WorldWideScience

Sample records for modelling surface reflectance

  1. Reflectance Modeling

    Science.gov (United States)

    Smith, J. A.; Cooper, K.; Randolph, M.

    1984-01-01

    A classical description of the one dimensional radiative transfer treatment of vegetation canopies was completed and the results were tested against measured prairie (blue grama) and agricultural canopies (soybean). Phase functions are calculated in terms of directly measurable biophysical characteristics of the canopy medium. While the phase functions tend to exhibit backscattering anisotropy, their exact behavior is somewhat more complex and wavelength dependent. A Monte Carlo model was developed that treats soil surfaces with large periodic variations in three dimensions. A photon-ray tracing technology is used. Currently, the rough soil surface is described by analytic functions and appropriate geometric calculations performed. A bidirectional reflectance distribution function is calculated and, hence, available for other atmospheric or canopy reflectance models as a lower boundary condition. This technique is used together with an adding model to calculate several cases where Lambertian leaves possessing anisotropic leaf angle distributions yield non-Lambertian reflectance; similar behavior is exhibited for simulated soil surfaces.

  2. A Monte Carlo reflectance model for soil surfaces with three-dimensional structure

    Science.gov (United States)

    Cooper, K. D.; Smith, J. A.

    1985-01-01

    A Monte Carlo soil reflectance model has been developed to study the effect of macroscopic surface irregularities larger than the wavelength of incident flux. The model treats incoherent multiple scattering from Lambertian facets distributed on a periodic surface. Resulting bidirectional reflectance distribution functions are non-Lambertian and compare well with experimental trends reported in the literature. Examples showing the coupling of the Monte Carlo soil model to an adding bidirectional canopy of reflectance model are also given.

  3. Comparison of cloud optical depth and cloud mask applying BRDF model-based background surface reflectance

    Science.gov (United States)

    Kim, H. W.; Yeom, J. M.; Woo, S. H.

    2017-12-01

    Over the thin cloud region, satellite can simultaneously detect the reflectance from thin clouds and land surface. Since the mixed reflectance is not the exact cloud information, the background surface reflectance should be eliminated to accurately distinguish thin cloud such as cirrus. In the previous research, Kim et al (2017) was developed the cloud masking algorithm using the Geostationary Ocean Color Imager (GOCI), which is one of significant instruments for Communication, Ocean, and Meteorology Satellite (COMS). Although GOCI has 8 spectral channels including visible and near infra-red spectral ranges, the cloud masking has quantitatively reasonable result when comparing with MODIS cloud mask (Collection 6 MYD35). Especially, we noticed that this cloud masking algorithm is more specialized in thin cloud detections through the validation with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Because this cloud masking method was concentrated on eliminating background surface effects from the top-of-atmosphere (TOA) reflectance. Applying the difference between TOA reflectance and the bi-directional reflectance distribution function (BRDF) model-based background surface reflectance, cloud areas both thick cloud and thin cloud can be discriminated without infra-red channels which were mostly used for detecting clouds. Moreover, when the cloud mask result was utilized as the input data when simulating BRDF model and the optimized BRDF model-based surface reflectance was used for the optimized cloud masking, the probability of detection (POD) has higher value than POD of the original cloud mask. In this study, we examine the correlation between cloud optical depth (COD) and its cloud mask result. Cloud optical depths mostly depend on the cloud thickness, the characteristic of contents, and the size of cloud contents. COD ranges from less than 0.1 for thin clouds to over 1000 for the huge cumulus due to scattering by droplets. With

  4. Bidirectional reflectance distribution function modeling of one-dimensional rough surface in the microwave band

    International Nuclear Information System (INIS)

    Guo Li-Xin; Gou Xue-Yin; Zhang Lian-Bo

    2014-01-01

    In this study, the bidirectional reflectance distribution function (BRDF) of a one-dimensional conducting rough surface and a dielectric rough surface are calculated with different frequencies and roughness values in the microwave band by using the method of moments, and the relationship between the bistatic scattering coefficient and the BRDF of a rough surface is expressed. From the theory of the parameters of the rough surface BRDF, the parameters of the BRDF are obtained using a genetic algorithm. The BRDF of a rough surface is calculated using the obtained parameter values. Further, the fitting values and theoretical calculations of the BRDF are compared, and the optimization results are in agreement with the theoretical calculation results. Finally, a reference for BRDF modeling of a Gaussian rough surface in the microwave band is provided by the proposed method. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  5. [A Method to Reconstruct Surface Reflectance Spectrum from Multispectral Image Based on Canopy Radiation Transfer Model].

    Science.gov (United States)

    Zhao, Yong-guang; Ma, Ling-ling; Li, Chuan-rong; Zhu, Xiao-hua; Tang, Ling-li

    2015-07-01

    Due to the lack of enough spectral bands for multi-spectral sensor, it is difficult to reconstruct surface retlectance spectrum from finite spectral information acquired by multi-spectral instrument. Here, taking into full account of the heterogeneity of pixel from remote sensing image, a method is proposed to simulate hyperspectral data from multispectral data based on canopy radiation transfer model. This method first assumes the mixed pixels contain two types of land cover, i.e., vegetation and soil. The sensitive parameters of Soil-Leaf-Canopy (SLC) model and a soil ratio factor were retrieved from multi-spectral data based on Look-Up Table (LUT) technology. Then, by combined with a soil ratio factor, all the parameters were input into the SLC model to simulate the surface reflectance spectrum from 400 to 2 400 nm. Taking Landsat Enhanced Thematic Mapper Plus (ETM+) image as reference image, the surface reflectance spectrum was simulated. The simulated reflectance spectrum revealed different feature information of different surface types. To test the performance of this method, the simulated reflectance spectrum was convolved with the Landsat ETM + spectral response curves and Moderate Resolution Imaging Spectrometer (MODIS) spectral response curves to obtain the simulated Landsat ETM+ and MODIS image. Finally, the simulated Landsat ETM+ and MODIS images were compared with the observed Landsat ETM+ and MODIS images. The results generally showed high correction coefficients (Landsat: 0.90-0.99, MODIS: 0.74-0.85) between most simulated bands and observed bands and indicated that the simulated reflectance spectrum was well simulated and reliable.

  6. Modeling and analysis of surface roughness effects on sputtering, reflection, and sputtered particle transport

    International Nuclear Information System (INIS)

    Brooks, J.N.; Ruzic, D.N.

    1990-01-01

    The microstructure of the redeposited surface in tokamaks may affect sputtering and reflection properties and subsequent particle transport. This subject has been studied numerically using coupled models/codes for near-surface plasma particle kinetic transport (WBC code) and rough surface sputtering (fractal-TRIM). The coupled codes provide an overall Monte Carlo calculation of the sputtering cascade resulting from an initial flux of hydrogen ions. Beryllium, carbon, and tungsten surfaces are analyzed for typical high recycling, oblique magnetic field, divertor conditions. Significant variations in computed sputtering rates are found with surface roughness. Beryllium exhibits high D-T and self-sputtering coefficients for the plasma regime studied (T e = 30-75 eV). Carbon and tungsten sputtering is significantly lower. 9 refs., 6 figs., 1 tab

  7. Mathematical Modeling of Radiant Heat Transfer in Mirror Systems Considering Deep Reflecting Surface Defects

    Directory of Open Access Journals (Sweden)

    V. V. Leonov

    2014-01-01

    Full Text Available When designing large-sized mirror concentrating systems (MCS for high-temperature solar power plants, one must have at disposal reasonably reliable and economical methods and tools, making it possible to analyze its characteristics, to predict them depending on the operation conditions and accordingly to choose the most suitable system for the solution of particular task.Experimental determination of MCS characteristics requires complicated and expensive experimentation, having significant limitations on interpretation of the results, as well as limitations imposed due to the size of the structure. Therefore it is of particular interest to develop a mathematical model capable of estimating power characteristics of MCS considering the influence of operating conditions, design features, roughness and other surface defects.For efficient solution of the tasks the model must ensure simulation of solar radiant flux as well as simulation of geometrical and optical characteristics of reflection surface and their interaction. In this connection a statistical mathematical model of radiation heat exchange based on use of Monte Carlo methods and Finite Element Method was developed and realized in the software complex, making it possible to determine main characteristics of the MCS.In this paper the main attention is given to definition of MCS radiation characteristics with account for deep reflecting surface defects (cavities, craters. Deep cavities are not typical for MCS, but their occurrence is possible during operation as a result of erosion or any physical damage. For example, for space technology it is primarily micrometeorite erosion.

  8. Modified polarized geometrical attenuation model for bidirectional reflection distribution function based on random surface microfacet theory.

    Science.gov (United States)

    Liu, Hong; Zhu, Jingping; Wang, Kai

    2015-08-24

    The geometrical attenuation model given by Blinn was widely used in the geometrical optics bidirectional reflectance distribution function (BRDF) models. Blinn's geometrical attenuation model based on symmetrical V-groove assumption and ray scalar theory causes obvious inaccuracies in BRDF curves and negatives the effects of polarization. Aiming at these questions, a modified polarized geometrical attenuation model based on random surface microfacet theory is presented by combining of masking and shadowing effects and polarized effect. The p-polarized, s-polarized and unpolarized geometrical attenuation functions are given in their separate expressions and are validated with experimental data of two samples. It shows that the modified polarized geometrical attenuation function reaches better physical rationality, improves the precision of BRDF model, and widens the applications for different polarization.

  9. Retrieving background surface reflectance of Himawari-8/AHI using BRDF modeling

    Science.gov (United States)

    Choi, Sungwon; Seo, Minji; Lee, Kyeong-sang; Han, Kyung-soo

    2017-04-01

    In these days, remote sensing is more important than past. And retrieving surface reflectance in remote sensing is also important. So there are many ways to retrieve surface reflectance by my countries with polar orbit and geostationary satellite. We studied Bidirectional Reflectance Distribution Function (BRDF) which is used to retrieve surface reflectance. In BRDF equation, we calculate surface reflectance using BRD components and angular data. BRD components are to calculate 3 of scatterings, isotropic geometric and volumetric scattering. To make Background Surface Reflectance (BSR) of Himawari-8/AHI. We used 5 bands (band1, band2, band3, band4, band5) with BRDF. And we made 5 BSR for 5 channels. For validation, we compare BSR with Top of canopy (TOC) reflectance of AHI. As a result, bias are from -0.00223 to 0.008328 and Root Mean Square Error (RMSE) are from 0.045 to 0.049. We think BSR can be used to replace TOC reflectance in remote sensing to improve weakness of TOC reflectance.

  10. A sea surface reflectance model for (AATSR, and application to aerosol retrievals

    Directory of Open Access Journals (Sweden)

    A. M. Sayer

    2010-07-01

    Full Text Available A model of the sea surface bidirectional reflectance distribution function (BRDF is presented for the visible and near-IR channels (over the spectral range 550 nm to 1.6 μm of the dual-viewing Along-Track Scanning Radiometers (ATSRs. The intended application is as part of the Oxford-RAL Aerosols and Clouds (ORAC retrieval scheme. The model accounts for contributions to the observed reflectance from whitecaps, sun-glint and underlight. Uncertainties in the parametrisations used in the BRDF model are propagated through into the forward model and retrieved state. The new BRDF model offers improved coverage over previous methods, as retrievals are possible into the sun-glint region, through the ATSR dual-viewing system. The new model has been applied in the ORAC aerosol retrieval algorithm to process Advanced ATSR (AATSR data from September 2004 over the south-eastern Pacific. The assumed error budget is shown to be generally appropriate, meaning the retrieved states are consistent with the measurements and a priori assumptions. The resulting field of aerosol optical depth (AOD is compared with colocated MODIS-Terra observations, AERONET observations at Tahiti, and cruises over the oceanic region. MODIS and AATSR show similar spatial distributions of AOD, although MODIS reports values which are larger and more variable. It is suggested that assumptions in the MODIS aerosol retrieval algorithm may lead to a positive bias in MODIS AOD of order 0.01 at 550 nm over ocean regions where the wind speed is high.

  11. Model for the ultrasound reflection from micro-beads and cells distributed in layers on a uniform surface

    Energy Technology Data Exchange (ETDEWEB)

    Couture, O; Cherin, E; Foster, F S [Imaging Research, Sunnybrook Health Sciences Centre/University of Toronto, Toronto (Canada)

    2007-07-21

    A model predicting the reflection of ultrasound from multiple layers of small scattering spheres is developed. Predictions of the reflection coefficient, which takes into account the interferences between the different sphere layers, are compared to measurements performed in the 10-80 MHz and 15-35 MHz frequency range with layers of glass beads and spherical acute myeloid leukemia (AML) cells, respectively. For both types of scatterers, the reflection coefficient increases as a function of their density on the surface for less than three superimposed layers, at which point it saturates at 0.38 for glass beads and 0.02 for AML cells. Above three layers, oscillations of the reflection coefficient due to constructive or destructive interference between layers are observed experimentally and are accurately predicted by the model. The use of such a model could lead to a better understanding of the structures observed in layered tissue images.

  12. Exploration of a Polarized Surface Bidirectional Reflectance Model Using the Ground-Based Multiangle SpectroPolarimetric Imager

    Directory of Open Access Journals (Sweden)

    David J. Diner

    2012-12-01

    Full Text Available Accurate characterization of surface reflection is essential for retrieval of aerosols using downward-looking remote sensors. In this paper, observations from the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI are used to evaluate a surface polarized bidirectional reflectance distribution function (PBRDF model. GroundMSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire pushbroom imagery of outdoor landscapes. The camera uses a very accurate photoelastic-modulator-based polarimetric imaging technique to acquire Stokes vector measurements in three of the instrument’s bands (470, 660, and 865 nm. A description of the instrument is presented, and observations of selected targets within a scene acquired on 6 January 2010 are analyzed. Data collected during the course of the day as the Sun moved across the sky provided a range of illumination geometries that facilitated evaluation of the surface model, which is comprised of a volumetric reflection term represented by the modified Rahman-Pinty-Verstraete function plus a specular reflection term generated by a randomly oriented array of Fresnel-reflecting microfacets. While the model is fairly successful in predicting the polarized reflection from two grass targets in the scene, it does a poorer job for two manmade targets (a parking lot and a truck roof, possibly due to their greater degree of geometric organization. Several empirical adjustments to the model are explored and lead to improved fits to the data. For all targets, the data support the notion of spectral invariance in the angular shape of the unpolarized and polarized surface reflection. As noted by others, this behavior provides valuable constraints on the aerosol retrieval problem, and highlights the importance of multiangle observations.

  13. Modeling the Anisotropic Reflectance of a Surface with Microstructure Engineered to Obtain Visible Contrast after Rotation

    DEFF Research Database (Denmark)

    Luongo, Andrea; Falster, Viggo; Doest, Mads Emil Brix

    2017-01-01

    in previous work. The benefit of an analytical model like the one we provide is its potential to be used in computer vision for estimating the quality of a surface sample. The quality of a sample is indicated by the resemblance of camera-based contrast measurements with contrasts predicted for an idealized...

  14. Modeling Bidirectional Reflectance Distribution Function of One-dimensional Random Rough Surfaces with the Finite Difference Time Domain Method

    Directory of Open Access Journals (Sweden)

    Min-Jhong Gu

    2014-08-01

    Full Text Available This article describes the development of a suite of programs that is capable of simulating the radiation properties of a random rough surface (RRS. The fundamental approach involves the generation, by fast Fourier transform (FFT built with rigorous finite difference time domain (FDTD, as the theoretical basis for the simulation of a bidirectional reflectance distribution function (BRDF of the RRS. The results are compared with the measurements and modeling of existing work to verify the feasibility of customized programming. It was found that the results of this study were a better match to the measurement data than those achieved in other modeling work.

  15. Measuring Light Reflectance of BGO Crystal Surfaces

    Science.gov (United States)

    Janecek, Martin; Moses, William W.

    2008-10-01

    A scintillating crystal's surface reflectance has to be well understood in order to accurately predict and optimize the crystal's light collection through Monte Carlo simulations. In this paper, we measure the inner surface reflectance properties for BGO. The measurements include BGO crystals with a mechanically polished surface, rough-cut surface, and chemically etched surface, and with various reflectors attached, both air-coupled and with coupling compound. The measurements are performed with a laser aimed at the center of a hemispherical shaped BGO crystal. The hemispherical shape eliminates any non-perpendicular angles for light entering and exiting the crystal. The reflected light is collected with an array of photodiodes. The laser can be set at an arbitrary angle, and the photodiode array is rotated to fully cover 2pi of solid angle. The current produced in the photodiodes is readout with a digital multimeter connected through a multiplexer. The two rows of photodiodes achieve 5-degree by 4-degree resolution, and the current measurement has a dynamic range of 105:1. The acquired data was not described by the commonly assumed linear combination of specular and diffuse (Lambertian) distributions, except for a very few surfaces. Surface roughness proved to be the most important parameter when choosing crystal setup. The reflector choice was of less importance and of almost no consequence for rough-cut surfaces. Pure specular reflection distribution for all incidence angles was measured for polished surfaces with VM2000 film, while the most Lambertian distribution for any surface finish was measured for titanium dioxide paint. The distributions acquired in this paper will be used to create more accurate Monte Carlo models for light reflection distribution within BGO crystals.

  16. An analytical two-flow model to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance

    Science.gov (United States)

    Ma, Wei-Ming

    1997-06-01

    An analytical two-flow model is derived from the radiative transfer equation to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance. The model utilizes unique boundary conditions, including the surface slope of the downwelling and upwelling irradiance as well as the influence of wind and bottom reflectance on simulated surface reflectance. The developed model provides a simple mathematical concept for understanding the irradiant light flux and associated processes in coastal or fresh water as well as turbid estuarine waters. The model is applied to data from the Banana River and coastal Atlantic Ocean water off the east coast of central Florida, USA. The two-flow irradiance model is capable of simulating realistic above-surface reflectance signatures under wind-roughened air-water surface given realistic input parameters including a specular flux conversion coefficient, absorption coefficient, backscattering coefficient, atmospheric visibility, bottom reflectance, and water depth. The root-mean-squared error of the calculated above-surface reflectances is approximately 3% in the Banana River and is less than 15% in coastal Atlantic Ocean off the east of Florida. Result of the subsurface reflectance sensitivity analysis indicates that the specular conversion coefficient is the most sensitive parameter in the model, followed by the beam attenuation coefficient, absorption coefficient, water depth, backscattering coefficient, specular irradiance, diffuse irradiance, bottom reflectance, and wind speed. On the other hand, result of the above-surface reflectance sensitivity analysis indicates that the wind speed is the most important parameter, followed by bottom reflectance, attenuation coefficient, water depth, conversion coefficient, specular irradiance, downwelling irradiance, absorption coefficient, and backscattering coefficient. Model results depend on the accuracy of these parameters to a large degree and

  17. An assessment of thin cloud detection by applying bidirectional reflectance distribution function model-based background surface reflectance using Geostationary Ocean Color Imager (GOCI): A case study for South Korea

    Science.gov (United States)

    Kim, Hye-Won; Yeom, Jong-Min; Shin, Daegeun; Choi, Sungwon; Han, Kyung-Soo; Roujean, Jean-Louis

    2017-08-01

    In this study, a new assessment of thin cloud detection with the application of bidirectional reflectance distribution function (BRDF) model-based background surface reflectance was undertaken by interpreting surface spectra characterized using the Geostationary Ocean Color Imager (GOCI) over a land surface area. Unlike cloud detection over the ocean, the detection of cloud over land surfaces is difficult due to the complicated surface scattering characteristics, which vary among land surface types. Furthermore, in the case of thin clouds, in which the surface and cloud radiation are mixed, it is difficult to detect the clouds in both land and atmospheric fields. Therefore, to interpret background surface reflectance, especially underneath cloud, the semiempirical BRDF model was used to simulate surface reflectance by reflecting solar angle-dependent geostationary sensor geometry. For quantitative validation, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data were used to make a comparison with the proposed cloud masking result. As a result, the new cloud masking scheme resulted in a high probability of detection (POD = 0.82) compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) (POD = 0.808) for all cloud cases. In particular, the agreement between the CALIPSO cloud product and new GOCI cloud mask was over 94% when detecting thin cloud (e.g., altostratus and cirrus) from January 2014 to June 2015. This result is relatively high in comparison with the result from the MODIS Collection 6 cloud mask product (MYD35).

  18. Wave Reflection Model Tests

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Larsen, Brian Juul

    The investigation concerns the design of a new internal breakwater in the main port of Ibiza. The objective of the model tests was in the first hand to optimize the cross section to make the wave reflection low enough to ensure that unacceptable wave agitation will not occur in the port. Secondly...

  19. A climatology of visible surface reflectance spectra

    International Nuclear Information System (INIS)

    Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas

    2016-01-01

    We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290–740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment–2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes. - Highlights: • Our goals was visible surface reflectance for satellite trace gas measurements. • Captured the range of surface reflectance spectra through EOF analysis. • Used satellite surface reflectance products for each given scene to anchor EOFs. • Generated a climatology of time/geometry dependent surface reflectance spectra. • Demonstrated potential to

  20. Radiative transfer in shrub savanna sites in Niger: preliminary results from HAPEX-Sahel. 1. Modelling surface reflectance using a geometric-optical approach

    International Nuclear Information System (INIS)

    Franklin, J.; Duncan, J.; Huete, A.R.; Leeuwen, W.J.D. van; Li, X.; Bégué, A.

    1994-01-01

    To use optical remote sensing to monitor land surface-climate interactions over large areas, algorithms must be developed to relate multispectral measurements to key variables controlling the exchange of matter (water, carbon dioxide) and energy between the land surface and the atmosphere. The proportion of the ground covered by vegetation and the interception of photosynthetically active radiation (PAR) by vegetation are examples of two variables related to evapotranspiration and primary production, respectively. An areal-proportion model of the multispectral reflectance of shrub savanna, composed of scattered shrubs with a grass, forb or soil understory, predicted the reflectance of two 0.5 km 2 sites as the area-weighted average of the shrub and understory or ‘background’ reflectances. Although the shaded crown and shaded background have darker reflectances, ignoring them in the area-weighted model is not serious when shrub cover is low and solar zenith angle is small. A submodel predicted the reflectance of the shrub crown as a function of the foliage reflectance and amount of plant material within the crown, and the background reflectance scattered or transmitted through canopy gaps (referred to as a soil—plant ‘spectral interaction’ term). One may be able to combine these two models to estimate both the fraction of vegetation cover and interception of PAR by green vegetation in a shrub savanna. (author)

  1. Study on the cloud detection of GOCI by using the simulated surface reflectance from BRDF-model for the land application and meteorological utilization

    Science.gov (United States)

    Kim, Hye-Won; Yeom, Jong-Min; Woo, Sun-Hee; Chae, Tae-Byeong

    2016-04-01

    COMS (Communication, Ocean, and Meteorological Satellite) was launched at French Guiana Kourou space center on 27 June 2010. Geostationary Ocean Color Imager (GOCI), which is the first ocean color geostationary satellite in the world for observing the ocean phenomena, is able to obtain the scientific data per an hour from 00UTC to 07UTC. Moreover, the spectral channels of GOCI would enable not only monitoring for the ocean, but for extracting the information of the land surface over the Korean Peninsula, Japan, and Eastern China. Since it is extremely important to utilize GOCI data accurately for the land application, cloud pixels over the surface have to be removed. Unfortunately, infra-red (IR) channels that can easily detect the water vapor with the cloud top temperature, are not included in the GOCI sensor. In this paper, the advanced cloud masking algorithm will be proposed with visible and near-IR (NIR) bands that are within GOCI bands. The main obstacle of cloud masking with GOCI is how to handle the high variable surface reflectance, which is mainly depending on the solar zenith angle. In this study, we use semi-empirical BRDF model to simulate the surface reflectance by using 16 day composite cloudy free image. When estimating the simulated surface reflectance, same geometry for GOCI observation was applied. The simulated surface reflectance is used to discriminate cloud areas especially for the thin cloud and shows more reasonable result than original threshold methods.

  2. A Bayesian Reflection on Surfaces

    Directory of Open Access Journals (Sweden)

    David R. Wolf

    1999-10-01

    Full Text Available Abstract: The topic of this paper is a novel Bayesian continuous-basis field representation and inference framework. Within this paper several problems are solved: The maximally informative inference of continuous-basis fields, that is where the basis for the field is itself a continuous object and not representable in a finite manner; the tradeoff between accuracy of representation in terms of information learned, and memory or storage capacity in bits; the approximation of probability distributions so that a maximal amount of information about the object being inferred is preserved; an information theoretic justification for multigrid methodology. The maximally informative field inference framework is described in full generality and denoted the Generalized Kalman Filter. The Generalized Kalman Filter allows the update of field knowledge from previous knowledge at any scale, and new data, to new knowledge at any other scale. An application example instance, the inference of continuous surfaces from measurements (for example, camera image data, is presented.

  3. A Method of Retrieving BRDF from Surface-Reflected Radiance Using Decoupling of Atmospheric Radiative Transfer and Surface Reflection

    Directory of Open Access Journals (Sweden)

    Alexander Radkevich

    2018-04-01

    Full Text Available Bi-directional reflection distribution function (BRDF defines anisotropy of the surface reflection. It is required to specify the boundary condition for radiative transfer (RT modeling used in aerosol retrievals, cloud retrievals, atmospheric modeling, and other applications. Ground based measurements of reflected radiance draw increasing attention as a source of information about anisotropy of surface reflection. Derivation of BRDF from surface radiance requires atmospheric correction. This study develops a new method of retrieving BRDF on its whole domain, making it immediately suitable for further atmospheric RT modeling applications. The method is based on the integral equation relating surface-reflected radiance, BRDF, and solutions of two auxiliary atmosphere-only RT problems. The method requires kernel-based BRDF. The weights of the kernels are obtained with a quickly converging iterative procedure. RT modeling has to be done only one time before the start of iterative process.

  4. Simulation Tool for GNSS Ocean Surface Reflections

    DEFF Research Database (Denmark)

    Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor

    2015-01-01

    GNSS coherent and incoherent reflected signals have the potential of deriving large scale parameters of ocean surfaces, as barotropic variability, eddy currents and fronts, Rossby waves, coastal upwelling, mean ocean surfaceheights, and patterns of the general ocean circulation. In the reflection...... zone the measurements may deriveparameters as sea surface roughness, winds, waves, heights and tilts from the spectral measurements. Previous measurements from the top of mountains and airplanes have shown such results leading.The coming satellite missions, CYGNSS, COSMIC-2, and GEROS...

  5. Remote measurement of surface roughness, surface reflectance, and body reflectance with LiDAR.

    Science.gov (United States)

    Li, Xiaolu; Liang, Yu

    2015-10-20

    Light detection and ranging (LiDAR) intensity data are attracting increasing attention because of the great potential for use of such data in a variety of remote sensing applications. To fully investigate the data potential for target classification and identification, we carried out a series of experiments with typical urban building materials and employed our reconstructed built-in-lab LiDAR system. Received intensity data were analyzed on the basis of the derived bidirectional reflectance distribution function (BRDF) model and the established integration method. With an improved fitting algorithm, parameters involved in the BRDF model can be obtained to depict the surface characteristics. One of these parameters related to surface roughness was converted to a most used roughness parameter, the arithmetical mean deviation of the roughness profile (Ra), which can be used to validate the feasibility of the BRDF model in surface characterizations and performance evaluations.

  6. Use of reflective surfaces on roadway embankment

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr; Doré, Guy

    2007-01-01

    adherence characteristics for roadway use. In Kangerlussuaq Airport, western Greenland, ground-penetrating radar (GPR) has been used to compare the variation of the frost table underneath a normal black asphalt surface and a more reflective surface (white paint). The GPR results have shown a clear...

  7. X-ray reflectivity and surface roughness

    International Nuclear Information System (INIS)

    Ocko, B.M.

    1988-01-01

    Since the advent of high brightness synchrotron radiation sources there has been a phenomenal growth in the use of x-rays as a probe of surface structure. The technique of x-ray reflectivity is particularly relevant to electrochemists since it is capable of probing the structure normal to an electrode surface in situ. In this paper the theoretical framework for x-ray reflectivity is reviewed and the results from previous non-electrochemistry measurements are summarized. These measurements are from the liquid/air interface (CCl 4 ), the metal crystal vacuum interface (Au(100)), and from the liquid/solid interface(liquid crystal/silicon). 34 refs., 5 figs

  8. Computation of Mach reflection from rigid and yielding surfaces

    International Nuclear Information System (INIS)

    Buckingham, A.C.; Wilson, S.S.

    1976-01-01

    The present discussion centers on a theoretical description of one aspect of the irregular or Mach reflection from solid surfaces. The discussion is restricted to analytical considerations and some preliminary results using model approximations to the surface interaction phenomena. Currently, full numerical simulations of the irregular reflection surface interaction dynamics have not been obtained since the method is still under development. Discussion of the numerical method is, therefore, restricted to some special procedures for the gas-solid surface boundary dynamics. The discussion is divided into an introductory section briefly describing a particular Mach reflection process. Subsequently, some of the considerations on boundary conditions are submitted for numerical treatment of the gas-solid interface. Analysis and discussion of a yielding solid surface subjected to impulsive loading from an intense gas shock wave follows. This is used as a guide for the development of the numerical procedure. Mach reflection processes are then briefly reviewed with special attention for similitude and singular perturbation features

  9. Surface composition of Mercury from reflectance spectrophotometry

    Science.gov (United States)

    Vilas, Faith

    1988-01-01

    The controversies surrounding the existing spectra of Mercury are discussed together with the various implications for interpretations of Mercury's surface composition. Special attention is given to the basic procedure used for reducing reflectance spectrophotometry data, the factors that must be accounted for in the reduction of these data, and the methodology for defining the portion of the surface contributing the greatest amount of light to an individual spectrum. The application of these methodologies to Mercury's spectra is presented.

  10. Reflectance spectroscopy and asteroid surface mineralogy

    International Nuclear Information System (INIS)

    Gaffey, M.J.; Bell, J.F.; Cruikshank, D.P.

    1989-01-01

    Information available from reflectance spectroscopy on the surface mineralogy of asteroids is discussed. Current spectral interpretive procedures used in the investigations of asteroid mineralogy are described. Present understanding of the nature and history of asteroids is discussed together with some still unresolved issues such as the source of ordinary chondrites. 100 refs

  11. On automatic visual inspection of reflective surfaces

    DEFF Research Database (Denmark)

    Kulmann, Lionel

    1995-01-01

    surfaces, providing new and exciting applications subject to automated visual inspection. Several contextual features have been surveyed along with introduction of novel methods to perform data-dependent enhancement of local surface appearance . Morphological methods have been described and utilized......This thesis descrbes different methods to perform automatic visual inspection of reflective manufactured products, with the aim of increasing productivity, reduce cost and improve the quality level of the production. We investigate two different systems performing automatic visual inspection....... The first is the inspection of highly reflective aluminum sheets, used by the Danish company Bang & Olufsen, as a part of the exterior design and general appearance of their audio and video products. The second is the inspection of IBM hard disk read/write heads for defects during manufacturing. We have...

  12. ASTER L2 Surface Reflectance SWIR and ASTER L2 Surface Reflectance VNIR V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The ASTER L2 Surface Reflectance is a multi-file product that contains atmospherically corrected data for both the Visible Near-Infrared (VNIR) and Shortwave...

  13. Light reflection models for computer graphics.

    Science.gov (United States)

    Greenberg, D P

    1989-04-14

    During the past 20 years, computer graphic techniques for simulating the reflection of light have progressed so that today images of photorealistic quality can be produced. Early algorithms considered direct lighting only, but global illumination phenomena with indirect lighting, surface interreflections, and shadows can now be modeled with ray tracing, radiosity, and Monte Carlo simulations. This article describes the historical development of computer graphic algorithms for light reflection and pictorially illustrates what will be commonly available in the near future.

  14. Spectral curves of surface reflectance in some Antarctic regions

    International Nuclear Information System (INIS)

    Lupi, A.; Tomasi, C.; Orsini, A.; Cacciari, A.; Vitale, V.; Georgiadis, T.; Casacchia, R.; Salvatori, R.; Salvi, S.

    2001-01-01

    Four surface reflectance models of solar radiation were determined by examining several sets of field measurements taken for clear-sky conditions at various sites in Antarctica. Each model consists of the mean spectral curve of surface reflectance in the 0.25-2.7 μm wavelength range and of the dependence curve of total abedo on the solar elevation angle h, within the range from 5 0 to 55 0 . The TNB (Terra Nova Bay) model refers to a rocky terrain where granites are predominant; the NIS (Nansen Ice Sheet) model to a glacier surface made uneven by sastrugi and streaked by irregular fractures; the HAP (High Altitude Plateau) model to a flat ice surface covered by fresh snow and scored by light sastrugi; and the RIS (Ross Ice Shelf) model to an area covered by the sea ice pack presenting many discontinuities in the reflectance features, due to melt water lakes, puddles, refrozen ice and snow pots. The reflectance curve obtained for the TNB model presents gradually increasing values as wavelength increases through the visible spectral range and almost constant values at infrared wavelengths, giving a total albedo value equal to 0.264 at = 30 0 , which increases by about 80% through the lower range of h and decreases by 12% through the upper range. The reflectance curves of the NIS, HAP and RIS models are all peaked at visible wavelengths and exhibit decreasing values throughout the infrared spectral range, giving values of total albedo equal to 0.464, 0.738 and 0.426 at h 30 0 , respectively. These values were estimated to increase by 8-14% as h decreases from 30 0 to 5 0 and to decrease by 2-4% only as h increases from 30 0 to 55 0

  15. DETERMINING REFLECTANCE SPECTRA OF SURFACES AND CLOUDS ON EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Nicolas B.; Strait, Talia E., E-mail: n-cowan@northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, 2131 Tech Dr., IL 60208 (United States)

    2013-03-01

    Planned missions will spatially resolve temperate terrestrial planets from their host star. Although reflected light from such a planet encodes information about its surface, it has not been shown how to establish surface characteristics of a planet without assuming known surfaces to begin with. We present a reanalysis of disk-integrated, time-resolved, multiband photometry of Earth obtained by the Deep Impact spacecraft as part of the EPOXI Mission of Opportunity. We extract reflectance spectra of clouds, ocean, and land without a priori knowledge of the numbers or colors of these surfaces. We show that the inverse problem of extracting surface spectra from such data is a novel and extreme instance of spectral unmixing, a well-studied problem in remote sensing. Principal component analysis is used to determine an appropriate number of model surfaces with which to interpret the data. Shrink-wrapping a simplex to the color excursions of the planet yields a conservative estimate of the planet's endmember spectra. The resulting surface maps are unphysical, however, requiring negative or larger-than-unity surface coverage at certain locations. Our ''rotational unmixing'' supersedes the endmember analysis by simultaneously solving for the surface spectra and their geographical distributions on the planet, under the assumption of diffuse reflection and known viewing geometry. We use a Markov Chain Monte Carlo to determine best-fit parameters and their uncertainties. The resulting albedo spectra are similar to clouds, ocean, and land seen through a Rayleigh-scattering atmosphere. This study suggests that future direct-imaging efforts could identify and map unknown surfaces and clouds on exoplanets.

  16. The Effect of Non-Lambertian Surface Reflectance on Aerosol Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Ricchiazzi, P.; O' Hirok, W.; Gautier, C.

    2005-03-18

    Surface reflectance is an important factor in determining the strength of aerosol radiative forcing. Previous studies of radiative forcing assumed that the reflected surface radiance is isotropic and does not depend on incident illumination angle. This Lambertian reflection model is not a very good descriptor of reflectance from real land and ocean surfaces. In this study we present computational results for the seasonal average of short and long wave aerosol radiative forcing at the top of the atmosphere and at the surface. The effect of the Lambertian assumption is found through comparison with calculations using a more detailed bi-direction reflectance distribution function (BRDF).

  17. The differential equation of an arbitrary reflecting surface

    Science.gov (United States)

    Melka, Richard F.; Berrettini, Vincent D.; Yousif, Hashim A.

    2018-05-01

    A differential equation describing the reflection of a light ray incident upon an arbitrary reflecting surface is obtained using the law of reflection. The derived equation is written in terms of a parameter and the value of this parameter determines the nature of the reflecting surface. Under various parametric constraints, the solution of the differential equation leads to the various conic surfaces but is not generally solvable. In addition, the dynamics of the light reflections from the conic surfaces are executed in the Mathematica software. Our derivation is the converse of the traditional approach and our analysis assumes a relation between the object distance and the image distance. This leads to the differential equation of the reflecting surface.

  18. The simplest models of the reflection nebulae

    International Nuclear Information System (INIS)

    Voshchinnikov, N.V.

    1977-01-01

    Some models of the reflection nebulue have been considered. The (U-B), (B-V) and (V-R) colors and the U, B, V and R polarization have been calculated for a model of a reflection nebula associated with a large dust cloud. For the cases in which the illuminating star is far from the surface of the cloud, the form of the nebula has been considered to be spherical. If the star is close to the surface of the cloud, a part of the nebura boundary has been considered to be flat. Single scattering within the homogeneous nebula has been assumed. All the calculations use the scattering by spheres as given by the Mie's theory. The effect of variations of chemical composition and size distribution function of the grains and the position of the illuminating star has been examined. Comparison of the theoretical results with the observations of the Merope nebula shows that the dirty ice grains with the refraction index m=1.30-0.02i and size parameter asub(o)=0.5μ represent satisfactorily the observation if the star is embedded 0.7 pc behind the front surface of the nebula

  19. Critical reflection activation analysis - a new near-surface probe

    International Nuclear Information System (INIS)

    Gunn, J.M.F.; Trohidou, K.N.

    1988-09-01

    We propose a new surface analytic technique, Critical Reflection Activation Analysis (CRAA). This technique allows accurate depth profiling of impurities ≤ 100A beneath a surface. The depth profile of the impurity is simply related to the induced activity as a function of the angle of reflection. We argue that the technique is practical and estimate its accuracy. (author)

  20. Infrared spectral reflectances of asteroid surfaces

    Science.gov (United States)

    Larson, H. P.; Veeder, G. J.

    1979-01-01

    This review compares the types of compositional information produced by three complementary techniques used in infrared observations of asteroid surfaces: broadband JHKL photometry, narrow band photometry, and multiplex spectroscopy. The high information content of these infrared observations permits definitive interpretations of asteroid surface compositions in terms of the major meteoritic minerals (olivine, pyroxene, plagioclase feldspar, hydrous silicates, and metallic Ni-Fe). These studies emphasize the individuality of asteroid surface compositions, the inadequacy of simple comparisons with spectra of meteorites, and the need to coordinate spectral measurements of all types to optimize diagnostic capabilities.

  1. Using Neural Networks to Improve the Performance of Radiative Transfer Modeling Used for Geometry Dependent Surface Lambertian-Equivalent Reflectivity Calculations

    Science.gov (United States)

    Fasnacht, Zachary; Qin, Wenhan; Haffner, David P.; Loyola, Diego; Joiner, Joanna; Krotkov, Nickolay; Vasilkov, Alexander; Spurr, Robert

    2017-01-01

    Surface Lambertian-equivalent reflectivity (LER) is important for trace gas retrievals in the direct calculation of cloud fractions and indirect calculation of the air mass factor. Current trace gas retrievals use climatological surface LER's. Surface properties that impact the bidirectional reflectance distribution function (BRDF) as well as varying satellite viewing geometry can be important for retrieval of trace gases. Geometry Dependent LER (GLER) captures these effects with its calculation of sun normalized radiances (I/F) and can be used in current LER algorithms (Vasilkov et al. 2016). Pixel by pixel radiative transfer calculations are computationally expensive for large datasets. Modern satellite missions such as the Tropospheric Monitoring Instrument (TROPOMI) produce very large datasets as they take measurements at much higher spatial and spectral resolutions. Look up table (LUT) interpolation improves the speed of radiative transfer calculations but complexity increases for non-linear functions. Neural networks perform fast calculations and can accurately predict both non-linear and linear functions with little effort.

  2. Reflectance of Antarctic surfaces from multispectral radiometers: The correction of atmospheric effects

    International Nuclear Information System (INIS)

    Zibordi, G.; Maracci, G.

    1993-01-01

    Monitoring reflectance of polar icecaps has relevance in climate studies. In fact, climate changes produce variations in the morphology of ice and snow covers, which are detectable as surface reflectance change. Surface reflectance can be retrieved from remotely sensed data. However, absolute values independent of atmospheric turbidity and surface altitude can only be obtained after removing masking effects of the atmosphere. An atmospheric correction model, accounting for surface and sensor altitudes above sea level, is described and validated through data detected over Antarctic surfaces with a Barnes Modular Multispectral Radiometer having bands overlapping those of the Landsat Thematic Mapper. The model is also applied in a sensitivity analysis to investigate error induced in reflectance obtained from satellite data by indeterminacy in optical parameters of atmospheric constituents. Results show that indeterminacy in the atmospheric water vapor optical thickness is the main source of nonaccuracy in the retrieval of surface reflectance from data remotely sensed over Antarctic regions

  3. Interference effects in plasom excitation by particles reflected near a metal surface

    International Nuclear Information System (INIS)

    Denton, C.D.; Gervasoni, J.L.; Barrachina, R.O.; Arista, N.R.; Universidad Nacional de Cuyo, Mendoza

    1993-01-01

    Using the dielectric formalism and the specular reflection model, we evaluate the probability of surface and bulk plasmon excitation by particles reflected in the proximity of a metal surface. We obtain a strong oscillatory behaviour as a function of the penetration distance. (author)

  4. Toy models of crossed Andreev reflection

    International Nuclear Information System (INIS)

    Melin, R; Jirari, H; Peysson, S

    2003-01-01

    We propose toy models of crossed Andreev reflection in multiterminal hybrid structures containing out-of-equilibrium conductors. We apply the description to two possible experiments: (i) to a device containing a large quantum dot inserted in a crossed Andreev reflection circuit, and (ii) to a device containing an Aharonov-Bohm loop inserted in a crossed Andreev reflection circuit

  5. A Data-Driven Reflectance Model

    OpenAIRE

    Matusik, Wojciech; Pfister, Hanspeter; Brand, Matt; McMillan, Leonard

    2003-01-01

    We present a generative model for isotropic bidirectional reflectance distribution functions (BRDFs) based on acquired reflectance data. Instead of using analytical reflectance models, we represent each BRDF as a dense set of measurements. This allows us to interpolate and extrapolate in the space of acquired BRDFs to create new BRDFs. We treat each acquired BRDF as a single high-dimensional vector taken from a space of all possible BRDFs. We apply both linear (subspace) and non-linear (manif...

  6. On the reflection point where light reflects to a known destination on quadratic surfaces.

    Science.gov (United States)

    Gonçalves, Nuno

    2010-01-15

    We address the problem of determining the reflection point on a specular surface where a light ray that travels from a source to a target is reflected. The specular surfaces considered are those expressed by a quadratic equation. So far, there is no closed form explicit equation for the general solution of this determination of the reflection point, and the usual approach is to use the Snell law or the Fermat principle whose equations are derived in multidimensional nonlinear minimizations. We prove in this Letter that one can impose a set of three restrictions to the reflection point that can impose a set of three restrictions that culminates in a very elegant formalism of searching the reflection point in a unidimensional curve in space. This curve is the intersection of two quadratic equations. Some applications of this framework are also discussed.

  7. Evaluation of BRDF Archetypes for Representing Surface Reflectance Anisotropy Using MODIS BRDF Data

    OpenAIRE

    Zhang, Hu; Jiao, Ziti; Dong, Yadong; Li, Xiaowen

    2015-01-01

    Bidirectional reflectance distribution function (BRDF) archetypes extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF/Albedo product over the global Earth Observing System Land Validation Core Sites can be used to simplify BRDF models. The present study attempts to evaluate the representativeness of BRDF archetypes for surface reflectance anisotropy. Five-year forward-modeled MODIS multi-angular reflectance (MCD-ref) and aditional actual MODIS multi-angular observat...

  8. Effect of reflective surfaces on a greenhouse lettuce crop

    Energy Technology Data Exchange (ETDEWEB)

    Warman, P.R.; Mayhew, W.J.

    1979-01-01

    The Canadian greenhouse industry is an important segment of horticultural production, providing employment for thousands of people. Continuing increases in the costs of conventional fuel supplies, however, has placed the industry in some jeopardy since the cost of heating during the winter months is also escalating. In response to this problem the Brace Research Institute has developed a single roofed greenhouse designed to capture and store the sun's energy, and to increase the amount of downward solar radiation inside the greenhouse through the use of specularly-reflecting back and side walls. The research investigated the effect of a reflective surface on plant growth, development, and nutritional uptake during fall and the early months of winter. The inside walls of the greenhouse were lined with aluminized polyester to act as a reflective surface and flat black roofing felt paper to provide a non-reflecting surface. Grand Rapids Forcing lettuce was planted from seed into a peat-vermiculite bed and total solar radiation was monitored on the horizontal. Over the duration of the experiment, the reflective side of the greenhouse received more than twice as much solar radiation as the non-reflective side leading to significantly larger plant yields on the reflective side. There were no significant differences in the uptake of the plant macronutrients, N, P, K, Ca, and Mg.

  9. Internal reflection spectroscopic analysis of sulphide mineral surfaces

    International Nuclear Information System (INIS)

    Kaoma, J.

    1989-01-01

    To establish the reason for flotation of sulfide minerals in the absence of any conventional collector, internal reflection spectroscopic analysis (IRS) of their surfaces was conducted. sulfur, sulfates, thiosulfates, and hydrocarbonates have been detected on the surface of as-grand sulfide minerals. On sodium sulfide-treated surfaces, both sulfur and polysulfide have also been found to be present. From these findings, the flotation of sulfide minerals without collectors is discussed. (author). 26 refs

  10. Diffuse Reflectance Spectroscopy for Surface Measurement of Liver Pathology.

    Science.gov (United States)

    Nilsson, Jan H; Reistad, Nina; Brange, Hannes; Öberg, Carl-Fredrik; Sturesson, Christian

    2017-01-01

    Liver parenchymal injuries such as steatosis, steatohepatitis, fibrosis, and sinusoidal obstruction syndrome can lead to increased morbidity and liver failure after liver resection. Diffuse reflectance spectroscopy (DRS) is an optical measuring method that is fast, convenient, and established. DRS has previously been used on the liver with an invasive technique consisting of a needle that is inserted into the parenchyma. We developed a DRS system with a hand-held probe that is applied to the liver surface. In this study, we investigated the impact of the liver capsule on DRS measurements and whether liver surface measurements are representative of the whole liver. We also wanted to confirm that we could discriminate between tumor and liver parenchyma by DRS. The instrumentation setup consisted of a light source, a fiber-optic contact probe, and two spectrometers connected to a computer. Patients scheduled for liver resection due to hepatic malignancy were included, and DRS measurements were performed on the excised liver part with and without the liver capsule and alongside a newly cut surface. To estimate the scattering parameters and tissue chromophore volume fractions, including blood, bile, and fat, the measured diffuse reflectance spectra were applied to an analytical model. In total, 960 DRS spectra from the excised liver tissue of 18 patients were analyzed. All factors analyzed regarding tumor versus liver tissue were significantly different. When measuring through the capsule, the blood volume fraction was found to be 8.4 ± 3.5%, the lipid volume fraction was 9.9 ± 4.7%, and the bile volume fraction was 8.2 ± 4.6%. No differences could be found between surface measurements and cross-sectional measurements. In measurements with/without the liver capsule, the differences in volume fraction were 1.63% (0.75-2.77), -0.54% (-2.97 to 0.32), and -0.15% (-1.06 to 1.24) for blood, lipid, and bile, respectively. This study shows that it is possible to manage DRS

  11. IRAS surface brightness maps of reflection nebulae in the Pleiades

    Science.gov (United States)

    Castelaz, Michael W.; Werner, M. W.; Sellgren, K.

    1987-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns were made of a 2.5 deg x 2.5 deg area of the reflection nebulae in the Pleiades by coadding IRAS scans of this region. Emission is seen surrounding 17 Tau, 20 Tau, 23 Tau, and 25 Tau in all four bands, coextensive with the visible reflection nebulosity, and extending as far as 30 arcminutes from the illuminating stars. The infrared energy distributions of the nebulae peak in the 100 micron band, but up to 40 percent of the total infrared power lies in the 12 and 25 micron bands. The brightness of the 12 and 25 micron emission and the absence of temperature gradients at these wavelengths are inconsistent with the predictions of equilibrium thermal emission models. The emission at these wavelengths appears to be the result of micron nonequilibrium emission from very small grains, or from molecules consisting of 10-100 carbon atoms, which have been excited by ultraviolet radiation from the illuminating stars.

  12. Reflection properties of hydrogen ions at helium irradiated tungsten surfaces

    International Nuclear Information System (INIS)

    Doi, K; Tawada, Y; Kato, S; Sasao, M; Kenmotsu, T; Wada, M; Lee, H T; Ueda, Y; Tanaka, N; Kisaki, M; Nishiura, M; Matsumoto, Y; Yamaoka, H

    2016-01-01

    Nanostructured W surfaces prepared by He bombardment exhibit characteristic angular distributions of hydrogen ion reflection upon injection of 1 keV H + beam. A magnetic momentum analyzer that can move in the vacuum chamber has measured the angular dependence of the intensity and the energy of reflected ions. Broader angular distributions were observed for He-irradiated tungsten samples compared with that of the intrinsic polycrystalline W. Both intensity and energy of reflected ions decreased in the following order: the polycrystalline W, the He-bubble containing W, and the fuzz W. Classical trajectory Monte Carlo simulations based on Atomic Collision in Amorphous Target code suggests that lower atom density near the surface can make the reflection coefficients lower due to increasing number of collisions. (paper)

  13. Sutherland models for complex reflection groups

    International Nuclear Information System (INIS)

    Crampe, N.; Young, C.A.S.

    2008-01-01

    There are known to be integrable Sutherland models associated to every real root system, or, which is almost equivalent, to every real reflection group. Real reflection groups are special cases of complex reflection groups. In this paper we associate certain integrable Sutherland models to the classical family of complex reflection groups. Internal degrees of freedom are introduced, defining dynamical spin chains, and the freezing limit taken to obtain static chains of Haldane-Shastry type. By considering the relation of these models to the usual BC N case, we are led to systems with both real and complex reflection groups as symmetries. We demonstrate their integrability by means of new Dunkl operators, associated to wreath products of dihedral groups

  14. Geometrical considerations in analyzing isotropic or anisotropic surface reflections.

    Science.gov (United States)

    Simonot, Lionel; Obein, Gael

    2007-05-10

    The bidirectional reflectance distribution function (BRDF) represents the evolution of the reflectance with the directions of incidence and observation. Today BRDF measurements are increasingly applied and have become important to the study of the appearance of surfaces. The representation and the analysis of BRDF data are discussed, and the distortions caused by the traditional representation of the BRDF in a Fourier plane are pointed out and illustrated for two theoretical cases: an isotropic surface and a brushed surface. These considerations will help characterize either the specular peak width of an isotropic rough surface or the main directions of the light scattered by an anisotropic rough surface without misinterpretations. Finally, what is believed to be a new space is suggested for the representation of the BRDF, which avoids the geometrical deformations and in numerous cases is more convenient for BRDF analysis.

  15. Reflection of slow hydrogen and helium ions from solid surfaces

    International Nuclear Information System (INIS)

    Akkerman, A.F.

    1978-01-01

    Some characteristics of the proton and helium ion flux (E < 10 keV), reflected from solid surfaces are presented. A 'condensed walk' scheme, previously used for electron transport calculations, was adapted. Results obtained either by the scheme or by a more detailed 'consequent' scheme agreed closely. The presented data permit calculations of the mean energy of reflected particles and other values for various energy and angular distributions of incident particles. (author)

  16. Quality Assessment of Landsat Surface Reflectance Products Using MODIS Data

    Science.gov (United States)

    Feng, Min; Huang, Chengquan; Channan, Saurabh; Vermote, Eric; Masek, Jeffrey G.; Townshend, John R.

    2012-01-01

    Surface reflectance adjusted for atmospheric effects is a primary input for land cover change detection and for developing many higher level surface geophysical parameters. With the development of automated atmospheric correction algorithms, it is now feasible to produce large quantities of surface reflectance products using Landsat images. Validation of these products requires in situ measurements, which either do not exist or are difficult to obtain for most Landsat images. The surface reflectance products derived using data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), however, have been validated more comprehensively. Because the MODIS on the Terra platform and the Landsat 7 are only half an hour apart following the same orbit, and each of the 6 Landsat spectral bands overlaps with a MODIS band, good agreements between MODIS and Landsat surface reflectance values can be considered indicators of the reliability of the Landsat products, while disagreements may suggest potential quality problems that need to be further investigated. Here we develop a system called Landsat-MODIS Consistency Checking System (LMCCS). This system automatically matches Landsat data with MODIS observations acquired on the same date over the same locations and uses them to calculate a set of agreement metrics. To maximize its portability, Java and open-source libraries were used in developing this system, and object-oriented programming (OOP) principles were followed to make it more flexible for future expansion. As a highly automated system designed to run as a stand-alone package or as a component of other Landsat data processing systems, this system can be used to assess the quality of essentially every Landsat surface reflectance image where spatially and temporally matching MODIS data are available. The effectiveness of this system was demonstrated using it to assess preliminary surface reflectance products derived using the Global Land Survey (GLS) Landsat

  17. Noninvasive assessment of articular cartilage surface damage using reflected polarized light microscopy

    Science.gov (United States)

    Huynh, Ruby N.; Nehmetallah, George; Raub, Christopher B.

    2017-06-01

    Articular surface damage occurs to cartilage during normal aging, osteoarthritis, and in trauma. A noninvasive assessment of cartilage microstructural alterations is useful for studies involving cartilage explants. This study evaluates polarized reflectance microscopy as a tool to assess surface damage to cartilage explants caused by mechanical scraping and enzymatic degradation. Adult bovine articular cartilage explants were scraped, incubated in collagenase, or underwent scrape and collagenase treatments. In an additional experiment, cartilage explants were subject to scrapes at graduated levels of severity. Polarized reflectance parameters were compared with India ink surface staining, features of histological sections, changes in explant wet weight and thickness, and chondrocyte viability. The polarized reflectance signal was sensitive to surface scrape damage and revealed individual scrape features consistent with India ink marks. Following surface treatments, the reflectance contrast parameter was elevated and correlated with image area fraction of India ink. After extensive scraping, polarized reflectance contrast and chondrocyte viability were lower than that from untreated explants. As part of this work, a mathematical model was developed and confirmed the trend in the reflectance signal due to changes in surface scattering and subsurface birefringence. These results demonstrate the effectiveness of polarized reflectance microscopy to sensitively assess surface microstructural alterations in articular cartilage explants.

  18. Earth surface reflectance climatology from 3 years of OMI data

    NARCIS (Netherlands)

    Kleipool, Q.L.; Dobber, M.R.; Haan, de J.F.; Levelt, P.F.

    2008-01-01

    Global maps of the Earth's surface Lambertian equivalent reflectance (LER) are constructed using 3 years of Ozone Monitoring Instrument (OMI) measurements obtained between October 2004 and October 2007 at 23 wavelengths between 328 and 500 nm. The maps are constructed on a 0.5° by 0.5°

  19. Nanoimprinted reflecting gratings for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Haugstrup; Boltasseva, Alexandra; Johansen, Dan Mario

    2007-01-01

    We present a novel design, fabrication, and characterization of reflecting gratings for long-range surface plasmon polaritons (LR-SPPs) at telecom wavelengths. LR-SPP waveguides consisting of a thin (12 nm) gold film embedded in a thick (45 μm) layer of dielectric polymer cladding are structured...

  20. An instrument for the measurement of road surface reflection properties

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Sørensen, K.

    2017-01-01

    Road surface reflection data in the form of standard r-tables serve as input for design calculations of road lighting installations on traffic roads. However, in several countries the use of the standard r-tables has not been verified by measurement in a long period of time, while the types of road...

  1. Copper-assisted, anti-reflection etching of silicon surfaces

    Science.gov (United States)

    Toor, Fatima; Branz, Howard

    2014-08-26

    A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.

  2. Mercury's Surface Magnetic Field Determined from Proton-Reflection Magnetometry

    Science.gov (United States)

    Winslow, Reka M.; Johnson, Catherine L.; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Lillis, Robert J.; Korth, Haje; Slavin, James A.; Solomon, Sean C.; Zurbuchen, Thomas H.; hide

    2014-01-01

    Solar wind protons observed by the MESSENGER spacecraft in orbit about Mercury exhibit signatures of precipitation loss to Mercury's surface. We apply proton-reflection magnetometry to sense Mercury's surface magnetic field intensity in the planet's northern and southern hemispheres. The results are consistent with a dipole field offset to the north and show that the technique may be used to resolve regional-scale fields at the surface. The proton loss cones indicate persistent ion precipitation to the surface in the northern magnetospheric cusp region and in the southern hemisphere at low nightside latitudes. The latter observation implies that most of the surface in Mercury's southern hemisphere is continuously bombarded by plasma, in contrast with the premise that the global magnetic field largely protects the planetary surface from the solar wind.

  3. An instrument for the measurement of road surface reflection properties

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Sørensen, K.

    2017-01-01

    surfaces in use have changed - for instance to road surface types with less noise from wheel passages. Because of this, a co-operation between the road administrations of the Nordic countries (abbreviated NMF) decided to construct a portable instrument to be used on selections of traffic roads within......Road surface reflection data in the form of standard r-tables serve as input for design calculations of road lighting installations on traffic roads. However, in several countries the use of the standard r-tables has not been verified by measurement in a long period of time, while the types of road...

  4. Repulsive Casimir-Polder potential by a negative reflecting surface

    Science.gov (United States)

    Yuan, Qi-Zhang

    2015-07-01

    We present a scheme to generate an all-range long repulsive Casimir-Polder potential between a perfect negative reflecting surface and a ground-state atom. The repulsive potential is stable and does not decay with time. The Casimir-Polder potential is proportional to z-2 at short atom-surface distances and to z-4 at long atom-surface distances. Because of these advantages, this potential can help in building quantum reflectors, quantum levitating devices, and waveguides for matter waves.

  5. Excitations of surface plasmon polaritons by attenuated total reflection, revisited

    International Nuclear Information System (INIS)

    Barchesi, D.; Otto, A.

    2013-01-01

    Many textbooks and review papers are devoted to plasmonics based on a selection of the numerous bibliography. But none describes the details of the first culmination of plasmonics in 1968, when surface plasmons become a field of optics. The coupling of light with the surface plasmon leads to the surface plasmon polariton (SPP). Therefore, the authors chose to associate historical insight (not avoiding a personal touch), a modern mathematical formulation of the excitation of the SPP by attenuated total reflection (ATR), considered as well understood since decades, and experimental applications since 1969, including recent developments.

  6. Comparison of the bidirectional reflectance distribution function of various surfaces

    International Nuclear Information System (INIS)

    Fernandez, R.; Seasholtz, R.G.; Oberle, L.G.; Kadambi, J.R.

    1989-01-01

    This paper describes the development and use of a system to measure the bidirectional reflectance distribution function (BRDF) of various surfaces. The BRDF measurements are to be used in the analysis and design of optical measurement systems such as laser anemometers. An Ar-ion laser (514 nm) was the light source. Preliminary results are presented for eight samples: two glossy black paints, two flat black paints, black glass, sand-blasted Al, unworked Al, and a white paint. A BaSO4 white reflectance standard was used as the reference sample throughout the tests. 8 refs

  7. Reflectance variability of surface coatings reveals characteristic eigenvalue spectra

    Science.gov (United States)

    Medina, José M.; Díaz, José A.; Barros, Rui

    2012-10-01

    We have examined the trial-to-trial variability of the reflectance spectra of surface coatings containing effect pigments. Principal component analysis of reflectances was done at each detection angle separately. A method for classification of principal components is applied based on the eigenvalue spectra. It was found that the eigenvalue spectra follow characteristic power laws and depend on the detection angle. Three different subsets of principal components were examined to separate the relevant spectral features related to the pigments from other noise sources. Reconstruction of the reflectance spectra by taking only the first subset indicated that reflectance variability was higher at near-specular reflection, suggesting a correlation with the trial-to-trial deposition of effect pigments. Reconstruction by using the second subset indicates that variability was higher at short wavelengths. Finally, reconstruction by using only the third subset indicates that reflectance variability was not totally random as a function of the wavelength. The methods employed can be useful in the evaluation of color variability in industrial paint application processes.

  8. GLOBAL LAND COVER CLASSIFICATION USING MODIS SURFACE REFLECTANCE PROSUCTS

    Directory of Open Access Journals (Sweden)

    K. Fukue

    2016-06-01

    Full Text Available The objective of this study is to develop high accuracy land cover classification algorithm for Global scale by using multi-temporal MODIS land reflectance products. In this study, time-domain co-occurrence matrix was introduced as a classification feature which provides time-series signature of land covers. Further, the non-parametric minimum distance classifier was introduced for timedomain co-occurrence matrix, which performs multi-dimensional pattern matching for time-domain co-occurrence matrices of a classification target pixel and each classification classes. The global land cover classification experiments have been conducted by applying the proposed classification method using 46 multi-temporal(in one year SR(Surface Reflectance and NBAR(Nadir BRDF-Adjusted Reflectance products, respectively. IGBP 17 land cover categories were used in our classification experiments. As the results, SR and NBAR products showed similar classification accuracy of 99%.

  9. Unmanned aerial system nadir reflectance and MODIS nadir BRDF-adjusted surface reflectances intercompared over Greenland

    Science.gov (United States)

    Faulkner Burkhart, John; Kylling, Arve; Schaaf, Crystal B.; Wang, Zhuosen; Bogren, Wiley; Storvold, Rune; Solbø, Stian; Pedersen, Christina A.; Gerland, Sebastian

    2017-07-01

    Albedo is a fundamental parameter in earth sciences, and many analyses utilize the Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo (MCD43) algorithms. While derivative albedo products have been evaluated over Greenland, we present a novel, direct comparison with nadir surface reflectance collected from an unmanned aerial system (UAS). The UAS was flown from Summit, Greenland, on 210 km transects coincident with the MODIS sensor overpass on board the Aqua and Terra satellites on 5 and 6 August 2010. Clear-sky acquisitions were available from the overpasses within 2 h of the UAS flights. The UAS was equipped with upward- and downward-looking spectrometers (300-920 nm) with a spectral resolution of 10 nm, allowing for direct integration into the MODIS bands 1, 3, and 4. The data provide a unique opportunity to directly compare UAS nadir reflectance with the MODIS nadir BRDF-adjusted surface reflectance (NBAR) products. The data show UAS measurements are slightly higher than the MODIS NBARs for all bands but agree within their stated uncertainties. Differences in variability are observed as expected due to different footprints of the platforms. The UAS data demonstrate potentially large sub-pixel variability of MODIS reflectance products and the potential to explore this variability using the UAS as a platform. It is also found that, even at the low elevations flown typically by a UAS, reflectance measurements may be influenced by haze if present at and/or below the flight altitude of the UAS. This impact could explain some differences between data from the two platforms and should be considered in any use of airborne platforms.

  10. Implementation of solar-reflective surfaces: Materials and utility programs

    Energy Technology Data Exchange (ETDEWEB)

    Bretz, S.; Akbari, H.; Rosenfeld, A.; Taha, H.

    1992-06-01

    This report focuses on implementation issues for using solar-reflective surfaces to cool urban heat islands, with specific examples for Sacramento, California. Advantages of solar-reflective surfaces for reducing energy use are: (1) they are cost-effective if albedo is increased during routine maintenance; (2) the energy savings coincide with peak demand for power; (3) there are positive effects on environmental quality; and (4) the white materials have a long service life. Important considerations when choosing materials for mitigating heat islands are identified as albedo, emissivity, durability, cost, pollution and appearance. There is a potential for increasing urban albedo in Sacramento by an additional 18%. Of residential roofs, we estimate that asphalt shingle and modified bitumen cover the largest area, and that built-up roofing and modified bitumen cover the largest area of commercial buildings. For all of these roof types, albedo may be increased at the time of re-roofing without any additional cost. When a roof is repaired, a solar-reflective roof coating may be applied to significantly increase albedo and extend the life of the root Although a coating may be cost-effective if applied to a new roof following installation or to an older roof following repair, it is not cost-effective if the coating is applied only to save energy. Solar-reflective pavement may be cost-effective if the albedo change is included in the routine resurfacing schedule. Cost-effective options for producing light-colored pavement may include: (1) asphalt concrete, if white aggregate is locally available; (2) concrete overlays; and (3) newly developed white binders and aggregate. Another option may be hot-rolled asphalt, with white chippings. Utilities could promote solar-reflective surfaces through advertisement, educational programs and cost-sharing of road resurfacing.

  11. Calculation of Reflectance and Transmittance of Coating With Optically Rough Surfaces

    International Nuclear Information System (INIS)

    El-Depsy, A.; Shawky, A.M.

    2011-01-01

    For ideal surfaces, components of the reflected beam are related to the components of the incident beam by Fresnel reflection equation. The surfaces encountered in engineering applications deviate from ideal as a result of roughness, oxidization and contamination; hence the Radiative properties of these real surfaces differ greatly from those predicted by electromagnetic theory. In regard to problems of radiative heat transfer; the roughness of surfaces may be divided into two categories: (1) small surface irregularities such that the incident radiation cannot undergo more than a single reflection, (2) deep cavities in which the incident radiation undergoes multi-reflection. The normally incident radiation from rough surface having small irregularities is reflected partly specularly and partly diffusely [1]. Kubelka-Munk theory (K-M) [2] describes optical characteristics (e.g. reflectance, transmittance and absorbance) by a variety of light scattering media including paints, textiles and papers, and It is widely used in various industrial applications. Moder developments in radiative transfer theory (RTT) enable the derivation of (K-M) parameters from first principles [3]. Kubelka and Munk proposed a theory based on a model of two light fluxes travelling in the forward and backward directions. Subsequently a number of authors refined the theory and compared it with experimental data [4]. Several authors attempted to relate the Kubelka- Munk coefficients to the transport coefficients [5,6

  12. Real-time defect detection on highly reflective curved surfaces

    Science.gov (United States)

    Rosati, G.; Boschetti, G.; Biondi, A.; Rossi, A.

    2009-03-01

    This paper presents an automated defect detection system for coated plastic components for the automotive industry. This research activity came up as an evolution of a previous study which employed a non-flat mirror to illuminate and inspect high reflective curved surfaces. According to this method, the rays emitted from a light source are conveyed on the surface under investigation by means of a suitably curved mirror. After the reflection on the surface, the light rays are collected by a CCD camera, in which the coating defects appear as shadows of various shapes and dimensions. In this paper we present an evolution of the above-mentioned method, introducing a simplified mirror set-up in order to reduce the costs and the complexity of the defect detection system. In fact, a set of plane mirrors is employed instead of the curved one. Moreover, the inspection of multiple bend radius parts is investigated. A prototype of the machine vision system has been developed in order to test this simplified method. This device is made up of a light projector, a set of plane mirrors for light rays reflection, a conveyor belt for handling components, a CCD camera and a desktop PC which performs image acquisition and processing. Like in the previous system, the defects are identified as shadows inside a high brightness image. At the end of the paper, first experimental results are presented.

  13. Retrieval and Validation of aerosol optical properties from AHI measurements: impact of surface reflectance assumption

    Science.gov (United States)

    Lim, H.; Choi, M.; Kim, J.; Go, S.; Chan, P.; Kasai, Y.

    2017-12-01

    This study attempts to retrieve the aerosol optical properties (AOPs) based on the spectral matching method, with using three visible and one near infrared channels (470, 510, 640, 860nm). This method requires the preparation of look-up table (LUT) approach based on the radiative transfer modeling. Cloud detection is one of the most important processes for guaranteed quality of AOPs. Since the AHI has several infrared channels, which are very advantageous for cloud detection, clouds can be removed by using brightness temperature difference (BTD) and spatial variability test. The Yonsei Aerosol Retrieval (YAER) algorithm is basically utilized on a dark surface, therefore a bright surface (e.g., desert, snow) should be removed first. Then we consider the characteristics of the reflectance of land and ocean surface using three visible channels. The known surface reflectivity problem in high latitude area can be solved in this algorithm by selecting appropriate channels through improving tests. On the other hand, we retrieved the AOPs by obtaining the visible surface reflectance using NIR to normalized difference vegetation index short wave infrared (NDVIswir) relationship. ESR tends to underestimate urban and cropland area, we improved the visible surface reflectance considering urban effect. In this version, ocean surface reflectance is using the new cox and munk method which considers ocean bidirectional reflectance distribution function (BRDF). Input of this method has wind speed, chlorophyll, salinity and so on. Based on validation results with the sun-photometer measurement in AErosol Robotic NETwork (AERONET), we confirm that the quality of Aerosol Optical Depth (AOD) from the YAER algorithm is comparable to the product from the Japan Aerospace Exploration Agency (JAXA) retrieval algorithm. Our future update includes a consideration of improvement land surface reflectance by hybrid approach, and non-spherical aerosols. This will improve the quality of YAER

  14. Single-layer model for surface roughness.

    Science.gov (United States)

    Carniglia, C K; Jensen, D G

    2002-06-01

    Random roughness of an optical surface reduces its specular reflectance and transmittance by the scattering of light. The reduction in reflectance can be modeled by a homogeneous layer on the surface if the refractive index of the layer is intermediate to the indices of the media on either side of the surface. Such a layer predicts an increase in the transmittance of the surface and therefore does not provide a valid model for the effects of scatter on the transmittance. Adding a small amount of absorption to the layer provides a model that predicts a reduction in both reflectance and transmittance. The absorbing layer model agrees with the predictions of a scalar scattering theory for a layer with a thickness that is twice the rms roughness of the surface. The extinction coefficient k for the layer is proportional to the thickness of the layer.

  15. FORMATIVE AND REFLECTIVE MODELS IN MARKETING RESEARCH

    Directory of Open Access Journals (Sweden)

    Claudia Ioana CIOBANU

    2017-06-01

    Full Text Available Compliance with the construct validity criteria is necessary for the correct assessment of the research in terms of quality and for further development of the marketing models. The identification of formative and reflective constructs as well as the correct testing of their validity and reliability are important methodological steps for marketing research as described in this article. The first part defines the reflective and the formative constructs and highlighst their particularities by analysing the theoretical criteria that differentiate them. In the second part of the study aspects of validity and trust for the formative and reflective constructs are presented as well as some empirical considerations from research literature regarding their measurement.

  16. Coupled soil-leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data

    NARCIS (Netherlands)

    Verhoef, W.; Bach, H.

    2007-01-01

    Coupling radiative transfer models for the soil background and vegetation canopy layers is facilitated by means of the four-stream flux interaction concept and use of the adding method. Also the coupling to a state-of-the-art atmospheric radiative transfer model like MODTRAN4 can be established in

  17. Hydrological land surface modelling

    DEFF Research Database (Denmark)

    Ridler, Marc-Etienne Francois

    Recent advances in integrated hydrological and soil-vegetation-atmosphere transfer (SVAT) modelling have led to improved water resource management practices, greater crop production, and better flood forecasting systems. However, uncertainty is inherent in all numerical models ultimately leading...... temperature are explored in a multi-objective calibration experiment to optimize the parameters in a SVAT model in the Sahel. The two satellite derived variables were effective at constraining most land-surface and soil parameters. A data assimilation framework is developed and implemented with an integrated...... and disaster management. The objective of this study is to develop and investigate methods to reduce hydrological model uncertainty by using supplementary data sources. The data is used either for model calibration or for model updating using data assimilation. Satellite estimates of soil moisture and surface...

  18. Micro reflectance difference techniques: Optical probes for surface exploration

    Energy Technology Data Exchange (ETDEWEB)

    Lastras-Martinez, L.F.; Del Pozo-Zamudio, O.; Herrera-Jasso, R.; Ulloa-Castillo, N.A.; Balderas-Navarro, R.E.; Ortega-Gallegos, J.; Lastras-Martinez, A. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi, S.L.P. (Mexico)

    2012-06-15

    Micro reflectance difference spectroscopy ({mu}-RDS) is a promising tool for the in-situ and ex-situ characterization of semiconductors surfaces and interfaces. We discuss and compare two different approaches used to measure {mu}-RD spectra. One is based on a charge-coupled device (CCD) camera, while the other uses a laser and a XY translation stage. To show the performance of these systems, we have measured surface optical anisotropies of GaSb(001) sample on which anisotropic strains have been generated by preferential mechanical polishing along [110] and [1 anti 10] directions. The spectrometers are complementary and the selection of one of them depends on the sample to be investigated and on experimental conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Mars analog minerals' spectral reflectance characteristics under Martian surface conditions

    Science.gov (United States)

    Poitras, J. T.; Cloutis, E. A.; Salvatore, M. R.; Mertzman, S. A.; Applin, D. M.; Mann, P.

    2018-05-01

    We investigated the spectral reflectance properties of minerals under a simulated Martian environment. Twenty-eight different hydrated or hydroxylated phases of carbonates, sulfates, and silica minerals were selected based on past detection on Mars through spectral remote sensing data. Samples were ground and dry sieved to <45 μm grain size and characterized by XRD before and after 133 days inside a simulated Martian surface environment (pressure 5 Torr and CO2 fed). Reflectance spectra from 0.35 to 4 μm were taken periodically through a sapphire (0.35-2.5 μm) and zinc selenide (2.5-4 μm) window over a 133-day period. Mineral stability on the Martian surface was assessed through changes in spectral characteristics. Results indicate that the hydrated carbonates studied would be stable on the surface of Mars, only losing adsorbed H2O while maintaining their diagnostic spectral features. Sulfates were less stable, often with shifts in the band position of the SO, Fe, and OH absorption features. Silicas displayed spectral shifts related to SiOH and hydration state of the mineral surface, while diagnostic bands for quartz were stable. Previous detection of carbonate minerals based on 2.3-2.5 μm and 3.4-3.9 μm features appears to be consistent with our results. Sulfate mineral detection is more questionable since there can be shifts in band position related to SO4. The loss of the 0.43 μm Fe3+ band in many of the sulfates indicate that there are fewer potential candidates for Fe3+ sulfates to permanently exist on the Martian surface based on this band. The gypsum sample changed phase to basanite during desiccation as demonstrated by both reflectance and XRD. Silica on Mars has been detected using band depth ratio at 1.91 and 1.96 μm and band minimum position of the 1.4 μm feature, and the properties are also used to determine their age. This technique continues to be useful for positive silica identifications, however, silica age appears to be less consistent

  20. Assessment of biases in MODIS surface reflectance due to Lambertian approximation

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Robert B [ORNL; SanthanaVannan, Suresh K [ORNL

    2010-08-01

    Using MODIS data and the AERONET-based Surface Reflectance Validation Network (ASRVN), this work studies errors of MODIS atmospheric correction caused by the Lambertian approximation. On one hand, this approximation greatly simplifies the radiative transfer model, reduces the size of the look-up tables, and makes operational algorithm faster. On the other hand, uncompensated atmospheric scattering caused by Lambertian model systematically biases the results. For example, for a typical bowl-shaped bidirectional reflectance distribution function (BRDF), the derived reflectance is underestimated at high solar or view zenith angles, where BRDF is high, and is overestimated at low zenith angles where BRDF is low. The magnitude of biases grows with the amount of scattering in the atmosphere, i.e., at shorter wavelengths and at higher aerosol concentration. The slope of regression of Lambertian surface reflectance vs. ASRVN bidirectional reflectance factor (BRF) is about 0.85 in the red and 0.6 in the green bands. This error propagates into the MODIS BRDF/albedo algorithm, slightly reducing the magnitude of overall reflectance and anisotropy of BRDF. This results in a small negative bias of spectral surface albedo. An assessment for the GSFC (Greenbelt, USA) validation site shows the albedo reduction by 0.004 in the near infrared, 0.005 in the red, and 0.008 in the green MODIS bands.

  1. Degradation of Silicon Carbide Reflective Surfaces in the LEO Environment

    Science.gov (United States)

    Mileti, Sandro; Coluzzi, Plinio; Marchetti, Mario

    2009-01-01

    Space mirrors in Low Earth Orbit (LEO) encounter a degradation problem caused by the impact of atomic oxygen (ATOX) in the space environment. This paper presents an experiment of the atomic oxygen impact degradation and UV synergic effects on ground simulation. The experiment was carried out in a dedicated ATOX simulation vacuum chamber. As target materials, a polished CVD Beta-silicon carbide (SiC) coating was investigated. The selection of silicon carbide is due to its high potential candidate as a mirror layer substrate material for its good reflectance at UV wavelengths and excellent thermal diffusivity. It has highly desirable mechanical and thermal properties and can achieve an excellent surface finish. The deposition of the coatings were on carbon-based material substrate; i.e., silicon impregnated carbon fiber composite (C/SiC). Mechanical and thermal properties of the coatings such as hardness and Coefficient of Thermal Expansion (CTE) were achieved. Several atomic oxygen impact angles were studied tilting the target samples respect to the flux direction. The various impact angles permitted to analyze the different erosion rates and typologies which the mirrors would encounter in LEO environment. The degradation was analyzed in various aspects. Macroscopic mass loss per unit area, surface roughness and morphology change were basically analyzed. The exposed surfaces of the materials were observed through a Scanning Electron Microscope (SEM). Secondly, optical diagnostic of the surfaces were performed in order to investigate their variation in optical properties as the evaluation of reflectance degradation. The presence of micro-cracks caused by shrinkage, grinding, polishing or thermal cycling and the porosity in the coatings, could have led to the undercutting phenomenon. Observation of uprising of undercutting was also conducted. Remarks are given regarding capabilities in short-term mission exposures to the LEO environment of this coating.

  2. Manifestation of surface phonons in far infrared reflectivity of diamond-type semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Sanchez, F.L.; Perez-Rodriguez, F. [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Post. J-48, Puebla, Pue. 72570 (Mexico)

    2004-11-01

    The coupling of surface phonons with light at (001) surfaces of diamond-structure crystals and its manifestation in far-infrared anisotropy spectra are theoretically studied. We apply the adiabatic bond charge model to describe short-range mechanical interactions together with long-range Coulomb forces and radiation fields, and we solve the corresponding system of coupled equations for the electromagnetic field and the lattice vibrations. We calculate far-infrared normal reflectance spectra of (001) surfaces of semi-infinite diamond-type crystals. In particular, we analyse reflectance spectra for the Si(001) (2 x 1) surface, which exhibit a resonance structure associated with the excitation of surface phonon modes. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Reflective array modeling for reflective and directional SAW transducers.

    Science.gov (United States)

    Morgan, D P

    1998-01-01

    This paper presents a new approximate method for analyzing reflective SAW transducers, with much of the convenience of the coupled-mode (COM) method but with better accuracy. Transduction accuracy is obtained by incorporating the accurate electrostatic solution, giving for example correct harmonics, and allowance for electrode width variation, in a simple manner. Results are shown for a single-electrode transducer, Natural SPUDT and DART SPUDT, each using theoretically derived parameters. In contrast to the COM, the RAM can give accurate results for short or withdrawal-weighted transducers and for wide analysis bandwidth.

  4. Reflection properties of road surfaces. Contribution to OECD Scientific Expert Group AC4 on Road Surface Characteristics.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1983-01-01

    Photometric characteristics of road surfaces are dealt with. Representation of reflection properties in public lighting; quality criteria of road lighting installations; classification of road surfaces; the relation between reflection characteristics and other properties of road pavements in public

  5. A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces.

    Science.gov (United States)

    Hyde, M W; Schmidt, J D; Havrilla, M J

    2009-11-23

    A polarimetric bidirectional reflectance distribution function (pBRDF), based on geometrical optics, is presented. The pBRDF incorporates a visibility (shadowing/masking) function and a Lambertian (diffuse) component which distinguishes it from other geometrical optics pBRDFs in literature. It is shown that these additions keep the pBRDF bounded (and thus a more realistic physical model) as the angle of incidence or observation approaches grazing and better able to model the behavior of light scattered from rough, reflective surfaces. In this paper, the theoretical development of the pBRDF is shown and discussed. Simulation results of a rough, perfect reflecting surface obtained using an exact, electromagnetic solution and experimental Mueller matrix results of two, rough metallic samples are presented to validate the pBRDF.

  6. Simplified models for surface hyperchannelling

    International Nuclear Information System (INIS)

    Evdokimov, I.N.; Webb, R.; Armour, D.G.; Karpuzov, D.S.

    1979-01-01

    Experimental and detailed, three-dimensional computer simulation studies of the scattering of low energy argon ions incident at grazing angles onto a nickel single crystal have shown that under certain, well defined conditions, surface hyperchannelling dominates the reflection process. The applicability of simple computer simulation models to the study of this type of scattering has been investigated by comparing the results obtained using a 'summation of binary collisions' model and a continuous string model with both the experimental observations and the three dimensional model calculations. It has been shown that all the major features of the phenomenon can be reproduced in a qualitative way using the simple models and that the continuous string represents a good approximation to the 'real' crystal over a wide range of angles. The saving in computer time compared with the more complex model makes it practicable to use the simple models to calculate cross-sections and overall scattering intensities for a wide range of geometries. The results of these calculations suggest that the critical angle for the onset of surface hyperchannelling, which is associated with a reduction in scattering intensity and which is thus not too sensitive to the parameters of experimental apparatus is a useful quantity from the point of view of comparison of theoretical calculations with experimental measurements. (author)

  7. Model of bidirectional reflectance distribution function for metallic materials

    International Nuclear Information System (INIS)

    Wang Kai; Zhu Jing-Ping; Liu Hong; Hou Xun

    2016-01-01

    Based on the three-component assumption that the reflection is divided into specular reflection, directional diffuse reflection, and ideal diffuse reflection, a bidirectional reflectance distribution function (BRDF) model of metallic materials is presented. Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection, the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection. This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials. Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials. (paper)

  8. Model of bidirectional reflectance distribution function for metallic materials

    Science.gov (United States)

    Wang, Kai; Zhu, Jing-Ping; Liu, Hong; Hou, Xun

    2016-09-01

    Based on the three-component assumption that the reflection is divided into specular reflection, directional diffuse reflection, and ideal diffuse reflection, a bidirectional reflectance distribution function (BRDF) model of metallic materials is presented. Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection, the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection. This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials. Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.

  9. Influence of surface roughness on the reflective properties of snow

    International Nuclear Information System (INIS)

    Zhuravleva, Tatiana B.; Kokhanovsky, Alexander A.

    2011-01-01

    In this paper the influence of 3D effect on snow reflection function (SRF) and albedo is studied in the framework of the stochastic radiative transfer theory. In particular, the corresponding equations for the averaged intensity of reflected light are solved for the ensemble of realizations of the stochastic field κ(r), describing the distribution of 3D elements on the flat semi-infinite snow layer (SISL). The reflection from the underlying SISL is modeled using the solution of the 1D radiative transfer equation. The corresponding look-up tables were compiled beforehand and used in the simulation process. In accordance with the previous studies, it was found that the albedo of snow layer is reduced (in particular, in the infrared region), if 3D effects are taken into account. There is no such a reduction, if light absorption in snow is absent. The 3D effects may increase or decrease SRF depending on the sastrugi fraction and illumination/observation conditions.

  10. STACKING ON COMMON REFLECTION SURFACE WITH MULTIPARAMETER TRAVELTIME

    Directory of Open Access Journals (Sweden)

    Montes V. Luis A.

    2006-12-01

    Full Text Available Commonly seismic images are displayed in time domain because the model in depth can be known only in well logs. To produce seismic sections, pre and post stack processing approaches use time or depth velocity models whereas the common reflection method does not, instead it requires a set of parameters established for the first layer. A set of synthetic data of an anticline model, with sources and receivers placed on a flat topography, was used to observe the performance of this method. As result, a better reflector recovering compared against conventional processing sequence was observed.
    The procedure was extended to real data, using a dataset acquired on a zone characterized by mild topography and quiet environment reflectors in the Eastern Colombia planes, observing an enhanced and a better continuity of the reflectors in the CRS stacked section.

  11. Viscoelasticity evaluation of rubber by surface reflection of supersonic wave.

    Science.gov (United States)

    Omata, Nobuaki; Suga, Takahiro; Furusawa, Hirokazu; Urabe, Shinichi; Kondo, Takeru; Ni, Qing-Qing

    2006-12-22

    The main characteristic of rubber is a viscoelasticity. So it is important to research the characteristic of the viscoelasticity of the high frequency band for the friction between a rubber material and the hard one with roughness, for instance, the tire and the road. As for the measurement of the viscoelasticity of rubber, DMA (dynamic mechanical analysis) is general. However, some problems are pointed out to the measurement of the high frequency band by DMA. Then, we evaluated the viscoelasticity characteristic by the supersonic wave measurement. However, attenuation of rubber is large, and when the viscoelasticity is measured by the supersonic wave therefore, it is inconvenient and limited in a past method by means of bottom reflection. In this report, we tried the viscoelasticity evaluation by the method of using complex surface reflection coefficient and we compared with the friction coefficient under wide-range friction velocity. As a result, some relationships had been found for two properties. We report the result that character of viscoelasticity of rubber was comparable to friction coefficient.

  12. Light reflection from a rough liquid surface including wind-wave effects in a scattering atmosphere

    International Nuclear Information System (INIS)

    Salinas, Santo V.; Liew, S.C.

    2007-01-01

    Visible and near-IR images of the ocean surface, taken from remote satellites, often contain important information of near-surface or sub-surface processes, which occur on, or over the ocean. Remote measurements of near surface winds, sea surface temperature and salinity, ocean color and underwater bathymetry, all, one way or another, depend on how well we understand sea surface roughness. However, in order to extract useful information from our remote measurements, we need to construct accurate models of the transfer of solar radiation inside the atmosphere as well as, its reflection from the sea surface. To approach this problem, we numerically solve the radiative transfer equation (RTE) by implementing a model for the atmosphere-ocean system. A one-dimensional atmospheric radiation model is solved via the widely known doubling and adding method and the ocean body is treated as a boundary condition to the problem. The ocean surface is modeled as a rough liquid surface which includes wind interaction and wave states, such as wave age. The model can have possible applications to the retrieval of wind and wave states, such as wave age, near a Sun glint region

  13. X-Ray Reflectivity from the Surface of a Liquid Crystal:

    DEFF Research Database (Denmark)

    Pershan, P.S.; Als-Nielsen, Jens Aage

    1984-01-01

    X-ray reflectivity from the surface of a nematic liquid crystal is interpreted as the coherent superposition of Fresnel reflection from the surface and Bragg reflection from smectic order induced by the surface. Angular dependence of the Fresnel effect yields information on surface structure....... Measurement of the intensity of diffuse critical scattering relative to the Fresnel reflection yields the absolute value of the critical part of the density-density correlation function....

  14. Predictive Surface Complexation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences

    2016-11-29

    Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO2 and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.

  15. [Modeling polarimetric BRDF of leaves surfaces].

    Science.gov (United States)

    Xie, Dong-Hui; Wang, Pei-Juan; Zhu, Qi-Jiang; Zhou, Hong-Min

    2010-12-01

    The purpose of the present paper is to model a physical polarimetric bidirectional reflectance distribution function (pBRDF), which can character not only the non-Lambertian but also the polarized features in order that the pBRDF can be applied to analyze the relationship between the degree of polarization and the physiological and biochemical parameters of leaves quantitatively later. Firstly, the bidirectional polarized reflectance distributions from several leaves surfaces were measured by the polarized goniometer developed by Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. The samples of leaves include two pieces of zea mays L. leaves (young leaf and mature leaf) and a piece of E. palcherrima wild leaf. Non-Lambertian characteristics of directional reflectance from the surfaces of these three leaves are obvious. A Cook-Torrance model was modified by coupling the polarized Fresnel equations to simulate the bidirectional polarized reflectance properties of leaves surfaces. The three parameters in the modified pBRDF model, such as diffuse reflectivity, refractive index and roughness of leaf surface were inversed with genetic algorithm (GA). It was found that the pBRDF model can fit with the measured data well. In addition, these parameters in the model are related with both the physiological and biochemical properties and the polarized characteristics of leaves, therefore it is possible to build the relationships between them later.

  16. Surface 3-D reflection seismics - implementation at the Olkiluoto site

    Energy Technology Data Exchange (ETDEWEB)

    Saksa, P.; Lehtimaeki, T.; Heikkinen, E. [Poeyry Environment Oy, Vantaa (Finland)

    2007-03-15

    Posiva Oy takes care of the final disposal of spent nuclear fuel in Finland. In year 2001 Olkiluoto was selected for the site of final disposal. Construction of the underground research facility, ONKALO, is going on at the Olkiluoto site. The aim of this work was to study the possibilities for surface 3-D seismics and to review experiences for design before field work. The physical parameters and geometric properties of the site, as well as efficient survey layout and source arrangements, were considered in this work. Reflection seismics is most used geophysical investigation method in oil exploration and earth studies in sedimentary environment. Recently method has also been applied in crystalline bedrock for ore exploration and nuclear waste disposal site investigations. The advantage of the method is high accuracy combined with large depth of investigation. The principles of seismic 2-D and 3-D soundings are well known and advanced. 3-D sounding is a straightforward expansion of 2-D line based surveying. In investigation of crystalline bedrock, the high frequency wave sources and receivers, their right use in measurements and careful processing procedure (refraction static corrections in particular) are important. Using the site parameters in 2-D numerical modeling, two cases of faulted thin layer at depths of 200, 400 and 600 meters were studied. The first case was a layer with vertical dislocation (a ramp) and the other a layer having limited width of dislocated part. Central frequencies were 100, 200, 400 and 700 Hz. Results indicate that 10 - 20 m dislocation is recognizable, but for depths greater than 600 m, over 20 meters is required. Width of the dislocated part will affect the detectability of vertical displacement. At depths of 200 m and 400 m 10 - 50 m wide parts appear as point-like scatterers, wider areas have more continuity. Dislocations larger than 20 m can be seen. From depth of 600 m over 100 m wide parts are discernible, narrower are visible

  17. Surface 3-D reflection seismics - implementation at the Olkiluoto site

    International Nuclear Information System (INIS)

    Saksa, P.; Lehtimaeki, T.; Heikkinen, E.

    2007-03-01

    Posiva Oy takes care of the final disposal of spent nuclear fuel in Finland. In year 2001 Olkiluoto was selected for the site of final disposal. Construction of the underground research facility, ONKALO, is going on at the Olkiluoto site. The aim of this work was to study the possibilities for surface 3-D seismics and to review experiences for design before field work. The physical parameters and geometric properties of the site, as well as efficient survey layout and source arrangements, were considered in this work. Reflection seismics is most used geophysical investigation method in oil exploration and earth studies in sedimentary environment. Recently method has also been applied in crystalline bedrock for ore exploration and nuclear waste disposal site investigations. The advantage of the method is high accuracy combined with large depth of investigation. The principles of seismic 2-D and 3-D soundings are well known and advanced. 3-D sounding is a straightforward expansion of 2-D line based surveying. In investigation of crystalline bedrock, the high frequency wave sources and receivers, their right use in measurements and careful processing procedure (refraction static corrections in particular) are important. Using the site parameters in 2-D numerical modeling, two cases of faulted thin layer at depths of 200, 400 and 600 meters were studied. The first case was a layer with vertical dislocation (a ramp) and the other a layer having limited width of dislocated part. Central frequencies were 100, 200, 400 and 700 Hz. Results indicate that 10 - 20 m dislocation is recognizable, but for depths greater than 600 m, over 20 meters is required. Width of the dislocated part will affect the detectability of vertical displacement. At depths of 200 m and 400 m 10 - 50 m wide parts appear as point-like scatterers, wider areas have more continuity. Dislocations larger than 20 m can be seen. From depth of 600 m over 100 m wide parts are discernible, narrower are visible

  18. Quantification of the optical surface reflection and surface roughness of articular cartilage using optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Saarakkala, Simo; Wang Shuzhe; Huang Yanping; Zheng Yongping [Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong (China)], E-mail: simo.saarakkala@uku.fi, E-mail: ypzheng@ieee.org

    2009-11-21

    Optical coherence tomography (OCT) is a promising new technique for characterizing the structural changes of articular cartilage in osteoarthritis (OA). The calculation of quantitative parameters from the OCT signal is an important step to develop OCT as an effective diagnostic technique. In this study, two novel parameters for the quantification of optical surface reflection and surface roughness from OCT measurements are introduced: optical surface reflection coefficient (ORC), describing the amount of a ratio of the optical reflection from cartilage surface with respect to that from a reference material, and OCT roughness index (ORI) indicating the smoothness of the cartilage surface. The sensitivity of ORC and ORI to detect changes in bovine articular cartilage samples after enzymatic degradations of collagen and proteoglycans using collagenase and trypsin enzymes, respectively, was tested in vitro. A significant decrease (p < 0.001) in ORC as well as a significant increase (p < 0.001) in ORI was observed after collagenase digestion. After trypsin digestion, no significant changes in ORC or ORI were observed. To conclude, the new parameters introduced were demonstrated to be feasible and sensitive to detect typical OA-like degenerative changes in the collagen network. From the clinical point of view, the quantification of OCT measurements is of great interest since OCT probes have been already miniaturized and applied in patient studies during arthroscopy or open knee surgery in vivo. Further studies are still necessary to demonstrate the clinical capability of the introduced parameters for naturally occurring early OA changes in the cartilage.

  19. Energy loss of MeV protons specularly reflected from metal surfaces

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Garcia de Abajo, F.J.; Echenique, P.M.

    1996-01-01

    A parameter-free model is presented to study the energy loss of fast protons specularly reflected from metal surfaces. The contributions to the energy loss from excitation of valence-band electrons and ionization of localized target-atom electronic states are calculated separately. The former is calculated from the induced surface wake potential using linear response theory and the specular-reflection model, while the latter is calculated in the first Born approximation. The results obtained are in good agreement with available experimental data. However, the experimental qualitative trend of the energy loss as a function of the angle of incidence is obtained when the valence-band electron model is replaced by localized target atom electron states, though with a worse quantitative agreement. copyright 1996 The American Physical Society

  20. Near-surface 3D reflections seismic survey; Sanjigen senso hanshaho jishin tansa

    Energy Technology Data Exchange (ETDEWEB)

    Nakahigashi, H; Mitsui, H; Nakano, O; Kobayashi, T [DIA Consultants Co. Ltd., Tokyo (Japan)

    1997-05-27

    Faults are being actively investigated across Japan since the Great Hanshin-Awaji Earthquake. Discussed in this report is the application of the 3D near-surface reflection seismic survey in big cities. Data from trenching and drilling is used for the geological interpretation of the surroundings of a fault, and the reflection seismic survey is used to identify the position, etc., of the fault. In this article, when the results obtained from the experimental field are examined, it is found that the conventional 2D imaging reflection survey betrays the limit of its capability when the geological structure is complicated, that the 3D reflection seismic survey, on the contrary, is capable of high-precision imaging and, when augmented by drilling, etc., becomes capable of a more detailed interpretation, and that it also contributes effectively to the improvement of local disaster prevention in big cities. Using as the model the Tachikawa fault that runs near JR Tachikawa Station, embodiment of the 3D reflection seismic survey is reviewed. For the acquisition of data excellent in quality in a 3D reflection seismic survey conducted utilizing the roads in the sector chosen for experiment in the urban area, the shock generating points and receiving points should be positioned by taking into account the parameters in the bin arranging process so that the mid-points will be regularly distributed on the surface. 3 refs., 11 figs., 1 tab.

  1. Characterizing Land Surface Anisotropic Reflectance over Rugged Terrain: A Review of Concepts and Recent Developments

    Directory of Open Access Journals (Sweden)

    Jianguang Wen

    2018-02-01

    Full Text Available Rugged terrain, including mountains, hills, and some high lands are typical land surfaces around the world. As a physical parameter for characterizing the anisotropic reflectance of the land surface, the importance of the bidirectional reflectance distribution function (BRDF has been gradually recognized in the remote sensing community, and great efforts have been dedicated to build BRDF models over various terrain types. However, on rugged terrain, the topography intensely affects the shape and magnitude of the BRDF and creates challenges in modeling the BRDF. In this paper, after a brief introduction of the theoretical background of the BRDF over rugged terrain, the status of estimating land surface BRDF properties over rugged terrain is comprehensively reviewed from a historical perspective and summarized in two categories: BRDFs describing solo slopes and those describing composite slopes. The discussion focuses on land surface reflectance retrieval over mountainous areas, the difference in solo slope and composite slope BRDF models, and suggested future research to improve the accuracy of BRDFs derived with remote sensing satellites.

  2. Evaluation of BRDF Archetypes for Representing Surface Reflectance Anisotropy Using MODIS BRDF Data

    Directory of Open Access Journals (Sweden)

    Hu Zhang

    2015-06-01

    Full Text Available Bidirectional reflectance distribution function (BRDF archetypes extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS BRDF/Albedo product over the global Earth Observing System Land Validation Core Sites can be used to simplify BRDF models. The present study attempts to evaluate the representativeness of BRDF archetypes for surface reflectance anisotropy. Five-year forward-modeled MODIS multi-angular reflectance (MCD-ref and aditional actual MODIS multi-angular observations (MCD-obs in four growing periods in 2008 over three tiles were taken as validation data. First, BRDF archetypes in the principal plane were qualitatively compared with the time-series MODIS BRDF product of randomly sampled pixels. Secondly, BRDF archetypes were used to fit MCD-ref, and the average root-mean-squared errors (RMSEs over each tile were examined for these five years. Finally, both BRDF archetypes and the MODIS BRDF were used to fit MCD-obs, and the histograms of the fit-RMSEs were compared. The consistency of the directional reflectance between the BRDF archetypes and MODIS BRDFs in nadir-view, hotspot and entire viewing hemisphere at 30° and 50° solar geometries were also examined. The results confirm that BRDF archetypes are representative of surface reflectance anisotropy for available snow-free MODIS data.

  3. Sunlight reflection off the spacecraft with a solar sail on the surface of mars

    Science.gov (United States)

    Starinova, O. L.; Rozhkov, M. A.; Gorbunova, I. V.

    2018-05-01

    Modern technologies make it possible to fulfill many projects in the field of space exploration. One such project is the colonization of Mars and providing favorable conditions for living on it. Authors propose principles of functioning of the spacecraft with a solar sail, intended to create a thermal and light spot in a predetermined area of the Martian surface. This additional illumination can maintain and support certain climatic conditions on a small area where a Mars base could be located. This paper investigate the possibility of the spacecraft continuously reflect the sunlight off the solar sail on the small area of the Mars surface. The mathematical motion model in such condition of the solar sail's orientation is considered and used for motion simulation session. Moreover, the analysis of this motion is performed. Thus, were obtained parameters of the synchronic non-Keplerian orbit and spacecraft construction. In addition, were given recommendations for further applying satellites to reflect the sunlight on a planet's surface.

  4. Landsat surface reflectance quality assurance extraction (version 1.7)

    Science.gov (United States)

    Jones, J.W.; Starbuck, M.J.; Jenkerson, Calli B.

    2013-01-01

    The U.S. Geological Survey (USGS) Land Remote Sensing Program is developing an operational capability to produce Climate Data Records (CDRs) and Essential Climate Variables (ECVs) from the Landsat Archive to support a wide variety of science and resource management activities from regional to global scale. The USGS Earth Resources Observation and Science (EROS) Center is charged with prototyping systems and software to generate these high-level data products. Various USGS Geographic Science Centers are charged with particular ECV algorithm development and (or) selection as well as the evaluation and application demonstration of various USGS CDRs and ECVs. Because it is a foundation for many other ECVs, the first CDR in development is the Landsat Surface Reflectance Product (LSRP). The LSRP incorporates data quality information in a bit-packed structure that is not readily accessible without postprocessing services performed by the user. This document describes two general methods of LSRP quality-data extraction for use in image processing systems. Helpful hints for the installation and use of software originally developed for manipulation of Hierarchical Data Format (HDF) produced through the National Aeronautics and Space Administration (NASA) Earth Observing System are first provided for users who wish to extract quality data into separate HDF files. Next, steps follow to incorporate these extracted data into an image processing system. Finally, an alternative example is illustrated in which the data are extracted within a particular image processing system.

  5. Variability of Surface Reflection Amplitudes of GPR Horn Antenna Depending on Distance between Antenna and Surface

    Directory of Open Access Journals (Sweden)

    Komačka Jozef

    2016-05-01

    Full Text Available The study focused on variability of surface reflections amplitudes of GPR horn antenna in relation to distance between an antenna and a surface is presented in the paper. The air-coupled antenna with the central frequency of 1 GHz was used in the investigation. Four types of surfaces (dry pavement, wet pavement, metal plate and composite layer from gypsum and wood were tested. The distance of antenna above the surfaces was changed in the range from 37.5 cm to 53.5 cm. The amplitudes of negative and positive peaks and their variability were analysed in relation to the distance of antenna above the surfaces. Moreover, the influence of changes in the peaks of negative and positive amplitudes on the total amplitudes was assessed. It was found out the amplitudes of negative peaks for all investigated surfaces were relatively consistent in the range from 40.5 cm to 48.5 cm and the moderate decline was identified in the case of amplitudes of positive peaks in the range of distances from 37.5 cm to 51.5 cm. This decline influences the tendency of total amplitudes. Based on the results of analysis it can be stated the distance of air-coupled antenna above the surface can influence the value of total amplitude and the differences depend on the type of surface.

  6. Infrared reflection properties and modelling of in situ reflection measurements on plasma-facing materials in Tore Supra

    International Nuclear Information System (INIS)

    Reichle, R; Desgranges, C; Faisse, F; Pocheau, C; Lasserre, J-P; Oelhoffen, F; Eupherte, L; Todeschini, M

    2009-01-01

    Tore Supra has-like ITER-reflecting internal surfaces, which can perturb the machine protection systems based on infrared (IR) thermography. To ameliorate this situation, we have measured and modelled in the 3-5 μm wavelength range the bi-directional reflection distribution function (BRDF) of wall material samples from Tore Supra and conducted in situ reflection measurements and simulated them with the CEA COSMOS code. BRDF results are presented for B 4 C and carbon fibre composite (CFC) tiles. The hemispherical integrated reflection ranges from 0.12 for the B 4 C sample to 0.39 for a CFC tile from the limiter erosion zone. In situ measurements of the IR reflection of a blackbody source off an ICRH and an LHCD antenna of Tore Supra are well reproduced by the simulation.

  7. Infrared reflection properties and modelling of in situ reflection measurements on plasma-facing materials in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Reichle, R; Desgranges, C; Faisse, F; Pocheau, C [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Lasserre, J-P; Oelhoffen, F; Eupherte, L; Todeschini, M [CEA, DAM, CESTA, F-33114 Le Barp (France)

    2009-12-15

    Tore Supra has-like ITER-reflecting internal surfaces, which can perturb the machine protection systems based on infrared (IR) thermography. To ameliorate this situation, we have measured and modelled in the 3-5 {mu}m wavelength range the bi-directional reflection distribution function (BRDF) of wall material samples from Tore Supra and conducted in situ reflection measurements and simulated them with the CEA COSMOS code. BRDF results are presented for B{sub 4}C and carbon fibre composite (CFC) tiles. The hemispherical integrated reflection ranges from 0.12 for the B{sub 4}C sample to 0.39 for a CFC tile from the limiter erosion zone. In situ measurements of the IR reflection of a blackbody source off an ICRH and an LHCD antenna of Tore Supra are well reproduced by the simulation.

  8. Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images

    Science.gov (United States)

    Pons, X.; Pesquer, L.; Cristóbal, J.; González-Guerrero, O.

    2014-12-01

    Radiometric correction is a prerequisite for generating high-quality scientific data, making it possible to discriminate between product artefacts and real changes in Earth processes as well as accurately produce land cover maps and detect changes. This work contributes to the automatic generation of surface reflectance products for Landsat satellite series. Surface reflectances are generated by a new approach developed from a previous simplified radiometric (atmospheric + topographic) correction model. The proposed model keeps the core of the old model (incidence angles and cast-shadows through a digital elevation model [DEM], Earth-Sun distance, etc.) and adds new characteristics to enhance and automatize ground reflectance retrieval. The new model includes the following new features: (1) A fitting model based on reference values from pseudoinvariant areas that have been automatically extracted from existing reflectance products (Terra MODIS MOD09GA) that were selected also automatically by applying quality criteria that include a geostatistical pattern model. This guarantees the consistency of the internal and external series, making it unnecessary to provide extra atmospheric data for the acquisition date and time, dark objects or dense vegetation. (2) A spatial model for atmospheric optical depth that uses detailed DEM and MODTRAN simulations. (3) It is designed so that large time-series of images can be processed automatically to produce consistent Landsat surface reflectance time-series. (4) The approach can handle most images, acquired now or in the past, regardless of the processing system, with the exception of those with extremely high cloud coverage. The new methodology has been successfully applied to a series of near 300 images of the same area including MSS, TM and ETM+ imagery as well as to different formats and processing systems (LPGS and NLAPS from the USGS; CEOS from ESA) for different degrees of cloud coverage (up to 60%) and SLC

  9. The normalization of surface anisotropy effects present in SEVIRI reflectances by using the MODIS BRDF method

    DEFF Research Database (Denmark)

    Proud, Simon Richard; Zhang, Qingling; Schaaf, Crystal

    2014-01-01

    A modified version of the MODerate resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) algorithm is presented for use in the angular normalization of surface reflectance data gathered by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI...... acquisition period than the comparable MODIS products while, at the same time, removing many of the angular perturbations present within the original MSG data. The NBAR data are validated against reflectance data from the MODIS instrument and in situ data gathered at a field location in Africa throughout 2008....... It is found that the MSG retrievals are stable and are of high-quality across much of the SEVIRI disk while maintaining a higher temporal resolution than the MODIS BRDF products. However, a number of circumstances are discovered whereby the BRDF model is unable to function correctly with the SEVIRI...

  10. Self-consistent approach to x-ray reflection from rough surfaces

    International Nuclear Information System (INIS)

    Feranchuk, I. D.; Feranchuk, S. I.; Ulyanenkov, A. P.

    2007-01-01

    A self-consistent analytical approach for specular x-ray reflection from interfaces with transition layers [I. D. Feranchuk et al., Phys. Rev. B 67, 235417 (2003)] based on the distorted-wave Born approximation (DWBA) is used for the description of coherent and incoherent x-ray scattering from rough surfaces and interfaces. This approach takes into account the transformation of the modeling transition layer profile at the interface, which is caused by roughness correlations. The reflection coefficients for each DWBA order are directly calculated without phenomenological assumptions on their exponential decay at large scattering angles. Various regions of scattering angles are discussed, which show qualitatively different dependence of the reflection coefficient on the scattering angle. The experimental data are analyzed using the method developed

  11. Plasmonic reflectance anisotropy spectroscopy of metal nanoparticles on a semiconductor surface

    Science.gov (United States)

    Kosobukin, V. A.; Korotchenkov, A. V.

    2016-12-01

    A theory of plasmonic differential anisotropic reflection of light from nanoparticles located near the interface between media is developed. The model of a monolayer consisting of identical ellipsoidal metal particles occupying sites of a rectangular lattice is investigated. Effective plasmonic polarizabilities of nanoparticles in the layer are calculated self-consistently using the Green's function technique in the quasipoint dipole approximation. The local-field effect caused by anisotropic dipole plasmons of particles in the layer and their image dipoles is taken into account. The lately observed resonant reflectance anisotropy spectra of indium nanoclusters on InAs surface are explained by the difference between frequencies of plasmons with the orthogonal polarizations in the surface plane. The difference between the plasmon frequencies is attributed to anisotropy of the particles shape or/and the layer structure; the signs of frequency difference for the two types of anisotropy being different.

  12. Analysing the impact of reflectance distributions and well geometries on vertical surface daylight levels in atria for overcast skies

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jiangtao; Sharples, Steve [School of Architecture, University of Sheffield, Crookesmoor Building, Conduit Road, Sheffield S10 1FL (United Kingdom)

    2010-07-15

    This study investigated the impacts of different diffuse reflectance distributions and well geometries on vertical daylight factors and vertical internally reflected components in atria. Two forms of reflectance distribution patterns of wall surface were examined: horizontal and vertical reflectance band variation. The square atrium models studied have a broader WI range of 0.25-2.0, which represent shallow, medium and high atria. Radiance, a powerful package based on backward ray tracing technique, was used for the simulations of vertical daylight levels. The results show that different reflectance distributions of square atrium walls do have an impact on the vertical daylight factors and vertical internally reflected components under overcast sky condition. The impact relates to the orientation of the band with different reflectance distributions on the wall. Compared with the vertical band surface, the horizontal band surface has a much more complicated effect. The horizontal distributions of the reflectances significantly affects the vertical daylight levels at the locations more than 30% atrium height on the wall. For an atrium with a height more than 1/2 the width, the effect tends to increase with the increasing well index. The vertical distributions of the reflectance, nevertheless, do not substantially take effect on the vertical daylight levels in atria except for some special reflectance distribution patterns. (author)

  13. Modified polarimetric bidirectional reflectance distribution function with diffuse scattering: surface parameter estimation

    Science.gov (United States)

    Zhan, Hanyu; Voelz, David G.

    2016-12-01

    The polarimetric bidirectional reflectance distribution function (pBRDF) describes the relationships between incident and scattered Stokes parameters, but the familiar surface-only microfacet pBRDF cannot capture diffuse scattering contributions and depolarization phenomena. We propose a modified pBRDF model with a diffuse scattering component developed from the Kubelka-Munk and Le Hors et al. theories, and apply it in the development of a method to jointly estimate refractive index, slope variance, and diffuse scattering parameters from a series of Stokes parameter measurements of a surface. An application of the model and estimation approach to experimental data published by Priest and Meier shows improved correspondence with measurements of normalized Mueller matrix elements. By converting the Stokes/Mueller calculus formulation of the model to a degree of polarization (DOP) description, the estimation results of the parameters from measured DOP values are found to be consistent with a previous DOP model and results.

  14. Seismic data enhancement with Common Reflection Surface (CRS) stack method

    Energy Technology Data Exchange (ETDEWEB)

    Baykulov, M.; Brink, H.J.; Gajewski, D.; Yoon, Mi-Kyung [Hamburg Univ. (Germany). Inst. fuer Geophysik

    2008-10-23

    We present the results of partial stacking of prestack seismic reflection data based on the kinematic wavefield attributes computed during the automatic CRS stack. The resulting CRS supergathers are more regularised and have better signal to noise ratio compared to original CMP gathers. The improved data can be used in any conventional processing tool instead of the original data, providing enhanced images of better quality. The CRS supergather method is especially suited for low fold seismic reflection data. Application of the new method to synthetic and real low fold data shows a clear improvement of seismograms as well as time and depth-migrated sections. (orig.)

  15. Quantum reflection of fast atoms from insulator surfaces: Eikonal description

    Energy Technology Data Exchange (ETDEWEB)

    Gravielle, M S; Miraglia, J E, E-mail: msilvia@iafe.uba.a, E-mail: miraglia@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio, CONICET, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina) and Dpto. de Fisica, FCEN, Universidad de Buenos Aires (Argentina)

    2009-11-01

    Interference effects recently observed in grazing scattering of swift atoms from insulator surfaces are studied within a distorted-wave method - the surface eikonal approximation. This approach makes use of the eikonal wave function, involving axial channeled trajectories. The theory is applied to helium atoms colliding with a LiF(001) surface along low-index crystallographic directions. The roles played by the projectile polarization and the surface rumpling are investigated, finding that both effects are important for the description of the experimental projectile distributions.

  16. Estimating the Augmented Reflectance Ratio of the Ocean Surface When Whitecaps Appear

    Directory of Open Access Journals (Sweden)

    Zhantang Xu

    2015-10-01

    Full Text Available The presence of foam influences the accuracy of satellite-derived water-leaving radiance. A model has been developed to estimate the augmented reflectance ratio (A(λ,U due to differences in the fraction of whitecap coverage (w on the ocean surface. A(λ,U can be calculated from the product of w and ρ(λ,U, where ρ(λ,U is the augmented ratio of the reflectance of background water (Rb(λ caused by the presence of whitecaps. Our results showed that the average A(400~700,U in the visible region was approximately 1.3% at U = 9 m∙s−1, 2.2% at U = 10 m∙s−1, 4.4% at U = 12 m∙s−1, 7.4% at U = 14 m∙s−1, 19% at U = 19 m∙s−1 and 37.9% at U = 24 m∙s−1, making it is necessary to consider the augmented reflectance ratio for remote sensing applications. By estimating remote sensing augmented reflectance using A(λ,U, it was found that the result was in good agreement with previous studies conducted in other areas with U from 9 to 12 m∙s−1. Since Rb(λ is temporally and spatially variable, our model considered the variation of Rb(λ, whereas existing models have assumed that Rb(λ is constant. Therefore, the proposed model is more suitable for estimating the augmented reflectance ratio due to whitecaps.

  17. Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife.

    Directory of Open Access Journals (Sweden)

    Stephen R Griffiths

    Full Text Available Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance, white boxes (high reflectance, and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and

  18. Liquid Atomization Induced by Pulse Laser Reflection underneath Liquid Surface

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2009-05-01

    We observed a novel effect of pulse laser reflection at the interface between transparent materials with different refractive indices. The electric field intensity doubles when a laser beam is completely reflected from a material with a higher refractive index to a material with a lower index. This effect appreciably reduces pulse laser ablation threshold of transparent materials. We performed experiments to observe the entire ablation process for laser incidence on the water-air interface using pulse laser shadowgraphy with high-resolution film; the minimum laser fluence for laser ablation at the water-air interface was approximately 12-16 J/cm2. We confirmed that this laser ablation occurs only when the laser beam is incident on the water-air interface from water. Many slender liquid ligaments extend like a milk crown and seem to be atomized at the tip. Their detailed structures can be resolved only by pulse laser photography using high-resolution film.

  19. Reflectivity reduction of retro-reflector installed in LHD due to plasma surface interaction

    International Nuclear Information System (INIS)

    Yoshida, N.; Ohtawa, Y.; Ebihara, A.; Akiyama, T.; Tokitani, M.; Ashikawa, N.; Kawahata, K.

    2008-10-01

    Optical reflectivity of the retro-reflector installed in LHD as the first mirror was reduced seriously by plasma wall interaction. In order to understand the mechanism of the reflectivity reduction, optical and material properties of the mirror surfaces have been examined extensively. It was found that the deposited impurity layers caused the serious reduction of the reflectivity. Formation of iron oxide, bulges structure and He bubbles are the major factors for the reflectivity reduction in the wide wave length range. (author)

  20. A Model for Using Reflection to Enhance Interprofessional Education

    OpenAIRE

    Zarezadeh, Yadolah; Pearson, Pauline; Dickinson, Clair

    2009-01-01

    Both Reflective Practice and Interprofessional Education (IPE) have gained a considerable attention in the past three decades. Although a plethora of literature exists on either topic, few articles address the issue of using reflective techniques to enhance IPE (King &Ross, 2003; Ross et al, 2005; Goosey & Barr, 2002; Craddock, O'Halloran, Borthwick, & McPherson, 2006) and fewer provide a model to achieve this. The aim of this article is to propose a simple model for employing reflection in t...

  1. Repairing process models to reflect reality

    NARCIS (Netherlands)

    Fahland, D.; Aalst, van der W.M.P.; Barros, A.; Gal, A.; Kindler, E.

    2012-01-01

    Process mining techniques relate observed behavior (i.e., event logs) to modeled behavior (e.g., a BPMN model or a Petri net). Processes models can be discovered from event logs and conformance checking techniques can be used to detect and diagnose differences between observed and modeled behavior.

  2. Alternative model of random surfaces

    International Nuclear Information System (INIS)

    Ambartzumian, R.V.; Sukiasian, G.S.; Savvidy, G.K.; Savvidy, K.G.

    1992-01-01

    We analyse models of triangulated random surfaces and demand that geometrically nearby configurations of these surfaces must have close actions. The inclusion of this principle drives us to suggest a new action, which is a modified Steiner functional. General arguments, based on the Minkowski inequality, shows that the maximal distribution to the partition function comes from surfaces close to the sphere. (orig.)

  3. A model to predict the sound reflection from forests

    NARCIS (Netherlands)

    Wunderli, J.M.; Salomons, E.M.

    2009-01-01

    A model is presented to predict the reflection of sound at forest edges. A single tree is modelled as a vertical cylinder. For the reflection at a cylinder an analytical solution is given based on the theory of scattering of spherical waves. The entire forest is represented by a line of cylinders

  4. The Normalization of Surface Anisotropy Effects Present in SEVIRI Reflectances by Using the MODIS BRDF Method

    Science.gov (United States)

    Proud, Simon Richard; Zhang, Qingling; Schaaf, Crystal; Fensholt, Rasmus; Rasmussen, Mads Olander; Shisanya, Chris; Mutero, Wycliffe; Mbow, Cheikh; Anyamba, Assaf; Pak, Ed; hide

    2014-01-01

    A modified version of the MODerate resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) algorithm is presented for use in the angular normalization of surface reflectance data gathered by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellites. We present early and provisional daily nadir BRDFadjusted reflectance (NBAR) data in the visible and near-infrared MSG channels. These utilize the high temporal resolution of MSG to produce BRDF retrievals with a greatly reduced acquisition period than the comparable MODIS products while, at the same time, removing many of the angular perturbations present within the original MSG data. The NBAR data are validated against reflectance data from the MODIS instrument and in situ data gathered at a field location in Africa throughout 2008. It is found that the MSG retrievals are stable and are of high-quality across much of the SEVIRI disk while maintaining a higher temporal resolution than the MODIS BRDF products. However, a number of circumstances are discovered whereby the BRDF model is unable to function correctly with the SEVIRI observations-primarily because of an insufficient spread of angular data due to the fixed sensor location or localized cloud contamination.

  5. OSOAA: A Vector Radiative Transfer Model of Coupled Atmosphere-Ocean System for a Rough Sea Surface Application to the Estimates of the Directional Variations of the Water Leaving Reflectance to Better Process Multi-angular Satellite Sensors Data Over the Ocean

    Science.gov (United States)

    Chami, Malik; LaFrance, Bruno; Fougnie, Bertrand; Chowdhary, Jacek; Harmel, Tristan; Waquet, Fabien

    2015-01-01

    In this study, we present a radiative transfer model, so-called OSOAA, that is able to predict the radiance and degree of polarization within the coupled atmosphere-ocean system in the presence of a rough sea surface. The OSOAA model solves the radiative transfer equation using the successive orders of scattering method. Comparisons with another operational radiative transfer model showed a satisfactory agreement within 0.8%. The OSOAA model has been designed with a graphical user interface to make it user friendly for the community. The radiance and degree of polarization are provided at any level, from the top of atmosphere to the ocean bottom. An application of the OSOAA model is carried out to quantify the directional variations of the water leaving reflectance and degree of polarization for phytoplankton and mineral-like dominated waters. The difference between the water leaving reflectance at a given geometry and that obtained for the nadir direction could reach 40%, thus questioning the Lambertian assumption of the sea surface that is used by inverse satellite algorithms dedicated to multi-angular sensors. It is shown as well that the directional features of the water leaving reflectance are weakly dependent on wind speed. The quantification of the directional variations of the water leaving reflectance obtained in this study should help to correctly exploit the satellite data that will be acquired by the current or forthcoming multi-angular satellite sensors.

  6. Ethical Issues in Engineering Models : Personal Reflections

    OpenAIRE

    Kleijnen, Jack P.C.

    2010-01-01

    I start this contribution with an overview of my personal involvement—as an Operations Research consultant—in several engineering case-studies that may raise ethical questions; these case studies employ simulation models. Next, I present an overview of the recent literature on ethical issues in modeling, focusing on the validation of the model’s assumptions; the decisive role of these assumptions leads to the quest for robust models. Actually, models are meant to solve practical problems; the...

  7. Preparation of surface conductive and highly reflective silvered polyimide films by surface modification and in situ self-metallization technique

    International Nuclear Information System (INIS)

    Wu Zhanpeng; Wu Dezhen; Qi Shengli; Zhang Teng; Jin Riguang

    2005-01-01

    Double surface conductive and reflective flexible silvered polyimide films have been prepared by alkali hydroxylation of polyimide film surface and incorporation of silver ions through subsequent ion exchange. Thermal curing of silver(I) polyamate precursor leads to re-cycloimidization of modified surface with concomitant silver reduction, yielding a reflective and conductive silver surface approaching that of native metal. The reflective and conductive surface evolves only when the cure temperature rises to 300 deg. C. The metallized films usually retain the essential mechanical properties of the parent films. Films were characterized by transmission electron microscopy (TEM), scanning electron microscopy and tapping mode atomic force microscopy (AFM). AFM demonstrates that the diameter of close-packed silver particles of the silver layers was about 50-150 nm. TEM shows that thickness of silver layer on the polyimide film surface is about 400-600 nm

  8. High quality broadband spatial reflections of slow Rayleigh surface acoustic waves modulated by a graded grooved surface

    KAUST Repository

    Xu, Yanlong

    2015-01-21

    We report high quality broadband spatial reflections of Rayleigh surface acoustic waves (SAWs) through a graded grooved surface. High quality means that no wave is allowed to transmit and the incident wave is nearly all reflected to the input side. The graded grooved surface is structured by drilling one dimensional array of graded grooves with increased depths on a flat surface. We investigate SAW dispersion relations, wave field distribution at several typical SAW wavelengths, and time evolution of a Gaussian pulse through the graded grooved surface. Results show that the input broadband Rayleigh SAWs can be slowed, spatially enhanced and stopped, and finally reflected to the input side. The study suggests that engraving the flat surface can be used as an efficient and economical way to manipulate Rayleigh SAWs, which has potential application in novel SAW devices such as filters, reflectors, sensors, energy harvesters, and diodes.

  9. An Operational Scheme for Deriving Standardised Surface Reflectance from Landsat TM/ETM+ and SPOT HRG Imagery for Eastern Australia

    Directory of Open Access Journals (Sweden)

    Neil Flood

    2013-01-01

    Full Text Available Operational monitoring of vegetation and land surface change over large areas can make good use of satellite sensors that measure radiance reflected from the Earth’s surface. Monitoring programs use multiple images for complete spatial coverage over time. Accurate retrievals of vegetation cover and vegetation change estimates can be hampered by variation, in both space and time, in the measured radiance, caused by atmospheric conditions, topography, sensor location, and sun elevation. In order to obtain estimates of cover that are comparable between images, and to retrieve accurate estimates of change, these sources of variation must be removed. In this paper we present a preprocessing scheme for minimising atmospheric, topographic and bi-directional reflectance effects on Landsat-5 TM, Landsat-7 ETM+ and SPOT-5 HRG imagery. The approach involves atmospheric correction to compute surface-leaving radiance, and bi-directional reflectance modelling to remove the effects of topography and angular variation in reflectance. The bi-directional reflectance model has been parameterised for eastern Australia, but the general approach is more widely applicable. The result is surface reflectance standardised to a fixed viewing and illumination geometry. The method can be applied to the entire record for these instruments, without intervention, which is of increasing importance with the increased availability of long term image archives. Validation shows that the corrections improve the estimation of reflectance at any given angular configuration, thus allowing the removal from the reflectance signal of much variation due to factors independent of the land surface. The method has been used to process over 45,000 Landsat-5 TM and Landsat-7 ETM+ scenes and 2,500 SPOT-5 scenes, over eastern Australia, and is now in use in operational monitoring programs.

  10. Modelling the appearance of heritage metallic surfaces

    Directory of Open Access Journals (Sweden)

    L. MacDonald

    2014-06-01

    Full Text Available Polished metallic surfaces exhibit a high degree of specularity, which makes them difficult to reproduce accurately. We have applied two different techniques for modelling a heritage object known as the Islamic handbag. Photogrammetric multi-view stereo enabled a dense point cloud to be extracted from a set of photographs with calibration targets, and a geometrically accurate 3D model produced. A new method based on photometric stereo from a set of images taken in an illumination dome enabled surface normals to be generated for each face of the object and its appearance to be rendered, to a high degree of visual realism, when illuminated by one or more light sources from any angles. The specularity of the reflection from the metal surface was modelled by a modified Lorentzian function.

  11. Patellar Skin Surface Temperature by Thermography Reflects Knee Osteoarthritis Severity

    OpenAIRE

    Anna E. Denoble; Norine Hall; Carl F. Pieper; Virginia B. Kraus

    2010-01-01

    Background: Digital infrared thermal imaging is a means of measuring the heat radiated from the skin surface. Our goal was to develop and assess the reproducibility of serial infrared measurements of the knee and to assess the association of knee temperature by region of interest with radiographic severity of knee Osteoarthritis (rOA). Methods: A total of 30 women (15 Cases with symptomatic knee OA and 15 age-matched Controls without knee pain or knee OA) participated in this study. Infrared ...

  12. Unmanned aerial system nadir reflectance and MODIS nadir BRDF-adjusted surface reflectances intercompared over Greenland

    Directory of Open Access Journals (Sweden)

    J. F. Burkhart

    2017-07-01

    Full Text Available Albedo is a fundamental parameter in earth sciences, and many analyses utilize the Moderate Resolution Imaging Spectroradiometer (MODIS bidirectional reflectance distribution function (BRDF/albedo (MCD43 algorithms. While derivative albedo products have been evaluated over Greenland, we present a novel, direct comparison with nadir surface reflectance collected from an unmanned aerial system (UAS. The UAS was flown from Summit, Greenland, on 210 km transects coincident with the MODIS sensor overpass on board the Aqua and Terra satellites on 5 and 6 August 2010. Clear-sky acquisitions were available from the overpasses within 2 h of the UAS flights. The UAS was equipped with upward- and downward-looking spectrometers (300–920 nm with a spectral resolution of 10 nm, allowing for direct integration into the MODIS bands 1, 3, and 4. The data provide a unique opportunity to directly compare UAS nadir reflectance with the MODIS nadir BRDF-adjusted surface reflectance (NBAR products. The data show UAS measurements are slightly higher than the MODIS NBARs for all bands but agree within their stated uncertainties. Differences in variability are observed as expected due to different footprints of the platforms. The UAS data demonstrate potentially large sub-pixel variability of MODIS reflectance products and the potential to explore this variability using the UAS as a platform. It is also found that, even at the low elevations flown typically by a UAS, reflectance measurements may be influenced by haze if present at and/or below the flight altitude of the UAS. This impact could explain some differences between data from the two platforms and should be considered in any use of airborne platforms.

  13. Optical Estimation of the 3D Shape of a Solar Illuminated, Reflecting Satellite Surface

    Science.gov (United States)

    Antolin, J.; Yu, Z.; Prasad, S.

    2016-09-01

    The spatial distribution of the polarized component of the power reflected by a macroscopically smooth but microscopically roughened curved surface under highly directional illumination, as characterized by an appropriate bi-directional reflectance distribution function (BRDF), carries information about the three-dimensional (3D) shape of the surface. This information can be exploited to recover the surface shape locally under rather general conditions whenever power reflectance data for at least two different illumination or observation directions can be obtained. We present here two different parametric approaches for surface reconstruction, amounting to the recovery of the surface parameters that are either the global parameters of the family to which the surface is known a priori to belong or the coefficients of a low-order polynomial that can be employed to characterize a smoothly varying surface locally over the observed patch.

  14. Nanoscale silver-assisted wet etching of crystalline silicon for anti-reflection surface textures.

    Science.gov (United States)

    Li, Rui; Wang, Shuling; Chuwongin, Santhad; Zhou, Weidong

    2013-01-01

    We report here an electro-less metal-assisted chemical etching (MacEtch) process as light management surface-texturing technique for single crystalline Si photovoltaics. Random Silver nanostructures were formed on top of the Si surface based on the thin film evaporation and annealing process. Significant reflection reduction was obtained from the fabricated Si sample, with approximately 2% reflection over a wide spectra range (300 to 1050 nm). The work demonstrates the potential of MacEtch process for anti-reflection surface texture fabrication of large area, high efficiency, and low cost thin film solar cell.

  15. How Can Polarization States of Reflected Light from Snow Surfaces Inform Us on Surface Normals and Ultimately Snow Grain Size Measurements?

    Science.gov (United States)

    Schneider, A. M.; Flanner, M.; Yang, P.; Yi, B.; Huang, X.; Feldman, D.

    2016-12-01

    The Snow Grain Size and Pollution (SGSP) algorithm is a method applied to Moderate Resolution Imaging Spectroradiometer data to estimate snow grain size from space-borne measurements. Previous studies validate and quantify potential sources of error in this method, but because it assumes flat snow surfaces, however, large scale variations in surface normals can cause biases in its estimates due to its dependence on solar and observation zenith angles. To address these variations, we apply the Monte Carlo method for photon transport using data containing the single scattering properties of different ice crystals to calculate polarization states of reflected monochromatic light at 1500nm from modeled snow surfaces. We evaluate the dependence of these polarization states on solar and observation geometry at 1500nm because multiple scattering is generally a mechanism for depolarization and the ice crystals are relatively absorptive at this wavelength. Using 1500nm thus results in a higher number of reflected photons undergoing fewer scattering events, increasing the likelihood of reflected light having higher degrees of polarization. In evaluating the validity of the model, we find agreement with previous studies pertaining to near-infrared spectral directional hemispherical reflectance (i.e. black-sky albedo) and similarities in measured bidirectional reflectance factors, but few studies exist modeling polarization states of reflected light from snow surfaces. Here, we present novel results pertaining to calculated polarization states and compare dependences on solar and observation geometry for different idealized snow surfaces. If these dependencies are consistent across different ice particle shapes and sizes, then these findings could inform the SGSP algorithm by providing useful relationships between measurable physical quantities and solar and observation geometry to better understand variations in snow surface normals from remote sensing observations.

  16. A prototype for automation of land-cover products from Landsat Surface Reflectance Data Records

    Science.gov (United States)

    Rover, J.; Goldhaber, M. B.; Steinwand, D.; Nelson, K.; Coan, M.; Wylie, B. K.; Dahal, D.; Wika, S.; Quenzer, R.

    2014-12-01

    Landsat data records of surface reflectance provide a three-decade history of land surface processes. Due to the vast number of these archived records, development of innovative approaches for automated data mining and information retrieval were necessary. Recently, we created a prototype utilizing open source software libraries for automatically generating annual Anderson Level 1 land cover maps and information products from data acquired by the Landsat Mission for the years 1984 to 2013. The automated prototype was applied to two target areas in northwestern and east-central North Dakota, USA. The approach required the National Land Cover Database (NLCD) and two user-input target acquisition year-days. The Landsat archive was mined for scenes acquired within a 100-day window surrounding these target dates, and then cloud-free pixels where chosen closest to the specified target acquisition dates. The selected pixels were then composited before completing an unsupervised classification using the NLCD. Pixels unchanged in pairs of the NLCD were used for training decision tree models in an iterative process refined with model confidence measures. The decision tree models were applied to the Landsat composites to generate a yearly land cover map and related information products. Results for the target areas captured changes associated with the recent expansion of oil shale production and agriculture driven by economics and policy, such as the increase in biofuel production and reduction in Conservation Reserve Program. Changes in agriculture, grasslands, and surface water reflect the local hydrological conditions that occurred during the 29-year span. Future enhancements considered for this prototype include a web-based client, ancillary spatial datasets, trends and clustering algorithms, and the forecasting of future land cover.

  17. Impacts of dust aerosol and adjacency effects on the accuracy of Landsat 8 and RapidEye surface reflectances

    KAUST Repository

    Houborg, Rasmus; McCabe, Matthew

    2017-01-01

    The atmospheric correction of satellite data is challenging over desert agricultural systems, due to the relatively high aerosol optical thicknesses (τ550), bright soils, and a heterogeneous surface reflectance field. Indeed, the contribution of reflected radiation from adjacent pixels scattered into the field of view of a target pixel is considerable and can significantly affect the fidelity of retrieved reflectances. In this study, uncertainties and quantitative errors associated with the atmospheric correction of multi-spectral Landsat 8 and RapidEye data were characterized over a desert agricultural landscape in Saudi Arabia. Surface reflectances were retrieved using an implementation of the 6SV atmospheric correction code, and validated against field collected spectroradiometer measurements over desert, cultivated soil, and vegetated surface targets. A combination of satellite and Aerosol Robotic Network (AERONET) data were used to parameterize aerosol properties and atmospheric state parameters. With optimal specification of τ550 and aerosol optical properties and correction for adjacency effects, the relative Mean Absolute Deviation (MAD) for all bands combined was 5.4% for RapidEye and 6.8% for Landsat 8. However uncertainties associated with satellite-based τ550 retrievals were shown to introduce significant error into the reflectance estimates. With respect to deriving common vegetation indices from corrected reflectance data, the Normalized Difference Vegetation Index (NDVI) was associated with the smallest errors (3–8% MAD). Surface reflectance errors were highest for bands in the visible part of the spectrum, particularly the blue band (5–16%), while there was more consistency within the red-edge (~ 5%) and near-infrared (5–7%). Results were generally better constrained when a τ550-dependent aerosol model for desert dust particles, parameterized on the basis of nearby AERONET site data, was used in place of a generic rural or background

  18. Impacts of dust aerosol and adjacency effects on the accuracy of Landsat 8 and RapidEye surface reflectances

    KAUST Repository

    Houborg, Rasmus

    2017-03-29

    The atmospheric correction of satellite data is challenging over desert agricultural systems, due to the relatively high aerosol optical thicknesses (τ550), bright soils, and a heterogeneous surface reflectance field. Indeed, the contribution of reflected radiation from adjacent pixels scattered into the field of view of a target pixel is considerable and can significantly affect the fidelity of retrieved reflectances. In this study, uncertainties and quantitative errors associated with the atmospheric correction of multi-spectral Landsat 8 and RapidEye data were characterized over a desert agricultural landscape in Saudi Arabia. Surface reflectances were retrieved using an implementation of the 6SV atmospheric correction code, and validated against field collected spectroradiometer measurements over desert, cultivated soil, and vegetated surface targets. A combination of satellite and Aerosol Robotic Network (AERONET) data were used to parameterize aerosol properties and atmospheric state parameters. With optimal specification of τ550 and aerosol optical properties and correction for adjacency effects, the relative Mean Absolute Deviation (MAD) for all bands combined was 5.4% for RapidEye and 6.8% for Landsat 8. However uncertainties associated with satellite-based τ550 retrievals were shown to introduce significant error into the reflectance estimates. With respect to deriving common vegetation indices from corrected reflectance data, the Normalized Difference Vegetation Index (NDVI) was associated with the smallest errors (3–8% MAD). Surface reflectance errors were highest for bands in the visible part of the spectrum, particularly the blue band (5–16%), while there was more consistency within the red-edge (~ 5%) and near-infrared (5–7%). Results were generally better constrained when a τ550-dependent aerosol model for desert dust particles, parameterized on the basis of nearby AERONET site data, was used in place of a generic rural or background

  19. Ethical Issues in Engineering Models : Personal Reflections

    NARCIS (Netherlands)

    Kleijnen, Jack P.C.

    2010-01-01

    I start this contribution with an overview of my personal involvement—as an Operations Research consultant—in several engineering case-studies that may raise ethical questions; these case studies employ simulation models. Next, I present an overview of the recent literature on ethical issues in

  20. Image potential effect on the specular reflection coefficient of alkali ions scattered from a nickel surface at low energy

    International Nuclear Information System (INIS)

    Zemih, R.; Boudjema, M.; Benazeth, C.; Boudouma, Y.; Chami, A.C.

    2002-01-01

    The resonant charge exchange in the incoming path of alkali ions scattered at low energy from a polycrystalline nickel surface is studied by using the image effect occurring at glancing incidence (2-10 deg. from the surface plane) and for specular reflection. The part of the experimental artefacts (geometrical factor, surface roughness ...) is extracted from the reflection coefficient of almost completely neutralised projectiles (He + or Ne + ) compared with the coefficient obtained from numerical simulations (TRIM and MARLOWE codes). The present model explains very well the lowering of the reflection coefficient measured at grazing incidence (below 4 deg.). Furthermore, the optimised values of the charge fraction in the incoming path and the image potential are in agreement with the theoretical calculations in the case of Na + /Ni at 4 keV

  1. SO2 frost - UV-visible reflectivity and Io surface coverage

    Science.gov (United States)

    Nash, D. B.; Fanale, F. P.; Nelson, R. M.

    1980-01-01

    The reflectance spectrum in the range 0.24-0.85 microns of SO2 frost is measured in light of the discovery of SO2 gas in the atmosphere of Io and the possible discovery of the frost on its surface. Frost deposits up to 1.5 mm thick were grown in vacuum at 130 K and bi-directional reflectance spectra were obtained. Typical SO2 frost is found to exhibit very low reflectivity (2-5%) at 0.30 microns, rising steeply at 0.32 microns to attain a maximum reflectivity (75-80%) at 4.0 microns and uniformly high reflectivity throughout the visible and near infrared. Comparison with the full disk spectrum of Io reveals that no more than 20% of the surface can be covered with optically thick SO2 frost. Combinations of surface materials including SO2 frost which can produce the observed spectrum are indicated.

  2. Perceived Average Orientation Reflects Effective Gist of the Surface.

    Science.gov (United States)

    Cha, Oakyoon; Chong, Sang Chul

    2018-03-01

    The human ability to represent ensemble visual information, such as average orientation and size, has been suggested as the foundation of gist perception. To effectively summarize different groups of objects into the gist of a scene, observers should form ensembles separately for different groups, even when objects have similar visual features across groups. We hypothesized that the visual system utilizes perceptual groups characterized by spatial configuration and represents separate ensembles for different groups. Therefore, participants could not integrate ensembles of different perceptual groups on a task basis. We asked participants to determine the average orientation of visual elements comprising a surface with a contour situated inside. Although participants were asked to estimate the average orientation of all the elements, they ignored orientation signals embedded in the contour. This constraint may help the visual system to keep the visual features of occluding objects separate from those of the occluded objects.

  3. Modeling the microstructure of surface by applying BRDF function

    Science.gov (United States)

    Plachta, Kamil

    2017-06-01

    The paper presents the modeling of surface microstructure using a bidirectional reflectance distribution function. This function contains full information about the reflectance properties of the flat surfaces - it is possible to determine the share of the specular, directional and diffuse components in the reflected luminous stream. The software is based on the authorial algorithm that uses selected elements of this function models, which allows to determine the share of each component. Basing on obtained data, the surface microstructure of each material can be modeled, which allows to determine the properties of this materials. The concentrator directs the reflected solar radiation onto the photovoltaic surface, increasing, at the same time, the value of the incident luminous stream. The paper presents an analysis of selected materials that can be used to construct the solar concentrator system. The use of concentrator increases the power output of the photovoltaic system by up to 17% as compared to the standard solution.

  4. Modelling land surface - atmosphere interactions

    DEFF Research Database (Denmark)

    Rasmussen, Søren Højmark

    representation of groundwater in the hydrological model is found to important and this imply resolving the small river valleys. Because, the important shallow groundwater is found in the river valleys. If the model does not represent the shallow groundwater then the area mean surface flux calculation......The study is investigates modelling of land surface – atmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...... by the hydrological model is found to be insensitive to model resolution. Furthermore, this study highlights the effect of bias precipitation by regional climate model and it implications for hydrological modelling....

  5. Surface roughness and gloss study of prints: application of specular reflection at near infrared

    International Nuclear Information System (INIS)

    Silfsten, P; Dutta, R; Pääkkönen, P; Peiponen, K-E; Tåg, C-M; Gane, P A C

    2012-01-01

    Absolute reflectance data were measured with a spectrophotometer in the visible and near infrared (NIR) spectral range. The specular reflectance data in the NIR were used for the assessment of the surface roughness of magenta, yellow, cyan and black prints on paper. In addition, surface roughness data obtained from the prints with a mechanical diamond stylus, an optical profiling system and the spectrophotometer are compared with each other. The surface roughness obtained with the aid of the spectrophotometer data suggests a smoother surface than when measured with the diamond stylus and the optical profiling system. The gloss of the prints can be obtained from the absolute specular reflectance spectra in the spectral region of visible light. It is shown that specular reflection data at a fixed wavelength in the NIR are useful also in the interpretation of gloss in the visible spectral range, but using an unconventional grazing angle of incidence. (paper)

  6. NOAA Climate Data Record (CDR) of AVHRR Surface Reflectance, Version 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains gridded daily surface reflectance and brightness temperatures derived from the Advanced Very High Resolution Radiometer (AVHRR) sensors onboard...

  7. LiDAR Relative Reflectivity Surface (2011) for the St. Thomas East End Reserve, St. Thomas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) 0.3x0.3 meter resolution relative seafloor reflectivity surface for the St. Thomas East End Reserve...

  8. Accounting for surface reflectance anisotropy in satellite retrievals of tropospheric NO₂

    NARCIS (Netherlands)

    Zhou, Yipin; Brunner, D.; Spurr, R.J.D.; Boersma, K.F.; Sneep, M.; Popp, C.; Buchmann, B.

    2010-01-01

    Surface reflectance is a key parameter in satellite trace gas retrievals in the UV/visible range and in particular for the retrieval of nitrogen dioxide (NO2) vertical tropospheric columns (VTCs). Current operational retrievals rely on coarse-resolution reflectance data and do not account for the

  9. Directional statistics-based reflectance model for isotropic bidirectional reflectance distribution functions.

    Science.gov (United States)

    Nishino, Ko; Lombardi, Stephen

    2011-01-01

    We introduce a novel parametric bidirectional reflectance distribution function (BRDF) model that can accurately encode a wide variety of real-world isotropic BRDFs with a small number of parameters. The key observation we make is that a BRDF may be viewed as a statistical distribution on a unit hemisphere. We derive a novel directional statistics distribution, which we refer to as the hemispherical exponential power distribution, and model real-world isotropic BRDFs as mixtures of it. We derive a canonical probabilistic method for estimating the parameters, including the number of components, of this novel directional statistics BRDF model. We show that the model captures the full spectrum of real-world isotropic BRDFs with high accuracy, but a small footprint. We also demonstrate the advantages of the novel BRDF model by showing its use for reflection component separation and for exploring the space of isotropic BRDFs.

  10. The third RAdiation transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance models

    NARCIS (Netherlands)

    Widlowski, J.L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.I.; Fernandes, R.; Gastellu-Etchegorry, J.P.; Gobron, N.; Kuusk, A.; Lavergne, T.; LeBlanc, S.; Lewis, P.E.; Martin, E.; Mõttus, M.; North, P.R.J.; Qin, W.; Robustelli, M.; Rochdi, N.; Ruiloba, R.; Thompson, R.; Verhoef, W.; Verstraete, M.M.; Xie, D.

    2007-01-01

    [1] The Radiation Transfer Model Intercomparison ( RAMI) initiative benchmarks canopy reflectance models under well-controlled experimental conditions. Launched for the first time in 1999, this triennial community exercise encourages the systematic evaluation of canopy reflectance models on a

  11. Third Radiation Transfer Model Intercomparison (RAMI) exercise : Documenting progress in canopy reflectance models

    NARCIS (Netherlands)

    Widlowski, J.-L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.; Fernandes, R.; Gastellu-Etchegorry, J.P.; Gobron, N.; Kuusk, A.; Lavergne, T.; Leblanc, S.; Lewis, P.E.; Martin, E.; Mottus, M.; North, P.R.J.; Qin, W.; Robustelli, M.; Rochdi, N.; Ruiloba, R.; Soler, C.; Thompson, R.; Verhoef, W.; Xie, D.; Thompson, R.

    2007-01-01

    The Radiation Transfer Model Intercomparison (RAMI) initiative benchmarks canopy reflectance models under well‐controlled experimental conditions. Launched for the first time in 1999, this triennial community exercise encourages the systematic evaluation of canopy reflectance models on a voluntary

  12. Backscattered EM-wave manipulation using low cost 1-bit reflective surface at W-band

    Science.gov (United States)

    Taher Al-Nuaimi, Mustafa K.; Hong, Wei; He, Yejun

    2018-04-01

    The design of low cost 1-bit reflective (non-absorptive) surfaces for manipulation of backscattered EM-waves and radar cross section (RCS) reduction at W-band is presented in this article. The presented surface is designed based on the reflection phase cancellation principle. The unit cell used to compose the proposed surface has an obelus (division symbol of short wire and two disks above and below) like shape printed on a grounded dielectric material. Using this unit cell, surfaces that can efficiently manipulate the backscattered RCS pattern by using the proposed obelus-shaped unit cell (as ‘0’ element) and its mirrored unit cell (as ‘1’ element) in one surface with a 180°  ±  35° reflection phase difference between their reflection phases are designed. The proposed surfaces can generate various kinds of backscattered RCS patterns, such as single, three, or four lobes or even a low-level (reduced RCS) diffused reflection pattern when those two unit cells are distributed randomly across the surface aperture. For experimental characterization purposes, a 50  ×  50 mm2 surface is fabricated and measured.

  13. Patellar Skin Surface Temperature by Thermography Reflects Knee Osteoarthritis Severity

    Directory of Open Access Journals (Sweden)

    Anna E. Denoble

    2010-01-01

    Full Text Available Background Digital infrared thermal imaging is a means of measuring the heat radiated from the skin surface. Our goal was to develop and assess the reproducibility of serial infrared measurements of the knee and to assess the association of knee temperature by region of interest with radiographic severity of knee Osteoarthritis (rOA. Methods A total of 30 women (15 Cases with symptomatic knee OA and 15 age-matched Controls without knee pain or knee OA participated in this study. Infrared imaging was performed with a Meditherm Med2000™ Pro infrared camera. The reproducibility of infrared imaging of the knee was evaluated through determination of intraclass correlation coefficients (ICCs for temperature measurements from two images performed 6 months apart in Controls whose knee status was not expected to change. The average cutaneous temperature for each of five knee regions of interest was extracted using WinTes software. Knee x-rays were scored for severity of rOA based on the global Kellgren-Lawrence grading scale. Results The knee infrared thermal imaging procedure used here demonstrated long-term reproducibility with high ICCs (0.50–0.72 for the various regions of interest in Controls. Cutaneous temperature of the patella (knee cap yielded a significant correlation with severity of knee rOA (R = 0.594, P = 0.02. Conclusion The skin temperature of the patellar region correlated with x-ray severity of knee OA. This method of infrared knee imaging is reliable and as an objective measure of a sign of inflammation, temperature, indicates an interrelationship of inflammation and structural knee rOA damage.

  14. Patellar skin surface temperature by thermography reflects knee osteoarthritis severity.

    Science.gov (United States)

    Denoble, Anna E; Hall, Norine; Pieper, Carl F; Kraus, Virginia B

    2010-10-15

    Digital infrared thermal imaging is a means of measuring the heat radiated from the skin surface. Our goal was to develop and assess the reproducibility of serial infrared measurements of the knee and to assess the association of knee temperature by region of interest with radiographic severity of knee Osteoarthritis (rOA). A total of 30 women (15 Cases with symptomatic knee OA and 15 age-matched Controls without knee pain or knee OA) participated in this study. Infrared imaging was performed with a Meditherm Med2000™ Pro infrared camera. The reproducibility of infrared imaging of the knee was evaluated through determination of intraclass correlation coefficients (ICCs) for temperature measurements from two images performed 6 months apart in Controls whose knee status was not expected to change. The average cutaneous temperature for each of five knee regions of interest was extracted using WinTes software. Knee x-rays were scored for severity of rOA based on the global Kellgren-Lawrence grading scale. The knee infrared thermal imaging procedure used here demonstrated long-term reproducibility with high ICCs (0.50-0.72 for the various regions of interest) in Controls. Cutaneous temperature of the patella (knee cap) yielded a significant correlation with severity of knee rOA (R = 0.594, P = 0.02). The skin temperature of the patellar region correlated with x-ray severity of knee OA. This method of infrared knee imaging is reliable and as an objective measure of a sign of inflammation, temperature, indicates an interrelationship of inflammation and structural knee rOA damage.

  15. An analytical and numerical study of the nonlinear reflection at a stress-free surface

    Energy Technology Data Exchange (ETDEWEB)

    Romer, Anne, E-mail: anne.romer@gmx.net; Kim, Jin-Yeon, E-mail: anne.romer@gmx.net [School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Jacobs, Laurence J. [School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA and G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2015-03-31

    Implementation of the ultrasonic second harmonic generation has typically been restricted to simple setups such as through-transmission or Rayleigh surface waves. Recent research has evaluated the second harmonic waves generation in P- and SV- waves reflected from a stress-free surface to enable the single-sided interrogation of a specimen. This research considers the second harmonic generation in an aluminum specimen, which is analytically evaluated using an approach based on a perturbation method. Here, the model is chosen to mimic an experimental setup where the longitudinal wave is generated at oblique angle using a wedge transducer. Due to the mode conversion at the interface of the wedge and the specimen, it is necessary to evaluate longitudinal and shear waves, determining all second harmonic waves generated in the bulk and at the stress-free boundary. The theoretically developed model is then implemented in a commercial finite element code, COMSOL, using increasing fundamental wave amplitudes for different values of third order elastic constants. The results of this computational model verify the analytical approach and the proposed measurement setup, taking into account assumptions and approximations of the solution procedure. Furthermore, the computational model is used to draw important conclusions relevant to the experimental setup, including the need to avoid interaction with diffracted waves.

  16. X-ray Reflected Spectra from Accretion Disk Models. III. A Complete Grid of Ionized Reflection Calculations

    Science.gov (United States)

    Garcia, J.; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Wilms, J.; Ekmann, W.

    2013-01-01

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code xillver that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Gamma of the illuminating radiation, the ionization parameter zeta at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A(sub Fe) relative to the solar value. The ranges of the parameters covered are: 1.2 <= Gamma <= 3.4, 1 <= zeta <= 104, and 0.5 <= A(sub Fe) <= 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file suitable for the analysis of X-ray observations via the atable model in xspec. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of xillver.

  17. Pavement Aging Model by Response Surface Modeling

    Directory of Open Access Journals (Sweden)

    Manzano-Ramírez A.

    2011-10-01

    Full Text Available In this work, surface course aging was modeled by Response Surface Methodology (RSM. The Marshall specimens were placed in a conventional oven for time and temperature conditions established on the basis of the environment factors of the region where the surface course is constructed by AC-20 from the Ing. Antonio M. Amor refinery. Volatilized material (VM, load resistance increment (ΔL and flow resistance increment (ΔF models were developed by the RSM. Cylindrical specimens with real aging were extracted from the surface course pilot to evaluate the error of the models. The VM model was adequate, in contrast (ΔL and (ΔF models were almost adequate with an error of 20 %, that was associated with the other environmental factors, which were not considered at the beginning of the research.

  18. Modelling nanostructures with vicinal surfaces

    International Nuclear Information System (INIS)

    Mugarza, A; Schiller, F; Kuntze, J; Cordon, J; Ruiz-Oses, M; Ortega, J E

    2006-01-01

    Vicinal surfaces of the (111) plane of noble metals are characterized by free-electron-like surface states that scatter at one-dimensional step edges, making them ideal model systems to test the electronic properties of periodic lateral nanostructures. Here we use high-resolution, angle-resolved photoemission to analyse the evolution of the surface state on a variety of vicinal surface structures where both the step potential barrier and the superlattice periodicity can vary. A transition in the electron dimensionality is found as we vary the terrace size in single-phase step arrays. In double-phase, periodic faceted surfaces, we observe surface states that characterize each of the phases

  19. MODIS/Aqua Near Real Time (NRT) Surface Reflectance Daily L2G Global 250m SIN Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS Near Real Time (NRT) Surface Reflectance products are an estimate of the surface spectral reflectance as it would be measured at ground level in the...

  20. ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars

    Science.gov (United States)

    Johnson, Jeffrey R.; Bell, J. F.; Bender, S.; Blaney, D.; Cloutis, E.; DeFlores, L.; Ehlmann, B.; Gasnault, O.; Gondet, B.; Kinch, K.; Lemmon, M.; Le Mouélic, S.; Maurice, S.; Rice, M.; Wiens, R. C.

    2015-03-01

    The spectrometers on the Mars Science Laboratory (MSL) ChemCam instrument were used in passive mode to record visible/near-infrared (400-840 nm) radiance from the martian surface. Using the onboard ChemCam calibration targets' housing as a reflectance standard, we developed methods to collect, calibrate, and reduce radiance observations to relative reflectance. Such measurements accurately reproduce the known reflectance spectra of other calibration targets on the rover, and represent the highest spatial resolution (0.65 mrad) and spectral sampling (rocks and soils match those from orbital observations and multispectral data from the MSL Mastcam camera. Preliminary analyses of the band depths, spectral slopes, and reflectance ratios of the more than 2000 spectra taken during the first year of MSL operations demonstrate at least six spectral classes of materials distinguished by variations in ferrous and ferric components. Initial comparisons of ChemCam spectra to laboratory spectra of minerals and Mars analog materials demonstrate similarities with palagonitic soils and indications of orthopyroxene in some dark rocks. Magnesium-rich "raised ridges" tend to exhibit distinct near-infrared slopes. The ferric absorption downturn typically found for martian materials at rocks and drill tailings, consistent with their more ferrous nature. Calcium-sulfate veins exhibit the highest relative reflectances observed, but are still relatively red owing to the effects of residual dust. Such dust is overall less prominent on rocks sampled within the "blast zone" immediately surrounding the landing site. These samples were likely affected by the landing thrusters, which partially removed the ubiquitous dust coatings. Increased dust coatings on the calibration targets during the first year of the mission were documented by the ChemCam passive measurements as well. Ongoing efforts to model and correct for this dust component should improve calibration of the relative reflectance

  1. Reflections

    Directory of Open Access Journals (Sweden)

    Joanne Embree

    2001-01-01

    Full Text Available Ideally, editorials are written one to two months before publication in the Journal. It was my turn to write this one. I had planned to write the first draft the evening after my clinic on Tuesday, September 11. It didn't get done that night or during the next week. Somehow, the topic that I had originally chosen just didn't seem that important anymore as I, along my friends and colleagues, reflected on the changes that the events of that day were likely to have on our lives.

  2. A comparison of reflectance properties on polymer micro-structured functional surface

    DEFF Research Database (Denmark)

    Regi, Francesco; Li, Dongya; Nielsen, Jannik Boll

    In this study, a functional micro-structure surface [1] has been developed as a combination of arrays of micro ridges. The scope of the surface is to achieve specific directional optical properties: that is, under constrained lighting, maximizing the reflectance from a certain viewing direction, ...

  3. Reflection of illumination laser from gas metal arc weld pool surface

    International Nuclear Information System (INIS)

    Ma, Xiaoji; Zhang, YuMing

    2009-01-01

    The weld pool is the core of the welding process where complex welding phenomena originate. Skilled welders acquire their process feedback primarily from the weld pool. Observation and measurement of the three-dimensional weld pool surface thus play a fundamental role in understanding and future control of complex welding processes. To this end, a laser line is projected onto the weld pool surface in pulsed gas metal arc welding (GMAW) and an imaging plane is used to intercept its reflection from the weld pool surface. Resultant images of the reflected laser are analyzed and it is found that the weld pool surface in GMAW does specularly reflect the projected laser as in gas tungsten arc welding (GTAW). Hence, the weld pool surface in GMAW is also specular and it is in principle possible that it may be observed and measured by projecting a laser pattern and then intercepting and imaging the reflection from it. Due to high frequencies of surface fluctuations, GMAW requires a relatively short time to image the reflected laser

  4. Surface energy loss processes in XPS studied by absolute reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Nagatomi, T.; Goto, K.

    2010-01-01

    The results of the investigation of the inelastic interaction of 300-3000 eV electrons with the Ni and Au surfaces by the analysis of absolute reflection electron energy loss spectroscopy (REELS) spectra were described. The present analysis enables the inelastic mean free path (IMFP), surface excitation parameter (SEP) and differential SEP (DSEP) to be obtained simultaneously from an absolute REELS spectrum. The obtained IMFPs for Ni and Au showed a good agreement with those calculated using the TPP-2M predictive equation. The present SEPs determined for Ni and Au were fitted to the Chen's formula describing the dependence of the SEP on the electron energy, and material parameters for Ni and Au in Chen's formula were proposed. The present DESPs were compared with the theoretical results, and a reasonable agreement between the experimentally determined DSEPs and theoretical results was confirmed. The MC modeling of calculating the REELS spectrum, in which energy loss processes due to surface excitations are taken into account, was also described. The IMFP, SEP and DSEP determined by the present absolute REELS analysis were employed to describe energy loss processes by inelastic scattering in the proposed MC simulation. The simulated REELS spectra were found to be in a good agreement with the experimental spectra for both Ni and Au.

  5. Native SrTiO3 (001) surface layer from resonant Ti L2,3 reflectance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Valvidares, Manuel; Huijben, Mark; Yu, Pu; Ramesh, Ramamoorthy; Kortright, Jeffrey

    2010-11-03

    We quantitatively model resonant Ti L2,3 reflectivity Rs,p(q, hn) from several SrTiO3 (001) single crystals having different initial surface preparations and stored in ambient conditions before and between measurements. All samples exhibit unexpected 300 K Rs(hn) - Rp(hn) anisotropy corresponding to weak linear dichroism and tetragonal distortion of the TiO6 octahedra indicating a surface layer with properties different from cubic SrTiO3. Oscillations in Rs(q) confirm a ubiquitous surface layer 2-3 nm thick that evolves over a range of time scales. Resonant optical constant spectra derived from Rs,p(hn) assuming a uniform sample are refined using a single surface layer to fit measured Rs(q). Differences in surface layer and bulk optical properties indicate that the surface is significantly depleted in Sr and enriched in Ti and O. While consistent with the tendency of SrTiO3 surfaces toward non-stoichiometry, this layer does not conform simply to existing models for the near surface region and apparently forms via room temperature surface reactions with the ambient. This new quantitative spectral modeling approach is generally applicable and has potential to study near-surface properties of a variety of systems with unique chemical and electronic sensitivities.

  6. X-ray Reflectivity Study of Ionic Liquids at Electrified Surfaces

    Science.gov (United States)

    Chu, Miaoqi

    X-ray reflectivity (XRR) versatile technique that characterize the surface structures. However, due to the lack of phase information of X-ray data, the reconstruction of electron density profile (EDP) from XRR data is an ill-posed inverse problem that requires extra attention. In Chapter 1, several key concepts in XRR data analysis are reviewed. The typical XRR data acquisition procedure and methods of modeling electron density are introduced. The widely used logarithm form of merit function is justified with mathematical deduction and numerical experiment. A scheme that generates artificial reflectivity data with theoretical statistical error but not systematical error is proposed. With the methods and schemes described in Chapter 1, simulated reflectivity data of a simple one-slab model is generated and fitted to test the efficient of EDP reconstruction. By isolating the parameters, the effects of slab width, electron density contrast and maximal wave transfer are studied individually. It?s demonstrated that best-fit/global minima, result reported by most XRR studies, don?t necessary reflect the real EDP. By contrast, mapping the merit function in the parametric space can capture much more details. Additionally, the widely accepted concept about the XRR theoretical spatial resolution (pi/q_{max}) as well the using Patterson function are brought to test. In the perspective of XRR data analysis, this chapter puts forward general rules to design and optimize XRR experiments. It also demonstrates how susceptible the fitting result will be if it?s not done carefully. In Chapter 3, the interface between hydrophobic OTS film and several solvents is studied with XRR in a transmission-cell setup. The solvents, from water, acetone, to alcohol (methanol, ethanol, 1-propanol), to alkane (pentane, hexane and heptane), vary significantly in terms of polarity and hydrogen bonding. However, the XRR data from different solvents are subtle. The methods and principles elicited in

  7. Estimates of radiance reflected towards the zenith at the surface of the sea

    Directory of Open Access Journals (Sweden)

    E. Aas

    2010-10-01

    Full Text Available Remote sensing of water colour by ship-mounted sensors represents an important tool for the validation of satellite products and the monitoring of water quality. The recorded radiance from the sea has to be corrected for the surface-reflected radiance from sun and sky in order to obtain the water-leaving radiance. Here the simple case of radiance reflected towards the zenith is studied. A set of observed sky radiance and solar irradiance data from Oslo has been used together with a Gaussian slope distribution for the sea surface in order to estimate the reflected radiance. The spectral range studied is 405–650 nm, the solar zenith angles are in the range 37°–76°, and the wind speeds are up to 10 m s−1. The analysis of the results show that the reflected radiance has to be separated into three contributions: sky radiance and sun rays reflected at the foam-free surface and irradiance reflected by whitecaps and foam. It is then demonstrated that by using four input values, namely the downward irradiance, the sky radiance from the zenith, the solar zenith angle and the wind speed, it is possible to obtain by simple expressions estimates of the reflected radiance that only differ from the former calculated values by relative errors of less than 5%. The analysis also indicates that for the spectral range studied neither the water-leaving radiance nor the surface-reflected radiance can be disregarded relative to the other one in the Case 2 waters of the Oslofjord-Skagerrak area. The results form a first step towards the study of reflected radiance in viewing angles differing from the nadir direction.

  8. Personal Coaching: Reflection on a Model for Effective Learning

    Science.gov (United States)

    Griffiths, Kerryn

    2015-01-01

    The article "Personal Coaching: A Model for Effective Learning" (Griffiths, 2006) appeared in the "Journal of Learning Design" Volume 1, Issue 2 in 2006. Almost ten years on, Kerryn Griffiths reflects upon her original article. Specifically, Griffiths looks back at the combined coaching-learning model she suggested in her…

  9. Algebraic Bethe ansatz for 19-vertex models with reflection conditions

    International Nuclear Information System (INIS)

    Utiel, Wagner

    2003-01-01

    In this work we solve the 19-vertex models with the use of algebraic Bethe ansatz for diagonal reflection matrices (Sklyanin K-matrices). The eigenvectors, eigenvalues and Bethe equations are given in a general form. Quantum spin chains of spin one derived from the 19-vertex models were also discussed

  10. Improving Intercultural Competence in the Classroom: A Reflective Development Model

    Science.gov (United States)

    Feng, Jing Betty

    2016-01-01

    To meet the increased demand for international business education that prepares college students for studying, living, or working overseas, I propose a four-stage reflective development model to be used in the traditional classroom context to enhance intercultural competence for undergraduate students. I employ the model in a personal development…

  11. Social Perception and Social Reality: A Reflection-Construction Model.

    Science.gov (United States)

    Jussim, Lee

    1991-01-01

    A reflection-construction model of relations between social perception and social reality is presented that explicitly specifies several ways in which social perception may relate to social reality. Evidence supporting this model also supports a weaker version of the social-constructivist view. (SLD)

  12. Spontaneous acoustic emission of a corrugated shock wave in the presence of a reflecting surface

    International Nuclear Information System (INIS)

    Wouchuk, J.G.; Lopez Cavada, J.

    2004-01-01

    An analytic model to study perturbation evolution in the space between a corrugated shock and a piston surface is presented. The conditions for stable oscillation patterns are obtained by looking at the poles of the exact Laplace transform. It is seen that besides the standard D'yakov-Kontorovich (DK) mode of oscillation, the shock surface can exhibit an additional finite set of discrete frequencies, due to the interaction with the piston which reflects sound waves from behind. The additional eigenmodes are excited when the shock is launched at t=0 + . The first eigenmode (the DK mode) is always present, if the Hugoniot curve has the correct slope in the V-p plane. However, the additional frequencies could be excited for strong enough shocks. The predictions of the model are verified for particular cases by studying a van der Waals gas, as in the work of Bates and Montgomery [Phys. Fluids 11, 462 (1999); Phys. Rev. Lett. 84, 1180 (2000)]. Only acoustic emission modes are considered

  13. Analytical fitting model for rough-surface BRDF.

    Science.gov (United States)

    Renhorn, Ingmar G E; Boreman, Glenn D

    2008-08-18

    A physics-based model is developed for rough surface BRDF, taking into account angles of incidence and scattering, effective index, surface autocovariance, and correlation length. Shadowing is introduced on surface correlation length and reflectance. Separate terms are included for surface scatter, bulk scatter and retroreflection. Using the FindFit function in Mathematica, the functional form is fitted to BRDF measurements over a wide range of incident angles. The model has fourteen fitting parameters; once these are fixed, the model accurately describes scattering data over two orders of magnitude in BRDF without further adjustment. The resulting analytical model is convenient for numerical computations.

  14. Iterative discrete ordinates solution of the equation for surface-reflected radiance

    Science.gov (United States)

    Radkevich, Alexander

    2017-11-01

    This paper presents a new method of numerical solution of the integral equation for the radiance reflected from an anisotropic surface. The equation relates the radiance at the surface level with BRDF and solutions of the standard radiative transfer problems for a slab with no reflection on its surfaces. It is also shown that the kernel of the equation satisfies the condition of the existence of a unique solution and the convergence of the successive approximations to that solution. The developed method features two basic steps: discretization on a 2D quadrature, and solving the resulting system of algebraic equations with successive over-relaxation method based on the Gauss-Seidel iterative process. Presented numerical examples show good coincidence between the surface-reflected radiance obtained with DISORT and the proposed method. Analysis of contributions of the direct and diffuse (but not yet reflected) parts of the downward radiance to the total solution is performed. Together, they represent a very good initial guess for the iterative process. This fact ensures fast convergence. The numerical evidence is given that the fastest convergence occurs with the relaxation parameter of 1 (no relaxation). An integral equation for BRDF is derived as inversion of the original equation. The potential of this new equation for BRDF retrievals is analyzed. The approach is found not viable as the BRDF equation appears to be an ill-posed problem, and it requires knowledge the surface-reflected radiance on the entire domain of both Sun and viewing zenith angles.

  15. Understanding Surface Adhesion in Nature: A Peeling Model.

    Science.gov (United States)

    Gu, Zhen; Li, Siheng; Zhang, Feilong; Wang, Shutao

    2016-07-01

    Nature often exhibits various interesting and unique adhesive surfaces. The attempt to understand the natural adhesion phenomena can continuously guide the design of artificial adhesive surfaces by proposing simplified models of surface adhesion. Among those models, a peeling model can often effectively reflect the adhesive property between two surfaces during their attachment and detachment processes. In the context, this review summarizes the recent advances about the peeling model in understanding unique adhesive properties on natural and artificial surfaces. It mainly includes four parts: a brief introduction to natural surface adhesion, the theoretical basis and progress of the peeling model, application of the peeling model, and finally, conclusions. It is believed that this review is helpful to various fields, such as surface engineering, biomedicine, microelectronics, and so on.

  16. Measurement of integrated coefficients of ultracold neutron reflection from solid surfaces

    International Nuclear Information System (INIS)

    Golikov, V.V.; Kulagin, E.N.; Nikitenko, Yu.V.

    1985-01-01

    The method of measurement of the integrated coefficients of ultracold neutrons (UCN) reflection from solid surfaces is reported. A simple formula is suggested which expresses the integrated coefficients of UCN reflection from a given sample through the measured counting rate of the detector with and without strong absorber (polyethelene). The parameters are determined describing anisotropic and inhomogeneity properties of UCN reflection from Al, Mg, Pb, Zn, Mo, stainless steel, T and V are measured. The thickness of oxide layers is determined within the 5-10A accuracy limits from the experimental coefficients of UCN reflection from metals having on their surfaces the oxides with boundary velocity larger than that for the metal. It has been determined that the density of 5000 A layer of heavy ice freezed on aluminium is 0.83 +- 0.05 from the crystal ice density

  17. Validation of the Two-Layer Model for Correcting Clear Sky Reflectance Near Clouds

    Science.gov (United States)

    Wen, Guoyong; Marshak, Alexander; Evans, K. Frank; Vamal, Tamas

    2014-01-01

    A two-layer model was developed in our earlier studies to estimate the clear sky reflectance enhancement near clouds. This simple model accounts for the radiative interaction between boundary layer clouds and molecular layer above, the major contribution to the reflectance enhancement near clouds for short wavelengths. We use LES/SHDOM simulated 3D radiation fields to valid the two-layer model for reflectance enhancement at 0.47 micrometer. We find: (a) The simple model captures the viewing angle dependence of the reflectance enhancement near cloud, suggesting the physics of this model is correct; and (b) The magnitude of the 2-layer modeled enhancement agree reasonably well with the "truth" with some expected underestimation. We further extend our model to include cloud-surface interaction using the Poisson model for broken clouds. We found that including cloud-surface interaction improves the correction, though it can introduced some over corrections for large cloud albedo, large cloud optical depth, large cloud fraction, large cloud aspect ratio. This over correction can be reduced by excluding scenes (10 km x 10km) with large cloud fraction for which the Poisson model is not designed for. Further research is underway to account for the contribution of cloud-aerosol radiative interaction to the enhancement.

  18. Hemispherical reflectance model for passive images in an outdoor environment.

    Science.gov (United States)

    Kim, Charles C; Thai, Bea; Yamaoka, Neil; Aboutalib, Omar

    2015-05-01

    We present a hemispherical reflectance model for simulating passive images in an outdoor environment where illumination is provided by natural sources such as the sun and the clouds. While the bidirectional reflectance distribution function (BRDF) accurately produces radiance from any objects after the illumination, using the BRDF in calculating radiance requires double integration. Replacing the BRDF by hemispherical reflectance under the natural sources transforms the double integration into a multiplication. This reduces both storage space and computation time. We present the formalism for the radiance of the scene using hemispherical reflectance instead of BRDF. This enables us to generate passive images in an outdoor environment taking advantage of the computational and storage efficiencies. We show some examples for illustration.

  19. Adapting a regularized canopy reflectance model (REGFLEC) for the retrieval challenges of dryland agricultural systems

    KAUST Repository

    Houborg, Rasmus

    2016-08-20

    A regularized canopy reflectance model (REGFLEC) is applied over a dryland irrigated agricultural system in Saudi Arabia for the purpose of retrieving leaf area index (LAI) and leaf chlorophyll content (Chll). To improve the robustness of the retrieved properties, REGFLEC was modified to 1) correct for aerosol and adjacency effects, 2) consider foliar dust effects on modeled canopy reflectances, 3) include spectral information in the red-edge wavelength region, and 4) exploit empirical LAI estimates in the model inversion. Using multi-spectral RapidEye imagery allowed Chll to be retrieved with a Mean Absolute Deviation (MAD) of 7.9 μg cm− 2 (16%), based upon in-situ measurements conducted in fields of alfalfa, Rhodes grass and maize over the course of a growing season. LAI and Chll compensation effects on canopy reflectance were largely avoided by informing the inversion process with ancillary LAI inputs established empirically on the basis of a statistical machine learning technique. As a result, LAI was reproduced with good accuracy, with an overall MAD of 0.42 m2 m− 2 (12.5%). Results highlighted the considerable challenges associated with the translation of at-sensor radiance observations to surface bidirectional reflectances in dryland environments, where issues such as high aerosol loadings and large spatial gradients in surface reflectance from bright desert soils to dark vegetated fields are often present. Indeed, surface reflectances in the visible bands were reduced by up to 60% after correction for such adjacency effects. In addition, dust deposition on leaves required explicit modification of the reflectance sub-model to account for its influence. By implementing these model refinements, REGFLEC demonstrated its utility for within-field characterization of vegetation conditions over the challenging landscapes typical of dryland agricultural regions, offering a means through which improvements can be made in the management of these globally

  20. Simulation of reflecting surface deviations of centimeter-band parabolic space radiotelescope (SRT) with the large-size mirror

    Science.gov (United States)

    Kotik, A.; Usyukin, V.; Vinogradov, I.; Arkhipov, M.

    2017-11-01

    he realization of astrophysical researches requires the development of high-sensitive centimeterband parabolic space radiotelescopes (SRT) with the large-size mirrors. Constructively such SRT with the mirror size more than 10 m can be realized as deployable rigid structures. Mesh-structures of such size do not provide the reflector reflecting surface accuracy which is necessary for the centimeter band observations. Now such telescope with the 10 m diameter mirror is developed in Russia in the frame of "SPECTR - R" program. External dimensions of the telescope is more than the size of existing thermo-vacuum chambers used to prove SRT reflecting surface accuracy parameters under the action of space environment factors. That's why the numerical simulation turns out to be the basis required to accept the taken designs. Such modeling should be based on experimental working of the basic constructive materials and elements of the future reflector. In the article computational modeling of reflecting surface deviations of a centimeter-band of a large-sized deployable space reflector at a stage of his orbital functioning is considered. The analysis of the factors that determines the deviations - both determined (temperatures fields) and not-determined (telescope manufacturing and installation faults; the deformations caused by features of composite materials behavior in space) is carried out. The finite-element model and complex of methods are developed. They allow to carry out computational modeling of reflecting surface deviations caused by influence of all factors and to take into account the deviations correction by space vehicle orientation system. The results of modeling for two modes of functioning (orientation at the Sun) SRT are presented.

  1. [Studies on a sequential injection renewable surface reflectance spectrophotometric system using a microchip flow cell].

    Science.gov (United States)

    Wang, Jian-ya; Fang, Zhao-lun

    2002-02-01

    A microchip flow cell was developed for flow injection renewable surface assay by reflectance spectrophotometry. The flow cell was coupled to a sequential injection system and optical fiber photometric detection system. The flow cell featured a three-layer structure. The flow channel was cut into a silicone rubber membrance which formed the middle layer, and a porous filter was inlayed across a widened section of the channel to trap microbeads introduced into the flow cell. The area of the detection window of the flow cell was approximately 3.6 mm2, the volume of the bead trapped in the flow cell was 2.2 microL, the depth of the bead layer was 600 microns. A multistrand bifurcated optical fiber was coupled with incident light, detector and flow cell. The chromogenic reaction of Cr(VI) with 1,5-diphenylcarbohydrazide (DPC) which was adsorbed on trapped Polysorb C-18 beads was used as a model reaction to optimize the flow cell design and the experimental system. The reflectance of the renewable reaction surface was monitored at 540 nm. With 100 microL sample loaded and 1.0 mL.min-1 carrier flow rate, the linear response range was 0-0.6 microgram.mL-1 Cr(VI). A detection limit (3 sigma) of 6 ng.mL-1, precision of 1.5% RSD(n = 11), and a throughput of 64 samples per hour were achieved. Considerations in system and flow cell design, the influence of depth of the bead layer, weight of beads used, and the flow rates of carrier stream on the performance were discussed.

  2. Developmental prosopagnosia and super-recognition: no special role for surface reflectance processing.

    Science.gov (United States)

    Russell, Richard; Chatterjee, Garga; Nakayama, Ken

    2012-01-01

    Face recognition by normal subjects depends in roughly equal proportions on shape and surface reflectance cues, while object recognition depends predominantly on shape cues. It is possible that developmental prosopagnosics are deficient not in their ability to recognize faces per se, but rather in their ability to use reflectance cues. Similarly, super-recognizers' exceptional ability with face recognition may be a result of superior surface reflectance perception and memory. We tested this possibility by administering tests of face perception and face recognition in which only shape or reflectance cues are available to developmental prosopagnosics, super-recognizers, and control subjects. Face recognition ability and the relative use of shape and pigmentation were unrelated in all the tests. Subjects who were better at using shape or reflectance cues were also better at using the other type of cue. These results do not support the proposal that variation in surface reflectance perception ability is the underlying cause of variation in face recognition ability. Instead, these findings support the idea that face recognition ability is related to neural circuits using representations that integrate shape and pigmentation information. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Alfven Wave Reflection Model of Field-Aligned Currents at Mercury

    Science.gov (United States)

    Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James

    2010-01-01

    An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.

  4. Surface reflectance of Antarctic bryophytes and protection from UV and visible light

    International Nuclear Information System (INIS)

    Robinson, S.A.; Wasley, J.; Turnbull, J.

    2000-01-01

    Full text: As well as determining the amount of solar radiation available for photosynthesis, the surface reflectance and absorptance characteristics of plants are their first defence against damaging effects of solar radiation. The solar spectrum can be damaging to plants in many ways. At shorter wavelengths, UV-B (280-320 nm) radiation can cause lesions in nucleic acid and proteins. Excess levels of visible radiation (400-750) can cause photoinhibition whilst high absorbtance of longer wavelengths (>750) leads to increases in temperature that can be detrimental in some environments. The adaptation of surface reflectance properties of vascular plants to particular environments are well known in some ecosystems. For example in desert ecosystems pubescent leaf surfaces that increase reflectance are common and have been demonstrated to be important to protection from photoinhibition. The epidermal characteristics of some plants are also known to change in absorptance, due to the accumulation of specific compounds. For example flavonoids which are effective screens against UV-B radiation, increase upon exposure to UV-B radiation. In this study we surveyed the natural variability in surface reflectance in mosses growing in continental Antarctica. Antarctica is experiencing large increases in incident UV-B radiation due to reductions in concentrations of stratospheric ozone. Additionally over the summer months (November January), when moss is exposed to direct sunlight, levels of visible solar radiation are also high, increasing the likelihood of photoinhibitory damage in moss. Our aim in this study is to describe the natural variability in the surface reflectance characteristics of moss, such that we have a baseline with which to assess future changes in response to changes in global climate, and imposed experimental treatments, and also to develop hypotheses with respect to how mosses have adapted to the cold and arid antarctic environment. Variability in surface

  5. Influence of Aerosols And Surface Reflectance On NO2 Retrieval Over China From 2005 to 2015

    Science.gov (United States)

    Liu, M.; Lin, J.

    2016-12-01

    Satellite observation is a powerful way to analysis annual and seasonal variations of nitrogen dioxide (NO2). However, much retrieval of vertical column densities (VCDs) of normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. In traditional retrieval, aerosols' effects are often considered as cloud. However, China has complicated aerosols type and aerosol loading. Their optical properties may be very different from the cloud. Furthermore, China has undergone big changes in land use type in recent 10 years. Traditional climatology surface reflectance data may not have representation. In order to study spatial-temporal variation of and influences of these two factors on variations and trends, we use an improved retrieval method of VCDs over China, called the POMINO, based on measurements from the Ozone Monitoring Instrument (OMI), and we compare the results of without aerosol, without surface reflectance treatments and without both to the original POMINO product from 2005 to 2015. Furthermore, we will study correspondent spatial-temporal variations of aerosols, represented by MODIS aerosol optical depth (AOD) data and CALIOP extinction data; surface reflectance, represented by MODIS bidirectional reflectance distribution function (BRDF) data.

  6. An efficient strategy for the inversion of bidirectional reflectance models with satellite remote sensing data

    Energy Technology Data Exchange (ETDEWEB)

    Privette, J.L.

    1994-12-31

    The angular distribution of radiation scattered by the earth surface contains information on the structural and optical properties of the surface. Potentially, this information may be retrieved through the inversion of surface bidirectional reflectance distribution function (BRDF) models. This report details the limitations and efficient application of BRDF model inversions using data from ground- and satellite-based sensors. A turbid medium BRDF model, based on the discrete ordinates solution to the transport equation, was used to quantify the sensitivity of top-of-canopy reflectance to vegetation and soil parameters. Results were used to define parameter sets for inversions. Using synthetic reflectance values, the invertibility of the model was investigated for different optimization algorithms, surface and sampling conditions. Inversions were also conducted with field data from a ground-based radiometer. First, a soil BRDF model was inverted for different soil and sampling conditions. A condition-invariant solution was determined and used as the lower boundary condition in canopy model inversions. Finally, a scheme was developed to improve the speed and accuracy of inversions.

  7. A Reflectance Model for Relatively Clear and Turbid Waters

    Directory of Open Access Journals (Sweden)

    S. P. Tiwari

    2013-02-01

    Full Text Available Accurate modeling of spectral remote sensing reflectance (Rrs is of great interest for ocean colour studies in highly turbid and relatively clear waters. In this work a semianalytical model that simulates the spectral curves of remote sensing reflectance of these waters is developed based on the inherent optical properties (IOPs and f and Q factors. For accommodating differences in the optical properties of the water and accounting for their directional variations, IOPs and f and Q factors are derived as a function of phytoplankton pigments, suspended sediments and solar zenith angle. Results of this model are compared with in-situ bio-optical data collected at 83 stations encompassing highly turbid/relatively cleared waters of the South Sea of Korea. Measured and modeled remote sensing reflectances agree favorably in both magnitude and spectral shape, with considerably low errors (mean relative error MRE -0.0327; root mean square error RMSE 0.205, bias -0.0727 and slope 1.15 and correlation coefficient R2 0.74. These results suggest that the new model has the ability to reproduce measured reflectance values and has potentially profound implications for remote sensing of complex waters in this region.

  8. Gain-Enhanced On-Chip Antenna Utilizing Artificial Magnetic Conductor Reflecting Surface at 94 GHz

    KAUST Repository

    Nafe, Mahmoud

    2015-01-01

    In this work, the use of specially patterned reflecting surfaces for improving on- chip antenna performance is investigated. By using a periodic metallic surface on top of a grounded substrate, the structure can mimic the behavior of a perfect mag- netic conductor, hence called Artificial Magnetic Conductor (AMC) surface. Unlike conventional ground plane reflecting surfaces, AMC surfaces generally enhance the radiation and impedance characteristics of close-by antennas. Based on this property, a ring-based AMC reflecting surface has been designed in the oxide layer for on-chip antennas operating at 94 GHz. Furthermore, a folded dipole antenna with its associ- ated planar feeding structures has been optimized and integrated with the developed ring-based AMC surface. The proposed design is then fabricated at KAUST clean- room facilities. Prototype characterization showed very promising results with good correlation to simulations, with the antenna exhibiting an impedance bandwidth of 10% (90-100 GHz) and peak gain of -1.4 dBi, which is the highest gain reported for on-chip antennas at this frequency band without the use of any external o↵-chip components or post-fabrication steps.

  9. Tunable natural nano-arrays : controlling surface properties and light reflectance

    International Nuclear Information System (INIS)

    Watson, J.A.; Myhra, S.; Cribb, B.W.; Hope, G.A.; Watson, G.S.

    2005-01-01

    A sudden transition or impedance mismatch from one optical medium to another can result in unwanted reflections from the surface plane. Modification of a surface by creation of a gradual change in refractive index over a significant portion of a wavelength range will result in a reduction in reflection. Multi-layered thin film coatings based on this phenomenon are widely used on a number of different surfaces (e.g. solar cells, lenses, display screens etc.) to suppress undesired reflections and/or increase light transmittance. An alternative surface modification to the multi-layered stack coating (gradient index coating) is to produce a surface with structures having a period and heights shorter than the light wavelength. These structures act like a pseudo-gradient index coating and can be described by the effective medium theory. In this study we report on nano-structures (a natural pseudo-gradient index coating) which we have found on certain species of cicada wings demonstrating their reflective effectiveness using manipulative atomic force microscopy. (author). 2 refs., 5 figs

  10. Early Evaluation of the VIIRS Calibration, Cloud Mask and Surface Reflectance Earth Data Records

    Science.gov (United States)

    Vermote, Eric; Justice, Chris; Csiszar, Ivan

    2014-01-01

    Surface reflectance is one of the key products fromVIIRS and as withMODIS, is used in developing several higherorder land products. The VIIRS Surface Reflectance (SR) Intermediate Product (IP) is based on the heritageMODIS Collection 5 product (Vermote, El Saleous, & Justice, 2002). The quality and character of surface reflectance depend on the accuracy of the VIIRS Cloud Mask (VCM), the aerosol algorithms and the adequate calibration of the sensor. The focus of this paper is the early evaluation of the VIIRS SR product in the context of the maturity of the operational processing system, the Interface Data Processing System (IDPS). After a brief introduction, the paper presents the calibration performance and the role of the surface reflectance in calibration monitoring. The analysis of the performance of the cloud mask with a focus on vegetation monitoring (no snow conditions) shows typical problems over bright surfaces and high elevation sites. Also discussed is the performance of the aerosol input used in the atmospheric correction and in particular the artifacts generated by the use of the Navy Aerosol Analysis and Prediction System. Early quantitative results of the performance of the SR product over the AERONET sites showthatwith the fewadjustments recommended, the accuracy iswithin the threshold specifications. The analysis of the adequacy of the SR product (Land PEATE adjusted version) in applications of societal benefits is then presented. We conclude with a set of recommendations to ensure consistency and continuity of the JPSS mission with the MODIS Land Climate Data Record.

  11. Observation on Surface Change of Fragile Glass: Temperature - Time Dependence Studied by X-Ray Reflectivity

    International Nuclear Information System (INIS)

    Kikkawa, Hiroyuki; Kitahara, Amane; Takahashi, Isao

    2004-01-01

    The structural change of a fragile glass surface close to the glass transition temperature Tg is studied by using X-ray reflectivity. Measurements were performed on surfaces of maltitol, which is a typical polyalcohol fragile glass with Tg = 320K. Upon both heating and cooling, we find the following features which are also noticed in silicate glass surfaces: (i) On heating, the surface morphology indicates a variation at temperatures below Tg; (ii) A drastic increase in surface roughness occurs at a temperature about 333K on heating, which is 13K higher than Tg; (iii) During the cooling of the sample, formation of a low-density surface layer (3nm at 293K) is observed. Prior to the crystallization, nm - μm sized domains were grown at the surface, which might not be reported for other glasses

  12. Solar flux incident on an orbiting surface after reflection from a planet

    Science.gov (United States)

    Modest, M. F.

    1980-01-01

    Algorithms describing the solar radiation impinging on an infinitesimal surface after reflection from a gray and diffuse planet are derived. The following conditions apply: only radiation from the sunny half of the planet is taken into account; the radiation must fall on the top of the orbiting surface, and radiation must come from that part of the planet that can be seen from the orbiting body. A simple approximate formula is presented which displays excellent accuracy for all significant situations, with an error which is always less than 5% of the maximum possible reflected flux. Attention is also given to solar albedo flux on a surface directly facing the planet, the influence of solar position on albedo flux, and to solar albedo flux as a function of the surface-planet tilt angle.

  13. Effect of surface characteristics on diffuse reflection radiation at lambda=0. 40. mu. m

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, T [Atmospheric Environment Service, Downsview, Ontario (Canada)

    1976-08-01

    The diffuse radiation in the upward direction at the top and at an internal level of an inhomogeneous atmosphere is computed at lambda=0.40 ..mu..m. The surface is assumed to reflect light in accordance with a hybrid mode of a diffuse and specular reflector. The objective is to estimate the effect of underlying surface characteristics in terms of the diffuse radiation field. By making use of these results, accuracy in monitoring the atmospheric aerosols would be increased for the use of remote sensing satellite techniques. Junge power law (..gamma..*=3) is adopted for the size distribution of aerosols (1963), while the data given by McClatchy et al. (1971) is used for the number density of aerosols with height distribution. It is noted from the computations that the diffuse reflection radiation is affected by the surface characteristics, even if the albedo of the surface is a fixed constant and very small.

  14. Surface EXAFS - A mathematical model

    International Nuclear Information System (INIS)

    Bateman, J.E.

    2002-01-01

    Extended X-ray absorption fine structure (EXAFS) studies are a powerful technique for studying the chemical environment of specific atoms in a molecular or solid matrix. The study of the surface layers of 'thick' materials introduces special problems due to the different escape depths of the various primary and secondary emission products which follow X-ray absorption. The processes are governed by the properties of the emitted fluorescent photons or electrons and of the material. Their interactions can easily destroy the linear relation between the detected signal and the absorption cross-section. Also affected are the probe depth within the surface and the background superimposed on the detected emission signal. A general mathematical model of the escape processes is developed which permits the optimisation of the detection modality (X-rays or electrons) and the experimental variables to suit the composition of any given surface under study

  15. X-ray reflectivity study of thermal capillary waves on liquid surfaces

    International Nuclear Information System (INIS)

    Ocko, B.M.; Wu, X.Z.; Sirota, E.B.; Sinha, S.K.; Deutsch, M.

    1994-01-01

    X-ray reflectivity measurements have been carried out at the liquid/vapor interface of normal alkanes. The reflectivities over a large temperature range of different chain lengths (C20 and C36) provide a critical test of the various capillary wave models. Our data are most consistent with the hybrid model which allows for a molecular size dependent cutoff q max for the capillary waves and an intrinsic interface width σ 0

  16. Morphology and phase structures of CW laser-induced oxide layers on iron surface with evolving reflectivity and colors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Taotao, E-mail: wutaotao@nint.ac.cn; Wang, Lijun; Wei, Chenghua; Zhou, Menglian; He, Minbo; Wu, Lixiong

    2016-11-30

    Highlights: • Firstly, iron samples with different color features were obtained by continuous wave laser irradiation depending on progressive durations. The real-time reflectivity and temperature of samples were measured. The color and the reflectivity evolution were related. They were both caused by the forming oxide films. • Secondly, laser-induced oxidation process of iron was studied by microscope, X-ray diffraction and Raman spectrum. The first formed magnetite made the surface reflectivity decline rapidly and caused the “positive feedback” effect because of molecular absorption. The later formed hematite oscillated the reflectivity by interference effect. • Lastly, the laser-induced oxide films were thin, orientated and badly crystallized. The Wagner oxidation theory was incapable of describing the non-isothermal and early stage oxidation process. So we emphasized that a precise oxidation model depending on the experiment and the optical constants of the laser-induced oxides must be studied. - Abstract: Laser-induced oxidation will change the laser reflectivity and color features of metal surface. Both changes can be theoretically calculated based on the oxidation kinetics and the optical constants of oxides. For the purpose of calculation, the laser-induced oxidation process of pure polycrystalline iron was studied. Samples with various color features were obtained by continuous wave Nd:YAG fiber laser (1.06 μm) irradiation depending on progressive durations in the intensity of 1.90 W/cm{sup 2}. The real-time reflectivity and temperature were measured with integral sphere and thermocouples. The irradiated surface morphology and phase structures were characterized by microscope, X-ray diffraction and Raman spectrum. It was found that the first formed magnetite made the surface reflectivity decline rapidly and caused the “positive feedback” effect because of molecular absorption. The later formed hematite oscillated the reflectivity by

  17. Does the cognitive reflection test measure cognitive reflection? A mathematical modeling approach.

    Science.gov (United States)

    Campitelli, Guillermo; Gerrans, Paul

    2014-04-01

    We used a mathematical modeling approach, based on a sample of 2,019 participants, to better understand what the cognitive reflection test (CRT; Frederick In Journal of Economic Perspectives, 19, 25-42, 2005) measures. This test, which is typically completed in less than 10 min, contains three problems and aims to measure the ability or disposition to resist reporting the response that first comes to mind. However, since the test contains three mathematically based problems, it is possible that the test only measures mathematical abilities, and not cognitive reflection. We found that the models that included an inhibition parameter (i.e., the probability of inhibiting an intuitive response), as well as a mathematical parameter (i.e., the probability of using an adequate mathematical procedure), fitted the data better than a model that only included a mathematical parameter. We also found that the inhibition parameter in males is best explained by both rational thinking ability and the disposition toward actively open-minded thinking, whereas in females this parameter was better explained by rational thinking only. With these findings, this study contributes to the understanding of the processes involved in solving the CRT, and will be particularly useful for researchers who are considering using this test in their research.

  18. Weighted least-square approach for simultaneous measurement of multiple reflective surfaces

    Science.gov (United States)

    Tang, Shouhong; Bills, Richard E.; Freischlad, Klaus

    2007-09-01

    Phase shifting interferometry (PSI) is a highly accurate method for measuring the nanometer-scale relative surface height of a semi-reflective test surface. PSI is effectively used in conjunction with Fizeau interferometers for optical testing, hard disk inspection, and semiconductor wafer flatness. However, commonly-used PSI algorithms are unable to produce an accurate phase measurement if more than one reflective surface is present in the Fizeau interferometer test cavity. Examples of test parts that fall into this category include lithography mask blanks and their protective pellicles, and plane parallel optical beam splitters. The plane parallel surfaces of these parts generate multiple interferograms that are superimposed in the recording plane of the Fizeau interferometer. When using wavelength shifting in PSI the phase shifting speed of each interferogram is proportional to the optical path difference (OPD) between the two reflective surfaces. The proposed method is able to differentiate each underlying interferogram from each other in an optimal manner. In this paper, we present a method for simultaneously measuring the multiple test surfaces of all underlying interferograms from these superimposed interferograms through the use of a weighted least-square fitting technique. The theoretical analysis of weighted least-square technique and the measurement results will be described in this paper.

  19. An efficient approach for computing the geometrical optics field reflected from a numerically specified surface

    Science.gov (United States)

    Mittra, R.; Rushdi, A.

    1979-01-01

    An approach for computing the geometrical optic fields reflected from a numerically specified surface is presented. The approach includes the step of deriving a specular point and begins with computing the reflected rays off the surface at the points where their coordinates, as well as the partial derivatives (or equivalently, the direction of the normal), are numerically specified. Then, a cluster of three adjacent rays are chosen to define a 'mean ray' and the divergence factor associated with this mean ray. Finally, the ampilitude, phase, and vector direction of the reflected field at a given observation point are derived by associating this point with the nearest mean ray and determining its position relative to such a ray.

  20. LiDAR Relative Reflectivity Surface (2011) for Coral Bay, St. John

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) 0.3x0.3 meter resolution relative seafloor reflectivity surface for Coral Bay, St. John in the U.S....

  1. Vertical-cavity surface-emitting laser vapor sensor using swelling polymer reflection modulation

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgård; Dohn, Søren

    2012-01-01

    Vapor detection using a low-refractive index polymer for reflection modulation of the top mirror in a vertical-cavity surface-emitting laser (VCSEL) is demonstrated. The VCSEL sensor concept presents a simple method to detect the response of a sensor polymer in the presence of volatile organic...

  2. Classification of Clean and Dirty Pighouse Surfaces Based on Spectral Reflectance

    DEFF Research Database (Denmark)

    Blanke, Mogens; Braithwaite, Ian David; Zhang, Guo-Qiang

    2004-01-01

    of designing a vision based system to locate dirty areas and subsequently direct a cleaning robot to remove dirt. Novel results include the characterisation of the spectral reflectance of real surfaces and dirt in a pig house and the design of illumination to obtain discrimination of clean from dirty areas...

  3. LiDAR Relative Reflectivity Surface (2011) for Fish Bay, St. John

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) 0.3x0.3 meter resolution relative seafloor reflectivity surface for Fish Bay, St. John in the U.S....

  4. Three dimensional reflection velocity analysis based on velocity model scan; Model scan ni yoru sanjigen hanshaha sokudo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, M; Tsuru, T [Japan National Oil Corp., Tokyo (Japan); Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan)

    1996-05-01

    Introduced herein is a reflection wave velocity analysis method using model scanning as a method for velocity estimation across a section, the estimation being useful in the construction of a velocity structure model in seismic exploration. In this method, a stripping type analysis is carried out, wherein optimum structure parameters are determined for reflection waves one after the other beginning with those from shallower parts. During this process, the velocity structures previously determined for the shallower parts are fixed and only the lowest of the layers undergoing analysis at the time is subjected to model scanning. To consider the bending of ray paths at each velocity boundaries involving shallower parts, the ray path tracing method is utilized for the calculation of the reflection travel time curve for the reflection surface being analyzed. Out of the reflection wave travel time curves calculated using various velocity structure models, one that suits best the actual reflection travel time is detected. The degree of matching between the calculated result and actual result is measured by use of data semblance in a time window provided centering about the calculated reflective wave travel time. The structure parameter is estimated on the basis of conditions for the maximum semblance. 1 ref., 4 figs.

  5. The laboratory investigation of surface envelope solitons: reflection from a vertical wall and collisions of solitons

    Science.gov (United States)

    Slunyaev, Alexey; Klein, Marco; Clauss, Günther F.

    2016-04-01

    Envelope soliton solutions are key elements governing the nonlinear wave dynamics within a simplified theory for unidirectional weakly modulated weakly nonlinear wave groups on the water surface. Within integrable models the solitons preserve their structure in collisions with other waves; they do not disperse and can carry energy infinitively long. Steep and short soliton-like wave groups have been shown to exist in laboratory tests [1] and, even earlier, in numerical simulations [2, 3]. Thus, long-living wave groups may play important role in the dynamics of intense sea waves and wave-structure interactions. The solitary wave groups may change the wave statistics and can be taken into account when developing approaches for the deterministic forecasting of dangerous waves, including so-called rogue waves. An experimental campaign has been conducted in the wave basin of the Technical University of Berlin on simulations of intense solitary wave groups. The first successful experimental observation of intense envelope solitons took place in this facility [1]. The new experiments aimed at following main goals: 1) to reproduce intense envelope solitons with different carrier wave lengths; 2) to estimate the rate of envelope soliton dissipation; 3) to consider the reflection of envelope solitons on a vertical wall; 4) to consider head-on collisions of envelope solitons, and 5) to consider overtaking interactions of envelope solitons. Up to 9 wave gauges were used in each experimental run, which enabled registration of the surface movement at different distances from the wavemaker, at different locations across the wave flume and near the wall. Besides surface displacements, the group envelope shapes were directly recorded, with use of phase shifts applied to the modulated waves generated by the wavemaker. [1] A. Slunyaev, G.F. Clauss, M. Klein, M. Onorato, Simulations and experiments of short intense envelope solitons of surface water waves. Phys. Fluids 25, 067105

  6. Radius of curvature measurement of spherical smooth surfaces by multiple-beam interferometry in reflection

    Science.gov (United States)

    Abdelsalam, D. G.; Shaalan, M. S.; Eloker, M. M.; Kim, Daesuk

    2010-06-01

    In this paper a method is presented to accurately measure the radius of curvature of different types of curved surfaces of different radii of curvatures of 38 000,18 000 and 8000 mm using multiple-beam interference fringes in reflection. The images captured by the digital detector were corrected by flat fielding method. The corrected images were analyzed and the form of the surfaces was obtained. A 3D profile for the three types of surfaces was obtained using Zernike polynomial fitting. Some sources of uncertainty in measurement were calculated by means of ray tracing simulations and the uncertainty budget was estimated within λ/40.

  7. Mechanisms for the reflection of light atoms from crystal surfaces at kilovolt energies

    International Nuclear Information System (INIS)

    Hou, M.; Robinson, M.T.

    1978-01-01

    The computer program MARLOWE was used to investigate the backscattering of protons from the (110) surface of a nickel crystal. Grazing incidence was considered so that anisotropic effects originated mainly from the surface region. The contribution of aligned scattering was studied by comparing the results with similar calculations for an amorphous target. Energy distributions of backscattered particles were investigated for incident energies ranging from 0.1 to 5 keV. The structure of these distributions was explained by making calculations for several target thickness. Specular reflection was found to depend on the structure of the first few atomic planes only. The (110) rows in the surface plane were responsible for focusing into surface semichannels. Focusing in these semichannels was found to be the strongest under total reflection conditions (below about 1.3 keV) while the scattering intensity from surface rows increased with increasing incident energy. The orientation of the plane of incidence was found to have large influence on the relative contributions of the reflection mechanisms involved. (orig.) [de

  8. Critical coupling of surface plasmons in graphene attenuated total reflection geometry

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas, Mauro, E-mail: cuevas@df.uba.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Facultad de Ingeniería y Tecnología Informática, Universidad de Belgrano, Villanueva 1324, C1426BMJ, Buenos Aires (Argentina); Grupo de Electromagnetismo Aplicado, Departamento de Física, FCEN, Universidad de Buenos Aires and IFIBA, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires (Argentina)

    2016-12-09

    We study the optical response of an attenuated total reflection (ATR) structure in Otto configuration with graphene sheet, paying especial attention to the occurrence of total absorption. Our results show that due to excitation of surface plasmons on the graphene sheet, two different conditions of total absorption may occur. At these conditions, the energy loss of the surface plasmon by radiation is equal to its energy loss by absorption into the graphene sheet. We give necessary conditions on ATR parameters for the existence of total absorption. - Highlights: • Attenuated total reflection (ATR) structure with graphene sheet. • Surface plasmons and power matched condition. • Necessary conditions on ATR parameters for the existence of total absorption.

  9. Critical coupling of surface plasmons in graphene attenuated total reflection geometry

    International Nuclear Information System (INIS)

    Cuevas, Mauro

    2016-01-01

    We study the optical response of an attenuated total reflection (ATR) structure in Otto configuration with graphene sheet, paying especial attention to the occurrence of total absorption. Our results show that due to excitation of surface plasmons on the graphene sheet, two different conditions of total absorption may occur. At these conditions, the energy loss of the surface plasmon by radiation is equal to its energy loss by absorption into the graphene sheet. We give necessary conditions on ATR parameters for the existence of total absorption. - Highlights: • Attenuated total reflection (ATR) structure with graphene sheet. • Surface plasmons and power matched condition. • Necessary conditions on ATR parameters for the existence of total absorption.

  10. Lunar surface remanent magnetic fields detected by the electron reflection method

    Science.gov (United States)

    Lin, R. P.; Anderson, K. A.; Bush, R.; Mcguire, R. E.; Mccoy, J. E.

    1976-01-01

    We present maps of the lunar surface remanent magnetic fields detected by the electron reflection method. These maps provide substantial coverage of the latitude band from 30 N southward to 30 S with a resolution of about 40 km and a sensitivity of about 0.2 gamma at the lunar surface. Regions of remanent magnetization are observed ranging in size from the resolution limit of 1.25 deg to above approximately 60 deg. The largest contiguous region fills the Big Backside Basin where it is intersected by the spacecraft orbital tracks. Preliminary analyses of the maps show that the source regions of lunar limb compressions correspond to regions of strong surface magnetism, and that there does not appear to be sharply discontinuous magnetization at the edges of maria. We also analyze the electron reflection observations to obtain information on the direction and distribution of magnetization in the Van de Graaff anomaly region.

  11. Lactoperoxidase catalyzed radioiodination of cell surface immunoglobulin: incorporated radioactivity may not reflect relative cell surface Ig density

    International Nuclear Information System (INIS)

    Wilder, R.L.; Yuen, C.C.; Mage, R.G.

    1979-01-01

    Rabbit and mouse splenic lymphocytes were radioiodinated by the lactoperoxidase technique, extracted with non-ionic detergent, immunoprecipitated with high titered rabbit anti-kappa antisera, and compared by SDS-PAGE. Mouse sIg peaks were reproducibly larger in size than rabbit sIg peaks (often greater than 10 times). Neither differences in incorporation of label into the rabbit cell surface, nor differences in average sIg density explain this result. Total TCA-precipitable radioactivity was similar in each species. Estimation of the relative amounts of sIg in the mouse and rabbit showed similar average sIg densities. Differences in detergent solubility, proteolytic lability, or antisera used also do not adequately account for this difference. Thus, these data indicate that radioactivity incorporated after lactoperoxidase catalyzed cell surface radioiodination may not reflect cell surface Ig density. Conclusions about cell surface density based upon relative incorporation of radioactivity should be confirmed by other approaches

  12. Probing Ultrafast Electron Dynamics at Surfaces Using Soft X-Ray Transient Reflectivity Spectroscopy

    Science.gov (United States)

    Baker, L. Robert; Husek, Jakub; Biswas, Somnath; Cirri, Anthony

    The ability to probe electron dynamics with surface sensitivity on the ultrafast time scale is critical for understanding processes such as charge separation, injection, and surface trapping that mediate efficiency in catalytic and energy conversion materials. Toward this goal, we have developed a high harmonic generation (HHG) light source for femtosecond soft x-ray reflectivity. Using this light source we investigated the ultrafast carrier dynamics at the surface of single crystalline α-Fe2O3, polycrystalline α-Fe2O3, and the mixed metal oxide, CuFeO2. We have recently demonstrated that CuFeO2 in particular is a selective catalyst for photo-electrochemical CO2 reduction to acetate; however, the role of electronic structure and charge carrier dynamics in mediating catalytic selectivity has not been well understood. Soft x-ray reflectivity measurements probe the M2,3, edges of the 3d transition metals, which provide oxidation and spin state resolution with element specificity. In addition to chemical state specificity, these measurements are also surface sensitive, and by independently simulating the contributions of the real and imaginary components of the complex refractive index, we can differentiate between surface and sub-surface contributions to the excited state spectrum. Accordingly, this work demonstrates the ability to probe ultrafast carrier dynamics in catalytic materials with element and chemical state specificity and with surface sensitivity.

  13. Parameter optimization for surface flux transport models

    Science.gov (United States)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  14. Ray splitting in the reflection and refraction of surface acoustic waves in anisotropic solids.

    Science.gov (United States)

    Every, A G; Maznev, A A

    2010-05-01

    This paper examines the conditions for, and provides examples of, ray splitting in the reflection and refraction of surface acoustic waves (SAW) in elastically anisotropic solids at straight obstacles such as edges, surface breaking cracks, and interfaces between different solids. The concern here is not with the partial scattering of an incident SAW's energy into bulk waves, but with the occurrence of more than one SAW ray in the reflected and/or transmitted wave fields, by analogy with birefringence in optics and mode conversion of bulk elastic waves at interfaces. SAW ray splitting is dependent on the SAW slowness curve possessing concave regions, which within the constraint of wave vector conservation parallel to the obstacle allows multiple outgoing SAW modes for certain directions of incidence and orientation of obstacle. The existence of pseudo-SAW for a given surface provides a further channel for ray splitting. This paper discusses some typical material configurations for which SAW ray splitting occurs. An example is provided of mode conversion entailing backward reflection or negative refraction. Experimental demonstration of ray splitting in the reflection of a laser generated SAW in GaAs(111) is provided. The calculation of SAW mode conversion amplitudes lies outside the scope of this paper.

  15. Improving Image Matching by Reducing Surface Reflections Using Polarising Filter Techniques

    Science.gov (United States)

    Conen, N.; Hastedt, H.; Kahmen, O.; Luhmann, T.

    2018-05-01

    In dense stereo matching applications surface reflections may lead to incorrect measurements and blunders in the resulting point cloud. To overcome the problem of disturbing reflexions polarising filters can be mounted on the camera lens and light source. Reflections in the images can be suppressed by crossing the polarising direction of the filters leading to homogeneous illuminated images and better matching results. However, the filter may influence the camera's orientation parameters as well as the measuring accuracy. To quantify these effects, a calibration and an accuracy analysis is conducted within a spatial test arrangement according to the German guideline VDI/VDE 2634.1 (2002) using a DSLR with and without polarising filter. In a second test, the interior orientation is analysed in more detail. The results do not show significant changes of the measuring accuracy in object space and only very small changes of the interior orientation (Δc ≤ 4 μm) with the polarising filter in use. Since in medical applications many tiny reflections are present and impede robust surface measurements, a prototypic trinocular endoscope is equipped with polarising technique. The interior and relative orientation is determined and analysed. The advantage of the polarising technique for medical image matching is shown in an experiment with a moistened pig kidney. The accuracy and completeness of the resulting point cloud can be improved clearly when using polarising filters. Furthermore, an accuracy analysis using a laser triangulation system is performed and the special reflection properties of metallic surfaces are presented.

  16. A method for the characterization of the reflectance of anisotropic functional surfaces

    DEFF Research Database (Denmark)

    Regi, Francesco; Nielsen, J B; Li, Dongya

    2018-01-01

    The functional properties of micro-structured surfaces have gained increasing interest thanks to many applications such as wetting, adhesion, thermal and/or electrical conductivity. In this study, directional optical properties, i.e. contrast between two regions of a surface, were achieved...... reflectance of the surface for a range of design-specific view-illumination configurations was determined using a method that involves a Hirox RH-2000 digital microscope, used as a gonioreflectometer. This method allows the empirical determination of the optimum surface microstructure for maximizing contrast...... between two horizontally orthogonal views. The results show that even if the uncertainty related to the instrumentation is up to 20% in some cases, this procedure is suitable for the characterization of the surface of both metal and plastic counterpart....

  17. Principles of the radiosity method versus radiative transfer for canopy reflectance modeling

    Science.gov (United States)

    Gerstl, Siegfried A. W.; Borel, Christoph C.

    1992-01-01

    The radiosity method is introduced to plant canopy reflectance modeling. We review the physics principles of the radiosity method which originates in thermal radiative transfer analyses when hot and cold surfaces are considered within a given enclosure. The radiosity equation, which is an energy balance equation for discrete surfaces, is described and contrasted with the radiative transfer equation, which is a volumetric energy balance equation. Comparing the strengths and weaknesses of the radiosity method and the radiative transfer method, we conclude that both methods are complementary to each other. Results of sample calculations are given for canopy models with up to 20,000 discrete leaves.

  18. A rapid radiative transfer model for reflection of solar radiation

    Science.gov (United States)

    Xiang, X.; Smith, E. A.; Justus, C. G.

    1994-01-01

    A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of approximately 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.

  19. Bi-directional Reflectance of Icy Surface Analogs: A Dual Approach

    Science.gov (United States)

    Quinones, Juan Manuel; Vides, Christina; Nelson, Robert M.; Boryta, Mark; Mannat, Ken s.

    2018-01-01

    Bi-directional reflectance measurements of analogs for planetary regolith have provided insight into the surface properties of planetary satellites and small bodies. Because Aluminum Oxide (Al2O3) and water ice share a similar hexagonal crystalline structure, the former has been used in laboratory experiments to simulate the regolith of both icy and dusty planetary bodies. By measuring various sizes of well sorted size fractions of Al2O3, the reflectance phase curve and porosity of a planetary regolith can be determined. We have designed an experiment to test the laboratory measurements produced by Nelson et al. (2000). Additionally, we made reflectance measurements for other alkali-halide compounds that could be used for applications beyond astronomy and planetary science.In order to provide an independent check on the Nelson et al. data, we designed an instrument with a different configuration. While both instruments take bidirectional reflectance measurements, our instrument, the Rigid Photometric Goniometer (RPG), is fixed at a phase angle of 5° and detects the scattered light with a photomultiplier tube (PMT). The PMT current is then measured with an electrometer. Following the example of Nelson et al., we measured the bidirectional reflectance of Al2O3 particulate size fractions between 0.1sizes from 20size that provided optimal, or maximum, reflectance for each compound. Our conclusions bring confirmation and clarity to photometric sciences.

  20. Impact of dielectric parameters on the reflectivity of 3C–SiC wafers with a rough surface morphology in the reststrahlen region

    International Nuclear Information System (INIS)

    Engelbrecht, J.A.A.; Janzén, E.; Henry, A.; Rooyen, I.J. van

    2014-01-01

    A layer-on-substrate model is used to obtain the infrared reflectance for 3C–SiC with a rough surface morphology. The effect of varying dielectric parameters of the “damaged layer” on the observed reflectivity of the 3C–SiC in the reststrahlen region is assessed. Different simulated reflectance spectra are obtained to those if the dielectric parameters of the “substrate” were varied. Most notable changes in the shape of the simulated reststrahlen peak are observed for changes in the high frequency dielectric constant, the phonon damping constant, the phonon frequencies and “thickness” of damaged surface layer.

  1. Impact of dielectric parameters on the reflectivity of 3C–SiC wafers with a rough surface morphology in the reststrahlen region

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, J.A.A., E-mail: Japie.Engelbrecht@nmmu.ac.za [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Janzén, E.; Henry, A. [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Rooyen, I.J. van [Fuel Performance and Design Department, Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2014-04-15

    A layer-on-substrate model is used to obtain the infrared reflectance for 3C–SiC with a rough surface morphology. The effect of varying dielectric parameters of the “damaged layer” on the observed reflectivity of the 3C–SiC in the reststrahlen region is assessed. Different simulated reflectance spectra are obtained to those if the dielectric parameters of the “substrate” were varied. Most notable changes in the shape of the simulated reststrahlen peak are observed for changes in the high frequency dielectric constant, the phonon damping constant, the phonon frequencies and “thickness” of damaged surface layer.

  2. Axelrod's model with surface tension

    Science.gov (United States)

    Pace, Bruno; Prado, Carmen P. C.

    2014-06-01

    In this work we propose a subtle change in Axelrod's model for the dissemination of culture. The mechanism consists of excluding from the set of potentially interacting neighbors those that would never possibly exchange. Although the alteration proposed does not alter the state space topologically, it yields significant qualitative changes, specifically the emergence of surface tension, driving the system in some cases to metastable states. The transient behavior is considerably richer, and cultural regions become stable leading to the formation of different spatiotemporal patterns. A metastable "glassy" phase emerges between the globalized phase and the disordered, multicultural phase.

  3. The effect of surface texture on total reflection of neutrons and X-rays from modified interfaces

    DEFF Research Database (Denmark)

    Goldar, A.; Roser, S.J.; Hughes, A.

    2002-01-01

    X-ray and neutron scattering from macroscopically rough surfaces and interfaces is considered and a new method of analysis based on the variation of the shape of the total reflection edge in the reflectivity profile is proposed. It was shown that in the limit that the correlation length and the h......X-ray and neutron scattering from macroscopically rough surfaces and interfaces is considered and a new method of analysis based on the variation of the shape of the total reflection edge in the reflectivity profile is proposed. It was shown that in the limit that the correlation length...... and the height of the surface roughness are larger than the wavelength (at least 100 times bigger) of the incoming beam, the total reflection edge in the reflection profile becomes rounded. This technique allows direct analysis of the variation of the reflectivity pro le in terms of the structure of the surface...

  4. Retrieval of the Land Surface Reflectance for Landsat-8 and Sentinel-2 and its validation.

    Science.gov (United States)

    Roger, J. C.; Vermote, E.; Skakun, S.; Franch, B.; Holben, B. N.; Justice, C. O.

    2017-12-01

    The land surface reflectance is a fundamental climate data record at the basis of the derivation of other climate data records (Albedo, LAI/Fpar, Vegetation indices) and a key parameter in the understanding of the land-surface-climate processes. For 25 years, Vermote and al. develop atmospheric corrections methods to define a land surface reflectance product for various satellites (AVHRR, MODIS, VIIRS…). This presentation highlights the algorithms developed both for Landsant-8 and Sentinel-2. We also emphasize the validation of the "Land surface reflectance" satellite products, which is a very important step to be done. For that purpose, we compared the surface reflectance products to a reference determined by using the accurate radiative transfer code 6S and very detailed measurements of the atmosphere obtained over the AERONET network (which allows to test for a large range of aerosol characteristics); formers being important inputs for atmospheric corrections. However, the application of this method necessitates the definition of a very detailed protocol for the use of AERONET data especially as far as size distribution and absorption are concerned, so that alternative validation methods or protocols could be compared. We describe here the protocol we have been working on based on our experience with the AERONET data and its application to Landsat-8 and Sentinel-2). We also derive a detailed error budget in relation to this approach. For a mean loaded atmosphere, t550 less than 0.25, the maximum uncertainty is 0.0025 corresponding to a relative uncertainty (in the RED channels): U 0.10, and 1% rsurf > 0.04.

  5. Biomimetic approaches to create anti-reflection glass surfaces for solar cells using self-organizing techniques

    International Nuclear Information System (INIS)

    Achtelik, J.; Sievers, W.; Lindner, J.K.N.

    2013-01-01

    Highlights: ► Nanostructured glass surfaces with theoretically near-to-zero reflectivity in the UVNIR region. ► Simple fabrication process using self-organization during reactive ion etching proposed. ► Prediction of optical reflectivity from AFM measured surface morphology. -- Abstract: Aiming to diminish the reflection losses of glass covered light harvesting devices, the optical reflectivity of nanostructured glass surfaces is studied theoretically and experimentally. The work is inspired by the nanoscale roughness of insect eyes, which is tried to be replicated on a technical glass surface. To this end, the reflectivity of glass surfaces with topographies represented by linear, parabolic and Fermi-shaped glass/air fill factor profiles is calculated for normal incidence. It is shown that using the latter ones, an almost complete suppression of reflections can be achieved. A simple, self-organization technique to create such Fermi-shaped filling factor profiles in glass experimentally is also presented

  6. Biomimetic approaches to create anti-reflection glass surfaces for solar cells using self-organizing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Achtelik, J.; Sievers, W. [University of Paderborn, Department of Physics, 33098 Paderborn (Germany); Center of Optoelectronics and Photonics Paderborn CeOPP, 33098 Paderborn (Germany); Lindner, J.K.N., E-mail: lindner@physik.uni-paderborn.de [University of Paderborn, Department of Physics, 33098 Paderborn (Germany); Center of Optoelectronics and Photonics Paderborn CeOPP, 33098 Paderborn (Germany)

    2013-05-15

    Highlights: ► Nanostructured glass surfaces with theoretically near-to-zero reflectivity in the UVNIR region. ► Simple fabrication process using self-organization during reactive ion etching proposed. ► Prediction of optical reflectivity from AFM measured surface morphology. -- Abstract: Aiming to diminish the reflection losses of glass covered light harvesting devices, the optical reflectivity of nanostructured glass surfaces is studied theoretically and experimentally. The work is inspired by the nanoscale roughness of insect eyes, which is tried to be replicated on a technical glass surface. To this end, the reflectivity of glass surfaces with topographies represented by linear, parabolic and Fermi-shaped glass/air fill factor profiles is calculated for normal incidence. It is shown that using the latter ones, an almost complete suppression of reflections can be achieved. A simple, self-organization technique to create such Fermi-shaped filling factor profiles in glass experimentally is also presented.

  7. Reflected stochastic differential equation models for constrained animal movement

    Science.gov (United States)

    Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.

    2017-01-01

    Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.

  8. Antarctic Surface Reflectivity Measurements from the ANITA-3 and HiCal-1 Experiments

    Science.gov (United States)

    Gorham, P. W.; Allison, P.; Banerjee, O.; Beatty, J. J.; Belov, K.; Besson, D. Z.; Binns, W. R.; Bugaev, V.; Cao, P.; Chen, C.; Chen, P.; Clem, J. M.; Connolly, A.; Dailey, B.; Dasgupta, P.; Deaconu, C.; Cremonesi, L.; Dowkontt, P. F.; Fox, B. D.; Gordon, J.; Hill, B.; Hupe, R.; Israel, M. H.; Jain, P.; Kowalski, J.; Lam, J.; Learned, J. G.; Liewer, K. M.; Liu, T. C.; Matsuno, S.; Miki, C.; Mottram, M.; Mulrey, K.; Nam, J.; Nichol, R. J.; Novikov, A.; Oberla, E.; Prohira, S.; Rauch, B. F.; Romero-Wolf, A.; Rotter, B.; Ratzlaff, K.; Russell, J.; Saltzberg, D.; Seckel, D.; Schoorlemmer, H.; Stafford, S.; Stockham, J.; Stockham, M.; Strutt, B.; Tatem, K.; Varner, G. S.; Vieregg, A. G.; Wissel, S. A.; Wu, F.; Young, R.

    The primary science goal of the NASA-sponsored ANITA project is measurement of ultra-high energy neutrinos and cosmic rays, observed via radio-frequency signals resulting from a neutrino or cosmic ray interaction with terrestrial matter (e.g. atmospheric or ice molecules). Accurate inference of the energies of these cosmic rays requires understanding the transmission/reflection of radio wave signals across the ice-air boundary. Satellite-based measurements of Antarctic surface reflectivity, using a co-located transmitter and receiver, have been performed more-or-less continuously for the last few decades. Our comparison of four different reflectivity surveys, at frequencies ranging from 2 to 45GHz and at near-normal incidence, yield generally consistent maps of high versus low reflectivity, as a function of location, across Antarctica. Using the Sun as an RF source, and the ANITA-3 balloon borne radio-frequency antenna array as the RF receiver, we have also measured the surface reflectivity over the interval 200-1000MHz, at elevation angles of 12-30∘. Consistent with our previous measurement using ANITA-2, we find good agreement, within systematic errors (dominated by antenna beam width uncertainties) and across Antarctica, with the expected reflectivity as prescribed by the Fresnel equations. To probe low incidence angles, inaccessible to the Antarctic Solar technique and not probed by previous satellite surveys, a novel experimental approach (“HiCal-1”) was devised. Unlike previous measurements, HiCal-ANITA constitute a bi-static transmitter-receiver pair separated by hundreds of kilometers. Data taken with HiCal, between 200 and 600MHz shows a significant departure from the Fresnel equations, constant with frequency over that band, with the deficit increasing with obliquity of incidence, which we attribute to the combined effects of possible surface roughness, surface grain effects, radar clutter and/or shadowing of the reflection zone due to Earth

  9. INTEGRATION OF HETEROGENOUS DIGITAL SURFACE MODELS

    Directory of Open Access Journals (Sweden)

    R. Boesch

    2012-08-01

    distribution can be used to derive a local accuracy measure. For the calculation of a robust point distribution measure, a constrained triangulation of local points (within an area of 100m2 has been implemented using the Open Source project CGAL. The area of each triangle is a measure for the spatial distribution of raw points in this local area. Combining the FOM-map with the local evaluation of LiDAR points allows an appropriate local accuracy evaluation of both surface models. The currently implemented strategy ("partial replacement" uses the hypothesis, that the ADS-DSM is superior due to its better global accuracy of 1m. If the local analysis of the FOM-map within the 100m2 area shows significant matching errors, the corresponding area of the triangulated LiDAR points is analyzed. If the point density and distribution is sufficient, the LiDAR-DSM will be used in favor of the ADS-DSM at this location. If the local triangulation reflects low point density or the variance of triangle areas exceeds a threshold, the investigated location will be marked as NODATA area. In a future implementation ("anisotropic fusion" an anisotropic inverse distance weighting (IDW will be used, which merges both surface models in the point data space by using FOM-map and local triangulation to derive a quality weight for each of the interpolation points. The "partial replacement" implementation and the "fusion" prototype for the anisotropic IDW make use of the Open Source projects CGAL (Computational Geometry Algorithms Library, GDAL (Geospatial Data Abstraction Library and OpenCV (Open Source Computer Vision.

  10. Experimental and model based investigation of the links between snow bidirectional reflectance and snow microstructure

    Science.gov (United States)

    Dumont, M.; Flin, F.; Malinka, A.; Brissaud, O.; Hagenmuller, P.; Dufour, A.; Lapalus, P.; Lesaffre, B.; Calonne, N.; Rolland du Roscoat, S.; Ando, E.

    2017-12-01

    Snow optical properties are unique among Earth surface and crucial for a wide range of applications. The bi-directional reflectance, hereafter BRDF, of snow is sensible to snow microstructure. However the complex interplays between different parameters of snow microstructure namely size parameters and shape parameters on reflectance are challenging to disentangle both theoretically and experimentally. An accurate understanding and modelling of snow BRDF is required to correctly process satellite data. BRDF measurements might also provide means of characterizing snow morphology. This study presents one of the very few dataset that combined bi-directional reflectance measurements over 500-2500 nm and X-ray tomography of the snow microstructure for three different snow samples and two snow types. The dataset is used to evaluate the approach from Malinka, 2014 that relates snow optical properties to the chord length distribution in the snow microstructure. For low and medium absorption, the model accurately reproduces the measurements but tends to slightly overestimate the anisotropy of the reflectance. The model indicates that the deviation of the ice chord length distribution from an exponential distribution, that can be understood as a characterization of snow types, does not impact the reflectance for such absorptions. The simulations are also impacted by the uncertainties in the ice refractive index values. At high absorption and high viewing/incident zenith angle, the simulations and the measurements disagree indicating that some of the assumptions made in the model are not met anymore. The study also indicates that crystal habits might play a significant role for the reflectance under such geometries and wavelengths. However quantitative relationship between crystal habits and reflectance alongside with potential optical methodologies to classify snow morphology would require an extended dataset over more snow types. This extended dataset can likely be obtained

  11. Modelling biochemical reaction systems by stochastic differential equations with reflection.

    Science.gov (United States)

    Niu, Yuanling; Burrage, Kevin; Chen, Luonan

    2016-05-07

    In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Synchrotron Radiation Total Reflection X-ray Fluorescence Spectroscopy for Microcontamination Analysis on Silicon Wafer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Takaura, Norikatsu

    1997-10-01

    As dimensions in state-of-the-art CMOS devices shrink to less than 0.1 pm, even low levels of impurities on wafer surfaces can cause device degradation. Conventionally, metal contamination on wafer surfaces is measured using Total Reflection X-Ray Fluorescence Spectroscopy (TXRF). However, commercially available TXRF systems do not have the necessary sensitivity for measuring the lower levels of contamination required to develop new CMOS technologies. In an attempt to improve the sensitivity of TXRF, this research investigates Synchrotron Radiation TXRF (SR TXRF). The advantages of SR TXRF over conventional TXRF are higher incident photon flux, energy tunability, and linear polarization. We made use of these advantages to develop an optimized SR TXRF system at the Stanford Synchrotron Radiation Laboratory (SSRL). The results of measurements show that the Minimum Detection Limits (MDLs) of SR TXRF for 3-d transition metals are typically at a level-of 3x10{sup 8} atoms/cm{sup 2}, which is better than conventional TXRF by about a factor of 20. However, to use our SR TXRF system for practical applications, it was necessary to modify a commercially available Si (Li) detector which generates parasitic fluorescence signals. With the modified detector, we could achieve true MDLs of 3x10{sup 8} atoms/cm{sup 2} for 3-d transition metals. In addition, the analysis of Al on Si wafers is described. Al analysis is difficult because strong Si signals overlap the Al signals. In this work, the Si signals are greatly reduced by tuning the incident beam energy below the Si K edge. The results of our measurements show that the sensitivity for Al is limited by x-ray Raman scattering. Furthermore, we show the results of theoretical modeling of SR TXRF backgrounds consisting of the bremsstrahlung generated by photoelectrons, Compton scattering, and Raman scattering. To model these backgrounds, we extended conventional theoretical models by taking into account several aspects particular

  13. An asymptotic model of seismic reflection from a permeable layer

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Goloshubin, G.

    2009-10-15

    Analysis of compression wave propagation in a poroelastic medium predicts a peak of reflection from a high-permeability layer in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of Biot's model of poroelasticity. A review of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and Darcy's law suggests an alternative new physical interpretation of some coefficients of the classical poroelasticity. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The absolute value of this parameter is equal to the product of the kinematic reservoir fluid mobility and the wave frequency. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). Practical applications of the obtained asymptotic formulae are seismic modeling, inversion, and at-tribute analysis.

  14. Glazed ceramic roof tiles: influence of surface features in the solar reflectance index

    International Nuclear Information System (INIS)

    Bortoli, Leitcia Silva de; Stapait, Camila Cristina; Marinoski, Deivis Luis; Fredel, Marcio Celso; Schabbach, Luciana M.

    2016-01-01

    In this study the influence of surface features of ceramic roof tiles in the solar reflectance index were evaluated. Two glazed ceramic roof tiles (type stoneware) with the same color (ivory) but with different appearance (matte and brilliant) were the focus of the analysis. The Solar Reflectance Index (SRI) of the roofs tiles were determined by the solar reflectance values (UV-VIS-NIR) and emittance, measured in laboratory. The samples showed SRI> 39 in accordance with LEED certification criteria (Leadership in Energy and Environmental Design), contributing to minimizing the Heat Island Effects. Although the matte roof tile shows a slightly higher SRI value (82) than the brilliant one (78), the results for the variables that composes the SRI value (reflectance and emittance) were very similar. Analysis of XRD, SEM and EDS performed on the surfaces of the two roofs indicated for the matte glaze the presence of microcrystals (with barium and zinc) that can contribute to the slightly highest value of SRI. The roughness (optical interferometer white light) and the brightness (brightness meter) of the samples were also measured. (author)

  15. Anomalous Quasiparticle Reflection from the Surface of a ^{3}He-^{4}He Dilute Solution.

    Science.gov (United States)

    Ikegami, Hiroki; Kim, Kitak; Sato, Daisuke; Kono, Kimitoshi; Choi, Hyoungsoon; Monarkha, Yuriy P

    2017-11-10

    A free surface of a dilute ^{3}He-^{4}He liquid mixture is a unique system where two Fermi liquids with distinct dimensions coexist: a three-dimensional (3D) ^{3}He Fermi liquid in the bulk and a two-dimensional (2D) ^{3}He Fermi liquid at the surface. To investigate a novel effect generated by the interaction between the two Fermi liquids, the mobility of a Wigner crystal of electrons formed on the free surface of the mixture is studied. An anomalous enhancement of the mobility, compared with the case where the 3D and 2D systems do not interact with each other, is observed. The enhancement is explained by the nontrivial reflection of 3D quasiparticles from the surface covered with the 2D ^{3}He system.

  16. Absorption and reflectivity of the lithium niobate surface masked with a graphene layer

    Directory of Open Access Journals (Sweden)

    O. Salas

    2017-01-01

    Full Text Available We performed simulations of the interaction of a graphene layer with the surface of lithium niobate utilizing density functional theory and molecular dynamics at 300K and atmospheric pressure. We found that the graphene layer is physisorbed on the lithium niobate surface with an adsorption energy of -0.8205 eV/(carbon-atom. Subsequently, the energy band structure, the optical absorption and reflectivity of the new system were calculated. We found important changes in these physical properties with respect to the corresponding ones of a graphene layer and of a lithium niobate crystal.

  17. The Pedagogical Reflection Model - an educational perspective on clinical decisions

    DEFF Research Database (Denmark)

    Voergaard Poulsen, Bettina; Vibholm Persson, Stine; Skriver, Mette

    Clinical decision-making is important in patient-centred nursing, which is known in nursing education and research (1) The Pedagogical Reflection Model (PRM) can provide a framework that supports students’ decision-making in patient-specific situations. PRM is based on the assumption that clinical......) The aims of this study were to explore how nurse students and clinical supervisors use PRM as method to reflect before, during and after PRM guidance in relation to clinical decisions in the first year of clinical practice...... decision-making needs to take into account; 1) clinical experiences, 2) the perspective of the patient, 3) clinical observations and investigations, 4) knowledge about patients experiences of being a patient and ill, 5) medical knowledge about diseases, and 6) the organizational framework (2,3,4)(Figure 1...

  18. Simple model of surface roughness for binary collision sputtering simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, Sloan J. [Institute of Solid-State Electronics, TU Wien, Floragasse 7, A-1040 Wien (Austria); Hobler, Gerhard, E-mail: gerhard.hobler@tuwien.ac.at [Institute of Solid-State Electronics, TU Wien, Floragasse 7, A-1040 Wien (Austria); Maciążek, Dawid; Postawa, Zbigniew [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30348 Kraków (Poland)

    2017-02-15

    Highlights: • A simple model of surface roughness is proposed. • Its key feature is a linearly varying target density at the surface. • The model can be used in 1D/2D/3D Monte Carlo binary collision simulations. • The model fits well experimental glancing incidence sputtering yield data. - Abstract: It has been shown that surface roughness can strongly influence the sputtering yield – especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the “density gradient model”) which imitates surface roughness effects. In the model, the target’s atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient – leading to increased sputtering yields, similar in effect to surface roughness.

  19. Simple model of surface roughness for binary collision sputtering simulations

    International Nuclear Information System (INIS)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-01-01

    Highlights: • A simple model of surface roughness is proposed. • Its key feature is a linearly varying target density at the surface. • The model can be used in 1D/2D/3D Monte Carlo binary collision simulations. • The model fits well experimental glancing incidence sputtering yield data. - Abstract: It has been shown that surface roughness can strongly influence the sputtering yield – especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the “density gradient model”) which imitates surface roughness effects. In the model, the target’s atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient – leading to increased sputtering yields, similar in effect to surface roughness.

  20. Observations of discrete energy loss effects in spectra of positrons reflected from solid surfaces

    International Nuclear Information System (INIS)

    Dale, J.M.; Hulett, L.D.; Pendyala, S.

    1980-01-01

    Surfaces of tungsten and silicon have been bombarded with monoenergetic beams of positrons and electrons. Spectra of reflected particles show energy loss tails with discrete peaks at kinetic energies about 15 eV lower than that of the elastic peaks. In the higher energy loss range for tungsten, positron spectra show fine structure that is not apparent in the electron spectra. This suggests that the positrons are losing energy through mechanisms different from that of the electrons

  1. Combined analysis of surface reflection imaging and vertical seismic profiling at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Daley, T.M.; Majer, E.L.; Karageorgi, E.

    1994-08-01

    This report presents results from surface and borehole seismic profiling performed by the Lawrence Berkeley Laboratory (LBL) on Yucca Mountain. This work was performed as part of the site characterization effort for the potential high-level nuclear waste repository. Their objective was to provide seismic imaging from the near surface (200 to 300 ft. depth) to the repository horizon and below, if possible. Among the issues addressed by this seismic imaging work are location and depth of fracturing and faulting, geologic identification of reflecting horizons, and spatial continuity of reflecting horizons. The authors believe their results are generally positive, with tome specific successes. This was the first attempt at this scale using modem seismic imaging techniques to determine geologic features on Yucca Mountain. The principle purpose of this report is to present the interpretation of the seismic reflection section in a geologic context. Three surface reflection profiles were acquired and processed as part of this study. Because of environmental concerns, all three lines were on preexisting roads. Line 1 crossed the mapped surface trace of the Ghost Dance fault and it was intended to study the dip and depth extent of the fault system. Line 2 was acquired along Drill Hole wash and was intended to help the ESF north ramp design activities. Line 3 was acquired along Yucca Crest and was designed to image geologic horizons which were thought to be less faulted along the ridge. Unfortunately, line 3 proved to have poor data quality, in part because of winds, poor field conditions and limited time. Their processing and interpretation efforts were focused on lines 1 and 2 and their associated VSP studies

  2. Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals

    Science.gov (United States)

    Liu, Lin; Larson, Kristine M.

    2018-02-01

    Conventional benchmark-based survey and Global Positioning System (GPS) have been used to measure surface elevation changes over permafrost areas, usually once or a few times a year. Here we use reflected GPS signals to measure temporal changes of ground surface elevation due to dynamics of the active layer and near-surface permafrost. Applying the GPS interferometric reflectometry technique to the multipath signal-to-noise ratio data collected by a continuously operating GPS receiver mounted deep in permafrost in Barrow, Alaska, we can retrieve the vertical distance between the antenna and reflecting surface. Using this unique kind of observables, we obtain daily changes of surface elevation during July and August from 2004 to 2015. Our results show distinct temporal variations at three timescales: regular thaw settlement within each summer, strong interannual variability that is characterized by a sub-decadal subsidence trend followed by a brief uplift trend, and a secular subsidence trend of 0.26 ± 0.02 cm year-1 during 2004 and 2015. This method provides a new way to fully utilize data from continuously operating GPS sites in cold regions for studying dynamics of the frozen ground consistently and sustainably over a long time.

  3. IRAS surface brightness maps of visible reflection nebulae: evidence for non-equilibrium infrared emission

    International Nuclear Information System (INIS)

    Castelaz, M.W.; Werner, M.W.; Sellgren, K.

    1986-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns of 16 visible reflection nebulae were extracted from the Infrared Astronomy Satellite (IRAS) database. The maps were produced by coadding IRAS survey scans over areas centered on the illuminating stars, and have spatial resolutions of 0.9' x 4' at 12 and 25 microns, 1.8' x 4.5' at 60 microns, and 3.6' x 5' at 100 microns. Extended emission in the four IRAS bandpasses was detected in fourteen of the reflection nebulae. The IRAS data were used to measure the flux of the infrared emission associated with each source. The energy distributions show that the 12 micron flux is greater than the 25 micron flux in 11 of the nebulae, and the peak flux occurs in the 60 or 100 micron bandpass in all 16 nebular. The 60 and 100 micron flux can be approximated by blackbodies with temperatures between 30 and 50 K, consistent with temperatures expected from extrapolation of greybody fits to the 60 and 100 micron data. The excess 12 and 25 micron emission is attributed to a nonequilibrium process such as emission from thermal fluctuations of very small grains excited by single ultraviolet photons, or emission from polycyclic aromatic hydrocarbons (PAHs) excited by ultraviolet radiation. The common features of the energy distributions of the 16 reflection nebulae, also seen in the reflection nebulae associated with the Pleiades, suggest that PAHs or very small grains may be found in most reflection nebulae

  4. A fiber-coupled displacement measuring interferometer for determination of the posture of a reflective surface

    International Nuclear Information System (INIS)

    Mao, Shuai; Hu, Peng-Cheng; Ding, Xue-Mei; Tan, Jiu-Bin

    2016-01-01

    A fiber-coupled displacement measuring interferometer capable of determining of the posture of a reflective surface of a measuring mirror is proposed. The newly constructed instrument combines fiber-coupled displacement and angular measurement technologies. The proposed interferometer has advantages of both the fiber-coupled and the spatially beam-separated interferometer. A portable dual-position sensitive detector (PSD)-based unit within this proposed interferometer measures the parallelism of the two source beams to guide the fiber-coupling adjustment. The portable dual PSD-based unit measures not only the pitch and yaw of the retro-reflector but also measures the posture of the reflective surface. The experimental results of displacement calibration show that the deviations between the proposed interferometer and a reference one, Agilent 5530, at two different common beam directions are both less than ±35 nm, thus verifying the effectiveness of the beam parallelism measurement. The experimental results of angular calibration show that deviations of pitch and yaw with the auto-collimator (as a reference) are less than ±2 arc sec, thus proving the proposed interferometer’s effectiveness for determination of the posture of a reflective surface.

  5. Formation of reflective and conductive silver film on ABS surface via covalent grafting and solution spray

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dexin; Zhang, Yan [School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640 (China); Bessho, Takeshi [Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan); Kudo, Takahiro; Sang, Jing; Hirahara, Hidetoshi; Mori, Kunio [Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Kang, Zhixin, E-mail: zxkang@scut.edu.cn [School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640 (China)

    2015-09-15

    Highlights: • A pure and homogenous silver film was deposited by spray-style plating technique. • The mechanism of covalent bonding between coating and substrate was studied. • The silver coating is highly reflective and conductive. • UV light was used to activate the ABS surface with triazine azide derivative. - Abstract: Conductive and reflective silver layers on acrylonitrile butadiene styrene (ABS) plastics have been prepared by photo grafting of triazine azides upon ultraviolet activation, self-assembling of triazine dithiols and silver electroless plating by solution spray based on silver mirror reaction. The as-prepared silver film exhibited excellent adhesion with ABS owing to covalent bonds between coating and substrate, and the detailed bonding mechanism have been investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) result revealed that silver film on ABS was pure and with a nanocrystalline structure. Atomic force microscope (AFM) analysis demonstrated that massive silver particles with sizes varying from 80 to 120 nm were deposited on ABS and formed a homogenous and smooth coating, resulting in highly reflective surface. Furthermore, silver maintained its unique conductivity even as film on ABS surface in term of four-point probe method.

  6. Formation of reflective and conductive silver film on ABS surface via covalent grafting and solution spray

    International Nuclear Information System (INIS)

    Chen, Dexin; Zhang, Yan; Bessho, Takeshi; Kudo, Takahiro; Sang, Jing; Hirahara, Hidetoshi; Mori, Kunio; Kang, Zhixin

    2015-01-01

    Highlights: • A pure and homogenous silver film was deposited by spray-style plating technique. • The mechanism of covalent bonding between coating and substrate was studied. • The silver coating is highly reflective and conductive. • UV light was used to activate the ABS surface with triazine azide derivative. - Abstract: Conductive and reflective silver layers on acrylonitrile butadiene styrene (ABS) plastics have been prepared by photo grafting of triazine azides upon ultraviolet activation, self-assembling of triazine dithiols and silver electroless plating by solution spray based on silver mirror reaction. The as-prepared silver film exhibited excellent adhesion with ABS owing to covalent bonds between coating and substrate, and the detailed bonding mechanism have been investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) result revealed that silver film on ABS was pure and with a nanocrystalline structure. Atomic force microscope (AFM) analysis demonstrated that massive silver particles with sizes varying from 80 to 120 nm were deposited on ABS and formed a homogenous and smooth coating, resulting in highly reflective surface. Furthermore, silver maintained its unique conductivity even as film on ABS surface in term of four-point probe method

  7. Coherent reflection from surface gravity water waves during reciprocal acoustic transmissions.

    Science.gov (United States)

    Badiey, Mohsen; Song, Aijun; Smith, Kevin B

    2012-10-01

    During a recent experiment in Kauai, Hawaii, reciprocal transmissions were conducted between two acoustic transceivers mounted on the seafloor at a depth of 100 m. The passage of moving surface wave crests was shown to generate focused and intense coherent acoustic returns, which had increasing or decreasing delay depending on the direction of propagation relative to the direction of surface wave crests. It is shown that a rough surface two-dimensional parabolic equation model with an evolving sea surface can produce qualitative agreement with data for the dynamic surface returns.

  8. Gain-Enhanced On-Chip Antenna Utilizing Artificial Magnetic Conductor Reflecting Surface at 94 GHz

    KAUST Repository

    Nafe, Mahmoud

    2015-08-04

    Nowadays, there is a growing demand for high frequency-bandwidth mm-wave (30-300 GHz) electronic wireless transceiver systems to support applications such as high data-rate wireless communication and high resolution imaging. Such mm-wave systems are becoming more feasible due to the extreme transistor downscaling in silicon-based integrated circuits, which enabled densely-integrated high-speed elec- tronics operating up to more than 100 GHz with low fabrication cost. To further enhance system integrability, it is required to implement all wireless system compo- nents on the chip. Presently, the last major barrier to true System-on-Chip (SoC) realization is the antenna implementation on the silicon chip. Although at mm-wave frequencies the antenna size becomes small enough to fit on chip, the antenna performance is greatly deteriorated due the high conductivity and high relative permittivity of the silicon substrate. The negative e↵ects of the silicon substrate could be avoided by using a metallic reflecting surface on top of silicon, which e↵ectively isolates the antenna from the silicon. However, this approach has the shortcoming of having to implement the antenna on the usually very thin silicon oxide layer of a typical CMOS fabrication process (10’s of μm). This forces the antenna to be in a very close proximity (less than one hundredth of a wavelength) to the reflecting surface. In this regime, the use of conventional metallic reflecting surface for silicon shielding has severe e↵ects on the antenna performance as it tends to reduce the antenna radiation resistance resulting in most of the energy being absorbed rather than radiated. In this work, the use of specially patterned reflecting surfaces for improving on- chip antenna performance is investigated. By using a periodic metallic surface on top of a grounded substrate, the structure can mimic the behavior of a perfect mag- netic conductor, hence called Artificial Magnetic Conductor (AMC) surface

  9. Surface Compositional Units on Mercury from Spectral Reflectance at Ultraviolet to Near-infrared Wavelengths

    Science.gov (United States)

    Izenberg, N. R.; Holsclaw, G. M.; Domingue, D. L.; McClintock, W. E.; Klima, R. L.; Blewett, D. T.; Helbert, J.; Head, J. W.; Sprague, A. L.; Vilas, F.; Solomon, S. C.

    2012-12-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has been acquiring reflectance spectra of Mercury's surface for over 16 months. The Visible and Infrared Spectrograph (VIRS) component of MASCS has accumulated a global data set of more than 2 million spectra over the wavelength range 300-1450 nm. We have derived a set of VIRS spectral units (VSUs) from the following spectral parameters: visible brightness (R575: reflectance at 575 nm); visible/near-infrared reflectance ratio (VISr: reflectance at 415 nm to that at 750 nm); and ultraviolet reflectance ratio (UVr: reflectance at 310 nm to that at 390 nm). Five broad, slightly overlapping VSUs may be distinguished from these parameters. "Average VSU" areas have spectral parameters close to mean global values. "Dark blue VSU" areas have spectra with low R575 and high UVr. "Red VSU" areas have spectra with low UVr and higher VISr and R575 than average. "Intermediate VSU" areas have spectra with higher VISr than VSU red, generally higher R575, and a wide range of UVr. "Bright VSU" areas have high R575 and VISr and intermediate UVr. Several units defined by morphological or multispectral criteria correspond to specific VSUs, including low-reflectance material (dark blue VSU), pyroclastic deposits (red VSU), and hollows (intermediate VSU), but these VSUs generally include other types of areas as well. VSU definitions are complementary to those obtained by unsupervised clustering analysis. The global distribution of VIRS spectral units provides new information on Mercury's geological evolution. Much of Mercury's northern volcanic plains show spectral properties ranging from those of average VSU to those of red VSU, as does a large region in the southern hemisphere centered near 50°S, 245°E. Dark blue VSU material is widely distributed, with concentrations south of the northern plains, around the Rembrandt and

  10. IMPROVING IMAGE MATCHING BY REDUCING SURFACE REFLECTIONS USING POLARISING FILTER TECHNIQUES

    Directory of Open Access Journals (Sweden)

    N. Conen

    2018-05-01

    Full Text Available In dense stereo matching applications surface reflections may lead to incorrect measurements and blunders in the resulting point cloud. To overcome the problem of disturbing reflexions polarising filters can be mounted on the camera lens and light source. Reflections in the images can be suppressed by crossing the polarising direction of the filters leading to homogeneous illuminated images and better matching results. However, the filter may influence the camera’s orientation parameters as well as the measuring accuracy. To quantify these effects, a calibration and an accuracy analysis is conducted within a spatial test arrangement according to the German guideline VDI/VDE 2634.1 (2002 using a DSLR with and without polarising filter. In a second test, the interior orientation is analysed in more detail. The results do not show significant changes of the measuring accuracy in object space and only very small changes of the interior orientation (Δc ≤ 4 μm with the polarising filter in use. Since in medical applications many tiny reflections are present and impede robust surface measurements, a prototypic trinocular endoscope is equipped with polarising technique. The interior and relative orientation is determined and analysed. The advantage of the polarising technique for medical image matching is shown in an experiment with a moistened pig kidney. The accuracy and completeness of the resulting point cloud can be improved clearly when using polarising filters. Furthermore, an accuracy analysis using a laser triangulation system is performed and the special reflection properties of metallic surfaces are presented.

  11. Determining surface coverage of ultra-thin gold films from X-ray reflectivity measurements

    International Nuclear Information System (INIS)

    Kossoy, A.; Simakov, D.; Olafsson, S.; Leosson, K.

    2013-01-01

    The paper describes usage of X-ray reflectivity for characterization of surface coverage (i.e. film continuity) of ultra-thin gold films which are widely studied for optical, plasmonic and electronic applications. The demonstrated method is very sensitive and can be applied for layers below 1 nm. It has several advantages over other techniques which are often employed in characterization of ultra-thin metal films, such as optical absorption, Atomic Force Microscopy, Transmission Electron Microscopy or Scanning Electron Microscopy. In contrast to those techniques our method does not require specialized sample preparation and measurement process is insensitive to electrostatic charge and/or presence of surface absorbed water. We validate our results with image processing of Scanning Electron Microscopy images. To ensure precise quantitative analysis of the images we developed a generic local thresholding algorithm which allowed us to treat series of images with various values of surface coverage with similar image processing parameters. - Highlights: • Surface coverage/continuity of ultra-thin Au films (up to 7 nm) was determined. • Results from X-ray reflectivity were verified by scanning electron microscopy. • We developed local thresholding algorithm to treat non-homogeneous image contrast

  12. Simulation calculations of physical sputtering and reflection coefficient of plasma-irradiated carbon surface

    International Nuclear Information System (INIS)

    Kawamura, T.; Ono, T.; Yamamura, Y.

    1994-08-01

    Physical sputtering yields from the carbon surface irradiated by the boundary plasma are obtained with the use of a Monte Carlo simulation code ACAT. The yields are calculated for many random initial energy and angle values of incident protons or deuterons with a Maxwellian velocity distribution, and then averaged. Here the temperature of the boundary plasma, the sheath potential and the angle δ between the magnetic field line and the surface normal are taken into account. A new fitting formula for an arrangement of the numerical data of sputtering yield is introduced, in which six fitting parameters are determined from the numerical results and listed. These results provide a way to estimate the erosion of carbon materials irradiated by boundary plasma. The particle reflection coefficients for deuterons and their neutrals from a carbon surface are also calculated by the same code and presented together with, for comparison, that for the case of monoenergetic normal incidence. (author)

  13. Asteroid thermal modeling in the presence of reflected sunlight

    Science.gov (United States)

    Myhrvold, Nathan

    2018-03-01

    A new derivation of simple asteroid thermal models is presented, investigating the need to account correctly for Kirchhoff's law of thermal radiation when IR observations contain substantial reflected sunlight. The framework applies to both the NEATM and related thermal models. A new parameterization of these models eliminates the dependence of thermal modeling on visible absolute magnitude H, which is not always available. Monte Carlo simulations are used to assess the potential impact of violating Kirchhoff's law on estimates of physical parameters such as diameter and IR albedo, with an emphasis on NEOWISE results. The NEOWISE papers use ten different models, applied to 12 different combinations of WISE data bands, in 47 different combinations. The most prevalent combinations are simulated and the accuracy of diameter estimates is found to be depend critically on the model and data band combination. In the best case of full thermal modeling of all four band the errors in an idealized model the 1σ (68.27%) confidence interval is -5% to +6%, but this combination is just 1.9% of NEOWISE results. Other combinations representing 42% of the NEOWISE results have about twice the CI at -10% to +12%, before accounting for errors due to irregular shape or other real world effects that are not simulated. The model and data band combinations found for the majority of NEOWISE results have much larger systematic and random errors. Kirchhoff's law violation by NEOWISE models leads to errors in estimation accuracy that are strongest for asteroids with W1, W2 band emissivity ɛ12 in both the lowest (0.605 ≤ɛ12 ≤ 0 . 780), and highest decile (0.969 ≤ɛ12 ≤ 0 . 988), corresponding to the highest and lowest deciles of near-IR albedo pIR. Systematic accuracy error between deciles ranges from a low of 5% to as much as 45%, and there are also differences in the random errors. Kirchhoff's law effects also produce large errors in NEOWISE estimates of pIR, particularly for high

  14. Characterizing the surface heterogeneity of fire effects using multi-temporal reflective wavelength data

    CSIR Research Space (South Africa)

    Roy, DP

    2005-10-10

    Full Text Available fires lit in South Africa to substantiate and illustrate the model findings. We discuss the implications of our findings for algorithms that examine change in reflectance to map fire-affected areas and discuss the possibility of deriving cc and f from... measurements were taken in the laboratory to reduce field measurement errors and because we were concerned only with obtaining representative spectra for illustrative modelling. SAFARI 2000 4203 The measurements were made under diffuse illumination conditions...

  15. Surface-complexation models for sorption onto heterogeneous surfaces

    International Nuclear Information System (INIS)

    Harvey, K.B.

    1997-10-01

    This report provides a description of the discrete-logK spectrum model, together with a description of its derivation, and of its place in the larger context of surface-complexation modelling. The tools necessary to apply the discrete-logK spectrum model are discussed, and background information appropriate to this discussion is supplied as appendices. (author)

  16. Radiative Transfer Model for Contaminated Rough Surfaces

    Science.gov (United States)

    2013-02-01

    reflectance of potassium chlorate and ammonium nitrate contaminated surfaces in mid-wavelength and long-wavelength infrared for detection. Our framework...obtained excellent or good results for lab measurements of potassium chlorate on most aluminum surfaces; however, ammonium nitrate on painted aluminum...misidentify potassium chlorate as ammonium nitrate and vice versa). We also observed moderate success on field data. 15. SUBJECT TERMS radiative

  17. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen Li [Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen (Germany); Ueta, Hirokazu; Beck, Rainer D. [Laboratoire de Chimie Physique Moleculaire, Ecole Polytechnique Federale de Lausanne (Switzerland); Bisson, Regis [Aix-Marseille Universite, PIIM, CNRS, UMR 7345, 13397 Marseille (France)

    2013-05-15

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S({theta}). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  18. Capabilities of using white x-rays for the reconstruction of surface morphology from coherent reflectivity

    Energy Technology Data Exchange (ETDEWEB)

    Sant, Tushar, E-mail: tushar@physik.uni-siegen.de [Solid State Physics Group, University of Siegen, 57068 Siegen (Germany); Panzner, Tobias [Paul Scherrer Institute (Switzerland); Pietsch, Ullrich [Solid State Physics Group, University of Siegen, 57068 Siegen (Germany)

    2010-10-15

    We present a new method to reconstruct the surface profile of a sample from coherent reflectivity data of a white x-ray beam experiment. As an example the surface profile of a laterally confined silicon wafer has been reconstructed quantitatively from static speckle measurements using white coherent x-rays from a bending magnet in the energy range between 5 < E < 20 keV. As a consequence of using white radiation, speckles appear in addition to the Airy pattern caused by scattering at the entrance pinhole. Nevertheless, the surface profile of a triangularly shaped specimen was reconstructed considering sufficient oversampling between the beam-footprint and the effective sample width. For the profile reconstruction the Error-Reduction phase retrieval algorithm was modified by including the spectral illumination function and a Fresnel propagator term. The simultaneous use of different x-ray energies having different penetration depth provides information on the evolution of the surface profile from the near-surface towards the bulk. The limitations of present experiment can be overcome using white or pink radiation from a source with higher photon flux.

  19. A diffuse radar scattering model from Martian surface rocks

    Science.gov (United States)

    Calvin, W. M.; Jakosky, B. M.; Christensen, P. R.

    1987-01-01

    Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed.

  20. The conditions for total reflection of low-energy atoms from crystal surfaces

    International Nuclear Information System (INIS)

    Hou, M.; Robinson, M.T.

    1978-01-01

    The critical angles for the total reflection of low-energy particles from Cu rows and (001) planes have been investigated, using the binary collision approximation computer simulation code MARLOWE Breakthrough angles were evaluated for H, N, Ne, Ar, Cu, Xe, and Au in the energy range from 0.1 to 7.5 keV. In both the axial and the planar cases, recoiling of the target atoms lowers the energy barrier which the target surface presents to the heavy projectiles. Consequently, the breakthrough angles are reduced for heavy projectiles below the values expected either from observations on light projectiles or from analytical channeling theory. (orig.) [de

  1. Assessment of Satellite-Derived Surface Reflectances by NASA's CAR Airborne Radiometer over Railroad Valley, Nevada

    Science.gov (United States)

    Kharbouche, Said; Muller, Jan-Peter; Gatebe, Charles K.; Scanlon, Tracy; Banks, Andrew C.

    2017-01-01

    CAR (Cloud Absorption Radiometer) is a multi-angular and multi-spectral airborne radiometer instrument, whose radiometric and geometric characteristics are well calibrated and adjusted before and after each flight campaign. CAR was built by NASA (National Aeronautics and Space Administration) in 1984. On 16 May 2008, a CAR flight campaign took place over the well-known calibration and validation site of Railroad Valley in Nevada (38.504 deg N, 115.692 deg W).The campaign coincided with the overpasses of several key EO (Earth Observation) satellites such as Landsat-7, Envisat and Terra. Thus, there are nearly simultaneous measurements from these satellites and the CAR airborne sensor over the same calibration site. The CAR spectral bands are close to those of most EO satellites. CAR has the ability to cover the whole range of azimuth view angles and a variety of zenith angles depending on altitude and, as a consequence, the biases seen between satellite and CAR measurements due to both unmatched spectral bands and unmatched angles can be significantly reduced. A comparison is presented here between CARs land surface reflectance (BRF or Bidirectional Reflectance Factor) with those derived from Terra/MODIS (MOD09 and MAIAC), Terra/MISR, Envisat/MERIS and Landsat-7. In this study, we utilized CAR data from low altitude flights (approx. 180 m above the surface) in order to minimize the effects of the atmosphere on these measurements and then obtain a valuable ground-truth data set of surface reflectance. Furthermore, this study shows that differences between measurements caused by surface heterogeneity can be tolerated, thanks to the high homogeneity of the study site on the one hand, and on the other hand, to the spatial sampling and the large number of CAR samples. These results demonstrate that satellite BRF measurements over this site are in good agreement with CAR with variable biases across different spectral bands. This is most likely due to residual aerosol

  2. Highly directive Fabry-Perot leaky-wave nanoantennas based on optical partially reflective surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lorente-Crespo, M.; Mateo-Segura, C., E-mail: C.Mateo-Segura@hw.ac.uk [Institute of Sensors, Signals and Systems, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)

    2015-05-04

    Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.

  3. Development and applications of retro-reflective surfaces for ultrasound in LBE

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    pulse or a complete absence of a reflection like a shadow. In that way, it suffices to align the sensor with the diaphragm instead of the fuel assembly which is much easier to achieve as the robotics on which the sensor is mounted move parallel with the diaphragm. The alignment requirement in the latter approach can be further relaxed by using a tiling of retro-reflectors on the lower surface of the diaphragm. In that way, alignment becomes less vital and the main source of acoustic energy loss - geometric spread of the beam - is almost completely removed, leaving only absorption losses. In this paper, we present the first results in developing a retro reflectance surface for ultrasound in LBE. We present experimental results for different designs of retro-reflectors in both water and LBE. We discuss both linear and array retro-reflectors of different sizes and investigate the influence of the main relevant ultrasonic parameters such as wavelength and spot size on the strength of the received reflection under different alignment angles. We also demonstrate how retro-reflective surfaces can be exploited when localizing objects using linear and rotating scanning methods. (authors)

  4. Analytical model of diffuse reflectance spectrum of skin tissue

    Energy Technology Data Exchange (ETDEWEB)

    Lisenko, S A; Kugeiko, M M; Firago, V A [Belarusian State University, Minsk (Belarus); Sobchuk, A N [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus)

    2014-01-31

    We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions. (biophotonics)

  5. Scanning tunnel microscopic image of tungsten (100) and (110) real surfaces and nature of conduction electron reflection

    International Nuclear Information System (INIS)

    Pryadkin, S.L.; Tsoj, V.S.

    1988-01-01

    The electrically polished (100) and (110) surfaces of tungsten are studied with the aid of a scanning tunnel microscope at atmospheric pressure. The (110) surface consists of a large number of atomically plane terraces whereas the (100) surface is faceted. The scanning tunnel microscope data can explain such results of experiments on transverse electron focussing as the strong dependence of the probability for specular reflection of conduction electrons scattered by the (100) surface on the electron de Broglie wavelength and the absence of a dependence of the probability for specular reflection on the wavelength for the (110) surface

  6. Regional-Scale Surface Magnetic Fields and Proton Fluxes to Mercury's Surface from Proton-Reflection Magnetometry

    Science.gov (United States)

    Winslow, R. M.; Johnson, C. L.; Anderson, B. J.; Gershman, D. J.; Raines, J. M.; Lillis, R. J.; Korth, H.; Slavin, J. A.; Solomon, S. C.; Zurbuchen, T.

    2014-12-01

    The application of a recently developed proton-reflection magnetometry technique to MESSENGER spacecraft observations at Mercury has yielded two significant findings. First, loss-cone observations directly confirm particle precipitation to Mercury's surface and indicate that solar wind plasma persistently bombards the planet not only in the magnetic cusp regions but over a large fraction of the southern hemisphere. Second, the inferred surface field strengths independently confirm the north-south asymmetry in Mercury's global magnetic field structure first documented from observations of magnetic equator crossings. Here we extend this work with 1.5 additional years of observations (i.e., to 2.5 years in all) to further probe Mercury's surface magnetic field and better resolve proton flux precipitation to the planet's surface. We map regions where proton loss cones are observed; these maps indicate regions where protons precipitate directly onto the surface. The augmentation of our data set over that used in our original study allows us to examine the proton loss cones in cells of dimension 10° latitude by 20° longitude in Mercury body-fixed coordinates. We observe a transition from double-sided to single-sided loss cones in the pitch-angle distributions; this transition marks the boundary between open and closed field lines. At the surface this boundary lies between 60° and 70°N. Our observations allow the estimation of surface magnetic field strengths in the northern cusp region and the calculation of incident proton fluxes to both hemispheres. In the northern cusp, our regional-scale observations are consistent with an offset dipole field and a dipole moment of 190 nT RM3, where RM is Mercury's radius, implying that any regional-scale variations in surface magnetic field strengths are either weak relative to the dipole field or occur at length scales smaller than the resolution of our observations (~300 km). From the global proton flux map (north of 40° S

  7. Effects of Surface BRDF on the OMI Cloud and NO2 Retrievals: A New Approach Based on Geometry-Dependent Lambertian Equivalent Reflectivity (GLER) Derived from MODIS

    Science.gov (United States)

    Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey

    2017-01-01

    The Ozone Monitoring Instrument (OMI) cloud and NO2 algorithms use a monthly gridded surface reflectivity climatology that does not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (GLER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. GLER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from MODIS over land and the Cox Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare GLER and climatological LER at 466 nm, which is used in the OMI O2-O2cloud algorithm to derive effective cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and GLERs is carried out. GLER and corresponding retrieved cloud products are then used as input to the OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with GLERs can increase NO2 vertical columns by up to 50 % in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.

  8. Barium fluoride surface preparation, analysis and UV reflective coatings at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Wuest, C.R.

    1992-01-01

    Lawrence Livermore National Laboratory (LLNL) has begun a program of study on barium fluoride scintillating crystals for the Barium Fluoride Electromagnetic Calorimeter Collaboration. This program has resulted in a number of significant improvements in the mechanical processing, polishing and coating of barium fluoride crystals. Techniques have been developed using diamond-loaded pitch lapping that can produce 15 angstrom RMS surface finishes over large areas. These lapped surfaces have been shown to be crystalline using Rutherford Back-scattering (RBS). Also, special polishing fixtures have been designed based on mounting technology developed for the 1.1 m diameter optics used in LLNL's Nova Laser. These fixtures allow as many as five 25--50 cm long barium fluoride crystals to be polished and lapped at a time with the necessary tolerances for the 16,000 crystal Barium Fluoride Calorimeter. In addition, results will be presented on coating barium fluoride with UV reflective layers of magnesium fluoride and aluminum

  9. The Clinical Learning Spiral: A Model to Develop Reflective Practitioners.

    Science.gov (United States)

    Stockhausen, Lynette

    1994-01-01

    The Clinical Learning Spiral incorporates reflective processes into undergraduate nursing education. It entails successive cycles of four phases: preparative (briefing, planning), constructive (practice development), reflective (debriefing), and reconstructive (planning for change and commitment to action). (SK)

  10. Generating Land Surface Reflectance for the New Generation of Geostationary Satellite Sensors with the MAIAC Algorithm

    Science.gov (United States)

    Wang, W.; Wang, Y.; Hashimoto, H.; Li, S.; Takenaka, H.; Higuchi, A.; Lyapustin, A.; Nemani, R. R.

    2017-12-01

    The latest generation of geostationary satellite sensors, including the GOES-16/ABI and the Himawari 8/AHI, provide exciting capability to monitor land surface at very high temporal resolutions (5-15 minute intervals) and with spatial and spectral characteristics that mimic the Earth Observing System flagship MODIS. However, geostationary data feature changing sun angles at constant view geometry, which is almost reciprocal to sun-synchronous observations. Such a challenge needs to be carefully addressed before one can exploit the full potential of the new sources of data. Here we take on this challenge with Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, recently developed for accurate and globally robust applications like the MODIS Collection 6 re-processing. MAIAC first grids the top-of-atmosphere measurements to a fixed grid so that the spectral and physical signatures of each grid cell are stacked ("remembered") over time and used to dramatically improve cloud/shadow/snow detection, which is by far the dominant error source in the remote sensing. It also exploits the changing sun-view geometry of the geostationary sensor to characterize surface BRDF with augmented angular resolution for accurate aerosol retrievals and atmospheric correction. The high temporal resolutions of the geostationary data indeed make the BRDF retrieval much simpler and more robust as compared with sun-synchronous sensors such as MODIS. As a prototype test for the geostationary-data processing pipeline on NASA Earth Exchange (GEONEX), we apply MAIAC to process 18 months of data from Himawari 8/AHI over Australia. We generate a suite of test results, including the input TOA reflectance and the output cloud mask, aerosol optical depth (AOD), and the atmospherically-corrected surface reflectance for a variety of geographic locations, terrain, and land cover types. Comparison with MODIS data indicates a general agreement between the retrieved surface reflectance

  11. Surface Flux Modeling for Air Quality Applications

    Directory of Open Access Journals (Sweden)

    Limei Ran

    2011-08-01

    Full Text Available For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic compounds, can be upward into the air as well as downward to the surface and therefore should be modeled as bi-directional fluxes. Model parameterizations of dry deposition in air quality models have been represented by simple electrical resistance analogs for almost 30 years. Uncertainties in surface flux modeling in global to mesoscale models are being slowly reduced as more field measurements provide constraints on parameterizations. However, at the same time, more chemical species are being added to surface flux models as air quality models are expanded to include more complex chemistry and are being applied to a wider array of environmental issues. Since surface flux measurements of many of these chemicals are still lacking, resistances are usually parameterized using simple scaling by water or lipid solubility and reactivity. Advances in recent years have included bi-directional flux algorithms that require a shift from pre-computation of deposition velocities to fully integrated surface flux calculations within air quality models. Improved modeling of the stomatal component of chemical surface fluxes has resulted from improved evapotranspiration modeling in land surface models and closer integration between meteorology and air quality models. Satellite-derived land use characterization and vegetation products and indices are improving model representation of spatial and temporal variations in surface flux processes. This review describes the current state of chemical dry deposition modeling, recent progress in bi-directional flux modeling, synergistic model development research with field measurements, and coupling with meteorological land surface models.

  12. Anti-reflection textured structures by wet etching and island lithography for surface-enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Bo-Kai [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Cheng, Hsin-Hung [Department of Marine Engineering, Taipei College of Maritime Technology, Taipei 11174, Taiwan (China); Nien, Li-Wei; Chen, Miin-Jang [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Nagao, Tadaaki [Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Li, Jia-Han [Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Hsueh, Chun-Hway, E-mail: hsuehc@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-12-01

    Graphical abstract: - Highlights: • We fabricated textured SERS substrate with a high surface area and low reflectance. • Large surface area of substrate contains more gold nanodroplets to absorb analytes. • Low reflectance of textured SERS substrate enabled multiple reflections of incident laser light. • We obtained strong SERS enhancement from nanopillar-on-pyramid SERS substrate. - Abstract: A high surface area and low reflection textured surface-enhanced Raman scattering (SERS) substrate with plasmonic gold nanodroplets fabricated by wet etching and island lithography was reported in the present study. Specifically, four textured substrates, planar, pyramid, nanopillar, and nanopillar-on-pyramid, were fabricated. The fabricated structures were simulated using the finite-difference time-domain method and the results agreed with the reflection and dark-field scattering measurements. Although the SERS signals varied in different measured regions because of the random nanostructure, the SERS substrates with nanopillar-on-pyramid structure always have the stronger enhancement factor than the SERS substrates with only pyramids or nanopillars. Based on the atomic force microscope and reflection measurements, the nanopillar-on-pyramid structure provided a large surface area and multiple reflections for SERS enhancement, which was about 3 orders of magnitude larger than that of the planar substrate. Our results can be applied to fabricate the inexpensive, large surface area, and high SERS enhancement substrates.

  13. Estimation of Melt Ponds over Arctic Sea Ice using MODIS Surface Reflectance Data

    Science.gov (United States)

    Ding, Y.; Cheng, X.; Liu, J.

    2017-12-01

    Melt ponds over Arctic sea ice is one of the main factors affecting variability of surface albedo, increasing absorption of solar radiation and further melting of snow and ice. In recent years, a large number of melt ponds have been observed during the melt season in Arctic. Moreover, some studies have suggested that late spring to mid summer melt ponds information promises to improve the prediction skill of seasonal Arctic sea ice minimum. In the study, we extract the melt pond fraction over Arctic sea ice since 2000 using three bands MODIS weekly surface reflectance data by considering the difference of spectral reflectance in ponds, ice and open water. The preliminary comparison shows our derived Arctic-wide melt ponds are in good agreement with that derived by the University of Hamburg, especially at the pond distribution. We analyze seasonal evolution, interannual variability and trend of the melt ponds, as well as the changes of onset and re-freezing. The melt pond fraction shows an asymmetrical growth and decay pattern. The observed melt ponds fraction is almost within 25% in early May and increases rapidly in June and July with a high fraction of more than 40% in the east of Greenland and Beaufort Sea. A significant increasing trend in the melt pond fraction is observed for the period of 2000-2017. The relationship between melt pond fraction and sea ice extent will be also discussed. Key Words: melt ponds, sea ice, Arctic

  14. From Intensity Profile to Surface Normal: Photometric Stereo for Unknown Light Sources and Isotropic Reflectances.

    Science.gov (United States)

    Lu, Feng; Matsushita, Yasuyuki; Sato, Imari; Okabe, Takahiro; Sato, Yoichi

    2015-10-01

    We propose an uncalibrated photometric stereo method that works with general and unknown isotropic reflectances. Our method uses a pixel intensity profile, which is a sequence of radiance intensities recorded at a pixel under unknown varying directional illumination. We show that for general isotropic materials and uniformly distributed light directions, the geodesic distance between intensity profiles is linearly related to the angular difference of their corresponding surface normals, and that the intensity distribution of the intensity profile reveals reflectance properties. Based on these observations, we develop two methods for surface normal estimation; one for a general setting that uses only the recorded intensity profiles, the other for the case where a BRDF database is available while the exact BRDF of the target scene is still unknown. Quantitative and qualitative evaluations are conducted using both synthetic and real-world scenes, which show the state-of-the-art accuracy of smaller than 10 degree without using reference data and 5 degree with reference data for all 100 materials in MERL database.

  15. Collection and corrections of oblique multiangle hyperspectral bidirectional reflectance imagery of the water surface

    Science.gov (United States)

    Bostater, Charles R.; Oney, Taylor S.

    2017-10-01

    Hyperspectral images of coastal waters in urbanized regions were collected from fixed platform locations. Surf zone imagery, images of shallow bays, lagoons and coastal waters are processed to produce bidirectional reflectance factor (BRF) signatures corrected for changing viewing angles. Angular changes as a function of pixel location within a scene are used to estimate changes in pixel size and ground sampling areas. Diffuse calibration targets collected simultaneously from within the image scene provides the necessary information for calculating BRF signatures of the water surface and shorelines. Automated scanning using a pushbroom hyperspectral sensor allows imagery to be collected on the order of one minute or less for different regions of interest. Imagery is then rectified and georeferenced using ground control points within nadir viewing multispectral imagery via image to image registration techniques. This paper demonstrates the above as well as presenting how spectra can be extracted along different directions in the imagery. The extraction of BRF spectra along track lines allows the application of derivative reflectance spectroscopy for estimating chlorophyll-a, dissolved organic matter and suspended matter concentrations at or near the water surface. Imagery is presented demonstrating the techniques to identify subsurface features and targets within the littoral and surf zones.

  16. Airborne hyperspectral observations of surface and cloud directional reflectivity using a commercial digital camera

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2012-04-01

    Full Text Available Spectral radiance measurements by a digital single-lens reflex camera were used to derive the directional reflectivity of clouds and different surfaces in the Arctic. The camera has been calibrated radiometrically and spectrally to provide accurate radiance measurements with high angular resolution. A comparison with spectral radiance measurements with the Spectral Modular Airborne Radiation measurement sysTem (SMART-Albedometer showed an agreement within the uncertainties of both instruments (6% for both. The directional reflectivity in terms of the hemispherical directional reflectance factor (HDRF was obtained for sea ice, ice-free ocean and clouds. The sea ice, with an albedo of ρ = 0.96 (at 530 nm wavelength, showed an almost isotropic HDRF, while sun glint was observed for the ocean HDRF (ρ = 0.12. For the cloud observations with ρ = 0.62, the cloudbow – a backscatter feature typically for scattering by liquid water droplets – was covered by the camera. For measurements above heterogeneous stratocumulus clouds, the required number of images to obtain a mean HDRF that clearly exhibits the cloudbow has been estimated at about 50 images (10 min flight time. A representation of the HDRF as a function of the scattering angle only reduces the image number to about 10 (2 min flight time.

    The measured cloud and ocean HDRF have been compared to radiative transfer simulations. The ocean HDRF simulated with the observed surface wind speed of 9 m s−1 agreed best with the measurements. For the cloud HDRF, the best agreement was obtained by a broad and weak cloudbow simulated with a cloud droplet effective radius of Reff = 4 μm. This value agrees with the particle sizes derived from in situ measurements and retrieved from the spectral radiance of the SMART-Albedometer.

  17. Simple model of surface roughness for binary collision sputtering simulations

    Science.gov (United States)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-02-01

    It has been shown that surface roughness can strongly influence the sputtering yield - especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the "density gradient model") which imitates surface roughness effects. In the model, the target's atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient - leading to increased sputtering yields, similar in effect to surface roughness.

  18. Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling

    Science.gov (United States)

    Wilson, William; Atkinson, Gary

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.

  19. Accuracy Assessment of Different Digital Surface Models

    Directory of Open Access Journals (Sweden)

    Ugur Alganci

    2018-03-01

    Full Text Available Digital elevation models (DEMs, which can occur in the form of digital surface models (DSMs or digital terrain models (DTMs, are widely used as important geospatial information sources for various remote sensing applications, including the precise orthorectification of high-resolution satellite images, 3D spatial analyses, multi-criteria decision support systems, and deformation monitoring. The accuracy of DEMs has direct impacts on specific calculations and process chains; therefore, it is important to select the most appropriate DEM by considering the aim, accuracy requirement, and scale of each study. In this research, DSMs obtained from a variety of satellite sensors were compared to analyze their accuracy and performance. For this purpose, freely available Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER 30 m, Shuttle Radar Topography Mission (SRTM 30 m, and Advanced Land Observing Satellite (ALOS 30 m resolution DSM data were obtained. Additionally, 3 m and 1 m resolution DSMs were produced from tri-stereo images from the SPOT 6 and Pleiades high-resolution (PHR 1A satellites, respectively. Elevation reference data provided by the General Command of Mapping, the national mapping agency of Turkey—produced from 30 cm spatial resolution stereo aerial photos, with a 5 m grid spacing and ±3 m or better overall vertical accuracy at the 90% confidence interval (CI—were used to perform accuracy assessments. Gross errors and water surfaces were removed from the reference DSM. The relative accuracies of the different DSMs were tested using a different number of checkpoints determined by different methods. In the first method, 25 checkpoints were selected from bare lands to evaluate the accuracies of the DSMs on terrain surfaces. In the second method, 1000 randomly selected checkpoints were used to evaluate the methods’ accuracies for the whole study area. In addition to the control point approach, vertical cross

  20. OMI/Aura Surface Reflectance Climatology Level 3 Global 0.5deg Lat/Lon Grid V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI Earth Surface Reflectance Climatology product, OMLER (Global 0.5deg Lat/Lon grid) which is based on Version 003 Level-1B top of atmosphere upwelling radiance...

  1. An investigation of the reflection of low energy electrons from the surfaces of layered transition metal dichalcogenides

    International Nuclear Information System (INIS)

    Smith, A.E.; Mohamed, M.H.; Wohlenberg, T.; Johnson, E.; Chadderton, L.T.; Moeller, P.J.

    1980-01-01

    Experimental measurements, using the total current spectroscopy (TCS) technique, on the energy dependence of the reflection of low energy electrons from clean surfaces of layered transition metal dichalcogenides are reported for the molybdenum semiconductor compounds 2H-MoS 2 and 2H-MoSe 2 . A simple model calculation involving both elastic and inelastic scattering is presented and correspondence established with the experimental spectra. In this picture information on the electronic band structure of the materials can then be extracted from the single particle component of the inelastic scattering. The model is extended to show that a feature in the 2H-MoS 2 experimental spectrum may be attributed to the excitation of an intermediate plasmon. (Auth.)

  2. Plasma surface reflectance spectroscopy for non-invasive and continuous monitoring of extracellular component of blood

    Science.gov (United States)

    Sakota, Daisuke; Takatani, Setsuo

    2012-04-01

    To achieve the quantitative optical non-invasive diagnosis of blood during extracorporeal circulation therapies, the instrumental technique to extract extracellular spectra from whole blood was developed. In the circuit, the continuous blood flow was generated by a centrifugal blood pump. The oxygen saturation was maintained 100% by an oxygenator. The developed glass optical flow cell was attached to the outlet tubing of the oxygenator. The halogen lamp including the light from 400 to 900 nm wavelength was used for the light source. The light was guided into an optical fiber. The light emitted by the fiber was collimated and emitted to the flow cell flat surface at the incident angle of 45 degrees. The light just reflected on the boundary between inner surface of the flow cell and plasma at 45 degrees was detected by the detection fiber. The detected light was analyzed by a spectral photometer. The obtained spectrum from 400 to 600nm wavelength was not changed with respect to the hematocrit. In contrast, the signal in the spectral range was changed when the plasma free hemoglobin increased. By using two spectral range, 505+/-5 nm and 542.5+/-2.5 nm, the differential spectrum was correlated with the free hemoglobin at R2=0.99. On the other hand, as for the hematocrit, the differential spectrum was not correlated at R2=0.01. Finally, the plasma free hemoglobin was quantified with the accuracy of 22+/-19mg/dL. The result shows that the developed plasma surface reflectance spectroscopy (PSRS) can extract the plasma spectrum from flowing whole blood.

  3. Dynamical modeling of surface tension

    International Nuclear Information System (INIS)

    Brackbill, J.U.; Kothe, D.B.

    1996-01-01

    In a recent review it is said that free-surface flows ''represent some of the difficult remaining challenges in computational fluid dynamics''. There has been progress with the development of new approaches to treating interfaces, such as the level-set method and the improvement of older methods such as the VOF method. A common theme of many of the new developments has been the regularization of discontinuities at the interface. One example of this approach is the continuum surface force (CSF) formulation for surface tension, which replaces the surface stress given by Laplace's equation by an equivalent volume force. Here, we describe how CSF might be made more useful. Specifically, we consider a derivation of the CSF equations from a minimization of surface energy as outlined by Jacqmin. This reformulation suggests that if one eliminates the computation of curvature in terms of a unit normal vector, parasitic currents may be eliminated For this reformulation to work, it is necessary that transition region thickness be controlled. Various means for this, in addition to the one discussed by Jacqmin are discussed

  4. Modeling of ion beam surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, R W [Quantum Manufacturing Technologies, Inc., Albuquerque, NM (United States); Maenchen, J E; Renk, T J [Sandia National Laboratories, Albuquerque, NM (United States); Struve, K W [Mission Research Corporation, Albuquerque, NM (United States); Campbell, M M [PASTDCO, Albuquerque, NM (United States)

    1997-12-31

    The use of intense pulsed ion beams is providing a new capability for surface engineering based on rapid thermal processing of the top few microns of metal, ceramic, and glass surfaces. The Ion Beam Surface Treatment (IBEST) process has been shown to produce enhancements in the hardness, corrosion, wear, and fatigue properties of surfaces by rapid melt and re-solidification. A new code called IBMOD was created, enabling the modeling of intense ion beam deposition and the resulting rapid thermal cycling of surfaces. This code was used to model the effect of treatment of aluminum, iron, and titanium using different ion species and pulse durations. (author). 3 figs., 4 refs.

  5. Model for H-, D- production by hydrogen backscattering from alkali and alkali/transition-metal surfaces

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Schneider, P.J.

    1980-01-01

    A model for H - , D - production by energetic particles reflecting from metal surfaces is discussed. The model employs the energy and angular distribution data derived from the Marlowe code. The model is applied to particles incident normally upon Cs, Ni, and Cs/Ni surfaces

  6. VNIR Reflectance and MIR Emissivity Spectra of Ordinary Chondrite Meteorites Under Simulated Asteroid Surface Conditions

    Science.gov (United States)

    Gemma, M.; Shirley, K.; Glotch, T. D.; Ebel, D. S. S.

    2017-12-01

    Recent missions have revealed much about the nature of many Near-Earth asteroids, including the NEAR-Shoemaker target 433 Eros and Hayabusa target 25142 Itokawa. Both asteroids appear to have mineralogy consistent with ordinary chondrite meteorites. Laboratory spectral analysis of well-constrained meteorite samples can be employed as a reference tool to characterize and constrain data from current and future asteroid studies. A sample set of ordinary chondrite meteorites was chosen from the collection at the American Museum of Natural History. Six meteorites, spanning groups H, L, and LL, were prepared at four different size fractions (25-63 μm, 63-90 μm, 90-125 μm, 125-250 μm) in an attempt to mimic regolith known to exist on asteroids such as 433 Eros and 25142 Itokawa. At the Center for Planetary Exploration at Stony Brook University, spectra of the ordinary chondrite material were measured under simulated asteroid surface conditions ( 10-6 mbar, 150 K chamber temperature, low intensity illumination). The samples were used in two experiments: one measuring visible and near-infrared (VNIR) reflectance spectra at a series of temperatures, and the other measuring mid-infrared (MIR) emissivity spectra. The emissivity measurements require accurate simulation of the thermal environment within asteroid regolith, achieved by inducing a thermal gradient within the sample that results in a surface brightness temperature around 323 K (similar to the surface of 25142 Itokawa). Mid-IR emissivity spectra were collected for each sample at a surface temperature of 323 K, and reflectance spectra were collected in increments of 10 K, over the range 283 K to 373 K. Preliminary VNIR spectra show spreads similar to those seen in Hinrichs and Lucey (2002). Preliminary MIR emissivity spectra suggest that under asteroid surface conditions, the position of the Christiansen feature shifts to shorter wavelengths and emissivity is lower in the Reststrahlen bands when compared to

  7. Neutron reflectivity study of substrate surface chemistry effects on supported phospholipid bilayer formation on (1120) sapphire.

    Energy Technology Data Exchange (ETDEWEB)

    Oleson, Timothy A. [University of Wisconsin, Madison; Sahai, Nita [University of Akron; Wesolowski, David J [ORNL; Dura, Joseph A [ORNL; Majkrzak, Charles F [ORNL; Giuffre, Anthony J. [University of Wisconsin, Madison

    2012-01-01

    Oxide-supported phospholipid bilayers (SPBs) used as biomimetric membranes are significant for a broad range of applications including improvement of biomedical devices and biosensors, and in understanding biomineralization processes and the possible role of mineral surfaces in the evolution of pre-biotic membranes. Continuous-coverage and/or stacjed SPBs retain properties (e.,g. fluidity) more similar to native biological membranes, which is desirable for most applications. Using neutron reflectivity, we examined face coverage and potential stacking of dipalmitoylphosphatidylcholine (DPPC) bilayers on the (1120) face of sapphire (a-Al2O3). Nearly full bilayers were formed at low to neutral pH, when the sapphire surface is positively charged, and at low ionic strength (l=15 mM NaCl). Coverage decreased at higher pH, close to the isoelectric point of sapphire, and also at high I>210mM, or with addition of 2mM Ca2+. The latter two effects are additive, suggesting that Ca2+ mitigates the effect of higher I. These trends agree with previous results for phospholipid adsorption on a-Al2O3 particles determined by adsorption isotherms and on single-crystal (1010) sapphire by atomic force microscopy, suggesting consistency of oxide surface chemistry-dependent effects across experimental techniques.

  8. Different size biomolecules anchoring on porous silicon surface: fluorescence and reflectivity pores infiltration comparative studies

    Energy Technology Data Exchange (ETDEWEB)

    Giovannozzi, Andrea M.; Rossi, Andrea M. [National Institute for Metrological Research, Thermodynamic Division, Strada delle Cacce 91, 10135 Torino (Italy); Renacco, Chiara; Farano, Alessandro [Ribes Ricecrhe Srl, Via Lavoratori Vittime del Col du Mont 24, 11100 Aosta (Italy); Derosas, Manuela [Biodiversity Srl, Via Corfu 71, 25124 Brescia (Italy); Enrico, Emanuele [National Institute for Metrological Research, Electromagnetism Division, Strada delle Cacce 91, 10135 Torino (Italy)

    2011-06-15

    The performance of porous silicon optical based biosensors strongly depends on material nanomorphology, on biomolecules distribution inside the pores and on the ability to link sensing species to the pore walls. In this paper we studied the immobilization of biomolecules with different size, such as antibody anti aflatoxin (anti Aflatox Ab, {proportional_to}150 KDa), malate dehydrogenase (MDH, {proportional_to}36KDa) and metallothionein (MT, {proportional_to}6KDa) at different concentrations on mesoporous silicon samples ({proportional_to}15 nm pores diameter). Fluorescence measurements using FITC- labeled biomolecules and refractive index analysis based on reflectivity spectra have been employed together to detect the amount of proteins bound to the surface and to evaluate their diffusion inside the pores. Here we suggest that these two techniques should be used together to have a better understanding of what happens at the porous silicon surface. In fact, when pores dimensions are not perfectly tuned to the protein size a higher fluorescence signal doesn't often correspond to a higher biomolecules distribution inside the pores. When a too much higher concentration of biomolecule is anchored on the surface, steric crowd effects and repulsive interactions probably take over and hinder pores infiltration, inducing a small or absent shift in the fringe pattern even if a higher fluorescence signal is registered. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Virtual-stereo fringe reflection technique for specular free-form surface testing

    Science.gov (United States)

    Ma, Suodong; Li, Bo

    2016-11-01

    Due to their excellent ability to improve the performance of optical systems, free-form optics have attracted extensive interest in many fields, e.g. optical design of astronomical telescopes, laser beam expanders, spectral imagers, etc. However, compared with traditional simple ones, testing for such kind of optics is usually more complex and difficult which has been being a big barrier for the manufacture and the application of these optics. Fortunately, owing to the rapid development of electronic devices and computer vision technology, fringe reflection technique (FRT) with advantages of simple system structure, high measurement accuracy and large dynamic range is becoming a powerful tool for specular free-form surface testing. In order to obtain absolute surface shape distributions of test objects, two or more cameras are often required in the conventional FRT which makes the system structure more complex and the measurement cost much higher. Furthermore, high precision synchronization between each camera is also a troublesome issue. To overcome the aforementioned drawback, a virtual-stereo FRT for specular free-form surface testing is put forward in this paper. It is able to achieve absolute profiles with the help of only one single biprism and a camera meanwhile avoiding the problems of stereo FRT based on binocular or multi-ocular cameras. Preliminary experimental results demonstrate the feasibility of the proposed technique.

  10. Infrared Analysis Of Enzymes Adsorbed Onto Model Surfaces

    Science.gov (United States)

    Story, Gloria M.; Rauch, Deborah S.; Brode, Philip F.; Marcott, Curtis A.

    1989-12-01

    The adsorption of the enzymes, subtilisin BPN' and lysozyme, onto model surfaces was examined using attenuated total reflectance (ATR) infrared (IR) spectroscopy. Using a cylindrical internal reflection (CIRcle) cell with a Germanium (Ge) internal reflection element (IRE), model hydrophilic surfaces were made by plasma cleaning the IRE and model hydrophobic surfaces were made by precoating the IRE with a thin film of polystyrene. Gas chromatography (GC)-IR data collection software was used to monitor adsorption kinetics during the first five minutes after injection of the enzyme into the CIRcle cell. It was found that for both lysozyme and BPN', most of the enzyme that was going to adsorb onto the model surface did so within ten seconds after injection. Nearly an order-of-magnitude more BPN' adsorbed on the hydrophobic Ge surface than the hydrophilic one, while lysozyme adsorbed somewhat more strongly to the hydrophilic Ge surface. Overnight, the lysozyme layer continued to increase in thickness, while BPN' maintained its initial coverage. The appearance of carboxylate bands in some of the adsorbed BPN' spectra suggests the occurrence of peptide bond hydrolysis. A Au/Pd coating on the CIRcle cell o-rings had a significant effect on the adsorption of BPN'. (This coating was applied in an attempt to eliminate interfering Teflon absorption bands.) An apparent electrochemical reaction occurred, involving BPN', Ge, Au/Pd, and the salt solution used to stabilize BPN'. The result of this reaction was enhanced adsorption of the enzyme around the coated o-rings, etching of the Ge IRE at the o-ring site, and some autolysis of the enzyme. No such reaction was observed with lysozyme.

  11. Processing OMEGA/Mars Express hyperspectral imagery from radiance-at-sensor to surface reflectance

    NARCIS (Netherlands)

    Bakker, W.H.; Ruitenbeek, F.J.A. van; Werff, H.M.A. van der; Zegers, T.E.; Oosthoek, J.H.P.; Marsh, S.H.; Meer, F.D. van der

    2014-01-01

    OMEGA/Mars Express hyperspectral imagery is an excellent source of data for exploring the surface composition of the planet Mars. Compared to terrestrial hyperspectral imagery, the data are challenging to work with; scene-specific transmission models are lacking, spectral features are shallow making

  12. Improving snow cover mapping in forests through the use of a canopy reflectance model

    International Nuclear Information System (INIS)

    Klein, A.G.; Hall, D.K.; Riggs, G.A.

    1998-01-01

    MODIS, the moderate resolution imaging spectro radiometer, will be launched in 1998 as part of the first earth observing system (EOS) platform. Global maps of land surface properties, including snow cover, will be created from MODIS imagery. The MODIS snow-cover mapping algorithm that will be used to produce daily maps of global snow cover extent at 500 m resolution is currently under development. With the exception of cloud cover, the largest limitation to producing a global daily snow cover product using MODIS is the presence of a forest canopy. A Landsat Thematic Mapper (TM) time-series of the southern Boreal Ecosystem–Atmosphere Study (BOREAS) study area in Prince Albert National Park, Saskatchewan, was used to evaluate the performance of the current MODIS snow-cover mapping algorithm in varying forest types. A snow reflectance model was used in conjunction with a canopy reflectance model (GeoSAIL) to model the reflectance of a snow-covered forest stand. Using these coupled models, the effects of varying forest type, canopy density, snow grain size and solar illumination geometry on the performance of the MODIS snow-cover mapping algorithm were investigated. Using both the TM images and the reflectance models, two changes to the current MODIS snow-cover mapping algorithm are proposed that will improve the algorithm's classification accuracy in forested areas. The improvements include using the normalized difference snow index and normalized difference vegetation index in combination to discriminate better between snow-covered and snow-free forests. A minimum albedo threshold of 10% in the visible wavelengths is also proposed. This will prevent dense forests with very low visible albedos from being classified incorrectly as snow. These two changes increase the amount of snow mapped in forests on snow-covered TM scenes, and decrease the area incorrectly identified as snow on non-snow-covered TM scenes. (author)

  13. Analog modeling of splitting the envelope of an electromagnetic pulse reflected from a plasma layer

    International Nuclear Information System (INIS)

    Bakunov, M.I.; Rogozhin, I.Yu.

    1997-01-01

    By means of a simple radio engineering model, an experimental study is carried out of the effect of the strong deformation of the envelope of a quasimonochromatic electromagnetic pulse reflected from a thin plasma layer placed on the surface of an ideal conductor. This deformation is considered under the conditions of the plasma resonance in the plasma layer and when the thickness of the layer is less then the wavelength of the incident radiation. It is shown that the pulse whose initial profile is Gaussian, after the reflection, is separated (entirely of partially) into two pulses with amplitudes that can be controlled by means of varying the parameters of the incident pulse and plasma layer

  14. Dynamic Factor Models for the Volatility Surface

    DEFF Research Database (Denmark)

    van der Wel, Michel; Ozturk, Sait R.; Dijk, Dick van

    The implied volatility surface is the collection of volatilities implied by option contracts for different strike prices and time-to-maturity. We study factor models to capture the dynamics of this three-dimensional implied volatility surface. Three model types are considered to examine desirable...

  15. Bio-inspired, subwavelength surface structures to control reflectivity, transmission, and scattering in the infrared

    Science.gov (United States)

    Lora Gonzalez, Federico

    Controlling the reflection of visible and infrared (IR) light at interfaces is extremely important to increase the power efficiency and performance of optics, electro-optical and (thermo)photovoltaic systems. The eye of the moth has evolved subwavelength protuberances that increase light transmission into the eye tissue and prevent reflection. The subwavelength protuberances effectively grade the refractive index from that of air (n=1) to that of the tissue (n=1.4), making the interface gradual, suppressing reflection. In theory, the moth-eye (ME) structures can be implemented with any material platform to achieve an antireflectance effect by scaling the pitch and size of protuberances for the wavelength range of interest. In this work, a bio-inspired, scalable and substrate-independent surface modification protocol was developed to realize broadband antireflective structures based on the moth-eye principle. Quasi-ordered ME arrays were fabricated in IR relevant materials using a colloidal lithography method to achieve highly efficient, omni-directional transmission of mid and far infrared (IR) radiation. The effect of structure height and aspect ratio on transmittance and scattering is explored, with discussion on experimental techniques and effective medium theory (EMT). The highest aspect ratio structures (AR = 9.4) achieved peak single-side transmittance of 98%, with >85% transmission for lambda = 7--30 microns. A detailed photon balance constructed by transmission, forward scattering, specular reflection and diffuse reflection measurements to quantify optical losses due to near-field effects will be discussed. In addition, angle-dependent transmission measurements showed that moth-eye structures provide superior antireflective properties compared to unstructured interfaces over a wide angular range (0--60° incidence). Finally, subwavelength ME structures are incorporated on a Si substrate to enhance the absorption of near infrared (NIR) light in PtSi films to

  16. Detecting moisture status of pecan orchards and the potential of remotely-sensed surface reflectance data

    Science.gov (United States)

    Othman, Yahia Abdelrahman

    Demand for New Mexico's limited water resources coupled with periodic drought has increased the need to schedule irrigation of pecan orchards based on tree water status. The overall goal of this research was to develop advanced tree water status sensing techniques to optimize irrigation scheduling of pecan orchards. To achieve this goal, I conducted three studies in the La Mancha and Leyendecker orchards, both mature pecan orchards located in the Mesilla Valley, New Mexico. In the first study, I screened leaf-level physiological changes that occurred during cyclic irrigation to determine parameters that best represented changes in plant moisture status. Then, I linked plant physiological changes to remotely-sensed surface reflectance data derived from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+). In the second study, I assessed the impact of water deficits that developed during the flood irrigation dry-down cycles on photosynthesis (A) and gas exchange and established preliminary water deficit thresholds of midday stem water potential (Psi smd) critical to A and gas exchange of pecans. In a third study, I investigated whether hyperspectral data obtained from a handheld spectroradiometer and multispectral remotely-sensed data derived from Landsat 7 ETM+ and Landsat 8 Operational Land Imager (OLI) could detect moisture status in pecans during cyclic flood irrigations. I conducted the first study simultaneously in both orchards. Leaf-level physiological responses and remotely-sensed surface reflectance data were collected from trees that were either well watered or in water deficit. Midday stem water potential was the best leaf-level physiological response to detect moisture status in pecans. Multiple linear regression between Psismd and vegetation indices revealed a significant relationship (R 2 = 0.54) in both orchards. Accordingly, I concluded that remotely-sensed multispectral data form Landsat TMETM+ holds promise for detecting the moisture

  17. Transient reflection and transmission of E polarized electromagnetic waves at boundary surface between air and moving isotropic plasma

    International Nuclear Information System (INIS)

    Saito, Yukimasa

    1977-01-01

    The transient reflection and transmission waves of E polarized electromagnetic waves coming into the boundary surface between air and moving isotropic plasma were theoretically investigated. By using the Laplace transformation in the moving system, the formulae of Lorentz and inverse Lorentz transformations concerning electromagnetic field were transformed, thus the transient reflection and transmission waves were obtained. These waves were normalized with the angular frequency of the incident waves, and the variation of the wave form was obtained. Examples of the numerical calculation of reflected waves are shown for the plasma moving in parallel to the boundary surface. (Kato, T.)

  18. Improved analytical formulas for x-ray and neutron reflection from surface films

    International Nuclear Information System (INIS)

    Zhou, X.; Chen, S.; Felcher, G.P.

    1992-01-01

    A general and exact expression for x-ray and neutron reflectance and transmittance is given in terms of an integral of the real-space scattering-length-density profile fluctuation of the film, with respect to an arbitrary constant reference density level, over the wave function inside the film. Various special cases and approximations are then derived from this exact form by suitable approximations of the wave function. In particular, two practical approximate formulas are derived which are improvement over the corresponding distorted-wave Born approximations. One is for an arbitrary film deposited on a known substrate and the other for a free liquid surface. Numerical results are used to illustrate the accuracy of these formulas

  19. Raman scattering and attenuated-total-reflection studies of surface-plasmon polaritons

    International Nuclear Information System (INIS)

    Kurosawa, K.; Pierce, R.M.; Ushioda, S.; Hemminger, J.C.

    1986-01-01

    We have made in situ measurements of attenuated total reflection (ATR) and Raman scattering from a layered structure consisting of a glass prism, a thin silver film, an MgF 2 spacer, and a liquid mixture whose refractive index is matched to that of MgF 2 . When the incident angle of the laser beam coincides with the ATR angle, the surface-plasmon polariton (SPP) of the silver film is excited resonantly and the Raman scattering intensity of the liquid shows a maximum. The same effect is observed at the frequency of the Stokes scattered light. By measuring the decrease of the Raman scattering intensity of the liquid with increase of the thickness of the MgF 2 spacer layer, we have determined the decay length (l/sub d/) of the SPP field into the liquid. The measured value of l/sub d/ = 1539 A agrees with the calculated value, 1534 A

  20. Modelling binaural processes involved in simultaneous reflection masking: limitations of current models

    DEFF Research Database (Denmark)

    Buchholz, Jörg

    2007-01-01

    Masked thresholds were measured for a single test reflection, masked by the direct sound, as a function of the reflection delay. This was done for diotic as well as for dichotic stimulus presentations and all stimuli were presented via headphones. The input signal was a 200-ms long broadband noise......, such as normalized cross-correlation models (e.g., Bernstein et al., 1999, JASA, pp. 870-876), the power-addition model (Zurek, 1979, JASA, pp. 1750-1757), or Equalization-Cancellation-based models (e.g., Breebaart et al., 2001, JASA, pp. 1074-1088), cannot account for the psychoacoustical data. The present talk...

  1. Recent Developments in the X-Ray Reflectivity Analysis for Rough Surfaces and Interfaces of Multilayered Thin Film Materials

    Directory of Open Access Journals (Sweden)

    Yoshikazu Fujii

    2013-01-01

    Full Text Available X-ray reflectometry is a powerful tool for investigations on rough surface and interface structures of multilayered thin film materials. The X-ray reflectivity has been calculated based on the Parratt formalism, accounting for the effect of roughness by the theory of Nevot-Croce conventionally. However, in previous studies, the calculations of the X-ray reflectivity often show a strange effect where interference effects would increase at a rough surface. And estimated surface and interface roughnesses from the X-ray reflectivity measurements did not correspond to the TEM image observation results. The strange result had its origin in a used equation due to a serious mistake in which the Fresnel transmission coefficient in the reflectivity equation is increased at a rough interface because of a lack of consideration of diffuse scattering. In this review, a new accurate formalism that corrects this mistake is presented. The new accurate formalism derives an accurate analysis of the X-ray reflectivity from a multilayer surface of thin film materials, taking into account the effect of roughness-induced diffuse scattering. The calculated reflectivity by this accurate reflectivity equation should enable the structure of buried interfaces to be analyzed more accurately.

  2. Animal model for schizophrenia that reflects gene-environment interactions.

    Science.gov (United States)

    Nagai, Taku; Ibi, Daisuke; Yamada, Kiyofumi

    2011-01-01

    Schizophrenia is a devastating psychiatric disorder that impairs mental and social functioning and affects approximately 1% of the population worldwide. Genetic susceptibility factors for schizophrenia have recently been reported, some of which are known to play a role in neurodevelopment; these include neuregulin-1, dysbindin, and disrupted-in-schizophrenia 1 (DISC1). Moreover, epidemiologic studies suggest that environmental insults, such as prenatal infection and perinatal complication, are involved in the development of schizophrenia. The possible interaction between environment and genetic susceptibility factors, especially during neurodevelopment, is proposed as a promising disease etiology of schizophrenia. Polyriboinosinic-polyribocytidilic acid (polyI : C) is a synthetic analogue of double-stranded RNA that leads to the pronounced but time-limited production of pro-inflammatory cytokines. Maternal immune activation by polyI : C exposure in rodents is known to precipitate a wide spectrum of behavioral, cognitive, and pharmacological abnormalities in adult offspring. Recently, we have reported that neonatal injection of polyI : C in mice results in schizophrenia-like behavioral alterations in adulthood. In this review, we show how gene-environment interactions during neurodevelopment result in phenotypic changes in adulthood by injecting polyI : C into transgenic mice that express a dominant-negative form of human DISC1 (DN-DISC1). Our findings suggest that polyI : C-treated DN-DISC1 mice are a well-validated animal model for schizophrenia that reflects gene-environment interactions.

  3. Assessment of MODIS BRDF/Albedo Model Parameters (MCD43A1 Collection 6) for directional reflectance retrieval

    Science.gov (United States)

    Che, X.; Feng, M.; Sexton, J. O.; Channan, S.; Yang, Y.; Song, J.

    2017-12-01

    Reflection of solar radiation from Earth's surface is the basis for retrieving many higher-level terrestrial attributes such as vegetation indices and albedo. However, reflectance varies with the illumination and viewing geometry of observation (Bi-directional Reflectance Distribution Function (BRDF)) even with constant surface properties, and correcting for these artifacts increases precision of comparisons of images and time series acquired from satellites with different illumination and observation geometries. The operational MODIS processing inverts MODIS BRDF/Albedo Model Parameters (MCD43A1) to retrieve directional reflectance at any solar and view angles, and recently the MCD43A1 (Collection 6) was updated and distributed. We quantified the ability of MCD43A1 Collection 6 for retrieving directional reflectance compared to Collection 5 and tested whether changes in the land surface change over a 16-day composite period affect time series of directional reflectance. Correcting the Terra MODIS daily Surface Reflectance (MOD09GA) to the illumination and view geometries of coincidental Aqua MODIS daily Surface Reflectance (MYD09GA), MCD43A4 Collection 6 and Landsat-5 TM imagery show that the BRDF-corrected results using MCD43A1 Collection 6 hold a higher consistency with higher R2 (0.63 0.955), the slopes close to unity (0.718 0.955) and the lower RMSD (0.422 3.142) and MAE (0.282 1.735) reduced by about 10% than Collection 5. A simple parameter calibration to evaluate the variability of the roughness (R) and the volumetric (V) BRDF parameters for MCD43A1 Collection 6 shows that the assumption of stable land surface characteristic over 16-days composite period, used for BRDF parameters inversion, is plausible in spite of small improvement of directional reflectance and BRDF parameters time series. The larger fluctuations for the MCD43A1 Collection 6 do not have a discernable impact on the reflectance time series. All of these results shows that MCD43A1 Collection

  4. Geometrical error calibration in reflective surface testing based on reverse Hartmann test

    Science.gov (United States)

    Gong, Zhidong; Wang, Daodang; Xu, Ping; Wang, Chao; Liang, Rongguang; Kong, Ming; Zhao, Jun; Mo, Linhai; Mo, Shuhui

    2017-08-01

    In the fringe-illumination deflectometry based on reverse-Hartmann-test configuration, ray tracing of the modeled testing system is performed to reconstruct the test surface error. Careful calibration of system geometry is required to achieve high testing accuracy. To realize the high-precision surface testing with reverse Hartmann test, a computer-aided geometrical error calibration method is proposed. The aberrations corresponding to various geometrical errors are studied. With the aberration weights for various geometrical errors, the computer-aided optimization of system geometry with iterative ray tracing is carried out to calibration the geometrical error, and the accuracy in the order of subnanometer is achieved.

  5. A Harmonized Landsat-Sentinel-2 Surface Reflectance product: a resource for Agricultural Monitoring

    Science.gov (United States)

    Masek, J. G.; Claverie, M.; Ju, J.; Vermote, E.; Justice, C. O.

    2015-12-01

    The combination of Landsat and Sentinel-2 data offers a unique opportunity to observe globally the land every 2-3 days at medium (reflectance data from Landsat and Sentinel-2 missions and to deliver them to the community in a combined, seamless form. The HLS will be beneficial for global agricultural monitoring applications that require medium spatial resolution and weekly or more frequent observations. In particular, the provided opportunity to track crop phenology at the scale of individual fields will support detailed mapping of crop type and type-specific vegetation conditions. To create a compatible set of radiometric measurements, the HLS product relies on rigorous pre- and post-launch cross-calibration (Landsat-8 OLI and Sentinel-2 MSI) activities. The processing chain includes the following components: atmospheric correction, cloud/shadow masking, nadir BRDF-adjustment, spectral-adjustment, regridding, and temporal composite. The atmospheric correction and cloud masking is based on the OLI atmospheric correction developed at NASA-GSFC and has been adapted to the MSI data. The BRDF-adjustment is based on a disaggregation technique using MODIS-based BRDF coefficients. The technique has been evaluated using the multi-angular acquisition from the SPOT 4 and 5 (Take5) experiments. The spectral-adjustment relies on a linear regression that has been calibrated and evaluated using synthetic data and surface reflectance processed from a large number of hyperspectral EO-1 Hyperion scenes. Finally, significant effort is placed on product validation and evaluation. The delivered data set will include surface reflectance products at different levels: Using the native gridding, i.e. UTM, 30m for Landsat-8, and UTM, 10-20m for Sentinel-2 Using a common global gridding (Sinusoidal, 30m) Temporal composite (Sinusoidal, 30m, 5-day) During the first year of operation of Sentinel-2A, the HLS will be prototyped over a selection of 30 sites that includes some of the JECAM sites

  6. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid-based molecular thermometers

    Science.gov (United States)

    Bauersachs, T.; Rochelmeier, J.; Schwark, L.

    2015-06-01

    preserved in the sediment record of Lake Schreventeich reflect summer surface water temperatures. As N2-fixing heterocystous cyanobacteria are widespread in present-day freshwater and brackish environments, we conclude that the distribution of HGs in sediments may allow for the reconstruction of surface water temperatures of modern and potentially ancient lacustrine settings.

  7. Inverting reflections using full-waveform inversion with inaccurate starting models

    KAUST Repository

    AlTheyab, Abdullah; Schuster, Gerard T.

    2015-01-01

    We present a method for inverting seismic reflections using full-waveform inversion (FWI) with inaccurate starting models. For a layered medium, near-offset reflections (with zero angle of incidence) are unlikely to be cycle-skipped regardless

  8. Bag model with diffuse surface

    International Nuclear Information System (INIS)

    Phatak, S.C.

    1986-01-01

    The constraint of a sharp bag boundary in the bag model is relaxed in the present work. This has been achieved by replacing the square-well potential of the bag model by a smooth scalar potential and introducing a term similar to the bag pressure term. The constraint of the conservation of the energy-momentum tensor is used to obtain an expression for the added bag pressure term. The model is then used to determine the static properties of the nucleon. The calculation shows that the rms charge radius and the nucleon magnetic moment are larger than the corresponding bag model values. Also, the axial vector coupling constant and the πNN coupling constant are in better agreement with the experimental values

  9. Surface chemistry of cellulose : from natural fibres to model surfaces

    NARCIS (Netherlands)

    Kontturi, E.J.

    2005-01-01

    The theme of the thesis was to link together the research aspects of cellulose occurring in nature (in natural wood fibres) and model surfaces of cellulose. Fundamental changes in cellulose (or fibre) during recycling of paper was a pragmatic aspect which was retained throughout the thesis with

  10. Digital Modeling Phenomenon Of Surface Ground Movement

    Directory of Open Access Journals (Sweden)

    Ioan Voina

    2016-11-01

    Full Text Available With the development of specialized software applications it was possible to approach and resolve complex problems concerning automating and process optimization for which are being used field data. Computerized representation of the shape and dimensions of the Earth requires a detailed mathematical modeling, known as "digital terrain model". The paper aims to present the digital terrain model of Vulcan mining, Hunedoara County, Romania. Modeling consists of a set of mathematical equations that define in detail the surface of Earth and has an approximate surface rigorously and mathematical, that calculated the land area. Therefore, the digital terrain model means a digital representation of the earth's surface through a mathematical model that approximates the land surface modeling, which can be used in various civil and industrial applications in. To achieve the digital terrain model of data recorded using linear and nonlinear interpolation method based on point survey which highlights the natural surface studied. Given the complexity of this work it is absolutely necessary to know in detail of all topographic elements of work area, without the actions to be undertaken to project and manipulate would not be possible. To achieve digital terrain model, within a specialized software were set appropriate parameters required to achieve this case study. After performing all steps we obtained digital terrain model of Vulcan Mine. Digital terrain model is the complex product, which has characteristics that are equivalent to the specialists that use satellite images and information stored in a digital model, this is easier to use.

  11. Extension of the Hapke bidirectional reflectance model to retrieve soil water content

    Directory of Open Access Journals (Sweden)

    G.-J. Yang

    2011-07-01

    Full Text Available Soil moisture links the hydrologic cycle and the energy budget of land surfaces by regulating latent heat fluxes. An accurate assessment of the spatial and temporal variation of soil moisture is important to the study of surface biogeophysical processes. Although remote sensing has proven to be one of the most powerful tools for obtaining land surface parameters, no effective methodology yet exists for in situ soil moisture measurement based on a Bidirectional Reflectance Distribution Function (BRDF model, such as the Hapke model. To retrieve and analyze soil moisture, this study applied the soil water parametric (SWAP-Hapke model, which introduced the equivalent water thickness of soil, to ground multi-angular and hyperspectral observations coupled with, Powell-Ant Colony Algorithm methods. The inverted soil moisture data resulting from our method coincided with in situ measurements (R2 = 0.867, RMSE = 0.813 based on three selected bands (672 nm, 866 nm, 2209 nm. It proved that the extended Hapke model can be used to estimate soil moisture with high accuracy based on the field multi-angle and multispectral remote sensing data.

  12. Automated sulcal depth measurement on cortical surface reflecting geometrical properties of sulci.

    Directory of Open Access Journals (Sweden)

    Hyuk Jin Yun

    Full Text Available Sulcal depth that is one of the quantitative measures of cerebral cortex has been widely used as an important marker for brain morphological studies. Several studies have employed Euclidean (EUD or geodesic (GED algorithms to measure sulcal depth, which have limitations that ignore sulcal geometry in highly convoluted regions and result in under or overestimated depth. In this study, we proposed an automated measurement for sulcal depth on cortical surface reflecting geometrical properties of sulci, which named the adaptive distance transform (ADT. We first defined the volume region of cerebrospinal fluid between the 3D convex hull and the cortical surface, and constructed local coordinates for that restricted region. Dijkstra's algorithm was then used to compute the shortest paths from the convex hull to the vertices of the cortical surface based on the local coordinates, which may be the most proper approach for defining sulcal depth. We applied our algorithm to both a clinical dataset including patients with mild Alzheimer's disease (AD and 25 normal controls and a simulated dataset whose shape was similar to a single sulcus. The mean sulcal depth in the mild AD group was significantly lower than controls (p = 0.007, normal [mean±SD]: 7.29±0.23 mm, AD: 7.11±0.29 and the area under the receiver operating characteristic curve was relatively high, showing the value of 0.818. Results from clinical dataset that were consistent with former studies using EUD or GED demonstrated that ADT was sensitive to cortical atrophy. The robustness against inter-individual variability of ADT was highlighted through simulation dataset. ADT showed a low and constant normalized difference between the depth of the simulated data and the calculated depth, whereas EUD and GED had high and variable differences. We suggest that ADT is more robust than EUD or GED and might be a useful alternative algorithm for measuring sulcal depth.

  13. Using a reflection model for modeling the dynamic feedback path of digital hearing aids

    DEFF Research Database (Denmark)

    Ma, Guilin; Gran, Fredrik; Jacobsen, Finn

    2010-01-01

    Feedback whistling is one of the severe problems with hearing aids, especially in dynamic situations when the users hug, pick up a telephone, etc. This paper investigates the properties of the dynamic feedback paths of digital hearing aids and proposes a model based on a reflection assumption...... gain. The method is also extended to dual-microphone hearing aids to assess the possibility of relating the two dynamic feedback paths through the reflection model. However, it is found that in a complicated acoustic environment, the relation between the two feedback paths can be very intricate...

  14. Innovation Leadership in Innovation Projects: The Application of the Reflective Practitioner Model

    NARCIS (Netherlands)

    Oeij, P.R.A.

    2016-01-01

    In 1982 Donald Schön wrote the Reflective Practitioner which implicitly but never explicitly contains a model of steps what it is to act as a reflective practitioner in real life. In this paper we apply that model and try to make this latent (tacit) model into a manifest (explicit) model. Project

  15. Shear-wave seismic reflection imaging and impedance inversion for a near-surface point-bar

    Science.gov (United States)

    Benton, N. W.; Morrison, M.; Lorenzo, J. M.; Odom, B.; Clift, P. D.; Olson, E.; Gostic, A.

    2017-12-01

    Imaging and inversion of SH-waves are useful to detect, map, and quantitatively characterize near-surface point-bar strata. We conduct a horizontally-polarized (SH) reflection survey across and along a near-surface (9 - 40 m) downstream point-bar. We invert for shear-impedance profiles and correlate our interpretation to electrical conductivity (EC) logs in adjacent wells to study the internal architecture and lithology of point-bars. We acquire two common-midpoint (CMP) SH-wave seismic reflection lines at False River (Point Coupee Parish, Louisiana). A 104 m long seismic line (L1) is oriented orthogonal (NW - SE) to point-bar strike. A second line (L2) is 48 m long and set parallel to point-bar strike (NE - SW). Two EC wells lie 33 m apart. Both wells are parallel with respect to the L1 survey and offset from it by 15 m. EC log measurements range from 1 - 25 m depth. Interference of Love-waves prevents seismic imaging at depths less than 9 m. The L1 and L2 data sets are inverted for shear-impedance using a model-based band-limited impedance (BLIMP) algorithm that incorporates a low-frequency velocity model. This model is also used for the depthing processing. The L1 cross-section shows coherent dipping reflection events ( 4 - 7º) from 0.15 - 0.35 s (10 - 40 m). The corresponding shear-impedance profile also reveals coherent and dipping impedance contrasts that grow in magnitude with increasing depth. The L2 cross-section shows comparatively less dip ( 1º) as well as sharper and shallower continuity of reflection events (0.1 - 0.28 s TWT or 9 - 25 m). Depth-converted (TVD) seismic amplitudes and impedance values correlate to near-surface point-bar geology via superposition of log data. The first well (W5) shows distinct EC local maxima (+50 - 70 mS/m) at 14.5 and 15.5 m depth that correlate well with the seismic amplitudes and impedance values from both L1 and L2 data sets. The second well (W7) shows comparatively lower local maxima (+40 - 60 mS/m) but at greater

  16. Ultraviolet (UV)-reflective paint with ultraviolet germicidal irradiation (UVGI) improves decontamination of nosocomial bacteria on hospital room surfaces.

    Science.gov (United States)

    Jelden, Katelyn C; Gibbs, Shawn G; Smith, Philip W; Hewlett, Angela L; Iwen, Peter C; Schmid, Kendra K; Lowe, John J

    2017-06-01

    An ultraviolet germicidal irradiation (UVGI) generator (the TORCH, ClorDiSys Solutions, Inc.) was used to compare the disinfection of surface coupons (plastic from a bedrail, stainless steel, and chrome-plated light switch cover) in a hospital room with walls coated with ultraviolet (UV)-reflective paint (Lumacept) or standard paint. Each surface coupon was inoculated with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus faecalis (VRE), placed at 6 different sites within a hospital room coated with UV-reflective paint or standard paint, and treated by 10 min UVC exposure (UVC dose of 0-688 mJ/cm 2 between sites with standard paint and 0-553 mJ/cm 2 with UV-reflective paint) in 8 total trials. Aggregated MRSA concentrations on plastic bedrail surface coupons were reduced on average by 3.0 log 10 (1.8 log 10 Geometric Standard Deviation [GSD]) with standard paint and 4.3 log 10 (1.3 log 10 GSD) with UV-reflective paint (p = 0.0005) with no significant reduction differences between paints on stainless steel and chrome. Average VRE concentrations were reduced by ≥4.9 log 10 (surface types with UV-reflective paint and ≤4.1 log 10 (hospital bed from the UVGI generator, MRSA concentrations on average were reduced by 1.3 log 10 (1.7 log 10 GSD) with standard paint and 4.7 log 10 (1.3 log 10 GSD) with UV-reflective paint (p hospital room walls with UV-reflective paint enhanced UVGI disinfection of nosocomial bacteria on various surfaces compared to standard paint, particularly at a surface placement site indirectly exposed to UVC light.

  17. An Improved MUSIC Model for Gibbsite Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Scott C.; Bickmore, Barry R.; Tadanier, Christopher J.; Rosso, Kevin M.

    2004-06-01

    Here we use gibbsite as a model system with which to test a recently published, bond-valence method for predicting intrinsic pKa values for surface functional groups on oxides. At issue is whether the method is adequate when valence parameters for the functional groups are derived from ab initio structure optimization of surfaces terminated by vacuum. If not, ab initio molecular dynamics (AIMD) simulations of solvated surfaces (which are much more computationally expensive) will have to be used. To do this, we had to evaluate extant gibbsite potentiometric titration data that where some estimate of edge and basal surface area was available. Applying BET and recently developed atomic force microscopy methods, we found that most of these data sets were flawed, in that their surface area estimates were probably wrong. Similarly, there may have been problems with many of the titration procedures. However, one data set was adequate on both counts, and we applied our method of surface pKa int prediction to fitting a MUSIC model to this data with considerable success—several features of the titration data were predicted well. However, the model fit was certainly not perfect, and we experienced some difficulties optimizing highly charged, vacuum-terminated surfaces. Therefore, we conclude that we probably need to do AIMD simulations of solvated surfaces to adequately predict intrinsic pKa values for surface functional groups.

  18. Regression-based model of skin diffuse reflectance for skin color analysis

    Science.gov (United States)

    Tsumura, Norimichi; Kawazoe, Daisuke; Nakaguchi, Toshiya; Ojima, Nobutoshi; Miyake, Yoichi

    2008-11-01

    A simple regression-based model of skin diffuse reflectance is developed based on reflectance samples calculated by Monte Carlo simulation of light transport in a two-layered skin model. This reflectance model includes the values of spectral reflectance in the visible spectra for Japanese women. The modified Lambert Beer law holds in the proposed model with a modified mean free path length in non-linear density space. The averaged RMS and maximum errors of the proposed model were 1.1 and 3.1%, respectively, in the above range.

  19. Chromatic X-ray magnifying method and apparatus by Bragg reflective planes on the surface of Abbe sphere

    Science.gov (United States)

    Thoe, Robert S.

    1991-01-01

    Method and apparatus for producing sharp, chromatic, magnified images of X-ray emitting objects, are provided. The apparatus, which constitutes an X-ray microscope or telescope, comprises a connected collection of Bragg reflecting planes, comprised of either a bent crystal or a synthetic multilayer structure, disposed on and adjacent to a locus determined by a spherical surface. The individual Bragg planes are spatially oriented to Bragg reflect radiation from the object location toward the image location. This is accomplished by making the Bragg planes spatially coincident with the surfaces of either a nested series of prolate ellipsoids of revolution, or a nested series of spheres. The spacing between the Bragg reflecting planes can be tailored to control the wavelengths and the amount of the X-radiation that is Bragg reflected to form the X-ray image.

  20. Updating Landsat time series of surface-reflectance composites and forest change products with new observations

    Science.gov (United States)

    Hermosilla, Txomin; Wulder, Michael A.; White, Joanne C.; Coops, Nicholas C.; Hobart, Geordie W.

    2017-12-01

    The use of time series satellite data allows for the temporally dense, systematic, transparent, and synoptic capture of land dynamics over time. Subsequent to the opening of the Landsat archive, several time series approaches for characterizing landscape change have been developed, often representing a particular analytical time window. The information richness and widespread utility of these time series data have created a need to maintain the currency of time series information via the addition of new data, as it becomes available. When an existing time series is temporally extended, it is critical that previously generated change information remains consistent, thereby not altering reported change statistics or science outcomes based on that change information. In this research, we investigate the impacts and implications of adding additional years to an existing 29-year annual Landsat time series for forest change. To do so, we undertook a spatially explicit comparison of the 29 overlapping years of a time series representing 1984-2012, with a time series representing 1984-2016. Surface reflectance values, and presence, year, and type of change were compared. We found that the addition of years to extend the time series had minimal effect on the annual surface reflectance composites, with slight band-specific differences (r ≥ 0.1) in the final years of the original time series being updated. The area of stand replacing disturbances and determination of change year are virtually unchanged for the overlapping period between the two time-series products. Over the overlapping temporal period (1984-2012), the total area of change differs by 0.53%, equating to an annual difference in change area of 0.019%. Overall, the spatial and temporal agreement of the changes detected by both time series was 96%. Further, our findings suggest that the entire pre-existing historic time series does not need to be re-processed during the update process. Critically, given the time

  1. Objective and Subjective Evaluation of Reflecting and Diffusing Surfaces in Auditoria

    Science.gov (United States)

    Cox, Trevor John

    Available from UMI in association with The British Library. Requires signed TDF. The performance of reflectors and diffusers used in auditoria have been evaluated both objectively and subjectively. Two accurate systems have been developed to measure the scattering from surfaces via the cross correlation function. These have been used to measure the scattering from plane panels, curved panels and quadratic residue diffusers (QRDs). The scattering measurements have been used to test theoretical prediction methods based on the Helmholtz-Kirchhoff integral equation. Accurate prediction methods were found for all surfaces tested. The limitations of the more approximate methods have been defined. The assumptions behind Schroeder's design of the QRD have been tested and the local reacting admittance assumption found to be valid over a wide frequency range. It was found that the QRD only produces uniform scattering at low frequencies. For an on-axis source the scattering from a curved panel was as good as from a QRD. For an oblique source the QRD produced much more uniform scattering than the curved panel. The subjective measurements evaluated the smallest perceivable change in the early sound field, the part most influenced by reflectors and diffusers. A natural sounding simulation of a concert hall field within an anechoic chamber was used. Standard objective parameters were reasonable values when compared to values found in real halls and subjective preference measurements. A difference limen was measured for early lateral energy fraction (.048 +/-.005); inter aural cross correlation (.075 +/-.008); clarity index (.67 +/-.13 dB); and centre time (8.6 +/- 1.6 ms). It was found that: (i) when changes are made to diffusers and reflectors, changes in spatial impression will usually be larger than those in clarity; and (ii) acousticians can gain most by paying attention to lateral sound in auditoria. It was also found that: (i) diffuse reflections in the early sound field

  2. Giant enhancement of reflectance due to the interplay between surface confined wave modes and nonlinear gain in dielectric media.

    Science.gov (United States)

    Kim, Sangbum; Kim, Kihong

    2017-12-11

    We study theoretically the interplay between the surface confined wave modes and the linear and nonlinear gain of the dielectric layer in the Otto configuration. The surface confined wave modes, such as surface plasmons or waveguide modes, are excited in the dielectric-metal bilayer by obliquely incident p waves. In the purely linear case, we find that the interplay between linear gain and surface confined wave modes can generate a large reflectance peak with its value much greater than 1. As the linear gain parameter increases, the peak appears at smaller incident angles, and the associated modes also change from surface plasmons to waveguide modes. When the nonlinear gain is turned on, the reflectance shows very strong multistability near the incident angles associated with surface confined wave modes. As the nonlinear gain parameter is varied, the reflectance curve undergoes complicated topological changes and sometimes displays separated closed curves. When the nonlinear gain parameter takes an optimally small value, a giant amplification of the reflectance by three orders of magnitude occurs near the incident angle associated with a waveguide mode. We also find that there exists a range of the incident angle where the wave is dissipated rather than amplified even in the presence of gain. We suggest that this can provide the basis for a possible new technology for thermal control in the subwavelength scale.

  3. An Instructional Model for Guiding Reflection and Research in the Classroom: The Educational Situation Quality Model

    Science.gov (United States)

    Domenech-Betoret, Fernando

    2013-01-01

    The purpose of this work is to present an instructional model entitled the "Modelo de Calidad de Situacion Educativa" (MCSE) and how teachers can use it to reflect and investigate in a formal educational setting. It is a theoretical framework which treat to explain the functioning of an educational setting by organizing and relating the…

  4. Promoting Preservice Teacher Reflectivity: Van Manen May Represent a Viable Model

    Science.gov (United States)

    Ballard, Kristy K.; McBride, Ron

    2010-01-01

    From Dewey (1933) to present, reflectivity is an important component of teacher education. Little information exists that specifically addresses when changes in reflectivity might occur. Therefore, the purpose of this study was: (a) to apply Van Manen's model to outcomes to examine levels of, and changes in, reflectivity and (b) to verify the…

  5. Neutron Reflection Study of Surface Adsorption of Fc, Fab, and the Whole mAb.

    Science.gov (United States)

    Li, Zongyi; Li, Ruiheng; Smith, Charles; Pan, Fang; Campana, Mario; Webster, John R P; van der Walle, Christopher F; Uddin, Shahid; Bishop, Steve M; Narwal, Rojaramani; Warwicker, Jim; Lu, Jian Ren

    2017-07-12

    Characterizing the influence of fragment crystallization (Fc) and antigen-binding fragment (Fab) on monoclonal antibody (mAb) adsorption at the air/water interface is an important step to understanding liquid mAb drug product stability during manufacture, shipping, and storage. Here, neutron reflection is used to study the air/water adsorption of a mAb and its Fc and Fab fragments. By varying the isotopic contrast, the adsorbed amount, thickness, orientation, and immersion of the adsorbed layers could be determined unambiguously. While Fc adsorption reached saturation within the hour, its surface adsorbed amount showed little variation with bulk concentration. In contrast, Fab adsorption was slower and the adsorbed amount was concentration dependent. The much higher Fc adsorption, as compared to Fab, was linked to its lower surface charge. Time and concentration dependence of mAb adsorption was dominated by Fab behavior, although both Fab and Fc behaviors contributed to the amount of mAb adsorbed. Changing the pH from 5.5 to 8.8 did not much perturb the adsorbed amount of Fc, Fab, or mAb. However, a small decrease in adsorption was observed for the Fc over pH 8-8.8 and vice versa for the Fab and mAb, consistent with a dominant Fab behavior. As bulk concentration increased from 5 to 50 ppm, the thicknesses of the Fc layers were almost constant at 40 Å, while Fab and mAb layers increased from 45 to 50 Å. These results imply that the adsorbed mAb, Fc, and Fab all retained their globular structures and were oriented with their short axial lengths perpendicular to the interface.

  6. An Algorithm for the Retrieval of 30-m Snow-Free Albedo from Landsat Surface Reflectance and MODIS BRDF

    Science.gov (United States)

    Shuai, Yanmin; Masek, Jeffrey G.; Gao, Feng; Schaaf, Crystal B.

    2011-01-01

    We present a new methodology to generate 30-m resolution land surface albedo using Landsat surface reflectance and anisotropy information from concurrent MODIS 500-m observations. Albedo information at fine spatial resolution is particularly useful for quantifying climate impacts associated with land use change and ecosystem disturbance. The derived white-sky and black-sky spectral albedos maybe used to estimate actual spectral albedos by taking into account the proportion of direct and diffuse solar radiation arriving at the ground. A further spectral-to-broadband conversion based on extensive radiative transfer simulations is applied to produce the broadband albedos at visible, near infrared, and shortwave regimes. The accuracy of this approach has been evaluated using 270 Landsat scenes covering six field stations supported by the SURFace RADiation Budget Network (SURFRAD) and Atmospheric Radiation Measurement Southern Great Plains (ARM/SGP) network. Comparison with field measurements shows that Landsat 30-m snow-free shortwave albedos from all seasons generally achieve an absolute accuracy of +/-0.02 - 0.05 for these validation sites during available clear days in 2003-2005,with a root mean square error less than 0.03 and a bias less than 0.02. This level of accuracy has been regarded as sufficient for driving global and regional climate models. The Landsat-based retrievals have also been compared to the operational 16-day MODIS albedo produced every 8-days from MODIS on Terra and Aqua (MCD43A). The Landsat albedo provides more detailed landscape texture, and achieves better agreement (correlation and dynamic range) with in-situ data at the validation stations, particularly when the stations include a heterogeneous mix of surface covers.

  7. Minimal model for spoof acoustoelastic surface states

    Directory of Open Access Journals (Sweden)

    J. Christensen

    2014-12-01

    Full Text Available Similar to textured perfect electric conductors for electromagnetic waves sustaining artificial or spoof surface plasmons we present an equivalent phenomena for the case of sound. Aided by a minimal model that is able to capture the complex wave interaction of elastic cavity modes and airborne sound radiation in perfect rigid panels, we construct designer acoustoelastic surface waves that are entirely controlled by the geometrical environment. Comparisons to results obtained by full-wave simulations confirm the feasibility of the model and we demonstrate illustrative examples such as resonant transmissions and waveguiding to show a few examples of many where spoof elastic surface waves are useful.

  8. Model for the filamentary structure in the pleiades reflection nebulosity

    International Nuclear Information System (INIS)

    Arny, T.

    1977-01-01

    It is suggested that the filamentary structure in the Pleiades reflection nebula is caused by shearing of dust clumps in an interstellar cloud moving through the star cluster. Radiation pressure flattens a dust clump and causes it to flow around a star, forming a shell. The anisotropy of the radiation field shears clumps into long streamers

  9. Using the Surface Reflectance MODIS Terra Product to Estimate Turbidity in Tampa Bay, Florida

    Directory of Open Access Journals (Sweden)

    Douglas L. Rickman

    2010-12-01

    Full Text Available Turbidity is a commonly-used index of the factors that determine light penetration in the water column. Consistent estimation of turbidity is crucial to design environmental and restoration management plans, to predict fate of possible pollutants, and to estimate sedimentary fluxes into the ocean. Traditional methods monitoring fixed geographical locations at fixed intervals may not be representative of the mean water turbidity in estuaries between intervals, and can be expensive and time consuming. Although remote sensing offers a good solution to this limitation, it is still not widely used due in part to required complex processing of imagery. There are satellite-derived products, including the Moderate Resolution Imaging Spectroradiometer (MODIS Terra surface reflectance daily product (MOD09GQ Band 1 (620–670 nm which are now routinely available at 250 m spatial resolution and corrected for atmospheric effect. This study shows this product to be useful to estimate turbidity in Tampa Bay, Florida, after rainfall events (R2 = 0.76, n = 34. Within Tampa Bay, Hillsborough Bay (HB and Old Tampa Bay (OTB presented higher turbidity compared to Middle Tampa Bay (MTB and Lower Tampa Bay (LTB.

  10. Modelling the bidirectional reflectance distribution functions (BRDF of sea areas polluted by oil

    Directory of Open Access Journals (Sweden)

    Zbigniew Otremba

    2004-12-01

    Full Text Available The paper discusses the possibilities of modelling the bi-directional reflectance distribution function (BRDF in sea areas polluted by oil. Three sea basin models are considered: a coastal one free of oil, one polluted by an oil film and one polluted by an oil emulsion. The following concentrations of oil were compared: for the film, 1 cm3 of oil per 1 m2 water surface, for the emulsion 1 cm3 of oil in 1 m3 of water. The optical properties of Romashkino crude oil were taken into consideration, as were various angles of incident solar light. The conversion of BRDFs into a directional distribution of the optical contrast of polluted areas is demonstrated.

  11. Foundations of elastoplasticity subloading surface model

    CERN Document Server

    Hashiguchi, Koichi

    2017-01-01

    This book is the standard text book of elastoplasticity in which the elastoplasticity theory is comprehensively described from the conventional theory for the monotonic loading to the unconventional theory for the cyclic loading behavior. Explanations of vector-tensor analysis and continuum mechanics are provided first as a foundation for elastoplasticity theory, covering various strain and stress measures and their rates with their objectivities. Elastoplasticity has been highly developed by the creation and formulation of the subloading surface model which is the unified fundamental law for irreversible mechanical phenomena in solids. The assumption that the interior of the yield surface is an elastic domain is excluded in order to describe the plastic strain rate due to the rate of stress inside the yield surface in this model aiming at the prediction of cyclic loading behavior, although the yield surface enclosing the elastic domain is assumed in all the elastoplastic models other than the subloading surf...

  12. A Comparison of Surface Acoustic Wave Modeling Methods

    Science.gov (United States)

    Wilson, W. c.; Atkinson, G. M.

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method a first order model, and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices.

  13. The electrical resistivity of rough thin films: A model based on electron reflection at discrete step edges

    Science.gov (United States)

    Zhou, Tianji; Zheng, Pengyuan; Pandey, Sumeet C.; Sundararaman, Ravishankar; Gall, Daniel

    2018-04-01

    The effect of the surface roughness on the electrical resistivity of metallic thin films is described by electron reflection at discrete step edges. A Landauer formalism for incoherent scattering leads to a parameter-free expression for the resistivity contribution from surface mound-valley undulations that is additive to the resistivity associated with bulk and surface scattering. In the classical limit where the electron reflection probability matches the ratio of the step height h divided by the film thickness d, the additional resistivity Δρ = √{3 /2 } /(g0d) × ω/ξ, where g0 is the specific ballistic conductance and ω/ξ is the ratio of the root-mean-square surface roughness divided by the lateral correlation length of the surface morphology. First-principles non-equilibrium Green's function density functional theory transport simulations on 1-nm-thick Cu(001) layers validate the model, confirming that the electron reflection probability is equal to h/d and that the incoherent formalism matches the coherent scattering simulations for surface step separations ≥2 nm. Experimental confirmation is done using 4.5-52 nm thick epitaxial W(001) layers, where ω = 0.25-1.07 nm and ξ = 10.5-21.9 nm are varied by in situ annealing. Electron transport measurements at 77 and 295 K indicate a linear relationship between Δρ and ω/(ξd), confirming the model predictions. The model suggests a stronger resistivity size effect than predictions of existing models by Fuchs [Math. Proc. Cambridge Philos. Soc. 34, 100 (1938)], Sondheimer [Adv. Phys. 1, 1 (1952)], Rossnagel and Kuan [J. Vac. Sci. Technol., B 22, 240 (2004)], or Namba [Jpn. J. Appl. Phys., Part 1 9, 1326 (1970)]. It provides a quantitative explanation for the empirical parameters in these models and may explain the recently reported deviations of experimental resistivity values from these models.

  14. Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy.

    Science.gov (United States)

    Monico, Letizia; Rosi, Francesca; Miliani, Costanza; Daveri, Alessia; Brunetti, Brunetto G

    2013-12-01

    In this work a reflection mid-infrared spectroscopy study of twelve metal-oxalate complexes, of interest in art conservation science as alteration compounds, was performed. Spectra of the reference materials highlighted the presence of derivative-like and/or inverted features for the fundamental vibrational modes as result of the main contribution from the surface component of the reflected light. In order to provide insights in the interpretation of theses spectral distortions, reflection spectra were compared with conventional transmission ones. The Kramers-Kronig (KK) algorithm, employed to correct for the surface reflection distortions, worked properly only for the derivative-like bands. Therefore, to pay attention to the use of this algorithm when interpreting the reflection spectra is recommended. The outcome of this investigation was exploited to discriminate among different oxalates on thirteen polychrome artworks analyzed in situ by reflection mid-infrared spectroscopy. The visualization of the νs(CO) modes (1400-1200 cm(-1)) and low wavenumber bands (below 900 cm(-1)) in the raw reflection profiles allowed Ca, Cu and Zn oxalates to be identified. Further information about the speciation of different hydration forms of calcium oxalates were obtained by using the KK transform. The work proves reflection mid-infrared spectroscopy to be a reliable and sensitive spectro-analytical method for identifying and mapping different metal-oxalate alteration compounds on the surface of artworks, thus providing conservation scientists with a non-invasive tool to obtain information on the state of conservation and causes of alteration of artworks. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Surface Adsorption in Nonpolarizable Atomic Models.

    Science.gov (United States)

    Whitmer, Jonathan K; Joshi, Abhijeet A; Carlton, Rebecca J; Abbott, Nicholas L; de Pablo, Juan J

    2014-12-09

    Many ionic solutions exhibit species-dependent properties, including surface tension and the salting-out of proteins. These effects may be loosely quantified in terms of the Hofmeister series, first identified in the context of protein solubility. Here, our interest is to develop atomistic models capable of capturing Hofmeister effects rigorously. Importantly, we aim to capture this dependence in computationally cheap "hard" ionic models, which do not exhibit dynamic polarization. To do this, we have performed an investigation detailing the effects of the water model on these properties. Though incredibly important, the role of water models in simulation of ionic solutions and biological systems is essentially unexplored. We quantify this via the ion-dependent surface attraction of the halide series (Cl, Br, I) and, in so doing, determine the relative importance of various hypothesized contributions to ionic surface free energies. Importantly, we demonstrate surface adsorption can result in hard ionic models combined with a thermodynamically accurate representation of the water molecule (TIP4Q). The effect observed in simulations of iodide is commensurate with previous calculations of the surface potential of mean force in rigid molecular dynamics and polarizable density-functional models. Our calculations are direct simulation evidence of the subtle but sensitive role of water thermodynamics in atomistic simulations.

  16. Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France

    Science.gov (United States)

    Zhang, Sibo; Calvet, Jean-Christophe; Darrozes, José; Roussel, Nicolas; Frappart, Frédéric; Bouhours, Gilles

    2018-03-01

    This work assesses the estimation of surface volumetric soil moisture (VSM) using the global navigation satellite system interferometric reflectometry (GNSS-IR) technique. Year-round observations were acquired from a grassland site in southwestern France using an antenna consecutively placed at two contrasting heights above the ground surface (3.3 and 29.4 m). The VSM retrievals are compared with two independent reference datasets: in situ observations of soil moisture, and numerical simulations of soil moisture and vegetation biomass from the ISBA (Interactions between Soil, Biosphere and Atmosphere) land surface model. Scaled VSM estimates can be retrieved throughout the year removing vegetation effects by the separation of growth and senescence periods and by the filtering of the GNSS-IR observations that are most affected by vegetation. Antenna height has no significant impact on the quality of VSM estimates. Comparisons between the VSM GNSS-IR retrievals and the in situ VSM observations at a depth of 5 cm show good agreement (R2 = 0.86 and RMSE = 0.04 m3 m-3). It is shown that the signal is sensitive to the grass litter water content and that this effect triggers differences between VSM retrievals and in situ VSM observations at depths of 1 and 5 cm, especially during light rainfall events.

  17. Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2018-03-01

    Full Text Available This work assesses the estimation of surface volumetric soil moisture (VSM using the global navigation satellite system interferometric reflectometry (GNSS-IR technique. Year-round observations were acquired from a grassland site in southwestern France using an antenna consecutively placed at two contrasting heights above the ground surface (3.3 and 29.4 m. The VSM retrievals are compared with two independent reference datasets: in situ observations of soil moisture, and numerical simulations of soil moisture and vegetation biomass from the ISBA (Interactions between Soil, Biosphere and Atmosphere land surface model. Scaled VSM estimates can be retrieved throughout the year removing vegetation effects by the separation of growth and senescence periods and by the filtering of the GNSS-IR observations that are most affected by vegetation. Antenna height has no significant impact on the quality of VSM estimates. Comparisons between the VSM GNSS-IR retrievals and the in situ VSM observations at a depth of 5 cm show good agreement (R2 =  0.86 and RMSE  =  0.04 m3 m−3. It is shown that the signal is sensitive to the grass litter water content and that this effect triggers differences between VSM retrievals and in situ VSM observations at depths of 1 and 5 cm, especially during light rainfall events.

  18. Land-surface modelling in hydrological perspective

    DEFF Research Database (Denmark)

    Overgaard, Jesper; Rosbjerg, Dan; Butts, M.B.

    2006-01-01

    The purpose of this paper is to provide a review of the different types of energy-based land-surface models (LSMs) and discuss some of the new possibilities that will arise when energy-based LSMs are combined with distributed hydrological modelling. We choose to focus on energy-based approaches......, and the difficulties inherent in various evaluation procedures are presented. Finally, the dynamic coupling of hydrological and atmospheric models is explored, and the perspectives of such efforts are discussed......., because in comparison to the traditional potential evapotranspiration models, these approaches allow for a stronger link to remote sensing and atmospheric modelling. New opportunities for evaluation of distributed land-surface models through application of remote sensing are discussed in detail...

  19. A new theory and its application to remove the effect of surface-reflected light in above-surface radiance data from clear and turbid waters

    International Nuclear Information System (INIS)

    Dev, Pravin Jeba; Shanmugam, Palanisamy

    2014-01-01

    Water-leaving radiances (L w ) measured from the deck of a ship or boat in oceanic and lake waters are widely and operationally used for satellite sensor vicarious calibration and validation and development of remote-sensing algorithms to understand interdisciplinary coastal ocean properties and processes. However, accurate determination of L w remains to be a challenging issue because of the limitations of the existing methods to accurately remove the undesired signal (surface-reflected light of the sky and sun) from above-surface measurements of the total upwelling radiance leaving the water surface. In this study, a new theory is developed and applied to the above-surface radiometric data measured from clear, turbid and eutrophic waters. The new method effectively removes surface-reflected contributions from the total upwelling radiance signal under different sky (clear sky to overcast sky) and sun glint conditions. The L w spectra obtained from the above-surface radiance data using the new method are found to match well with those extrapolated from the upwelling radiances (L u ) measured with another set of underwater radiometers (used just below the sea surface). The new method proves to be a viable alternative, especially in circumstances when the above-surface measurements of radiances are severally contaminated by the surface-reflected light fields. Since spectral radiance measurements are also sensitive to the observation angles, and to the magnitude of the radiometer's solid angle field of view, above-surface radiances are also measured for different viewing angles in highly eutrophic waters. Such measurements show large deviations in L w spectra except at lower viewing angles (30°). When applied to these data, the new method eliminates the undesired signal encountered at higher viewing angles and delivers accurate water-leaving radiance data. These results suggest that the new method is capable of removing the surface-reflected light fields from both

  20. Land Surface Reflectance Retrieval from Hyperspectral Data Collected by an Unmanned Aerial Vehicle over the Baotou Test Site

    Science.gov (United States)

    Duan, Si-Bo; Li, Zhao-Liang; Tang, Bo-Hui; Wu, Hua; Ma, Lingling; Zhao, Enyu; Li, Chuanrong

    2013-01-01

    To evaluate the in-flight performance of a new hyperspectral sensor onboard an unmanned aerial vehicle (UAV-HYPER), a comprehensive field campaign was conducted over the Baotou test site in China on 3 September 2011. Several portable reference reflectance targets were deployed across the test site. The radiometric performance of the UAV-HYPER sensor was assessed in terms of signal-to-noise ratio (SNR) and the calibration accuracy. The SNR of the different bands of the UAV-HYPER sensor was estimated to be between approximately 5 and 120 over the homogeneous targets, and the linear response of the apparent reflectance ranged from approximately 0.05 to 0.45. The uniform and non-uniform Lambertian land surface reflectance was retrieved and validated using in situ measurements, with root mean square error (RMSE) of approximately 0.01–0.07 and relative RMSE of approximately 5%–12%. There were small discrepancies between the retrieved uniform and non-uniform Lambertian land surface reflectance over the homogeneous targets and under low aerosol optical depth (AOD) conditions (AOD = 0.18). However, these discrepancies must be taken into account when adjacent pixels had large land surface reflectance contrast and under high AOD conditions (e.g. AOD = 1.0). PMID:23785513

  1. Surface physics theoretical models and experimental methods

    CERN Document Server

    Mamonova, Marina V; Prudnikova, I A

    2016-01-01

    The demands of production, such as thin films in microelectronics, rely on consideration of factors influencing the interaction of dissimilar materials that make contact with their surfaces. Bond formation between surface layers of dissimilar condensed solids-termed adhesion-depends on the nature of the contacting bodies. Thus, it is necessary to determine the characteristics of adhesion interaction of different materials from both applied and fundamental perspectives of surface phenomena. Given the difficulty in obtaining reliable experimental values of the adhesion strength of coatings, the theoretical approach to determining adhesion characteristics becomes more important. Surface Physics: Theoretical Models and Experimental Methods presents straightforward and efficient approaches and methods developed by the authors that enable the calculation of surface and adhesion characteristics for a wide range of materials: metals, alloys, semiconductors, and complex compounds. The authors compare results from the ...

  2. High quality broadband spatial reflections of slow Rayleigh surface acoustic waves modulated by a graded grooved surface

    KAUST Repository

    Xu, Yanlong; Peng, Pai

    2015-01-01

    . The graded grooved surface is structured by drilling one dimensional array of graded grooves with increased depths on a flat surface. We investigate SAW dispersion relations, wave field distribution at several typical SAW wavelengths, and time evolution of a

  3. Integrated X-ray testing of the electro-optical breadboard model for the XMM reflection grating spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bixler, J.V.; Craig, W.; Decker, T. [Lawrence Livermore National Lab., CA (United States); Aarts, H.; Boggende, T. den; Brinkman, A.C. [Space Research Organization Netherlands, Utrecht (Netherlands); Burkert, W.; Brauninger, H. [Max-Planck Institute fur Extraterrestische Physik, Testanlage (Germany); Branduardi-Raymont, G. [Univ. College London (United Kingdom); Dubbeldam, L. [Space Research Organization Netherlands, Leiden (Netherlands)] [and others

    1994-07-12

    X-ray calibration of the Electro-Optical Breadboard Model (EOBB) of the XXM Reflection Grating Spectrometer has been carried out at the Panter test facility in Germany. The EOBB prototype optics consisted of a four-shell grazing incidence mirror module followed by an array of eight reflection gratings. The dispersed x-rays were detected by an array of three CCDs. Line profile and efficiency measurements where made at several energies, orders, and geometric configurations for individual gratings and for the grating array as a whole. The x-ray measurements verified that the grating mounting method would meet the stringent tolerances necessary for the flight instrument. Post EOBB metrology of the individual gratings and their mountings confirmed the precision of the grating boxes fabrication. Examination of the individual grating surface`s at micron resolution revealed the cause of anomalously wide line profiles to be scattering due to the crazing of the replica`s surface.

  4. Optical performance of random anti-reflection structured surfaces (rARSS) on spherical lenses

    Science.gov (United States)

    Taylor, Courtney D.

    Random anti-reflection structured surfaces (rARSS) have been reported to improve transmittance of optical-grade fused silica planar substrates to values greater than 99%. These textures are fabricated directly on the substrates using reactive-ion/inductively-coupled plasma etching (RIE/ICP) techniques, and often result in transmitted spectra with no measurable interference effects (fringes) for a wide range of wavelengths. The RIE/ICP processes used in the fabrication process to etch the rARSS is anisotropic and thus well suited for planar components. The improvement in spectral transmission has been found to be independent of optical incidence angles for values from 0° to +/-30°. Qualifying and quantifying the rARSS performance on curved substrates, such as convex lenses, is required to optimize the fabrication of the desired AR effect on optical-power elements. In this work, rARSS was fabricated on fused silica plano-convex (PCX) and plano-concave (PCV) lenses using a planar-substrate optimized RIE process to maximize optical transmission in the range from 500 to 1100 nm. An additional set of lenses were etched in a non-optimized ICP process to provide additional comparisons. Results are presented from optical transmission and beam propagation tests (optimized lenses only) of rARSS lenses for both TE and TM incident polarizations at a wavelength of 633 nm and over a 70° full field of view in both singlet and doublet configurations. These results suggest optimization of the fabrication process is not required, mainly due to the wide angle-of-incidence AR tolerance performance of the rARSS lenses. Non-optimized recipe lenses showed low transmission enhancement, and confirmed the need to optimized etch recipes prior to process transfer of PCX/PCV lenses. Beam propagation tests indicated no major beam degradation through the optimized lens elements. Scanning electron microscopy (SEM) images confirmed different structure between optimized and non-optimized samples

  5. Modeling bidirectional reflectance of forests and woodlands using Boolean models and geometric optics

    Science.gov (United States)

    Strahler, Alan H.; Jupp, David L. B.

    1990-01-01

    Geometric-optical discrete-element mathematical models for forest canopies have been developed using the Boolean logic and models of Serra. The geometric-optical approach is considered to be particularly well suited to describing the bidirectional reflectance of forest woodland canopies, where the concentration of leaf material within crowns and the resulting between-tree gaps make plane-parallel, radiative-transfer models inappropriate. The approach leads to invertible formulations, in which the spatial and directional variance provides the means for remote estimation of tree crown size, shape, and total cover from remotedly sensed imagery.

  6. Registration of eye reflection and scene images using an aspherical eye model.

    Science.gov (United States)

    Nakazawa, Atsushi; Nitschke, Christian; Nishida, Toyoaki

    2016-11-01

    This paper introduces an image registration algorithm between an eye reflection and a scene image. Although there are currently a large number of image registration algorithms, this task remains difficult due to nonlinear distortions at the eye surface and large amounts of noise, such as iris texture, eyelids, eyelashes, and their shadows. To overcome this issue, we developed an image registration method combining an aspherical eye model that simulates nonlinear distortions considering eye geometry and a two-step iterative registration strategy that obtains dense correspondence of the feature points to achieve accurate image registrations for the entire image region. We obtained a database of eye reflection and scene images featuring four subjects in indoor and outdoor scenes and compared the registration performance with different asphericity conditions. Results showed that the proposed approach can perform accurate registration with an average accuracy of 1.05 deg by using the aspherical cornea model. This work is relevant for eye image analysis in general, enabling novel applications and scenarios.

  7. Simulation of reflectance from white-anodised aluminium surfaces using polyurethane–TiO2 composite coatings

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Johansen, Villads Egede; Ambat, Rajan

    2015-01-01

    of anodised surfaces. PU matrix was selected for its matching refractive-index (n = 1.7) with anodic alumina layer. Three different TiO2 particle size distributions were dispersed in PU and spin coated onto bright high-gloss and matte caustic-etched aluminium substrates. The reflectance spectra of coated...

  8. Adsorption of benzyldimethylhexadecylammonium chloride at the hydrophobic silica-water interface studied by total internal reflection Raman spectroscopy: effects of silica surface properties and metal salt addition.

    Science.gov (United States)

    Grenoble, Zlata; Baldelli, Steven

    2013-08-29

    The adsorption of the cationic surfactant benzyldimethylhexadecylammonium (BDMHA(+)) chloride was studied at an octadecyltrichlorosilane (OTS)-monolayer-modified silica-water interface by Raman spectroscopy in total internal reflection (TIR) geometry. The present study demonstrates the capabilities of this spectroscopic technique to evaluate thermodynamic and kinetic BDMHA(+)Cl(-) adsorption properties at the hydrophobic silica surface. The surface coverage of BDMHA(+) decreased by 50% at the hydrophobic OTS-silica surface relative to the surface coverage on bare silica; the dominating driving mechanisms for surfactant adsorption were identified as hydrophobic effects and head group charge screening by the electrolyte counterions. Addition of magnesium metal salt (MgCl2) to the aqueous solution (∼ neutral pH) lowered the surface coverage and moderately increased the Langmuir adsorption constants relative to those of the pure surfactant. These trends were previously observed at the hydrophilic, negatively charged silica surface but with a smaller change in the Gibbs free energy of adsorption at the hydrophobic silica surface. The hydrophobic OTS-silica surface properties resulted in shorter times for the surfactant to reach steady-state adsorption conditions compared to the slow adsorption kinetics previously seen with the surfactant at the hydrophilic surface. Adsorption isotherms, based on Raman signal intensities from spectral analysis, were developed according to the Langmuir adsorption model for the pure surfactant at the OTS-silica-water interface; the modified Langmuir model was applied to the surfactant adsorption in the presence of 5, 10, 50, and 100 mM magnesium chloride. Spectral analysis of the Raman scattering intensities and geometric considerations suggests a hemimicelle-type surface aggregate as the most likely surfactant structure at the OTS-silica surface. The different kinetics observed at the hydrophilic versus the hydrophobic silica surface

  9. Fitness function and nonunique solutions in x-ray reflectivity curve fitting: crosserror between surface roughness and mass density

    International Nuclear Information System (INIS)

    Tiilikainen, J; Bosund, V; Mattila, M; Hakkarainen, T; Sormunen, J; Lipsanen, H

    2007-01-01

    Nonunique solutions of the x-ray reflectivity (XRR) curve fitting problem were studied by modelling layer structures with neural networks and designing a fitness function to handle the nonidealities of measurements. Modelled atomic-layer-deposited aluminium oxide film structures were used in the simulations to calculate XRR curves based on Parratt's formalism. This approach reduced the dimensionality of the parameter space and allowed the use of fitness landscapes in the study of nonunique solutions. Fitness landscapes, where the height in a map represents the fitness value as a function of the process parameters, revealed tracks where the local fitness optima lie. The tracks were projected on the physical parameter space thus allowing the construction of the crosserror equation between weakly determined parameters, i.e. between the mass density and the surface roughness of a layer. The equation gives the minimum error for the other parameters which is a consequence of the nonuniqueness of the solution if noise is present. Furthermore, the existence of a possible unique solution in a certain parameter range was found to be dependent on the layer thickness and the signal-to-noise ratio

  10. Modeling and validation of directional reflectance for heterogeneous agro-forestry scenarios

    Science.gov (United States)

    Yelu, Z.; Jing, L.; Qinhuo, L.; Huete, A. R.

    2015-12-01

    Landscape heterogeneity is a common natural phenomenon but is seldom considered in current radiative transfer models for predicting the surface reflectance. This paper developed an explicit analytical Radiative Transfer model for heterogeneous Agro-Forestry scenarios (RTAF) by dividing the scenario into non-boundary regions and boundary regions. The scattering contribution of the non-boundary regions that are treated as homogeneous canopies can be estimated from the SAILH model, whereas that of the boundary regions with lengths, widths, canopy heights, and orientations of the field patches, is calculated based on the bidirectional gap probability by considering the interactions and mutual shadowing effects among different patches. The hot spot factor is extended for heterogeneous scenarios, the Hapke model for soil anisotropy is incorporated, and the contributions of the direct and diffuse radiation are separately calculated. The multi-angular airborne observations and the Discrete Anisotropic Radiative Transfer (DART) model simulations were used for validating and evaluating the RTAF model over an agro-forestry scenario in Heihe River Basin, China. It indicates that the RTAF model can accurately simulate the hemispherical-directional reflectance factors (HDRFs) of the heterogeneous agro-forestry scenario, with an RMSE of 0.0016 and 0.0179 in the red and near-infrared (NIR) bands, respectively. The RTAF model was compared with two widely used models, the dominant cover type (DCT) model and the spectral linear mixture (SLM) model, which either neglected the interactions and mutual shadowing effects between the shelterbets and crops, or did not account for the contribution of the shelterbets. Results suggest that the boundary effect can significantly influence the angular distribution of the HDRFs, and consequently enlarged the HDRF variations between the backward and forward directions in the principle plane. The RTAF model reduced the maximum relative error from 25

  11. Modeling the reflectance of the lunar regolith by a new method combining Monte Carlo Ray tracing and Hapke's model with application to Chang'E-1 IIM data.

    Science.gov (United States)

    Wong, Un-Hong; Wu, Yunzhao; Wong, Hon-Cheng; Liang, Yanyan; Tang, Zesheng

    2014-01-01

    In this paper, we model the reflectance of the lunar regolith by a new method combining Monte Carlo ray tracing and Hapke's model. The existing modeling methods exploit either a radiative transfer model or a geometric optical model. However, the measured data from an Interference Imaging spectrometer (IIM) on an orbiter were affected not only by the composition of minerals but also by the environmental factors. These factors cannot be well addressed by a single model alone. Our method implemented Monte Carlo ray tracing for simulating the large-scale effects such as the reflection of topography of the lunar soil and Hapke's model for calculating the reflection intensity of the internal scattering effects of particles of the lunar soil. Therefore, both the large-scale and microscale effects are considered in our method, providing a more accurate modeling of the reflectance of the lunar regolith. Simulation results using the Lunar Soil Characterization Consortium (LSCC) data and Chang'E-1 elevation map show that our method is effective and useful. We have also applied our method to Chang'E-1 IIM data for removing the influence of lunar topography to the reflectance of the lunar soil and to generate more realistic visualizations of the lunar surface.

  12. Item Construction Using Reflective, Formative, or Rasch Measurement Models: Implications for Group Work

    Science.gov (United States)

    Peterson, Christina Hamme; Gischlar, Karen L.; Peterson, N. Andrew

    2017-01-01

    Measures that accurately capture the phenomenon are critical to research and practice in group work. The vast majority of group-related measures were developed using the reflective measurement model rooted in classical test theory (CTT). Depending on the construct definition and the measure's purpose, the reflective model may not always be the…

  13. Assessment of MODIS BRDF/Albedo Model Parameters (MCD43A1 Collection 6 for Directional Reflectance Retrieval

    Directory of Open Access Journals (Sweden)

    Xianghong Che

    2017-11-01

    Full Text Available Measurements of solar radiation reflected from Earth’s surface are the basis for calculating albedo, vegetation indices, and other terrestrial attributes. However, the “bi-directional” geometry of illumination and viewing (i.e., the Bi-directional Reflectance Distribution Function (BRDF impacts reflectance and all variables derived or estimated based on these data. The recently released MODIS BRDF/Albedo Model Parameters (MCD43A1 Collection 6 dataset enables retrieval of directional reflectance at arbitrary solar and viewing angles, potentially increasing precision and comparability of data collected under different illumination and observation geometries. We quantified the ability of MCD43A1 Collection 6 for retrieving directional reflectance and compared the daily Collection 6 retrievals to those of MCD43A1 Collection 5, which are retrieved on an eight-day basis. Correcting MODIS-based estimates of surface reflectance from the illumination and viewing geometry of the Terra satellite (MOD09GA to that of the MODIS Aqua (MYD09GA overpass, as well as MCD43A4 Collection 6 and Landsat-5 TM images show that the BRDF correction of MCD43A1 Collection 6 results in greater consistency among datasets, with higher R2 (0.63–0.955, regression slopes closer to unity (0.718–0.955, lower root mean squared difference (RMSD (0.422–3.142, and lower mean absolute error (MAE (0.282–1.735 compared to the Collection 5 data. Smaller levels of noise (observed as high-frequency variability within the time series in MCD43A1 Collection 6 in comparison to Collection 5 corroborates the improvement of BRDF parameters time series. These results corroborates that the daily MCD43A1 Collection 6 product represents the anisotropy of surface features and results in more precise directional reflectance derivation at any solar and viewing geometry than did the previous Collection 5.

  14. Application of the surface reflection seismic method to shallow coal exploration in the plains of Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Lyatsky, H.V.; Lawton, D.C. (University of Victoria, Victoria, BC (Canada). Dept. of Physics and Astronomy)

    1988-12-01

    A study was done to make a quantitative interpretation of reflection seismic data from the Highvale-Whitewood shallow coal deposit in central Alberta. Results showed that the data is useful in demonstrating coal thickness and stratigraphy as well as structural formation. Reflection character is affected by nature of the strata surrounding the coal deposit. 22 refs., 1 tab., 23 figs.

  15. Ethical issues in engineering models: an operations researcher's reflections.

    Science.gov (United States)

    Kleijnen, J

    2011-09-01

    This article starts with an overview of the author's personal involvement--as an Operations Research consultant--in several engineering case-studies that may raise ethical questions; e.g., case-studies on nuclear waste, water management, sustainable ecology, military tactics, and animal welfare. All these case studies employ computer simulation models. In general, models are meant to solve practical problems, which may have ethical implications for the various stakeholders; namely, the modelers, the clients, and the public at large. The article further presents an overview of codes of ethics in a variety of disciples. It discusses the role of mathematical models, focusing on the validation of these models' assumptions. Documentation of these model assumptions needs special attention. Some ethical norms and values may be quantified through the model's multiple performance measures, which might be optimized. The uncertainty about the validity of the model leads to risk or uncertainty analysis and to a search for robust models. Ethical questions may be pressing in military models, including war games. However, computer games and the related experimental economics may also provide a special tool to study ethical issues. Finally, the article briefly discusses whistleblowing. Its many references to publications and websites enable further study of ethical issues in modeling.

  16. Study on the effect of ambient gas on nanostructure formation on metal surfaces during femtosecond laser ablation for fabrication of low-reflective surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smausz, Tomi, E-mail: tomi@physx.u-szeged.hu [MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, 6720 Szeged, Dóm tér 9 (Hungary); Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Csizmadia, Tamás [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Attosecond Light Pulse Source, ELI-Hu Nkft, H-6720 Szeged, Dugonics ter 13 (Hungary); Tápai, Csaba; Kopniczky, Judit [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Oszkó, Albert [Department of Physical Chemistry and Material Science, University of Szeged, H-6720 Szeged, Aradi vértanuk tere 1 (Hungary); Ehrhardt, Martin; Lorenz, Pierre; Zimmer, Klaus; Prager, Andrea [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Hopp, Béla [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary)

    2016-12-15

    Highlights: • Metal surfaces were irradiated with femtosecond laser in different gas environments. • The reflectivity, morphology and chemical composition of the surfaces were studied. • Darkening was influenced by chemical and physical interaction of the plume and gas. • Molecular mass of the applied gas had an impact on the nanostructure formation. • For some of the used metals the oxide formation affected the reflective properties. - Abstract: Nanostructure formation on bulk metals (silver, gold, copper and titanium) by femtosecond Ti-sapphire laser irradiation (775 nm, 150 fs) is studied aiming the production of low-reflectivity surfaces and the better understanding of the development process. The experiments were performed in nitrogen, air, oxygen and helium environments at atmospheric pressure. The samples were irradiated with fluences in the 0.1–2 J/cm{sup 2} range and an average pulse number of 100 falling over a given area. The reflectivity of the treated surfaces was determined by a microspectrometer in the 450–800 nm range and their morphology was studied by scanning electron microscopy. The gas ambience influenced the results via two effects: formation processes and the chemically-induced modifications of the nanostructures. In case of He the nanoparticle aggregates–otherwise generally present–are predominantly missing, which leads to a lower darkening efficiency. The presence of oxygen enhances the darkening effect for copper mostly at lower fluences, while causes a slow increase in reflectivity in the case of titanium (in case of pure oxygen) in the high fluence range. The surface morphology in case of nitrogen and air were quite similar probably due to their close molecular mass values.

  17. The Reflection Effect on the Eclipsing Binary by the Wilson and Devinney's Model and Russell and Merrill's Model

    Directory of Open Access Journals (Sweden)

    Seong Hee Choea

    1992-06-01

    Full Text Available The reflection effect on three types of eclipsing binaries has been analyzed Wilson and Devinney's model and Russell and Merrill's model. The reflection effect was displayed on the theoretical light curves for the various conditions using the Wilson and Devinney's light curve program. Two models were compared after the rectifing the theoretical light curves including the reflection effect with the Russell and Merrill's method. The result shows that two models have an agreement on the reflection effect just in cases of the small difference in temperature and albedo between two stars in the system.

  18. Determining the influential depth for surface reflectance of sediment by BRDF measurements.

    Science.gov (United States)

    Zhang, H; Voss, K; Reid, R

    2003-10-20

    We measure the Bi-directional reflectance distribution function (BRDF) of ooid sand layers with three particle size distributions (0.5-1mm, 0.25-0.5mm and 0.125-0.25mm) and layer thicknesses on a reflecting mirror to determine the influential depth in the optical region at wavelengths of 658 nm (red), 570 nm (green) and 457 nm (blue). The hemispherical reflectance (albedo) was used as an indicator of BRDF changes between different layers. Measurements are carried out on both dry and water wetted grains. The results indicate that for both dry and wet and all size distributions, the influential depth is at most 2mm.

  19. Modeling of hydrogen desorption from tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Guterl, J., E-mail: jguterl@ucsd.edu [University of California, San Diego, La Jolla, CA 92093 (United States); Smirnov, R.D. [University of California, San Diego, La Jolla, CA 92093 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA 92093 (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation); Uberuaga, B.; Voter, A.F.; Perez, D. [Los Alamos National Laboratory, Los Alamos, NM 8754 (United States)

    2015-08-15

    Hydrogen retention in metallic plasma-facing components is among key-issues for future fusion devices. For tungsten, which has been chosen as divertor material in ITER, hydrogen desorption parameters experimentally measured for fusion-related conditions show large discrepancies. In this paper, we therefore investigate hydrogen recombination and desorption on tungsten surfaces using molecular dynamics simulations and accelerated molecular dynamics simulations to analyze adsorption states, diffusion, hydrogen recombination into molecules, and clustering of hydrogen on tungsten surfaces. The quality of tungsten hydrogen interatomic potential is discussed in the light of MD simulations results, showing that three body interactions in current interatomic potential do not allow to reproduce hydrogen molecular recombination and desorption. Effects of surface hydrogen clustering on hydrogen desorption are analyzed by introducing a kinetic model describing the competition between surface diffusion, clustering and recombination. Different desorption regimes are identified and reproduce some aspects of desorption regimes experimentally observed.

  20. A novel trauma leadership model reflective of changing times.

    Science.gov (United States)

    DʼHuyvetter, Cecile; Cogbill, Thomas H

    2014-01-01

    As a result of generational changes in the health care workforce, we sought to evaluate our current Trauma Medical Director Leadership model. We assessed the responsibilities, accountability, time requirements, cost, and provider satisfaction with the current leadership model. Three new providers who had recently completed fellowship training were hired, each with unique professional desires, skill sets, and experience. Our goal was to establish a comprehensive, cost-effective, accountable leadership model that enabled provider satisfaction and equalized leadership responsibilities. A 3-pronged team model was established with a Medical Director title and responsibilities rotating per the American College of Surgeons verification cycle to develop leadership skills and lessen hierarchical differences.

  1. Modeling surface roughness scattering in metallic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Moors, Kristof, E-mail: kristof@itf.fys.kuleuven.be [KU Leuven, Institute for Theoretical Physics, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Sorée, Bart [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Physics Department, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); KU Leuven, Electrical Engineering (ESAT) Department, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium); Magnus, Wim [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Physics Department, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2015-09-28

    Ando's model provides a rigorous quantum-mechanical framework for electron-surface roughness scattering, based on the detailed roughness structure. We apply this method to metallic nanowires and improve the model introducing surface roughness distribution functions on a finite domain with analytical expressions for the average surface roughness matrix elements. This approach is valid for any roughness size and extends beyond the commonly used Prange-Nee approximation. The resistivity scaling is obtained from the self-consistent relaxation time solution of the Boltzmann transport equation and is compared to Prange-Nee's approach and other known methods. The results show that a substantial drop in resistivity can be obtained for certain diameters by achieving a large momentum gap between Fermi level states with positive and negative momentum in the transport direction.

  2. Quantitative Modeling of Earth Surface Processes

    Science.gov (United States)

    Pelletier, Jon D.

    This textbook describes some of the most effective and straightforward quantitative techniques for modeling Earth surface processes. By emphasizing a core set of equations and solution techniques, the book presents state-of-the-art models currently employed in Earth surface process research, as well as a set of simple but practical research tools. Detailed case studies demonstrate application of the methods to a wide variety of processes including hillslope, fluvial, aeolian, glacial, tectonic, and climatic systems. Exercises at the end of each chapter begin with simple calculations and then progress to more sophisticated problems that require computer programming. All the necessary computer codes are available online at www.cambridge.org/9780521855976. Assuming some knowledge of calculus and basic programming experience, this quantitative textbook is designed for advanced geomorphology courses and as a reference book for professional researchers in Earth and planetary science looking for a quantitative approach to Earth surface processes. More details...

  3. Towards predictive models for transitionally rough surfaces

    Science.gov (United States)

    Abderrahaman-Elena, Nabil; Garcia-Mayoral, Ricardo

    2017-11-01

    We analyze and model the previously presented decomposition for flow variables in DNS of turbulence over transitionally rough surfaces. The flow is decomposed into two contributions: one produced by the overlying turbulence, which has no footprint of the surface texture, and one induced by the roughness, which is essentially the time-averaged flow around the surface obstacles, but modulated in amplitude by the first component. The roughness-induced component closely resembles the laminar steady flow around the roughness elements at the same non-dimensional roughness size. For small - yet transitionally rough - textures, the roughness-free component is essentially the same as over a smooth wall. Based on these findings, we propose predictive models for the onset of the transitionally rough regime. Project supported by the Engineering and Physical Sciences Research Council (EPSRC).

  4. Variability of the reflectance coefficient of skylight from the ocean surface and its implications to ocean color.

    Science.gov (United States)

    Gilerson, Alexander; Carrizo, Carlos; Foster, Robert; Harmel, Tristan

    2018-04-16

    The value and spectral dependence of the reflectance coefficient (ρ) of skylight from wind-roughened ocean surfaces is critical for determining accurate water leaving radiance and remote sensing reflectances from shipborne, AERONET-Ocean Color and satellite observations. Using a vector radiative transfer code, spectra of the reflectance coefficient and corresponding radiances near the ocean surface and at the top of the atmosphere (TOA) are simulated for a broad range of parameters including flat and windy ocean surfaces with wind speeds up to 15 m/s, aerosol optical thicknesses of 0-1 at 440nm, wavelengths of 400-900 nm, and variable Sun and viewing zenith angles. Results revealed a profound impact of the aerosol load and type on the spectral values of ρ. Such impacts, not included yet in standard processing, may produce significant inaccuracies in the reflectance spectra retrieved from above-water radiometry and satellite observations. Implications for satellite cal/val activities as well as potential changes in measurement and data processing schemes are discussed.

  5. Health promotion in context – a reflective-analytical model

    DEFF Research Database (Denmark)

    Liveng, Anne; Andersen, Heidi Lene; Lehn-Christiansen, Sine

    2018-01-01

    model,” which is presented in this article. The model provides a framework for the analysis of health-promotion initiatives, employing eight perspectives each intertwined with the others. It is based on the assumption that health and health inequities are contextual and that the theoretically inspired...

  6. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  7. Surface characteristics modeling and performance evaluation of urban building materials using LiDAR data.

    Science.gov (United States)

    Li, Xiaolu; Liang, Yu

    2015-05-20

    Analysis of light detection and ranging (LiDAR) intensity data to extract surface features is of great interest in remote sensing research. One potential application of LiDAR intensity data is target classification. A new bidirectional reflectance distribution function (BRDF) model is derived for target characterization of rough and smooth surfaces. Based on the geometry of our coaxial full-waveform LiDAR system, the integration method is improved through coordinate transformation to establish the relationship between the BRDF model and intensity data of LiDAR. A series of experiments using typical urban building materials are implemented to validate the proposed BRDF model and integration method. The fitting results show that three parameters extracted from the proposed BRDF model can distinguish the urban building materials from perspectives of roughness, specular reflectance, and diffuse reflectance. A comprehensive analysis of these parameters will help characterize surface features in a physically rigorous manner.

  8. Olkiluoto surface and near-surface hydrological modelling in 2010

    International Nuclear Information System (INIS)

    Karvonen, T.

    2011-08-01

    The modeling approaches carried out with the Olkiluoto surface hydrological model (SHYD) include palaeohydrological evolution of the Olkiluoto Island, examination of the boundary condition at the geosphere-biosphere interface zone, simulations related to infiltration experiment, prediction of the influence of ONKALO on hydraulic head in shallow and deep bedrock and optimisation of the shallow monitoring network. A so called short-term prediction system was developed for continuous updating of the estimated drawdowns caused by ONKALO. The palaeohydrological simulations were computed for a period starting from the time when the highest hills on Olkiluoto Island rose above sea level around 2 500 years ago. The input data needed in the model were produced by the UNTAMO-toolbox. The groundwater flow evolution is primarily driven by the postglacial land uplift and the uncertainty in the land uplift model is the biggest single factor that influences the accuracy of the results. The consistency of the boundary condition at the geosphere-biosphere interface zone (GBIZ) was studied during 2010. The comparison carried out during 2010 showed that pressure head profiles computed with the SHYD model and deep groundwater flow model FEFTRA are in good agreement with each other in the uppermost 100 m of the bedrock. This implies that flux profiles computed with the two approaches are close to each other and hydraulic heads computed at level z=0 m with the SHYD can be used as head boundary condition in the deep groundwater flow model FEFTRA. The surface hydrological model was used to analyse the results of the infiltration experiment. Increase in bedrock recharge inside WCA explains around 60-63 % from the amount of water pumped from OL-KR14 and 37-40 % of the water pumped from OL-KR14 flows towards pumping section via the hydrogeological zones. Pumping from OL-KR14 has only a minor effect on heads and fluxes in zones HZ19A and HZ19C compared to responses caused by leakages into

  9. Critically Reflective Pedagogical Model: a Pragmatic Blueprint for Enhancing Learning and Teaching in Construction Disciplines

    OpenAIRE

    Kamardeen, Imriyas

    2015-01-01

    University lecturers who aspire to provide an improved learning experience for their students continually, and be recognised for high quality teaching should embrace a critically reflective practice. Nonetheless, developing as a reflective lecturer is challenging, although there are pedagogical literatures as general guidelines. This study introduces a new pedagogical model of critically reflective practice to simplify the efforts for lecturers and to shorten their journey to becoming effecti...

  10. Fusion of intraoperative force sensoring, surface reconstruction and biomechanical modeling

    Science.gov (United States)

    Röhl, S.; Bodenstedt, S.; Küderle, C.; Suwelack, S.; Kenngott, H.; Müller-Stich, B. P.; Dillmann, R.; Speidel, S.

    2012-02-01

    Minimally invasive surgery is medically complex and can heavily benefit from computer assistance. One way to help the surgeon is to integrate preoperative planning data into the surgical workflow. This information can be represented as a customized preoperative model of the surgical site. To use it intraoperatively, it has to be updated during the intervention due to the constantly changing environment. Hence, intraoperative sensor data has to be acquired and registered with the preoperative model. Haptic information which could complement the visual sensor data is still not established. In addition, biomechanical modeling of the surgical site can help in reflecting the changes which cannot be captured by intraoperative sensors. We present a setting where a force sensor is integrated into a laparoscopic instrument. In a test scenario using a silicone liver phantom, we register the measured forces with a reconstructed surface model from stereo endoscopic images and a finite element model. The endoscope, the instrument and the liver phantom are tracked with a Polaris optical tracking system. By fusing this information, we can transfer the deformation onto the finite element model. The purpose of this setting is to demonstrate the principles needed and the methods developed for intraoperative sensor data fusion. One emphasis lies on the calibration of the force sensor with the instrument and first experiments with soft tissue. We also present our solution and first results concerning the integration of the force sensor as well as accuracy to the fusion of force measurements, surface reconstruction and biomechanical modeling.

  11. Kaguya observations of the lunar wake in the terrestrial foreshock: Surface potential change by bow-shock reflected ions

    Science.gov (United States)

    Nishino, Masaki N.; Harada, Yuki; Saito, Yoshifumi; Tsunakawa, Hideo; Takahashi, Futoshi; Yokota, Shoichiro; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi

    2017-09-01

    There forms a tenuous region called the wake behind the Moon in the solar wind, and plasma entry/refilling into the wake is a fundamental problem of the lunar plasma science. High-energy ions and electrons in the foreshock of the Earth's magnetosphere were detected at the lunar surface in the Apollo era, but their effects on the lunar night-side environment have never been studied. Here we show the first observation of bow-shock reflected protons by Kaguya (SELENE) spacecraft in orbit around the Moon, confirming that solar wind plasma reflected at the terrestrial bow shock can easily access the deepest lunar wake when the Moon stays in the foreshock (We name this mechanism 'type-3 entry'). In a continuous type-3 event, low-energy electron beams from the lunar night-side surface are not obvious even though the spacecraft location is magnetically connected to the lunar surface. On the other hand, in an intermittent type-3 entry event, the kinetic energy of upward-going field-aligned electron beams decreases from ∼ 80 eV to ∼ 20 eV or electron beams disappear as the bow-shock reflected ions come accompanied by enhanced downward electrons. According to theoretical treatment based on electric current balance at the lunar surface including secondary electron emission by incident electron and ion impact, we deduce that incident ions would be accompanied by a few to several times higher flux of an incident electron flux, which well fits observed downward fluxes. We conclude that impact by the bow-shock reflected ions and electrons raises the electrostatic potential of the lunar night-side surface.

  12. Nuclear surface vibrations in bag models

    International Nuclear Information System (INIS)

    Tomio, L.

    1984-01-01

    The main difficulties found in the hadron bag models are reviewed from the original version of the MIT bag model. Following, with the aim to answer two of the main difficulties in bag models, viz., the parity and the divergence illness, a dynamical model is presented. In the model, the confinement surface of the quarks (bag) is treated like a real physical object which interacts with the quarks and is exposed to vibrations. The model is applied to the nucleon, being observed that his spectrum, in the first excited levels, can be reproduced with resonable precision and obeying to the correct parity order. In the same way that in a similar work of Brown et al., it is observed to be instrumental the inclusion of the effect due to pions. (L.C.) [pt

  13. Stretched membrane heliostats: design and structural analysis of reflectance module and support of a heliostats of 9 m. diaform and 60 m''3 of reflectance surface

    International Nuclear Information System (INIS)

    Figarola Torres, J. M.

    1993-01-01

    After having designed and built at CIEMAT a first prototype of a Btretched membrane heliostats of 3 m. diameter, the design and the structural analysis of the different components included in the reflectance module and support of another heliostats, this one of 9 m. diameter and 60 m2. of reflectance surface, are shown In this report. This last heliostats will be mounted on a pedestal and its driving device at the Solar Platform of Almeria. In order to optimize design and performance, the structural analysis of its basic components has been analyzed with the finite elements program ANSYS. The following elements have been subject to analysis: the membrane and their ring supports, stretching system and the structural support. A similar scheme to the one applied to the previous prototype has been used on the focus control system. That includes a linear transducer, a variable frequency and a fan. Finally it has to be pointed out that substantial improvements have been achieved with respect to the first prototype concerning design and cost. (Author) 5 refs

  14. Analysis of bacteria on steel surfaces using reflectance micro-Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Ojeda, Jesús J; Romero-González, María E; Banwart, Steven A

    2009-08-01

    Reflectance micro-Fourier transform infrared (FT-IR) analysis has been applied to characterize biofilm formation of Aquabacterium commune, a common microorganism present on drinking water distribution systems, onto the increasingly popular pipe material stainless steel EN1.4307. The applicability of the reflectance micro-FT-IR technique for analyzing the bacterial functional groups is discussed, and the results are compared to spectra obtained using more conventional FT-IR techniques: transmission micro-FT-IR, attenuated transmitted reflectance (ATR), and KBr pellets. The differences between the infrared spectra of wet and dried bacteria, as well as free versus attached bacteria, are also discussed. The spectra obtained using reflectance micro-FT-IR spectroscopy were comparable to those obtained using other FT-IR techniques. The absence of sample preparation, the potential to analyze intact samples, and the ability to characterize opaque and thick samples without the need to transfer the bacterial samples to an infrared transparent medium or produce a pure culture were the main advantages of reflectance micro-FT-IR spectroscopy.

  15. Improved classification and visualization of healthy and pathological hard dental tissues by modeling specular reflections in NIR hyperspectral images

    Science.gov (United States)

    Usenik, Peter; Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2012-03-01

    Despite major improvements in dental healthcare and technology, dental caries remains one of the most prevalent chronic diseases of modern society. The initial stages of dental caries are characterized by demineralization of enamel crystals, commonly known as white spots, which are difficult to diagnose. Near-infrared (NIR) hyperspectral imaging is a new promising technique for early detection of demineralization which can classify healthy and pathological dental tissues. However, due to non-ideal illumination of the tooth surface the hyperspectral images can exhibit specular reflections, in particular around the edges and the ridges of the teeth. These reflections significantly affect the performance of automated classification and visualization methods. Cross polarized imaging setup can effectively remove the specular reflections, however is due to the complexity and other imaging setup limitations not always possible. In this paper, we propose an alternative approach based on modeling the specular reflections of hard dental tissues, which significantly improves the classification accuracy in the presence of specular reflections. The method was evaluated on five extracted human teeth with corresponding gold standard for 6 different healthy and pathological hard dental tissues including enamel, dentin, calculus, dentin caries, enamel caries and demineralized regions. Principal component analysis (PCA) was used for multivariate local modeling of healthy and pathological dental tissues. The classification was performed by employing multiple discriminant analysis. Based on the obtained results we believe the proposed method can be considered as an effective alternative to the complex cross polarized imaging setups.

  16. Modelling of authentic reflectance behaviour in virtual environments

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Filip, Jiří

    č. 62 (2005), s. 49-50 ISSN 0926-4981 R&D Projects: GA AV ČR IAA2075302; GA MŠk 1M0572; GA AV ČR 1ET400750407 Institutional research plan: CEZ:AV0Z10750506 Keywords : BTF textures * virtual reality * image modelling Subject RIV: BD - Theory of Information

  17. A partnership model for a reflective narrative for researcher and participant.

    Science.gov (United States)

    Murphy, Gill; Peters, Kath; Wilkes, Lesley; Jackson, Debra

    2016-09-01

    Background Conceptual frameworks are important to ensure a clear underpinning research philosophy. Further, the use of conceptual frameworks can support structured research processes. Aim To present a partnership model for a reflective narrative for researcher and participant. Discussion This paper positions the underpinning philosophical framework of the model in social constructionism (the idea that jointly constructed understandings form the basis for shared assumptions) and narrative enquiry. The model has five stages - study design, invitation to share a research space and partnership, a metaphorical research space, building a community story, and reading the community story to others. Core principles of the partnership model are continual reflection by the researcher, potential reflections by participants, reciprocal sharing, and partnership in research. Conclusion A 'trajectory of self' for both participants and researchers can be enhanced within reflective partnerships. Implications for practice This model can be applied to studies that use narrative enquiry and are seeking a humanistic approach with participant engagement.

  18. Calculating the bidirectional reflectance of natural vegetation covers using Boolean models and geometric optics

    Science.gov (United States)

    Strahler, Alan H.; Li, Xiao-Wen; Jupp, David L. B.

    1991-01-01

    The bidirectional radiance or reflectance of a forest or woodland can be modeled using principles of geometric optics and Boolean models for random sets in a three dimensional space. This model may be defined at two levels, the scene includes four components; sunlight and shadowed canopy, and sunlit and shadowed background. The reflectance of the scene is modeled as the sum of the reflectances of the individual components as weighted by their areal proportions in the field of view. At the leaf level, the canopy envelope is an assemblage of leaves, and thus the reflectance is a function of the areal proportions of sunlit and shadowed leaf, and sunlit and shadowed background. Because the proportions of scene components are dependent upon the directions of irradiance and exitance, the model accounts for the hotspot that is well known in leaf and tree canopies.

  19. Surface science studies of ethene containing model interstellar ices

    Science.gov (United States)

    Puletti, F.; Whelan, M.; Brown, W. A.

    2011-05-01

    The formation of saturated hydrocarbons in the interstellar medium (ISM) is difficult to explain only by taking into account gas phase reactions. This is mostly due to the fact that carbonium ions only react with H_2 to make unsaturated hydrocarbons, and hence no viable route to saturated hydrocarbons has been postulated to date. It is therefore likely that saturation processes occur via surface reactions that take place on interstellar dust grains. One of the species of interest in this family of reactions is C_2H_4 (ethene) which is an intermediate in several molecular formation routes (e.g. C_2H_2 → C_2H_6). To help to understand some of the surface processes involving ethene, a study of ethene deposited on a dust grain analogue surface (highly oriented pyrolytic graphite) held under ultra-high vacuum at 20 K has been performed. The adsorption and desorption of ethene has been studied both in water-free and water-dominated model interstellar ices. A combination of temperature programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS) have been used to identify the adsorbed and trapped species and to determine the kinetics of the desorption processes. In all cases, ethene is found to physisorb on the carbonaceous surface. As expected water has a very strong influence on the desorption of ethene, as previously observed for other model interstellar ice systems.

  20. Modeling radon flux from the earth's surface

    International Nuclear Information System (INIS)

    Schery, S.D.; Wasiolek, M.A.

    1998-01-01

    We report development of a 222 Rn flux density model and its use to estimate the 222 Rn flux density over the earth's land surface. The resulting maps are generated on a grid spacing of 1 0 x 1 0 using as input global data for soil radium, soil moisture, and surface temperature. While only a first approximation, the maps suggest a significant regional variation (a factor of three is not uncommon) and a significant seasonal variation (a factor of two is not uncommon) in 222 Rn flux density over the earth's surface. The estimated average global flux density from ice-free land is 34 ± 9 mBq m -2 s -1 . (author)

  1. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Bertram, F.; Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E.; Zhang, F.; Pan, J.; Carlà, F.; Nilsson, J.-O.

    2014-01-01

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  2. Formation of plasmonic silver nanoparticles using rapid thermal annealing at low temperature and study in reflectance reduction of Si surface

    Science.gov (United States)

    Barman, Bidyut; Dhasmana, Hrishikesh; Verma, Abhishek; Kumar, Amit; Pratap Chaudhary, Shiv; Jain, V. K.

    2017-09-01

    This work presents studies of plasmonic silver nanoparticles (AgNPs) formation at low temperatures (200 °C-300 °C) onto Si surface by sputtering followed with rapid thermal processing (RTP) for different time durations(5-30 min). The study reveals that 20 min RTP at all temperatures show minimum average size of AgNPs (60.42 nm) with corresponding reduction in reflectance of Si surface from 40.12% to mere 1.15% only in wavelength region 300-800 nm for RTP at 200 °C. A detailed supporting growth mechanism is also discussed. This low temperature technique can be helpful in achieving efficiency improvement in solar cells via reflectance reduction with additional features such as reproducibility, minimal time and very good adhesion without damaging underlying layers device parameters.

  3. Explanatory models for ecological response surfaces

    International Nuclear Information System (INIS)

    Jager, H.I.; Overton, W.S.

    1991-01-01

    Understanding the spatial organization of ecological systems is a fundamental part of ecosystem study. While discovering the causal relationships of this organization is an important goal, our purpose of spatial description on a regional scale is best met by use of explanatory variables that are somewhat removed from the mechanistic causal level. Regional level understanding is best obtained from explanatory variables that reflect spatial gradients at the regional scale and from categorical variables that describe the discrete constituents of (statistical) populations, such as lakes. In this paper, we use a regression model to predict lake acid neutralizing capacity (ANC) based on environmental predictor variables over a large region. These predictions are used to produce model-based population estimates. Two key features of our modeling approach are that is honors the spatial context and the design of the sample data. The spatial context of the data are brought into the analysis of model residuals through the interpretation of residual maps and semivariograms. The sampling design is taken into account by including stratification variables from the design in the model. This ensures that the model applies to a real population of lakes (the target population), rather than whatever hypothetical population the sample is a random sample of

  4. 3D Reflection Map Modeling for Optical Emitter-receiver Pairs

    DEFF Research Database (Denmark)

    Christensen, Henrik Vie

    2004-01-01

    A model for a model-based 3D-position determination system for a passive object is presented. Infrared emitter/receiver pairs are proposed as sensing part to acquire information on a ball shaped object's position. A 3D reflection map model is derived trough geometrical considerations. The model...

  5. Effect of surface plasmon polaritons on the sensitivity of refractive index measurement using total internal reflection method

    International Nuclear Information System (INIS)

    Roshan Entezar, S.

    2015-01-01

    The phase difference between two p-polarized and s-polarized plane waves which are reflected under total internal reflection from the base of a prism with a thin metal coating is studied. Typically such a quantity can be used to measure the refractive index of a test material using the total internal reflection method. It is shown that due to the excitation of surface plasmon polaritons at the interface between the tested dielectric material and the thin metal layer, the p-polarized light experiences a large phase shift which enlarges the phase difference between the p-polarized and the s-polarized waves. As a result, the sensitivity of refractive index measurement increases and the error in determining the refractive index decreases. - Highlights: • Phase difference of totally internally reflected p and s polarized beams is studied. • Excitation of the surface wave increases the phase shift of the p-polarized light. • The sensitivity of refractive index measurement increases by using a coated prism. • The error in determining the refractive index decreases using the coated prism

  6. Relation between seasonally detrended shortwave infrared reflectance data and land surface moisture in semi-arid Sahel

    DEFF Research Database (Denmark)

    Olsen, Jørgen Lundegaard; Ceccato, Pietro; Proud, Simon Richard

    2013-01-01

    in vegetation moisture status, and is compared to detrended time series of the Normalized Difference Vegetation Index (NDVI). It was found that when plant available water is low, the SIWSI anomalies increase over time, while the NDVI anomalies decrease over time, but less systematically. Therefore SIWSI may......In the Sudano-Sahelian areas of Africa droughts can have serious impacts on natural resources, and therefore land surface moisture is an important factor. Insufficient conventional sites for monitoring land surface moisture make the use of Earth Observation data for this purpose a key issue...... Second Generation (MSG) satellite. We focused on responses in surface reflectance to soil- and surface moisture for bare soil and early to mid- growing season. A method for implementing detrended time series of the Shortwave Infrared Water Stress Index (SIWSI) is examined for detecting variations...

  7. Probabilistic modeling of caprock leakage from seismic reflection data

    DEFF Research Database (Denmark)

    Zunino, Andrea; Hansen, Thomas Mejer; Bergjofd-Kitterød, Ingjerd

    We illustrate a methodology which helps to perform a leakage risk analysis for a CO2 reservoir based on a consistent, probabilistic approach to geophysical and geostatistical inversion. Generally, risk assessments of storage complexes are based on geological models and simulations of CO2 movement...... within the storage complexes. The geological models are built on top of geophysical data such as seismic surveys, geological information and well logs from the reservoir or nearby regions. The risk assessment of CO2 storage requires a careful analysis which accounts for all sources of uncertainty....... However, at present, no well-defined and consistent method for mapping the true uncertainty related to the geophysical data and how that uncertainty affects the overall risk assessment for the potential storage site is available. To properly quantify the uncertainties and to avoid unrealistic...

  8. Determination of solid surface composition by the X-ray fluorescence method under total external reflection with angular scanning

    International Nuclear Information System (INIS)

    Krasnolutskij, V.P.

    2000-01-01

    Possibilities of determination of composition of surface layers by X-ray fluorescence analysis under total reflection of incident radiation with angular scanning of a target are investigated. For the case of the GaAs target it is shown that the sensibility of this method is sufficient for a control of element composition in layer of thickness 1 nm. A simple method for solution of inverse task of analysis of a two component medium is considered [ru

  9. Surface segregation of InGaAs films by the evolution of reflection high-energy electron diffraction patterns

    International Nuclear Information System (INIS)

    Zhou Xun; Luo Zi-Jiang; Guo Xiang; Zhang Bi-Chan; Shang Lin-Tao; Zhou Qing; Deng Chao-Yong; Ding Zhao

    2012-01-01

    Surface segregation is studied via the evolution of reflection high-energy electron diffraction (RHEED) patterns under different values of As 4 BEP for InGaAs films. When the As 4 BEP is set to be zero, the RHEED pattern keeps a 4×3/(n × 3) structure with increasing temperature, and surface segregation takes place until 470 °C. The RHEED pattern develops into a metal-rich (4 × 2) structure as temperature increases to 495 °C. The reason for this is that surface segregation makes the In inside the InGaAs film climb to its surface. With the temperature increasing up to 515 °C, the RHEED pattern turns into a GaAs(2 × 4) structure due to In desorption. While the As 4 BEP comes up to a specific value (1.33 × 10 -4 Pa−1.33 × 10 -3 Pa), the surface temperature can delay the segregation and desorption. We find that As 4 BEP has a big influence on surface desorption, while surface segregation is more strongly dependent on temperature than surface desorption. (condensed matter: structural, mechanical, and thermal properties)

  10. Intercomparison of 30+ years of AVHRR and Landsat-5 TM Surface Reflectance using Multiple Pseudo-Invariant Calibration Sites

    Science.gov (United States)

    Santamaría-Artigas, A. E.; Franch, B.; Vermote, E.; Roger, J. C.; Justice, C. O.

    2017-12-01

    The 30+ years daily surface reflectance long term data record (LTDR) from the Advanced Very High Resolution Radiometer (AVHRR) is a valuable source of information for long-term studies of the Earth surface. This LTDR was generated by combining observations from multiple AVHRR sensors aboard different NOAA satellites starting from the early 1980s, and due to the lack of on-board calibration its quality should be evaluated. Previous studies have used observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) over pseudo-invariant calibration sites (PICS) as a calibrated reference to assess the performance of AVHRR products. However, this limits the evaluation to the period after MODIS launch. In this work, the AVHRR surface reflectance LTDR was evaluated against Landsat-5 Thematic Mapper (TM) data using observations from 4 well known pseudo-invariant calibration sites (i.e. Sonoran, Saharan, Sudan1, and Libya4) over an extended time period (1984-2011). For the intercomparison, AVHRR and TM observations of each site were extracted and averaged over a 20 km x 20 km area and aggregated to monthly mean values. In order to account for the spectral differences between sensors, Hyperion hyperspectral data from the Sonoran and Libya4 sites were convolved with sensor-specific relative spectral responses, and used to compute spectral band adjustment factors (SBAFs). Results of the intercomparison are reported in terms of the root mean square difference (RMSD) and determination coefficient (r2). In general, there is good agreement between the surface reflectance products from both sensors. The overall RMSD and r2 for all the sites and AVHRR/TM combinations were 0.03 and 0.85 for the red band, and 0.04 and 0.81 for the near-infrared band. These results show the strong performance of the AVHRR surface reflectance LTDR through all of the considered period. Thus, remarking its usefulness and value for long term Earth studies. Figure 1 shows the red (filled markers

  11. Modeling superhydrophobic surfaces comprised of random roughness

    Science.gov (United States)

    Samaha, M. A.; Tafreshi, H. Vahedi; Gad-El-Hak, M.

    2011-11-01

    We model the performance of superhydrophobic surfaces comprised of randomly distributed roughness that resembles natural surfaces, or those produced via random deposition of hydrophobic particles. Such a fabrication method is far less expensive than ordered-microstructured fabrication. The present numerical simulations are aimed at improving our understanding of the drag reduction effect and the stability of the air-water interface in terms of the microstructure parameters. For comparison and validation, we have also simulated the flow over superhydrophobic surfaces made up of aligned or staggered microposts for channel flows as well as streamwise or spanwise ridge configurations for pipe flows. The present results are compared with other theoretical and experimental studies. The numerical simulations indicate that the random distribution of surface roughness has a favorable effect on drag reduction, as long as the gas fraction is kept the same. The stability of the meniscus, however, is strongly influenced by the average spacing between the roughness peaks, which needs to be carefully examined before a surface can be recommended for fabrication. Financial support from DARPA, contract number W91CRB-10-1-0003, is acknowledged.

  12. Evaluation of the global MODIS 30 arc-second spatially and temporally complete snow-free land surface albedo and reflectance anisotropy dataset

    Science.gov (United States)

    Sun, Qingsong; Wang, Zhuosen; Li, Zhan; Erb, Angela; Schaaf, Crystal B.

    2017-06-01

    Land surface albedo is an essential variable for surface energy and climate modeling as it describes the proportion of incident solar radiant flux that is reflected from the Earth's surface. To capture the temporal variability and spatial heterogeneity of the land surface, satellite remote sensing must be used to monitor albedo accurately at a global scale. However, large data gaps caused by cloud or ephemeral snow have slowed the adoption of satellite albedo products by the climate modeling community. To address the needs of this community, we used a number of temporal and spatial gap-filling strategies to improve the spatial and temporal coverage of the global land surface MODIS BRDF, albedo and NBAR products. A rigorous evaluation of the gap-filled values shows good agreement with original high quality data (RMSE = 0.027 for the NIR band albedo, 0.020 for the red band albedo). This global snow-free and cloud-free MODIS BRDF and albedo dataset (established from 2001 to 2015) offers unique opportunities to monitor and assess the impact of the changes on the Earth's land surface.

  13. Reflection of sound from finite-size plane and curved surfaces

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    2005-01-01

    of a reflector array can improve if the size of the panels is decreased. The same design frequency applies to a single reflector and a reflector array, but with different meaning; in the latter case the design frequency is the upper limit for useful reflections. This design rule was first used...

  14. Critical and Creative Reflective Inquiry: Surfacing Narratives to Enable Learning and Inform Action

    Science.gov (United States)

    Cardiff, Shaun

    2012-01-01

    Narratives are being increasingly used in nursing and action research. In this participatory action research study, nurse leaders of an acute care of the older person unit collectively, critically and creatively reflected on lived experiences in order to explore the concept of person-centred leadership within their own practice. This paper…

  15. Relationship of intertidal surface sediment chlorophyll concentration to hyper-spectral reflectance and chlorophyll fluorescence

    NARCIS (Netherlands)

    Kromkamp, J.C.; Morris, E.P.; Forster, R.M.; Honeywill, C.; Hagerthey, S.; Paterson, D.M.

    2006-01-01

    Estimating biomass of microphytobenthos (MPB) on intertidal mud flats is extremely difficult due to their patchy occurrence, especially at the scale of an entire mud flat. We tested two optical approaches that can be applied in situ: spectral reflectance and chlorophyll fluorescence. These two

  16. Reflectivity and surface roughness of multilayer-coated substrate recovery layers for EUV lithographic optics

    NARCIS (Netherlands)

    Nedelcu, I.; van de Kruijs, R.W.E.; Yakshin, A. E.; von Blanckenhagen, G.; F. Bijkerk,

    2008-01-01

    We investigated the use of separation, or substrate recovery, layers (SRLs), to enable the reuse of optical substrates after the deposition of multilayer reflective coatings, in particular Mo/Si multilayers as used for EUV lithography. An organic material (polyimide), known from other work to reduce

  17. Reflection of P and SV waves at the free surface of a monoclinic ...

    Indian Academy of Sciences (India)

    R.Narasimhan(krishtel emaging)1461 1996 Oct 15 13:05:22

    The propagation of plane waves in an anisotropic elastic medium possessing monoclinic symmetry is discussed. The expressions for ... Keywords. Anisotropic medium; elastic waves; monoclinic half-space; reflection coefficients. Proc. Indian Acad. Sci. ...... In contrast, for C < 0, the angle of reflec- tion is less than the angle of ...

  18. Stochastic models for surface diffusion of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2014-07-28

    We derive a stochastic model for the surface diffusion of molecules, starting from the classical equations of motion for an N-atom molecule on a surface. The equation of motion becomes a generalized Langevin equation for the center of mass of the molecule, with a non-Markovian friction kernel. In the Markov approximation, a standard Langevin equation is recovered, and the effect of the molecular vibrations on the diffusion is seen to lead to an increase in the friction for center of mass motion. This effective friction has a simple form that depends on the curvature of the lowest energy diffusion path in the 3N-dimensional coordinate space. We also find that so long as the intramolecular forces are sufficiently strong, memory effects are usually not significant and the Markov approximation can be employed, resulting in a simple one-dimensional model that can account for the effect of the dynamics of the molecular vibrations on the diffusive motion.

  19. Nonlinear reflection of a spherically divergent N-wave from a plane surface: Optical interferometry measurements in air

    International Nuclear Information System (INIS)

    Karzova, M.; Yuldashev, P.; Khokhlova, V.; Ollivier, S.; Blanc-Benon, Ph.

    2015-01-01

    Mach stem is a well-known structure typically observed in the process of strong (acoustic Mach numbers greater than 0.4) step-shock waves reflection from a rigid boundary. However, this phenomenon has been much less studied for weak shocks in nonlinear acoustic fields where Mach numbers are in the range from 0.001 to 0.01 and pressure waveforms have more complicated waveforms than step shocks. The goal of this work was to demonstrate experimentally how nonlinear reflection occurs in air for very weak spherically divergent acoustic spark-generated pulses resembling an N-wave. Measurements of reflection patterns were performed using a Mach-Zehnder interferometer. A thin laser beam with sub-millimeter cross-section was used to obtain the time resolution of 0.4 µs, which is 6 times higher than the time resolution of the condenser microphones. Pressure waveforms were reconstructed using the inverse Abel transform applied to the phase of the signal measured by the interferometer. The Mach stem formation was observed experimentally as a result of collision of the incident and reflected shock pulses. It was shown that irregular reflection of the pulse occurred in a dynamic way and the length of the Mach stem increased linearly while the pulse propagated along the surface. Since the front shock of the spark-generated pulse was steeper than the rear shock, irregular type of reflection was observed only for the front shock of the pulse while the rear shock reflection occurred in a regular regime

  20. Nonlinear reflection of a spherically divergent N-wave from a plane surface: Optical interferometry measurements in air

    Energy Technology Data Exchange (ETDEWEB)

    Karzova, M., E-mail: masha@acs366.phys.msu.ru [Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France); Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Yuldashev, P.; Khokhlova, V. [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Ollivier, S.; Blanc-Benon, Ph. [Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France)

    2015-10-28

    Mach stem is a well-known structure typically observed in the process of strong (acoustic Mach numbers greater than 0.4) step-shock waves reflection from a rigid boundary. However, this phenomenon has been much less studied for weak shocks in nonlinear acoustic fields where Mach numbers are in the range from 0.001 to 0.01 and pressure waveforms have more complicated waveforms than step shocks. The goal of this work was to demonstrate experimentally how nonlinear reflection occurs in air for very weak spherically divergent acoustic spark-generated pulses resembling an N-wave. Measurements of reflection patterns were performed using a Mach-Zehnder interferometer. A thin laser beam with sub-millimeter cross-section was used to obtain the time resolution of 0.4 µs, which is 6 times higher than the time resolution of the condenser microphones. Pressure waveforms were reconstructed using the inverse Abel transform applied to the phase of the signal measured by the interferometer. The Mach stem formation was observed experimentally as a result of collision of the incident and reflected shock pulses. It was shown that irregular reflection of the pulse occurred in a dynamic way and the length of the Mach stem increased linearly while the pulse propagated along the surface. Since the front shock of the spark-generated pulse was steeper than the rear shock, irregular type of reflection was observed only for the front shock of the pulse while the rear shock reflection occurred in a regular regime.

  1. [Clinical ethics consultation - an integrative model for practice and reflection].

    Science.gov (United States)

    Reiter-Theil, Stella

    2008-07-01

    Broad evidence exists that health care professionals are facing ethical difficulties in patient care demanding a spectrum of useful ethics support services. Clinical ethics consultation is one of these forms of ethics support being effective in the acute setting. An authentic case is presented as an illustration. We introduce an integrative model covering the activities being characteristic for ethics consultation and going beyond "school"-specific approaches. Finally, we formulate some do's and don'ts of ethics consultation that are considered to be key issues for successful practice.

  2. Estimating Forest fAPAR from Multispectral Landsat-8 Data Using the Invertible Forest Reflectance Model INFORM

    Directory of Open Access Journals (Sweden)

    Huili Yuan

    2015-06-01

    Full Text Available The estimation of the Fraction of Absorbed Photosynthetically Active Radiation in forests (forest fAPAR from multi-spectral Landsat-8 data is investigated in this paper using a physically based radiative transfer model (Invertible Forest Reflectance Model, INFORM combined with an inversion strategy based on artificial neural nets (ANN. To derive the forest fAPAR for the Dabie mountain test site in China in 30 m spatial resolution (size approximately 3000 km2, a database of forest canopy spectral reflectances was simulated with INFORM taking into account structural variables such as leaf area index (LAI, crown coverage and stem density as well as leaf composition. To establish the relationship between forest fAPAR and the reflectance modeled by INFORM, a logarithmic relationship between LAI and fAPAR was used previously established using on-site field measurements. On this basis, predictive models between Landsat-8 reflectance and fAPAR were established using an artificial neural network. After calibrating INFORM for the test site, forty-two forest stands were used to validate the performance of the method. The results show that spectral signatures modeled by INFORM correspond reasonably well with the forest canopy reflectance spectra derived from Landsat data. Deviations increase with increasing angle between surface normal of the hilly terrain and sun incidence. The comparison of estimated and measured fAPAR (R2 = 0.47, RMSE = 0.11 demonstrates that INFORM can be inverted using neural nets to provide acceptable estimates of forest fAPAR. The accuracy of the predictions increased significantly when excluding pixels located in very steep terrain. This demonstrates that the applied topographic correction was not sufficiently accurate and should be improved for making optimum use of radiative transfer models such as INFORM.

  3. LAI inversion from optical reflectance using a neural network trained with a multiple scattering model

    Science.gov (United States)

    Smith, James A.

    1992-01-01

    The inversion of the leaf area index (LAI) canopy parameter from optical spectral reflectance measurements is obtained using a backpropagation artificial neural network trained using input-output pairs generated by a multiple scattering reflectance model. The problem of LAI estimation over sparse canopies (LAI 1000 percent for low LAI. Minimization methods applied to merit functions constructed from differences between measured reflectances and predicted reflectances using multiple-scattering models are unacceptably sensitive to a good initial guess for the desired parameter. In contrast, the neural network reported generally yields absolute percentage errors of <30 percent when weighting coefficients trained on one soil type were applied to predicted canopy reflectance at a different soil background.

  4. Neutral particle transport modeling with a reflective source in the plasma edge

    International Nuclear Information System (INIS)

    Valenti, M.E.

    1992-01-01

    A reflective source term is incorporated into the Boltzmann neutral particle transport equation to account for boundary reflection. This reflective neutral model is integrated over a uniform axis and subsequently discretized. The discrete two-dimensional equations are solved iteratively with a computer code. The results of the reflective neutral model computer code are benchmarked with the neutral particle transport code ONEDANT. The benchmark process demonstrates the validity of the reflective neutral model. The reflective neutral model is coupled to the Braams plasma particle and energy transport code. The coupled system generates self-consistent plasma edge transport solutions. These solutions, which utilize the transport equation are similar to solutions which utilize simple plasma edge neutral models when high recycle divertors are modeled. In the high recycle mode, the high electron density at the divertor plate reduces the mean free path of plate neutrals. Hence, the similarity in results. It is concluded that simple neutral models are sufficient for the analysis of high recycle power reactor edge plasmas. Low recycle edge plasmas were not examined

  5. Diagnosing hypoxia in murine models of rheumatoid arthritis from reflectance multispectral images

    Science.gov (United States)

    Glinton, Sophie; Naylor, Amy J.; Claridge, Ela

    2017-07-01

    Spectra computed from multispectral images of murine models of Rheumatoid Arthritis show a characteristic decrease in reflectance within the 600-800nm region which is indicative of the reduction in blood oxygenation and is consistent with hypoxia.

  6. Critically Reflective Pedagogical Model: a Pragmatic Blueprint for Enhancing Learning and Teaching in Construction Disciplines

    Directory of Open Access Journals (Sweden)

    Imriyas Kamardeen

    2015-11-01

    Full Text Available University lecturers who aspire to provide an improved learning experience for their students continually, and be recognised for high quality teaching should embrace a critically reflective practice. Nonetheless, developing as a reflective lecturer is challenging, although there are pedagogical literatures as general guidelines. This study introduces a new pedagogical model of critically reflective practice to simplify the efforts for lecturers and to shorten their journey to becoming effective teachers. A two-phased action research strategy was adopted for the development and validation of the new model. The first phase operationalised the Brookfield’s four-lens framework to create a reflective teaching practice model, which was then validated with a case study in the second phase. The model offers a pragmatic blueprint for lecturers to build a career with sustained quality of teaching, which in turn translates into improved learning experiences for students.

  7. Integral formula for elliptic SOS models with domain walls and a reflecting end

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Jules, E-mail: j.lamers@uu.nl

    2015-12-15

    In this paper we extend previous work of Galleas and the author to elliptic SOS models. We demonstrate that the dynamical reflection algebra can be exploited to obtain a functional equation characterizing the partition function of an elliptic SOS model with domain-wall boundaries and one reflecting end. Special attention is paid to the structure of the functional equation. Through this approach we find a novel multiple-integral formula for that partition function.

  8. Study of Surface Wettability Change of Unconsolidated Sand Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Thermogravimetric Analysis.

    Science.gov (United States)

    Gómora-Herrera, Diana; Navarrete Bolaños, Juan; Lijanova, Irina V; Olivares-Xometl, Octavio; Likhanova, Natalya V

    2018-04-01

    The effects exerted by the adsorption of vapors of a non-polar compound (deuterated benzene) and a polar compound (water) on the surface of Ottawa sand and a sample of reservoir sand (Channel), which was previously impregnated with silicon oil or two kinds of surfactants, (2-hydroxyethyl) trimethylammonium oleate (HETAO) and (2-hydroxyethyl)trimethylammonium azelate (HETAA), were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and thermogravimetric analysis (TGA). The surface chemistry of the sandstone rocks was elucidated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). Terminal surface groups such as hydroxyls can strongly adsorb molecules that interact with these surface groups (surfactants), resulting in a wettability change. The wettability change effect suffered by the surface after treating it with surfactants was possible to be detected by the DRIFTS technique, wherein it was observed that the surface became more hydrophobic after being treated with silicon oil and HETAO; the surface became more hydrophilic after treating it with HETAA.

  9. Porous Nanomaterials for Ultrabroadband Omnidirectional Anti-Reflection Surfaces with Applications in High Concentration Photovoltaics

    KAUST Repository

    Yao, Yuan

    2016-12-06

    Materials for nanoporous coatings that exploit optimized chemistries and self-assembly processes offer capabilities to reach ≈98% transmission efficiency and negligible scattering losses over the broad wavelength range of the solar spectrum from 350 nm to 1.5 μm, on both flat and curved glass substrates. These nanomaterial anti-reflection coatings also offer wide acceptance angles, up to ±40°, for both s- and p-polarization states of incident light. Carefully controlled bilayer films have allowed for the fabrication of dual-sided, gradient index profiles on plano-convex lens elements. In concentration photovoltaics platforms, the resultant enhancements in the photovoltaics efficiencies are ≈8%, as defined by experimental measurements on systems that use microscale triple-junction solar cells. These materials and their applications in technologies that require control over interface reflections have the potential for broad utility in imaging systems, photolithography, light-emitting diodes, and display technologies.

  10. Secondary electron/reflected particle coincidence studies during slow highly charged ion-surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, C.T.; Szilagyi, Z.; Shah, M.B.; McCullough, R.W. [Queen' s Univ., Belfast, Northern Ireland (United Kingdom); Woolsey, J.M. [Stirling Univ. (United Kingdom). DBMS; Trassl, R.; Salzborn, E. [Giessen Univ. (Germany). Inst. fuer Kernphysik

    2001-07-01

    We have measured the secondary electron emission statistics (ES) for 5 keV N{sup q+} (q = 1-4) ions incident at 10 on polycrystalline aluminium, in coincidence with specularly reflected N{sup 0}. In this arrangement the kinetic contribution to secondary electron emission is minimised. The experimental data shows that the coincident electron yield, {gamma}, increases linearly with incident ion charge state. The kinetic emission contribution has also been determined from this data. The ES due to 2 and 4 keV He{sup 2+} impact on polycrystalline aluminium in coincidence with specularly reflected He{sup +} and He{sup 0} have also been determined. The process He{sup 2+} {yields} He{sup 0} yields a larger {gamma} value than the process He{sup 2+} {yields} He{sup +}. (orig.)

  11. Virtual Relighting of a Virtualized Scene by Estimating Surface Reflectance Properties

    OpenAIRE

    福富, 弘敦; 町田, 貴史; 横矢, 直和

    2011-01-01

    In mixed reality that merges real and virtual worlds, it is required to interactively manipulate the illumination conditions in a virtualized space. In general, specular reflections in a scene make it difficult to interactively manipulate the illumination conditions. Our goal is to provide an opportunity to simulate the original scene, including diffuse and specular relfections, with novel viewpoints and illumination conditions. Thus, we propose a new method for estimating diffuse and specula...

  12. Role of the substrate reflectance and surface-bulk treatments in CsI quantum efficiency

    CERN Document Server

    Singh, B K; Nitti, M A; Valentini, A

    2003-01-01

    We have experimentally investigated the following aspects related to the quantum efficiency of CsI photocathodes: the type of substrate, the film thickness and the effect of a 'bulk treatment' during the film growth. We discovered that, using a high reflectivity aluminium substrate, the photoemission of very thin CsI film is enhanced. Our study also revealed that photocathodes become less sensitive to moisture when a negative bias voltage is applied to the substrate during the film deposition process.

  13. On quantum motion of particle in linear potential bounded by perfectly reflecting plane and parabolic surfaces

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.

    1999-01-01

    The motion of a particle in the linear potential bounded by an inclined plane or parabolic surfaces is considered. The quantization of energy and wave functions is obtained numerically by the separation of the variables method

  14. Mapping lithosphere thickness beneath the Southern Caribbean and Venezuela using body wave reflectivity and surface wave tomography

    Science.gov (United States)

    Masy, J.; Niu, F.; Levander, A.; Schmitz, M.

    2012-12-01

    The Caribbean (CAR) and South American (SA) plate boundary in Venezuela is a broad zone of diffuse deformation and faulting. GPS measurements indicate that the CAR is moving approximately 2 cm/yr respect to SA, parallel to the strike slip fault system in the east, but with an oblique convergence component in the west (Weber et al., 2001). Along the central and eastern Venezuela coast, most of the motion is accommodated by both transpression and transtension along the right lateral strike-slip San Sebastian- El Pilar fault system. The main tectonic features of the area include accretionary wedges and coastal thrust belts with their associated foreland basins (e.g. Sierra del Interior and Espino Graben). Southern of the plate boundary is located the Guayana Shield, which is part of the Amazonian Craton, and is an elevated plain consisting of Precambrian rocks. BOLIVAR (Broadband Onshore-Offshore Lithospheric Investigation of Venezuela and the Antilles Arc Region) was a multidisciplinary, international investigation to determine the evolution of the CAR-SA plate boundary (Levander et al., 2006) that included a 47 station broadband seismic array to complement the 40 station Venezuelan national array operated by FUNVISIS. The goal of this study is to map out lithosphere thickness across the region in order to understand its role for the various types of deformations observed at surface. We combined surface wave tomography and body wave reflectivity to locate the depth of the lithosphere-asthenosphere boundary (LAB). To generate a coherent 3D reflectivity volume of the study area, we used both P- and S-wave receiver-function data, as well as the ScS reverberation records of two deep earthquakes occurring in South America. We also measured Rayleigh phase velocities in the frequency range of 20-100 s using the two plane-wave method to remove multi-pathing effects (Forsyth and Li, 2005). Finite-frequency kernels were computed for a total of 63 teleseismic events to improve

  15. Polarization properties and microfacet-based modelling of white, grey and coloured matte diffuse reflection standards

    Science.gov (United States)

    Quast, T.; Schirmacher, A.; Hauer, K.-O.; Koo, A.

    2018-02-01

    To elucidate the influence of polarization in diffuse reflectometry, we performed a series of measurements in several bidirectional geometries and determined the Stokes parameters of the diffusely reflected radiation. Different types of matte reflection standards were used, including several common white standards and ceramic colour standards. The dependence of the polarization on the sample type, wavelength and geometry have been studied systematically, the main influence factors have been identified: The effect is largest at large angles of incidence or detection and at wavelengths where the magnitude of the reflectance is small. The results for the colour standards have been modelled using a microfacet-based reflection theory which is derived from the well-known model of Torrance and Sparrow. Although the theory is very simple and only has three free parameters, the agreement with the measured data is very good, all essential features of the data can be reproduced by the model.

  16. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.

    2008-01-01

    an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From......In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  17. Classification of reflected signals from cavitated tooth surfaces using an artificial intelligence technique incorporating a fiber optic displacement sensor

    Science.gov (United States)

    Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith

    2014-05-01

    An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.

  18. Winter radiation extinction and reflection in a boreal pine canopy: measurements and modelling

    International Nuclear Information System (INIS)

    Pomeroy, J.W.; Dion, K.

    1996-01-01

    Predicting the rate of snow melt and intercepted snow sublimation in boreal forests requires an understanding of the effects of snow-covered conifers on the exchange of radiant energy. This study examined the amount of intercepted snow on a jack pine canopy in the boreal forest of central Saskatchewan and the shortwave and net radiation exchange with this canopy, to determine the effect of intercepted snow and canopy structure on shortwave radiation reflection and extinction and net radiation attenuation in a boreal forest. The study focused on clear sky conditions, which are common during winter in the continental boreal forest. Intercepted snow was found to have no influence on the clear-sky albedo of the canopy, the extinction of short wave radiation by the canopy or ratio of net radiation at the canopy top to that at the surface snow cover. Because of the low albedo of the snow-covered canopy, net radiation at the canopy top remains positive and a large potential source of energy for sublimation. The canopy albedo declines somewhat as the extinction efficiency of the underlying canopy increases. The extinction efficiency of short wave radiation in the canopy depends on solar angle because of the approximately horizontal orientation of pine branches. For low solar angles above the horizon, the extinction efficiency is quite low and short wave transmissivity through the canopy is relatively high. As the solar angle increases, extinction increases up to angles of about 50°, and then declines. Extinction of short wave radiation in the canopy strongly influences the attenuation of net radiation by the canopy. Short wave radiation that is extinguished by branches is radiated as long wave, partly downwards to the snow cover. The ratio of net radiation at the canopy top to that at the snow cover surface increases with the extinction of short wave radiation and is negative for low extinction efficiencies. For the pine canopy examined, the daily mean net radiation at

  19. Data sets for modeling: A retrospective collection of Bidirectional Reflectance and Forest Ecosystems Dynamics Multisensor Aircraft Campaign data sets

    Energy Technology Data Exchange (ETDEWEB)

    Walthall, C.L.; Kim, M. (Univ. of Maryland, College Park, MD (United States). Dept. of Geography); Williams, D.L.; Meeson, B.W.; Agbu, P.A.; Newcomer, J.A.; Levine, E.R.

    1993-12-01

    The Biospheric Sciences Branch, within the Laboratory for Terrestrial Physics at NASA's Goddard Space Flight Center, has assembled two data sets for free dissemination to the remote sensing research community. One data set, referred to as the Retrospective Bidirectional Reflectance Distribution Function (BRDF) Data Collection, is a collection of bidirectional reflectance and supporting biophysical measurements of surfaces ranging in diversity from bare soil to heavily forested canopies. The other data collection, resulting from measurements made in association with the Forest Ecosystems Dynamic Multisensor Aircraft Campaign (FED MAC), contains data that are relevant to ecosystem process models, particularly those which have been modified to incorporate remotely sensed data. Both of these collections are being made available to the science community at large in order to facilitate model development, validation, and usage. These data collections are subsets which have been compiled and consolidated from individual researcher or from several large data set collections including: the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE); FED MAC; the Superior National Forest Project (SNF); the Geologic Remote Sensing Field Experiment (GRSFE); and Agricultural Inventories through Space Applications of Remote Sensing (AgriStars). The complete, stand-along FED MAC Data Collection contains atmospheric, vegetation, and soils data acquired during field measurement campaigns conducted at international Papers' Northern Experimental Forest located approximately 40 km north of Bangor, Maine. Reflectance measurements at the canopy, branch, and needle level are available, along with the detailed canopy architectural measurements.

  20. Control of back surface reflectance from aluminum alloyed contacts on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cudzinovic, M.; Sopori, B. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    A process for forming highly reflective aluminum back contacts with low contact resistance to silicon solar cells is described. By controlling the process conditions, it is possible to vary the silicon/aluminum interface from a specular to a diffuse reflector while maintaining a high interface reflectance. The specular interface is found to be a uniform silicon/aluminum alloy layer a few angstroms thick that has epitaxially regrown on the silicon. The diffuse interface consists of randomly distributed (111) pyramids produced by crystallographic out-diffusion of the bulk silicon. The light trapping ability of the diffuse contact is found to be close to the theoretical limit. Both types of contacts are found to have specific contact resistivities of 10{sup {minus}5} {Omega}-cm{sup 2}. The process for forming the contacts involves illuminating the devices with tungsten halogen lamps. The process is rapid (under 100 s) and low temperature (peak temperature < 580{degrees}C), making it favorable for commercial solar cell fabrication.

  1. The SEA-change Model in Information Literacy: Assessing Information Literacy Development with Reflective Writing

    Directory of Open Access Journals (Sweden)

    Barbara Anne Sen

    2014-07-01

    Full Text Available Reflective writing is a key professional skill, and the University of Sheffield Information School seeks to develop this skill in our students through the use of reflective assessments. Reflection has been used as a means of supporting Information Literacy development in the Higher Education context and recent pedagogical IL frameworks highlight the important role of reflection. This paper presents an analysis of Undergraduate students’ reflective writing on one module. The writing is mapped against two models of reflection to understand the nature and depth of the students’ reflection and through this understand their Information literacy development, with the overall aim of improving the teaching and learning experience for the future. Key findings are that students did reflect deeply and identified a number of ways in which they felt their IL had developed (e.g. developing a knowledge of specialist sources, ways they could have improved their information literacy practices (e.g. through storing information in a more organised fashion, and ways that we could improve our teaching (e.g. by providing appropriate scaffolding for the activities.

  2. Reflection-based fibre-optic refractive index sensor using surface plasmon resonance

    Czech Academy of Sciences Publication Activity Database

    Hlubina, P.; Kadulová, M.; Ciprian, D.; Sobota, Jaroslav

    2014-01-01

    Roč. 9, August 19 (2014), 14033:1-5 ISSN 1990-2573 R&D Projects: GA MŠk(CZ) LO1212 Keywords : surface plasmon resonance * fibre-optic sensor * spectral interrogation technique * aqueous solutions of ethanol * refractive index Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.231, year: 2014

  3. RESEARCH OF THE ENTRANCE ANGLE EFFECT ON THE REFLECTANCE SPECTRA OF THE STAINLESS STEEL SURFACE OXIDIZED BY PULSED LASER RADIATION

    Directory of Open Access Journals (Sweden)

    V. P. Veiko

    2016-05-01

    Full Text Available Subject of Research.Oxide films on the metal surfaces can be obtained both by surface-uniform infrared heating and local laser treatment e.g. by sequence of nanosecond laser pulses. Due to interference in created films the coloration of treated area is observed. The present work shows the results of spectrophotometric measurements for various light entrance angles in the range of 10-60°. Method. AISI 304 stainless steel plates were oxidized by two methods: in muffle furnace FM - 10 (Т= 500-600° С, t = 5-7 min. and at line-by-line scanning by sequence of nanosecond laser pulses (λ = 1.06 μm, τ =100 ns, r = 25 μm,q=2.91∙107 W/cm2, Nx = 30, Ny = 1. Surface research in optical resolution was realized by Carl Zeiss Axio Imager A1M. Reflectance spectra were obtained with spectrophotometer Lambda Perkin 1050 with integrating sphere at different fixed light incidence angles. Topographic features were detected by scanning probe microscopy investigation with NanoEducator equipment. Main Results. The quantitative surface geometry characteristics of AISI 304 stainless steel patterns treated by different methods are obtained. It was found that the increase of light entrance angle has no influence on the form of reflection coefficient dependence from a wavelength, but a blue-shift occurs especially for the case of laser treatment. This difference can be caused by surface topology formed by laser heating and variety of oxide film thickness. This effect results in more significant change in observed sample color for laser treatment then for infrared heating. Practical Relevance. The results obtained in the present work can be used to implement a new element of product protection against forgery with the product marking.

  4. Macroscopic self-consistent model for external-reflection near-field microscopy

    International Nuclear Information System (INIS)

    Berntsen, S.; Bozhevolnaya, E.; Bozhevolnyi, S.

    1993-01-01

    The self-consistent macroscopic approach based on the Maxwell equations in two-dimensional geometry is developed to describe tip-surface interaction in external-reflection near-field microscopy. The problem is reduced to a single one-dimensional integral equation in terms of the Fourier components of the field at the plane of the sample surface. This equation is extended to take into account a pointlike scatterer placed on the sample surface. The power of light propagating toward the detector as the fiber mode is expressed by using the self-consistent field at the tip surface. Numerical results for trapezium-shaped tips are presented. The authors show that the sharper tip and the more confined fiber mode result in better resolution of the near-field microscope. Moreover, it is found that the tip-surface distance should not be too small so that better resolution is ensured. 14 refs., 10 figs

  5. A Multi-Wavelength Thermal Infrared and Reflectance Scene Simulation Model

    Science.gov (United States)

    Ballard, J. R., Jr.; Smith, J. A.; Smith, David E. (Technical Monitor)

    2002-01-01

    Several theoretical calculations are presented and our approach discussed for simulating overall composite scene thermal infrared exitance and canopy bidirectional reflectance of a forest canopy. Calculations are performed for selected wavelength bands of the DOE Multispectral Thermal Imagery and comparisons with atmospherically corrected MTI imagery are underway. NASA EO-1 Hyperion observations also are available and the favorable comparison of our reflective model results with these data are reported elsewhere.

  6. Red-Edge Spectral Reflectance as an Indicator of Surface Moisture Content in an Alaskan Peatland Ecosystem

    Science.gov (United States)

    McPartland, M.; Kane, E. S.; Turetsky, M. R.; Douglass, T.; Falkowski, M. J.; Montgomery, R.; Edwards, J.

    2015-12-01

    Arctic and boreal peatlands serve as major reservoirs of terrestrial organic carbon (C) because Net Primary Productivity (NPP) outstrips C loss from decomposition over long periods of time. Peatland productivity varies as a function of water table position and surface moisture content, making C storage in these systems particularly vulnerable to the climate warming and drying predicted for high latitudes. Detailed spatial knowledge of how aboveground vegetation communities respond to changes in hydrology would allow for ecosystem response to environmental change to be measured at the landscape scale. This study leverages remotely sensed data along with field measurements taken at the Alaska Peatland Experiment (APEX) at the Bonanza Creek Long Term Ecological Research site to examine relationships between plant solar reflectance and surface moisture. APEX is a decade-long experiment investigating the effects of hydrologic change on peatland ecosystems using water table manipulation treatments (raised, lowered, and control). Water table levels were manipulated throughout the 2015 growing season, resulting in a maximum separation of 35 cm between raised and lowered treatment plots. Water table position, soil moisture content, depth to seasonal ice, soil temperature, photosynthetically active radiation (PAR), CO2 and CH4 fluxes were measured as predictors of C loss through decomposition and NPP. Vegetation was surveyed for percent cover of plant functional types. Remote sensing data was collected during peak growing season, when the separation between treatment plots was at maximum difference. Imagery was acquired via a SenseFly eBee airborne platform equipped with a Canon S110 red-edge camera capable of detecting spectral reflectance from plant tissue at 715 nm band center to within centimeters of spatial resolution. Here, we investigate empirical relationships between spectral reflectance, water table position, and surface moisture in relation to peat carbon balance.

  7. Quantitative surface topography determination by Nomarski reflection microscopy. 2: Microscope modification, calibration, and planar sample experiments

    International Nuclear Information System (INIS)

    Hartman, J.S.; Gordon, R.L.; Lessor, D.L.

    1980-01-01

    The application of reflective Nomarski differential interference contrast microscopy for the determination of quantitative sample topography data is presented. The discussion includes a review of key theoretical results presented previously plus the experimental implementation of the concepts using a commercial Momarski microscope. The experimental work included the modification and characterization of a commercial microscope to allow its use for obtaining quantitative sample topography data. System usage for the measurement of slopes on flat planar samples is also discussed. The discussion has been designed to provide the theoretical basis, a physical insight, and a cookbook procedure for implementation to allow these results to be of value to both those interested in the microscope theory and its practical usage in the metallography laboratory

  8. Characteristics of the magnetic wall reflection model on ion acceleration in gas-puff z pinch

    International Nuclear Information System (INIS)

    Nishio, M.; Takasugi, K.

    2013-01-01

    The magnetic wall reflection model was examined with the numerical simulation of the trajectory calculation of particles. This model is for the ions accelerated by some current-independent mechanism. The trajectory calculation showed angle dependency of highest velocities of accelerated particles. This characteristics is of the magnetic wall reflection model, not of the other current-independent acceleration mechanism. Thomson parabola measurements of accelerated ions produced in the gas-puff z-pinch experiments were carried out for the verification of the angle dependency. (author)

  9. In Situ Nondestructive Analysis of Kalanchoe pinnata Leaf Surface Structure by Polarization-Modulation Infrared Reflection-Absorption Spectroscopy.

    Science.gov (United States)

    Hama, Tetsuya; Kouchi, Akira; Watanabe, Naoki; Enami, Shinichi; Shimoaka, Takafumi; Hasegawa, Takeshi

    2017-12-14

    The outermost surface of the leaves of land plants is covered with a lipid membrane called the cuticle that protects against various stress factors. Probing the molecular-level structure of the intact cuticle is highly desirable for understanding its multifunctional properties. We report the in situ characterization of the surface structure of Kalanchoe pinnata leaves using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Without sample pretreatment, PM-IRRAS measures the IR spectra of the leaf cuticle of a potted K. pinnata plant. The peak position of the CH 2 -related modes shows that the cuticular waxes on the leaf surface are mainly crystalline, and the alkyl chains are highly packed in an all-trans zigzag conformation. The surface selection rule of PM-IRRAS revealed the average orientation of the cuticular molecules, as indicated by the positive and negative signals of the IR peaks. This unique property of PM-IRRAS revealed that the alkyl chains of the waxes and the main chains of polysaccharides are oriented almost perpendicular to the leaf surface. The nondestructive, background-free, and environmental gas-free nature of PM-IRRAS allows the structure and chemistry of the leaf cuticle to be studied directly in its native environment.

  10. Identification of hydrogen and deuterium at the surface of water ice by reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Yubero, F.; Toekesi, K.

    2009-01-01

    Complete text of publication follows. The study of elastically backscattered electrons from surfaces by reflection electron energy loss spectroscopy (REELS) has been recently recommended as an alternative technique to quantify the H content at the surface of a-C:H and polymer samples. This analysis is based on the fact that the energy loss of the incident electrons due to the recoil effect depends on the atomic mass of the particular atom present at the surface. The observed difference in recoil energies between H and O atoms (about 2 eV for 1.5 keV primary electrons) can be easily measured with standard electron spectrometers used in surface analysis. In this paper we go one step forward to explore if, with the same experimental approach, it is possible to differentiate between hydrogen and deuterium (D) in the surface region of a sample. This capability could be important for technological fields such as surface functionalization, where it is desired to distinguish between H and D at surfaces after interaction with labeled compounds. We have chosen normal and deuterated water as test labeled compounds because this polar molecule is of key importance in numerous surface reactions. It has been shown that H and D can be easily distinguished at the surface of water ice [4] using standard REELS measurements with 1000 - 1650 eV primary-electron energies, i.e., a surface analytical technique. Differences in recoil energies of the O - H and O - D atom pairs present in H 2 O and D 2 O have been found to agree with MC simulations (see Fig.1). There are many possible applications of H and D detection by REELS. Among many others, this study opens the possibility of nondestructive studies of deuterium-labeled atoms present or adsorbed on surfaces. For example, studies of H incorporation into a polymer or carbonbased surface after plasma activation with gas mixtures with several labeled molecules containing H atoms. Acknowledgements F.Y. thanks the Spanish Ministry of Science

  11. META-COMMUNICATION FOR REFLECTIVE ONLINE CONVERSATIONS: Models for Distance Education

    Directory of Open Access Journals (Sweden)

    Yasin OZARSLAN

    2012-01-01

    Full Text Available “Meta Communication” is the process between message designers when they are talking about the learning process, as distinguished from their articulation of the “substantive” learning, itself. Therefore, it is important to understand how to design reflective online conversations and how to implement a diverse milieu for prospective online learners so that they are able to transfer their information, knowledge, and learning from theoretical forms to real life experiences. This book discusses meta-communication for reflective online conversations to provide digital people with models for distance education. This book brings together meta-communication, distance education, and models as well as reflective online conversations at the same time.The book is consisted of 321 pages covering 17 chapters. Topics covered in this book are divided into four sections: Meta-communicative knowledge building and online communications, dynamic models of meta-communication and reflective conversations, designing online messages for reflections, and meta-communicative assessments and reflective communication skills. The book's broader audience is anyone who is involved in e-learning.

  12. A small-displacement sensor using total internal reflection theory and surface plasmon resonance technology for heterodyne interferometry.

    Science.gov (United States)

    Wang, Shinn-Fwu

    2009-01-01

    A small-displacement sensor based on total-internal reflection theory and surface plasmon resonance technology is proposed for use in heterodyne interferometry. A small displacement can be obtained simply by measuring the variation in phase difference between s- and p-polarization states with the small-displacement sensor. The theoretical displacement resolution of the small-displacement sensor can reach 0.45 nm. The sensor has some additional advantages, e.g., a simple optical setup, high resolution, high sensitivity and rapid measurement. Its feasibility is also demonstrated.

  13. A Generic Approach for Inversion of Surface Reflectance over Land: Overview, Application and Validation Using MODIS and LANDSAT8 Data

    Science.gov (United States)

    Vermote, E.; Roger, J. C.; Justice, C. O.; Franch, B.; Claverie, M.

    2016-01-01

    This paper presents a generic approach developed to derive surface reflectance over land from a variety of sensors. This technique builds on the extensive dataset acquired by the Terra platform by combining MODIS and MISR to derive an explicit and dynamic map of band ratio's between blue and red channels and is a refinement of the operational approach used for MODIS and LANDSAT over the past 15 years. We will present the generic approach and the application to MODIS and LANDSAT data and its validation using the AERONET data.

  14. Crystals with an Open Wave-Vector Surface: Peculiarities of Reflection and Possibilities of Designing Flat Lenses

    International Nuclear Information System (INIS)

    Eritsyan, O. S.; Lalayan, A. A.; Arakelyan, O. M.; Papoyan, A. A.; Kostanyan, R. B.

    2010-01-01

    The frequency dependence of the reflection coefficient of MgF 2 crystal in the frequency range of 200-800 cm -1 at different orientations of the optical axis has been investigated. The experimental data are compared with the calculation results. This comparison confirms that the wave vectors for the extraordinary wave have an open surface. This makes it possible to focus a divergent beam refracted at a flat boundary ori- ented perpendicularly to the optical crystal axis. The focusing effect of a plane-parallel MgF 2 crystal plate is calculated.

  15. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    John Rogers

    2011-12-31

    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume

  16. Spatial and energy distributions of satellite-speed helium atoms reflected from satellite-type surfaces

    International Nuclear Information System (INIS)

    Liu, S.M.; Rodgers, W.E.; Knuth, E.L.

    1977-01-01

    Interactions of satellite-speed helium atoms (accelerated in an expansion from an arc-heated supersonic-molecular-beam source) with practical satellite surfaces have been investigated experimentally. The density and energy distributions of the scattered atoms were measured using a detection system developed for this study. This detection system includes (a) a target positioning mechanism, (b) a detector rotating mechanism, and (c) a mass spectrometer and/or a retarding-field energy analyzer. (Auth.)

  17. Influences on the reflectance of Arctic sea ice and the impact of anthropogenic impurities on the surface shortwave radiation balance

    OpenAIRE

    Schulz, Hannes; Herber, Andreas; Birnbaum, Gerit; Seckmeyer, Gunther

    2014-01-01

    In order to investigate influences on the reflectance of snow covered Arctic sea ice, a discrete ordinate method and Mie-Theory based radiative transfer model has been set up. This model, the Snow on Sea Ice Model (SoSIM), is able to investigate changes in spectral and spectrally integrated (broadband) albedo of a multi-layer snow cover on sea ice due to varying snow microphysical parameters, atmospheric composition and incoming solar radiation. For typical conditions in the Arctic sea-ice ar...

  18. [Bare Soil Moisture Inversion Model Based on Visible-Shortwave Infrared Reflectance].

    Science.gov (United States)

    Zheng, Xiao-po; Sun, Yue-jun; Qin, Qi-ming; Ren, Hua-zhong; Gao, Zhong-ling; Wu, Ling; Meng, Qing-ye; Wang, Jin-liang; Wang, Jian-hua

    2015-08-01

    Soil is the loose solum of land surface that can support plants. It consists of minerals, organics, atmosphere, moisture, microbes, et al. Among its complex compositions, soil moisture varies greatly. Therefore, the fast and accurate inversion of soil moisture by using remote sensing is very crucial. In order to reduce the influence of soil type on the retrieval of soil moisture, this paper proposed a normalized spectral slope and absorption index named NSSAI to estimate soil moisture. The modeling of the new index contains several key steps: Firstly, soil samples with different moisture level were artificially prepared, and soil reflectance spectra was consequently measured using spectroradiometer produced by ASD Company. Secondly, the moisture absorption spectral feature located at shortwave wavelengths and the spectral slope of visible wavelengths were calculated after analyzing the regular spectral feature change patterns of different soil at different moisture conditions. Then advantages of the two features at reducing soil types' effects was synthesized to build the NSSAI. Thirdly, a linear relationship between NSSAI and soil moisture was established. The result showed that NSSAI worked better (correlation coefficient is 0.93) than most of other traditional methods in soil moisture extraction. It can weaken the influences caused by soil types at different moisture levels and improve the bare soil moisture inversion accuracy.

  19. Analysis and experimental investigation for collimator reflective mirror surface deformation adjustment

    Directory of Open Access Journals (Sweden)

    Chia-Yen Chan

    2017-01-01

    Full Text Available Collimator design is essential for meeting the requirements of high-precision telescopes. The collimator diameter should be larger than that of the target for alignment. Special supporting structures are required to reduce the gravitational deformation and control the surface deformation induced by the mounting force when inspecting large-aperture primary mirrors (M1. A ZERODURÂŽ mirror 620 mm in diameter for a collimator was analyzed using the finite element method to obtain the deformation induced by the supporting structures and adjustment mechanism. Zernike polynomials were also adopted to fit the optical surface and separate corresponding aberrations. The computed and measured wavefront aberration configurations for the collimator M1 were obtained complementally. The wavefront aberrations were adjusted using fine adjustment screws using 3D optical path differences map of the mirror surface. Through studies using different boundary conditions and inner ring support positions, it is concluded that the optical performance was excellent under a strong enough supporter. The best adjustment position was attained and applied to the actual collimator M1 to prove the correctness of the simulation results.

  20. Segmentation of 3D ultrasound computer tomography reflection images using edge detection and surface fitting

    Science.gov (United States)

    Hopp, T.; Zapf, M.; Ruiter, N. V.

    2014-03-01

    An essential processing step for comparison of Ultrasound Computer Tomography images to other modalities, as well as for the use in further image processing, is to segment the breast from the background. In this work we present a (semi-) automated 3D segmentation method which is based on the detection of the breast boundary in coronal slice images and a subsequent surface fitting. The method was evaluated using a software phantom and in-vivo data. The fully automatically processed phantom results showed that a segmentation of approx. 10% of the slices of a dataset is sufficient to recover the overall breast shape. Application to 16 in-vivo datasets was performed successfully using semi-automated processing, i.e. using a graphical user interface for manual corrections of the automated breast boundary detection. The processing time for the segmentation of an in-vivo dataset could be significantly reduced by a factor of four compared to a fully manual segmentation. Comparison to manually segmented images identified a smoother surface for the semi-automated segmentation with an average of 11% of differing voxels and an average surface deviation of 2mm. Limitations of the edge detection may be overcome by future updates of the KIT USCT system, allowing a fully-automated usage of our segmentation approach.

  1. On fatigue crack growth mechanisms of MMC: Reflection on analysis of 'multi surface initiations'

    International Nuclear Information System (INIS)

    Mkaddem, A.; El Mansori, M.

    2009-01-01

    This work attempts to examine the mechanisms of fatigue when cracks synergetically initiate in more than one site at the specimen surface. The metal matrix composites (MMC) i.e. silicon carbide particles reinforced aluminium matrix composites (Al/SiC p -MMC), seem to be good candidates to accelerate fatigue failures following multi surface initiations (MSI). Closure effects of MSI mechanisms on the variation of fatigue behaviour are explored for various stress states. Experiments were carried out using non pre-treated and pre-treated specimens. Using an Equivalent Ellipse Method (EEM), it is shown that the aspect of surface finish of specimen plays an important role on crack growth. Scanning Electron Microscope (SEM) inspections have lead to distinguishing the initiation regions from propagation regions and final separation regions. It is also revealed that the total lifetime of specimens is sensitive to heat treatment. Moreover, it is found that the appearance of MSI in cycled materials is more probable at high level of fatigue loads.

  2. Modelling of ground penetrating radar data in stratified media using the reflectivity technique

    International Nuclear Information System (INIS)

    Sena, Armando R; Sen, Mrinal K; Stoffa, Paul L

    2008-01-01

    Horizontally layered media are often encountered in shallow exploration geophysics. Ground penetrating radar (GPR) data in these environments can be modelled by techniques that are more efficient than finite difference (FD) or finite element (FE) schemes because the lateral homogeneity of the media allows us to reduce the dependence on the horizontal spatial variables through Fourier transforms on these coordinates. We adapt and implement the invariant embedding or reflectivity technique used to model elastic waves in layered media to model GPR data. The results obtained with the reflectivity and FDTD modelling techniques are in excellent agreement and the effects of the air–soil interface on the radiation pattern are correctly taken into account by the reflectivity technique. Comparison with real wide-angle GPR data shows that the reflectivity technique can satisfactorily reproduce the real GPR data. These results and the computationally efficient characteristics of the reflectivity technique (compared to FD or FE) demonstrate its usefulness in interpretation and possible model-based inversion schemes of GPR data in stratified media

  3. The Play Curricular Activity Reflection Discussion Model for Game-Based Learning

    Science.gov (United States)

    Foster, Aroutis; Shah, Mamta

    2015-01-01

    This article elucidates the process of game-based learning in classrooms through the use of the Play Curricular activity Reflection Discussion (PCaRD) model. A mixed-methods study was conducted at a high school to implement three games with the PCaRD model in a year-long elective course. Data sources included interviews and observations for…

  4. A New Theory-to-Practice Model for Student Affairs: Integrating Scholarship, Context, and Reflection

    Science.gov (United States)

    Reason, Robert D.; Kimball, Ezekiel W.

    2012-01-01

    In this article, we synthesize existing theory-to-practice approaches within the student affairs literature to arrive at a new model that incorporates formal and informal theory, institutional context, and reflective practice. The new model arrives at a balance between the rigor necessary for scholarly theory development and the adaptability…

  5. Mastery, Enjoyment, Tradition and Innovation: A Reflective Practice Model for Instrumental and Vocal Teachers

    Science.gov (United States)

    Parkinson, Tom

    2016-01-01

    This article offers a model to assist music teachers in reflecting on their teaching practice in relation to their aims and values. Initially developed as a workshop aid for use on a music education MA program, the model is intended to provoke critical engagement with two prominent tensions in music education: that between mastery and enjoyment,…

  6. Winter Radiation Extinction and Reflection in a Boreal Pine Canopy: Measurements and Modelling

    Science.gov (United States)

    Pomeroy, J. W.; Dion, K.

    1996-12-01

    Predicting the rate of snowmelt and intercepted snow sublimation in boreal forests requires an understanding of the effects of snow-covered conifers on the exchange of radiant energy. This study examined the amount of intercepted snow on a jack pine canopy in the boreal forest of central Saskatchewan and the shortwave and net radiation exchange with this canopy, to determine the effect of intercepted snow and canopy structure on shortwave radiation reflection and extinction and net radiation attenuation in a boreal forest. The study focused on clear sky conditions, which are common during winter in the continental boreal forest. Intercepted snow was found to have no influence on the clear-sky albedo of the canopy, the extinction of short wave radiation by the canopy or ratio of net radiation at the canopy top to that at the surface snow cover. Because of the low albedo of the snow-covered canopy, net radiation at the canopy top remains positive and a large potential source of energy for sublimation. The canopy albedo declines somewhat as the extinction efficiency of the underlying canopy increases. The extinction efficiency of short wave radiation in the canopy depends on solar angle because of the approximately horizontal orientation of pine branches. For low solar angles above the horizon, the extinction efficiency is quite low and short wave transmissivity through the canopy is relatively high. As the solar angle increases, extinction increases up to angles of about 50̂, and then declines. Extinction of short wave radiation in the canopy strongly influences the attenuation of net radiation by the canopy. Short wave radiation that is extinguished by branches is radiated as long wave, partly downwards to the snow cover. The ratio of net radiation at the canopy top to that at the snow cover surface increases with the extinction of short wave radiation and is negative for low extinction efficiencies. For the pine canopy examined, the daily mean net radiation at the

  7. Development of Surfaces Optically Suitable for Flat Solar Panels. [using a reflectometer which separately evaluates spectral and diffuse reflectivities of surfaces

    Science.gov (United States)

    1979-01-01

    A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.

  8. A new MRI land surface model HAL

    Science.gov (United States)

    Hosaka, M.

    2011-12-01

    A land surface model HAL is newly developed for MRI-ESM1. It is used for the CMIP simulations. HAL consists of three submodels: SiByl (vegetation), SNOWA (snow) and SOILA (soil) in the current version. It also contains a land coupler LCUP which connects some submodels and an atmospheric model. The vegetation submodel SiByl has surface vegetation processes similar to JMA/SiB (Sato et al. 1987, Hirai et al. 2007). SiByl has 2 vegetation layers (canopy and grass) and calculates heat, moisture, and momentum fluxes between the land surface and the atmosphere. The snow submodel SNOWA can have any number of snow layers and the maximum value is set to 8 for the CMIP5 experiments. Temperature, SWE, density, grain size and the aerosol deposition contents of each layer are predicted. The snow properties including the grain size are predicted due to snow metamorphism processes (Niwano et al., 2011), and the snow albedo is diagnosed from the aerosol mixing ratio, the snow properties and the temperature (Aoki et al., 2011). The soil submodel SOILA can also have any number of soil layers, and is composed of 14 soil layers in the CMIP5 experiments. The temperature of each layer is predicted by solving heat conduction equations. The soil moisture is predicted by solving the Darcy equation, in which hydraulic conductivity depends on the soil moisture. The land coupler LCUP is designed to enable the complicated constructions of the submidels. HAL can include some competing submodels (precise and detailed ones, and simpler ones), and they can run at the same simulations. LCUP enables a 2-step model validation, in which we compare the results of the detailed submodels with the in-situ observation directly at the 1st step, and follows the comparison between them and those of the simpler ones at the 2nd step. When the performances of the detailed ones are good, we can improve the simpler ones by using the detailed ones as reference models.

  9. Potential Long-Term Records of Surface Albedo at Fine Spatiotemporal Resolution from Landsat/Sentinle-2A Surface Reflectance and MODIS/VIIRS BRDF

    Science.gov (United States)

    Li, Z.; Schaaf, C.; Shuai, Y.; Liu, Y.; Sun, Q.; Erb, A.; Wang, Z.

    2016-12-01

    The land surface albedo products at fine spatial resolutions are generated by coupling surface reflectance (SR) from Landsat (30 m) or Sentinel-2A (20 m) with concurrent surface anisotropy information (the Bidirectional Reflectance Distribution Function - BRDF) at coarser spatial resolutions from sequential multi-angular observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) or its successor, the Visible Infrared Imaging Radiometer Suite (VIIRS). We assess the comparability of four types of fine-resolution albedo products (black-sky and white-sky albedos over the shortwave broad band) generated by coupling, (1) Landsat-8 Optical Land Imager (OLI) SR with MODIS BRDF; (2) OLI SR with VIIRS BRDF; (3) Sentinel-2A MultiSpectral Instrument (MSI) SR with MODIS BRDF; and (4) MSI SR with VIIRS BRDF. We evaluate the accuracy of these four types of fine-resolution albedo products using ground tower measurements of surface albedo over six SURFace RADiation Network (SURFRAD) sites in the United States. For comparison with the ground measurements, we estimate the actual (blue-sky) albedo values at the six sites by using the satellite-based retrievals of black-sky and white-sky albedos and taking into account the proportion of direct and diffuse solar radiation from the ground measurements at the sites. The coupling of the OLI and MSI SR with MODIS BRDF has already been shown to provide accurate fine-resolution albedo values. With demonstration of a high agreement in BRDF products from MODIS and VIIRS, we expect to see consistency between all four types of fine-resolution albedo products. This assurance of consistency between the couplings of both OLI and MSI with both MODIS and VIIRS guarantees the production of long-term records of surface albedo at fine spatial resolutions and an increased temporal resolution. Such products will be critical in studying land surface changes and associated surface energy balance over the dynamic and heterogeneous landscapes

  10. Wall reflection modeling for charge exchange recombination spectroscopy (CXRS) measurements on Textor and ITER

    International Nuclear Information System (INIS)

    Banerjee, Santanu; Vasu, P; Von Hellermann, M; Jaspers, R J E

    2010-01-01

    Contamination of optical signals by reflections from the tokamak vessel wall is a matter of great concern. For machines such as ITER and future reactors, where the vessel wall will be predominantly metallic, this is potentially a risk factor for quantitative optical emission spectroscopy. This is, in particular, the case when bremsstrahlung continuum radiation from the bulk plasma is used as a common reference light source for the cross-calibration of visible spectroscopy. In this paper the reflected contribution to the continuum level in Textor and ITER has been estimated for the detection channels meant for charge exchange recombination spectroscopy (CXRS). A model assuming diffuse reflection has been developed for the bremsstrahlung which is a much extended source. Based on this model, it is shown that in the case of ITER upper port 3, a wall with a moderate reflectivity of 20% leads to the wall reflected fraction being as high as 55-60% of the weak signals in the edge channels. In contrast, a complete bidirectional reflectance distribution function (BRDF) based model has been developed in order to estimate the reflections from more localized sources like the charge exchange (CX) emission from a neutral beam in tokamaks. The largest signal contamination of ∼15% is seen in the core CX channels, where the true CX signal level is much lower than that in the edge channels. Similar values are obtained for Textor also. These results indicate that the contributions from wall reflections may be large enough to significantly distort the overall spectral features of CX data, warranting an analysis at different wavelengths.

  11. Wall reflection modeling for charge exchange recombination spectroscopy (CXRS) measurements on Textor and ITER

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Santanu; Vasu, P [Institute for Plasma Research, Bhat, Gandhinagar 382 428, Gujarat (India); Von Hellermann, M [FOM Institute for Plasma Physics, Rijnhuizen (Netherlands); Jaspers, R J E, E-mail: sbanerje@ipr.res.i [Applied Physics Department, Eindhoven University of Technology, Eindhoven (Netherlands)

    2010-12-15

    Contamination of optical signals by reflections from the tokamak vessel wall is a matter of great concern. For machines such as ITER and future reactors, where the vessel wall will be predominantly metallic, this is potentially a risk factor for quantitative optical emission spectroscopy. This is, in particular, the case when bremsstrahlung continuum radiation from the bulk plasma is used as a common reference light source for the cross-calibration of visible spectroscopy. In this paper the reflected contribution to the continuum level in Textor and ITER has been estimated for the detection channels meant for charge exchange recombination spectroscopy (CXRS). A model assuming diffuse reflection has been developed for the bremsstrahlung which is a much extended source. Based on this model, it is shown that in the case of ITER upper port 3, a wall with a moderate reflectivity of 20% leads to the wall reflected fraction being as high as 55-60% of the weak signals in the edge channels. In contrast, a complete bidirectional reflectance distribution function (BRDF) based model has been developed in order to estimate the reflections from more localized sources like the charge exchange (CX) emission from a neutral beam in tokamaks. The largest signal contamination of {approx}15% is seen in the core CX channels, where the true CX signal level is much lower than that in the edge channels. Similar values are obtained for Textor also. These results indicate that the contributions from wall reflections may be large enough to significantly distort the overall spectral features of CX data, warranting an analysis at different wavelengths.

  12. An experimental investigation of the reflection of low energy electrons from surfaces of 2H-MoS2

    International Nuclear Information System (INIS)

    Komolov, S.A.; Chadderton, L.T.

    1978-01-01

    Experiments are described in which a new technique - total current spectroscopy (TCS) - has been used to investigate the energy dependence of the reflection of low energy electrons from clean surfaces of the naturally occuring mineral molybdenite (2H-MoS 2 ). A theory involving both elastic and inelastic scattering of electrons is applied to a band structure calculated for molybdenite by Mattheiss. With relatively few approximations the results of numerical calculations for a TCS spectrum from molybdenite agree surprisingly well with experiment. It is suggested that TCS will prove to be a convenient and sensitive tool for the probing of energy structures in other solid surfaces. For the transition metal dichalcogenide series it should be possible to observe systematic changes in TCS spectra associated with changes in band structure, and subsequently to predict details in the density of states distributions using iterative computer procedures. (Auth.)

  13. A physical model study of the travel times and reflection points of SH-waves reflected from transversely isotropic media with tilted symmetry axes

    Science.gov (United States)

    Sun, Li-Chung; Chang, Young-Fo; Chang, Chih-Hsiung; Chung, Chia-Lung

    2012-05-01

    In reflection seismology, detailed knowledge of how seismic waves propagate in anisotropic media is important for locating reservoirs accurately. The SH-wave possesses a pure mode polarization which does not convert to P- and SV-waves when reflecting from a horizontal interface, and vice versa. The simplicity of the SH-wave thus provides an easy way to view the details of SH-wave propagation in anisotropic media. In this study, we attempt to inspect the theoretical reflection moveouts of SH-waves reflected from transversely isotropic (TI) layers with tilted symmetry axes and to verify the reflection point, which could be shifted away from the common midpoint (CMP), by numerical calculations and physical modelling. In travel time-offset analyses, the moveout curves of SH-waves reflected from horizontal TI media (TIM) with different tilted angles of symmetry axes are computed by the TI modified hyperbolic equation and Fermat's principle, respectively. It turns out that both the computed moveout curves are similar and fit well to the observed physical data. The reflection points of SH-waves for a CMP gather computed by Fermat's principle show that they are close to the CMP for TIM with the vertical and horizontal symmetry axes, but they shift away from the CMP for the other tilted angles of symmetry axes. The shifts of the reflection points of the SH-waves from the CMP were verified by physical modelling.

  14. Modeling seasonal surface temperature variations in secondary tropical dry forests

    Science.gov (United States)

    Cao, Sen; Sanchez-Azofeifa, Arturo

    2017-10-01

    Secondary tropical dry forests (TDFs) provide important ecosystem services such as carbon sequestration, biodiversity conservation, and nutrient cycle regulation. However, their biogeophysical processes at the canopy-atmosphere interface remain unknown, limiting our understanding of how this endangered ecosystem influences, and responds to the ongoing global warming. To facilitate future development of conservation policies, this study characterized the seasonal land surface temperature (LST) behavior of three successional stages (early, intermediate, and late) of a TDF, at the Santa Rosa National Park (SRNP), Costa Rica. A total of 38 Landsat-8 Thermal Infrared Sensor (TIRS) data and the Surface Reflectance (SR) product were utilized to model LST time series from July 2013 to July 2016 using a radiative transfer equation (RTE) algorithm. We further related the LST time series to seven vegetation indices which reflect different properties of TDFs, and soil moisture data obtained from a Wireless Sensor Network (WSN). Results showed that the LST in the dry season was 15-20 K higher than in the wet season at SRNP. We found that the early successional stages were about 6-8 K warmer than the intermediate successional stages and were 9-10 K warmer than the late successional stages in the middle of the dry season; meanwhile, a minimum LST difference (0-1 K) was observed at the end of the wet season. Leaf phenology and canopy architecture explained most LST variations in both dry and wet seasons. However, our analysis revealed that it is precipitation that ultimately determines the LST variations through both biogeochemical (leaf phenology) and biogeophysical processes (evapotranspiration) of the plants. Results of this study could help physiological modeling studies in secondary TDFs.

  15. Merging Digital Surface Models Implementing Bayesian Approaches

    Science.gov (United States)

    Sadeq, H.; Drummond, J.; Li, Z.

    2016-06-01

    In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades). It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.

  16. MERGING DIGITAL SURFACE MODELS IMPLEMENTING BAYESIAN APPROACHES

    Directory of Open Access Journals (Sweden)

    H. Sadeq

    2016-06-01

    Full Text Available In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades. It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.

  17. A functional-dynamic reflection on participatory processes in modeling projects.

    Science.gov (United States)

    Seidl, Roman

    2015-12-01

    The participation of nonscientists in modeling projects/studies is increasingly employed to fulfill different functions. However, it is not well investigated if and how explicitly these functions and the dynamics of a participatory process are reflected by modeling projects in particular. In this review study, I explore participatory modeling projects from a functional-dynamic process perspective. The main differences among projects relate to the functions of participation-most often, more than one per project can be identified, along with the degree of explicit reflection (i.e., awareness and anticipation) on the dynamic process perspective. Moreover, two main approaches are revealed: participatory modeling covering diverse approaches and companion modeling. It becomes apparent that the degree of reflection on the participatory process itself is not always explicit and perfectly visible in the descriptions of the modeling projects. Thus, the use of common protocols or templates is discussed to facilitate project planning, as well as the publication of project results. A generic template may help, not in providing details of a project or model development, but in explicitly reflecting on the participatory process. It can serve to systematize the particular project's approach to stakeholder collaboration, and thus quality management.

  18. Surface topography to reflectivity mapping in two-dimensional photonic crystals designed in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Husanu, M.A.; Ganea, C.P. [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele, Ilfov (Romania); Anghel, I. [National Institute for Laser, Plasma & Radiation Physics, Atomistilor 409, 077125 Magurele (Romania); University of Bucharest, Faculty of Physics, Atomistilor 405, 077125 Magurele (Romania); Florica, C.; Rasoga, O. [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele, Ilfov (Romania); Popescu, D.G., E-mail: dana.popescu@infim.ro [National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele, Ilfov (Romania)

    2015-11-15

    Highlights: • Laser ablation is used for drilling a periodic 2D photonic structure. • Confinement of radiation is revealed by infra-red spectromicroscopy correlated with numerical calculations. • Telecommunication range is accessible upon tuning conveniently the processing parameters. - Abstract: Light confinement in a two dimensional photonic crystal (2D PhC) with hexagonal symmetry is studied using infra-red reflectance spectromicroscopy and numerical calculations. The structure has been realized by laser ablation, using a pulsed laser (λ = 775 nm), perforating an In-doped Ge wafer and creating a lattice of holes with well-defined symmetry. Correlating the spectral signature of the photonic gaps recorded experimentally with the results obtained in the finite difference time domain and finite difference frequency domain calculations, we established the relationship between the geometric parameters of the structure (lattice constants, shape of the hole) and its efficiency in trapping and guiding the radiation in a well-defined frequency range. Besides the gap in the low energy range of transversal electric modes, a second one is identified in the telecommunication range, originating in the localization of the leaky modes within the radiation continuum. The emerging picture is of a device with promising characteristics as an alternative to Si-based technology in photonic device fabrication with special emphasize in energy storage and conversion.

  19. Modeling the effect of reflection from metallic walls on spectroscopic measurements

    International Nuclear Information System (INIS)

    Zastrow, K.-D.; Keatings, S. R.; O'Mullane, M. G.; Marot, L.; Temmerman, G. de

    2008-01-01

    A modification of JET is presently being prepared to bring operational experience with ITER-like first wall (Be) and divertor (W) materials, geometry and plasma parameters. Reflectivity measurements of JET sample tiles have been performed and the data are used within a simplified model of the JET and ITER vessels to predict additional contributions to quantitative spectroscopic measurements. The most general method to characterize reflectivity is the bidirectional reflection distribution function (BRDF). For extended sources however, such as bremsstrahlung and edge emission of fuel and intrinsic impurities, the results obtained in the modeling are almost as accurate if the total reflectivity with ideal Lambertian angular dependence is used. This is in contrast to the experience in other communities, such as optical design, lighting design, or rendering who deal mostly with pointlike light sources. This result is so far based on a very limited set of measurements and will be reassessed when more detailed BRDF measurements of JET tiles have been made. If it is true it offers the possibility of in situ monitoring of the reflectivity of selected parts of the wall during exposure to plasma operation, while remeasurement of the BRDF is performed during interventions. For a closed vessel structure such as ITER, it is important to consider multiple reflections. This makes it more important to represent the whole of the vessel reasonably accurately in the model, which on the other hand is easier to achieve than for the more complex internal structure of JET. In both cases the dominant contribution is from the first reflection, and a detailed model of the areas intersected by lines of sight of diagnostic interest is required.

  20. The effect of radiation-thermal treatment on the physicochemical properties of the Ni-Mo/Al2O3 hydrotreatment catalyst. II. UV-Vis diffuse reflectance spectra of surface compounds after irradiation

    International Nuclear Information System (INIS)

    Solovetskii, Yu.I.; Miroshinichenko, I.I.; Lunin, V.V.

    1993-01-01

    Radiation-thermal damage of the surface and the active metal phases of hydrodesulfurization Ni-Mo/Al 2 O 3 catalysts by a fast electron beam of up to 2.0 MeV energy was studied. UV-Vis diffuse reflectance spectra of the industrial and model coked systems after radiation-thermal treatment were measured. 14 refs., 2 figs

  1. Measurement and modelization of silica opal reflection properties: Optical determination of the silica index

    Science.gov (United States)

    Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Frigerio, Jean-Marc; Coolen, Laurent; Schwob, Catherine; Nga, Pham Thu; Gallas, Bruno; Maître, Agnès

    2012-10-01

    Self-assembled artificial opals (in particular silica opals) constitute a model system to study the optical properties of three-dimensional photonic crystals. The silica optical index is a key parameter to correctly describe an opal but is difficult to measure at the submicrometer scale and usually treated as a free parameter. Here, we propose a method to extract the silica index from the opal reflection spectra and we validate it by comparison with two independent methods based on infrared measurements. We show that this index gives a correct description of the opal reflection spectra, either by a band structure or by a Bragg approximation. In particular, we are able to provide explanations in quantitative agreement with the measurements for two features : the observation of a second reflection peak in specular direction, and the quasicollapse of the p-polarized main reflection peak at a typical angle of 54∘.

  2. The Illumination Model of the Valley Based on the Diffuse Reflect of Forest

    Directory of Open Access Journals (Sweden)

    He Guoliang

    2016-01-01

    Full Text Available In this paper, models are build to evaluate the impact of the forest on the valley’s illumination. Based on the assumes that all the light reach the ground comes from the diffuse reflection which comes from the sun directly and from the diffuse reflection of other points, One model is build to consider the impact of time and latitude on the direction of the sunlight. So we can get the direction of the sunlight at different time and latitude through the model. Besides, this paper develops a illumination model to evaluate the intensity of illumination of the ground. Combining the models above, this paper get a complete model which can not only evaluate the overall light intensity of the valley but also convert the light intensity to the intensity of illumination. Simulation of the intensity illumination of some basic terrains and finally gives a comprehensive results which is practical and close to the common sense.

  3. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    Science.gov (United States)

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  4. Reflectance spectrometry of normal and bruised human skins: experiments and modeling

    International Nuclear Information System (INIS)

    Kim, Oleg; Alber, Mark; McMurdy, John; Lines, Collin; Crawford, Gregory; Duffy, Susan

    2012-01-01

    A stochastic photon transport model in multilayer skin tissue combined with reflectance spectroscopy measurements is used to study normal and bruised skins. The model is shown to provide a very good approximation to both normal and bruised real skin tissues by comparing experimental and simulated reflectance spectra. The sensitivity analysis of the skin reflectance spectrum to variations of skin layer thicknesses, blood oxygenation parameter and concentrations of main chromophores is performed to optimize model parameters. The reflectance spectrum of a developed bruise in a healthy adult is simulated, and the concentrations of bilirubin, blood volume fraction and blood oxygenation parameter are determined for different times as the bruise progresses. It is shown that bilirubin and blood volume fraction reach their peak values at 80 and 55 h after contusion, respectively, and the oxygenation parameter is lower than its normal value during 80 h after contusion occurred. The obtained time correlations of chromophore concentrations in developing contusions are shown to be consistent with previous studies. The developed model uses a detailed seven-layer skin approximation for contusion and allows one to obtain more biologically relevant results than those obtained with previous models using one- to three-layer skin approximations. A combination of modeling with spectroscopy measurements provides a new tool for detailed biomedical studies of human skin tissue and for age determination of contusions. (paper)

  5. Surface reflectance and conversion efficiency dependence of technologies for mitigating global warming

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, Ian [Solartran Pty Ltd., 12 Lentara St, Kenmore, Brisbane 4069 (Australia); Smith, Geoff [Physics and Advanced Materials, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007 (Australia)

    2011-05-15

    A means of assessing the relative impact of different renewable energy technologies on global warming has been developed. All power plants emit thermal energy to the atmosphere. Fossil fuel power plants also emit CO{sub 2} which accumulates in the atmosphere and provides an indirect increase in global warming via the greenhouse effect. A fossil fuel power plant may operate for some time before the global warming due to its CO{sub 2} emission exceeds the warming due to its direct heat emission. When a renewable energy power plant is deployed instead of a fossil fuel power plant there may be a significant time delay before the direct global warming effect is less than the combined direct and indirect global warming effect from an equivalent output coal fired plant - the ''business as usual'' case. Simple expressions are derived to calculate global temperature change as a function of ground reflectance and conversion efficiency for various types of fossil fuelled and renewable energy power plants. These expressions are used to assess the global warming mitigation potential of some proposed Australian renewable energy projects. The application of the expressions is extended to evaluate the deployment in Australia of current and new geo-engineering and carbon sequestration solutions to mitigate global warming. Principal findings are that warming mitigation depends strongly on the solar to electric conversion efficiency of renewable technologies, geo-engineering projects may offer more economic mitigation than renewable energy projects and the mitigation potential of reforestation projects depends strongly on the location of the projects. (author)

  6. A model that allows teachers to reflect on their ict approaches

    DEFF Research Database (Denmark)

    Kjeldsen, Lars Peter Bech; Kjærgaard, Hanne Wacher

    2016-01-01

    The increased global availability of technology and its entry onto the educational stage of Higher Education (HE) requires changes in the way we think of education and learning. This article will briefly describe and shed light on the new conditions for learning that are challenging our traditional...... pedagogical principles and present a model for pedagogical reflection that we call the Convergent Learning Space (CLS) consisting of the elements: Learning approaches; learning tools; learning spaces; availability; lifeworlds. The model reflects the choices and priorities teachers must make in relation...

  7. Size distribution of Parkfield’s microearthquakes reflects changes in surface creep rate

    Science.gov (United States)

    Tormann, Theresa; Wiemer, Stefan; Metzger, Sabrina; Michael, Andrew J.; Hardebeck, Jeanne L.

    2013-01-01

    The nucleation area of the series of M6 events in Parkfield has been shown to be characterized by low b-values throughout the seismic cycle. Since low b-values represent high differential stresses, the asperity structure seems to be always stably stressed and even unaffected by the latest main shock in 2004. However, because fault loading rates and applied shear stress vary with time, some degree of temporal variability of the b-value within stable blocks is to be expected. We discuss in this study adequate techniques and uncertainty treatment for a detailed analysis of the temporal evolution of b-values. We show that the derived signal for the Parkfield asperity correlates with changes in surface creep, suggesting a sensitive time resolution of the b-value stress meter, and confirming near-critical loading conditions within the Parkfield asperity.

  8. Accounting for surface reflectance in the derivation of vertical column densities of NO2 from airborne imaging DOAS

    Science.gov (United States)

    Meier, Andreas Carlos; Schönhardt, Anja; Richter, Andreas; Bösch, Tim; Seyler, André; Constantin, Daniel Eduard; Shaiganfar, Reza; Merlaud, Alexis; Ruhtz, Thomas; Wagner, Thomas; van Roozendael, Michel; Burrows, John. P.

    2016-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In the late summers of 2014 and 2015, two extensive measurement campaigns were conducted in Romania by several European research institutes, with financial support from ESA. The AROMAT / AROMAT-2 campaigns (Airborne ROmanian Measurements of Aerosols and Trace gases) were dedicated to measurements of air quality parameters utilizing newly developed instrumentation at state-of-the-art. The experiences gained will help to calibrate and validate the measurements taken by the upcoming Sentinel-S5p mission scheduled for launch in 2016. The IUP Bremen contributed to these campaigns with its airborne imaging DOAS (Differential Optical Absorption Spectroscopy) instrument AirMAP (Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution). AirMAP allows retrieving spatial distributions of trace gas columns densities in a stripe below the aircraft. The measurements have a high spatial resolution of approximately 30 x 80 m2 (along x across track) at a typical flight altitude of 3000 m. Supported by the instrumental setup and the large swath, gapless maps of trace gas distributions above a large city, like Bucharest or Berlin, can be acquired within a time window of approximately two hours. These properties make AirMAP a valuable tool for the validation of trace gas measurements from space. DOAS retrievals yield the density of absorbers integrated along the light path of the measurement. The light path is altered with a changing surface reflectance, leading to enhanced / reduced slant column densities of NO2 depending on surface properties. This effect must be considered in

  9. Retrieval of optical properties of skin from measurement and modeling the diffuse reflectance

    Science.gov (United States)

    Douven, Lucien F. A.; Lucassen, Gerald W.

    2000-06-01

    We present results on the retrieval of skin optical properties obtained by fitting of measurements of the diffuse reflectance of human skin. Reflectance spectra are simulated using an analytical model based on the diffusion approximation. This model is implemented in a simplex fit routine. The skin optical model used consists of five layers representing epidermis, capillary blood plexus, dermis, deep blood plexus and hypodermis. The optical properties of each layer are assumed homogeneously distributed. The main optical absorbers included are melanin in epidermis and blood. The experimental setup consists of a HP photospectrometer equipped with a remote fiber head. Total reflectance spectra were measured in the 400 - 820 nm wavelength range on the volar underarm of 19 volunteers under various conditions influencing the blood content and oxygenation degree. Changes in the reflectance spectra were observed. Using the fit routine changes in blood content in the capillary blood plexus and in the deep blood plexus could be quantified. These showed different influences on the total reflectance. The method can be helpful to quantitatively assess changes in skin color appearance such as occurs in the treatment of port wine stains, blanching, skin irritation and tanning.

  10. A surface hydrology model for regional vector borne disease models

    Science.gov (United States)

    Tompkins, Adrian; Asare, Ernest; Bomblies, Arne; Amekudzi, Leonard

    2016-04-01

    Small, sun-lit temporary pools that form during the rainy season are important breeding sites for many key mosquito vectors responsible for the transmission of malaria and other diseases. The representation of this surface hydrology in mathematical disease models is challenging, due to their small-scale, dependence on the terrain and the difficulty of setting soil parameters. Here we introduce a model that represents the temporal evolution of the aggregate statistics of breeding sites in a single pond fractional coverage parameter. The model is based on a simple, geometrical assumption concerning the terrain, and accounts for the processes of surface runoff, pond overflow, infiltration and evaporation. Soil moisture, soil properties and large-scale terrain slope are accounted for using a calibration parameter that sets the equivalent catchment fraction. The model is calibrated and then evaluated using in situ pond measurements in Ghana and ultra-high (10m) resolution explicit simulations for a village in Niger. Despite the model's simplicity, it is shown to reproduce the variability and mean of the pond aggregate water coverage well for both locations and validation techniques. Example malaria simulations for Uganda will be shown using this new scheme with a generic calibration setting, evaluated using district malaria case data. Possible methods for implementing regional calibration will be briefly discussed.

  11. Testing the Two-Layer Model for Correcting Near Cloud Reflectance Enhancement Using LES SHDOM Simulated Radiances

    Science.gov (United States)

    Wen, Guoyong; Marshak, Alexander; Varnai, Tamas; Levy, Robert

    2016-01-01

    A transition zone exists between cloudy skies and clear sky; such that, clouds scatter solar radiation into clear-sky regions. From a satellite perspective, it appears that clouds enhance the radiation nearby. We seek a simple method to estimate this enhancement, since it is so computationally expensive to account for all three-dimensional (3-D) scattering processes. In previous studies, we developed a simple two-layer model (2LM) that estimated the radiation scattered via cloud-molecular interactions. Here we have developed a new model to account for cloud-surface interaction (CSI). We test the models by comparing to calculations provided by full 3-D radiative transfer simulations of realistic cloud scenes. For these scenes, the Moderate Resolution Imaging Spectroradiometer (MODIS)-like radiance fields were computed from the Spherical Harmonic Discrete Ordinate Method (SHDOM), based on a large number of cumulus fields simulated by the University of California, Los Angeles (UCLA) large eddy simulation (LES) model. We find that the original 2LM model that estimates cloud-air molecule interactions accounts for 64 of the total reflectance enhancement and the new model (2LM+CSI) that also includes cloud-surface interactions accounts for nearly 80. We discuss the possibility of accounting for cloud-aerosol radiative interactions in 3-D cloud-induced reflectance enhancement, which may explain the remaining 20 of enhancements. Because these are simple models, these corrections can be applied to global satellite observations (e.g., MODIS) and help to reduce biases in aerosol and other clear-sky retrievals.

  12. A radiosity-based model to compute the radiation transfer of soil surface

    Science.gov (United States)

    Zhao, Feng; Li, Yuguang

    2011-11-01

    A good understanding of interactions of electromagnetic radiation with soil surface is important for a further improvement of remote sensing methods. In this paper, a radiosity-based analytical model for soil Directional Reflectance Factor's (DRF) distributions was developed and evaluated. The model was specifically dedicated to the study of radiation transfer for the soil surface under tillage practices. The soil was abstracted as two dimensional U-shaped or V-shaped geometric structures with periodic macroscopic variations. The roughness of the simulated surfaces was expressed as a ratio of the height to the width for the U and V-shaped structures. The assumption was made that the shadowing of soil surface, simulated by U or V-shaped grooves, has a greater influence on the soil reflectance distribution than the scattering properties of basic soil particles of silt and clay. Another assumption was that the soil is a perfectly diffuse reflector at a microscopic level, which is a prerequisite for the application of the radiosity method. This radiosity-based analytical model was evaluated by a forward Monte Carlo ray-tracing model under the same structural scenes and identical spectral parameters. The statistics of these two models' BRF fitting results for several soil structures under the same conditions showed the good agreements. By using the model, the physical mechanism of the soil bidirectional reflectance pattern was revealed.

  13. Spatial distribution of reflection intensity of the upper surface of the Philippine Sea plate, near the main slip area of the Boso Slow Slip Events

    Science.gov (United States)

    Kono, A.; Sato, T.; Shinohara, M.; Mochizuki, K.; Yamada, T.; Uehira, K.; Shimbo, T.; Machida, Y.; Hino, R.; Azuma, R.

    2017-12-01

    Off the Boso Peninsula, Japan, the Pacific plate (PAC) is subducting westward beneath the Honshu Island Arc (HIA) and the Philippine Sea plate (PHS), while the PHS is subducting northwestward under the HIA. Such tectonic interactions have caused various seismic events such as the Boso Slow Slip Events (SSEs). To better understand these seismic events, it is important to determine the structure under this region. In May 2017, we published 2D P-wave velocity structure under the survey area, and showed geometry of the upper surface of PHS (UPHS) and reflection intensity variation along it. From our result and previous studies, relatively strong reflection from the UPHS can be observed near the main slip area of Boso SSEs, and such reflective area may relate with the Boso SSEs. However, it is still insufficient to link both only from the 2D models and further work is needed to reveal spatial distribution of the strong reflection area. From July to August 2009, we conducted a marine seismic experiment using airgun as source off the east coast of the Boso Peninsula. Airgun was shot along the 4 survey lines, and 27 Ocean Bottom Seismometers (OBSs) were deployed in the survey area. In our presentation, we used 18 OBSs to determine 3D P-wave velocity structure. We estimated 3D velocity structure from airgun data recorded in the OBSs by using the FAST (Zelt and Barton, 1998). Next, we picked the reflection traveltimes likely reflected from the UPHS and applied them to the Traveltime mapping method (Fujie et al. 2006) to estimate spatial locations of the reflectors. As a result, reflections from the UPHS seem to concentrate near the main slip area of the Boso SSEs and an area where the serpentine seamount chain of the Izu-Bonin subduction zone is subducting. Acknowledgement The marine seismic experiment was conducted by R/V Hakuhou-maru of Japan Agency for Marine-Earth Science and Technology, and the OBSs were retrieved by Shincho-maru of Shin-Nihon-Kaiji co. Ltd. (Present

  14. Modeling Transmission and Reflection Mueller Matrices of Dielectric Half-Wave Plates

    Science.gov (United States)

    Salatino, Maria; de Bernardis, Paolo; Masi, Silvia

    2017-02-01

    We present a simple analytical model describing multiple reflections in dielectric and optically active waveplates, for both normal and slant incidence, including absorption. We compute from first principles the transmission and reflection Mueller matrices of the waveplate. The model is used to simulate the performance of a Stokes polarimeter for mm-waves, in the framework of current attempts to precisely measure the linear polarization of the Cosmic Microwave Background (CMB). We study the spectral response of these optical devices, taking into account band and angle averaging effects and confirm the presence of a much richer spectral dependence than in an ideal phase retarder. We also present the matrix elements for the reflection matrix, which is useful to estimate systematic effects in some polarimeter configurations. The formulas we have derived can be used to quickly simulate the performance of future CMB polarimeters.

  15. A fast radiative transfer model for visible through shortwave infrared spectral reflectances in clear and cloudy atmospheres

    International Nuclear Information System (INIS)

    Wang, Chenxi; Yang, Ping; Nasiri, Shaima L.; Platnick, Steven; Baum, Bryan A.; Heidinger, Andrew K.; Liu, Xu

    2013-01-01

    A computationally efficient radiative transfer model (RTM) for calculating visible (VIS) through shortwave infrared (SWIR) reflectances is developed for use in satellite and airborne cloud property retrievals. The full radiative transfer equation (RTE) for combinations of cloud, aerosol, and molecular layers is solved approximately by using six independent RTEs that assume the plane-parallel approximation along with a single-scattering approximation for Rayleigh scattering. Each of the six RTEs can be solved analytically if the bidirectional reflectance/transmittance distribution functions (BRDF/BTDF) of the cloud/aerosol layers are known. The adding/doubling (AD) algorithm is employed to account for overlapped cloud/aerosol layers and non-Lambertian surfaces. Two approaches are used to mitigate the significant computational burden of the AD algorithm. First, the BRDF and BTDF of single cloud/aerosol layers are pre-computed using the discrete ordinates radiative transfer program (DISORT) implemented with 128 streams, and second, the required integral in the AD algorithm is numerically implemented on a twisted icosahedral mesh. A concise surface BRDF simulator associated with the MODIS land surface product (MCD43) is merged into a fast RTM to accurately account for non-isotropic surface reflectance. The resulting fast RTM is evaluated with respect to its computational accuracy and efficiency. The simulation bias between DISORT and the fast RTM is large (e.g., relative error >5%) only when both the solar zenith angle (SZA) and the viewing zenith angle (VZA) are large (i.e., SZA>45° and VZA>70°). For general situations, i.e., cloud/aerosol layers above a non-Lambertian surface, the fast RTM calculation rate is faster than that of the 128-stream DISORT by approximately two orders of magnitude. -- Highlights: ► An efficient radiative transfer model is developed for cloud remote sensing. ► Multi-layered clouds and a non-Lambertian surface can be fully considered.

  16. A LAI inversion algorithm based on the unified model of canopy bidirectional reflectance distribution function for the Heihe River Basin

    Science.gov (United States)

    Ma, B.; Li, J.; Fan, W.; Ren, H.; Xu, X.

    2017-12-01

    Leaf area index (LAI) is one of the important parameters of vegetation canopy structure, which can represent the growth condition of vegetation effectively. The accuracy, availability and timeliness of LAI data can be improved greatly, which is of great importance to vegetation-related research, such as the study of atmospheric, land surface and hydrological processes to obtain LAI by remote sensing method. Heihe River Basin is the inland river basin in northwest China. There are various types of vegetation and all kinds of terrain conditions in the basin, so it is helpful for testing the accuracy of the model under the complex surface and evaluating the correctness of the model to study LAI in this area. On the other hand, located in west arid area of China, the ecological environment of Heihe Basin is fragile, LAI is an important parameter to represent the vegetation growth condition, and can help us understand the status of vegetation in the Heihe River Basin. Different from the previous LAI inversion models, the BRDF (bidirectional reflectance distribution function) unified model can be applied for both continuous vegetation and discrete vegetation, it is appropriate to the complex vegetation distribution. LAI is the key input parameter of the model. We establish the inversion algorithm that can exactly retrieve LAI using remote sensing image based on the unified model. First, we determine the vegetation type through the vegetation classification map to obtain the corresponding G function, leaf and surface reflectivity. Then, we need to determine the leaf area index (LAI), the aggregation index (ζ) and the sky scattered light ratio (β) range and the value of the interval, entering all the parameters into the model to calculate the corresponding reflectivity ρ and establish the lookup table of different vegetation. Finally, we can invert LAI on the basis of the established lookup table. The principle of inversion is least squares method. We have produced 1 km

  17. Variability in surface infrared reflectance of thirteen nitrile rubber gloves at key wavelengths for analysis of captan.

    Science.gov (United States)

    Phalen, R N; Que Hee, Shane S

    2007-02-01

    The aim of this study was to investigate the surface variability of 13 powder-free, unlined, and unsupported nitrile rubber gloves using attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectrophotometry at key wavelengths for analysis of captan contamination. The within-glove, within-lot, and between-lot variability was measured at 740, 1124, 1252, and 1735 cm(-1), the characteristic captan reflectance minima wavelengths. Three glove brands were assessed after conditioning overnight at relative humidity (RH) values ranging from 2 +/- 1 to 87 +/- 4% and temperatures ranging from -8.6 +/- 0.7 to 59.2 +/- 0.9 degrees C. For all gloves, 1735 cm(-1) provided the lowest background absorbance and greatest potential sensitivity for captan analysis on the outer glove surface: absorbances ranged from 0.0074 +/- 0.0005 (Microflex) to 0.0195 +/- 0.0024 (SafeSkin); average within-glove coefficients of variation (CV) ranged from 2.7% (Best, range 0.9-5.3%) to 10% (SafeSkin, 1.2-17%); within-glove CVs greater than 10% were for one brand (SafeSkin); within-lot CVs ranged from 2.8% (Best N-Dex) to 28% (SafeSkin Blue); and between-lot variation was statistically significant (p < or = 0.05) for all but two SafeSkin lots. The RH had variable effects dependent on wavelength, being minimal at 1735, 1252, and 1124 cm(-1) and highest at 3430 cm(-1) (O-H stretch region). There was no significant effect of temperature conditioning. Substantial within-glove, within-lot, and between-lot variability was observed. Thus, surface analysis using ATR-FT-IR must treat glove brands and lots as different. ATR-FT-IR proved to be a useful real-time analytical tool for measuring glove variability, detecting surface humidity effects, and choosing selective and sensitive wavelengths for analysis of nonvolatile surface contaminants.

  18. Prerequisites for sustainable care improvement using the reflective team as a work model.

    Science.gov (United States)

    Jonasson, Lise-Lotte; Carlsson, Gunilla; Nyström, Maria

    2014-01-01

    Several work models for care improvement have been developed in order to meet the requirement for evidence-based care. This study examines a work model for reflection, entitled the reflective team (RT). The main idea behind RTs is that caring skills exist among those who work closest to the patients. The team leader (RTL) encourages sustainable care improvement, rooted in research and proven experience, by using a lifeworld perspective to stimulate further reflection and a developmental process leading to research-based caring actions within the team. In order to maintain focus, it is important that the RTL has a clear idea of what sustainable care improvement means, and what the prerequisites are for such improvement. The aim of the present study is, therefore, to explore the prerequisites for improving sustainable care, seeking to answer how RTLs perceive these and use RTs for concrete planning. Nine RTLs were interviewed, and their statements were phenomenographically analysed. The analysis revealed three separate qualitative categories, which describe personal, interpersonal, and structural aspects of the prerequisites. In the discussion, these categories are compared with previous research on reflection, and the conclusion is reached that the optimal conditions for RTs to work, when focussed on sustainable care improvement, occur when the various aspects of the prerequisites are intertwined and become a natural part of the reflective work.

  19. Assimilation of radar reflectivity into the LM COSMO model with a high horizontal resolution

    Czech Academy of Sciences Publication Activity Database

    Sokol, Zbyněk; Řezáčová, Daniela

    2006-01-01

    Roč. 13, č. 4 (2006), s. 317-330 ISSN 1350-4827 R&D Projects: GA ČR GA205/04/0114 Institutional research plan: CEZ:AV0Z30420517 Keywords : precipitation forecast * assimilation * radar reflectivity * NWP model * local storm Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.453, year: 2006

  20. From humanitarianism to good governance? Reflections on a Danish-Ethiopian aid model

    DEFF Research Database (Denmark)

    Wilson, Fiona

    The report reflects on what people engaged in development research and practice mean by 'aid models'. Illustrating the argument is the history of an NGO alliance between Ethiopia and Denmark over the last 10 years. The report argues that 'northern' NGOs are often guilty of imposing new concepts a...

  1. Verification of land-atmosphere coupling in forecast models, reanalyses and land surface models using flux site observations.

    Science.gov (United States)

    Dirmeyer, Paul A; Chen, Liang; Wu, Jiexia; Shin, Chul-Su; Huang, Bohua; Cash, Benjamin A; Bosilovich, Michael G; Mahanama, Sarith; Koster, Randal D; Santanello, Joseph A; Ek, Michael B; Balsamo, Gianpaolo; Dutra, Emanuel; Lawrence, D M

    2018-02-01

    We confront four model systems in three configurations (LSM, LSM+GCM, and reanalysis) with global flux tower observations to validate states, surface fluxes, and coupling indices between land and atmosphere. Models clearly under-represent the feedback of surface fluxes on boundary layer properties (the atmospheric leg of land-atmosphere coupling), and may over-represent the connection between soil moisture and surface fluxes (the terrestrial leg). Models generally under-represent spatial and temporal variability relative to observations, which is at least partially an artifact of the differences in spatial scale between model grid boxes and flux tower footprints. All models bias high in near-surface humidity and downward shortwave radiation, struggle to represent precipitation accurately, and show serious problems in reproducing surface albedos. These errors create challenges for models to partition surface energy properly and errors are traceable through the surface energy and water cycles. The spatial distribution of the amplitude and phase of annual cycles (first harmonic) are generally well reproduced, but the biases in means tend to reflect in these amplitudes. Interannual variability is also a challenge for models to reproduce. Our analysis illuminates targets for coupled land-atmosphere model development, as well as the value of long-term globally-distributed observational monitoring.

  2. Accounting for the Effects of Surface BRDF on Satellite Cloud and Trace-Gas Retrievals: A New Approach Based on Geometry-Dependent Lambertian-Equivalent Reflectivity Applied to OMI Algorithms

    Science.gov (United States)

    Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey

    2017-01-01

    Most satellite nadir ultraviolet and visible cloud, aerosol, and trace-gas algorithms make use of climatological surface reflectivity databases. For example, cloud and NO2 retrievals for the Ozone Monitoring Instrument (OMI) use monthly gridded surface reflectivity climatologies that do not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun-sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (LER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. The geometry-dependent LER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from the Moderate Resolution Imaging Spectroradiometer (MODIS) over land and the Cox-Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare the geometry-dependent and climatological LERs for two wavelengths, 354 and 466 nm, that are used in OMI cloud algorithms to derive cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and geometry-dependent LERs is carried out. Geometry-dependent LER and corresponding retrieved cloud products are then used as inputs to our OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with geometry-dependent LERs can increase NO2 vertical columns by up to 50% in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.

  3. Accounting for the effects of surface BRDF on satellite cloud and trace-gas retrievals: a new approach based on geometry-dependent Lambertian equivalent reflectivity applied to OMI algorithms

    Science.gov (United States)

    Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey

    2017-01-01

    Most satellite nadir ultraviolet and visible cloud, aerosol, and trace-gas algorithms make use of climatological surface reflectivity databases. For example, cloud and NO2 retrievals for the Ozone Monitoring Instrument (OMI) use monthly gridded surface reflectivity climatologies that do not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun-sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (LER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. The geometry-dependent LER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from the Moderate Resolution Imaging Spectroradiometer (MODIS) over land and the Cox-Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare the geometry-dependent and climatological LERs for two wavelengths, 354 and 466 nm, that are used in OMI cloud algorithms to derive cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and geometry-dependent LERs is carried out. Geometry-dependent LER and corresponding retrieved cloud products are then used as inputs to our OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with geometry-dependent LERs can increase NO2 vertical columns by up to 50 % in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.

  4. Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs

    Science.gov (United States)

    Žuvela-Aloise, Maja; Andre, Konrad; Schwaiger, Hannes; Bird, David Neil; Gallaun, Heinz

    2018-02-01

    The study examines the potential of urban roofs to reduce the urban heat island (UHI) effect by changing their reflectivity and implementing vegetation (green roofs) using the example of the City of Vienna. The urban modelling simulations are performed based on high-resolution orography and land use data, climatological observations, surface albedo values from satellite imagery and registry of the green roof potential in Vienna. The modelling results show that a moderate increase in reflectivity of roofs (up to 0.45) reduces the mean summer temperatures in the densely built-up environment by approximately 0.25 °C. Applying high reflectivity materials (roof albedo up to 0.7) leads to average cooling in densely built-up area of approximately 0.5 °C. The green roofs yield a heat load reduction in similar order of magnitude as the high reflectivity materials. However, only 45 % of roof area in Vienna is suitable for greening and the green roof potential mostly applies to industrial areas in city outskirts and is therefore not sufficient for substantial reduction of the UHI effect, particularly in the city centre which has the highest heat load. The strongest cooling effect can be achieved by combining the green roofs with high reflectivity materials. In this case, using 50 or 100 % of the green roof potential and applying high reflectivity materials on the remaining surfaces have a similar cooling effect.

  5. Near-surface, marine seismic-reflection data defines potential hydrogeologic confinement bypass in a tertiary carbonate aquifer, southeastern Florida

    Science.gov (United States)

    Cunningham, Kevin J.; Walker, Cameron; Westcott, Richard L.

    2012-01-01

    Approximately 210 km of near-surface, high-frequency, marine seismic-reflection data were acquired on the southeastern part of the Florida Platform between 2007 and 2011. Many high-resolution, seismic-reflection profiles, interpretable to a depth of about 730 m, were collected on the shallow-marine shelf of southeastern Florida in water as shallow as 1 m. Landward of the present-day shelf-margin slope, these data image middle Eocene to Pleistocene strata and Paleocene to Pleistocene strata on the Miami Terrace. This high-resolution data set provides an opportunity to evaluate geologic structures that cut across confining units of the Paleocene to Oligocene-age carbonate rocks that form the Floridan aquifer system.Seismic profiles image two structural systems, tectonic faults and karst collapse structures, which breach confining beds in the Floridan aquifer system. Both structural systems may serve as pathways for vertical groundwater flow across relatively low-permeability carbonate strata that separate zones of regionally extensive high-permeability rocks in the Floridan aquifer system. The tectonic faults occur as normal and reverse faults, and collapse-related faults have normal throw. The most common fault occurrence delineated on the reflection profiles is associated with karst collapse structures. These high-frequency seismic data are providing high quality structural analogs to unprecedented depths on the southeastern Florida Platform. The analogs can be used for assessment of confinement of other carbonate aquifers and the sealing potential of deeper carbonate rocks associated with reservoirs around the world.

  6. Fast solar radiation pressure modelling with ray tracing and multiple reflections

    Science.gov (United States)

    Li, Zhen; Ziebart, Marek; Bhattarai, Santosh; Harrison, David; Grey, Stuart

    2018-05-01

    Physics based SRP (Solar Radiation Pressure) models using ray tracing methods are powerful tools when modelling the forces on complex real world space vehicles. Currently high resolution (1 mm) ray tracing with secondary intersections is done on high performance computers at UCL (University College London). This study introduces the BVH (Bounding Volume Hierarchy) into the ray tracing approach for physics based SRP modelling and makes it possible to run high resolution analysis on personal computers. The ray tracer is both general and efficient enough to cope with the complex shape of satellites and multiple reflections (three or more, with no upper limit). In this study, the traditional ray tracing technique is introduced in the first place and then the BVH is integrated into the ray tracing. Four aspects of the ray tracer were tested for investigating the performance including runtime, accuracy, the effects of multiple reflections and the effects of pixel array resolution.Test results in runtime on GPS IIR and Galileo IOV (In Orbit Validation) satellites show that the BVH can make the force model computation 30-50 times faster. The ray tracer has an absolute accuracy of several nanonewtons by comparing the test results for spheres and planes with the analytical computations. The multiple reflection effects are investigated both in the intersection number and acceleration on GPS IIR, Galileo IOV and Sentinel-1 spacecraft. Considering the number of intersections, the 3rd reflection can capture 99.12 %, 99.14 % , and 91.34 % of the total reflections for GPS IIR, Galileo IOV satellite bus and the Sentinel-1 spacecraft respectively. In terms of the multiple reflection effects on the acceleration, the secondary reflection effect for Galileo IOV satellite and Sentinel-1 can reach 0.2 nm /s2 and 0.4 nm /s2 respectively. The error percentage in the accelerations magnitude results show that the 3rd reflection should be considered in order to make it less than 0.035 % . The

  7. Reflection-time-of-flight spectrometer for two-electron (e,2e) coincidence spectroscopy on surfaces

    International Nuclear Information System (INIS)

    Kirschner, J.; Kerherve, G.; Winkler, C.

    2008-01-01

    In this article, a novel time-of-flight spectrometer for two-electron-emission (e,2e/γ,2e) correlation spectroscopy from surfaces at low electron energies is presented. The spectrometer consists of electron optics that collect emitted electrons over a solid angle of approximately 1 sr and focus them onto a multichannel plate using a reflection technique. The flight time of an electron with kinetic energy of E kin ≅25 eV is around 100 ns. The corresponding time- and energy resolution are typically ≅1 ns and ≅0.65 eV, respectively. The first (e,2e) data obtained with the present setup from a LiF film are presented

  8. Optical Modeling of Spectral Backscattering and Remote Sensing Reflectance From Emiliania huxleyi Blooms

    Directory of Open Access Journals (Sweden)

    Griet Neukermans

    2018-05-01

    Full Text Available In this study we develop an analytical model for spectral backscattering and ocean color remote sensing of blooms of the calcifying phytoplankton species Emiliania huxleyi. Blooms of this coccolithophore species are ubiquitous and particularly intense in temperate and subpolar ocean waters. We first present significant improvements to our previous analytical light backscattering model for E. huxleyi coccoliths and coccospheres by accounting for the elliptical shape of coccoliths and the multi-layered coccosphere architecture observed on detailed imagery of E. huxleyi liths and coccospheres. Our new model also includes a size distribution function that closely matches measured E. huxleyi size distributions. The model for spectral backscattering is then implemented in an analytical radiative transfer model to evaluate the variability of spectral remote sensing reflectance with respect to changes in the size distribution of the coccoliths and during a hypothetical E. huxleyi bloom decay event in which coccospheres shed their liths. Our modeled remote sensing reflectance spectra reproduced well the bright milky turquoise coloring of the open ocean typically associated with the final stages of E. huxleyi blooms, with peak reflectance at a wavelength of 0.49 μm. Our results also show that the magnitude of backscattering from coccoliths when attached to or freed from the coccosphere does not differ much, contrary to what is commonly assumed, and that the spectral shape of backscattering is mainly controlled by the size and morphology of the coccoliths, suggesting that they may be estimated from spectral backscattering.

  9. Comment on 'Modelling of surface energies of elemental crystals'

    International Nuclear Information System (INIS)

    Li Jinping; Luo Xiaoguang; Hu Ping; Dong Shanliang

    2009-01-01

    Jiang et al (2004 J. Phys.: Condens. Matter 16 521) present a model based on the traditional broken-bond model for predicting surface energies of elemental crystals. It is found that bias errors can be produced in calculating the coordination numbers of surface atoms, especially in the prediction of high-Miller-index surface energies. (comment)

  10. Characterization of the Vajont landslide (North-Eastern Italy) by means of reflection and surface wave seismics

    Science.gov (United States)

    Petronio, Lorenzo; Boaga, Jacopo; Cassiani, Giorgio

    2016-05-01

    The mechanisms of the disastrous Vajont rockslide (North-Eastern Italy, October 9, 1963) have been studied in great detail over the past five decades. Nevertheless, the reconstruction of the rockslide dynamics still presents several uncertainties, including those related to the accurate estimation of the actual landslide mass. This work presents the results of a geophysical characterization of the Vajont landslide body in terms of material properties and buried geometry. Both aspects add new information to the existing dataset and will help a better understanding of the rockslide failure mechanisms and dynamics. In addition, some general considerations concerning the intricacies of landslide characterization can be drawn, with due attention to potential pitfalls. The employed techniques are: (i) high resolution P-wave reflection, (ii) high resolution SH-wave reflection, (iii) controlled source surface wave analysis. We adopted as a seismic source a vibrator both for P waves and SH waves, using vertical and horizontal geophones respectively. For the surface wave seismic survey we used a heavy drop-weight source and low frequency receivers. Despite the high noise level caused by the fractured conditions of the large rock body, a common situation in landslide studies, we managed to achieve a satisfying imaging quality of the landslide structure thanks to the large number of active channels, the short receiver interval and the test of appropriate seismic sources. The joint use of different seismic techniques help focus the investigation on the rock mass mechanical properties. Results are in good agreement with the available borehole data, the geological sections and the mechanical properties of the rockmass estimated by other studies. In general the proposed approach is likely to be applicable successfully to similar situations where scattering and other noise sources are a typical bottleneck to geophysical data acquisition on landslide bodies.

  11. The introspective may achieve more: Enhancing existing Geoscientific models with native-language emulated structural reflection

    Science.gov (United States)

    Ji, Xinye; Shen, Chaopeng

    2018-01-01

    Geoscientific models manage myriad and increasingly complex data structures as trans-disciplinary models are integrated. They often incur significant redundancy with cross-cutting tasks. Reflection, the ability of a program to inspect and modify its structure and behavior at runtime, is known as a powerful tool to improve code reusability, abstraction, and separation of concerns. Reflection is rarely adopted in high-performance Geoscientific models, especially with Fortran, where it was previously deemed implausible. Practical constraints of language and legacy often limit us to feather-weight, native-language solutions. We demonstrate the usefulness of a structural-reflection-emulating, dynamically-linked metaObjects, gd. We show real-world examples including data structure self-assembly, effortless input/output (IO) and upgrade to parallel I/O, recursive actions and batch operations. We share gd and a derived module that reproduces MATLAB-like structure in Fortran and C++. We suggest that both a gd representation and a Fortran-native representation are maintained to access the data, each for separate purposes. Embracing emulated reflection allows generically-written codes that are highly re-usable across projects.

  12. A Dynamic Object Behavior Model and Implementation Based on Computational Reflection

    Institute of Scientific and Technical Information of China (English)

    HE Cheng-wan; HE Fei; HE Ke-qing

    2005-01-01

    A dynamic object behavior model based on computational reflection is proposed. This model consists of function level and meta level, the meta objects in meta level manage the base objects and behaviors in function level, including dynamic binding and unbinding of base object and behavior.We implement this model with RoleJava Language, which is our self linguistic extension of the Java Language. Meta Objects are generated automatically at compile-time, this makes the reflecton mechanism transparent to programmers. Finally an example applying this model to a banking system is presented.

  13. Mapping the global depth to bedrock for land surface modelling

    Science.gov (United States)

    Shangguan, W.; Hengl, T.; Yuan, H.; Dai, Y. J.; Zhang, S.

    2017-12-01

    Depth to bedrock serves as the lower boundary of land surface models, which controls hydrologic and biogeochemical processes. This paper presents a framework for global estimation of Depth to bedrock (DTB). Observations were extracted from a global compilation of soil profile data (ca. 130,000 locations) and borehole data (ca. 1.6 million locations). Additional pseudo-observations generated by expert knowledge were added to fill in large sampling gaps. The model training points were then overlaid on a stack of 155 covariates including DEM-based hydrological and morphological derivatives, lithologic units, MODIS surfacee reflectance bands and vegetation indices derived from the MODIS land products. Global spatial prediction models were developed using random forests and Gradient Boosting Tree algorithms. The final predictions were generated at the spatial resolution of 250m as an ensemble prediction of the two independently fitted models. The 10-fold cross-validation shows that the models explain 59% for absolute DTB and 34% for censored DTB (depths deep than 200 cm are predicted as 200 cm). The model for occurrence of R horizon (bedrock) within 200 cm does a good job. Visual comparisons of predictions in the study areas where more detailed maps of depth to bedrock exist show that there is a general match with spatial patterns from similar local studies. Limitation of the data set and extrapolation in data spare areas should not be ignored in applications. To improve accuracy of spatial prediction, more borehole drilling logs will need to be added to supplement the existing training points in under-represented areas.

  14. Modification of kaolinite surfaces through mechanochemical activation with quartz: A diffuse reflectance infrared fourier transform and chemometrics study.

    Science.gov (United States)

    Carmody, Onuma; Frost, Ray L; Kristóf, János; Kokot, Serge; Kloprogge, J Theo; Makó, Eva

    2006-12-01

    Studies of kaolinite surfaces are of industrial importance. One useful method for studying the changes in kaolinite surface properties is to apply chemometric analyses to the kaolinite surface infrared spectra. A comparison is made between the mechanochemical activation of Kiralyhegy kaolinites with significant amounts of natural quartz and the mechanochemical activation of Zettlitz kaolinite with added quartz. Diffuse reflectance infrared Fourier transform (DRIFT) spectra were analyzed using principal component analysis (PCA) and multi-criteria decision making (MCDM) methods, the preference ranking organization method for enrichment evaluations (PROMETHEE) and geometrical analysis for interactive assistance (GAIA). The clear discrimination of the Kiralyhegy spectral objects on the two PC scores plots (400-800 and 800-2030 cm(-1)) indicated the dominance of quartz. Importantly, no ordering of any spectral objects appeared to be related to grinding time in the PC plots of these spectral regions. Thus, neither the kaolinite nor the quartz are systematically responsive to grinding time according to the spectral criteria investigated. The third spectral region (2600-3800 cm(-1), OH vibrations), showed apparent systematic ordering of the Kiralyhegy and, to a lesser extent, Zettlitz spectral objects with grinding time. This was attributed to the effect of the natural quartz on the delamination of kaolinite and the accompanying phenomena (i.e., formation of kaolinite spheres and water). The mechanochemical activation of kaolinite and quartz, through dry grinding, results in changes to the surface structure. Different grinding times were adopted to study the rate of destruction of the kaolinite and quartz structures. This relationship (i.e., grinding time) was classified using PROMETHEE and GAIA methodology.

  15. Modeling the bidirectional reflectance distribution function of mixed finite plant canopies and soil

    Science.gov (United States)

    Schluessel, G.; Dickinson, R. E.; Privette, J. L.; Emery, W. J.; Kokaly, R.

    1994-01-01

    An analytical model of the bidirectional reflectance for optically semi-infinite plant canopies has been extended to describe the reflectance of finite depth canopies contributions from the underlying soil. The model depends on 10 independent parameters describing vegetation and soil optical and structural properties. The model is inverted with a nonlinear minimization routine using directional reflectance data for lawn (leaf area index (LAI) is equal to 9.9), soybeans (LAI, 2.9) and simulated reflectance data (LAI, 1.0) from a numerical bidirectional reflectance distribution function (BRDF) model (Myneni et al., 1988). While the ten-parameter model results in relatively low rms differences for the BRDF, most of the retrieved parameters exhibit poor stability. The most stable parameter was the single-scattering albedo of the vegetation. Canopy albedo could be derived with an accuracy of less than 5% relative error in the visible and less than 1% in the near-infrared. Sensitivity were performed to determine which of the 10 parameters were most important and to assess the effects of Gaussian noise on the parameter retrievals. Out of the 10 parameters, three were identified which described most of the BRDF variability. At low LAI values the most influential parameters were the single-scattering albedos (both soil and vegetation) and LAI, while at higher LAI values (greater than 2.5) these shifted to the two scattering phase function parameters for vegetation and the single-scattering albedo of the vegetation. The three-parameter model, formed by fixing the seven least significant parameters, gave higher rms values but was less sensitive to noise in the BRDF than the full ten-parameter model. A full hemispherical reflectance data set for lawn was then interpolated to yield BRDF values corresponding to advanced very high resolution radiometer (AVHRR) scan geometries collected over a period of nine days. The resulting parameters and BRDFs are similar to those for the

  16. Surface and near-surface hydrological model of Olkiluoto island