, is to predict the seasonal and annual...... variations in the ocean flow signal from ocean circulation models and compare them with the corresponding variations in satellite magnetic residuals. We used the 11 year ECCO-1 simulation data to derive the ocean transport. A 3D EM induction code in its low frequency limit, was used to simulate the magnetic...... signals at satellite altitude. We predict annual variation amplitudes in the scalar anomaly of the order of 0.3 nT. We compare these predictions with the particularly quiet CHAMP night-time scalar data, subtracting core, mantle, crustal, ocean tidal, and magnetospheric contributions to the field...
Numerical Analysis of the Mixing Zone for a Vertical Discharge into a Tidal River
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This paper analyzes the mixing zone of a vertical discharge of sewage into a natural tidal river with strong tidal currents. The paper presents a numerical model, which combines 1-D and 2-D models to compute the mixing zone for the Sibao Segment of the Qiantang River. The simple 1-D model was used to model the flow for the entire river using field data as the boundary conditions. The complete depth-averaged turbulence model was used for the 2-D computation. The calculated results agree well with the field observations. The analysis provides a practical method for the computation of mixing zones in tidal rivers.
Tidal Level Response to Sea-Level Rise in the Yangtze Estuary
Institute of Scientific and Technical Information of China (English)
GONG Zheng; ZHANG Chang-kuan; WAN Li-ming; ZUO Jun-cheng
2012-01-01
The rise of tidal level in tidal reaches induced by sea-level rise has a large impact on flood control and water supply for the regions around the estuary.This paper focuses on the variations of tidal level response along the tidal reaches in the Yangtze Estuary,as well as the impacts of upstream discharge on tidal level response,due to the sea-level rise of the East China Sea.Based on the Topex/Poseidon altimeter data obtained during the period 1993～2005,a stochastic dynamic analysis was performed and a forecast model was run to predict the sea-level rise of the East China Sea.Two-dimensional hydrodynamic numerical models downscaling from the East China Sea to estuarine areas were implemented to analyze the rise of tidal level along the tidal reaches.In response to the sea-level rise,the tidal wave characteristics change slightly in nearshore areas outside the estuaries,involving the tidal range and the duration of flood and ebb tide.The results show that the rise of tidal level in the tidal reaches due to the sea-level rise has upstream decreasing trends.The step between the stations of Zhangjiagang and Shiyiwei divides the tidal reaches into two parts,in which the tidal level response declines slightly.The rise of tidal level is 1～2.5 mm/a in the upper part,and 4～6 mm/a in the lower part.The stations of Jiangyin and Yanglin,as an example of the upper part and the lower part respectively,are extracted to analyze the impacts of upstream discharge on tidal level response to the sea-level rise.The relation between the rise of tidal level and the upstream discharge can be fitted well with a quadratic function in the upper part.However,the relation is too complicated to be fitted in the lower part because of the tide dominance.For comparison purposes,hourly tidal level observations at the stations of Xuliujing and Yanglin during the period 1993～2009 are adopted.In order to uniform the influence of upstream discharge on tidal level for a certain day each year
Constraints on Tidal Heating in Enceladus
Stevenson, D. J.
2008-12-01
Two constraints for Enceladus seem difficult to dispute: First, that it is emitting more heat than allowed by equilibrium tidal heating models (defined as those in which the tidal heat production and orbital eccentricity are constant with time, cf. Meyer and Wisdom, 2007). Second, the maximum possible instantaneous tidal heat generation is over two orders of magnitude larger than what is observed. (This can be shown independent of any particular rheological model.) There is nothing mysterious about the simultaneous correctness of these two statements since one pertains to the orbital evolution aspect of the problem and the other pertains to the actual mechanism of dissipation. In reality, the maximum heat dissipation would never be approached since it would quench the eccentricity in a short timescale (ten to a hundred thousand years). However, this high upper bound assures us that there is no fundamental difficulty with the tidal heating mechanism, only with its constancy over long periods of time. This suggests that one should seek a model in which the eccentricity fluctuates, possibly mediated by the bounds imposed at the high end by the stress limits for ice fracture and at the low end by the stress at which motion on faults (lubricated or dry) ceases to be possible. I will describe models of this kind that are capable, at least in principle, of producing the desired heat flow in instantaneous equilibrium (i.e., without the need to store heat in the interior). This is a stress-mediated model rather than a thermally mediated model (like that advocated for Io, which has a similar disequilibrium problem). Such a model must (in analogy with successful models for Io and Europa) simultaneously provide the right environment for the desired straining of the outer part of the ice shell and a deeper environment that is sufficiently deformable so that a large tidal Love number (of order a hundred times the elastic value) can be achieved. It is argued that solid water ice
Olariu, Cornel; Steel, Ronald J.; Dalrymple, Robert W.; Gingras, Murray K.
2012-11-01
dunes, separated by 10-30 cm of bioturbated muddy sandstone, which migrated over each other in an offlapping, progradational fashion. Each compound-dune complex (the best reservoir rock) thins as it downlaps, at average rates of 3-4 m/km in a dip direction. These reservoir units can be comprised of discrete compartments, each formed by a single compound dune, that extend for 500-1000 m in the direction of the current, and are at least 350-600 m wide in a flow-transverse direction. Distinguishing between tidal bars and tidal dunes in an ancient tidal succession can be difficult because both can contain similar cross-bedded facies and have overlapping thicknesses; however, the internal architecture and sandbody orientations are different. Tidal bars have their long axis almost parallel both to the tidal current direction and to the strike of the lateral-accretion master surfaces. In inshore areas, they are bounded by channels and fine upward. Large compound tidal dunes, in contrast, have their crest oriented approximately normal to the tidal currents and contain a forward-accretion architecture. Coeval channels are uncommon within large, sub-tidal dune fields. The above distinctions are very important to reservoir description and modeling, because the long axis of the intra-reservoir compartments in the two cases will be 90° apart.
General relativistic tidal heating for Moller pseudotensor
So, Lau Loi
2015-01-01
Thorne elucidated that the relativistic tidal heating is the same as the Newtonian theory. Moreover, Thorne also claimed that the tidal heating is independent of how one localizes gravitational energy and is unambiguously given by a certain formula. Purdue and Favata calculated the tidal heating for different classical pseudotensors including Moller and obtained the results all matched with the Newtonian perspective. After re-examined this Moller pseudotensor, we find that there does not exist any tidal heating value. Thus we claim that the relativistic tidal heating is pseudotensor independent under the condition that if the peusdotensor is a Freud typed superpotential.
Multiple tidal disruption flares in the active galaxy IC 3599
Campana, S; Colpi, M; Lodato, G; D'Avanzo, P; Evans, P A; Moretti, A
2015-01-01
Tidal disruption events occur when a star passes too close to a massive black hole and it is totally ripped apart by tidal forces. Alternatively, if the star does not get close enough to the black hole to be totally disrupted, a less dramatic event might happen with the star surviving the encounter and loosing only a small fraction of its mass. In this situation if the stellar orbit is bound and highly eccentric, just like some stars in the centre of our own Galaxy, repeated flares should occur. When the star approaches the black hole tidal radius at periastron, matter might be stripped resulting in lower intensity outbursts recurring once every orbital period. We report on Swift observations of a recent bright flare from the galaxy IC 3599 hosting a middle-weight black hole, where a possible tidal disruption event was observed in the early 1990s. By light curve modelling and spectral fitting we can consistently account for the events as the non-disruptive tidal stripping of a star into a highly eccentric orb...
Bar morphodynamics in the tidally-influenced fluvial zone
Parsons, Daniel; Ashworth, Philip; Best, James; Nicholas, Andrew; Prokocki, Eric; Sambrook-Smith, Greg; Keevil, Claire; Sandbach, Steve
2015-04-01
The hydrodynamics and deposits of the Tidally-Influenced Fluvial Zone (TIFZ) are complex because it experiences competing fluvial and tidal flows and spatially and temporally variable rates of sediment transport and deposition. This paper presents a new integrated field dataset from the Columbia River Estuary, USA, that quantifies the morphodynamic response the bed morphology and bar stratigraphy to fluvial-tidal flows. A 3-year, field and modelling program that started in 2011, has been monitoring the dynamics and deposits of a 40 km-reach of the Columbia River Estuary. Data obtained so far throughout the TIFZ include: bathymetry using MBES, flow using ADCP, subsurface sedimentology using GPR and shallow coring to 5 m. Initial results from the programme suggest there is a complex spatial and temporal lag in the response of the bed morphology and deposits to the fluvial-tidal flows. Zones of strong ebb and flood flow do not necessarily produce channel beds dominated by bi-directional bedforms. Many mid-channel bars are stable over decadal time periods. This paper will illustrate the variety in bar morphologies and channel change throughout the fluvial-tidal zone and contrast these bar dynamics with examples from purely fluvial environments.
Bar morphodynamics in the fluvial-tidal zone
Ashworth, P. J.; Best, J. L.; Nicholas, A.; Parsons, D. R.; Prokocki, E.; Sambrook Smith, G.; Simpson, C.
2012-12-01
The hydrodynamics and deposits of the Tidally-Influenced Fluvial Zone (TIFZ) are complex because it experiences competing fluvial and tidal flows, sometimes moderated by waves, and spatially and temporally variable rates of sediment transport and deposition. This paper presents a new integrated field dataset from the Columbia River Estuary, USA, that quantifies the response of the flow structure, bed morphology and bar stratigraphy to fluvial-tidal flows. A new 3-year, field and modelling program that started in 2011, has been monitoring the dynamics and deposits of a 40 km-reach of the Columbia River Estuary. Data obtained so far throughout the TIFZ include: bathymetry using MBES, flow using ADCP, subsurface sedimentology using GPR and shallow coring to 5 m. First results suggest there is a complex spatial and temporal lag in the response of the bed morphology and deposits to the fluvial-tidal flows. Zones of strong ebb and flood flow do not necessarily produce channel beds dominated by bi-directional bedforms. Many mid-channel bars are stable over decadal time periods. This paper will illustrate the variety in bar morphologies and channel change throughout the fluvial-tidal zone and contrast these bar dynamics with examples from purely fluvial environments.
Heartbeat Stars: A Class Of Tidally Excited Eccentric Binaries
Barclay, Thomas; Thompson, S. E.; Mullally, F.; Everett, M.; Howell, S. B.; Still, M.; Christiansen, J. L.; Rowe, J.; Kurtz, D. W.; Hambleton, K.
2012-01-01
We have discovered a class of eccentric binary systems undergoing dynamic tidal distortions and tidally induced pulsations in the Kepler data. Each has a uniquely shaped light curve that is characterized by periodic brightening or variability at time scales of 4-20 days which is frequently accompanied by shorter period oscillations. We can explain the dominant features of the entire class with changing tidal forces that occur in close, eccentric binary systems. In this case the large variety of light curve shapes arises from viewing systems at different angles. A hypothesis that is confirmed with radial velocity measurements that show an eccentric orbit. Prior to the discovery of these 17 new systems, KOI-54 was the only system with direct detection of these dynamic tides and tidally induced oscillations. While significant work remains to include all the physics required to accurately model these systems and begin to understand how tidal effects influence the system, in this presentation we present preliminary fits to the light curves and describe the properties of this class of stars as a whole.
Tidal generation of large sub-mesoscale eddy dipoles
Directory of Open Access Journals (Sweden)
W. Callendar
2011-08-01
Full Text Available Numerical simulations of tidal flow past Cape St. James on the south tip of Haida Gwaii (Queen Charlotte Islands are presented that indicate mesoscale dipoles are formed from coalescing tidal eddies. Observations in this region demonstrate robust eddy generation at the Cape, with the primary process being flow separation of buoyant or wind driven outflows forming large anti-cyclonic, negative potential vorticity, Haida Eddies. However, there are other times where dipoles are observed in satellites, indicating a source of positive potential vorticity must also be present. The simulations here build on previous work that implicates oscillating tidal flow past the cape in creating the positive vorticity. Small headland eddies of alternating vorticity are created each tide. During certain tidal cycles, the headland eddies coalesce and self organize in such a way as to create large >20-km diameter eddies that then self-advect into deep water. The self advection speed is faster than the beta drift of anti-cyclones, and the propagati