WorldWideScience

Sample records for modelling species richness

  1. Integrative modelling reveals mechanisms linking productivity and plant species richness

    NARCIS (Netherlands)

    Grace, James B.; Anderson, T. Michael; Seabloom, Eric W.; Borer, Elizabeth T.; Adler, Peter B.; Harpole, W. Stanley; Hautier, Yann; Hillebrand, Helmut; Lind, Eric M.; Pärtel, Meelis; Bakker, Jonathan D.; Buckley, Yvonne M.; Crawley, Michael J.; Damschen, Ellen I.; Davies, Kendi F.; Fay, Philip A.; Firn, Jennifer; Gruner, Daniel S.; Hector, Andy; Knops, Johannes M. H.; MacDougall, Andrew S.; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Smith, Melinda D.

    2016-01-01

    How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a

  2. Population dynamics of species-rich ecosystems: the mixture of matrix population models approach

    DEFF Research Database (Denmark)

    Mortier, Frédéric; Rossi, Vivien; Guillot, Gilles

    2013-01-01

    Matrix population models are widely used to predict population dynamics, but when applied to species-rich ecosystems with many rare species, the small population sample sizes hinder a good fit of species-specific models. This issue can be overcome by assigning species to groups to increase the size...... species with similar population dynamics....

  3. A new model to describe the relationship between species richness and sample size

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2017-03-01

    Full Text Available In the sampling of species richness, the number of newly found species declines as increase of sample size, and the number of distinct species tends to an upper asymptote as sample size tends to the infinity. This leads to a curve of species richness vs. sample size. In present study, I follow my principle proposed earlier (Zhang, 2016, and re-develop the model, y=K(1-e^(-rx/K, for describing the relationship between species richness (y and sample size (x, where K is the expected total number of distinct species, and r is the maximum variation of species richness per sample size (i.e., max dy/dx. Computer software and codes were given.

  4. Patterns and causes of species richness: a general simulation model for macroecology

    DEFF Research Database (Denmark)

    Gotelli, Nicholas J; Anderson, Marti J; Arita, Hector T

    2009-01-01

    in macroecology do not make quantitative predictions, and they do not incorporate interactions among multiple forces. As an alternative, we propose a mechanistic modelling approach. We describe computer simulation models of the stochastic origin, spread, and extinction of species' geographical ranges......) between observed data and model predictions, as well as the estimation, optimization and interpretation of the model parameters. The simulation approach offers new insights into the origin and maintenance of species richness patterns, and may provide a common framework for investigating the effects......Understanding the causes of spatial variation in species richness is a major research focus of biogeography and macroecology. Gridded environmental data and species richness maps have been used in increasingly sophisticated curve-fitting analyses, but these methods have not brought us much closer...

  5. Model uncertainties do not affect observed patterns of species richness in the Amazon.

    Directory of Open Access Journals (Sweden)

    Lilian Patrícia Sales

    Full Text Available Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale-patterns of species richness and species vulnerability to climate change-are affected by the inputs used to model and project species distribution.We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals, all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs: 1 biological data type, 2 modeling methods, 3 greenhouse gas emission scenarios and 4 climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors.The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses.From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate

  6. Eco-evolutionary Model of Rapid Phenotypic Diversification in Species-Rich Communities.

    Science.gov (United States)

    Villa Martín, Paula; Hidalgo, Jorge; Rubio de Casas, Rafael; Muñoz, Miguel A

    2016-10-01

    Evolutionary and ecosystem dynamics are often treated as different processes -operating at separate timescales- even if evidence reveals that rapid evolutionary changes can feed back into ecological interactions. A recent long-term field experiment has explicitly shown that communities of competing plant species can experience very fast phenotypic diversification, and that this gives rise to enhanced complementarity in resource exploitation and to enlarged ecosystem-level productivity. Here, we build on progress made in recent years in the integration of eco-evolutionary dynamics, and present a computational approach aimed at describing these empirical findings in detail. In particular we model a community of organisms of different but similar species evolving in time through mechanisms of birth, competition, sexual reproduction, descent with modification, and death. Based on simple rules, this model provides a rationalization for the emergence of rapid phenotypic diversification in species-rich communities. Furthermore, it also leads to non-trivial predictions about long-term phenotypic change and ecological interactions. Our results illustrate that the presence of highly specialized, non-competing species leads to very stable communities and reveals that phenotypically equivalent species occupying the same niche may emerge and coexist for very long times. Thus, the framework presented here provides a simple approach -complementing existing theories, but specifically devised to account for the specificities of the recent empirical findings for plant communities- to explain the collective emergence of diversification at a community level, and paves the way to further scrutinize the intimate entanglement of ecological and evolutionary processes, especially in species-rich communities.

  7. Modelling patterns of pollinator species richness and diversity using satellite image texture.

    Science.gov (United States)

    Hofmann, Sylvia; Everaars, Jeroen; Schweiger, Oliver; Frenzel, Mark; Bannehr, Lutz; Cord, Anna F

    2017-01-01

    Assessing species richness and diversity on the basis of standardised field sampling effort represents a cost- and time-consuming method. Satellite remote sensing (RS) can help overcome these limitations because it facilitates the collection of larger amounts of spatial data using cost-effective techniques. RS information is hence increasingly analysed to model biodiversity across space and time. Here, we focus on image texture measures as a proxy for spatial habitat heterogeneity, which has been recognized as an important determinant of species distributions and diversity. Using bee monitoring data of four years (2010-2013) from six 4 × 4 km field sites across Central Germany and a multimodel inference approach we test the ability of texture features derived from Landsat-TM imagery to model local pollinator biodiversity. Textures were shown to reflect patterns of bee diversity and species richness to some extent, with the first-order entropy texture and terrain roughness being the most relevant indicators. However, the texture measurements accounted for only 3-5% of up to 60% of the variability that was explained by our final models, although the results are largely consistent across different species groups (bumble bees, solitary bees). While our findings provide indications in support of the applicability of satellite imagery textures for modeling patterns of bee biodiversity, they are inconsistent with the high predictive power of texture metrics reported in previous studies for avian biodiversity. We assume that our texture data captured mainly heterogeneity resulting from landscape configuration, which might be functionally less important for wild bees than compositional diversity of plant communities. Our study also highlights the substantial variability among taxa in the applicability of texture metrics for modelling biodiversity.

  8. Modelling patterns of pollinator species richness and diversity using satellite image texture

    Science.gov (United States)

    Everaars, Jeroen; Schweiger, Oliver; Frenzel, Mark; Bannehr, Lutz; Cord, Anna F.

    2017-01-01

    Assessing species richness and diversity on the basis of standardised field sampling effort represents a cost- and time-consuming method. Satellite remote sensing (RS) can help overcome these limitations because it facilitates the collection of larger amounts of spatial data using cost-effective techniques. RS information is hence increasingly analysed to model biodiversity across space and time. Here, we focus on image texture measures as a proxy for spatial habitat heterogeneity, which has been recognized as an important determinant of species distributions and diversity. Using bee monitoring data of four years (2010–2013) from six 4 × 4 km field sites across Central Germany and a multimodel inference approach we test the ability of texture features derived from Landsat-TM imagery to model local pollinator biodiversity. Textures were shown to reflect patterns of bee diversity and species richness to some extent, with the first-order entropy texture and terrain roughness being the most relevant indicators. However, the texture measurements accounted for only 3–5% of up to 60% of the variability that was explained by our final models, although the results are largely consistent across different species groups (bumble bees, solitary bees). While our findings provide indications in support of the applicability of satellite imagery textures for modeling patterns of bee biodiversity, they are inconsistent with the high predictive power of texture metrics reported in previous studies for avian biodiversity. We assume that our texture data captured mainly heterogeneity resulting from landscape configuration, which might be functionally less important for wild bees than compositional diversity of plant communities. Our study also highlights the substantial variability among taxa in the applicability of texture metrics for modelling biodiversity. PMID:28973006

  9. Modelling patterns of pollinator species richness and diversity using satellite image texture.

    Directory of Open Access Journals (Sweden)

    Sylvia Hofmann

    Full Text Available Assessing species richness and diversity on the basis of standardised field sampling effort represents a cost- and time-consuming method. Satellite remote sensing (RS can help overcome these limitations because it facilitates the collection of larger amounts of spatial data using cost-effective techniques. RS information is hence increasingly analysed to model biodiversity across space and time. Here, we focus on image texture measures as a proxy for spatial habitat heterogeneity, which has been recognized as an important determinant of species distributions and diversity. Using bee monitoring data of four years (2010-2013 from six 4 × 4 km field sites across Central Germany and a multimodel inference approach we test the ability of texture features derived from Landsat-TM imagery to model local pollinator biodiversity. Textures were shown to reflect patterns of bee diversity and species richness to some extent, with the first-order entropy texture and terrain roughness being the most relevant indicators. However, the texture measurements accounted for only 3-5% of up to 60% of the variability that was explained by our final models, although the results are largely consistent across different species groups (bumble bees, solitary bees. While our findings provide indications in support of the applicability of satellite imagery textures for modeling patterns of bee biodiversity, they are inconsistent with the high predictive power of texture metrics reported in previous studies for avian biodiversity. We assume that our texture data captured mainly heterogeneity resulting from landscape configuration, which might be functionally less important for wild bees than compositional diversity of plant communities. Our study also highlights the substantial variability among taxa in the applicability of texture metrics for modelling biodiversity.

  10. Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China

    Science.gov (United States)

    Zhang, Ming-Gang; Slik, J. W. Ferry; Ma, Ke-Ping

    2016-03-01

    The millions of plant specimens that have been collected and stored in Chinese herbaria over the past ~110 years have recently been digitized and geo-referenced. Here we use this unique collection data set for species distribution modeling exercise aiming at mapping & explaining the botanical richness; delineating China’s phytogeographical regions and investigating the environmental drivers of the dissimilarity patterns. We modeled distributions of 6,828 woody plants using MaxEnt and remove the collection bias using null model. The continental China was divided into different phytogeographical regions based on the dissimilarity patterns. An ordination and Getis-Ord Gi* hotspot spatial statistics were used to analysis the environmental drivers of the dissimilarity patterns. We found that the annual precipitation and temperature stability were responsible for observed species diversity. The mechanisms causing dissimilarity pattern seems differ among biogeographical regions. The identified environmental drivers of the dissimilarity patterns for southeast, southwest, northwest and northeast are annual precipitation, topographic & temperature stability, water deficit and temperature instability, respectively. For effective conservation of China’s plant diversity, identifying the historical refuge and protection of high diversity areas in each of the identified floristic regions and their subdivisions will be essential.

  11. Species richness, area and climate correlates

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Bastos Araujo, Miguel

    2006-01-01

    Aim Species richness-area theory predicts that more species should be found if one samples a larger area. To avoid biases from comparing species richness in areas of very different sizes, area is often controlled by counting the numbers of co-occupying species in near-equal area grid cells...... affects: (1) the selection of climate variables entering a species richness model; and (2) the accuracy of models in predicting species richness in unsampled grid cells. Location Western Europe. Methods Models are developed for European plant, breeding bird, mammal and herptile species richness using...... seven climate variables. Generalized additive models are used to relate species richness, climate and area. Results We found that variation in the grid cell area was large (50 × 50 km: 8-3311 km2; 220 × 220: 193-55,100 km2), but this did not affect the selection of variables in the models. Similarly...

  12. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model.

    Science.gov (United States)

    Starrfelt, Jostein; Liow, Lee Hsiang

    2016-04-05

    The fossil record is a rich source of information about biological diversity in the past. However, the fossil record is not only incomplete but has also inherent biases due to geological, physical, chemical and biological factors. Our knowledge of past life is also biased because of differences in academic and amateur interests and sampling efforts. As a result, not all individuals or species that lived in the past are equally likely to be discovered at any point in time or space. To reconstruct temporal dynamics of diversity using the fossil record, biased sampling must be explicitly taken into account. Here, we introduce an approach that uses the variation in the number of times each species is observed in the fossil record to estimate both sampling bias and true richness. We term our technique TRiPS (True Richness estimated using a Poisson Sampling model) and explore its robustness to violation of its assumptions via simulations. We then venture to estimate sampling bias and absolute species richness of dinosaurs in the geological stages of the Mesozoic. Using TRiPS, we estimate that 1936 (1543-2468) species of dinosaurs roamed the Earth during the Mesozoic. We also present improved estimates of species richness trajectories of the three major dinosaur clades: the sauropodomorphs, ornithischians and theropods, casting doubt on the Jurassic-Cretaceous extinction event and demonstrating that all dinosaur groups are subject to considerable sampling bias throughout the Mesozoic. © 2016 The Authors.

  13. Using potential distributions to explore environmental correlates of bat species richness in southern Africa: Effects of model selection and taxonomy

    Directory of Open Access Journals (Sweden)

    M. Corrie SCHOEMAN, F. P. D. (Woody COTTERILL, Peter J. TAYLOR, Ara MONADJEM

    2013-06-01

    Full Text Available We tested the prediction that at coarse spatial scales, variables associated with climate, energy, and productivity hypotheses should be better predictor(s of bat species richness than those associated with environmental heterogeneity. Distribution ranges of 64 bat species were estimated with niche-based models informed by 3629 verified museum specimens. The influence of environmental correlates on bat richness was assessed using ordinary least squares regression (OLS, simultaneous autoregressive models (SAR, conditional autoregressive models (CAR, spatial eigenvector-based filtering models (SEVM, and Classification and Regression Trees (CART. To test the assumption of stationarity, Geographically Weighted Regression (GWR was used. Bat species richness was highest in the eastern parts of southern Africa, particularly in central Zimbabwe and along the western border of Mozambique. We found support for the predictions of both the habitat heterogeneity and climate/productivity/ energy hypotheses, and as we expected, support varied among bat families and model selection. Richness patterns and predictors of Miniopteridae and Pteropodidae clearly differed from those of other bat families. Altitude range was the only independent variable that was sig­nificant in all models and it was most often the best predictor of bat richness. Standard coefficients of SAR and CAR models were similar to those of OLS models, while those of SEVM models differed. Although GWR indicated that the assumption of stationa­rity was violated, the CART analysis corroborated the findings of the curve-fitting models. Our results identify where additional data on current species ranges, and future conservation action and ecological work are needed [Current Zoology 59 (3: 279–293, 2013].

  14. New approaches for sampling and modeling native and exotic plant species richness

    Science.gov (United States)

    Chong, G.W.; Reich, R.M.; Kalkhan, M.A.; Stohlgren, T.J.

    2001-01-01

    We demonstrate new multi-phase, multi-scale approaches for sampling and modeling native and exotic plant species to predict the spread of invasive species and aid in control efforts. Our test site is a 54,000-ha portion of Rocky Mountain National Park, Colorado, USA. This work is based on previous research wherein we developed vegetation sampling techniques to identify hot spots of diversity, important rare habitats, and locations of invasive plant species. Here we demonstrate statistical modeling tools to rapidly assess current patterns of native and exotic plant species to determine which habitats are most vulnerable to invasion by exotic species. We use stepwise multiple regression and modified residual kriging to estimate numbers of native species and exotic species, as well as probability of observing an exotic species in 30 × 30-m cells. Final models accounted for 62% of the variability observed in number of native species, 51% of the variability observed in number of exotic species, and 47% of the variability associated with observing an exotic species. Important independent variables used in developing the models include geographical location, elevation, slope, aspect, and Landsat TM bands 1-7. These models can direct resource managers to areas in need of further inventory, monitoring, and exotic species control efforts.

  15. Predicting continental-scale patterns of bird species richness with spatially explicit models

    DEFF Research Database (Denmark)

    Rahbek, Carsten; Gotelli, Nicholas J; Colwell, Robert K

    2007-01-01

    ). These species constitute the bulk of the avifauna and are primary targets for conservation. Climate-driven models performed reasonably well only for species with the largest geographical ranges (fourth quartile) when range cohesion was enforced. Our analyses suggest that present models inadequately explain...

  16. Do species distribution models predict species richness in urban and natural green spaces? A case study using amphibians

    Science.gov (United States)

    Urban green spaces are potentially important to biodiversity conservation because they represent habitat islands in a mosaic of development, and could harbor high biodiversity or provide connectivity to nearby habitat. Presence only species distribution models (SDMs) represent a ...

  17. Habitat suitability modeling of amphibian species in southern and central China: environmental correlates and potential richness mapping.

    Science.gov (United States)

    Chen, Youhua

    2013-05-01

    Successful wildlife management must take into account suitable habitat areas. Information on the correlation between distribution ranges and environmental conditions would, therefore, improve the efficacy of in-situ conservation of wildlife. In this contribution, correlations between environmental factors and the distribution of 51 amphibians in southern and central China were investigated. Ecological niche factor analysis (ENFA) at a spatial resolution of 1° latitude×1° longitude identified a mixture of climatic and habitat factors as important predictors of the occurrence of individual species. The aims of the present work were (i) to evaluate potential distributions of amphibians based on the suitability of areas; (ii) to identify the major environmental descriptors upon which they depend; and (iii) to identify areas of potential high richness that have been overlooked in available inventories. Most of the predicted species ranges of species covered the majority of southern and central China. Six richness hotspots were predicted, of which four have been described previously, but two overlooked (SE Fujian and SE Qinghai). The prediction model was considered to be relatively accurate and it is recommended that these two new potential hotspots should be subjected to further evaluation and sampling efforts. Amphibians have high ecological preference for high humidity and precipitation, and low annual frost days. ENFA is a useful tool in wildlife conservation assessment because it is able to identify potential hotspots where studies on the correlations between environmental descriptors and the occurrence of particular species could be focused.

  18. Null models for study Rotifers and Crustaceans Zooplankton species richness in Chilean Patagonian lakes

    OpenAIRE

    Escalante, Patricio de los Ríos

    2016-01-01

    Abstract Aims The Patagonian lakes are characterized by their oligotrophy that is the cause of low species number in their zooplankton assemblage. The aim of the present study is to analyze the crustacean and rotifers species number pattern in Patagonian lakes among a latitudinal gradient (40-51 °S). Results The results revealed that there are direct significant correlations between total species with rotifer species, and chlorophyll concentration with crustacean species number, and an inve...

  19. Invasibility and species richness of a community: A neutral model and a survey of published data

    Czech Academy of Sciences Publication Activity Database

    Herben, Tomáš; Mandák, Bohumil; Bímová, Kateřina; Münzbergová, Zuzana

    2004-01-01

    Roč. 85, č. 12 (2004), s. 3223-3233 ISSN 0012-9658 R&D Projects: GA AV ČR(CZ) KJB6005301 Institutional research plan: CEZ:AV0Z6005908 Keywords : meta - analysis * disturbance rate * alien species Subject RIV: EF - Botanics Impact factor: 4.104, year: 2004

  20. Tree species richness of upper Amazonian forests

    OpenAIRE

    Gentry, Alwyn H.

    1988-01-01

    Upper Amazonian data for tree species richness in 1-hectare plots are reported. All plants ≥10 cm diameter were censused and identified in six plots in Amazonian Peru and one on the Venezuela-Brazil border. The two plots from the everwet forests near Iquitos, Peru, are the most species-rich in the world, with ≈300 species ≥10 cm diameter in single hectares; all of the Peruvian plots are among the most species-rich ever reported. Contrary to accepted opinion, upper Amazonian forest, and perhap...

  1. Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints

    Czech Academy of Sciences Publication Activity Database

    Colwell, R. K.; Gotelli, N. J.; Ashton, L. A.; Beck, J.; Brehm, G.; Fayle, Tom Maurice; Fiedler, K.; Forister, M. L.; Kessler, M.; Kitching, R. L.; Klimeš, Petr; Kluge, J.; Longino, J. T.; Maunsell, S. C.; McCain, C. M.; Moses, J.; Noben, N.; Sam, Kateřina; Sam, Legi; Shapiro, A. M.; Wang, X.; Novotný, Vojtěch

    2016-01-01

    Roč. 19, č. 9 (2016), s. 1009-1022 ISSN 1461-023X R&D Projects: GA ČR GB14-36098G; GA ČR GA14-32302S; GA ČR(CZ) GP14-32024P; GA ČR GA13-10486S Institutional support: RVO:60077344 Keywords : Bayesian model * biogeography * elevational gradients Subject RIV: EH - Ecology, Behaviour Impact factor: 9.449, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/ele.12640/full

  2. Estimating global arthropod species richness: refining probabilistic models using probability bounds analysis

    Czech Academy of Sciences Publication Activity Database

    Hamilton, A. J.; Novotný, Vojtěch; Waters, E. K.; Basset, Y.; Benke, K. K.; Grimbacher, P. S.; Miller, S. E.; Samuelson, G. A.; Weiblen, G. D.; Yen, J. D. L.; Stork, N. E.

    2013-01-01

    Roč. 171, č. 2 (2013), s. 357-365 ISSN 0029-8549 R&D Projects: GA MŠk(CZ) LH11008; GA ČR GA206/09/0115 Grant - others:Czech Ministry of Education (CZ) CZ.1.07/2.3.00/20.0064; National Science Foundarion(US) DEB-0841885; Otto Kinne Foundation, Darwin Initiative(GB) 19-008 Institutional research plan: CEZ:AV0Z50070508 Institutional support: RVO:60077344 Keywords : host specificity * model * Monte Carlo Subject RIV: EH - Ecology, Behaviour Impact factor: 3.248, year: 2013 http://link.springer.com/article/10.1007%2Fs00442-012-2434-5

  3. Modeling broad-scale patterns of avian species richness across the Midwestern United States with measures of satellite image texture

    Science.gov (United States)

    Patrick D. Culbert; Volker C. Radeloff; Veronique St-Louis; Curtis H. Flather; Chadwick D. Rittenhouse; Thomas P. Albright; Anna M. Pidgeon

    2012-01-01

    Avian biodiversity is threatened, and in order to prioritize limited conservation resources and conduct effective conservation planning a better understanding of avian species richness patterns is needed. The use of image texture measures, as a proxy for the spatial structure of land cover and vegetation, has proven useful in explaining patterns of avian abundance and...

  4. Geographic range size and determinants of avian species richness

    DEFF Research Database (Denmark)

    Jetz, Walter; Rahbek, Carsten

    2002-01-01

    species richness. Using both conventional and spatial regression models, we show that for sub-Saharan African birds, the apparent role of productivity diminishes with decreasing range size, whereas the significance of topographic heterogeneity increases. The relative importance of geometric constraints...... from the continental edge is moderate. Our findings highlight the failure of traditional species richness models to account for narrow-ranging species that frequently are also threatened....

  5. Geomorphic controls on elevational gradients of species richness.

    Science.gov (United States)

    Bertuzzo, Enrico; Carrara, Francesco; Mari, Lorenzo; Altermatt, Florian; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2016-02-16

    Elevational gradients of biodiversity have been widely investigated, and yet a clear interpretation of the biotic and abiotic factors that determine how species richness varies with elevation is still elusive. In mountainous landscapes, habitats at different elevations are characterized by different areal extent and connectivity properties, key drivers of biodiversity, as predicted by metacommunity theory. However, most previous studies directly correlated species richness to elevational gradients of potential drivers, thus neglecting the interplay between such gradients and the environmental matrix. Here, we investigate the role of geomorphology in shaping patterns of species richness. We develop a spatially explicit zero-sum metacommunity model where species have an elevation-dependent fitness and otherwise neutral traits. Results show that ecological dynamics over complex terrains lead to the null expectation of a hump-shaped elevational gradient of species richness, a pattern widely observed empirically. Local species richness is found to be related to the landscape elevational connectivity, as quantified by a newly proposed metric that applies tools of complex network theory to measure the closeness of a site to others with similar habitat. Our theoretical results suggest clear geomorphic controls on elevational gradients of species richness and support the use of the landscape elevational connectivity as a null model for the analysis of the distribution of biodiversity.

  6. Analysis and exploitation of bacterial population from natural uranium-rich soils: selection of a model specie

    International Nuclear Information System (INIS)

    Mondani, L.

    2010-01-01

    It is well known that soils play a key role in controlling the mobility of toxic metals and this property is greatly influenced by indigenous bacterial communities. This study has been conducted on radioactive and controls soils, collected in natural uraniferous areas (Limousin). A physico-chemical and mineralogical analysis of soils samples was carried out.The structure of bacterial communities was estimated by Denaturing Gradient Gel Electrophoresis (DGGE). The community structure is remarkably more stable in the uranium-rich soils than in the control ones, indicating that uranium exerts a high selection from the soils was constructed and screened for uranium resistance in order to study bacteria-uranium interactions. Scanning electron microscopy revealed that a phylo-genetically diverse set of uranium-resistant species ware able to chelate uranium at the cell surface. (author) [fr

  7. Spatial heterogeneity influences native and nonnative plant species richness.

    Science.gov (United States)

    Kumar, Sunil; Stohlgren, Thomas J; Chong, Geneva W

    2006-12-01

    Spatial heterogeneity may have differential effects on the distribution of native and nonnative plant species richness. We examined the effects of spatial heterogeneity on native and nonnative plant species richness distributions in the central part of Rocky Mountain National Park, Colorado, USA. Spatial heterogeneity around vegetation plots was characterized using landscape metrics, environmental/topographic variables (slope, aspect, elevation, and distance from stream or river), and soil variables (nitrogen, clay, and sand). The landscape metrics represented five components of landscape heterogeneity and were measured at four spatial extents (within varying radii of 120, 240, 480, and 960 m) using the FRAGSTATS landscape pattern analysis program. Akaike's Information Criterion adjusted for small sample size (AICc) was used to select the best models from a set of multiple linear regression models developed for native and nonnative plant species richness at four spatial extents and three levels of ecological hierarchy (i.e., landscape, land cover, and community). Both native and nonnative plant species richness were positively correlated with edge density, Simpson's diversity index and interspersion/juxtaposition index, and were negatively correlated with mean patch size. The amount of variation explained at four spatial extents and three hierarchical levels ranged from 30% to 70%. At the landscape level, the best models explained 43% of the variation in native plant species richness and 70% of the variation in nonnative plant species richness (240-m extent). In general, the amount of variation explained was always higher for nonnative plant species richness, and the inclusion of landscape metrics always significantly improved the models. The best models explained 66% of the variation in nonnative plant species richness for both the conifer land cover type and lodgepole pine community. The relative influence of the components of spatial heterogeneity differed for

  8. Drivers of species richness in European Tenebrionidae (Coleoptera)

    Science.gov (United States)

    Fattorini, Simone; Ulrich, Werner

    2012-08-01

    The species-area relationship (SAR) and the latitudinal gradient in species richness are the most widespread and best-documented patterns in ecology, yet few studies have explored how the two patterns are interrelated. We used tenebrionid beetles as a species rich invertebrate group to investigate how area, habitat heterogeneity, climate, and ecological history act together in shaping species richness across Europe. We tested the effects of various climatic gradients on tenebrionid richness, with separate analyses for endemics and non-endemics. To take into account differences in area size among geographical units, we included species-area relationships using simultaneous autoregressive models. Although area had a significant effect on richness, the signal associated with temperature is so strong that it is still evident as a major driver. Also, the effect of area was only apparent when the effect of spatial coordinates had been accounted for, which has important implications for the use of SARs to locate diversity hotspots. The influence of latitude was mainly explained by a temperature gradient. Our findings support a postglacial European colonisation mainly from glacial southern refuges. Large Mediterranean islands were also important refugial areas.

  9. The roots of diversity: below ground species richness and rooting distributions in a tropical forest revealed by DNA barcodes and inverse modeling.

    Directory of Open Access Journals (Sweden)

    F Andrew Jones

    Full Text Available Plants interact with each other, nutrients, and microbial communities in soils through extensive root networks. Understanding these below ground interactions has been difficult in natural systems, particularly those with high plant species diversity where morphological identification of fine roots is difficult. We combine DNA-based root identification with a DNA barcode database and above ground stem locations in a floristically diverse lowland tropical wet forest on Barro Colorado Island, Panama, where all trees and lianas >1 cm diameter have been mapped to investigate richness patterns below ground and model rooting distributions.DNA barcode loci, particularly the cpDNA locus trnH-psba, can be used to identify fine and small coarse roots to species. We recovered 33 species of roots from 117 fragments sequenced from 12 soil cores. Despite limited sampling, we recovered a high proportion of the known species in the focal hectare, representing approximately 14% of the measured woody plant richness. This high value is emphasized by the fact that we would need to sample on average 13 m(2 at the seedling layer and 45 m(2 for woody plants >1 cm diameter to obtain the same number of species above ground. Results from inverse models parameterized with the locations and sizes of adults and the species identifications of roots and sampling locations indicates a high potential for distal underground interactions among plants.DNA barcoding techniques coupled with modeling approaches should be broadly applicable to studying root distributions in any mapped vegetation plot. We discuss the implications of our results and outline how second-generation sequencing technology and environmental sampling can be combined to increase our understanding of how root distributions influence the potential for plant interactions in natural ecosystems.

  10. Estimating tree species richness from forest inventory plot data

    Science.gov (United States)

    Ronald E. McRoberts; Dacia M. Meneguzzo

    2007-01-01

    Montreal Process Criterion 1, Conservation of Biological Diversity, expresses species diversity in terms of number of forest dependent species. Species richness, defined as the total number of species present, is a common metric for analyzing species diversity. A crucial difficulty in estimating species richness from sample data obtained from sources such as inventory...

  11. Plant species richness and ecosystem multifunctionality in global drylands

    Science.gov (United States)

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  12. Global variation in woodpecker species richness shaped by tree availability

    DEFF Research Database (Denmark)

    Ilsøe, Sigrid Kistrup; Kissling, W. Daniel; Fjeldså, Jon

    2017-01-01

    heterogeneity and biogeographical region. We further used structural equation models to test for direct and indirect effects of predictor variables. Results: There was a strong positive relationship between woodpecker species richness and current tree cover and annual precipitation, respectively. Precipitation...... a negative indirect effect on woodpecker species richness. Main conclusions: Global species richness of woodpeckers is primarily shaped by current tree cover and precipitation, reflecting a strong biotic association between woodpeckers and trees. Human influence can have a negative effect on woodpecker...... diversity when humans reduce tree availability. Hence, woodpeckers exemplify how broad-scale diversity patterns are predominantly shaped by a biotic factor, and how climate and human influence can have indirect effects on animal biodiversity via the effects on tree availability and forest cover....

  13. Multiscale assessment of patterns of avian species richness

    DEFF Research Database (Denmark)

    Rahbek, C; Graves, G R

    2001-01-01

    The search for a common cause of species richness gradients has spawned more than 100 explanatory hypotheses in just the past two decades. Despite recent conceptual advances, further refinement of the most plausible models has been stifled by the difficulty of compiling high-resolution databases ...

  14. Climate induced increases in species richness of marine fishes

    NARCIS (Netherlands)

    Hiddink, J.G.; Hofstede, ter R.

    2008-01-01

    Climate change has been predicted to lead to changes in local and regional species richness through species extinctions and latitudinal ranges shifts. Here, we show that species richness of fish in the North Sea, a group of ecological and socio-economical importance, has increased over a 22-year

  15. Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains

    DEFF Research Database (Denmark)

    Wu, Yongjie; Colwell, Robert K.; Rahbek, Carsten

    2013-01-01

    AimTo document the species richness pattern of birds in the Hengduan Mountains and to understand its causes. LocationHengduan Mountains, China. MethodsSpecies richness of 738 breeding bird species was calculated for each 100-m elevational band along a gradient from 100 to 6000m a.s.l. Climate data......) in each elevational band. Simple and multiple regression models were used to test the explanatory power of variables associated with different factors proposed to account for elevational species richness gradients. ResultsThe elevational pattern in species richness, for all breeding birds, was hump...... and energy factors along the elevational gradients; seasonality and productivity had a strong statistical relationship with species richness of montane birds in this study, with geometric constraints contributing to richness patterns for larger-ranged species endemic to the gradient. Main conclusionsWe found...

  16. Estimating the spatial and temporal distribution of species richness within Sequoia and Kings Canyon National Parks.

    Science.gov (United States)

    Wathen, Steve; Thorne, James H; Holguin, Andrew; Schwartz, Mark W

    2014-01-01

    Evidence for significant losses of species richness or biodiversity, even within protected natural areas, is mounting. Managers are increasingly being asked to monitor biodiversity, yet estimating biodiversity is often prohibitively expensive. As a cost-effective option, we estimated the spatial and temporal distribution of species richness for four taxonomic groups (birds, mammals, herpetofauna (reptiles and amphibians), and plants) within Sequoia and Kings Canyon National Parks using only existing biological studies undertaken within the Parks and the Parks' long-term wildlife observation database. We used a rarefaction approach to model species richness for the four taxonomic groups and analyzed those groups by habitat type, elevation zone, and time period. We then mapped the spatial distributions of species richness values for the four taxonomic groups, as well as total species richness, for the Parks. We also estimated changes in species richness for birds, mammals, and herpetofauna since 1980. The modeled patterns of species richness either peaked at mid elevations (mammals, plants, and total species richness) or declined consistently with increasing elevation (herpetofauna and birds). Plants reached maximum species richness values at much higher elevations than did vertebrate taxa, and non-flying mammals reached maximum species richness values at higher elevations than did birds. Alpine plant communities, including sagebrush, had higher species richness values than did subalpine plant communities located below them in elevation. These results are supported by other papers published in the scientific literature. Perhaps reflecting climate change: birds and herpetofauna displayed declines in species richness since 1980 at low and middle elevations and mammals displayed declines in species richness since 1980 at all elevations.

  17. Estimating the spatial and temporal distribution of species richness within Sequoia and Kings Canyon National Parks.

    Directory of Open Access Journals (Sweden)

    Steve Wathen

    Full Text Available Evidence for significant losses of species richness or biodiversity, even within protected natural areas, is mounting. Managers are increasingly being asked to monitor biodiversity, yet estimating biodiversity is often prohibitively expensive. As a cost-effective option, we estimated the spatial and temporal distribution of species richness for four taxonomic groups (birds, mammals, herpetofauna (reptiles and amphibians, and plants within Sequoia and Kings Canyon National Parks using only existing biological studies undertaken within the Parks and the Parks' long-term wildlife observation database. We used a rarefaction approach to model species richness for the four taxonomic groups and analyzed those groups by habitat type, elevation zone, and time period. We then mapped the spatial distributions of species richness values for the four taxonomic groups, as well as total species richness, for the Parks. We also estimated changes in species richness for birds, mammals, and herpetofauna since 1980. The modeled patterns of species richness either peaked at mid elevations (mammals, plants, and total species richness or declined consistently with increasing elevation (herpetofauna and birds. Plants reached maximum species richness values at much higher elevations than did vertebrate taxa, and non-flying mammals reached maximum species richness values at higher elevations than did birds. Alpine plant communities, including sagebrush, had higher species richness values than did subalpine plant communities located below them in elevation. These results are supported by other papers published in the scientific literature. Perhaps reflecting climate change: birds and herpetofauna displayed declines in species richness since 1980 at low and middle elevations and mammals displayed declines in species richness since 1980 at all elevations.

  18. The Global Distribution and Drivers of Alien Bird Species Richness

    Science.gov (United States)

    Dyer, Ellie E.; Cassey, Phillip; Redding, David W.; Collen, Ben; Franks, Victoria; Gaston, Kevin J.; Jones, Kate E.; Kark, Salit; Orme, C. David L.; Blackburn, Tim M.

    2017-01-01

    Alien species are a major component of human-induced environmental change. Variation in the numbers of alien species found in different areas is likely to depend on a combination of anthropogenic and environmental factors, with anthropogenic factors affecting the number of species introduced to new locations, and when, and environmental factors influencing how many species are able to persist there. However, global spatial and temporal variation in the drivers of alien introduction and species richness remain poorly understood. Here, we analyse an extensive new database of alien birds to explore what determines the global distribution of alien species richness for an entire taxonomic class. We demonstrate that the locations of origin and introduction of alien birds, and their identities, were initially driven largely by European (mainly British) colonialism. However, recent introductions are a wider phenomenon, involving more species and countries, and driven in part by increasing economic activity. We find that, globally, alien bird species richness is currently highest at midlatitudes and is strongly determined by anthropogenic effects, most notably the number of species introduced (i.e., “colonisation pressure”). Nevertheless, environmental drivers are also important, with native and alien species richness being strongly and consistently positively associated. Our results demonstrate that colonisation pressure is key to understanding alien species richness, show that areas of high native species richness are not resistant to colonisation by alien species at the global scale, and emphasise the likely ongoing threats to global environments from introductions of species. PMID:28081142

  19. Factors determining plant species richness in Alaskan artic tundra

    NARCIS (Netherlands)

    Welle, van der M.E.W.; Vermeulen, P.J.; Shaver, G.R.; Berendse, F.

    2003-01-01

    We studied the relationship between plant N:P ratio, soil characteristics and species richness in wet sedge and tussock tundra in northern Alaska at seven sites. We also collected data on soil characteristics, above-ground biomass, species richness and composition. The N:P ratio of the vegetation

  20. Research Note Herbaceous plant species richness and composition ...

    African Journals Online (AJOL)

    This study investigated the relationship between grazing veld condition and herbaceous plant species richness in the moist Midlands Mistbelt Grassland in KwaZulu-Natal. The observed herbaceous plant species richness and composition of 12 sample plots (50 m x 50 m) was determined in three study sites using quadrat ...

  1. Relative species richness and community completeness: avian communities and urbanization in the mid-Atlantic states

    Science.gov (United States)

    Cam, E.; Nichols, J.D.; Sauer, J.R.; Hines, J.E.; Flather, C.H.

    2000-01-01

    The idea that local factors govern local richness has been dominant for years, but recent theoretical and empirical studies have stressed the influence of regional factors on local richness. Fewer species at a site could reflect not only the influence of local factors, but also a smaller regional pool. The possible dependency of local richness on the regional pool should be taken into account when addressing the influence of local factors on local richness. It is possible to account for this potential dependency by comparing relative species richness among sites, rather than species richness per se. We consider estimation of a metric permitting assessment of relative species richness in a typical situation in which not all species are detected during sampling sessions. In this situation, estimates of absolute or relative species richness need to account for variation in species detection probability if they are to be unbiased. We present a method to estimate relative species richness based on capture-recapture models. This approach involves definition of a species list from regional data, and estimation of the number of species in that list that are present at a site-year of interest. We use this approach to address the influence of urbanization on relative richness of avian communities in the Mid-Atlantic region of the United States. There is a negative relationship between relative richness and landscape variables describing the level of urban development. We believe that this metric should prove very useful for conservation and management purposes because it is based on an estimator of species richness that both accounts for potential variation in species detection probability and allows flexibility in the specification of a 'reference community.' This metric can be used to assess ecological integrity, the richness of the community of interest relative to that of the 'original' community, or to assess change since some previous time in a community.

  2. Context-dependent interactions and the regulation of species richness in freshwater fish

    Science.gov (United States)

    MacDougall, Andrew S.; Harvey, Eric; McCune, Jenny L.; Nilsson, Karin A.; Bennett, Joseph; Firn, Jennifer; Bartley, Timothy; Grace, James B.; Kelly, Jocelyn; Tunney, Tyler D.; McMeans, Bailey; Matsuzaki, Shin-Ichiro S.; Kadoya, Taku; Esch, Ellen; Cazelles, Kevin; Lester, Nigel; McCann, Kevin S.

    2018-01-01

    Species richness is regulated by a complex network of scale-dependent processes. This complexity can obscure the influence of limiting species interactions, making it difficult to determine if abiotic or biotic drivers are more predominant regulators of richness. Using integrative modeling of freshwater fish richness from 721 lakes along an 11olatitudinal gradient, we find negative interactions to be a relatively minor independent predictor of species richness in lakes despite the widespread presence of predators. Instead, interaction effects, when detectable among major functional groups and 231 species pairs, were strong, often positive, but contextually dependent on environment. These results are consistent with the idea that negative interactions internally structure lake communities but do not consistently ‘scale-up’ to regulate richness independently of the environment. The importance of environment for interaction outcomes and its role in the regulation of species richness highlights the potential sensitivity of fish communities to the environmental changes affecting lakes globally.

  3. Analysis and exploitation of bacterial population from natural uranium-rich soils: selection of a model specie; Analyse et exploitation des populations bacteriennes de sols riches en uranium: selection d'une espece modele

    Energy Technology Data Exchange (ETDEWEB)

    Mondani, L.

    2010-11-23

    It is well known that soils play a key role in controlling the mobility of toxic metals and this property is greatly influenced by indigenous bacterial communities. This study has been conducted on radioactive and controls soils, collected in natural uraniferous areas (Limousin). A physico-chemical and mineralogical analysis of soils samples was carried out.The structure of bacterial communities was estimated by Denaturing Gradient Gel Electrophoresis (DGGE). The community structure is remarkably more stable in the uranium-rich soils than in the control ones, indicating that uranium exerts a high selection from the soils was constructed and screened for uranium resistance in order to study bacteria-uranium interactions. Scanning electron microscopy revealed that a phylo-genetically diverse set of uranium-resistant species ware able to chelate uranium at the cell surface. (author) [French] On sait que les sols et les populations bacteriennes indigenes ont une influence sur la mobilite des metaux, donc sur leur toxicite. Cette etude a ete menee sur des sols uraniferes et controles collectes dans le Limousin (regions naturellement riches en uranium ). Une analyse physico-chimique et mineralogique des echantillons de sol a ete realisee. La structure des communautes bacteriennes a ete etudiee par electrophorese en gradient de denaturant (DGGE). La structure des communautes est remarquablement stable dans les sols uraniferes, ce qui indique que l'uranium exerce une forte pression de selection. D'autre part, une collection de bacteries cultivables a ete realisee a partir des sols, puis criblee pour la resistance a l'uranium, dans le but d'etudier les interactions entre bacteries et uranium. Des observations en Microscopie electronique a Balayage ont mis en evidence differents mecanismes de chelation de l'uranium a la surface cellulaire

  4. Climate-induced lake drying causes heterogeneous reductions in waterfowl species richness

    Science.gov (United States)

    Roach, Jennifer K.; Griffith, Dennis B.

    2015-01-01

    ContextLake size has declined on breeding grounds for international populations of waterfowl.ObjectivesOur objectives were to (1) model the relationship between waterfowl species richness and lake size; (2) use the model and trends in lake size to project historical, contemporary, and future richness at 2500+ lakes; (3) evaluate mechanisms for the species–area relationship (SAR); and (4) identify species most vulnerable to shrinking lakes.MethodsMonte Carlo simulations of the richness model were used to generate projections. Correlations between richness and both lake size and habitat diversity were compared to identify mechanisms for the SAR. Patterns of nestedness were used to identify vulnerable species.ResultsSpecies richness was greatest at lakes that were larger, closer to rivers, had more wetlands along their perimeters and were within 5 km of a large lake. Average richness per lake was projected to decline by 11 % from 1986 to 2050 but was heterogeneous across sub-regions and lakes. Richness in sub-regions with species-rich lakes was projected to remain stable, while richness in the sub-region with species-poor lakes was projected to decline. Lake size had a greater effect on richness than did habitat diversity, suggesting that large lakes have more species because they provide more habitat but not more habitat types. The vulnerability of species to shrinking lakes was related to species rarity rather than foraging guild.ConclusionsOur maps of projected changes in species richness and rank-ordered list of species most vulnerable to shrinking lakes can be used to identify targets for conservation or monitoring.

  5. Program SimAssem: software for simulating species assemblages and estimating species richness

    Science.gov (United States)

    Gordon C. Reese; Kenneth R. Wilson; Curtis H. Flather

    2013-01-01

    1. Species richness, the number of species in a defined area, is the most frequently used biodiversity measure. Despite its intuitive appeal and conceptual simplicity, species richness is often difficult to quantify, even in well surveyed areas, because of sampling limitations such as survey effort and species detection probability....

  6. Butterfly Species Richness in Selected West Albertine Rift Forests

    Directory of Open Access Journals (Sweden)

    Patrice Kasangaki

    2012-01-01

    Full Text Available The butterfly species richness of 17 forests located in the western arm of the Albertine Rift in Uganda was compared using cluster analysis and principal components analysis (PCA to assess similarities among the forests. The objective was to compare the butterfly species richness of the forests. A total of 630 butterfly species were collected in 5 main families. The different species fell into 7 ecological groupings with the closed forest group having the most species and the swamp/wetland group with the fewest number of species. Three clusters were obtained. The first cluster had forests characterized by relatively high altitude and low species richness despite the big area in the case of Rwenzori and being close to the supposed Pleistocene refugium. The second cluster had forests far away from the supposed refugium except Kisangi and moderate species richness with small areas, whereas the third cluster had those forests that were more disturbed, high species richness, and low altitudinal levels with big areas.

  7. Human population, grasshopper and plant species richness in European countries

    Science.gov (United States)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  8. Gridded Species Distribution, Version 1: Global Amphibians Family Richness Grids

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Amphibians Family Richness Grids of the Gridded Species Distribution, Version 1 are aggregations of the presence grids data at the family level. They are...

  9. Partitioning sources of variation in vertebrate species richness

    Science.gov (United States)

    Boone, R.B.; Krohn, W.B.

    2000-01-01

    Aim: To explore biogeographic patterns of terrestrial vertebrates in Maine, USA using techniques that would describe local and spatial correlations with the environment. Location: Maine, USA. Methods: We delineated the ranges within Maine (86,156 km2) of 275 species using literature and expert review. Ranges were combined into species richness maps, and compared to geomorphology, climate, and woody plant distributions. Methods were adapted that compared richness of all vertebrate classes to each environmental correlate, rather than assessing a single explanatory theory. We partitioned variation in species richness into components using tree and multiple linear regression. Methods were used that allowed for useful comparisons between tree and linear regression results. For both methods we partitioned variation into broad-scale (spatially autocorrelated) and fine-scale (spatially uncorrelated) explained and unexplained components. By partitioning variance, and using both tree and linear regression in analyses, we explored the degree of variation in species richness for each vertebrate group that Could be explained by the relative contribution of each environmental variable. Results: In tree regression, climate variation explained richness better (92% of mean deviance explained for all species) than woody plant variation (87%) and geomorphology (86%). Reptiles were highly correlated with environmental variation (93%), followed by mammals, amphibians, and birds (each with 84-82% deviance explained). In multiple linear regression, climate was most closely associated with total vertebrate richness (78%), followed by woody plants (67%) and geomorphology (56%). Again, reptiles were closely correlated with the environment (95%), followed by mammals (73%), amphibians (63%) and birds (57%). Main conclusions: Comparing variation explained using tree and multiple linear regression quantified the importance of nonlinear relationships and local interactions between species

  10. Determinants of Mammal and Bird Species Richness in China Based on Habitat Groups.

    Directory of Open Access Journals (Sweden)

    Haigen Xu

    Full Text Available Understanding the spatial patterns in species richness is a central issue in macroecology and biogeography. Analyses that have traditionally focused on overall species richness limit the generality and depth of inference. Spatial patterns of species richness and the mechanisms that underpin them in China remain poorly documented. We created a database of the distribution of 580 mammal species and 849 resident bird species from 2376 counties in China and established spatial linear models to identify the determinants of species richness and test the roles of five hypotheses for overall mammals and resident birds and the 11 habitat groups among the two taxa. Our result showed that elevation variability was the most important determinant of species richness of overall mammal and bird species. It is indicated that the most prominent predictors of species richness varied among different habitat groups: elevation variability for forest and shrub mammals and birds, temperature annual range for grassland and desert mammals and wetland birds, net primary productivity for farmland mammals, maximum temperature of the warmest month for cave mammals, and precipitation of the driest quarter for grassland and desert birds. Noteworthily, main land cover type was also found to obviously influence mammal and bird species richness in forests, shrubs and wetlands under the disturbance of intensified human activities. Our findings revealed a substantial divergence in the species richness patterns among different habitat groups and highlighted the group-specific and disparate environmental associations that underpin them. As we demonstrate, a focus on overall species richness alone might lead to incomplete or misguided understanding of spatial patterns. Conservation priorities that consider a broad spectrum of habitat groups will be more successful in safeguarding the multiple services of biodiversity.

  11. Species richness and composition of bird community in Abalo ...

    African Journals Online (AJOL)

    This paper presents results of avifaunal survey made in Abalo-Gunacho forest, southern Ethiopia, in May 2014 to determine the species richness and to examine guild composition of bird community of the forest. Birds were surveyed using Timed-Species Count technique along eight randomly selected transects. Fifty-one ...

  12. Ant species richness of fynbos and forest ecosystems in the ...

    African Journals Online (AJOL)

    The ant fauna in fynbos and forest habitats in the southern Cape are compared. There is no significant difference in ant species richness between the two undisturbed habitat types, and the only two species common to both are Acantholepis capensis and Camponotus maculatus. The degree of Hakea sericea infestation in ...

  13. Combining geodiversity with climate and topography to account for threatened species richness.

    Science.gov (United States)

    Tukiainen, Helena; Bailey, Joseph J; Field, Richard; Kangas, Katja; Hjort, Jan

    2017-04-01

    Understanding threatened species diversity is important for long-term conservation planning. Geodiversity-the diversity of Earth surface materials, forms, and processes-may be a useful biodiversity surrogate for conservation and have conservation value itself. Geodiversity and species richness relationships have been demonstrated; establishing whether geodiversity relates to threatened species' diversity and distribution pattern is a logical next step for conservation. We used 4 geodiversity variables (rock-type and soil-type richness, geomorphological diversity, and hydrological feature diversity) and 4 climatic and topographic variables to model threatened species diversity across 31 of Finland's national parks. We also analyzed rarity-weighted richness (a measure of site complementarity) of threatened vascular plants, fungi, bryophytes, and all species combined. Our 1-km 2 resolution data set included 271 threatened species from 16 major taxa. We modeled threatened species richness (raw and rarity weighted) with boosted regression trees. Climatic variables, especially the annual temperature sum above 5 °C, dominated our models, which is consistent with the critical role of temperature in this boreal environment. Geodiversity added significant explanatory power. High geodiversity values were consistently associated with high threatened species richness across taxa. The combined effect of geodiversity variables was even more pronounced in the rarity-weighted richness analyses (except for fungi) than in those for species richness. Geodiversity measures correlated most strongly with species richness (raw and rarity weighted) of threatened vascular plants and bryophytes and were weakest for molluscs, lichens, and mammals. Although simple measures of topography improve biodiversity modeling, our results suggest that geodiversity data relating to geology, landforms, and hydrology are also worth including. This reinforces recent arguments that conserving nature's stage

  14. Effects of spatial heterogeneity on butterfly species richness in Rocky Mountain National Park, CO, USA

    Science.gov (United States)

    Kumar, S.; Simonson, S.E.; Stohlgren, T.J.

    2009-01-01

    We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 ?? 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike's Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions. ?? 2008 Springer Science+Business Media B.V.

  15. Plant Species Richness is Associated with Canopy Height and Topography in a Neotropical Forest

    Directory of Open Access Journals (Sweden)

    Sassan S. Saatchi

    2012-12-01

    Full Text Available Most plant species are non-randomly distributed across environmental gradients in light, water, and nutrients. In tropical forests, these gradients result from biophysical processes related to the structure of the canopy and terrain, but how does species richness in tropical forests vary over such gradients, and can remote sensing capture this variation? Using airborne lidar, we tested the extent to which variation in tree species richness is statistically explained by lidar-measured structural variation in canopy height and terrain in the extensively studied, stem-mapped 50-ha plot on Barro Colorado Island (BCI, Panama. We detected differences in species richness associated with variation in canopy height and topography across spatial scales ranging from 0.01-ha to 1.0-ha. However, species richness was most strongly associated with structural variation at the 1.0-ha scale. We developed a predictive generalized least squares model of species richness at the 1.0-ha scale (R2 = 0.479, RMSE = 8.3 species using the mean and standard deviation of canopy height, mean elevation, and terrain curvature. The model demonstrates that lidar-derived measures of forest and terrain structure can capture a significant fraction of observed variation in tree species richness in tropical forests on local-scales.

  16. Environmental heterogeneity–species richness relationships from a global perspective

    Directory of Open Access Journals (Sweden)

    Anke Stein

    2016-01-01

    Full Text Available Spatial environmental heterogeneity (EH is considered one of the most important factors promoting species richness, but no general consent about the EH–richness relationship exists so far. This is because research methods and study settings vary widely, and because non-significant and negative associations have also been reported. My thesis provides a comprehensive review of the different measurements and terminologies of EH used in the literature, and presents strong quantitative evidence of a generally positive relationship between biotic and abiotic EH and species richness of terrestrial plants and animals from landscape to global extents. In a meta-analysis and a subsequent case study comparing multiple EH measures and their association with mammal species richness worldwide, I furthermore reveal that the outcome of EH–richness studies depends strongly on study design, including both the EH measure chosen and spatial scale. My research contributes to a better understanding of the EH–richness relationship, while identifying future research needs.

  17. High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness

    DEFF Research Database (Denmark)

    Svenning, J.-C.; Borchsenius, Finn; Bjorholm, Stine Wendelboe

    2008-01-01

    Aim Species richness exhibits striking geographical variation, but the processes that drive this variation are unresolved. We investigated the relative importance of two hypothesized evolutionary causes for the variation in palm species richness across the New World: time for diversification......, and potential environmental and geographical drivers. Results Species richness increased with all net diversification measures. The regression models showed that richness and the net diversification measures increased with decreasing (absolute) latitude and, less strongly, with increasing energy....../temperature and water availability. These patterns therefore reflect net diversification at both deep and shallow levels in the phylogeny. Richness also increased with range in elevation, but this was only reflected in the MS/G pattern and therefore reflects recent diversification. Main conclusions The geographical...

  18. Plant species richness enhances nitrogen retention in green roof plots.

    Science.gov (United States)

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  19. Patterns of Freshwater Species Richness, Endemism, and Vulnerability in California.

    Directory of Open Access Journals (Sweden)

    Jeanette K Howard

    Full Text Available The ranges and abundances of species that depend on freshwater habitats are declining worldwide. Efforts to counteract those trends are often hampered by a lack of information about species distribution and conservation status and are often strongly biased toward a few well-studied groups. We identified the 3,906 vascular plants, macroinvertebrates, and vertebrates native to California, USA, that depend on fresh water for at least one stage of their life history. We evaluated the conservation status for these taxa using existing government and non-governmental organization assessments (e.g., endangered species act, NatureServe, created a spatial database of locality observations or distribution information from ~400 data sources, and mapped patterns of richness, endemism, and vulnerability. Although nearly half of all taxa with conservation status (n = 1,939 are vulnerable to extinction, only 114 (6% of those vulnerable taxa have a legal mandate for protection in the form of formal inclusion on a state or federal endangered species list. Endemic taxa are at greater risk than non-endemics, with 90% of the 927 endemic taxa vulnerable to extinction. Records with spatial data were available for a total of 2,276 species (61%. The patterns of species richness differ depending on the taxonomic group analyzed, but are similar across taxonomic level. No particular taxonomic group represents an umbrella for all species, but hotspots of high richness for listed species cover 40% of the hotspots for all other species and 58% of the hotspots for vulnerable freshwater species. By mapping freshwater species hotspots we show locations that represent the top priority for conservation action in the state. This study identifies opportunities to fill gaps in the evaluation of conservation status for freshwater taxa in California, to address the lack of occurrence information for nearly 40% of freshwater taxa and nearly 40% of watersheds in the state, and to

  20. Local versus landscape-scale effects of anthropogenic land-use on forest species richness

    Science.gov (United States)

    Buffa, G.; Del Vecchio, S.; Fantinato, E.; Milano, V.

    2018-01-01

    The study investigated the effects of human-induced landscape patterns on species richness in forests. For 80 plots of fixed size, we measured human disturbance (categorized as urban/industrial and agricultural land areas), at 'local' and 'landscape' scale (500 m and 2500 m radius from each plot, respectively), the distance from the forest edge, and the size and shape of the woody patch. By using GLM, we analyzed the effects of disturbance and patch-based measures on both total species richness and the richness of a group of specialist species (i.e. the 'ancient forest species'), representing more specific forest features. Patterns of local species richness were sensitive to the structure and composition of the surrounding landscape. Among the landscape components taken into account, urban/industrial land areas turned out as the most threatening factor for both total species richness and the richness of the ancient forest species. However, the best models evidenced a different intensity of the response to the same disturbance category as well as a different pool of significant variables for the two groups of species. The use of groups of species, such as the ancient forest species pool, that are functionally related and have similar ecological requirements, may represent an effective solution for monitoring forest dynamics under the effects of external factors. The approach of relating local assessment of species richness, and in particular of the ancient forest species pool, to land-use patterns may play an important role for the science-policy interface by supporting and strengthening conservation and regional planning decision making.

  1. The effects of forest destruction on the abundance, species richness ...

    African Journals Online (AJOL)

    SARAH

    2013-04-25

    Apr 25, 2013 ... The effects of forest destruction on the abundance, species richness and diversity of butterflies in the. Bosomkese Forest Reserve, Brong Ahafo Region,. Ghana. Addai, G. and Baidoo P. K*. Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology,. Kumasi ...

  2. Plant species richness regulates soil respiration through changes in productivity.

    NARCIS (Netherlands)

    Tavares Correa Dias, A.; van Ruijven, J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  3. Plant species richness regulates soil respiration through changes in productivity

    NARCIS (Netherlands)

    Dias, A.A.; Ruijven, van J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  4. Species Richness and Diversity Reveal that Human-Modified ...

    African Journals Online (AJOL)

    Spider abundance differed significantly between habitat types and was influenced by the sampling methods used. Family diversity and richness showed no significant differences across the sites. The spider species consisted of primarily three functional groups: ground wanderers, web builders and plant wanderers, and ...

  5. Patterns of species richness in sandy beaches of South America ...

    African Journals Online (AJOL)

    The middle shore is primarily occupied by cirolanids and bivalves, and hippid crabs, bivalves and amphipods dominate the lower beach. Generally, species richness increases from upper to lower beach levels. Studies carried out on exposed sandy beaches of south-central Chile (ca. 40°S) show that different beach states ...

  6. Patterns of species richness in sandy beaches of South America

    African Journals Online (AJOL)

    Instituto de Zoologia, Universidad Austral de Chile, Valdivia, Chile. Received 22 Occobcr 1993; accepted 19 Jan.uary 1994. Species richness of the intertidal macroinfauna of exposed sandy beaches around South America is reviewed in relation to geographic location. This macrolnfauna is dominated by drolanid isopods ...

  7. Relationships between Plant Biomass and Species Richness under ...

    African Journals Online (AJOL)

    The study was conducted in a montane grassland of Kokosa District, West Arsi Zone of Oromia Region, southern Ethiopia. The objective of the study was to investigate the relationships between aboveground plant biomass and species richness in three farming systems and four grazing management systems. A total of 180 ...

  8. Impact of physicochemical factors on zooplankton species richness ...

    African Journals Online (AJOL)

    thermometer, pH meter, Secchi disk, DO meter and EC/TDS meter respectively. Monthly sampling was conducted between January, 2009 and December, 2010. Result showed reduced zooplankton species richness between 2009 and 2010 of 33 spp. and 21 spp. respectively. Likewise there was observed reduction in ...

  9. Restoration of species-rich grasslands on reconstructed river dikes

    NARCIS (Netherlands)

    Liebrand, C.I.J.M.

    1999-01-01

    Up until 30 years ago an extensive, flower-rich grassland vegetation containing many species rare in the Netherlands used to be common on Dutch river dikes. However, the deterioration of the flora on dikes was already being reported at the end of the 1960s. At that time too, ecologists

  10. Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes

    Energy Technology Data Exchange (ETDEWEB)

    Catherine, Arnaud, E-mail: arnocat@mnhn.fr [UMR7245 MCAM MNHN-CNRS, Muséum National d' Histoire Naturelle, CC 39, 12 rue Buffon, F-75231 Paris, Cedex 05 (France); Selma, Maloufi, E-mail: maloufi@mnhn.fr [UMR7245 MCAM MNHN-CNRS, Muséum National d' Histoire Naturelle, CC 39, 12 rue Buffon, F-75231 Paris, Cedex 05 (France); Mouillot, David, E-mail: david.mouillot@univ-montp2.fr [UMR 9190 MARBEC UM2-CNRS-IRD-UM1-IFREMER, CC 93, Place Eugène Bataillon, Université de Montpellier 2, F-34095 Montpellier (France); Troussellier, Marc, E-mail: troussel@univ-montp2.fr [UMR 9190 MARBEC UM2-CNRS-IRD-UM1-IFREMER, CC 93, Place Eugène Bataillon, Université de Montpellier 2, F-34095 Montpellier (France); Bernard, Cécile, E-mail: cbernard@mnhn.fr [UMR7245 MCAM MNHN-CNRS, Muséum National d' Histoire Naturelle, CC 39, 12 rue Buffon, F-75231 Paris, Cedex 05 (France)

    2016-07-15

    Local species richness (SR) is a key characteristic affecting ecosystem functioning. Yet, the mechanisms regulating phytoplankton diversity in freshwater ecosystems are not fully understood, especially in peri-urban environments where anthropogenic pressures strongly impact the quality of aquatic ecosystems. To address this issue, we sampled the phytoplankton communities of 50 lakes in the Paris area (France) characterized by a large gradient of physico-chemical and catchment-scale characteristics. We used large phytoplankton datasets to describe phytoplankton diversity patterns and applied a machine-learning algorithm to test the degree to which species richness patterns are potentially controlled by environmental factors. Selected environmental factors were studied at two scales: the lake-scale (e.g. nutrients concentrations, water temperature, lake depth) and the catchment-scale (e.g. catchment, landscape and climate variables). Then, we used a variance partitioning approach to evaluate the interaction between lake-scale and catchment-scale variables in explaining local species richness. Finally, we analysed the residuals of predictive models to identify potential vectors of improvement of phytoplankton species richness predictive models. Lake-scale and catchment-scale drivers provided similar predictive accuracy of local species richness (R{sup 2} = 0.458 and 0.424, respectively). Both models suggested that seasonal temperature variations and nutrient supply strongly modulate local species richness. Integrating lake- and catchment-scale predictors in a single predictive model did not provide increased predictive accuracy; therefore suggesting that the catchment-scale model probably explains observed species richness variations through the impact of catchment-scale variables on in-lake water quality characteristics. Models based on catchment characteristics, which include simple and easy to obtain variables, provide a meaningful way of predicting phytoplankton

  11. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    Science.gov (United States)

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high

  12. Resource stoichiometry and availability modulate species richness and biomass of tropical litter macro-invertebrates.

    Science.gov (United States)

    Jochum, Malte; Barnes, Andrew D; Weigelt, Patrick; Ott, David; Rembold, Katja; Farajallah, Achmad; Brose, Ulrich

    2017-09-01

    High biodiversity and biomass of soil communities are crucial for litter decomposition in terrestrial ecosystems such as tropical forests. However, the leaf litter that these communities consume is of particularly poor quality as indicated by elemental stoichiometry. The impact of resource quantity, quality and other habitat parameters on species richness and biomass of consumer communities is often studied in isolation, although much can be learned from simultaneously studying both community characteristics. Using a dataset of 780 macro-invertebrate consumer species across 32 sites in tropical lowland rain forest and agricultural systems on Sumatra, Indonesia, we investigated the effects of basal resource stoichiometry (C:X ratios of N, P, K, Ca, Mg, Na, S in local leaf litter), litter mass (basal resource quantity and habitat space), plant species richness (surrogate for litter habitat heterogeneity), and soil pH (acidity) on consumer species richness and biomass across different consumer groups (i.e. 3 feeding guilds and 10 selected taxonomic groups). In order to distinguish the most important predictors of consumer species richness and biomass, we applied a standardised model averaging approach investigating the effects of basal resource stoichiometry, litter mass, plant species richness and soil pH on both consumer community characteristics. This standardised approach enabled us to identify differences and similarities in the magnitude and importance of such effects on consumer species richness and biomass. Across consumer groups, we found litter mass to be the most important predictor of both species richness and biomass. Resource stoichiometry had a more pronounced impact on consumer species richness than on their biomass. As expected, taxonomic groups differed in which resource and habitat parameters (basal resource stoichiometry, litter mass, plant species richness and pH) were most important for modulating their community characteristics. The importance

  13. Marine diversity: the paradigms in patterns of species richness examined

    Directory of Open Access Journals (Sweden)

    John S. Gray

    2001-12-01

    Full Text Available The two central paradigms of marine diversity are that there is a latitudinal cline of increasing species richness from poles to tropics and that species richness increases with depth to a maximum around 2,000 m and thereafter decreases. However, these paradigms were based on data collected in the late 1950´s and early 1960´s. Here I show that the 1960´s data, are not representative and thus the paradigms need re-examination. New data from coastal areas in the northern hemisphere record species richness as high as the highest recorded in the deep-sea. Whilst this suggests that the cline of increasing diversity from shallow to deep-sea does not exist, however, the database for the deep sea is not sufficient to draw such a conclusion. The basic problem with the data from the 1960s is that samples were taken on ecological scales and yet they are used to answer evolutionary questions. The questions that such data were to answer were why do the tropics have higher species richness than polar regions or why do deep-sea sediments have more species than coastal sediments? Evolutionary questions need data from much larger spatial areas. Recently, data representative of large scales have been collected from coastal areas in the northern hemisphere and show that there is a cline of increasing species richness from the Arctic to the tropics, but there does not yet seem to be a similar cline in the southern hemisphere. A number of hypotheses have been proposed for the observed patterns in biodiversity. In terrestrial ecology the energy-productivity hypothesis has gained wide acceptance as an explanation for the latitudinal gradient. Here I examine this and other hypotheses critically. Finally an analysis of research priorities is made. Assessment is urgently needed of the spatial scales and dynamics of species richness from point samples to assemblages, habitats and landscapes, especially in coastal areas and in the tropics, where the threats to

  14. Global assessment of the effects of terrestrial acidification on plant species richness

    International Nuclear Information System (INIS)

    Azevedo, Ligia B.; Zelm, Rosalie van; Hendriks, A. Jan; Bobbink, Roland; Huijbregts, Mark A.J.

    2013-01-01

    This study estimates the potential losses of vascular plant species richness due to terrestrial acidification for different world's biomes. We used empirical occurrence data of 2409 species from 140 studies and estimated the relative species richness – pH response curves using logistic regressions. The regressions were then used to quantify the fraction of species that are potentially lost due to soil pH changes. Although we found considerable variability within biomes, out results show that the pH at which species richness was maximized was found to be the lowest in (sub)tropical forests (pH = 4.1) and the highest in deserts (pH = 7.4). We also found that (sub)tropical moist forests are highly sensitive to decreases of in soil pH below 4.1. This study can be coupled with existing atmospheric deposition models to quantify the risk of species richness loss following soil acidification. Highlights: ► We compare the sensitivity of four biomes to soil acidification. ► We develop logistic regressions using observational field data. ► Sub(tropical) moist forests are highly affected by pH decreases. ► Logistic regressions can be linked to global scale atmospheric and soil fate models. -- Relationships of potential species richness loss along a soil pH gradient are proposed

  15. USING TAXONOMIC REVISION DATA TO ESTIMATE THE GLOBAL SPECIES RICHNESS AND CHARACTERISTICS OF UNDESCRIBED SPECIES OF DIVING BEETLES (COLEOPTERA: DYTISCIDAE

    Directory of Open Access Journals (Sweden)

    Viktor Nilsson-Örtman

    2010-06-01

    Full Text Available Many methods used for estimating species richness are either difficult to use on poorly known taxa or require input data that are laborious and expensive to collect. In this paper we apply a method which takes advantage of the carefully conducted tests of how the described diversity compares to real species richness that are inherent in taxonomic revisions. We analyze the quantitative outcome from such revisions with respect to body size, zoogeographical region and phylogenetic relationship. The best fitting model is used to predict the diversity of unrevised groups if these would have been subject to as rigorous species level hypothesis-testing as the revised groups. The sensitivity of the predictive model to single observations is estimated by bootstrapping over resampled subsets of the original data. The Dytiscidae is with its 4080 described species (end of May 2009 the most diverse group of aquatic beetles and have a world-wide distribution. Extensive taxonomic work has been carried out on the family but still the number of described species increases exponentially in most zoogeographical regions making many commonly used methods of estimation difficult to apply. We provide independent species richness estimates of subsamples for which species richness estimates can be reached through extrapolation and compare these to the species richness estimates obtained through the method using revision data. We estimate there to be 5405 species of dytiscids, a 1.32-fold increase over the present number of described species. The undescribed diversity is likely to be biased towards species with small body size from tropical regions outside of Africa.

  16. Urbanization level and woodland size are major drivers of woodpecker species richness and abundance.

    Science.gov (United States)

    Myczko, Lukasz; Rosin, Zuzanna M; Skórka, Piotr; Tryjanowski, Piotr

    2014-01-01

    Urbanization is a process globally responsible for loss of biodiversity and for biological homogenization. Urbanization may have a direct negative impact on species behaviour and indirect effects on species populations through alterations of their habitats, for example patch size and habitat quality. Woodpeckers are species potentially susceptible to urbanization. These birds are mostly forest specialists and the development of urban areas in former forests may be an important factor influencing their richness and abundance, but documented examples are rare. In this study we investigated how woodpeckers responded to changes in forest habitats as a consequence of urbanization, namely size and isolation of habitat patches, and other within-patch characteristics. We selected 42 woodland patches in a gradient from a semi-natural rural landscape to the city centre of Poznań (Western Poland) in spring 2010. Both species richness and abundance of woodpeckers correlated positively to woodland patch area and negatively to increasing urbanization. Abundance of woodpeckers was also positively correlated with shrub cover and percentage of deciduous tree species. Furthermore, species richness and abundance of woodpeckers were highest at moderate values of canopy openness. Ordination analyses confirmed that urbanization level and woodland patch area were variables contributing most to species abundance in the woodpecker community. Similar results were obtained in presence-absence models for particular species. Thus, to sustain woodpecker species within cities it is important to keep woodland patches large, multi-layered and rich in deciduous tree species.

  17. Urbanization level and woodland size are major drivers of woodpecker species richness and abundance.

    Directory of Open Access Journals (Sweden)

    Lukasz Myczko

    Full Text Available Urbanization is a process globally responsible for loss of biodiversity and for biological homogenization. Urbanization may have a direct negative impact on species behaviour and indirect effects on species populations through alterations of their habitats, for example patch size and habitat quality. Woodpeckers are species potentially susceptible to urbanization. These birds are mostly forest specialists and the development of urban areas in former forests may be an important factor influencing their richness and abundance, but documented examples are rare. In this study we investigated how woodpeckers responded to changes in forest habitats as a consequence of urbanization, namely size and isolation of habitat patches, and other within-patch characteristics. We selected 42 woodland patches in a gradient from a semi-natural rural landscape to the city centre of Poznań (Western Poland in spring 2010. Both species richness and abundance of woodpeckers correlated positively to woodland patch area and negatively to increasing urbanization. Abundance of woodpeckers was also positively correlated with shrub cover and percentage of deciduous tree species. Furthermore, species richness and abundance of woodpeckers were highest at moderate values of canopy openness. Ordination analyses confirmed that urbanization level and woodland patch area were variables contributing most to species abundance in the woodpecker community. Similar results were obtained in presence-absence models for particular species. Thus, to sustain woodpecker species within cities it is important to keep woodland patches large, multi-layered and rich in deciduous tree species.

  18. Global and Regional Patterns in Riverine Fish Species Richness: A Review

    Directory of Open Access Journals (Sweden)

    Thierry Oberdorff

    2011-01-01

    Full Text Available We integrate the respective role of global and regional factors driving riverine fish species richness patterns, to develop a synthetic model of potential mechanisms and processes generating these patterns. This framework allows species richness to be broken down into different components specific to each spatial extent and to establish links between these components and the processes involved. This framework should help to answer the questions that are currently being asked by society, including the effects of species invasions, habitat loss, or fragmentation and climate change on freshwater biodiversity.

  19. Elevational patterns of species richness, range and body size for spiny frogs.

    Science.gov (United States)

    Hu, Junhua; Xie, Feng; Li, Cheng; Jiang, Jianping

    2011-01-01

    Quantifying spatial patterns of species richness is a core problem in biodiversity theory. Spiny frogs of the subfamily Painae (Anura: Dicroglossidae) are widespread, but endemic to Asia. Using spiny frog distribution and body size data, and a digital elevation model data set we explored altitudinal patterns of spiny frog richness and quantified the effect of area on the richness pattern over a large altitudinal gradient from 0-5000 m a.s.l. We also tested two hypotheses: (i) the Rapoport's altitudinal effect is valid for the Painae, and (ii) Bergmann's clines are present in spiny frogs. The species richness of Painae across four different altitudinal band widths (100 m, 200 m, 300 m and 400 m) all showed hump-shaped patterns along altitudinal gradient. The altitudinal changes in species richness of the Paini and Quasipaini tribes further confirmed this finding, while the peak of Quasipaini species richness occurred at lower elevations than the maxima of Paini. The area did not explain a significant amount of variation in total, nor Paini species richness, but it did explain variation in Quasipaini. Five distinct groups across altitudinal gradient were found. Species altitudinal ranges did not expand with an increase in the midpoints of altitudinal ranges. A significant negative correlation between body size and elevation was exhibited. Our findings demonstrate that Rapoport's altitudinal rule is not a compulsory attribute of spiny frogs and also suggest that Bergmann's rule is not generally applicable to amphibians. The study highlights a need to explore the underlying mechanisms of species richness patterns, particularly for amphibians in macroecology.

  20. Elevational patterns of species richness, range and body size for spiny frogs.

    Directory of Open Access Journals (Sweden)

    Junhua Hu

    Full Text Available Quantifying spatial patterns of species richness is a core problem in biodiversity theory. Spiny frogs of the subfamily Painae (Anura: Dicroglossidae are widespread, but endemic to Asia. Using spiny frog distribution and body size data, and a digital elevation model data set we explored altitudinal patterns of spiny frog richness and quantified the effect of area on the richness pattern over a large altitudinal gradient from 0-5000 m a.s.l. We also tested two hypotheses: (i the Rapoport's altitudinal effect is valid for the Painae, and (ii Bergmann's clines are present in spiny frogs. The species richness of Painae across four different altitudinal band widths (100 m, 200 m, 300 m and 400 m all showed hump-shaped patterns along altitudinal gradient. The altitudinal changes in species richness of the Paini and Quasipaini tribes further confirmed this finding, while the peak of Quasipaini species richness occurred at lower elevations than the maxima of Paini. The area did not explain a significant amount of variation in total, nor Paini species richness, but it did explain variation in Quasipaini. Five distinct groups across altitudinal gradient were found. Species altitudinal ranges did not expand with an increase in the midpoints of altitudinal ranges. A significant negative correlation between body size and elevation was exhibited. Our findings demonstrate that Rapoport's altitudinal rule is not a compulsory attribute of spiny frogs and also suggest that Bergmann's rule is not generally applicable to amphibians. The study highlights a need to explore the underlying mechanisms of species richness patterns, particularly for amphibians in macroecology.

  1. Landscape variation in tree species richness in northern Iran forests.

    Directory of Open Access Journals (Sweden)

    Charles P-A Bourque

    Full Text Available Mapping landscape variation in tree species richness (SR is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area's unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i three topographic variables generated directly from the area's digital terrain model; (ii four ecophysiologically-relevant variables derived from process models or from first principles; and (iii seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content, yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot, than by Fagus orientalis (median difference of one species. This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently

  2. Carrying capacity for species richness as context for conservation: a case study of North American birds

    Science.gov (United States)

    Andrew J. Hansen; Linda Bowers Phillips; Curtis H. Flather; Jim Robinson-Cox

    2011-01-01

    We evaluated the leading hypotheses on biophysical factors affecting species richness for Breeding Bird Survey routes from areas with little influence of human activities.We then derived a best model based on information theory, and used this model to extrapolate SK across North America based on the biophysical predictor variables. The predictor variables included the...

  3. Disentangling the Role of Climate, Topography and Vegetation in Species Richness Gradients.

    Directory of Open Access Journals (Sweden)

    Mario R Moura

    Full Text Available Environmental gradients (EG related to climate, topography and vegetation are among the most important drivers of broad scale patterns of species richness. However, these different EG do not necessarily drive species richness in similar ways, potentially presenting synergistic associations when driving species richness. Understanding the synergism among EG allows us to address key questions arising from the effects of global climate and land use changes on biodiversity. Herein, we use variation partitioning (also know as commonality analysis to disentangle unique and shared contributions of different EG in explaining species richness of Neotropical vertebrates. We use three broad sets of predictors to represent the environmental variability in (i climate (annual mean temperature, temperature annual range, annual precipitation and precipitation range, (ii topography (mean elevation, range and coefficient of variation of elevation, and (iii vegetation (land cover diversity, standard deviation and range of forest canopy height. The shared contribution between two types of EG is used to quantify synergistic processes operating among EG, offering new perspectives on the causal relationships driving species richness. To account for spatially structured processes, we use Spatial EigenVector Mapping models. We perform analyses across groups with distinct dispersal abilities (amphibians, non-volant mammals, bats and birds and discuss the influence of vagility on the partitioning results. Our findings indicate that broad scale patterns of vertebrate richness are mainly affected by the synergism between climate and vegetation, followed by the unique contribution of climate. Climatic factors were relatively more important in explaining species richness of good dispersers. Most of the variation in vegetation that explains vertebrate richness is climatically structured, supporting the productivity hypothesis. Further, the weak synergism between topography and

  4. Scale effects and human impact on the elevational species richness gradients.

    Science.gov (United States)

    Nogués-Bravo, D; Araújo, M B; Romdal, T; Rahbek, C

    2008-05-08

    Despite two centuries of effort in characterizing environmental gradients of species richness in search of universal patterns, surprisingly few of these patterns have been widely acknowledged. Species richness along altitudinal gradients was previously assumed to increase universally from cool highlands to warm lowlands, mirroring the latitudinal increase in species richness from cool to warm latitudes. However, since the more recent general acceptance of altitudinal gradients as model templates for testing hypotheses behind large-scale patterns of diversity, these gradients have been used in support of all the main diversity hypotheses, although little consensus has been achieved. Here we show that when resampling a data set comprising 400,000 records for 3,046 Pyrenean floristic species at different scales of analysis (achieved by varying grain size and the extent of the gradients sampled), the derived species richness pattern changed progressively from hump-shaped to a monotonic pattern as the scale of extent diminished. Scale effects alone gave rise to as many conflicting patterns of species richness as had previously been reported in the literature, and scale effects lent significantly different statistical support to competing diversity hypotheses. Effects of scale on current studies may be affected by human activities, because montane ecosystems and human activities are intimately connected. This interdependence has led to a global reduction in natural lowland habitats, hampering our ability to detect universal patterns and impeding the search for universal diversity gradients to discover the mechanisms determining the distribution of biological diversity on Earth.

  5. Effects of urbanization on carnivore species distribution and richness

    Science.gov (United States)

    Ordenana, Miguel A.; Crooks, Kevin R.; Boydston, Erin E.; Fisher, Robert N.; Lyren, Lisa M.; Siudyla, Shalene; Haas, Christopher D.; Harris, Sierra; Hathaway, Stacie A.; Turschak, Greta M.; Miles, A. Keith; Van Vuren, Dirk H.

    2010-01-01

    Urban development can have multiple effects on mammalian carnivore communities. We conducted a meta-analysis of 7,929 photographs from 217 localities in 11 camera-trap studies across coastal southern California to describe habitat use and determine the effects of urban proximity (distance to urban edge) and intensity (percentage of area urbanized) on carnivore occurrence and species richness in natural habitats close to the urban boundary. Coyotes (Canis latrans) and bobcats (Lynx rufus) were distributed widely across the region. Domestic dogs (Canis lupus familiaris), striped skunks (Mephitis mephitis), raccoons (Procyon lotor), gray foxes (Urocyon cinereoargenteus), mountain lions (Puma concolor), and Virginia opossums (Didelphis virginiana) were detected less frequently, and long-tailed weasels (Mustela frenata), American badgers (Taxidea taxus), western spotted skunks (Spilogale gracilis), and domestic cats (Felis catus) were detected rarely. Habitat use generally reflected availability for most species. Coyote and raccoon occurrence increased with both proximity to and intensity of urbanization, whereas bobcat, gray fox, and mountain lion occurrence decreased with urban proximity and intensity. Domestic dogs and Virginia opossums exhibited positive and weak negative relationships, respectively, with urban intensity but were unaffected by urban proximity. Striped skunk occurrence increased with urban proximity but decreased with urban intensity. Native species richness was negatively associated with urban intensity but not urban proximity, probably because of the stronger negative response of individual species to urban intensity.

  6. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients

    Science.gov (United States)

    Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2013-01-01

    1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.

  7. Drivers of Bird Species Richness within Moist High-Altitude Grasslands in Eastern South Africa.

    Science.gov (United States)

    Maphisa, David H; Smit-Robinson, Hanneline; Underhill, Les G; Altwegg, Res

    2016-01-01

    Moist high-altitude grasslands in South Africa are renowned for high avifaunal diversity and are priority areas for conservation. Conservation management of these areas conflicts with management for other uses, such as intensive livestock agriculture, which requires annual burning and leads to heavy grazing. Recently the area has become target for water storage schemes and renewable electricity energy projects. There is therefore an urgent need to investigate environmental factors and habitat factors that affect bird species richness in order to optimise management of those areas set aside for conservation. A particularly good opportunity to study these issues arose at Ingula in the eastern South African high-altitude grasslands. An area that had been subject to intense grazing was bought by the national power utility that constructed a pumped storage scheme on part of the land and set aside the rest for bird conservation. Since the new management took over in 2005 the area has been mostly annually burned with relatively little grazing. The new management seeks scientific advice on how to maintain avian species richness of the study area. We collected bird occurrence and vegetation data along random transects between 2006 and 2010 to monitor the impact of the new management, and to study the effect of the habitat changes on bird species richness. To achieve these, we convert bird transect data to presence only data to investigate how bird species richness were related to key transect vegetation attributes under this new grassland management. First we used generalised linear mixed models, to examine changes in vegetation grass height and cover and between burned and unburned habitats. Secondly, we examined how total bird species richness varied across seasons and years. And finally we investigated which habitat vegetation attributes were correlated with species richness of a group of grassland depended bird species only. Transects that were burned showed a larger

  8. Patterns of reptile and amphibian species richness along elevational gradients in Mt. Kenya.

    Science.gov (United States)

    Malonza, Patrick Kinyatta

    2015-11-18

    Faunal species richness is traditionally assumed to decrease with increasing elevation and decreasing primary productivity. Species richness is reported to peak at mid-elevation. This survey examines the herpetofaunal diversity and distribution in Mt. Kenya (central Kenya) by testing the hypothesis that changes in species richness with elevation relate to elevation-dependent changes in climate. Sampling along transects from an elevation of approximately 1 700 m in Chogoria forest block (wind-ward side) and approximately 2 600 m in Sirimon block (rain shadow zone) upwards in March 2009. This starts from the forest to montane alpine zones. Sampling of reptiles and amphibians uses pitfall traps associated with drift fences, time-limited searches and visual encounter surveys. The results show that herpetofaunal richness differs among three vegetation zones along the elevation gradient. Chogoria has higher biodiversity than Sirimon. More species occur at low and middle elevations and few exist at high elevations. The trends are consistent with expected optimum water and energy variables. The lower alpine montane zone has high species richness but low diversity due to dominance of some high elevations species. Unambiguous data do not support a mid-domain effect (mid-elevation peak) because the observed trend better fits a model in which climatic variables (rainfall and temperature) control species richness, which indirectly measures productivity. It is important to continue protection of all indigenous forests, especially at low to mid elevations. These areas are vulnerable to human destruction yet are home to some endemic species. Firebreaks can limit the spread of the perennial wildfires, especially on the moorlands.

  9. Spatio-temporal dynamics of species richness in coastal fish communities

    Science.gov (United States)

    Lekve, K.; Boulinier, T.; Stenseth, N.C.; Gjøsaeter, J.; Fromentin, J-M.; Hines, J.E.; Nichols, J.D.

    2002-01-01

    Determining patterns of change in species richness and the processes underlying the dynamics of biodiversity are of key interest within the field of ecology, but few studies have investigated the dynamics of vertebrate communities at a decadal temporal scale. Here, we report findings on the spado-temporal variability in the richness and composition of fish communities along the Norwegian Skagerrak coast having been surveyed for more than half a century. Using statistical models incorporating non-detection and associated sampling variance, we estimate local species richness and changes in species composition allowing us to compute temporal variability in species richness. We tested whether temporal variation could be related to distance to the open sea and to local levels of pollution. Clear differences in mean species richness and temporal variability are observed between fjords that were and were not exposed to the effects of pollution. Altogether this indicates that the fjord is an appropriate scale for studying changes in coastal fish communities in space and time. The year-to-year rates of local extinction and turnover were found to be smaller than spatial differences in community composition. At the regional level, exposure to the open sea plays a homogenizing role, possibly due to coastal currents and advection.

  10. Biogeography of species richness gradients : Linking adaptive traits, demography and diversification

    NARCIS (Netherlands)

    Carnicer, Jofre; Brotons, Lluis; Stefanescu, Constanti; Penuelas, Josep

    Here we review how adaptive traits contribute to the emergence and maintenance of species richness gradients through their influence on demographic and diversification processes. We start by reviewing how demographic dynamics change along species richness gradients. Empirical studies show that

  11. Using Google Earth Surface Metrics to Predict Plant Species Richness in a Complex Landscape

    Directory of Open Access Journals (Sweden)

    Sebastián Block

    2016-10-01

    Full Text Available Google Earth provides a freely available, global mosaic of high-resolution imagery from different sensors that has become popular in environmental and ecological studies. However, such imagery lacks the near-infrared band often used in studying vegetation, thus its potential for estimating vegetation properties remains unclear. In this study, we assess the potential of Google Earth imagery to describe and predict vegetation attributes. Further, we compare it to the potential of SPOT imagery, which has additional spectral information. We measured basal area, vegetation height, crown cover, density of individuals, and species richness in 60 plots in the oak forests of a complex volcanic landscape in central Mexico. We modelled each vegetation attribute as a function of surface metrics derived from Google Earth and SPOT images, and selected the best-supported linear models from each source. Total species richness was the best-described and predicted variable: the best Google Earth-based model explained nearly as much variation in species richness as its SPOT counterpart (R2 = 0.44 and 0.51, respectively. However, Google Earth metrics emerged as poor predictors of all remaining vegetation attributes, whilst SPOT metrics showed potential for predicting vegetation height. We conclude that Google Earth imagery can be used to estimate species richness in complex landscapes. As it is freely available, Google Earth can broaden the use of remote sensing by researchers and managers in low-income tropical countries where most biodiversity hotspots are found.

  12. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway

    Science.gov (United States)

    Grytnes, John Arvid; Heegaard, Einar; Ihlen, Per G.

    2006-05-01

    Species richness patterns of ground-dwelling vascular plants, bryophytes, and lichens were compared along an altitudinal gradient (310-1135 m a.s.l.), in western Norway. Total species richness peaked at intermediate altitudes, vascular plant species richness peaked immediately above the forest limit (at 600-700 m a.s.l.), bryophyte species richness had no statistically significant trend, whereas lichen richness increased from the lowest point and up to the forest limit, with no trend above. It is proposed that the pattern in vascular plant species richness is enhanced by an ecotone effect. Bryophyte species richness responds to local scale factors whereas the lichen species richness may be responding to the shading from the forest trees.

  13. Cascade effects of crop species richness on the diversity of pest insects and their natural enemies.

    Science.gov (United States)

    Shi, PeiJian; Hui, Cang; Men, XingYuan; Zhao, ZiHua; Ouyang, Fang; Ge, Feng; Jin, XianShi; Cao, HaiFeng; Li, B Larry

    2014-07-01

    Understanding how plant species richness influences the diversity of herbivorous and predatory/parasitic arthropods is central to community ecology. We explore the effects of crop species richness on the diversity of pest insects and their natural enemies. Using data from a four-year experiment with five levels of crop species richness, we found that crop species richness significantly affected the pest species richness, but there were no significant effects on richness of the pests' natural enemies. In contrast, the species richness of pest insects significantly affected their natural enemies. These findings suggest a cascade effect where trophic interactions are strong between adjacent trophic levels, while the interactions between connected but nonadjacent trophic levels are weakened by the intermediate trophic level. High crop species richness resulted in a more stable arthropod community compared with communities in monoculture crops. Our results highlight the complicated cross-trophic interactions and the crucial role of crop diversity in the food webs of agro-ecosystems.

  14. Vascular plant and vertebrate species richness in national parks of the eastern United States

    Science.gov (United States)

    Hatfield, Jeffrey S.; Myrick, Kaci E.; Huston, Michael A.; Weckerly, Floyd W.; Green, M. Clay

    2013-01-01

    Given the estimates that species diversity is diminishing at 50-100 times the normal rate, it is critical that we be able to evaluate changes in species richness in order to make informed decisions for conserving species diversity. In this study, we examined the potential of vascular plant species richness to be used as a surrogate for vertebrate species richness in the classes of amphibians, reptiles, birds, and mammals. Vascular plants, as primary producers, represent the biotic starting point for ecological community structure and are the logical place to start for understanding vertebrate species associations. We used data collected by the United States (US) National Park Service (NPS) on species presence within parks in the eastern US to estimate simple linear regressions between plant species richness and vertebrate richness. Because environmental factors may also influence species diversity, we performed simple linear regressions of species richness versus natural logarithm of park area, park latitude, mean annual precipitation, mean annual temperature, and human population density surrounding the parks. We then combined plant species richness and environmental variables in multiple regressions to determine the variables that remained as significant predictors of vertebrate species richness. As expected, we detected significant relationships between plant species richness and amphibian, bird, and mammal species richness. In some cases, plant species richness was predicted by park area alone. Species richness of mammals was only related to plant species richness. Reptile species richness, on the other hand, was related to plant species richness, park latitude and annual precipitation, while amphibian species richness was related to park latitude, park area, and plant species richness. Thus, plant species richness predicted species richness of different vertebrate groups to varying degrees and should not be used exclusively as a surrogate for vertebrate

  15. Geographical, Temporal and Environmental Determinants of Bryophyte Species Richness in the Macaronesian Islands

    Science.gov (United States)

    Aranda, Silvia C.; Gabriel, Rosalina; Borges, Paulo A. V.; Santos, Ana M. C.; de Azevedo, Eduardo Brito; Patiño, Jairo; Hortal, Joaquín; Lobo, Jorge M.

    2014-01-01

    Species richness on oceanic islands has been related to a series of ecological factors including island size and isolation (i.e. the Equilibrium Model of Island Biogeography, EMIB), habitat diversity, climate (i.e., temperature and precipitation) and more recently island ontogeny (i.e. the General Dynamic Model of oceanic island biogeography, GDM). Here we evaluate the relationship of these factors with the diversity of bryophytes in the Macaronesian region (Azores, Madeira, Canary Islands and Cape Verde). The predictive power of EMIB, habitat diversity, climate and the GDM on total bryophyte richness, as well as moss and liverwort richness (the two dominant bryophyte groups), was evaluated through ordinary least squares regressions. After choosing the best subset of variables using inference statistics, we used partial regression analyses to identify the independent and shared effects of each model. The variables included within each model were similar for mosses and liverworts, with orographic mist layer being one of the most important predictors of richness. Models combining climate with either the GDM or habitat diversity explained most of richness variation (up to 91%). There was a high portion of shared variance between all pairwise combinations of factors in mosses, while in liverworts around half of the variability in species richness was accounted for exclusively by climate. Our results suggest that the effects of climate and habitat are strong and prevalent in this region, while geographical factors have limited influence on Macaronesian bryophyte diversity. Although climate is of great importance for liverwort richness, in mosses its effect is similar to or, at least, indiscernible from the effect of habitat diversity and, strikingly, the effect of island ontogeny. These results indicate that for highly vagile taxa on oceanic islands, the dispersal process may be less important for successful colonization than the availability of suitable ecological

  16. Does plant species richness guarantee the resilience of local medical systems? A perspective from utilitarian redundancy.

    Directory of Open Access Journals (Sweden)

    Flávia Rosa Santoro

    Full Text Available Resilience is related to the ability of a system to adjust to disturbances. The Utilitarian Redundancy Model has emerged as a tool for investigating the resilience of local medical systems. The model determines the use of species richness for the same therapeutic function as a facilitator of the maintenance of these systems. However, predictions generated from this model have not yet been tested, and a lack of variables exists for deeper analyses of resilience. This study aims to address gaps in the Utilitarian Redundancy Model and to investigate the resilience of two medical systems in the Brazilian semi-arid zone. As a local illness is not always perceived in the same way that biomedicine recognizes, the term "therapeutic targets" is used for perceived illnesses. Semi-structured interviews with local experts were conducted using the free-listing technique to collect data on known medicinal plants, usage preferences, use of redundant species, characteristics of therapeutic targets, and the perceived severity for each target. Additionally, participatory workshops were conducted to determine the frequency of targets. The medical systems showed high species richness but low levels of species redundancy. However, if redundancy was present, it was the primary factor responsible for the maintenance of system functions. Species richness was positively associated with therapeutic target frequencies and negatively related to target severity. Moreover, information about redundant species seems to be largely idiosyncratic; this finding raises questions about the importance of redundancy for resilience. We stress the Utilitarian Redundancy Model as an interesting tool to be used in studies of resilience, but we emphasize that it must consider the distribution of redundancy in terms of the treatment of important illnesses and the sharing of information. This study has identified aspects of the higher and lower vulnerabilities of medical systems, adding

  17. Implications from climate and landuse change on the global dictribution of plant species richness

    Science.gov (United States)

    Sommer, J. H.

    2015-12-01

    Climate change may induce shifts in species distributions and species richness patterns worldwide. The current distribution of global plant species richness can be reasonably well explained by climate and environmental predictors. Future projections from Global Climate Models (GCMs) concurrently indicate considerable possible shifts in water and energy related parameters such as temperature and precipitation within the 21stcentury, which may in turn have effects on the distribution of different vegetation zones worldwide and their potential to provide suitable habitats for species. In addition, the rate at which climatic conditions change within specific regions and the distance of suitable future climate analogues to recent conditions strongly influence the required species responses. Moreover, the ongoing transformation of natural habitats results in increasingly fragmented landscapes, which further limits the adaptive capacity of species to changing climate conditions in particular in terms of their ability to colonize new suitable habitats. We present global predictions of the magnitude of possible shifts of plant species richness potential by the end of the century, based on empirical multi-variate relationships with water-energy dynamics and non-climatic predictor variables. We relate these outcomes to projected spatio-temporal dynamics of future climate conditions in relation to their recent analogues, and incorporate land use projections to derive a more comprehensive picture on interactions and trade-offs between these drivers than by separately looking at them.

  18. High species richness of native pollinators in Brazilian tomato crops

    Directory of Open Access Journals (Sweden)

    C. M. Silva-Neto

    Full Text Available Abstract Pollinators provide an essential service to natural ecosystems and agriculture. In tomatoes flowers, anthers are poricidal, pollen may drop from their pore when flowers are shaken by the wind. However, bees that vibrate these anthers increase pollen load on the stigma and in fruit production. The present study aimed to identify the pollinator richness of tomato flowers and investigate their morphological and functional traits related to the plant-pollinator interaction in plantations of Central Brazil. The time of anthesis, flower duration, and the number and viability of pollen grains and ovules were recorded. Floral visitors were observed and collected. Flower buds opened around 6h30 and closed around 18h00. They reopened on the following day at the same time in the morning, lasting on average 48 hours. The highest pollen availability occurred during the first hours of anthesis. Afterwards, the number of pollen grains declined, especially between 10h00 to 12h00, which is consistent with the pollinator visitation pattern. Forty bee species were found in the tomato fields, 30 of which were considered pollinators. We found that during the flowering period, plants offered an enormous amount of pollen to their visitors. These may explain the high richness and amount of bees that visit the tomato flowers in the study areas. The period of pollen availability and depletion throughout the day overlapped with the bees foraging period, suggesting that bees are highly effective in removing pollen grains from anthers. Many of these grains probably land on the stigma of the same flower, leading to self-pollination and subsequent fruit development. Native bees (Exomalopsis spp. are effective pollinators of tomato flowers and are likely to contribute to increasing crop productivity. On the other hand, here tomato flowers offer large amounts of pollen resource to a high richness and amount of bees, showing a strong plant-pollinator interaction in the

  19. Processes at multiple scales affect richness and similarity of non-native plant species in mountains around the world

    Science.gov (United States)

    Tim Seipel; Christoph Kueffer; Lisa J. Rew; Curtis C. Daehler; Aníbal Pauchard; Bridgett J. Naylor; Jake M. Alexander; Peter J. Edwards; Catherine G. Parks; Jose Ramon Arevalo; Lohengrin A. Cavieres; Hansjorg Dietz; Gabi Jakobs; Keith McDougall; Rudiger Otto; Neville. Walsh

    2012-01-01

    We compared the distribution of non-native plant species along roads in eight mountainous regions. Within each region, abundance of plant species was recorded at 41-84 sites along elevational gradients using 100-m2 plots located 0, 25 and 75 m from roadsides. We used mixed-effects models to examine how local variation in species richness and...

  20. Factors influencing when species are first named and estimating global species richness

    Directory of Open Access Journals (Sweden)

    Mark J. Costello

    2015-07-01

    Full Text Available Estimates of global species richness should consider what factors influence the rate of species discovery at global scales. However, past studies only considered regional scales and/or samples representing <0.4% of all named species. Here, we analysed trends in the rate of description for all fish species (2% of all named species. We found that the number of species described has slowed for (a brackish compared to marine and freshwater species, (b large compared to small sized fish, (c geographically widespread compared to localised, (d species occurring in the tropics and northern hemisphere compared to southern hemisphere, and (e neritic (coastal species compared to pelagic (offshore species. Most (68% of the variation in year of description was related to geographic location and depth, and contrary to expectations, body size was a minor factor at just 6% (on a standardised scale. Thus most undiscovered species will have small geographic ranges, but will not necessarily be of smaller body size than currently known species. Accordingly, global assessments of how many species may exist on Earth need to account for geographic variation.

  1. The definition of species richness used by species sensitivity distributions approximates observed effects of salinity on stream macroinvertebrates

    International Nuclear Information System (INIS)

    Kefford, Ben J.; Marchant, Richard; Schaefer, Ralf B.; Metzeling, Leon; Dunlop, Jason E.; Choy, Satish C.; Goonan, Peter

    2011-01-01

    The risk of chemicals for ecological communities is often forecast with species sensitivity distributions (SSDs) which are used to predict the concentration which will protect p% of species (PC p value). However, at the PC p value, species richness in nature would not necessary be p% less than at uncontaminated sites. The definition of species richness inherent to SSDs (contaminant category richness) contrasts with species richness typically measured in most field studies (point richness). We determine, for salinity in eastern Australia, whether these definitions of stream macroinvertebrate species richness are commensurable. There were strong relationships (r 2 ≥ 0.87) between mean point species, family and Ephemeroptera, Trichoptera and Plecoptera species richness and their respective contamination category richness. Despite differences in the definition of richness used by SSDs and field biomonitoring, their results in terms of relative species loss from salinity in south-east Australia are similar. We conclude that in our system both definitions are commensurable. - Definitions of species richness inherit in SSDs and biomonitoring are for salinity in south-east Australia commensurable.

  2. The definition of species richness used by species sensitivity distributions approximates observed effects of salinity on stream macroinvertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Kefford, Ben J., E-mail: ben.kefford@uts.edu.a [School of Applied Sciences, RMIT University, Victoria (Australia); Centre for Environmental Sustainability, Department of Environmental Science, University of Technology Sydney, New South Wales (Australia); Marchant, Richard [Department of Entomology, Museum of Victoria, Victoria (Australia); Schaefer, Ralf B. [School of Applied Sciences, RMIT University, Victoria (Australia); Metzeling, Leon [EPA Victoria, Macleod, Victoria (Australia); Dunlop, Jason E. [Department of Environment and Resource Management, Indooroopilly, Queensland (Australia); National Research Centre for Environmental Toxicology, University of Queensland, Coopers Plains, Queensland (Australia); Choy, Satish C. [Department of Environment and Resource Management, Indooroopilly, Queensland (Australia); Goonan, Peter [South Australia Environment Protection Authority, Adelaide, South Australia (Australia)

    2011-01-15

    The risk of chemicals for ecological communities is often forecast with species sensitivity distributions (SSDs) which are used to predict the concentration which will protect p% of species (PC{sub p} value). However, at the PC{sub p} value, species richness in nature would not necessary be p% less than at uncontaminated sites. The definition of species richness inherent to SSDs (contaminant category richness) contrasts with species richness typically measured in most field studies (point richness). We determine, for salinity in eastern Australia, whether these definitions of stream macroinvertebrate species richness are commensurable. There were strong relationships (r{sup 2} {>=} 0.87) between mean point species, family and Ephemeroptera, Trichoptera and Plecoptera species richness and their respective contamination category richness. Despite differences in the definition of richness used by SSDs and field biomonitoring, their results in terms of relative species loss from salinity in south-east Australia are similar. We conclude that in our system both definitions are commensurable. - Definitions of species richness inherit in SSDs and biomonitoring are for salinity in south-east Australia commensurable.

  3. Butterfly Species Richness Patterns in Canada: Energy, Heterogeneity, and the Potential Consequences of Climate Change

    Directory of Open Access Journals (Sweden)

    Jeremy T. Kerr

    2001-06-01

    Full Text Available The distributions of most pollinator species are poorly documented despite their importance in providing ecosystem services. While these and other organisms are threatened by many aspects of the human enterprise, anthropogenic climate change is potentially the most severe threat to pollinator biodiversity. Mounting evidence demonstrates that there have already been biotic responses to the relatively small climate changes that have occurred this century. These include wholesale shifts of relatively well-documented butterfly and bird species in Europe and North America. Although studies of such phenomena are supported by circumstantial evidence, their findings are also consistent with predictions derived from current models of spatial patterns of species richness. Using new GIS methods that are highly precise and accurate, I document spatial patterns of Canadian butterfly diversity. These are strongly related to contemporary climate and particularly to potential evapotranspiration. An even more noteworthy finding is the fact that, for the first time, habitat heterogeneity, measured as the number of land cover types in each study unit, is proven to be an equally strong predictor of butterfly richness in a region where energy alone was thought to be the best predictor of diversity. Although previous studies reveal similar relationships between energy and diversity, they fail to detect the powerful link between richness and habitat heterogeneity. The butterflies of Canada provide a superb baseline for studying the effects of climate on contemporary patterns of species richness and comprise the only complete pollinator taxon for which this sort of analysis is currently possible.

  4. Does residence time affect responses of alien species richness to environmental and spatial processes?

    Directory of Open Access Journals (Sweden)

    Matteo Dainese

    2012-08-01

    Full Text Available One of the most robust emerging generalisations in invasion biology is that the probability of invasion increases with the time since introduction (residence time. We analysed the spatial distribution of alien vascular plant species in a region of north-eastern Italy to understand the influence of residence time on patterns of alien species richness. Neophytes were grouped according to three periods of arrival in the study region (1500–1800, 1800–1900, and > 1900. We applied multiple regression (spatial and non-spatial with hierarchical partitioning to determine the influence of climate and human pressure on species richness within the groups. We also applied variation partitioning to evaluate the relative importance of environmental and spatial processes. Temperature mainly influenced groups with speciesa longer residence time, while human pressure influenced the more recently introduced species, although its influence remained significant in all groups. Partial regression analyses showed that most of the variation explained by the models is attributable to spatially structured environmental variation, while environment and space had small independent effects. However, effects independent of environment decreased, and spatially independent effects increased, from older to the more recent neophytes. Our data illustrate that the distribution of alien species richness for species that arrived recently is related to propagule pressure, availability of novel niches created by human activity, and neutral-based (dispersal limitation processes, while climate filtering plays a key role in the distribution of species that arrived earlier. This study highlights the importance of residence time, spatial structure, and environmental conditions in the patterns of alien species richness and for a better understanding of its geographical variation.

  5. Geography, topography, and history affect realized-to-potential tree species richness patterns in Europe

    Science.gov (United States)

    Jens-Christian Svenning; Matthew C. Fitzpatrick; Signe Normand; Catherine H. Graham; Peter B. Pearman; Louis R. Iverson; Flemming. Skov

    2010-01-01

    Environmental conditions and biotic interactions are generally thought to influence local species richness. However, immigration and the evolutionary and historical factors that shape regional species pools should also contribute to determining local species richness because local communities arise by assembly from regional species pools. Using the European tree flora...

  6. Species richness, habitable volume, and species densities in freshwater, the sea, and on land

    Directory of Open Access Journals (Sweden)

    Michael N Dawson

    2012-09-01

    Full Text Available Approximately 0.5–2.0 million eukaryotic species inhabit the seas, whereas 2.0–10.0 million inhabit freshwater or the land. Much has been made of this several-fold difference in species richness but there is little consensus about the causes. Here, I ask a related question: what is the relative density of species in marine and non-marine realms? I use recent estimates of global eukaryotic species richness and published estimates of the areal coverage and depth of habitat for freshwater, marine, and terrestrial biomes. I find that the marine realm harbors ~99.83% of the habitable volume on this planet. Eukaryotic species density of the marine realm is ~3600-fold (i.e., 3-4 orders of magnitude less than that of non-marine environments. Species–volume relationships (SVRs help reconcile actinopterygian fish diversity with global primary productivity and emphasize the interacting roles of abiotic and biotic complexity in shaping patterns of biodiversity in freshwater, the sea, and on land. Comparing SVRs of habitats within and across realms may help resolve the factors and interactions that influence species density.

  7. Pattern or process? Evaluating the peninsula effect as a determinant of species richness in coastal dune forests.

    Science.gov (United States)

    Olivier, Pieter I; Rolo, Victor; van Aarde, Rudi J

    2017-01-01

    The peninsula effect predicts that the number of species should decline from the base of a peninsula to the tip. However, evidence for the peninsula effect is ambiguous, as different analytical methods, study taxa, and variations in local habitat or regional climatic conditions influence conclusions on its presence. We address this uncertainty by using two analytical methods to investigate the peninsula effect in three taxa that occupy different trophic levels: trees, millipedes, and birds. We surveyed 81 tree quadrants, 102 millipede transects, and 152 bird points within 150 km of coastal dune forest that resemble a habitat peninsula along the northeast coast of South Africa. We then used spatial (trend surface analyses) and non-spatial regressions (generalized linear mixed models) to test for the presence of the peninsula effect in each of the three taxa. We also used linear mixed models to test if climate (temperature and precipitation) and/or local habitat conditions (water availability associated with topography and landscape structural variables) could explain gradients in species richness. Non-spatial models suggest that the peninsula effect was present in all three taxa. However, spatial models indicated that only bird species richness declined from the peninsula base to the peninsula tip. Millipede species richness increased near the centre of the peninsula, while tree species richness increased near the tip. Local habitat conditions explained species richness patterns of birds and trees, but not of millipedes, regardless of model type. Our study highlights the idiosyncrasies associated with the peninsula effect-conclusions on the presence of the peninsula effect depend on the analytical methods used and the taxon studied. The peninsula effect might therefore be better suited to describe a species richness pattern where the number of species decline from a broader habitat base to a narrow tip, rather than a process that drives species richness.

  8. Pattern or process? Evaluating the peninsula effect as a determinant of species richness in coastal dune forests.

    Directory of Open Access Journals (Sweden)

    Pieter I Olivier

    Full Text Available The peninsula effect predicts that the number of species should decline from the base of a peninsula to the tip. However, evidence for the peninsula effect is ambiguous, as different analytical methods, study taxa, and variations in local habitat or regional climatic conditions influence conclusions on its presence. We address this uncertainty by using two analytical methods to investigate the peninsula effect in three taxa that occupy different trophic levels: trees, millipedes, and birds. We surveyed 81 tree quadrants, 102 millipede transects, and 152 bird points within 150 km of coastal dune forest that resemble a habitat peninsula along the northeast coast of South Africa. We then used spatial (trend surface analyses and non-spatial regressions (generalized linear mixed models to test for the presence of the peninsula effect in each of the three taxa. We also used linear mixed models to test if climate (temperature and precipitation and/or local habitat conditions (water availability associated with topography and landscape structural variables could explain gradients in species richness. Non-spatial models suggest that the peninsula effect was present in all three taxa. However, spatial models indicated that only bird species richness declined from the peninsula base to the peninsula tip. Millipede species richness increased near the centre of the peninsula, while tree species richness increased near the tip. Local habitat conditions explained species richness patterns of birds and trees, but not of millipedes, regardless of model type. Our study highlights the idiosyncrasies associated with the peninsula effect-conclusions on the presence of the peninsula effect depend on the analytical methods used and the taxon studied. The peninsula effect might therefore be better suited to describe a species richness pattern where the number of species decline from a broader habitat base to a narrow tip, rather than a process that drives species

  9. Limited sampling hampers “big data” estimation of species richness in a tropical biodiversity hotspot

    DEFF Research Database (Denmark)

    Engemann, Kristine; Enquist, Brian J.; Sandel, Brody Steven

    2015-01-01

    in Ecuador, one of the most species-rich and climatically heterogeneous biodiversity hotspots. Species richness estimates were calculated based on 205,735 georeferenced specimens of 15,788 species using the Margalef diversity index, the Chao estimator, the second-order Jackknife and Bootstrapping resampling...

  10. Determinants of species richness patterns in the Netherlands across multiple taxonomic groups

    NARCIS (Netherlands)

    Schouten, M.A.; Verweij, P.A.; Barendrecht, A.; Kleukers, R.

    2009-01-01

    We examined the species richness patterns of five different species groups (mosses, reptiles and amphibians, grasshoppers and crickets, dragonflies, and hoverflies) in the Netherlands (41,500 km2) using sampling units of 5 × 5 km. We compared the spatial patterns of species richness of the five

  11. Evaluating changes in stream fish species richness over a 50-year time-period within a landscape context

    Science.gov (United States)

    Midway, Stephen R.; Wagner, Tyler; Tracy, Bryn H.; Hogue, Gabriela M.; Starnes, Wayne C.

    2015-01-01

    Worldwide, streams and rivers are facing a suite of pressures that alter water quality and degrade physical habitat, both of which can lead to changes in the composition and richness of fish populations. These potential changes are of particular importance in the Southeast USA, home to one of the richest stream fish assemblages in North America. Using data from 83 stream sites in North Carolina sampled in the 1960’s and the past decade, we used hierarchical Bayesian models to evaluate relationships between species richness and catchment land use and land cover (e.g., agriculture and forest cover). In addition, we examined how the rate of change in species richness over 50 years was related to catchment land use and land cover. We found a negative and positive correlation between forest land cover and agricultural land use and average species richness, respectively. After controlling for introduced species, most (66 %) stream sites showed an increase in native fish species richness, and the magnitude of the rate of increase was positively correlated to the amount of forested land cover in the catchment. Site-specific trends in species richness were not positive, on average, until the percentage forest cover in the network catchment exceeded about 55 %. These results suggest that streams with catchments that have moderate to high (>55 %) levels of forested land in upstream network catchments may be better able to increase the number of native species at a faster rate compared to less-forested catchments.

  12. The relationship between species richness and aboveground biomass in a primary Pinus kesiya forest of Yunnan, southwestern China.

    Science.gov (United States)

    Li, Shuaifeng; Lang, Xuedong; Liu, Wande; Ou, Guanglong; Xu, Hui; Su, Jianrong

    2018-01-01

    The relationship between biodiversity and biomass is an essential element of the natural ecosystem functioning. Our research aims at assessing the effects of species richness on the aboveground biomass and the ecological driver of this relationship in a primary Pinus kesiya forest. We sampled 112 plots of the primary P. kesiya forests in Yunnan Province. The general linear model and the structural equation model were used to estimate relative effects of multivariate factors among aboveground biomass, species richness and the other explanatory variables, including climate moisture index, soil nutrient regime and stand age. We found a positive linear regression relationship between the species richness and aboveground biomass using ordinary least squares regressions. The species richness and soil nutrient regime had no direct significant effect on aboveground biomass. However, the climate moisture index and stand age had direct effects on aboveground biomass. The climate moisture index could be a better link to mediate the relationship between species richness and aboveground biomass. The species richness affected aboveground biomass which was mediated by the climate moisture index. Stand age had direct and indirect effects on aboveground biomass through the climate moisture index. Our results revealed that climate moisture index had a positive feedback in the relationship between species richness and aboveground biomass, which played an important role in a link between biodiversity maintenance and ecosystem functioning. Meanwhile, climate moisture index not only affected positively on aboveground biomass, but also indirectly through species richness. The information would be helpful in understanding the biodiversity-aboveground biomass relationship of a primary P. kesiya forest and for forest management.

  13. Modeling a neutron rich nuclei source

    International Nuclear Information System (INIS)

    Mirea, M.; Bajeat, O.; Clapier, F.; Ibrahim, F.; Mueller, A.C.; Pauwels, N.; Proust, J.; Mirea, M.

    2000-01-01

    The deuteron break-up process in a suitable converter gives rise to intense neutron beams. A source of neutron rich nuclei based on the neutron induced fission can be realised using these beams. A theoretical optimization of such a facility as a function of the incident deuteron energy is reported. The model used to determine the fission products takes into account the excitation energy of the target nucleus and the evaporation of prompt neutrons. Results are presented in connection with a converter-target specific geometry. (authors)

  14. Bounding species distribution models

    Directory of Open Access Journals (Sweden)

    Thomas J. STOHLGREN, Catherine S. JARNEVICH, Wayne E. ESAIAS,Jeffrey T. MORISETTE

    2011-10-01

    Full Text Available Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for “clamping” model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART and maximum entropy (Maxent models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5: 642–647, 2011].

  15. Bounding Species Distribution Models

    Science.gov (United States)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  16. Hierarchical species distribution models

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.

    2016-01-01

    Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.

  17. NOAA ESRI Grid - predictions of seabird species richness in the New York offshore planning area made by the NOAA Biogeography Branch

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset represents seabird species richness, or number of species, predictions from spatial models developed for the New York offshore spatial planning area....

  18. Lower richness of small wild mammal species and chagas disease risk.

    Directory of Open Access Journals (Sweden)

    Samanta Cristina das Chagas Xavier

    Full Text Available A new epidemiological scenario involving the oral transmission of Chagas disease, mainly in the Amazon basin, requires innovative control measures. Geospatial analyses of the Trypanosoma cruzi transmission cycle in the wild mammals have been scarce. We applied interpolation and map algebra methods to evaluate mammalian fauna variables related to small wild mammals and the T. cruzi infection pattern in dogs to identify hotspot areas of transmission. We also evaluated the use of dogs as sentinels of epidemiological risk of Chagas disease. Dogs (n = 649 were examined by two parasitological and three distinct serological assays. kDNA amplification was performed in patent infections, although the infection was mainly sub-patent in dogs. The distribution of T. cruzi infection in dogs was not homogeneous, ranging from 11-89% in different localities. The interpolation method and map algebra were employed to test the associations between the lower richness in mammal species and the risk of exposure of dogs to T. cruzi infection. Geospatial analysis indicated that the reduction of the mammal fauna (richness and abundance was associated with higher parasitemia in small wild mammals and higher exposure of dogs to infection. A Generalized Linear Model (GLM demonstrated that species richness and positive hemocultures in wild mammals were associated with T. cruzi infection in dogs. Domestic canine infection rates differed significantly between areas with and without Chagas disease outbreaks (Chi-squared test. Geospatial analysis by interpolation and map algebra methods proved to be a powerful tool in the evaluation of areas of T. cruzi transmission. Dog infection was shown to not only be an efficient indicator of reduction of wild mammalian fauna richness but to also act as a signal for the presence of small wild mammals with high parasitemia. The lower richness of small mammal species is discussed as a risk factor for the re-emergence of Chagas disease.

  19. A multi-scale spatial analysis of native and exotic plant species richness within a mixed-disturbance oak savanna landscape.

    Science.gov (United States)

    Schetter, Timothy A; Walters, Timothy L; Root, Karen V

    2013-09-01

    Impacts of human land use pose an increasing threat to global biodiversity. Resource managers must respond rapidly to this threat by assessing existing natural areas and prioritizing conservation actions across multiple spatial scales. Plant species richness is a useful measure of biodiversity but typically can only be evaluated on small portions of a given landscape. Modeling relationships between spatial heterogeneity and species richness may allow conservation planners to make predictions of species richness patterns within unsampled areas. We utilized a combination of field data, remotely sensed data, and landscape pattern metrics to develop models of native and exotic plant species richness at two spatial extents (60- and 120-m windows) and at four ecological levels for northwestern Ohio's Oak Openings region. Multiple regression models explained 37-77 % of the variation in plant species richness. These models consistently explained more variation in exotic richness than in native richness. Exotic richness was better explained at the 120-m extent while native richness was better explained at the 60-m extent. Land cover composition of the surrounding landscape was an important component of all models. We found that percentage of human-modified land cover (negatively correlated with native richness and positively correlated with exotic richness) was a particularly useful predictor of plant species richness and that human-caused disturbances exert a strong influence on species richness patterns within a mixed-disturbance oak savanna landscape. Our results emphasize the importance of using a multi-scale approach to examine the complex relationships between spatial heterogeneity and plant species richness.

  20. Bryophyte species richness on retention aspens recovers in time but community structure does not.

    Science.gov (United States)

    Oldén, Anna; Ovaskainen, Otso; Kotiaho, Janne S; Laaka-Lindberg, Sanna; Halme, Panu

    2014-01-01

    Green-tree retention is a forest management method in which some living trees are left on a logged area. The aim is to offer 'lifeboats' to support species immediately after logging and to provide microhabitats during and after forest re-establishment. Several studies have shown immediate decline in bryophyte diversity after retention logging and thus questioned the effectiveness of this method, but longer term studies are lacking. Here we studied the epiphytic bryophytes on European aspen (Populus tremula L.) retention trees along a 30-year chronosequence. We compared the bryophyte flora of 102 'retention aspens' on 14 differently aged retention sites with 102 'conservation aspens' on 14 differently aged conservation sites. We used a Bayesian community-level modelling approach to estimate the changes in bryophyte species richness, abundance (area covered) and community structure during 30 years after logging. Using the fitted model, we estimated that two years after logging both species richness and abundance of bryophytes declined, but during the following 20-30 years both recovered to the level of conservation aspens. However, logging-induced changes in bryophyte community structure did not fully recover over the same time period. Liverwort species showed some or low potential to benefit from lifeboating and high potential to re-colonise as time since logging increases. Most moss species responded similarly, but two cushion-forming mosses benefited from the logging disturbance while several weft- or mat-forming mosses declined and did not re-colonise in 20-30 years. We conclude that retention trees do not function as equally effective lifeboats for all bryophyte species but are successful in providing suitable habitats for many species in the long-term. To be most effective, retention cuts should be located adjacent to conservation sites, which may function as sources of re-colonisation and support the populations of species that require old-growth forests.

  1. Bryophyte species richness on retention aspens recovers in time but community structure does not.

    Directory of Open Access Journals (Sweden)

    Anna Oldén

    Full Text Available Green-tree retention is a forest management method in which some living trees are left on a logged area. The aim is to offer 'lifeboats' to support species immediately after logging and to provide microhabitats during and after forest re-establishment. Several studies have shown immediate decline in bryophyte diversity after retention logging and thus questioned the effectiveness of this method, but longer term studies are lacking. Here we studied the epiphytic bryophytes on European aspen (Populus tremula L. retention trees along a 30-year chronosequence. We compared the bryophyte flora of 102 'retention aspens' on 14 differently aged retention sites with 102 'conservation aspens' on 14 differently aged conservation sites. We used a Bayesian community-level modelling approach to estimate the changes in bryophyte species richness, abundance (area covered and community structure during 30 years after logging. Using the fitted model, we estimated that two years after logging both species richness and abundance of bryophytes declined, but during the following 20-30 years both recovered to the level of conservation aspens. However, logging-induced changes in bryophyte community structure did not fully recover over the same time period. Liverwort species showed some or low potential to benefit from lifeboating and high potential to re-colonise as time since logging increases. Most moss species responded similarly, but two cushion-forming mosses benefited from the logging disturbance while several weft- or mat-forming mosses declined and did not re-colonise in 20-30 years. We conclude that retention trees do not function as equally effective lifeboats for all bryophyte species but are successful in providing suitable habitats for many species in the long-term. To be most effective, retention cuts should be located adjacent to conservation sites, which may function as sources of re-colonisation and support the populations of species that require old

  2. Vector species richness increases haemorrhagic disease prevalence through functional diversity modulating the duration of seasonal transmission.

    Science.gov (United States)

    Park, Andrew W; Cleveland, Christopher A; Dallas, Tad A; Corn, Joseph L

    2016-06-01

    Although many parasites are transmitted between hosts by a suite of arthropod vectors, the impact of vector biodiversity on parasite transmission is poorly understood. Positive relationships between host infection prevalence and vector species richness (SR) may operate through multiple mechanisms, including (i) increased vector abundance, (ii) a sampling effect in which species of high vectorial capacity are more likely to occur in species-rich communities, and (iii) functional diversity whereby communities comprised species with distinct phenologies may extend the duration of seasonal transmission. Teasing such mechanisms apart is impeded by a lack of appropriate data, yet could highlight a neglected role for functional diversity in parasite transmission. We used statistical modelling of extensive host, vector and microparasite data to test the hypothesis that functional diversity leading to longer seasonal transmission explained variable levels of disease in a wildlife population. We additionally developed a simple transmission model to guide our expectation of how an increased transmission season translates to infection prevalence. Our study demonstrates that vector SR is associated with increased levels of disease reporting, but not via increases in vector abundance or via a sampling effect. Rather, the relationship operates by extending the length of seasonal transmission, in line with theoretical predictions.

  3. Inferring species richness and turnover by statistical multiresolution texture analysis of satellite imagery.

    Directory of Open Access Journals (Sweden)

    Matteo Convertino

    Full Text Available BACKGROUND: The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems. Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species turnover. METHODOLOGY/PRINCIPAL FINDINGS: We model satellite images of regions of interest as textures. We define a texture in an image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate probability density function (pdf model for the coefficients at each subband is selected, and its parameters estimated, or, a non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We measure the difference between two textures' representative pdf's via the Kullback-Leibler divergence (KL. Species turnover, or [Formula: see text] diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we predict species

  4. Deficit in community species richness as explained by area and isolation of sites

    DEFF Research Database (Denmark)

    Bruun, Hans Henrik

    2000-01-01

    The potential community species richness was predicted for 85 patches of seminatural grassland in an agricultural landscape in Denmark. The basis of the prediction was a very large dataset on the vegetation, soil pH and topography in Danish grasslands and related communities. Species were inserte......, community richness deficit, varied considerably among patches. Community richness deficit exhibited a negative relationship with patch area, and for small patches a positive relationship with patch isolation....

  5. Patterns of species richness and diversity of insects associated with cucurbit fruits in the southern part of Cameroon.

    Science.gov (United States)

    Mokam, Didi Gaëlle; Djiéto-Lordon, Champlain; Bilong Bilong, Charles-Félix

    2014-01-01

    Patterns of species diversity and community structure of insects associated with fruits of domesticated cucurbits were investigated from January 2009 to 2011 in three localities from two agroecological zones in the southern part of Cameroon. Rarefaction curves combined with nonparametric estimators of species richness were used to extrapolate species richness beyond our own data. Sampling efforts of over 92% were reached in each of the three study localities. Data collected revealed a total of 66 insect morphospecies belonging to 37 families and five orders, identified from a set of 57,510 insects. The orders Diptera (especially Tephritidae and Lonchaeidae) and Hymenoptera (mainly Braconidae and Eulophidae) were the most important, in terms of both abundance and species richness on the one hand, and effects on agronomic performance on the other. Values for both the species diversity (Shannon and Simpson) and the species richness indices (Margalef and Berger-Parker) calculated showed that the insect communities were species-rich but dominated, all to a similar extent, by five main species (including four fruit fly species and one parasitoid). Species abundance distributions in these communities ranged from the Zipf-Mandelbrot to Mandelbrot models. The communities are structured as tritrophic networks, including cucurbit fruits, fruit-feeding species (fruit flies) and carnivorous species (parasitoids). Within the guild of the parasitoids, about 30% of species, despite their low abundance, may potentially be of use in biological control of important pests. Our field data contribute in important ways to basic knowledge of biodiversity patterns in agrosystems and constitute baseline data for the planned implementation of biological control in Integrated Pest Management. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  6. Relations of Environmental Factors with Mussel-Species Richness in the Neversink River, New York

    Science.gov (United States)

    Baldigo, Barry P.; Ernst, Anne G.; Schuler, George E.; Apse, Colin D.

    2007-01-01

    the Neversink Reservoir that mimic the river?s original flow patterns have recently been proposed by TNC and could benefit the established mussel populations and aquatic communities. The ability to protect mussel populations and the potential to increase mussel richness in the Neversink River is unknown, however, because the environmental factors that affect the seven mussel species are poorly defined, and the distribution of mussel beds is patchy and thus difficult to quantify. In 1997, the U.S. Geological Survey, in cooperation with TNC, began a 6-year study along the Neversink River and its tributaries to (1) document the current distribution of each mussel species, (2) assess environmental factors in relation to mussel-species richness and distribution, and (3) identify the factors that most strongly affect mussel populations and develop an equation that relates environmental factors to mussel-species richness. This report (a) summarizes the methods used to quantify or qualify environmental factors and mussel-species distribution and abundance, (b) presents a list of environmental factors that were correlated with mussel-species richness, and (c) offers an empirical model to predict richness of mussel species in benthic communities throughout the basin.

  7. High species richness of Chironomidae (Diptera) in temporary flooded wetlands associated with high species turn-over rates.

    Science.gov (United States)

    Lundström, J O; Brodin, Y; Schäfer, M L; Vinnersten, T Z Persson; Ostman, O

    2010-08-01

    Species richness and species turn-over of Chironomidae was studied in irregularly flooded wetlands of the River Dalälven flood-plains in central Sweden. The chironomid fauna, sampled with emergence traps in six wetlands over six summers, contained as much as 135 species, and the cumulative species curves indicated that the regional species pool contain several more species. Recurrent irregular floods may have induced this high chironomid species richness and the high species turn-over in the temporary wetlands, as the dominance between terrestrial and aquatic species shifted between years. Half of the wetlands were treated with Bacillus thuringiensis var. israelensis (Bti) against larvae of the flood-water mosquito Aedes sticticus. These treatments had no significant effect on chironomid species richness, but there was a higher species turn-over between years of primarily low abundance species in the treated wetlands. The cumulative number of species was also higher in the Bti-treated experimental wetlands than in the untreated reference wetlands. Thus, Bti treatment against mosquito larvae seemed to have only small effects on chironomid species richness but seemed to increase the colonisation-extinction dynamics.

  8. Hotspots of species richness, threat and endemism for terrestrial vertebrates in SW Europe

    Science.gov (United States)

    Pascual, López-López; Luigi, Maiorano; Alessandra, Falcucci; Emilio, Barba; Luigi, Boitani

    2011-09-01

    The Mediterranean basin, and the Iberian Peninsula in particular, represent an outstanding "hotspot" of biological diversity with a long history of integration between natural ecosystems and human activities. Using deductive distribution models, and considering both Spain and Portugal, we downscaled traditional range maps for terrestrial vertebrates (amphibians, breeding birds, mammals and reptiles) to the finest possible resolution with the data at hand, and we identified hotspots based on three criteria: i) species richness; ii) vulnerability, and iii) endemism. We also provided a first evaluation of the conservation status of biodiversity hotspots based on these three criteria considering both existing and proposed protected areas (i.e., Natura 2000). For the identification of hotspots, we used a method based on the cumulative distribution functions of species richness values. We found no clear surrogacy among the different types of hotspots in the Iberian Peninsula. The most important hotspots (considering all criteria) are located in the western and southwestern portions of the study area, in the Mediterranean biogeographical region. Existing protected areas are not specifically concentrated in areas of high species richness, with only 5.2% of the hotspots of total richness being currently protected. The Natura 2000 network can potentially constitute an important baseline for protecting vertebrate diversity in the Iberian Peninsula although further improvements are needed. We suggest taking a step forward in conservation planning in the Mediterranean basin, explicitly considering the history of the region as well as its present environmental context. This would allow moving from traditional reserve networks (conservation focused on "patterns") to considerations about the "processes" that generated present biodiversity.

  9. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass

    Czech Academy of Sciences Publication Activity Database

    Hiiesalu, Inga; Pärtel, M.; Davison, J.; Gerhold, P.; Metsis, M.; Moora, M.; Öpik, M.; Vasar, M.; Zobel, M.; Wilson, S. D.

    2014-01-01

    Roč. 203, č. 1 (2014), s. 233-244 ISSN 1469-8137 R&D Projects: GA MŠk EE2.3.30.0048 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : belowground plant richness * diversity * productivity Subject RIV: EH - Ecology, Behaviour Impact factor: 6.545, year: 2013

  10. The relationship between species richness and ecosystem variability is shaped by the mechanism of coexistence.

    Science.gov (United States)

    Tredennick, Andrew T; Adler, Peter B; Adler, Frederick R

    2017-08-01

    Theory relating species richness to ecosystem variability typically ignores the potential for environmental variability to promote species coexistence. Failure to account for fluctuation-dependent coexistence may explain deviations from the expected negative diversity-ecosystem variability relationship, and limits our ability to predict the consequences of increases in environmental variability. We use a consumer-resource model to explore how coexistence via the temporal storage effect and relative nonlinearity affects ecosystem variability. We show that a positive, rather than negative, diversity-ecosystem variability relationship is possible when ecosystem function is sampled across a natural gradient in environmental variability and diversity. We also show how fluctuation-dependent coexistence can buffer ecosystem functioning against increasing environmental variability by promoting species richness and portfolio effects. Our work provides a general explanation for variation in observed diversity-ecosystem variability relationships and highlights the importance of conserving regional species pools to help buffer ecosystems against predicted increases in environmental variability. © 2017 John Wiley & Sons Ltd/CNRS.

  11. Orchid Species Richness along Elevational and Environmental Gradients in Yunnan, China.

    Directory of Open Access Journals (Sweden)

    Shi-Bao Zhang

    Full Text Available The family Orchidaceae is not only one of the most diverse families of flowering plants, but also one of the most endangered plant taxa. Therefore, understanding how its species richness varies along geographical and environmental gradients is essential for conservation efforts. However, such knowledge is rarely available, especially on a large scale. We used a database extracted from herbarium records to investigate the relationships between orchid species richness and elevation, and to examine how elevational diversity in Yunnan Province, China, might be explained by mid-domain effect (MDE, species-area relationship (SAR, water-energy dynamics (WED, Rapoport's Rule, and climatic variables. This particular location was selected because it is one of the primary centers of distribution for orchids. We recorded 691 species that span 127 genera and account for 88.59% of all confirmed orchid species in Yunnan. Species richness, estimated at 200-m intervals along a slope, was closely correlated with elevation, peaking at 1395 to 1723 m. The elevational pattern of orchid richness was considerably shaped by MDE, SAR, WED, and climate. Among those four predictors, climate was the strongest while MDE was the weakest for predicting the elevational pattern of orchid richness. Species richness showed parabolic responses to mean annual temperature (MAT and mean annual precipitation (MAP, with maximum richness values recorded at 13.7 to 17.7°C for MAT and 1237 to 1414 mm for MAP. Rapoport's Rule also helped to explain the elevational pattern of species richness in Yunnan, but those influences were not entirely uniform across all methods. These results suggested that the elevational pattern of orchid species richness in Yunnan is collectively shaped by several mechanisms related to geometric constraints, size of the land area, and environments. Because of the dominant role of climate in determining orchid richness, our findings may contribute to a better

  12. Orchid Species Richness along Elevational and Environmental Gradients in Yunnan, China.

    Science.gov (United States)

    Zhang, Shi-Bao; Chen, Wen-Yun; Huang, Jia-Lin; Bi, Ying-Feng; Yang, Xue-Fei

    2015-01-01

    The family Orchidaceae is not only one of the most diverse families of flowering plants, but also one of the most endangered plant taxa. Therefore, understanding how its species richness varies along geographical and environmental gradients is essential for conservation efforts. However, such knowledge is rarely available, especially on a large scale. We used a database extracted from herbarium records to investigate the relationships between orchid species richness and elevation, and to examine how elevational diversity in Yunnan Province, China, might be explained by mid-domain effect (MDE), species-area relationship (SAR), water-energy dynamics (WED), Rapoport's Rule, and climatic variables. This particular location was selected because it is one of the primary centers of distribution for orchids. We recorded 691 species that span 127 genera and account for 88.59% of all confirmed orchid species in Yunnan. Species richness, estimated at 200-m intervals along a slope, was closely correlated with elevation, peaking at 1395 to 1723 m. The elevational pattern of orchid richness was considerably shaped by MDE, SAR, WED, and climate. Among those four predictors, climate was the strongest while MDE was the weakest for predicting the elevational pattern of orchid richness. Species richness showed parabolic responses to mean annual temperature (MAT) and mean annual precipitation (MAP), with maximum richness values recorded at 13.7 to 17.7°C for MAT and 1237 to 1414 mm for MAP. Rapoport's Rule also helped to explain the elevational pattern of species richness in Yunnan, but those influences were not entirely uniform across all methods. These results suggested that the elevational pattern of orchid species richness in Yunnan is collectively shaped by several mechanisms related to geometric constraints, size of the land area, and environments. Because of the dominant role of climate in determining orchid richness, our findings may contribute to a better understanding of

  13. Habitat availability does not explain the species richness patterns of European lentic and lotic freshwater animals

    DEFF Research Database (Denmark)

    Dehling, D.M.; Hof, C.; Brandle, M.

    2010-01-01

    of species richness. We tested whether habitat availability can account for the differences in species richness patterns between European lentic and lotic freshwater animals. Location Europe. Methods We compiled occurrence data of 1959 lentic and 2445 lotic species as well as data on the amount of lentic......Aim In Europe, the relationships between species richness and latitude differ for lentic (standing water) and lotic (running water) species. Freshwater animals are highly dependent on suitable habitat, and thus the distribution of available habitat should strongly influence large-scale patterns...... with latitude. Main conclusions Habitat availability and diversity are poor predictors of species richness of the European freshwater fauna across large scales. Our results indicate that the distributions of European freshwater animals are probably not in equilibrium and may still be influenced by history...

  14. Seed plant phylogenetic diversity and species richness in conservation planning within a global biodiversity hotspot in eastern Asia.

    Science.gov (United States)

    Li, Rong; Kraft, Nathan J B; Yu, Haiying; Li, Heng

    2015-12-01

    One of the main goals of conservation biology is to understand the factors shaping variation in biodiversity across the planet. This understanding is critical for conservation planners to be able to develop effective conservation strategies. Although many studies have focused on species richness and the protection of rare and endemic species, less attention has been paid to the protection of the phylogenetic dimension of biodiversity. We explored how phylogenetic diversity, species richness, and phylogenetic community structure vary in seed plant communities along an elevational gradient in a relatively understudied high mountain region, the Dulong Valley, in southeastern Tibet, China. As expected, phylogenetic diversity was well correlated with species richness among the elevational bands and among communities. At the community level, evergreen broad-leaved forests had the highest levels of species richness and phylogenetic diversity. Using null model analyses, we found evidence of nonrandom phylogenetic structure across the region. Evergreen broad-leaved forests were phylogenetically overdispersed, whereas other vegetation types tended to be phylogenetically clustered. We suggest that communities with high species richness or overdispersed phylogenetic structure should be a focus for biodiversity conservation within the Dulong Valley because these areas may help maximize the potential of this flora to respond to future global change. In biodiversity hotspots worldwide, we suggest that the phylogenetic structure of a community may serve as a useful measure of phylogenetic diversity in the context of conservation planning. © 2015 Society for Conservation Biology.

  15. Different elevational patterns of rodent species richness between the southern and northern slopes of a mountain.

    Science.gov (United States)

    Shuai, Ling-Ying; Ren, Chun-Lei; Yan, Wen-Bo; Song, Yan-Ling; Zeng, Zhi-Gao

    2017-08-18

    Studies on elevational gradients in biodiversity have accumulated in recent decades. However, few studies have compared the elevational patterns of diversity between the different slopes of a single mountain. We investigated the elevational distribution of rodent diversity (alpha and beta diversity) and its underlying mechanisms along the southern and northern slopes of Mt. Taibai, the highest mountain in the Qinling Mountains, China. The species richness of rodents on the two slopes showed distinct distribution patterns, with a monotonically decreasing pattern found along the southern slope and a hump-shaped elevational pattern evident along the northern slope. Multi-model inference suggested that temperature was an important explanatory factor for the richness pattern along the southern slope, and the mid-domain effect (MDE) was important in explaining the richness pattern along the northern slope. The two slopes also greatly differed in the elevational patterns of species turnover, with the southern slope demonstrating a U-shaped curve and the northern slope possessing a roughly hump-shaped pattern. Our results suggest that even within the same mountain, organisms inhabiting different slopes may possess distinct diversity patterns, and the underlying mechanisms may also differ. The potential role of the factors associated with slope aspect in shaping diversity, therefore, cannot be ignored.

  16. Global species richness patterns and their drivers among the order Anseriformes

    DEFF Research Database (Denmark)

    Dalby, Lars; McGill, Brian J.; Fox, Anthony David

    2012-01-01

    predictors and response by using regression trees we found day length in the breeding season to be the most important predictor followed by annual actual- or potential evapotranspiration conditioned on short or long days respectively. Predictors commonly used to explain large-scale richness patterns of birds......Birds (class Aves) follow the latitudinal gradient in species richness (more species are found closer to the tropics). However lowering the taxonomic scale to orders other patterns can emerge which can be instructive about mechanism. For example, in the order Anseriformes the pattern is reversed so...... richness increases towards higher and lower latitudes. This divergence from the latitudinal gradient in species richness, as well as the divergence from other marcoecological rules (e.g. Lack’s rule), calls for a study of the drivers of species richness in this order. Here we studied the spatial pattern...

  17. The regional species richness and genetic diversity of Arctic vegetation reflect both past glaciations and current climate

    DEFF Research Database (Denmark)

    Stewart, L.; Alsos, Inger G.; Bay, Christian

    2016-01-01

    correlated with each other, and both showed a positive relationship with landscape age. Plot species richness showed differing responses for vascular plants, bryophytes and lichens. At this finer scale, the richness of vascular plants was not significantly related to landscape age, which had a small effect...... size compared to the models of bryophyte and lichen richness. Main conclusion Our study suggests that imprints of past glaciations in Arctic vegetation diversity patterns at the regional scale are still detectable today. Since Arctic vegetation is still limited by post-glacial migration lag...

  18. Species Distribution Modelling

    DEFF Research Database (Denmark)

    Gomes, Vitor H. F.; Ijff, Stephanie D.; Raes, Niels

    2018-01-01

    Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SD...

  19. Environmental effects on vertebrate species richness: testing the energy, environmental stability and habitat heterogeneity hypotheses.

    Directory of Open Access Journals (Sweden)

    Zhenhua Luo

    Full Text Available BACKGROUND: Explaining species richness patterns is a central issue in biogeography and macroecology. Several hypotheses have been proposed to explain the mechanisms driving biodiversity patterns, but the causes of species richness gradients remain unclear. In this study, we aimed to explain the impacts of energy, environmental stability, and habitat heterogeneity factors on variation of vertebrate species richness (VSR, based on the VSR pattern in China, so as to test the energy hypothesis, the environmental stability hypothesis, and the habitat heterogeneity hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: A dataset was compiled containing the distributions of 2,665 vertebrate species and eleven ecogeographic predictive variables in China. We grouped these variables into categories of energy, environmental stability, and habitat heterogeneity and transformed the data into 100 × 100 km quadrat systems. To test the three hypotheses, AIC-based model selection was carried out between VSR and the variables in each group and correlation analyses were conducted. There was a decreasing VSR gradient from the southeast to the northwest of China. Our results showed that energy explained 67.6% of the VSR variation, with the annual mean temperature as the main factor, which was followed by annual precipitation and NDVI. Environmental stability factors explained 69.1% of the VSR variation and both temperature annual range and precipitation seasonality had important contributions. By contrast, habitat heterogeneity variables explained only 26.3% of the VSR variation. Significantly positive correlations were detected among VSR, annual mean temperature, annual precipitation, and NDVI, whereas the relationship of VSR and temperature annual range was strongly negative. In addition, other variables showed moderate or ambiguous relations to VSR. CONCLUSIONS/SIGNIFICANCE: The energy hypothesis and the environmental stability hypothesis were supported, whereas little

  20. Shifts in the importance of the species pool and environmental controls of epiphytic bryophyte richness across multiple scales.

    Science.gov (United States)

    Medina, Nagore G; Bowker, Matthew A; Hortal, Joaquín; Mazimpaka, Vicente; Lara, Francisco

    2018-03-01

    Species richness is influenced by a nested set of environmental factors, but how do these factors interact across several scales? Our main aim is to disentangle the relative importance of environmental filters and the species pool on the richness of epiphytic bryophytes across spatial scales. To do so, we sampled epiphytic bryophytes in 43 oak forests across the northwest of the Iberian Peninsula. As predictors we used climate, descriptors of forest structure and micro-environment. We applied structural equation modeling to relate these variables with richness and cover at three scales: locality (forest), stand (three stands per forest), and sample (a quadrate in a tree). We assumed top-down relationships, so that large-scale variables influenced lower scale variables, and in which cover directly influenced richness. Richness at the next larger scale (locality to stand and stand to sample) is considered a surrogate of the species pool and included as a predictor of richness at the next smaller scale. Environmental variables explain locality richness, but as we decrease the spatial scale, its importance decreases and the dependence on species pool increases. In addition, we found unexpected bottom-up relationships (between micro-scale environment to locality richness). Our results point to the scale dependence of niche vs. neutral processes: niche processes are important at the locality (forest) scale, while neutral processes are significant at the small (sample) scale. We propose a modified conceptualization of the factors influencing biodiversity at different spatial scales by adding links across different scales (between micro-environment and locality-scale richness in our study).

  1. Species richness and abundance estimates of small mammals in ...

    African Journals Online (AJOL)

    There was high similarity in the number of species caught during the two seasons (Sørensen Coefficient (CCs)=0.92), implying there to be minimal migration of the species in the area. A total of 159 individuals were caught during the dry season, rodents accounting for 89.3% of the total catch and insectivores 10.7%.

  2. The influence of vegetation height heterogeneity on forest and woodland bird species richness across the United States.

    Science.gov (United States)

    Huang, Qiongyu; Swatantran, Anu; Dubayah, Ralph; Goetz, Scott J

    2014-01-01

    Avian diversity is under increasing pressures. It is thus critical to understand the ecological variables that contribute to large scale spatial distribution of avian species diversity. Traditionally, studies have relied primarily on two-dimensional habitat structure to model broad scale species richness. Vegetation vertical structure is increasingly used at local scales. However, the spatial arrangement of vegetation height has never been taken into consideration. Our goal was to examine the efficacies of three-dimensional forest structure, particularly the spatial heterogeneity of vegetation height in improving avian richness models across forested ecoregions in the U.S. We developed novel habitat metrics to characterize the spatial arrangement of vegetation height using the National Biomass and Carbon Dataset for the year 2000 (NBCD). The height-structured metrics were compared with other habitat metrics for statistical association with richness of three forest breeding bird guilds across Breeding Bird Survey (BBS) routes: a broadly grouped woodland guild, and two forest breeding guilds with preferences for forest edge and for interior forest. Parametric and non-parametric models were built to examine the improvement of predictability. Height-structured metrics had the strongest associations with species richness, yielding improved predictive ability for the woodland guild richness models (r(2) = ∼ 0.53 for the parametric models, 0.63 the non-parametric models) and the forest edge guild models (r(2) = ∼ 0.34 for the parametric models, 0.47 the non-parametric models). All but one of the linear models incorporating height-structured metrics showed significantly higher adjusted-r2 values than their counterparts without additional metrics. The interior forest guild richness showed a consistent low association with height-structured metrics. Our results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and

  3. The influence of vegetation height heterogeneity on forest and woodland bird species richness across the United States.

    Directory of Open Access Journals (Sweden)

    Qiongyu Huang

    Full Text Available Avian diversity is under increasing pressures. It is thus critical to understand the ecological variables that contribute to large scale spatial distribution of avian species diversity. Traditionally, studies have relied primarily on two-dimensional habitat structure to model broad scale species richness. Vegetation vertical structure is increasingly used at local scales. However, the spatial arrangement of vegetation height has never been taken into consideration. Our goal was to examine the efficacies of three-dimensional forest structure, particularly the spatial heterogeneity of vegetation height in improving avian richness models across forested ecoregions in the U.S. We developed novel habitat metrics to characterize the spatial arrangement of vegetation height using the National Biomass and Carbon Dataset for the year 2000 (NBCD. The height-structured metrics were compared with other habitat metrics for statistical association with richness of three forest breeding bird guilds across Breeding Bird Survey (BBS routes: a broadly grouped woodland guild, and two forest breeding guilds with preferences for forest edge and for interior forest. Parametric and non-parametric models were built to examine the improvement of predictability. Height-structured metrics had the strongest associations with species richness, yielding improved predictive ability for the woodland guild richness models (r(2 = ∼ 0.53 for the parametric models, 0.63 the non-parametric models and the forest edge guild models (r(2 = ∼ 0.34 for the parametric models, 0.47 the non-parametric models. All but one of the linear models incorporating height-structured metrics showed significantly higher adjusted-r2 values than their counterparts without additional metrics. The interior forest guild richness showed a consistent low association with height-structured metrics. Our results suggest that height heterogeneity, beyond canopy height alone, supplements habitat

  4. The drivers of woody species richness and density in a Neotropical savannah.

    Science.gov (United States)

    Carvalho, Gustavo Henrique; Batalha, Marco Antônio

    2013-01-01

    Environmental filtering prevents species without certain attributes from occurring in local communities. Traits respond differently to different abiotic factors, assembling communities with varying composition along environmental gradients. Here, we measured proxies of soil fertility, disturbance by fire, response and physiological traits to assess how these variables interact to determine woody species richness and density in a Neotropical savannah. We explicitly incorporated our assumptions about how different abiotic filters influence different subsets of traits into a statistical model using structural equation modelling, yielding a more accurate representation of the assembly process. Fire had an effect on resistance traits, whereas soil fertility influenced physiological traits. Resistance traits explained both the richness and density of plots, whereas physiological traits explained only the density. Fewer fire events led to richer and denser plots. Similarly, areas with lower cation exchange capacity assembled less dense communities. Furthermore, we showed that structural equation modelling yielded a realistic representation of the bivariate interactions of distinct environmental filters with different subsets of traits.

  5. Estimation of avian population sizes and species richness across a boreal landscape in Alaska

    Science.gov (United States)

    Handel, C.M.; Swanson, S.A.; Nigro, Debora A.; Matsuoka, S.M.

    2009-01-01

    We studied the distribution of birds breeding within five ecological landforms in Yukon-Charley Rivers National Preserve, a 10,194-km2 roadless conservation unit on the Alaska-Canada border in the boreal forest zone. Passerines dominated the avifauna numerically, comprising 97% of individuals surveyed but less than half of the 115 species recorded in the Preserve. We used distance-sampling and discrete-removal models to estimate detection probabilities, densities, and population sizes across the Preserve for 23 species of migrant passerines and five species of resident passerines. Yellow-rumped Warblers (Dendroica coronata) and Dark-eyed Juncos (Junco hyemalis) were the most abundant species, together accounting for 41% of the migrant passerine populations estimated. White-winged Crossbills (Loxia leucoptera), Boreal Chickadees (Poecile hudsonica), and Gray Jays (Perisoreus canadensis) were the most abundant residents. Species richness was greatest in the Floodplain/Terrace landform flanking the Yukon River but densities were highest in the Subalpine landform. Species composition was related to past glacial history and current physiography of the region and differed notably from other areas of the northwestern boreal forest. Point-transect surveys, augmented with auxiliary observations, were well suited to sampling the largely passerine avifauna across this rugged landscape and could be used across the boreal forest region to monitor changes in northern bird distribution and abundance. ?? 2009 The Wilson Ornithological Society.

  6. The origin and evolution of coral species richness in a marine biodiversity hotspot.

    Science.gov (United States)

    Huang, Danwei; Goldberg, Emma E; Chou, Loke Ming; Roy, Kaustuv

    2018-02-01

    The Coral Triangle (CT) region of the Indo-Pacific realm harbors an extraordinary number of species, with richness decreasing away from this biodiversity hotspot. Despite multiple competing hypotheses, the dynamics underlying this regional diversity pattern remain poorly understood. Here, we use a time-calibrated evolutionary tree of living reef coral species, their current geographic ranges, and model-based estimates of regional rates of speciation, extinction, and geographic range shifts to show that origination rates within the CT are lower than in surrounding regions, a result inconsistent with the long-standing center of origin hypothesis. Furthermore, endemism of coral species in the CT is low, and the CT endemics are older than relatives found outside this region. Overall, our model results suggest that the high diversity of reef corals in the CT is largely due to range expansions into this region of species that evolved elsewhere. These findings strongly support the notion that geographic range shifts play a critical role in generating species diversity gradients. They also show that preserving the processes that gave rise to the striking diversity of corals in the CT requires protecting not just reefs within the hotspot, but also those in the surrounding areas. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  7. species richness and abundance of large mammals in zaraninge

    African Journals Online (AJOL)

    Mgina

    Orycteropus afer). Hunting dog (Lycaon pictus) a non-forest species was encountered only once. METHODS. Dense vegetation cover imposes some ..... Mturi FO 1991 The feeding ecology and behaviour of the red colobus monkey. Colobus badius kirkii.

  8. Geography, topography, and history affect realized-to-potential tree species richness patterns in Europe

    DEFF Research Database (Denmark)

    Svenning, J.-C.; Fitzpatrick, Matthew C.; Normand, Signe

    2010-01-01

    by assembly from regional species pools. Using the European tree flora as our study system, we implemented a novel approach to assess the relative importance of local and regional mechanisms that control local species richness. We first identified species pools that tolerate particular local environments...

  9. Are parasite richness and abundance linked to prey species richness and individual feeding preferences in fish hosts?

    Science.gov (United States)

    Cirtwill, Alyssa R; Stouffer, Daniel B; Poulin, Robert; Lagrue, Clément

    2016-01-01

    Variations in levels of parasitism among individuals in a population of hosts underpin the importance of parasites as an evolutionary or ecological force. Factors influencing parasite richness (number of parasite species) and load (abundance and biomass) at the individual host level ultimately form the basis of parasite infection patterns. In fish, diet range (number of prey taxa consumed) and prey selectivity (proportion of a particular prey taxon in the diet) have been shown to influence parasite infection levels. However, fish diet is most often characterized at the species or fish population level, thus ignoring variation among conspecific individuals and its potential effects on infection patterns among individuals. Here, we examined parasite infections and stomach contents of New Zealand freshwater fish at the individual level. We tested for potential links between the richness, abundance and biomass of helminth parasites and the diet range and prey selectivity of individual fish hosts. There was no obvious link between individual fish host diet and helminth infection levels. Our results were consistent across multiple fish host and parasite species and contrast with those of earlier studies in which fish diet and parasite infection were linked, hinting at a true disconnect between host diet and measures of parasite infections in our study systems. This absence of relationship between host diet and infection levels may be due to the relatively low richness of freshwater helminth parasites in New Zealand and high host-parasite specificity.

  10. Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest.

    Science.gov (United States)

    Lang, Christa; Seven, Jasmin; Polle, Andrea

    2011-05-01

    Mycorrhizal species richness and host ranges were investigated in mixed deciduous stands composed of Fagus sylvatica, Tilia spp., Carpinus betulus, Acer spp., and Fraxinus excelsior. Acer and Fraxinus were colonized by arbuscular mycorrhizas and contributed 5% to total stand mycorrhizal fungal species richness. Tilia hosted similar and Carpinus half the number of ectomycorrhizal (EM) fungal taxa compared with Fagus (75 putative taxa). The relative abundance of the host tree the EM fungal richness decreased in the order Fagus > Tilia > Carpinus. After correction for similar sampling intensities, EM fungal species richness of Carpinus was still about 30-40% lower than that of Fagus and Tilia. About 10% of the mycorrhizal species were shared among the EM forming trees; 29% were associated with two host tree species and 61% with only one of the hosts. The latter group consisted mainly of rare EM fungal species colonizing about 20% of the root tips and included known specialists but also putative non-host associations such as conifer or shrub mycorrhizas. Our data indicate that EM fungal species richness was associated with tree identity and suggest that Fagus secures EM fungal diversity in an ecosystem since it shared more common EM fungi with Tilia and Carpinus than the latter two among each other.

  11. Combining projected changes in species richness and composition reveals climate change impacts on coastal Mediterranean fish assemblages

    DEFF Research Database (Denmark)

    Albouy, Camille; Guilhaumon, François; Bastos Araujo, Miguel

    2012-01-01

    are caused by different processes (species replacement vs. nestedness) in several areas of the Mediterranean Sea. In addition, our mapping strategy highlights that the coastal fish fauna in several regions of the Mediterranean Sea could experience a ‘cul-de-sac’ effect if exposed to climate warming. Overall....... nestedness), separately. We also present a mapping strategy to simultaneously visualize changes in species richness and assemblage composition. To illustrate our approach, we used the Mediterranean coastal fish fauna as a case study. Using Bioclimatic Envelope Models (BEMs) we first projected the potential...... future climatic niches of 288 coastal Mediterranean fish species based on a global warming scenario. We then aggregated geographically the species-level projections to analyse the projected changes in species richness and composition. Our results show that projected changes in assemblage composition...

  12. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales.

    Science.gov (United States)

    Stein, Anke; Gerstner, Katharina; Kreft, Holger

    2014-07-01

    Environmental heterogeneity is regarded as one of the most important factors governing species richness gradients. An increase in available niche space, provision of refuges and opportunities for isolation and divergent adaptation are thought to enhance species coexistence, persistence and diversification. However, the extent and generality of positive heterogeneity-richness relationships are still debated. Apart from widespread evidence supporting positive relationships, negative and hump-shaped relationships have also been reported. In a meta-analysis of 1148 data points from 192 studies worldwide, we examine the strength and direction of the relationship between spatial environmental heterogeneity and species richness of terrestrial plants and animals. We find that separate effects of heterogeneity in land cover, vegetation, climate, soil and topography are significantly positive, with vegetation and topographic heterogeneity showing particularly strong associations with species richness. The use of equal-area study units, spatial grain and spatial extent emerge as key factors influencing the strength of heterogeneity-richness relationships, highlighting the pervasive influence of spatial scale in heterogeneity-richness studies. We provide the first quantitative support for the generality of positive heterogeneity-richness relationships across heterogeneity components, habitat types, taxa and spatial scales from landscape to global extents, and identify specific needs for future comparative heterogeneity-richness research. © 2014 John Wiley & Sons Ltd/CNRS.

  13. Responses of predatory invertebrates to seeding density and plant species richness in experimental tallgrass prairie restorations

    Science.gov (United States)

    Nemec, Kristine T.; Allen, Craig R.; Danielson, Stephen D.; Helzer, Christopher J.

    2014-01-01

    In recent decades, agricultural producers and non-governmental organizations have restored thousands of hectares of former cropland in the central United States with native grasses and forbs. However, the ability of these grassland restorations to attract predatory invertebrates has not been well documented, even though predators provide an important ecosystem service to agricultural producers by naturally regulating herbivores. This study assessed the effects of plant richness and seeding density on the richness and abundance of surface-dwelling (ants, ground beetles, and spiders) and aboveground (ladybird beetles) predatory invertebrates. In the spring of 2006, twenty-four 55 m × 55 m-plots were planted to six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Natural Resources Conservation Service Conservation Reserve Program mix, CP25), at low and high seeding densities. Ants, ground beetles, and spiders were sampled using pitfall traps and ladybird beetles were sampled using sweep netting in 2007–2009. The abundance of ants, ground beetles, and spiders showed no response to seed mix richness or seeding density but there was a significant positive effect of richness on ladybird beetle abundance. Seeding density had a significant positive effect on ground beetle and spider species richness and Shannon–Weaver diversity. These results may be related to differences in the plant species composition and relative amount of grass basal cover among the treatments rather than richness.

  14. Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments

    NARCIS (Netherlands)

    Gross, K.; Cardinale, B.J.; Fox, J.W.; Gonzalez, A.; Loreau, M.; Polley, H.W.; Reich, P.B.; Ruijven, van J.

    2013-01-01

    The relationship between biological diversity and ecological stability has fascinated ecologists for decades. Determining the generality of this relationship, and discovering the mechanisms that underlie it, are vitally important for ecosystem management. Here, we investigate how species richness

  15. Species richness pattern along altitudinal gradient in Central European beech forests

    Czech Academy of Sciences Publication Activity Database

    Hrivnák, R.; Gömöry, D.; Slezák, M.; Ujházy, K.; Hédl, Radim; Jarčuška, B.; Ujházyová, M.

    2014-01-01

    Roč. 49, č. 3 (2014), s. 425-441 ISSN 1211-9520 Institutional support: RVO:67985939 Keywords : altitude * beech-dominated forest * species richness Subject RIV: EF - Botanics Impact factor: 1.778, year: 2014

  16. Gridded Species Distribution, Version 1: Mammals of the Americas Family Richness Grids

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mammals of the Americas Family Richness Grids of the Gridded Species Distribution, Version 1 are aggregations of the presence grids data at the family level....

  17. Gridded Species Distribution, Version 1: Birds of the Americas Family Richness Grids

    Data.gov (United States)

    National Aeronautics and Space Administration — The Birds of the Americas Family Richness Grids of the Gridded Species Distribution, Version 1 are the aggregations of the Presence Grids data at the family level....

  18. Simkin et al. 2016 PNAS data on herbaceous species richness and associated plot and covariate information

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes the geographic location (lat/lon) for 15,136 plots, as well as the herbaceous species richness, climate, soil pH, and other variables related...

  19. Effects of crop diversity on bird species richness and abundance in a ...

    African Journals Online (AJOL)

    Effects of crop diversity on bird species richness and abundance in a highland East African agricultural landscape. P Kariuki Ndang'ang'a, John BM Njoroge, Kamau Ngamau, Wariara Kariuki, Philip W Atkinson, Juliet Vickery ...

  20. Species richness and trophic diversity increase decomposition in a co-evolved food web.

    Directory of Open Access Journals (Sweden)

    Benjamin Baiser

    Full Text Available Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.

  1. Do Stacked Species Distribution Models Reflect Altitudinal Diversity Patterns?

    Science.gov (United States)

    Mateo, Rubén G.; Felicísimo, Ángel M.; Pottier, Julien; Guisan, Antoine; Muñoz, Jesús

    2012-01-01

    The objective of this study was to evaluate the performance of stacked species distribution models in predicting the alpha and gamma species diversity patterns of two important plant clades along elevation in the Andes. We modelled the distribution of the species in the Anthurium genus (53 species) and the Bromeliaceae family (89 species) using six modelling techniques. We combined all of the predictions for the same species in ensemble models based on two different criteria: the average of the rescaled predictions by all techniques and the average of the best techniques. The rescaled predictions were then reclassified into binary predictions (presence/absence). By stacking either the original predictions or binary predictions for both ensemble procedures, we obtained four different species richness models per taxa. The gamma and alpha diversity per elevation band (500 m) was also computed. To evaluate the prediction abilities for the four predictions of species richness and gamma diversity, the models were compared with the real data along an elevation gradient that was independently compiled by specialists. Finally, we also tested whether our richness models performed better than a null model of altitudinal changes of diversity based on the literature. Stacking of the ensemble prediction of the individual species models generated richness models that proved to be well correlated with the observed alpha diversity richness patterns along elevation and with the gamma diversity derived from the literature. Overall, these models tend to overpredict species richness. The use of the ensemble predictions from the species models built with different techniques seems very promising for modelling of species assemblages. Stacking of the binary models reduced the over-prediction, although more research is needed. The randomisation test proved to be a promising method for testing the performance of the stacked models, but other implementations may still be developed. PMID

  2. Scale effects and human impact on the elevational species richness gradients

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Araújo, M B; Romdal, T

    2008-01-01

    Despite two centuries of effort in characterizing environmental gradients of species richness in search of universal patterns, surprisingly few of these patterns have been widely acknowledged. Species richness along altitudinal gradients was previously assumed to increase universally from cool hi...... ability to detect universal patterns and impeding the search for universal diversity gradients to discover the mechanisms determining the distribution of biological diversity on Earth....

  3. Species richness and similarity of vascular plants in the Spanish dehesas at two spatial scales

    OpenAIRE

    Roig Gómez, Sonia; García Del Barrio, Jose Manuel; Alonso Ponce, Rafael; Benavides, Raquel

    2014-01-01

    Aims of study: The goals of this paper are to summarize and to compare plant species richness and floristic similarity at two spatial scales; mesohabitat (normal, eutrophic, and oligotrophic dehesas) and dehesa habitat; and to establish guidelines for conserving species diversity in dehesas. Area of study: We considered four dehesa sites in the western Peninsular Spain, located along a climatic and biogeographic gradient from north to south. Main results: Average alpha richness for mesohabita...

  4. Metal tolerant species distribution and richness in and around the ...

    African Journals Online (AJOL)

    Abstract. Plant species growing in and around 38 metal welding workshops in Benin City, Nigeria, were surveyed. Eragrostis tenella occurred most frequently in all the sites, followed by Amaranthus spinosus, Eleusine indica, while Cucurbita pepo occurred least. The family Poaceae, was identified in all the sites visited.

  5. Understory species richness in an urban forest fragment, Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Ana Cristina Ramos de Souza

    2009-09-01

    Full Text Available This study characterizes the floristic composition of the understory of Parque Estadual de Dois Irmãos, (08°01’15.1”S and 34°56’3.2”W, an area of about 370ha characterized as a lowland ombrophilous dense forest. The study included individuals with heights of up to 4.0m, such as treelets, shrubs, sub-bushes and terricolous herb plants, in fertile conditions. The collections were made every two weeks along a period of 24 months. A total of 108 species, belonging to 86 genera and 49 families, were recorded. The families with the highest number of species were Rubiaceae (14, Fabaceae (9 Melastomataceae (8, Asteraceae (8, Myrtaceae (6, and Poaceae (4. The Fabaceae, Melastomataceae, Myrtaceae and Rubiaceae presented the highest number of understory species in this fragment. Generally, among the studies made in the Atlantic forest areas in Pernambuco, the presence of a set of tree species common to these forests is evidenced.

  6. Abundance and species richness of lombric macrofauna in a semi ...

    African Journals Online (AJOL)

    The importance of earthworms for soils has evolved over time. Our study was conducted in the forest of Ouled yagoub (North East Algerian). Sampling at three different altitudes resulted in a total of forty-nine individuals (49) and only three species were identified: Octodrilus complanatus, Allolobophora molleri and ...

  7. Bird species richness and abundance in different forest types at ...

    African Journals Online (AJOL)

    The avifauna of differently disturbed forest types of Kakamega Afrotropical forest were compared from December 2004 to May 2005. A total of 11 220 individual birds comprising of 129 bird species were recorded. Significant differences in abundance of birds among Psidium guajava, Bischoffia javanica, mixed indigenous, ...

  8. Species richness accelerates marine ecosystem restoration in the Coral Triangle.

    Science.gov (United States)

    Williams, Susan L; Ambo-Rappe, Rohani; Sur, Christine; Abbott, Jessica M; Limbong, Steven R

    2017-11-07

    Ecosystem restoration aims to restore biodiversity and valuable functions that have been degraded or lost. The Coral Triangle is a hotspot for marine biodiversity held in its coral reefs, seagrass meadows, and mangrove forests, all of which are in global decline. These coastal ecosystems support valuable fisheries and endangered species, protect shorelines, and are significant carbon stores, functions that have been degraded by coastal development, destructive fishing practices, and climate change. Ecosystem restoration is required to mitigate these damages and losses, but its practice is in its infancy in the region. Here we demonstrate that species diversity can set the trajectory of restoration. In a seagrass restoration experiment in the heart of the Coral Triangle (Sulawesi, Indonesia), plant survival and coverage increased with the number of species transplanted. Our results highlight the positive role biodiversity can play in ecosystem restoration and call for revision of the common restoration practice of establishing a single target species, particularly in regions having high biodiversity. Coastal ecosystems affect human well-being in many important ways, and restoration will become ever more important as conservation efforts cannot keep up with their loss. Published under the PNAS license.

  9. Efficient extraction of RNA from various Camellia species rich in ...

    African Journals Online (AJOL)

    Camellia species, an important economic plants widely distributed in Asia, are recalcitrant to RNA extraction. Here, we developed a method for high quality RNA isolation. Based on the RNA isolated from flower buds, deep transcriptome sequencing of Camellia oleifera, Camellia chekiangoleosa and Camellia brevistyla ...

  10. Can temporal and spatial NDVI predict regional bird-species richness?

    Directory of Open Access Journals (Sweden)

    Sebastián Nieto

    2015-01-01

    Full Text Available Understanding the distribution of the species and its controls over biogeographic scales is still a major challenge in ecology. National Park Networks provide an opportunity to assess the relationship between ecosystem functioning and biodiversity in areas with low human impacts. We tested the productivity–biodiversity hypothesis which states that the number of species increases with the available energy, and the ​variability–biodiversity hypothesis which states that the number of species increases with the diversity of habitats. The available energy and habitat heterogeneity estimated by the normalized difference vegetation index (NDVI was shown as a good predictor of bird-species richness for a diverse set of biomes in previously published studies. However, there is not a universal relationship between NDVI and bird-species richness. Here we tested if the NDVI can predict bird species richness in areas with low human impact in Argentina. Using a dataset from the National Park Network of Argentina we found that the best predictor of bird species richness was the minimum value of NDVI per year which explained 75% of total variability. The inclusion of the spatial heterogeneity of NDVI improved the explanation power to 80%. Minimum NDVI was highly correlated with precipitation and winter temperature. Our analysis provides a tool for assessing bird-species richness at scales on which land-use planning practitioners make their decisions for Southern South America.

  11. Elevational pattern of bird species richness and its causes along a central Himalaya gradient, China

    Science.gov (United States)

    Pan, Xinyuan; Ding, Zhifeng; Hu, Yiming; Liang, Jianchao; Wu, Yongjie; Si, Xingfeng; Guo, Mingfang

    2016-01-01

    This study examines the relative importance of six variables: area, the mid-domain effect, temperature, precipitation, productivity, and habitat heterogeneity on elevational patterns of species richness for breeding birds along a central Himalaya gradient in the Gyirong Valley, the longest of five canyons in the Mount Qomolangma National Nature Reserve. We conducted field surveys in each of twelve elevational bands of 300 m between 1,800 and 5,400 m asl four times throughout the entire wet season. A total of 169 breeding bird species were recorded and most of the species (74%) were small-ranged. The species richness patterns of overall, large-ranged and small-ranged birds were all hump-shaped, but with peaks at different elevations. Large-ranged species and small-ranged species contributed equally to the overall richness pattern. Based on the bivariate and multiple regression analyses, area and precipitation were not crucial factors in determining the species richness along this gradient. The mid-domain effect played an important role in shaping the richness pattern of large-ranged species. Temperature was negatively correlated with overall and large-ranged species but positively correlated with small-ranged species. Productivity was a strong explanatory factor among all the bird groups, and habitat heterogeneity played an important role in shaping the elevational richness patterns of overall and small-ranged species. Our results highlight the need to conserve primary forest and intact habitat in this area. Furthermore, we need to increase conservation efforts in this montane biodiversity hotspot in light of increasing anthropogenic activities and land use pressure. PMID:27833806

  12. Richness of Lichen Species, Especially of Threatened Ones, Is Promoted by Management Methods Furthering Stand Continuity

    Science.gov (United States)

    Boch, Steffen; Prati, Daniel; Hessenmöller, Dominik; Schulze, Ernst-Detlef; Fischer, Markus

    2013-01-01

    Lichens are a key component of forest biodiversity. However, a comprehensive study analyzing lichen species richness in relation to several management types, extending over different regions and forest stages and including information on site conditions is missing for temperate European forests. In three German regions (Schwäbische Alb, Hainich-Dün, Schorfheide-Chorin), the so-called Biodiversity Exploratories, we studied lichen species richness in 631 forest plots of 400 m2 comprising different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests resulting from clear cutting or shelterwood logging), various stand ages, and site conditions, typical for large parts of temperate Europe. We analyzed how lichen species richness responds to management and habitat variables (standing biomass, cover of deadwood, cover of rocks). We found strong regional differences with highest lichen species richness in the Schwäbische Alb, probably driven by regional differences in former air pollution, and in precipitation and habitat variables. Overall, unmanaged forests harbored 22% more threatened lichen species than managed age-class forests. In general, total, corticolous, and threatened lichen species richness did not differ among management types of deciduous forests. However, in the Schwäbische-Alb region, deciduous forests had 61% more lichen species than coniferous forests and they had 279% more threatened and 76% more corticolous lichen species. Old deciduous age classes were richer in corticolous lichen species than young ones, while old coniferous age-classes were poorer than young ones. Overall, our findings highlight the importance of stand continuity for conservation. To increase total and threatened lichen species richness we suggest (1) conserving unmanaged forests, (2) promoting silvicultural methods assuring stand continuity, (3) conserving old trees in managed forests, (4) promoting stands of native deciduous tree species

  13. Elevational pattern of bird species richness and its causes along a central Himalaya gradient, China.

    Science.gov (United States)

    Pan, Xinyuan; Ding, Zhifeng; Hu, Yiming; Liang, Jianchao; Wu, Yongjie; Si, Xingfeng; Guo, Mingfang; Hu, Huijian; Jin, Kun

    2016-01-01

    This study examines the relative importance of six variables: area, the mid-domain effect, temperature, precipitation, productivity, and habitat heterogeneity on elevational patterns of species richness for breeding birds along a central Himalaya gradient in the Gyirong Valley, the longest of five canyons in the Mount Qomolangma National Nature Reserve. We conducted field surveys in each of twelve elevational bands of 300 m between 1,800 and 5,400 m asl four times throughout the entire wet season. A total of 169 breeding bird species were recorded and most of the species (74%) were small-ranged. The species richness patterns of overall, large-ranged and small-ranged birds were all hump-shaped, but with peaks at different elevations. Large-ranged species and small-ranged species contributed equally to the overall richness pattern. Based on the bivariate and multiple regression analyses, area and precipitation were not crucial factors in determining the species richness along this gradient. The mid-domain effect played an important role in shaping the richness pattern of large-ranged species. Temperature was negatively correlated with overall and large-ranged species but positively correlated with small-ranged species. Productivity was a strong explanatory factor among all the bird groups, and habitat heterogeneity played an important role in shaping the elevational richness patterns of overall and small-ranged species. Our results highlight the need to conserve primary forest and intact habitat in this area. Furthermore, we need to increase conservation efforts in this montane biodiversity hotspot in light of increasing anthropogenic activities and land use pressure.

  14. The richness and diversity of Lepidoptera species in different ...

    African Journals Online (AJOL)

    The family Nymphalidae was the most dominant one in the parc with 32.48%. The diversity index (H' and H'max) and the equitability (E) calculated for the 6 types of habitats is H'= 2,74 bits, H'max = 4,09 bits and E = 0,67 bits, meaning that the Lepidoptera species are at equilibrium with the different types of habitat which ...

  15. Species richness of vertebrates in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Krojerová-Prokešová, Jarmila; Barančeková, Miroslava; Šímová, P.; Šálek, M.; Anděra, M.; Bejček, V.; Hanák, V.; Hanel, L.; Lusk, Stanislav; Mikátová, B.; Moravec, J.; Šťastný, K.; Zima, Jan

    2008-01-01

    Roč. 57, č. 4 (2008), s. 452-464 ISSN 0139-7893 R&D Projects: GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60930519 Keywords : mapping squares * species numbers * environmental variables * PCA Subject RIV: EH - Ecology, Behaviour Impact factor: 0.522, year: 2008 http://www.ivb.cz/folia/57/4/452-464_MS1417.pdf

  16. Variation in local abundance and species richness of stream fishes in relation to dispersal barriers: Implications for management and conservation

    Science.gov (United States)

    Nislow, K.H.; Hudy, M.; Letcher, B.H.; Smith, E.P.

    2011-01-01

    1.Barriers to immigration, all else being equal, should in principle depress local abundance and reduce local species richness. These issues are particularly relevant to stream-dwelling species when improperly designed road crossings act as barriers to migration with potential impacts on the viability of upstream populations. However, because abundance and richness are highly spatially and temporally heterogeneous and the relative importance of immigration on demography is uncertain, population- and community-level effects can be difficult to detect. 2.In this study, we tested the effects of potential barriers to upstream movements on the local abundance and species richness of a diverse assemblage of resident stream fishes in the Monongahela National Forest, West Virginia, U.S.A. Fishes were sampled using simple standard techniques above- and below road crossings that were either likely or unlikely to be barriers to upstream fish movements (based on physical dimensions of the crossing). We predicted that abundance of resident fishes would be lower in the upstream sections of streams with predicted impassable barriers, that the strength of the effect would vary among species and that variable effects on abundance would translate into lower species richness. 3.Supporting these predictions, the statistical model that best accounted for variation in abundance and species richness included a significant interaction between location (upstream or downstream of crossing) and type (passable or impassable crossing). Stream sections located above predicated impassable culverts had fewer than half the number of species and less than half the total fish abundance, while stream sections above and below passable culverts had essentially equivalent richness and abundance. 4.Our results are consistent with the importance of immigration and population connectivity to local abundance and species richness of stream fishes. In turn, these results suggest that when measured at

  17. Effects of trophic skewing of species richness on ecosystem functioning in a diverse marine community.

    Directory of Open Access Journals (Sweden)

    Pamela L Reynolds

    Full Text Available Widespread overharvesting of top consumers of the world's ecosystems has "skewed" food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs, while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms generally emerged in communities with greater predator to prey richness (the more top-rich food webs. These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions.

  18. Seed density significantly affects species richness and composition in experimental plant communities.

    Directory of Open Access Journals (Sweden)

    Zuzana Münzbergová

    Full Text Available Studies on the importance of seed arrival for community richness and composition have not considered the number of seeds arriving and its effect on species richness and composition of natural communities is thus unknown. A series of experimental dry grassland communities were established. All communities were composed of the same 44 species in exactly the same proportions on two substrates using three different seed densities.The results showed that seed density had an effect on species richness only at the beginning of the experiment. In contrast, the effects on species composition persisted across the entire study period. The results do not support the prediction that due to higher competition for light in nutrient-rich soil, species richness will be the highest in the treatment with the lowest seed density. However, the prevalence of small plants in the lowest seed density supported the expectation that low seed density guarantees low competition under high soil nutrients. In the nutrient-poor soil, species richness was the highest at the medium seed density, indicating that species richness reflects the balance between competition and limitations caused by the availability of propagules or their ability to establish themselves. This medium seed density treatment also contained the smallest plants.The results demonstrate that future seed addition experiments need to consider the amount of seed added so that it reflects the amount of seed that is naturally found in the field. Differences in seed density, mimicking different intensity of the seed rain may also explain differences in the composition of natural communities that cannot be attributed to habitat conditions. The results also have important implications for studies regarding the consequences of habitat fragmentation suggesting that increasing fragmentation may change species compositions not only due to different dispersal abilities but also due to differential response of plants to

  19. Annona species (Annonaceae): a rich source of potential antitumor agents?

    Science.gov (United States)

    Tundis, Rosa; Xiao, Jianbo; Loizzo, Monica R

    2017-06-01

    Plants have provided the basis of traditional medicine systems throughout the world for thousands of years and continue to yield molecules for new remedies. We analyzed studies published from 2009 to 2016 on the Annona species (Annonaceae), including A. coriacea, A. crassifolia, A. hypoglauca, A. muricata, A. squamosa, A. sylvatica, and A. vepretorum, as sources of potential antitumor agents. Here, we report and discuss the mechanisms of action and structure-activity relationships of the most active Annona constituents. Annonaceous acetogenins are one of the most promising classes of natural products, owing to their potential antitumor activity. However, their neurotoxicity should not be underestimated. © 2017 New York Academy of Sciences.

  20. Global hotspots and correlates of alien species richness across taxonomic groups

    Science.gov (United States)

    Dawson, Wayne; Moser, Dietmar; van Kleunen, Mark; Kreft, Holger; Pergl, Jan; Pysek, Petr; Weigelt, Patrick; Winter, Marten; Lenzner, Bernd; Blackburn, Tim M.; Dyer, Ellie; Cassey, Phillip; Scrivens, Sally-Louise; Economo, Evan P.; Guenard, Benoit; Capinha, Cesar; Seebens, Hanno; Garcia-Diaz, Pablo; Nentwig, Wolfgang; Garcia-Berthou, Emili; Casal, Christine; Mandrak, Nicholas E.; Fuller, Pam; Meyer, Carsten; Essl, Franz

    2017-01-01

    Human-mediated transport beyond biogeographic barriers has led to the introduction and establishment of alien species in new regions worldwide. However, we lack a global picture of established alien species richness for multiple taxonomic groups. Here, we assess global patterns and potential drivers of established alien species richness across eight taxonomic groups (amphibians, ants, birds, freshwater fishes, mammals, vascular plants, reptiles and spiders) for 186 islands and 423 mainland regions. Hotspots of established alien species richness are predominantly island and coastal mainland regions. Regions with greater gross domestic product per capita, human population density, and area have higher established alien richness, with strongest effects emerging for islands. Ants and reptiles, birds and mammals, and vascular plants and spiders form pairs of taxonomic groups with the highest spatial congruence in established alien richness, but drivers explaining richness differ between the taxa in each pair. Across all taxonomic groups, our results highlight the need to prioritize prevention of further alien species introductions to island and coastal mainland regions globally.

  1. Description of three new species of Labena Cresson from Mexico (Hymenoptera, Ichneumonidae, Labeninae), with notes on tropical species richness.

    Science.gov (United States)

    González-Moreno, Alejandra; Bordera, Santiago; Sääksjärvi, Ilari Eerikki

    2015-04-22

    Three new species of Labena Cresson (Ichneumonidae, Labeninae); L. littoralis sp. nov., L. tekalina sp. nov. and L. madoricola sp. nov. are described and illustrated. Material was collected with Malaise traps in 2008 and 2009 in the Biosphere Reserve Ria Lagartos (Mexico). Diagnostic characters to distinguish them from all other New World species of the genus are provided. In addition, the tropical species richness of the genus is shortly discussed.

  2. Changes in Species Richness and Composition of Tiger Moths (Lepidoptera: Erebidae: Arctiinae among Three Neotropical Ecoregions.

    Directory of Open Access Journals (Sweden)

    Hernán Mario Beccacece

    Full Text Available Paraná, Yungas and Chaco Serrano ecoregions are among the most species-rich terrestrial habitats at higher latitude. However, the information for tiger moths, one of the most speciose groups of moths, is unknown in these ecoregions. In this study, we assess their species richness and composition in all three of these ecoregions. Also we investigated whether the species composition of tiger moths is influenced by climatic factors and altitude. Tiger moth species were obtained with samples from 71 sites using standardized protocols (21 sites were in Yungas, 19 in Paraná and 31 in Chaco Serrano. Rarefaction-extrapolation curves, non-parametric estimators for incidence and sample coverage indices were performed to assess species richness in the ecoregions studied. Non metric multidimensional scaling and adonis tests were performed to compare the species composition of tiger moths among ecoregions. Permutest analysis and Pearson correlation were used to evaluate the relationship among species composition and annual mean temperature, annual temperature range, annual precipitation, precipitation seasonality and altitude. Among ecoregions Paraná was the richest with 125 species, followed by Yungas with 63 species and Chaco Serrano with 24 species. Species composition differed among these ecoregions, although Yungas and Chaco Serrano were more similar than Paraná. Species composition was significantly influenced by climatic factors and altitude. This study showed that species richness and species composition of tiger moths differed among the three ecoregions assessed. Furthermore, not only climatic factors and altitude influence the species composition of tiger moths among ecoregions, but also climatic seasonality at higher latitude in Neotropical South America becomes an important factor.

  3. Influence of fire history and soil properties on plant species richness and functional diversity in a neotropical savanna

    Directory of Open Access Journals (Sweden)

    Danilo Muniz Silva

    2013-09-01

    Full Text Available Differences in plant species richness and composition are associated with soil properties and disturbances such as fire, which can therefore be key determinants of species occurrence in savanna plant communities. We measured species richness, using nine plant functional traits and abundance to calculate three functional diversity indices. We then used model selection analyses to select the best model for predicting functional diversity and richness based on soil variables at sites with three different fire frequencies. We also calculated the community-weighted mean of each trait and used ordination to examine how traits changed across fire frequencies. We found higher species richness and functional dispersion at sites that were more fertile and where fire was frequent, and the opposite at such sites where fire was infrequent. However, soil properties influenced functional evenness and divergence only where fire was infrequent, with higher values where soils were poorer. Fire can change functional traits directly by hindering development of plants and indirectly by altering competition. Different fire frequencies lead to different plant-soil relationships, which can affect the functioning of tropical savanna communities. Functional diversity components and functional identity of the communities are both affected by fire frequency and soil conditions.

  4. Temporal comparison and predictors of fish species abundance and richness on undisturbed coral reef patches.

    Science.gov (United States)

    Wagner, Elena L E S; Roche, Dominique G; Binning, Sandra A; Wismer, Sharon; Bshary, Redouan

    2015-01-01

    Large disturbances can cause rapid degradation of coral reef communities, but what baseline changes in species assemblages occur on undisturbed reefs through time? We surveyed live coral cover, reef fish abundance and fish species richness in 1997 and again in 2007 on 47 fringing patch reefs of varying size and depth at Mersa Bareika, Ras Mohammed National Park, Egypt. No major human or natural disturbance event occurred between these two survey periods in this remote protected area. In the absence of large disturbances, we found that live coral cover, reef fish abundance and fish species richness did not differ in 1997 compared to 2007. Fish abundance and species richness on patches was largely related to the presence of shelters (caves and/or holes), live coral cover and patch size (volume). The presence of the ectoparasite-eating cleaner wrasse, Labroides dimidiatus, was also positively related to fish species richness. Our results underscore the importance of physical reef characteristics, such as patch size and shelter availability, in addition to biotic characteristics, such as live coral cover and cleaner wrasse abundance, in supporting reef fish species richness and abundance through time in a relatively undisturbed and understudied region.

  5. Temporal comparison and predictors of fish species abundance and richness on undisturbed coral reef patches

    Directory of Open Access Journals (Sweden)

    Elena L.E.S. Wagner

    2015-12-01

    Full Text Available Large disturbances can cause rapid degradation of coral reef communities, but what baseline changes in species assemblages occur on undisturbed reefs through time? We surveyed live coral cover, reef fish abundance and fish species richness in 1997 and again in 2007 on 47 fringing patch reefs of varying size and depth at Mersa Bareika, Ras Mohammed National Park, Egypt. No major human or natural disturbance event occurred between these two survey periods in this remote protected area. In the absence of large disturbances, we found that live coral cover, reef fish abundance and fish species richness did not differ in 1997 compared to 2007. Fish abundance and species richness on patches was largely related to the presence of shelters (caves and/or holes, live coral cover and patch size (volume. The presence of the ectoparasite-eating cleaner wrasse, Labroides dimidiatus, was also positively related to fish species richness. Our results underscore the importance of physical reef characteristics, such as patch size and shelter availability, in addition to biotic characteristics, such as live coral cover and cleaner wrasse abundance, in supporting reef fish species richness and abundance through time in a relatively undisturbed and understudied region.

  6. Regional warming chnages fish species richness in the eastern North Atlantic Ocean

    NARCIS (Netherlands)

    Hofstede, ter R.; Hiddink, J.G.; Rijnsdorp, A.D.

    2010-01-01

    Regional warming causes changes in local communities due to species extinctions and latitudinal range shifts. We show that the species richness of fish in 3 regional seas in the eastern North Atlantic Ocean has changed over time (1997 to 2008), and we relate this to higher water temperatures and the

  7. Species Richness and Phenology of Cerambycid Beetles in Urban Forest Fragments of Northern Delaware

    Science.gov (United States)

    K. Handley; J. Hough-Goldstein; L.M. Hanks; J.G. Millar; V. D' amico

    2015-01-01

    Cerambycid beetles are abundant and diverse in forests, but much about their host relationships and adult behavior remains unknown. Generic blends of synthetic pheromones were used as lures in traps, to assess the species richness, and phenology of cerambycids in forest fragments in northern Delaware. More than 15,000 cerambycid beetles of 69 species were trapped over...

  8. The role of spatial scale and the perception of large-scale species-richness patterns

    DEFF Research Database (Denmark)

    Rahbek, Carsten

    2005-01-01

    Despite two centuries of exploration, our understanding of factors determining the distribution of life on Earth is in many ways still in its infancy. Much of the disagreement about governing processes of variation in species richness may be the result of differences in our perception of species...

  9. Seed Density Significantly Affects Species Richness and Composition in Experimental Plant Communities

    Czech Academy of Sciences Publication Activity Database

    Münzbergová, Zuzana

    2012-01-01

    Roč. 7, č. 10 (2012), e46704 E-ISSN 1932-6203 R&D Projects: GA ČR GAP505/10/0593 Institutional support: RVO:67985939 Keywords : species richness * seed rain * species composition Subject RIV: EF - Botanics Impact factor: 3.730, year: 2012

  10. Terrain and vegetation structural influences on local avian species richness in two mixed-conifer forests

    Science.gov (United States)

    Jody C. Vogeler; Andrew T. Hudak; Lee A. Vierling; Jeffrey Evans; Patricia Green; Kerri T. Vierling

    2014-01-01

    Using remotely-sensed metrics to identify regions containing high animal diversity and/or specific animal species or guilds can help prioritize forest management and conservation objectives across actively managed landscapes. We predicted avian species richness in two mixed conifer forests, Moscow Mountain and Slate Creek, containing different management contexts and...

  11. Species Richness (of Insects Drives the Use of Acoustic Space in the Tropics

    Directory of Open Access Journals (Sweden)

    T. Mitchell Aide

    2017-10-01

    Full Text Available Acoustic ecology, or ecoacoustics, is a growing field that uses sound as a tool to evaluate animal communities. In this manuscript, we evaluate recordings from eight tropical forest sites that vary in species richness, from a relatively low diversity Caribbean forest to a megadiverse Amazonian forest, with the goal of understanding the relationship between acoustic space use (ASU and species diversity across different taxonomic groups. For each site, we determined the acoustic morphospecies richness and composition of the biophony, and we used a global biodiversity dataset to estimate the regional richness of birds. Here, we demonstrate how detailed information on activity patterns of the acoustic community (<22 kHz can easily be visualized and ASU determined by aggregating recordings collected over relatively short periods (4–13 days. We show a strong positive relationship between ASU and regional and acoustic morphospecies richness. Premontane forest sites had the highest ASU and the highest species richness, while dry forest and montane sites had lower ASU and lower species richness. Furthermore, we show that insect richness was the best predictor of variation in total ASU, and that insect richness was proportionally greater at high-diversity sites. In addition, insects used a broad range of frequencies, including high frequencies (>8000 Hz, which contributed to greater ASU. This novel approach for analyzing the presence and acoustic activity of multiple taxonomic groups contributes to our understanding of ecological community dynamics and provides a useful tool for monitoring species in the context of restoration ecology, climate change and conservation biology.

  12. Using ecological niche modeling to determine avian richness hotspots

    Directory of Open Access Journals (Sweden)

    R. Mirzaei

    2017-04-01

    Full Text Available Understanding distributions of wildlife species is a key step towards identifying biodiversity hotspots and designing effective conservation strategies. In this paper, the spatial pattern of diversity of birds in Golestan Province, Iran was estimated. Ecological niche modeling was used to determine distributions of 144 bird species across the province using a maximum entropy algorithm. Richness maps across all birds, and separately for rare and threatened species, were prepared as approximations to hotspots. Results showed close similarity between hotspots for all birds and those for rare birds; hotspots were concentrated in the southern and especially the southwestern parts of the province. Hotspots for threatened birds tended more to the central and especially the western parts of the province, which include coastal habitats. Based on three criteria, it is clear that the western part is the most important area of the province in terms of bird Faunas. Despite some shortcomings, hotspot analysis for birds could be applied to guide conservation efforts and provide useful tool towards efficient conservation action.

  13. Effects of 'target' plant species body size on neighbourhood species richness and composition in old-field vegetation.

    Directory of Open Access Journals (Sweden)

    Brandon S Schamp

    Full Text Available Competition is generally regarded as an important force in organizing the structure of vegetation, and evidence from several experimental studies of species mixtures suggests that larger mature plant size elicits a competitive advantage. However, these findings are at odds with the fact that large and small plant species generally coexist, and relatively smaller species are more common in virtually all plant communities. Here, we use replicates of ten relatively large old-field plant species to explore the competitive impact of target individual size on their surrounding neighbourhoods compared to nearby neighbourhoods of the same size that are not centred by a large target individual. While target individuals of the largest of our test species, Centaurea jacea L., had a strong impact on neighbouring species, in general, target species size was a weak predictor of the number of other resident species growing within its immediate neighbourhood, as well as the number of resident species that were reproductive. Thus, the presence of a large competitor did not restrict the ability of neighbouring species to reproduce. Lastly, target species size did not have any impact on the species size structure of neighbouring species; i.e. they did not restrict smaller, supposedly poorer competitors, from growing and reproducing close by. Taken together, these results provide no support for a size-advantage in competition restricting local species richness or the ability of small species to coexist and successfully reproduce in the immediate neighbourhood of a large species.

  14. Estimating species richness and status of solitary bees and bumblebees in agricultural semi-natural habitats

    DEFF Research Database (Denmark)

    Calabuig, Isabel

    2000-01-01

    Estimation of Western Europe number of bee species varies between 2000 and 4500 (Williams 1995) but there are substantial indications of a decline in bee species in Europe and other regions. In Denmark, wild bee species richness, distribution, and abundance have not been studied in detail for about...... 75 years, and nothing is known about which species are potentially vulnerable or endangered. A rough estimate of solitary bees and bumblebees includes approximately 238 species (26 genera) and 29 species respectively. In a pan-trap survey of six kilometres of semi-natural habitats in a Danish...... agricultural landscape, 72 solitary bee species and 19 species of bumblebees were recorded, several of which are considered vulnerable or endangered in neighbouring countries. Nesting conditions for rare cavity-nesting species and the possible role of the semi-natural habitats as corridors for species...

  15. Estimating species richness and status of solitary bees and bumblebees in agricultural semi-natural habitats

    DEFF Research Database (Denmark)

    Calabuig, Isabel

    2000-01-01

    75 years, and nothing is known about which species are potentially vulnerable or endangered. A rough estimate of solitary bees and bumblebees includes approximately 238 species (26 genera) and 29 species respectively. In a pan-trap survey of six kilometres of semi-natural habitats in a Danish...... agricultural landscape, 72 solitary bee species and 19 species of bumblebees were recorded, several of which are considered vulnerable or endangered in neighbouring countries. Nesting conditions for rare cavity-nesting species and the possible role of the semi-natural habitats as corridors for species......Estimation of Western Europe number of bee species varies between 2000 and 4500 (Williams 1995) but there are substantial indications of a decline in bee species in Europe and other regions. In Denmark, wild bee species richness, distribution, and abundance have not been studied in detail for about...

  16. Testing the Effectiveness of Environmental Variables to Explain European Terrestrial Vertebrate Species Richness across Biogeographical Scales.

    Directory of Open Access Journals (Sweden)

    Maud Mouchet

    Full Text Available We compared the effectiveness of environmental variables, and in particular of land-use indicators, to explain species richness patterns across taxonomic groups and biogeographical scales (i.e. overall pan-Europe and ecoregions within pan-Europe. Using boosted regression trees that handle non-linear relationships, we compared the relative influence (as a measure of effectiveness of environmental variables related to climate, landscape (or habitat heterogeneity, land-use intensity or energy availability to explain European vertebrate species richness (birds, amphibians, and mammals at the continental and ecoregion scales. We found that dominant land cover and actual evapotranspiration that relate to energy availability were the main correlates of vertebrate species richness over Europe. At the ecoregion scale, we identified four distinct groups of ecoregions where species richness was essentially associated to (i seasonality of temperature, (ii actual evapotranspiration and/or mean annual temperature, (iii seasonality of precipitation, actual evapotranspiration and land cover and (iv and an even combination of the environmental variables. This typology of ecoregions remained valid for total vertebrate richness and the three vertebrate groups taken separately. Despite the overwhelming influence of land cover and actual evapotranspiration to explain vertebrate species richness patterns at European scale, the ranking of the main correlates of species richness varied between regions. Interestingly, landscape and land-use indicators did not stand out at the continental scale but their influence greatly increased in southern ecoregions, revealing the long-lasting human footprint on land-use-land-cover changes. Our study provides one of the first multi-scale descriptions of the variability in the ranking of correlates across several taxa.

  17. Plant biodiversity effects in reducing fluvial erosion are limited to low species richness.

    Science.gov (United States)

    Allen, Daniel C; Cardinale, Bradley J; Wynn-Thompson, Theresa

    2016-01-01

    It has been proposed that plant biodiversity may increase the erosion resistance of soils, yet direct evidence for any such relationship is lacking. We conducted a mesocosm experiment with eight species of riparian herbaceous plants, and found evidence that plant biodiversity significantly reduced fluvial erosion rates, with the eight-species polyculture decreasing erosion by 23% relative to monocultures. Species richness effects were largest at low levels of species richness, with little increase between four and eight species. Our results suggest that plant biodiversity reduced erosion rates indirectly through positive effects on root length and number of root tips, and that interactions between legumes and non-legumes were particularly important in producing biodiversity effects. Presumably, legumes increased root production of non-legumes by increasing soil nitrogen availability due to their ability to fix atmospheric nitrogen. Our data suggest that a restoration project using species from different functional groups might provide the best insurance to maintain long-term erosion resistance.

  18. The challenge of accurately documenting bee species richness in agroecosystems: bee diversity in eastern apple orchards.

    Science.gov (United States)

    Russo, Laura; Park, Mia; Gibbs, Jason; Danforth, Bryan

    2015-09-01

    Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega-diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness.

  19. Rarity, Species Richness, and the Threat of Extinction—Are Plants the Same as Animals?

    OpenAIRE

    Knapp, Sandra

    2011-01-01

    Assessment of conservation status is done both for areas or habitats and for species (or taxa). IUCN Red List categories have been the principal method of categorising species in terms of extinction risk, and have been shown to be robust and helpful in the groups for which they have been developed. A recent study highlights properties associated with extinction risk in flowering plants, focusing on the species-rich hot spot of the Cape region of South Africa, and concludes that merely followi...

  20. Richness of Ancient Forest Plant Species Indicates Suitable Habitats for Macrofungi

    Czech Academy of Sciences Publication Activity Database

    Hofmeister, J.; Hošek, J.; Brabec, Marek; Dvořák, D.; Beran, M.; Deckerová, H.; Burel, J.; Kříž, M.; Borovička, Jan; Běťák, J.; Vašutová, Martina

    2014-01-01

    Roč. 23, č. 8 (2014), s. 2015-2031 ISSN 0960-3115 Grant - others:GA MŽP(CZ) SP/2D1/146/08 Institutional support: RVO:67985807 ; RVO:67985831 ; RVO:67179843 Keywords : diversity * forest continuity * forest management * Herb-layer plant species * red-listed species * species richness * surrogacy Subject RIV: BB - Applied Statistics, Operational Research; EH - Ecology, Behaviour (GLU-S); EH - Ecology, Behaviour (UEK-B) Impact factor: 2.365, year: 2014

  1. Molluskan species richness and endemism on New Caledonian seamounts: Are they enhanced compared to adjacent slopes?

    Science.gov (United States)

    Castelin, Magalie; Puillandre, Nicolas; Lozouet, Pierre; Sysoev, Alexander; de Forges, Bertrand Richer; Samadi, Sarah

    2011-06-01

    Seamounts were often considered as 'hotspots of diversity' and 'centers of endemism', but recently this opinion has been challenged. After 25 years of exploration and the work of numerous taxonomists, the Norfolk Ridge (Southwest Pacific) is probably one of the best-studied seamount chains worldwide. However, even in this intensively explored area, the richness and the geographic patterns of diversity are still poorly characterized. Among the benthic organisms, the post-mortem remains of mollusks can supplement live records to comprehensively document geographical distributions. Moreover, the accretionary growth of mollusk shells informs us about the life span of the pelagic larva. To compare diversity and level of endemism between the Norfolk Ridge seamounts and the continental slopes of New Caledonia we used species occurrence data drawn from (i) the taxonomic literature on mollusks and (ii) a raw dataset of mainly undescribed deep-sea species of the hyperdiverse Turridae. Patterns of endemism and species richness were analyzed through quantitative indices of endemism and species richness estimator metrics. To date, 403 gastropods and bivalves species have been recorded on the Norfolk Ridge seamounts. Of these, at least 38 species (˜10%) are potentially endemic to the seamounts and nearly all of 38 species have protoconchs indicating lecithotrophic larval development. Overall, our results suggest that estimates of species richness and endemism, when sampling effort is taken into account, were not significantly different between slopes and seamounts. By including in our analyses 347 undescribed morphospecies from the Norfolk Ridge, our results also demonstrate the influence of taxonomic bias on our estimates of species richness and endemism.

  2. Species richness and variety of life in Arizona’s ponderosa pine forest type

    Science.gov (United States)

    David R. Patton; Richard W. Hofstetter; John D. Bailey; Mary Ann Benoit

    2014-01-01

    Species richness (SR) is a tool that managers can use to include diversity in planning and decision-making and is a convenient and useful way to characterize the first level of biological diversity. A richness list derived from existing inventories enhances a manager’s understanding of the complexity of the plant and animal communities they manage. Without a list of...

  3. Temporal species richness-biomass relationships along successional gradients

    Science.gov (United States)

    Guo, Q.

    2003-01-01

    Diversity-biomass relationships are frequently reported to be hump-shaped over space at a given time. However, it is not yet clear how diversity and biomass change simultaneously and how they are related to each other over time (e.g. in succession) at one locality. This study develops a temporal model based on the projected changes of various community variables in a generalized terrestrial environment after fire and uses post-fire succession data on Santa Monica Mountains of southern California and other published succession data to examine the temporal diversity-biomass relationships. The results indicate that in the early stages of succession, both diversity and biomass increase and a positive relationship appears, while in the late stages of succession, biomass continued to increase but diversity usually declines; thus a negative relationship may be observed. When the scales of measurement become sufficiently large so that the measured diversity and biomass cross various stages of succession, a 'hump-shaped' relationship can emerge. The diversity-biomass relationship appears to be concordant in space and time when appropriate scales are used. Formerly proposed explanations for spatial patterns may well apply to the temporal patterns (particularly colonization, facilitation and competitive exclusion).

  4. Influence of current climate, historical climate stability and topography on species richness and endemism in Mesoamerican geophyte plants

    Directory of Open Access Journals (Sweden)

    Victoria Sosa

    2017-10-01

    Full Text Available Background A number of biotic and abiotic factors have been proposed as drivers of geographic variation in species richness. As biotic elements, inter-specific interactions are the most widely recognized. Among abiotic factors, in particular for plants, climate and topographic variables as well as their historical variation have been correlated with species richness and endemism. In this study, we determine the extent to which the species richness and endemism of monocot geophyte species in Mesoamerica is predicted by current climate, historical climate stability and topography. Methods Using approximately 2,650 occurrence points representing 507 geophyte taxa, species richness (SR and weighted endemism (WE were estimated at a geographic scale using grids of 0.5 × 0.5 decimal degrees resolution using Mexico as the geographic extent. SR and WE were also estimated using species distributions inferred from ecological niche modeling for species with at least five spatially unique occurrence points. Current climate, current to Last Glacial Maximum temperature, precipitation stability and topographic features were used as predictor variables on multiple spatial regression analyses (i.e., spatial autoregressive models, SAR using the estimates of SR and WE as response variables. The standardized coefficients of the predictor variables that were significant in the regression models were utilized to understand the observed patterns of species richness and endemism. Results Our estimates of SR and WE based on direct occurrence data and distribution modeling generally yielded similar results, though estimates based on ecological niche modeling indicated broader distribution areas for SR and WE than when species richness was directly estimated using georeferenced coordinates. The SR and WE of monocot geophytes were highest along the Trans-Mexican Volcanic Belt, in both cases with higher levels in the central area of this mountain chain. Richness and

  5. The bivalves from the Scotia Arc islands: species richness and faunistic affinities

    Directory of Open Access Journals (Sweden)

    Diego G. Zelaya

    2005-12-01

    Full Text Available Species richness of the shallow-water bivalves from the Scotia Arc islands was studied on the basis of new collections and by reviewing extant information. Seventy-three species are recognised from the entire area. South Georgia, the South Orkney Islands and the South Shetland Islands were similar in species richness to the Antarctic Weddell sector. New records for 51 bivalve species are provided and the presence of 18 undescribed species is reported. The faunistic similarity of the islands of the Scotia Arc to the Magellan region and the Antarctic Weddell sector is re-examined. These islands show a high similarity to the Antarctic Weddell sector (49 to 85% and a low similarity to the Magellan region (12 to 32%. Evidence from bivalves clearly supports the placement of the Scotia Arc islands within the Antarctic region.

  6. Species richness of limestone grasslands increases with trait overlap: evidence from within- and between-species functional diversity partitioning

    Czech Academy of Sciences Publication Activity Database

    Le Bagousse-Pinguet, Y.; de Bello, Francesco; Vandewalle, M.; Lepš, J.; Sykes, M. T.

    2014-01-01

    Roč. 102, č. 2 (2014), s. 466-474 ISSN 0022-0477 R&D Projects: GA ČR GAP505/12/1296 Institutional support: RVO:67985939 Keywords : functional diversity * species richness * trait overlap Subject RIV: EH - Ecology, Behaviour Impact factor: 5.521, year: 2014

  7. Projected impacts of climate change on regional capacities for global plant species richness.

    Science.gov (United States)

    Sommer, Jan Henning; Kreft, Holger; Kier, Gerold; Jetz, Walter; Mutke, Jens; Barthlott, Wilhelm

    2010-08-07

    Climate change represents a major challenge to the maintenance of global biodiversity. To date, the direction and magnitude of net changes in the global distribution of plant diversity remain elusive. We use the empirical multi-variate relationships between contemporary water-energy dynamics and other non-climatic predictor variables to model the regional capacity for plant species richness (CSR) and its projected future changes. We find that across all analysed Intergovernmental Panel on Climate Change emission scenarios, relative changes in CSR increase with increased projected temperature rise. Between now and 2100, global average CSR is projected to remain similar to today (+0.3%) under the optimistic B1/+1.8 degrees C scenario, but to decrease significantly (-9.4%) under the 'business as usual' A1FI/+4.0 degrees C scenario. Across all modelled scenarios, the magnitude and direction of CSR change are geographically highly non-uniform. While in most temperate and arctic regions, a CSR increase is expected, the projections indicate a strong decline in most tropical and subtropical regions. Countries least responsible for past and present greenhouse gas emissions are likely to incur disproportionately large future losses in CSR, whereas industrialized countries have projected moderate increases. Independent of direction, we infer that all changes in regional CSR will probably induce on-site species turnover and thereby be a threat to native floras.

  8. Environmental and spatial controls of palm (Arecaceae) species richness across the Americas

    DEFF Research Database (Denmark)

    Bjorholm, Stine; Svenning, Jens-Christian; Skov, Flemming

    2005-01-01

    Our analysis suggests that in the Americas, palm species richness at spatial scales from 1° to 10° is most strongly controlled by water availability, although unknown broad-scale factors, perhaps soil, historical processes or geometric constraints, are also important.......Our analysis suggests that in the Americas, palm species richness at spatial scales from 1° to 10° is most strongly controlled by water availability, although unknown broad-scale factors, perhaps soil, historical processes or geometric constraints, are also important....

  9. The impact of land abandonment on species richness and abundance in the Mediterranean Basin

    DEFF Research Database (Denmark)

    Plieninger, Tobias; Hui, Cang; Gaertner, Mirijam

    2014-01-01

    species richness and abundance in agroforestry, arable land, pastures, and permanent crops of the Mediterranean Basin. In particular, we investigated (1) which taxonomic groups (arthropods, birds, lichen, vascular plants) are more affected by land abandonment; (2) at which spatial and temporal scales.......0001) plant and animal species richness and abundance overall, though results were heterogeneous, with differences in effect size between taxa, spatial-temporal scales, land uses, landforms, and climate. In conclusion, there is no "one-size-fits-all" conservation approach that applies to the diverse contexts...

  10. Vegetation Cover and Habitat Heterogeneity derived from QuickBird data as proxies of Local Plant Species Richness in recently burned areas

    Science.gov (United States)

    Viedma, Olga; Torres, Ivan; Moreno, Jose Manuel

    2010-05-01

    In fire-prone ecosystems, it is very common that, following fire, plant species richness increases very markedly, mainly due to an explosion of annuals, following a rapid change during the first few years after the blaze. Herbs play a major role in the system, among other, by fixing nutrients that might be lost, or by changing competitive interactions with shrubs or tree seedlings. But assessing species richness, particularly, herbaceous one, in space and at large scale is very costly. Furthermore, the scale of measurement is also important. In this work we attempted to asses plant species richness during the first year after fire in an abandoned dehesa (open parkland) at three scales (1 m2, 25 m2 and 100 m2) using QuickBird images. The study area was located in Central Spain (Anchuras, Ciudad Real), and was affected by a large summer fire (ca. 2000 ha). Before the fire the system was composed of a shrubland intermixed with trees and open spaces. Two 90x180 m plots were selected and field species richness measures were made at the three scales, using a nested design. Field-based data were related to remotely sensed data using Regression Trees (RT) and Boosted Regression Trees (BRT) modelling. Explanatory spectral and textural remotely sensed data were ecologically interpreted based on vegetation cover ground-based data. We found that areas with low spectral contrast and high reflectivity were dominated by herbaceous species, and had greater species richness than those characterized by low contrast and medium-low reflectivity, which were dominated by shrubs and trees. The highest species richness was found in the areas characterized by high contrast and medium-high reflectivity, which had a mix of herbs and woody layers. Variance explained varied depending on the modelling approach and the scale, from 21% and 50% for 1 m2 using RT and BRT, respectively; to 65% and 79% for 100 m2. The contribution of different life forms in model fitting was scale-dependent. At

  11. Herbivores, tidal elevation, and species richness simultaneously mediate nitrate uptake by seaweed assemblages.

    Science.gov (United States)

    Bracken, Matthew E S; Jones, Emily; Williams, Susan L

    2011-05-01

    In order for research into the consequences of biodiversity changes to be more applicable to real-world ecosystems, experiments must be conducted in the field, where a variety of factors other than diversity can affect the rates of key biogeochemical and physiological processes. Here, we experimentally evaluate the effects of two factors known to affect the diversity and composition of intertidal seaweed assemblages--tidal elevation and herbivory--on nitrate uptake by those assemblages. Based on surveys of community composition at the end of a 1.5-year press experiment, we found that both tide height and herbivores affected seaweed community structure. Not surprisingly, seaweed species richness was greater at lower tidal elevations. Herbivores did not affect richness, but they altered the types of species that were present; seaweed species characterized by higher rates of nitrate uptake were more abundant in herbivore-removal plots. Both tide height and herbivores affected nitrate uptake by seaweed assemblages. Individual seaweed species, as well as entire seaweed assemblages, living higher on the shore had greater rates of biomass-specific nitrate uptake, particularly at high ambient nitrate concentrations. Grazed seaweed assemblages exhibited reduced nitrate uptake, but only at low nitrate concentrations. We evaluated the effect of seaweed richness on nitrate uptake, both alone and after accounting for effects of tidal elevation and herbivores. When only richness was considered, we found no effect on uptake. However, when simultaneous effects of richness, tide height, and herbivores on uptake were evaluated, we found that all three had relatively large and comparable effects on nitrate uptake coefficients and that there was a negative relationship between seaweed richness and nitrate uptake. Particularly because effects of richness on uptake were not apparent unless the effects of tide height and herbivory were also considered, these results highlight the

  12. The Importance of Landscape Elements for Bat Activity and Species Richness in Agricultural Areas.

    Directory of Open Access Journals (Sweden)

    Olga Heim

    Full Text Available Landscape heterogeneity is regarded as a key factor for maintaining biodiversity and ecosystem function in production landscapes. We investigated whether grassland sites at close vicinity to forested areas are more frequently used by bats. Considering that bats are important consumers of herbivorous insects, including agricultural pest, this is important for sustainable land management. Bat activity and species richness were assessed using repeated monitoring from May to September in 2010 with acoustic monitoring surveys on 50 grassland sites in the Biosphere Reserve Schorfheide-Chorin (North-East Germany. Using spatial analysis (GIS, we measured the closest distance of each grassland site to potentially connecting landscape elements (e.g., trees, linear vegetation, groves, running and standing water. In addition, we assessed the distance to and the percent land cover of forest remnants and urban areas in a 200 m buffer around the recording sites to address differences in the local landscape setting. Species richness and bat activity increased significantly with higher forest land cover in the 200 m buffer and at smaller distance to forested areas. Moreover, species richness increased in proximity to tree groves. Larger amount of forest land cover and smaller distance to forest also resulted in a higher activity of bats on grassland sites in the beginning of the year during May, June and July. Landscape elements near grassland sites also influenced species composition of bats and species richness of functional groups (open, edge and narrow space foragers. Our results highlight the importance of forested areas, and suggest that agricultural grasslands that are closer to forest remnants might be better buffered against outbreaks of agricultural pest insects due to higher species richness and higher bat activity. Furthermore, our data reveals that even for highly mobile species such as bats, a very dense network of connecting elements within the

  13. The Importance of Landscape Elements for Bat Activity and Species Richness in Agricultural Areas.

    Science.gov (United States)

    Heim, Olga; Treitler, Julia T; Tschapka, Marco; Knörnschild, Mirjam; Jung, Kirsten

    2015-01-01

    Landscape heterogeneity is regarded as a key factor for maintaining biodiversity and ecosystem function in production landscapes. We investigated whether grassland sites at close vicinity to forested areas are more frequently used by bats. Considering that bats are important consumers of herbivorous insects, including agricultural pest, this is important for sustainable land management. Bat activity and species richness were assessed using repeated monitoring from May to September in 2010 with acoustic monitoring surveys on 50 grassland sites in the Biosphere Reserve Schorfheide-Chorin (North-East Germany). Using spatial analysis (GIS), we measured the closest distance of each grassland site to potentially connecting landscape elements (e.g., trees, linear vegetation, groves, running and standing water). In addition, we assessed the distance to and the percent land cover of forest remnants and urban areas in a 200 m buffer around the recording sites to address differences in the local landscape setting. Species richness and bat activity increased significantly with higher forest land cover in the 200 m buffer and at smaller distance to forested areas. Moreover, species richness increased in proximity to tree groves. Larger amount of forest land cover and smaller distance to forest also resulted in a higher activity of bats on grassland sites in the beginning of the year during May, June and July. Landscape elements near grassland sites also influenced species composition of bats and species richness of functional groups (open, edge and narrow space foragers). Our results highlight the importance of forested areas, and suggest that agricultural grasslands that are closer to forest remnants might be better buffered against outbreaks of agricultural pest insects due to higher species richness and higher bat activity. Furthermore, our data reveals that even for highly mobile species such as bats, a very dense network of connecting elements within the landscape is

  14. Likeability of Garden Birds: Importance of Species Knowledge & Richness in Connecting People to Nature.

    Science.gov (United States)

    Cox, Daniel T C; Gaston, Kevin J

    2015-01-01

    Interacting with nature is widely recognised as providing many health and well-being benefits. As people live increasingly urbanised lifestyles, the provision of food for garden birds may create a vital link for connecting people to nature and enabling them to access these benefits. However, it is not clear which factors determine the pleasure that people receive from watching birds at their feeders. These may be dependent on the species that are present, the abundance of individuals and the species richness of birds around the feeders. We quantitatively surveyed urban households from towns in southern England to determine the factors that influence the likeability of 14 common garden bird species, and to assess whether people prefer to see a greater abundance of individuals or increased species richness at their feeders. There was substantial variation in likeability across species, with songbirds being preferred over non-songbirds. Species likeability increased for people who fed birds regularly and who could name the species. We found a strong correlation between the number of species that a person could correctly identify and how connected to nature they felt when they watched garden birds. Species richness was preferred over a greater number of individuals of the same species. Although we do not show causation this study suggests that it is possible to increase the well-being benefits that people gain from watching birds at their feeders. This could be done first through a human to bird approach by encouraging regular interactions between people and their garden birds, such as through learning the species names and providing food. Second, it could be achieved through a bird to human approach by increasing garden songbird diversity because the pleasure that a person receives from watching an individual bird at a feeder is dependent not only on its species but also on the diversity of birds at the feeder.

  15. Likeability of Garden Birds: Importance of Species Knowledge & Richness in Connecting People to Nature

    Science.gov (United States)

    Cox, Daniel T. C.; Gaston, Kevin J.

    2015-01-01

    Interacting with nature is widely recognised as providing many health and well-being benefits. As people live increasingly urbanised lifestyles, the provision of food for garden birds may create a vital link for connecting people to nature and enabling them to access these benefits. However, it is not clear which factors determine the pleasure that people receive from watching birds at their feeders. These may be dependent on the species that are present, the abundance of individuals and the species richness of birds around the feeders. We quantitatively surveyed urban households from towns in southern England to determine the factors that influence the likeability of 14 common garden bird species, and to assess whether people prefer to see a greater abundance of individuals or increased species richness at their feeders. There was substantial variation in likeability across species, with songbirds being preferred over non-songbirds. Species likeability increased for people who fed birds regularly and who could name the species. We found a strong correlation between the number of species that a person could correctly identify and how connected to nature they felt when they watched garden birds. Species richness was preferred over a greater number of individuals of the same species. Although we do not show causation this study suggests that it is possible to increase the well-being benefits that people gain from watching birds at their feeders. This could be done first through a human to bird approach by encouraging regular interactions between people and their garden birds, such as through learning the species names and providing food. Second, it could be achieved through a bird to human approach by increasing garden songbird diversity because the pleasure that a person receives from watching an individual bird at a feeder is dependent not only on its species but also on the diversity of birds at the feeder. PMID:26560968

  16. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe.

    Science.gov (United States)

    Paillet, Yoan; Bergès, Laurent; Hjältén, Joakim; Odor, Péter; Avon, Catherine; Bernhardt-Römermann, Markus; Bijlsma, Rienk-Jan; De Bruyn, Luc; Fuhr, Marc; Grandin, Ulf; Kanka, Robert; Lundin, Lars; Luque, Sandra; Magura, Tibor; Matesanz, Silvia; Mészáros, Ilona; Sebastià, M-Teresa; Schmidt, Wolfgang; Standovár, Tibor; Tóthmérész, Béla; Uotila, Anneli; Valladares, Fernando; Vellak, Kai; Virtanen, Risto

    2010-02-01

    Past and present pressures on forest resources have led to a drastic decrease in the surface area of unmanaged forests in Europe. Changes in forest structure, composition, and dynamics inevitably lead to changes in the biodiversity of forest-dwelling species. The possible biodiversity gains and losses due to forest management (i.e., anthropogenic pressures related to direct forest resource use), however, have never been assessed at a pan-European scale. We used meta-analysis to review 49 published papers containing 120 individual comparisons of species richness between unmanaged and managed forests throughout Europe. We explored the response of different taxonomic groups and the variability of their response with respect to time since abandonment and intensity of forest management. Species richness was slightly higher in unmanaged than in managed forests. Species dependent on forest cover continuity, deadwood, and large trees (bryophytes, lichens, fungi, saproxylic beetles) and carabids were negatively affected by forest management. In contrast, vascular plant species were favored. The response for birds was heterogeneous and probably depended more on factors such as landscape patterns. The global difference in species richness between unmanaged and managed forests increased with time since abandonment and indicated a gradual recovery of biodiversity. Clearcut forests in which the composition of tree species changed had the strongest effect on species richness, but the effects of different types of management on taxa could not be assessed in a robust way because of low numbers of replications in the management-intensity classes. Our results show that some taxa are more affected by forestry than others, but there is a need for research into poorly studied species groups in Europe and in particular locations. Our meta-analysis supports the need for a coordinated European research network to study and monitor the biodiversity of different taxa in managed and unmanaged

  17. Lepidopteran species richness of alpine sites in the High Sudetes Mts.Effect of area and isolation

    Czech Academy of Sciences Publication Activity Database

    Bílá, Karolína; Kuras, T.; Šipoš, J.; Kindlmann, Pavel

    2013-01-01

    Roč. 17, č. 2 (2013), s. 257-267 ISSN 1366-638X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk LC06073 Institutional support: RVO:67179843 Keywords : Central Europe * Alpine habitats * Island biogeography * Incidence function model * Species–area relationship * Species richness Subject RIV: EH - Ecology, Behaviour Impact factor: 1.789, year: 2013

  18. Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    Science.gov (United States)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2016-01-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale run-off plots was conducted to investigate the influence of tree species and tree species richness as well as functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 Mg ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion differently, while tree species richness did not affect interrill erosion in young forest stands. Thus, different tree morphologies have to be considered, when assessing soil erosion under forest. High crown cover and leaf area index reduced interrill erosion in initial forest ecosystems, whereas rising tree height increased it. Even if a leaf litter cover was not present, the remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on interrill erosion. Long-term monitoring of soil erosion under closing tree canopies is necessary, and a wide range of functional tree traits should be considered in future research.

  19. Model for Semantically Rich Point Cloud Data

    Science.gov (United States)

    Poux, F.; Neuville, R.; Hallot, P.; Billen, R.

    2017-10-01

    This paper proposes an interoperable model for managing high dimensional point clouds while integrating semantics. Point clouds from sensors are a direct source of information physically describing a 3D state of the recorded environment. As such, they are an exhaustive representation of the real world at every scale: 3D reality-based spatial data. Their generation is increasingly fast but processing routines and data models lack of knowledge to reason from information extraction rather than interpretation. The enhanced smart point cloud developed model allows to bring intelligence to point clouds via 3 connected meta-models while linking available knowledge and classification procedures that permits semantic injection. Interoperability drives the model adaptation to potentially many applications through specialized domain ontologies. A first prototype is implemented in Python and PostgreSQL database and allows to combine semantic and spatial concepts for basic hybrid queries on different point clouds.

  20. MODEL FOR SEMANTICALLY RICH POINT CLOUD DATA

    Directory of Open Access Journals (Sweden)

    F. Poux

    2017-10-01

    Full Text Available This paper proposes an interoperable model for managing high dimensional point clouds while integrating semantics. Point clouds from sensors are a direct source of information physically describing a 3D state of the recorded environment. As such, they are an exhaustive representation of the real world at every scale: 3D reality-based spatial data. Their generation is increasingly fast but processing routines and data models lack of knowledge to reason from information extraction rather than interpretation. The enhanced smart point cloud developed model allows to bring intelligence to point clouds via 3 connected meta-models while linking available knowledge and classification procedures that permits semantic injection. Interoperability drives the model adaptation to potentially many applications through specialized domain ontologies. A first prototype is implemented in Python and PostgreSQL database and allows to combine semantic and spatial concepts for basic hybrid queries on different point clouds.

  1. Aligning conservation goals: are patterns of species richness and endemism concordant at regional scales?

    Directory of Open Access Journals (Sweden)

    Ricketts, T. H.

    2001-01-01

    Full Text Available Biodiversity conservation strategies commonly target areas of high species richness and/or high endemism. However, the correlation between richness and endemism at scales relevant to conservation is unclear; these two common goals of conservation plans may therefore be in conflict. Here the spatial concordance between richness and endemism is tested using five taxa in North America: butterflies, birds, mammals, amphibians, and reptiles. This concordance is also tested using overall indices of richness and endemism (incorporating all five taxa. For all taxa except birds, richness and endemism were significantly correlated, with amphibians, reptiles, and the overall indices showing the highest correlations (rs = 0.527-0.676. However, 'priority sets' of ecoregions (i.e., the top 10% of ecoregions based on richness generally overlapped poorly with those based on endemism (< 50% overlap for all but reptiles. These results offer only limited support for the idea that richness and endemism are correlated at broad scales and indicate that land managers will need to balance these dual, and often conflicting, goals of biodiversity conservation.

  2. Large tree species richness is associated with topography, forest structure and spectral heterogeneity in a neotropical rainforest

    Science.gov (United States)

    Fricker, G. A.; Wolf, J. A.; Gillespie, T.; Meyer, V.; Hubbell, S. P.; Santo, F. E.; Saatchi, S. S.

    2013-12-01

    Large tropical canopy trees contain the majority of forest biomass in addition to being the primary producers in the forest ecosystem in terms of both food and structural habitat. The spatial distributions of large tropical trees are non-randomly distributed across environmental gradients in light, water and nutrients. These environmental gradients are a result of the biophysical processes related to topography and three-dimensional forest structure. In this study we examine large (>10 cm) diameter tree species richness across Barro Colorado Nature Monument in a tropical moist forest in Panama using active and passive remote sensing. Airborne light detection and ranging and high-resolution satellite imagery were used to quantify spectral heterogeneity, sub-canopy topography and vertical canopy structure across existing vegetation plots to model the extent to which remote sensing variables can be used to explain variation in large tree species richness. Plant species richness data was calculated from the stem mapped 50-ha forest dynamics plot on Barro Colorado Island in addition to 8 large tree plots across the Barro Colorado Nature Monument at 1.0 ha and 0.25 ha spatial scales. We investigated four statistical models to predict large tree species richness including spectral, topographic, vertical canopy structure and a combined ';global' model which includes all remote sensing derived variables. The models demonstrate that remote sensing derived variables can capture a significant fraction (R2= 0.54 and 0.36) of observed variation in tree species richness across the 1.0 and 0.25 ha spatial scales respectively. A selection of remote sensing derived predictor variables. A) World View-2 satellite imagery in RGB/true color. B) False color image of the principal component analysis. C) Normalized Difference Vegetation Index (NDVI). D) Simple Ratio Index. E) Quickbird satellite imagery in RGB/true color. F) False color image of the principal component analysis. G) NDVI. H

  3. Organic, integrated and conventional management in apple orchards: effect on plant species composition, richness and diversity

    Directory of Open Access Journals (Sweden)

    Zdeňka Lososová

    2011-01-01

    Full Text Available The study was conducted to assess the effect of conventional, integrated and organic management on differences in plant species composition, richness and diversity. The plants were studied in triads of orchards situated in three regions of the Czech Republic. Data about species occurrences were collected on 15 permanent plots in the tree rows and 15 plots between tree rows in each of the apple orchards during 2009. A total of 201 vascular plant species (127 native species, 65 archaeophytes, and 9 neophytes were found. Management type and also different regional conditions had a significant effect on plant species composition and on diversity parameters of orchard spontaneous vegetation. Species richness and species pool was significantly higher in the organic orchards than in the differently managed orchards. Management type had significant effect on proportions of archaeophytes, and also neophytes in apple orchards. The results showed that a change from conventional to integrated and organic management in apple orchards lead to higher plant species diversity and to changes in plant species composition.

  4. Metazoan parasite species richness in Neotropical fishes: hotspots and the geography of biodiversity.

    Science.gov (United States)

    Luque, J L; Poulin, R

    2007-06-01

    Although research on parasite biodiversity has intensified recently, there are signs that parasites remain an underestimated component of total biodiversity in many regions of the planet. To identify geographical hotspots of parasite diversity, we performed qualitative and quantitative analyses of the parasite-host associations in fishes from Latin America and the Caribbean, a region that includes known hotspots of plant and animal biodiversity. The database included 10,904 metazoan parasite-host associations involving 1660 fish species. The number of host species with at least 1 parasite record was less than 10% of the total known fish species in the majority of countries. Associations involving adult endoparasites in actinopterygian fish hosts dominated the database. Across the whole region, no significant difference in parasite species richness was detected between marine and freshwater fishes. As a rule, host body size and study effort (number of studies per fish species) were good predictors of parasite species richness. Some interesting patterns emerged when we included only the regions with highest fish species biodiversity and study effort (Brazil, Mexico and the Caribbean Islands). Independently of differences in study effort or host body sizes, Mexico stands out as a hotspot of parasite diversity for freshwater fishes, as does Brasil for marine fishes. However, among 57 marine fish species common to all 3 regions, populations from the Caribbean consistently harboured more parasite species. These differences may reflect true biological patterns, or regional discrepancies in study effort and local priorities for fish parasitology research.

  5. Can local landscape attributes explain species richness patterns at macroecological scales?

    NARCIS (Netherlands)

    Xu, C.; Huang, Z.; Chi, T.; Chen, B.J.W.; Zhang, M.; Liu, M.

    2014-01-01

    Aim Although the influence on species richness of landscape attributes representing landscape composition and spatial configuration has been well documented at landscape scales, its effects remain little understood at macroecological scales. We aim to assess the role of landscape attributes, and

  6. Managed forest landscape structure and avian species richness in the southeastern US

    Science.gov (United States)

    Craig Loehle; T. Bently Wigley; Scott Rutzmoser; John A. Gerwin; Patrick D. Keyser; Richard A. Lancia; Christopher J. Reynolds; Ronald E. Thill; Robert Weih; Don White; Petra Bohall Wood

    2005-01-01

    Forest structural features at the stand scale (e.g., snags, stem density, species composition) and habitat attributes at larger spatial scales (e.g., landscape pattern, road density) can influence biological diversity and have been proposed as indicators in sustainable forestry programs. This study investigated relationships between such factors and total richness of...

  7. Migration and parasitism : Habitat use, not migration distance, influences helminth species richness in Charadriiform birds

    NARCIS (Netherlands)

    Gutiérrez, Jorge S.; Rakhimberdiev, Eldar; Piersma, Theunis; Thieltges, David W.

    Aim: Habitat use and migration strategies of animals are often associated with spatial variation in parasite pressure, but how they relate to one another is not well understood. Here, we use a large dataset on helminth species richness of Charadriiform birds to test whether higher habitat diversity

  8. Reef flattening effects on total richness and species responses in the Caribbean

    NARCIS (Netherlands)

    Newman, Steven P.; Meesters, E.H.; Dryden, Charlie S.; Williams, Stacey M.; Sanchez, Cristina; Mumby, Peter J.; Polunin, Nicholas V.C.

    2015-01-01

    There has been ongoing flattening of Caribbean coral reefs with the loss of habitat having severe implications for these systems. Complexity and its structural components are important to fish species richness and community composition, but little is known about its role for other taxa or

  9. Can local landscape attributes explain species richness patterns at macroecological scales?

    NARCIS (Netherlands)

    Xu, C.; Huang, Z.; Chi, T.; Chen, B.J.W.; Zhang, M.; Liu, M.

    2014-01-01

    Although the influence on species richness of landscape attributes representing landscape composition and spatial configuration has been well documented at landscape scales, its effects remain little understood at macroecological scales. We aim to assess the role of landscape attributes, and their

  10. Species richness and origin of the bryophyte flora of the Colombian Andes

    NARCIS (Netherlands)

    Gradstein, S.R.; Reenen, van G.B.A.; Griffin, D.

    1988-01-01

    Based on data from the ECOANDES project, a phytogeographical analysis has been made of the bryophyte flora along the wet, foggy western slope (1000-4500 m) and the drier eastern slope (500-4500 m) of the Colombian Central Cordillera at the ‘Parque de los Nevados’. Species richness increases with

  11. Synecology of species-rich plant communities on roadside verges in the Netherlands

    NARCIS (Netherlands)

    Schaffers, A.P.; Sykora, K.V.

    2002-01-01

    Using a large number of physical and chemical soil measurements, biomass measurements, and other site conditions (e. g. management, shading, exposition), an accurate synecological description is given of 15 semi-natural, species-rich plant communities. The communities studied belong to 11 alliances,

  12. Changes in biomass allocation in species rich meadow after abandonment: Ecological strategy or allometry?

    Czech Academy of Sciences Publication Activity Database

    Bartušková, Alena; Doležal, Jiří; Janeček, Štěpán; Lanta, V.; Klimešová, Jitka

    2015-01-01

    Roč. 17, č. 5 (2015), s. 379-387 ISSN 1433-8319 R&D Projects: GA ČR GB14-36079G Institutional support: RVO:67985939 Keywords : Biomass allocation * species-rich meadow * abandonment Subject RIV: EF - Botanics Impact factor: 3.578, year: 2015

  13. A global evaluation of metabolic theory as an explanation for terrestrial species richness gradients

    DEFF Research Database (Denmark)

    Hawkins, Bradford A.; Albuquerque, Fabio S.; Araújo, Miguel B.

    2007-01-01

    We compiled 46 broadscale data sets of species richness for a wide range of terrestrial plant, invertebrate, and ectothermic vertebrate groups in all parts of the world to test the ability of metabolic theory to account for observed diversity gradients. The theory makes two related predictions: (...

  14. Species richness and composition assessment of spiders in a Mediterranean scrubland

    DEFF Research Database (Denmark)

    Bondoso Cardoso, Pedro Miguel; Henriques, Sérgio S.; Gaspar, Clara

    2009-01-01

    Intensive fieldwork has been undertaken in Portugal in order to develop a standardized and optimized sampling protocol for Mediterranean spiders. The present study had the objectives of testing the use of semi-quantitative sampling for obtaining an exhaustive species richness assessment of spider...

  15. Migration and parasitism: habitat use, not migration distance, influences helminth species richness in Charadriiform birds

    NARCIS (Netherlands)

    Gutiérrez, J.S.; Rakhimberdiev, E.; Piersma, T.; Thieltges, D.W.

    2017-01-01

    Aim Habitat use and migration strategies of animals are often associated withspatial variation in parasite pressure, but how they relate to one another is notwell understood. Here, we use a large dataset on helminth species richness ofCharadriiform birds to test whether higher habitat diversity and

  16. Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees

    Directory of Open Access Journals (Sweden)

    Kyle Dexter

    2016-09-01

    Full Text Available Amazonian tree species vary enormously in their total abundance and range size, while Amazonian tree genera vary greatly in species richness. The drivers of this variation are not well understood. Here, we construct a phylogenetic hypothesis that represents half of Amazonian tree genera in order to contribute to explaining the variation. We find several clear, broad-scale patterns. Firstly, there is significant phylogenetic signal for all three characteristics; closely related genera tend to have similar numbers of species and similar mean range size and abundance. Additionally, the species richness of genera shows a significant, negative relationship with the mean range size and abundance of their constituent species. Our results suggest that phylogenetically correlated intrinsic factors, namely traits of the genera themselves, shape among lineage variation in range size, abundance and species richness. We postulate that tree stature may be one particularly relevant trait. However, other traits may also be relevant, and our study reinforces the need for ambitious compilations of trait data for Amazonian trees. In the meantime, our study shows how large-scale phylogenies can help to elucidate, and contribute to explaining, macroecological and macroevolutionary patterns in hyperdiverse, yet poorly understood regions like the Amazon Basin.

  17. Species richness and relative species abundance of Nymphalidae (Lepidoptera) in three forests with different perturbations in the North-Central Caribbean of Costa Rica.

    Science.gov (United States)

    Stephen, Carolyn; Sánchez, Ragde

    2014-09-01

    Measurements of species richness and species abundance can have important implications for regulations and conservation. This study investigated species richness and abundance of butterflies in the family Nymphalidae at undisturbed, and disturbed habitats in Tirimbina Biological Reserve and Nogal Private Reserve, Sarapiquí, Costa Rica. Traps baited with rotten banana were placed in the canopy and the understory of three habitats: within mature forest, at a river/forest border, and at a banana plantation/forest border. In total, 71 species and 487 individuals were caught and identified during May and June 2011 and May 2013. Species richness and species abundance were found to increase significantly at perturbed habitats (p < 0.0001, p < 0.0001, respectively). The edge effect, in which species richness and abundance increase due to greater complementary resources from different habitats, could be one possible explanation for increased species richness and abundance.

  18. Effects of reforestation and intensified land use on vascular plant species richness in traditionally managed hay meadows

    OpenAIRE

    Myklestad, Åse; Sætersdal, Magne

    2003-01-01

    In this study of 130 sites with different management we investigated whether vascular plant species richness is significantly reduced when traditionally managed hay meadows are abandoned and reforested. We also compared the effects of reforestation with those of intensified land-use to see which have the largest effects on species richness. Finally, we investigated the relative importance of relevant ecological factors for species richness. While the use of artificial fertilizers in tradition...

  19. Tree species identity and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    Science.gov (United States)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2015-06-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale runoff plots was conducted to investigate the influence of tree species richness and identity as well as tree functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 t ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion, but higher tree species richness did not mitigate soil losses in young forest stands. Thus, different tree morphologies have to be considered, when assessing erosion under forest. High crown cover and leaf area index reduced soil losses in initial forest ecosystems, whereas rising tree height increased them. Even if a leaf litter cover was not present, remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on soil loss. Long-term monitoring of soil erosion under closing tree canopies is necessary and a wide range of functional tree traits should be taken into consideration in future research.

  20. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    Full Text Available Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices.We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment. In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years.The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant-nematode interactions.

  1. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland.

    Science.gov (United States)

    Eisenhauer, Nico; Migunova, Varvara D; Ackermann, Michael; Ruess, Liliane; Scheu, Stefan

    2011-01-01

    Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices. We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment). In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years. The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant-nematode interactions.

  2. Epiphytes in wooded pastures: Isolation matters for lichen but not for bryophyte species richness.

    Directory of Open Access Journals (Sweden)

    Thomas Kiebacher

    Full Text Available Sylvo-pastoral systems are species-rich man-made landscapes that are currently often severely threatened by abandonment or management intensification. At low tree densities, single trees in these systems represent habitat islands for epiphytic cryptogams. Here, we focused on sycamore maple (Acer pseudoplatanus wooded pastures in the northern European Alps. We assessed per tree species richness of bryophytes and lichens on 90 sycamore maple trees distributed across six study sites. We analysed the effects of a range of explanatory variables (tree characteristics, environmental variables and isolation measures on the richness of epiphytic bryophytes and lichens and various functional subgroups (based on diaspore size, habitat preference and red list status. Furthermore, we estimated the effect of these variables on the occurrence of two specific bryophyte species (Tayloria rudolphiana, Orthotrichum rogeri and one lichen species (Lobaria pulmonaria of major conservation concern. Bryophytes and lichens, as well as their subgroups, were differently and sometimes contrastingly affected by the variables considered: tree diameter at breast height had no significant effect on bryophytes but negatively affected many lichen groups; tree phenological age positively affected red-listed lichens but not red-listed bryophytes; increasing isolation from neighbouring trees negatively affected lichens but not bryophytes. However, the high-priority bryophyte species T. rudolphiana was also negatively affected by increased isolation at small spatial scales. Orthotrichum rogeri was more frequent on young trees and L. pulmonaria was more frequent on trees with thin stems and large crowns. The results indicate that local dispersal is important for lichens, whereas long distance dispersal seems to be more important for colonisation by bryophytes. Furthermore, our study highlights that different conservation measures need to be taken depending on the taxonomic and

  3. Epiphytes in wooded pastures: Isolation matters for lichen but not for bryophyte species richness.

    Science.gov (United States)

    Kiebacher, Thomas; Keller, Christine; Scheidegger, Christoph; Bergamini, Ariel

    2017-01-01

    Sylvo-pastoral systems are species-rich man-made landscapes that are currently often severely threatened by abandonment or management intensification. At low tree densities, single trees in these systems represent habitat islands for epiphytic cryptogams. Here, we focused on sycamore maple (Acer pseudoplatanus) wooded pastures in the northern European Alps. We assessed per tree species richness of bryophytes and lichens on 90 sycamore maple trees distributed across six study sites. We analysed the effects of a range of explanatory variables (tree characteristics, environmental variables and isolation measures) on the richness of epiphytic bryophytes and lichens and various functional subgroups (based on diaspore size, habitat preference and red list status). Furthermore, we estimated the effect of these variables on the occurrence of two specific bryophyte species (Tayloria rudolphiana, Orthotrichum rogeri) and one lichen species (Lobaria pulmonaria) of major conservation concern. Bryophytes and lichens, as well as their subgroups, were differently and sometimes contrastingly affected by the variables considered: tree diameter at breast height had no significant effect on bryophytes but negatively affected many lichen groups; tree phenological age positively affected red-listed lichens but not red-listed bryophytes; increasing isolation from neighbouring trees negatively affected lichens but not bryophytes. However, the high-priority bryophyte species T. rudolphiana was also negatively affected by increased isolation at small spatial scales. Orthotrichum rogeri was more frequent on young trees and L. pulmonaria was more frequent on trees with thin stems and large crowns. The results indicate that local dispersal is important for lichens, whereas long distance dispersal seems to be more important for colonisation by bryophytes. Furthermore, our study highlights that different conservation measures need to be taken depending on the taxonomic and functional species

  4. Meta-analysis of the effect of global warming on local species richness

    NARCIS (Netherlands)

    Arets, E.J.M.M.; Verwer, C.C.; Alkemade, J.R.M.

    2014-01-01

    We carried out a systematic review of global and regional modelling studies in which shifts in species distributions under climate change were modelled. These studies included a large range of species groups and biomes worldwide. Based on the model results we calculated the fraction of species that

  5. Plant DNA barcodes can accurately estimate species richness in poorly known floras.

    Directory of Open Access Journals (Sweden)

    Craig Costion

    Full Text Available BACKGROUND: Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70% and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. METHODOLOGY/PRINCIPAL FINDINGS: Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. CONCLUSIONS/SIGNIFICANCE: We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways.

  6. Plant DNA barcodes can accurately estimate species richness in poorly known floras.

    Science.gov (United States)

    Costion, Craig; Ford, Andrew; Cross, Hugh; Crayn, Darren; Harrington, Mark; Lowe, Andrew

    2011-01-01

    Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70%) and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways.

  7. Impact of Forest Management on Species Richness: Global Meta-Analysis and Economic Trade-Offs

    Science.gov (United States)

    Chaudhary, Abhishek; Burivalova, Zuzana; Koh, Lian Pin; Hellweg, Stefanie

    2016-04-01

    Forests managed for timber have an important role to play in conserving global biodiversity. We evaluated the most common timber production systems worldwide in terms of their impact on local species richness by conducting a categorical meta-analysis. We reviewed 287 published studies containing 1008 comparisons of species richness in managed and unmanaged forests and derived management, taxon, and continent specific effect sizes. We show that in terms of local species richness loss, forest management types can be ranked, from best to worse, as follows: selection and retention systems, reduced impact logging, conventional selective logging, clear-cutting, agroforestry, timber plantations, fuelwood plantations. Next, we calculated the economic profitability in terms of the net present value of timber harvesting from 10 hypothetical wood-producing Forest Management Units (FMU) from around the globe. The ranking of management types is altered when the species loss per unit profit generated from the FMU is considered. This is due to differences in yield, timber species prices, rotation cycle length and production costs. We thus conclude that it would be erroneous to dismiss or prioritize timber production regimes, based solely on their ranking of alpha diversity impacts.

  8. Species composition and richness of amphibians in logged forests at Hulu Terengganu, Peninsular Malaysia

    Science.gov (United States)

    Izam, Nur Amalina Mohd; Ahmad, Amirrudin; Grismer, L. Lee; Saidin, Ahmad Nazri; Nor, Shukor Md.; Ahmad, Norhayati

    2016-11-01

    A study was done to compare amphibian species composition and richness between a disturbed forest due to logging/dam construction and a 30-year old logged forest at Hulu Terengganu, Peninsular Malaysia. This study was conducted from August to October 2014, using drift fenced-pitfall traps. The upstream (UP) and downstream riverine area (DP) of a dam called Puah Dam (PD) represented the disturbed forest habitat, while Sg. Deka Wildlife Reserve (SDWR) represented a 30-year old regenerating logged forest. There were six amphibian species found at SDWR, while four species were recorded at UP and DP.

  9. Polynesian ant (Hymenoptera: Formicidae) species richness and distribution: a regional survey

    Science.gov (United States)

    Morrison, Lloyd W.

    1997-11-01

    Thirteen Polynesian islands, including five true atolls, an uplifted atoll, and seven high volcanic islands of varying ages, were surveyed for ants by hand collecting techniques. Ten of the thirteen islands had been surveyed previously, and more and species were found in the present survey than were known from all earlier surveys combined, with two exception (Ducie Atoll and Easter Island). This represents the first report of the Argentine ant, Linepithema humile Mayr, from Easter Island. L. humile is a very successful pest species which has only recently invaded Easter Island, and is now very abundant and widespread, occurring at 16 of the 17 sample sites scattered across the island. The introduction of this species is almost certainly responsible for the apparent decline in species richness on Easter Island. In general, more species were present on high islands than atolls of a similar size, and elevation was significant while log (area) and latitude were not in a multiple linear regression with ant species number as the dependent variable. Not enough time was spent on the islands to survey their ant faunas completely, and extrapolations from species effort curves and jackknife estimators of earlier, thorough surverys for ants in the society Islands suggest that only about 50% of the total species were collected in the present survey, at least on the high islands. My collections were probably more complete on the atolls. The increase in species numbers from the present survey relative to known species richnesses (particularly when a large fraction of the species actually present were probably not included in the present survey) supports the hypothesis that remote Polynesian islands are not as depauperate in terms of ant species numbers as previously thought.

  10. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens.

    Science.gov (United States)

    2016-03-01

    Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane' Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people's location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly. Homegardens total and medicinal plant species richness are related to gardeners' centrality in the networks, whereby people with greater centrality maintain greater plant richness. Thus, together with agroecological conditions, social relations among gardeners and the culturally specific social structure seem to be important determinants of plant richness in homegardens. Understanding which factors pattern general species diversity in tropical homegardens, and medicinal plant diversity in particular, can help policy makers, health providers, and local communities to understand better how to promote and preserve medicinal plants in situ. Biocultural approaches that are also gender sensitive offer a culturally appropriate means to reduce the global and local loss of both biological and cultural diversity.

  11. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens

    Directory of Open Access Journals (Sweden)

    Isabel Díaz-Reviriego

    2016-03-01

    Full Text Available Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane' Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people's location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly. Homegardens total and medicinal plant species richness are related to gardeners' centrality in the networks, whereby people with greater centrality maintain greater plant richness. Thus, together with agroecological conditions, social relations among gardeners and the culturally specific social structure seem to be important determinants of plant richness in homegardens. Understanding which factors pattern general species diversity in tropical homegardens, and medicinal plant diversity in particular, can help policy makers, health providers, and local communities to understand better how to promote and preserve medicinal plants in situ. Biocultural approaches that are also gender sensitive offer a culturally appropriate means to reduce the global and local loss of both biological and cultural diversity.

  12. Do the rich get richer? Varying effects of tree species identity and diversity on the richness of understory taxa

    Science.gov (United States)

    Champagne, Juilette; Paine, C. E. Timothy; Schoolmaster, Donald; Stejskal, Robert; Volařík, Daniel; Šebesta, Jan; Trnka, Filip; Koutecký, Tomáš; Švarc, Petr; Svátek, Martin; Hector, Andy; Matula, Radim

    2016-01-01

    Understory herbs and soil invertebrates play key roles in soil formation and nutrient cycling in forests. Studies suggest that diversity in the canopy and in the understory are positively associated, but these studies often confound the effects of tree species diversity with those of tree species identity and abiotic conditions. We combined extensive field sampling with structural equation modeling to evaluate the simultaneous effects of tree diversity on the species diversity of understory herbs, beetles, and earthworms. The diversity of earthworms and saproxylic beetles was directly and positively associated with tree diversity, presumably because species of both these taxa specialize on certain species of trees. Tree identity also strongly affected diversity in the understory, especially for herbs, likely as a result of interspecific differences in canopy light transmittance or litter decomposition rates. Our results suggest that changes in forest management will disproportionately affect certain understory taxa. For instance, changes in canopy diversity will affect the diversity of earthworms and saproxylic beetles more than changes in tree species composition, whereas the converse would be expected for understory herbs and detritivorous beetles. We conclude that the effects of tree diversity on understory taxa can vary from positive to negative and may affect biogeochemical cycling in temperate forests. Thus, maintaining high diversity in temperate forests can promote the diversity of multiple taxa in the understory.

  13. Energy and speleogenesis: Key determinants of terrestrial species richness in caves.

    Science.gov (United States)

    Jiménez-Valverde, Alberto; Sendra, Alberto; Garay, Policarp; Reboleira, Ana Sofia P S

    2017-12-01

    The aim of this study was to unravel the relative role played by speleogenesis (i.e., the process in which a cave is formed), landscape-scale variables, and geophysical factors in the determination of species richness in caves. Biological inventories from 21 caves located in the southeastern Iberian Peninsula along with partial least square (PLS) regression analysis were used to assess the relative importance of the different explanatory variables. The caves were grouped according to the similarity in their species composition; the effect that spatial distance could have on similarity was also studied using correlation between matrices. The energy and speleogenesis of caves accounted for 44.3% of the variation in species richness. The trophic level of each cave was the most significant factor in PLS regression analysis, and epigenic caves (i.e., those formed by the action of percolating water) had significantly more species than hypogenic ones (i.e., those formed by the action of upward flows in confined aquifers). Dissimilarity among the caves was very high (multiple-site β sim  = 0.92). Two main groups of caves were revealed through the cluster analysis, one formed by the western caves and the other by the eastern ones. The significant-but low-correlation found between faunistic dissimilarity and geographical distance ( r  =   .16) disappeared once the caves were split into the two groups. The extreme beta-diversity suggests a very low connection among the caves and/or a very low dispersal capacity of the species. In the region under study, two main factors are intimately related to the richness of terrestrial subterranean species in caves: the amount of organic material (trophic level) and the formation process (genesis). This is the first time that the history of a cave genesis has been quantitatively considered to assess its importance in explaining richness patterns in comparison with other factors more widely recognized.

  14. Examining the relationship between total species richness and single island palaeo- and neo-endemics

    Science.gov (United States)

    Kallimanis, A. S.; Panitsa, M.; Bergmeier, E.; Dimopoulos, P.

    2011-03-01

    Recently, Emerson and Kolm (2005) hypothesized that diversity begets speciation (DBS hypothesis). The relationship between total species richness and single island endemic diversity (as a proportion of the total species richness of the island) has been used as evidence for the DBS hypothesis. This relationship has been documented in oceanic archipelagos, but many criticisms have been raised on whether this relationship truly supports the DBS hypothesis. In this study we tested if this hypothesis holds in the Aegean archipelago (a continental archipelago with continuous human presence over millennia). Endemism in the Aegean includes mainly neo-endemic species but also relictual populations of formerly more widespread species (i.e. palaeo-endemics). Contrary to the DBS hypothesis, we found that total species richness was not significantly correlated to single island endemics (neither neo-endemics nor palaeo-endemics) as a proportion of the island flora. Furthermore, we found that neo-endemic diversity (either as species richness or as a proportion of the islands flora) is mainly correlated to island maximum elevation, while area and isolation were less important. So if this ratio is indeed an index of speciation, then an alternative explanation might be that elevation (interpreted as a proxy for habitat heterogeneity) is the driver of speciation in our case. Palaeo-endemics, on the other hand, were present in only six of the largest islands in the Aegean and their diversity was strongly correlated only with island area, perhaps implying that larger islands support larger population sizes that buffer stochastic extinctions risks.

  15. Determinants of bird species richness, endemism, and island network roles in Wallacea and the West Indies

    DEFF Research Database (Denmark)

    Dalsgaard, Bo; Carstensen, Daniel Wisbech; Fjeldså, Jon

    2014-01-01

    . Here, we evaluate the potential additional effects of historical climate on breeding land bird richness and endemism in Wallacea and the West Indies. Furthermore, on the basis of species distributions, we identify island biogeographical network roles and examine their association with geography......, and network roles indicates that historical climate had little effects on extinction-immigration dynamics. This is in contrast to the strong effect of historical climate observed on the mainland, possibly because surrounding oceans buffer against strong climate oscillations and because geography is a strong...... determinant of island richness, endemism and network roles....

  16. Species composition, richness and nestedness of lizard assemblages from Restinga habitats along the brazilian coast.

    Science.gov (United States)

    Rocha, C F D; Vrcibradic, D; Kiefer, M C; Menezes, V A; Fontes, A F; Hatano, F H; Galdino, C A B; Bergallo, H G; Van Sluys, M

    2014-05-01

    Habitat fragmentation is well known to adversely affect species living in the remaining, relatively isolated, habitat patches, especially for those having small range size and low density. This negative effect has been critical in coastal resting habitats. We analysed the lizard composition and richness of restinga habitats in 16 restinga habitats encompassing three Brazilian states (Rio de Janeiro, Espírito Santo and Bahia) and more than 1500km of the Brazilian coast in order to evaluate if the loss of lizard species following habitat reduction occur in a nested pattern or at random, using the "Nestedness Temperature Calculator" to analyse the distribution pattern of lizard species among the restingas studied. We also estimated the potential capacity that each restinga has to maintain lizard species. Eleven lizard species were recorded in the restingas, although not all species occurred in all areas. The restinga with the richest lizard fauna was Guriri (eight species) whereas the restinga with the lowest richness was Praia do Sul (located at Ilha Grande, a large coastal island). Among the restingas analysed, Jurubatiba, Guriri, Maricá and Praia das Neves, were the most hospitable for lizards. The matrix community temperature of the lizard assemblages was 20.49° (= P Praia das Neves are quite important to preserve lizard diversity of restinga environments.

  17. Helminth parasitism in two closely related South African rodents: abundance, prevalence, species richness and impinging factors.

    Science.gov (United States)

    Spickett, Andrea; Junker, Kerstin; Krasnov, Boris R; Haukisalmi, Voitto; Matthee, Sonja

    2017-04-01

    We investigated patterns of helminth infection in two closely related rodents (social Rhabdomys pumilio occurring mainly in xeric habitats and solitary R. dilectus occurring mainly in mesic habitats) at 20 localities in different biomes of South Africa and asked if between-species differences were mainly caused by difference in sociality or difference in environmental conditions of their respective habitats. Helminths recovered from the gastrointestinal tract totalled 11 nematode and 5 cestode species from R. pumilio and 19 nematode and 7 cestode species from R. dilectus. In both hosts, mean abundance and prevalence of nematodes were higher compared to cestodes. Cestode infection as well as nematode abundance, species richness or prevalence did not differ between the two rodents. However, incidence of nematode infection was significantly higher in R. dilectus than in R. pumilio. Moreover, nematode numbers and species richness in infracommunities of R. pumilio inhabiting the relatively more xeric Karoo biome were significantly lower than in those inhabiting the relatively less xeric Fynbos biome. Although we could not unequivocally distinguish between effects of host sociality and environmental factors on the number of individuals and species of helminths in the two hosts, differences in the incidence of nematode infection between R. pumilio and R. dilectus as well as differences in the number of nematode individuals and species between R. pumilio from the Fynbos and the Karoo suggested the effect of environmental conditions on helminth infection to be more important than that of sociality.

  18. Functional redundancy patterns reveal non-random assembly rules in a species-rich marine assemblage.

    Directory of Open Access Journals (Sweden)

    Nicolas Guillemot

    Full Text Available The relationship between species and the functional diversity of assemblages is fundamental in ecology because it contains key information on functional redundancy, and functionally redundant ecosystems are thought to be more resilient, resistant and stable. However, this relationship is poorly understood and undocumented for species-rich coastal marine ecosystems. Here, we used underwater visual censuses to examine the patterns of functional redundancy for one of the most diverse vertebrate assemblages, the coral reef fishes of New Caledonia, South Pacific. First, we found that the relationship between functional and species diversity displayed a non-asymptotic power-shaped curve, implying that rare functions and species mainly occur in highly diverse assemblages. Second, we showed that the distribution of species amongst possible functions was significantly different from a random distribution up to a threshold of ∼90 species/transect. Redundancy patterns for each function further revealed that some functions displayed fast rates of increase in redundancy at low species diversity, whereas others were only becoming redundant past a certain threshold. This suggested non-random assembly rules and the existence of some primordial functions that would need to be fulfilled in priority so that coral reef fish assemblages can gain a basic ecological structure. Last, we found little effect of habitat on the shape of the functional-species diversity relationship and on the redundancy of functions, although habitat is known to largely determine assemblage characteristics such as species composition, biomass, and abundance. Our study shows that low functional redundancy is characteristic of this highly diverse fish assemblage, and, therefore, that even species-rich ecosystems such as coral reefs may be vulnerable to the removal of a few keystone species.

  19. SPECIES RICHNESS AND UNIFORMITY CONTRIBUTIONS TO BIRD DIVERSITY IN SHADE COFFEE PLANTATIONS IN THE SOUTHEAST OF MEXICO

    Directory of Open Access Journals (Sweden)

    Marco Antonio Altamirano González Ortega

    2012-12-01

    Full Text Available This study examines the contribution of the richness and uniformity in the diversity of birds, and their relationship with covariates of vegetation in a coffee landscape in southern Mexico. Species richness and abundance was recorded in 2010 and 2011 in evergreen forests and three different types of coffee production systems. Changes in the values of species richness and uniformity were detected by a SHE analysis (S = species richness, H = diversity and E = evenness. True diversity (the actual number of species actually represent the diversity of species in the samples was also estimated. The tree cover, shrub cover and tree height were covariates of vegetation that explained the variation in species richness and abundance. SHE analysis indicated that cumulative values of bird diversity increased in all plots with species richness, while the values of uniformity of species decreased. This condition changed with management activities of coffee and / or the arrival of migratory birds. The true diversity, when all species had a weight proportional to its abundance (q = 1, was higher in all plots when they were given greater weight to the dominant species (q = 2. Management practices of tree cover and shrubs and bird migration could explain changes in species richness and uniformity during the agricultural cycle.

  20. Study of Plant Species Richness in Habitats with Different Grazing Intensities at Golestan National Park and Surrounding Area

    Directory of Open Access Journals (Sweden)

    A. Bagheri

    2016-12-01

    Full Text Available Considering the importance of plant diversity and to evaluate the effect of grazing pressure on species richness and structure of plant communities, this experiment was conducted at Golestan National Park and its surrounding areas in the north east of Iran. Sampling was conducted in intact and abandoned habitats and habitats under seasonal and heavy grazing, using Modified Whitaker Plot in 1, 10,100 and 1000 m2 spatial scales. Results showed that the composition of plant species from different habitats was different. In addition the increasing intensity of grazing increased the importance of therophytes and decreased the role of hemicryptophytes and phanerophytes and also decreasd the amount of species richness. Mean species richness of studied habitat showed a significant difference in all four sampling spatial scales. The results showed that plant species richness decreased in the areas affected by heavy grazing and conservation against grazing plays an important role in maintaining species richness.

  1. Rodents of Italy: species richness maps and forma Italiae

    Directory of Open Access Journals (Sweden)

    Longino Contoli

    2000-09-01

    Full Text Available Abstract The most effective way of mapping species diversity, is to choose an abundant, sedentary, small and widespread taxon, such as rodents are. At present, thanks to a recent improvement of karyology and genetics, knowledge is growing faster at the macro - regional level than at the local level. This is due to a delay in assessing the whole territory. In fact new findings often come from one or very few and small localities. This implies new problems in mapping species richness. Indeed today, even less than in the past, Richness can be evaluated directly by the crude species number, without any kind of standardisation of data a/o weighing. A study of maps of Italian rodents has shown that the more up to date the maps are, the more they coincide with theoretical calculations based on consolidated ecological and biogeographical rules. Richness maps (i.e., weighted and standardised species number show an even more satisfactory representation of the general geo-ecological outline of the Italian peninsula and its subpeninsulae.

  2. Stochastic species turnover and stable coexistence in a species-rich, fire-prone plant community.

    Directory of Open Access Journals (Sweden)

    Wilfried Thuiller

    2007-09-01

    Full Text Available Understanding the mechanisms that maintain diversity is important for managing ecosystems for species persistence. Here we used a long-term data set to understand mechanisms of coexistence at the local and regional scales in the Cape Floristic Region, a global hotspot of plant diversity. We used a dataset comprising 81 monitoring sites, sampled in 1966 and again in 1996, and containing 422 species for which growth form, regeneration mode, dispersal distance and abundances at both the local (site and meta-community scales are known. We found that species presence and abundance were stable at the meta-community scale over the 30 year period but highly unstable at the local scale, and were not influenced by species' biological attributes. Moreover, rare species were no more likely to go extinct at the local scale than common species, and that alpha diversity in local communities was strongly influenced by habitat. We conclude that stochastic environmental fluctuations associated with recurrent fire buffer populations from extinction, thereby ensuring stable coexistence at the meta-community scale by creating a "neutral-like" pattern maintained by niche-differentiation.

  3. Contrasting structure and composition of the understory in species-rich tropical rain forests.

    Science.gov (United States)

    LaFrankie, James V; Ashton, Peter S; Chuyong, George B; Co, Leonardo; Condit, Richard; Davies, Stuart J; Foster, Robin; Hubbell, Stephen P; Kenfack, David; Lagunzad, Daniel; Losos, Elizabeth C; Nor, Noor Supardi Md; Tan, Sylvester; Thomas, Duncan W; Valencia, Renato; Villa, Gorky

    2006-09-01

    In large samples of trees > or = 1 cm dbh (more than 1 million trees and 3000 species), in six lowland tropical forests on three continents, we assigned species with >30 individuals to one of six classes of stature at maturity (SAM). We then compared the proportional representation of understory trees (1-2 cm dbh) among these classes. The understory of the three Asian sites was predominantly composed of the saplings of large-canopy trees whereas the African and American sites were more richly stocked with trees of the smaller SAM classes. Differences in class representation were related to taxonomic families that were present exclusively in one continent or another. Families found in the Asian plots but not in the American plot (e.g., Dipterocarpaceae, Fagaceae) were predominantly species of the largest SAM classes, whereas families exclusive to the American plots (e.g., Melastomataceae sensu stricto, Piperaceae, and Malvaceae [Bombacacoidea]) were predominantly species of small classes. The African plot was similar to Asia in the absence of those American families rich in understory species, while similar to America in lacking the Asian families rich in canopy species. The numerous understory species of Africa were chiefly derived from families shared with Asia and/or America. The ratio of saplings (1-2 cm dbh) to conspecific canopy trees (>40 cm dbh) was lower in American plots than in the Asian plots. Possible explanations for these differences include phenology, moisture and soil fertility regimes, phyletic constraints, and the role of early successional plants in forest development. These results demonstrate that tropical forests that appear similar in tree number, basal area, and the family taxonomy of canopy trees nonetheless differ in ecological structure in ways that may impact the ecology of pollinators, dispersers, and herbivores and might reflect fundamental differences in canopy tree regeneration.

  4. Using confluence hydraulics to quantify relative drag and predict species biogeographical richness

    Science.gov (United States)

    Gualtieri, C.; Filizola, N.; Santos, R. V.; Marco, I.; Endreny, T. A.

    2016-12-01

    Restoring biogeographical richness in river networks requires establishing the analyze biophysical interactions that explain species richness increasing as a nodal pattern about river confluences. This research uses river velocity profiles in the Negro and Solimões Rivers confluence of the Amazon Basin to compute the a set of hydraulic complexity metrics that quantify relative drag forces imposed on aquatic organisms moving between two locations. The metric is computed as the product of the lateral velocity gradient and the ratio of average to minimum velocity, with the set of metrics taken along different vertical domains in the water column. In the Negro and Solimões River confluence the water-column average hydraulic complexity metric was generally largest in the entrance of the confluence, centered at the mixing interface, and decayed laterally toward the banks and longitudinally with downstream distance. The patterns of the hydraulic complexity metric corresponded with the patterns of confluence hydrodynamic zone morphodynamics and the nodal pattern of increased species richness downstream of the confluence, based on a rich dataset for Amazon confluences. The metric's ability to increase about the confluence, in a nodal pattern, is distinct from the river continuum concept type metrics that predict increases in richness with longitudinal distance along the river network. By contrast, this hydraulic complexity metric may capture a physical driver of habitat heterogeneity that ecologists have sought to explain the ecological patterns of diversity increasing at the nodes of the dendritic river networks. The metric is able to quantify drag forces that constrain species movement and is likely important in the management of biophysical interactions about river confluences.

  5. Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution

    Science.gov (United States)

    Veillette, Julie; Sarrazin, Jozée; Gooday, Andrew J.; Galéron, Joëlle; Caprais, Jean-Claude; Vangriesheim, Annick; Étoubleau, Joël; Christian, James R.; Kim Juniper, S.

    2007-11-01

    The poorly known ferromanganese nodule fauna is a widespread hard substratum community in the deep sea that will be considerably impacted by large-scale nodule mining operations. The objective of this study was to analyze the spatial distribution of the fauna attached to nodules in the Clarion-Clipperton Fracture Zone at two scales; a regional scale that includes the east (14°N, 130°W) and the west (9°N, 150°W) zones and a local scale in which different geological facies (A, B, C and west) are recognizable. The fauna associated with 235 nodules was quantitatively described: 104 nodules from the east zone (15 of facies A, 50 of facies B and 39 of facies C) and 131 nodules from the west zone. Percent cover was used to quantify the extent of colonization at the time of sampling, for 42 species out of the 62 live species observed. Fauna covered up to 18% of exposed nodule surface with an average of about 3%. While species richness increased with exposed nodule surface, both at the regional and at the facies scales (except for facies A), total species density decreased (again except for facies A). When all nodules were included in the statistical analysis, there was no relation between faunal cover and exposed nodule surface. Nevertheless, faunal cover did decrease with exposed nodule surface for the east zone in general and for both facies B and C in particular. Species distributions among facies were significantly different but explained only a very small portion of the variance (˜5%). We identified two groups of associated species: a first group of two species and a second group of six species. The other species (34) were independently distributed, suggesting that species interactions play only a minor role in the spatial distribution of nodule fauna. The flux of particulate organic carbon to the bottom is the only major environmental factor considered to vary between the two zones within this study. We conclude that the higher species richness and higher

  6. Scale-dependent effects of grazing and topographic heterogeneity on plant species richness in a Dutch salt marsh ecosystem

    NARCIS (Netherlands)

    Ruifrok, Jasper L.; Postma, Froukje; Olff, Han; Smit, Christian

    2014-01-01

    QuestionFor over three decades, low-intensity grazing has been used to maintain or increase plant species richness in European natural areas, but the effects are highly variable. Thus far, good predictors of whether grazing will have positive effects on plant species richness are limited. How does

  7. Scale-dependence of the correlation between human population and the species richness of stream macro-invertebrates

    DEFF Research Database (Denmark)

    Pecher, C.; Fritz, Susanne; Marini, L.

    2010-01-01

    . This is surprising as EPT are bio-indicators of stream pollution and most local studies report higher species richness of these macro-invertebrates where human influences on water quality are lower. Using a newly collated taxonomic dataset, we studied whether the species richness of EPT is related to human...

  8. How a river course influences the species richness and ecological requirements on two opposite riverbanks in a forest area

    Directory of Open Access Journals (Sweden)

    Bożenna Czarnecka

    2015-03-01

    Full Text Available The goal of the present research was to find correlations between the topographic attributes of a river valley and local ground-floor vegetation and its habitat requirements expressed by ecological indicator values (EIV, using the geographical information systems (GIS, digital elevation model (DEM, and multivariate statistical analysis. We paid special attention to the river course, which determines the differentiation in slope aspects and the amount of solar radiation reaching the ground surface. The model object was an almost latitudinal, ca. 4-km-long break section of the Sopot river, crossing the escarpment zone of the Central Roztocze Highlands, southeastern Poland. The main material comprised species lists (with estimated abundance for each ca. 200-m-long section, according to the river valley course, separately for the left and right riverbanks, 40 sections altogether, ca. 15 000 vegetation records, and physical and chemical soil measurements. A 3-meter resolution DEM was derived from a 1:10 000 topographic map. We calculated the correlations between the topographic attributes of the valley, species richness, and the EIVs for all the species recognized in each section of the valley. We found 241 herb plant species in the ground-floor vegetation of the study area. We did not find significant differences between the two riversides (61 ±13 species per one section for the left and 63 ±17 for the right side. Thus, the parallel course of the river valley does not change the species richness on a more “sunny” and more “shiny” riverbank. However, this factor “cooperating” with other topographic attributes of the valley significantly differentiates the shape of species showing various requirements for basic habitat resources: light, moisture, soil trophy, reaction, dispersion, and organic-matter content.

  9. Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds.

    Science.gov (United States)

    Smith, Henrik G; Dänhardt, Juliana; Lindström, Ake; Rundlöf, Maj

    2010-04-01

    It has been suggested that organic farming may benefit farmland biodiversity more in landscapes that have lost a significant part of its former landscape heterogeneity. We tested this hypothesis by comparing bird species richness and abundance during the breeding season in organic and conventional farms, matched to eliminate all differences not directly linked to the farming practice, situated in either homogeneous plains with only a little semi-natural habitat or in heterogeneous farmland landscapes with abundant field borders and semi-natural grasslands. The effect of farm management on species richness interacted with landscape structure, such that there was a positive relationship between organic farming and diversity only in homogeneous landscapes. This pattern was mainly dependent on the species richness of passerine birds, in particular those that were invertebrate feeders. Species richness of non-passerines was positively related to organic farming independent of the landscape context. Bird abundance was positively related to landscape heterogeneity but not to farm management. This was mainly because the abundance of passerines, particularly invertebrate feeders, was positively related to landscape heterogeneity. We suggest that invertebrate feeders particularly benefit from organic farming because of improved foraging conditions through increased invertebrate abundances in otherwise depauperate homogeneous landscapes. Although many seed-eaters also benefit from increased insect abundance, they may also utilize crop seed resources in homogeneous landscapes and conventional farms. The occurrence of an interactive effect of organic farming and landscape heterogeneity on bird diversity will have consequences for the optimal allocation of resources to restore the diversity of farmland birds.

  10. Above ground biomass and tree species richness estimation with airborne lidar in tropical Ghana forests

    Science.gov (United States)

    Vaglio Laurin, Gaia; Puletti, Nicola; Chen, Qi; Corona, Piermaria; Papale, Dario; Valentini, Riccardo

    2016-10-01

    Estimates of forest aboveground biomass are fundamental for carbon monitoring and accounting; delivering information at very high spatial resolution is especially valuable for local management, conservation and selective logging purposes. In tropical areas, hosting large biomass and biodiversity resources which are often threatened by unsustainable anthropogenic pressures, frequent forest resources monitoring is needed. Lidar is a powerful tool to estimate aboveground biomass at fine resolution; however its application in tropical forests has been limited, with high variability in the accuracy of results. Lidar pulses scan the forest vertical profile, and can provide structure information which is also linked to biodiversity. In the last decade the remote sensing of biodiversity has received great attention, but few studies focused on the use of lidar for assessing tree species richness in tropical forests. This research aims at estimating aboveground biomass and tree species richness using discrete return airborne lidar in Ghana forests. We tested an advanced statistical technique, Multivariate Adaptive Regression Splines (MARS), which does not require assumptions on data distribution or on the relationships between variables, being suitable for studying ecological variables. We compared the MARS regression results with those obtained by multilinear regression and found that both algorithms were effective, but MARS provided higher accuracy either for biomass (R2 = 0.72) and species richness (R2 = 0.64). We also noted strong correlation between biodiversity and biomass field values. Even if the forest areas under analysis are limited in extent and represent peculiar ecosystems, the preliminary indications produced by our study suggest that instrument such as lidar, specifically useful for pinpointing forest structure, can also be exploited as a support for tree species richness assessment.

  11. Species richness and distribution of chondrichthyan fishes in the Arctic Ocean and adjacent seas

    DEFF Research Database (Denmark)

    Lynghammar, A.; Christiansen, J. S.; Mecklenburg, C. W.

    2013-01-01

    The sea ice cover decreases and human activity increases in Arctic waters. Fisheries and bycatch issues, shipping and petroleum exploitation (pollution issues) make it imperative to establish biological baselines for the marine fishes inhabiting the Arctic Ocean and adjacent seas (AOAS). Species...... richness, zoogeographic affiliations and Red List statuses among chondrichthyan fishes (Chondrichthyes) were examined across 16 AOAS regions as a first step towards credible conservation actions. Published literature and museum vouchers were consulted for presence/absence data. Although many regions...

  12. Temporal-spatial dynamics in orthoptera in relation to nutrient availability and plant species richness.

    Directory of Open Access Journals (Sweden)

    Rob J J Hendriks

    Full Text Available Nutrient availability in ecosystems has increased dramatically over the last century. Excess reactive nitrogen deposition is known to negatively impact plant communities, e.g. by changing species composition, biomass and vegetation structure. In contrast, little is known on how such impacts propagate to higher trophic levels. To evaluate how nitrogen deposition affects plants and herbivore communities through time, we used extensive databases of spatially explicit historical records of Dutch plant species and Orthoptera (grasshoppers and crickets, a group of animals that are particularly susceptible to changes in the C:N ratio of their resources. We use robust methods that deal with the unstandardized nature of historical databases to test whether nitrogen deposition levels and plant richness changes influence the patterns of richness change of Orthoptera, taking into account Orthoptera species functional traits. Our findings show that effects indeed also propagate to higher trophic levels. Differences in functional traits affected the temporal-spatial dynamics of assemblages of Orthoptera. While nitrogen deposition affected plant diversity, contrary to our expectations, we could not find a strong significant effect of food related traits. However we found that species with low habitat specificity, limited dispersal capacity and egg deposition in the soil were more negativly affected by nitrogen deposition levels. Despite the lack of significant effect of plant richness or food related traits on Orthoptera, the negative effects of nitrogen detected within certain trait groups (e.g. groups with limited disperse ability could be related to subtle changes in plant abundance and plant quality. Our results, however, suggest that the changes in soil conditions (where many Orthoptera species lay their eggs or other habitat changes driven by nitrogen have a stronger influence than food related traits. To fully evaluate the negative effects of nitrogen

  13. Plankton Community Stability and Its Relationship with Phytoplankton Species Richness in Lake Nansihu, China

    Directory of Open Access Journals (Sweden)

    Wang Tian

    2016-10-01

    Full Text Available The relationship between biodiversity and ecosystem functioning is a central issue in ecology. The insurance hypothesis suggests that biodiversity could improve community productivity and reduce the temporal variability of main ecosystem processes. In the present study, we used a plankton community that was investigated from 2011 to 2014 in Lake Nansihu to test this hypothesis and explore the mechanisms involved. As a result, 138 phytoplankton and 76 zooplankton species were identified in the lake, and their biomasses showed apparent seasonal variations. The average temporal stability index of zooplankton taxa was significantly higher than that of phytoplankton. Complex relationships were observed between the species richness and temporal stability of different phytoplankton taxa: a unimodal relationship for both Cyanophyta and Bacillariophyta; a strong concave relationship for Euglenophyta; and no apparent relationship for both Chlorophyta and total phytoplankton. These relationships were primarily controlled by the portfolio effect; while the effects of overyielding and species asynchrony were relatively weak. Phytoplankton species richness had a significant positive influence on the temporal stability indices of protozoa, Rotifera and total zooplankton, while its influence on Cladocera and copepods was not significant. The dominant mechanisms were found to be ‘trophic overyielding’ and a weak ‘trophic portfolio effect’; however, ‘trophic species asynchrony’ played a minor role. These results demonstrated that the effects of diversity on community stability can be complex in natural ecosystems. In addition, the diversity of phytoplankton not only influenced its own temporal stability, but also affected the stability of zooplankton through trophic interactions.

  14. Pollen Deposition Is More Important than Species Richness for Seed Set in Luffa Gourd.

    Science.gov (United States)

    Ali, M; Saeed, S; Sajjad, A

    2016-10-01

    In the context of global biodiversity decline, it is imperative to understand the different aspects of bee communities for sustaining the vital ecosystem service of pollination. Bee species can be assigned to functional groups (average difference among species in functionally related traits) on the basis of complementarity (trait variations exhibited by individual organisms) in their behavior but is not yet known which functional group trait is most important for seed set. In this study, first, the functional groups of bees were made based on their five selected traits (pollen deposition, visitation rate, stay time, visiting time of the day, body size) and then related to the seed set of obligate cross-pollinated Luffa gourd (Luffa aegyptiaca). We found that bee diversity and abundance differed significantly among the studied plots, but only the bee species richness was positively related to the seed set. Functional group diversity in terms of pollen deposition explained even more of the variance in seed set (r 2  = 0.74) than did the species richness (r 2  = 0.53) making it the most important trait of bee species for predicting the crop reproductive success.

  15. Species richness and distribution of bryophytes within different phytophysiognomies in the Chapada Diamantina region of Brazil

    Directory of Open Access Journals (Sweden)

    Emilia de Brito Valente

    2013-06-01

    Full Text Available The Chapada Diamantina ecoregion is within the caatinga (shrublands biome of Brazil. Environmental factors determine the phytophysiognomies that distinguish the ecoregion from the surrounding areas. This study aimed to investigate the distribution of bryophyte flora in this ecoregion, by phytophysiognomy and elevational zone. Analyzing specimens we collected from five municipalities in the region, together with specimens (previously collected from the region in herbaria, we identified 400 taxa. The phytophysiognomies that presented the highest species richness and the greatest numbers of exclusive taxa were forests and campos rupestres (dry, rocky grasslands, which respectively accounted for 51% and 40% of the taxa, compared with only 5% and 4%, respectively, for the caatinga and cerrado (savanna. Species richness and the numbers of exclusive taxa were highest in the lower and upper montane zones. There was a predominance of neotropical taxa and a significant number of disjunct species found in Brazil and in the Andes region. We conclude that the Chapada Diamantina region is an important center of bryophyte diversity, harboring not only a great number of species overall but also a considerable number of species exclusive to the region, primarily in forests and campos rupestres at elevations above 800 m.

  16. Rarity, species richness, and the threat of extinction--are plants the same as animals?

    Directory of Open Access Journals (Sweden)

    Sandra Knapp

    2011-05-01

    Full Text Available Assessment of conservation status is done both for areas or habitats and for species (or taxa. IUCN Red List categories have been the principal method of categorising species in terms of extinction risk, and have been shown to be robust and helpful in the groups for which they have been developed. A recent study highlights properties associated with extinction risk in flowering plants, focusing on the species-rich hot spot of the Cape region of South Africa, and concludes that merely following methods derived from studies of vertebrates may not provide the best estimates of extinction risk for plants. Biology, geography, and history all are important factors in risk, and the study poses many questions about how we categorise and assess species for conservation priorities.

  17. Wild felid species richness affected by a corridor in the Lacandona forest, Mexico

    Directory of Open Access Journals (Sweden)

    Gil–Fernández, M.

    2017-02-01

    Full Text Available Wild felids are one of the most vulnerable species due to habitat loss caused by fragmentation of ecosystems. We analyzed the effect of a structural corridor, defined as a strip of vegetation connecting two habitat patches, on the richness and habitat occupancy of felids on three sites in Marqués de Comillas, Chiapas, one with two isolated forest patches, the second with a structural corridor, and the third inside the Montes Azules Biosphere Reserve. We found only two species (L. pardalis and H. yagouaroundi in the isolated forest patches, five species in the structural corridor, and four species inside the Reserve. The corridor did not significantly affect occupancy, but due to the low detection rates, further investigation is needed to rule out differences. Our results highlight the need to manage habitat connectivity in the remaining forests in order to preserve the felid community of Marqués de Comillas, Chiapas, México.

  18. Does species richness affect fine root biomass and production in young forest plantations?

    DEFF Research Database (Denmark)

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie

    2015-01-01

    and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined...... species composition from fine root biomass samples with the near-infrared reflectance spectroscopy method. We did not observe higher biomass or production in mixed stands compared to monocultures. Neither did we observe any differences in tree root length or fine root turnover. One reason for this could...... be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested...

  19. Species richness of vascular plants along the climatic range of the Spanish dehesas at two spatial scales

    Directory of Open Access Journals (Sweden)

    Jose M. Garcia del Barrio

    2014-04-01

    Full Text Available Aims of study: The goals of this paper are to summarize and to compare plant species richness and floristic similarity at two spatial scales; mesohabitat (normal, eutrophic, and oligotrophic dehesas and dehesa habitat; and to establish guidelines for conserving species diversity in dehesas.Area of study: We considered four dehesa sites in the western Peninsular Spain, located along a climatic and biogeographic gradient from north to south. Main results: Average alpha richness for mesohabitats was 75.6 species, and average alpha richness for dehesa sites was 146.3. Gamma richness assessed for the overall dehesa habitat was 340.0 species. The species richness figures of normal dehesa mesohabitat were significantly lesser than of the eutrophic mesohabitat and lesser than the oligotrophic mesohabitat too. No significant differences were found for species richness among dehesa sites. We have found more dissimilarity at local scale (mesohabitat than at regional scale (habitat. Finally, the results of the similarity assessment between dehesa sites reflected both climatic and biogeographic gradients.Research highlights: An effective conservation of dehesas must take into account local and regional conditions all along their distribution range for ensuring the conservation of the main vascular plant species assemblages as well as the associated fauna.Keywords: Agroforestry systems; mesohabitat; non-parametric estimators; alpha richness; gamma richness; floristic similarity; climatic and biogeographic range.

  20. Species richness and structure of an anuran community in an Atlantic Forest site in southern Brazil

    Directory of Open Access Journals (Sweden)

    Adriele Karlokoski Cunha

    2010-06-01

    Full Text Available The species richness and spatial distribution of an anuran community were studied over 12 months in an Atlantic Forest area in São José dos Pinhais Municipality, Paraná State, southern Brazil. During field surveys, we registered 32 species from ten families: Brachycephalidae (2, Bufonidae (2, Centrolenidae (1, Cycloramphidae (1, Hemiphractidae (1, Hylidae (18, Hylodidae (1, Leiuperidae (2, Leptodactylidae (3, and Microhylidae (1. Sixteen species were registered in open areas, while seventeen species were found on forest borders and twenty species in forest areas. In relation to the microhabitat utilization, species were registered according to stratum of vocalization: 1 on the ground (eight; 2 in the water (two; 3 in the lower stratum (eleven; 4 in the intermediate stratum (five; 5 in the upper stratum (four. Five species were abundant (15.6%, while twelve were common (37.5%, and fifteen were considered rare (46.9%. The biological aspects of the majority of the species described in this work as related to forest areas are not well known. This fact reinforces the importance of Atlantic Forest conservation.

  1. Topographic heterogeneity and temperature amplitude explain species richness patterns of birds in the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Zhang, Chunlan; Quan, Qing; Wu, Yongjie; Chen, Youhua; He, Peng; Qu, Yanhua; Lei, Fumin

    2017-04-01

    Large-scale patterns of species richness have gained much attention in recent years; however, the factors that drive high species richness are still controversial in local regions, especially in highly diversified montane regions. The Qinghai-Tibetan Plateau (QTP) and the surrounding mountains are biodiversity hot spots due to a high number of endemic montane species. Here, we explored the factors underlying this high level of diversity by studying the relationship between species richness and environmental variables. The richness patterns of 758 resident bird species were summarized at the scale of 1°×1° grid cell at different taxonomic levels (order, family, genus, and species) and in different taxonomic groups (Passeriformes, Galliformes, Falconiformes, and Columbiformes). These richness patterns were subsequently analyzed against habitat heterogeneity (topographical heterogeneity and land cover), temperature amplitude (annual temperature, annual precipitation, precipitation seasonality, and temperature seasonality) and a vegetation index (net primary productivity). Our results showed that the highest richness was found in the southeastern part of the QTP, the eastern Himalayas. The lowest richness was observed in the central plateau of the QTP. Topographical heterogeneity and temperature amplitude are the primary factors that explain overall patterns of species richness in the QTP, although the specific effect of each environmental variable varies between the different taxonomic groups depending on their own evolutionary histories and ecological requirements. High species richness in the southeastern QTP is mostly due to highly diversified habitat types and temperature zones along elevation gradients, whereas the low species richness in the central plateau of the QTP may be due to environmental and energetic constraints, as the central plateau is harsh environment.

  2. Landscape and Local Correlates of Bee Abundance and Species Richness in Urban Gardens.

    Science.gov (United States)

    Quistberg, Robyn D; Bichier, Peter; Philpott, Stacy M

    2016-03-31

    Urban gardens may preserve biodiversity as urban population densities increase, but this strongly depends on the characteristics of the gardens and the landscapes in which they are embedded. We investigated whether local and landscape characteristics are important correlates of bee (Hymenoptera: Apiformes) abundance and species richness in urban community gardens. We worked in 19 gardens in the California central coast and sampled bees with aerial nets and pan traps. We measured local characteristics (i.e., vegetation and ground cover) and used the USGS National Land Cover Database to classify the landscape surrounding our garden study sites at 2 km scales. We classified bees according to nesting type (i.e., cavity, ground) and body size and determined which local and landscape characteristics correlate with bee community characteristics. We found 55 bee species. One landscape and several local factors correlated with differences in bee abundance and richness for all bees, cavity-nesting bees, ground-nesting bees, and different sized bees. Generally, bees were more abundant and species rich in bigger gardens, in gardens with higher floral abundance, less mulch cover, more bare ground, and with more grass. Medium bees were less abundant in sites surrounded by more medium intensity developed land within 2 km. The fact that local factors were generally more important drivers of bee abundance and richness indicates a potential for gardeners to promote bee conservation by altering local management practices. In particular, increasing floral abundance, decreasing use of mulch, and providing bare ground may promote bees in urban gardens. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Species composition, richness and nestedness of lizard assemblages from Restinga habitats along the brazilian coast

    Directory of Open Access Journals (Sweden)

    CFD. Rocha

    Full Text Available Habitat fragmentation is well known to adversely affect species living in the remaining, relatively isolated, habitat patches, especially for those having small range size and low density. This negative effect has been critical in coastal resting habitats. We analysed the lizard composition and richness of restinga habitats in 16 restinga habitats encompassing three Brazilian states (Rio de Janeiro, Espírito Santo and Bahia and more than 1500km of the Brazilian coast in order to evaluate if the loss of lizard species following habitat reduction occur in a nested pattern or at random, using the “Nestedness Temperature Calculator” to analyse the distribution pattern of lizard species among the restingas studied. We also estimated the potential capacity that each restinga has to maintain lizard species. Eleven lizard species were recorded in the restingas, although not all species occurred in all areas. The restinga with the richest lizard fauna was Guriri (eight species whereas the restinga with the lowest richness was Praia do Sul (located at Ilha Grande, a large coastal island. Among the restingas analysed, Jurubatiba, Guriri, Maricá and Praia das Neves, were the most hospitable for lizards. The matrix community temperature of the lizard assemblages was 20.49° (= P <0.00001; 5000 randomisations; randomisation temperature = 51.45° ± 7.18° SD, indicating that lizard assemblages in the coastal restingas exhibited a considerable nested structure. The degree in which an area is hospitable for different assemblages could be used to suggest those with greater value of conservation. We concluded that lizard assemblages in coastal restingas occur at a considerable level of ordination in restinga habitats and that some restinga areas such as Jurubatiba, Guriri, Maricá and Praia das Neves are quite important to preserve lizard diversity of restinga environments.

  4. Changes of Species Richness in Heathland Communities over 15 Years following Disturbances

    Directory of Open Access Journals (Sweden)

    L. Calvo

    2012-01-01

    Full Text Available The aim of this study was to define the species richness patterns over a period of 15 years during the vegetation recovery process after disturbances (burning, cutting and ploughing in heathlands. Three communities were selected: two dominated by Erica australis and one dominated by Calluna vulgaris. The alpha and gamma diversity patterns were site specific and influenced by the ecological traits of dominant shrub species. The shrubland dominated by Erica australis, typical resprouters with a fast regeneration, showed the highest values of alpha and gamma diversity during the first 7 years of regeneration. The heathland dominated by Calluna vulgaris, an obligate seeder, had a contrasting pattern of alpha and gamma diversity, as the highest values appeared from year 7 until year 14. Thus, the speed of regeneration of the dominant shrub species could be the main factor affecting structural parameters in these communities. Species richness patterns did not vary in relation to the different types of perturbation. Cutting and burning would be the most suitable forestry management strategies to conserve Erica australis heathlands, but burning is more appropriate in Calluna vulgaris ones because cutting modified this community.

  5. Dispersal capacity predicts both population genetic structure and species richness in reef fishes.

    Science.gov (United States)

    Riginos, Cynthia; Buckley, Yvonne M; Blomberg, Simon P; Treml, Eric A

    2014-07-01

    Dispersal is a fundamental species characteristic that should directly affect both rates of gene flow among spatially distributed populations and opportunities for speciation. Yet no single trait associated with dispersal has been demonstrated to affect both micro- and macroevolutionary patterns of diversity across a diverse biological assemblage. Here, we examine patterns of genetic differentiation and species richness in reef fishes, an assemblage of over 7,000 species comprising approximately one-third of the extant bony fishes and over one-tenth of living vertebrates. In reef fishes, dispersal occurs primarily during a planktonic larval stage. There are two major reproductive and parental investment syndromes among reef fishes, and the differences between them have implications for dispersal: (1) benthic guarding fishes lay negatively buoyant eggs, typically guarded by the male parent, and from these eggs hatch large, strongly swimming larvae; in contrast, (2) pelagic spawning fishes release small floating eggs directly into the water column, which drift unprotected before small weakly swimming larvae hatch. Using phylogenetic comparative methods, we show that benthic guarders have significantly greater population structure than pelagic spawners and additionally that taxonomic families of benthic guarders are more species rich than families of pelagic spawners. Our findings provide a compelling case for the continuity between micro- and macroevolutionary processes of biological diversification and underscore the importance of dispersal-related traits in influencing the mode and tempo of evolution.

  6. Evolutionary history determines how plant productivity responds to phylogenetic diversity and species richness

    Directory of Open Access Journals (Sweden)

    Mark A. Genung

    2014-03-01

    Full Text Available The relationship between biodiversity and ecosystem function has received a great deal of attention in ecological research and recent results, from re-analyses, suggest that ecosystem function improves with increases in phylogenetic diversity. However, many of these results have been generalized across a range of different species and clades, and plants with different evolutionary histories could display different relationships between biodiversity and ecosystem function. To experimentally test this hypothesis, we manipulated species richness and phylogenetic diversity using 26 species from two subgenera of the genus Eucalyptus (subgenus Eucalyptus and subgenus Symphyomyrtus. We found that plant biomass (a measurement of ecosystem function sometimes, but not always, responded to increases in species richness and phylogenetic diversity. Specifically, Symphyomyrtus plants showed a positive response while no comparable effect was observed for Eucalyptus plants, showing that responses to biodiversity can vary across different phylogenetic groups. Our results show that the impacts of evolutionary history may complicate the relationship between the diversity of plant communities and plant biomass.

  7. Plant species richness and functional traits affect community stability after a flood event.

    Science.gov (United States)

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance. © 2016 The Author(s).

  8. Species-rich networks and eco-evolutionary synthesis at the metacommunity level.

    Science.gov (United States)

    Toju, Hirokazu; Yamamichi, Masato; Guimarães, Paulo R; Olesen, Jens M; Mougi, Akihiko; Yoshida, Takehito; Thompson, John N

    2017-01-24

    Understanding how ecological and evolutionary processes interdependently structure biosphere dynamics is a major challenge in the era of worldwide ecosystem degradation. However, our knowledge of 'eco-evolutionary feedbacks' depends largely on findings from simple systems representing limited spatial scales and involving few species. Here we review recent conceptual developments for the understanding of multispecies coevolutionary processes and then discuss how new lines of concepts and methods will accelerate the integration of ecology and evolutionary biology. To build a research workflow for integrating insights into spatiotemporal dynamics of species-rich systems, we focus on the roles of 'metacommunity hub' species, whose population size and/or genetic dynamics potentially control landscape- or regional-scale phenomena. As large amounts of network data are becoming available with high-throughput sequencing of various host-symbiont, prey-predator, and symbiont-symbiont interactions, we suggest it is now possible to develop bases for the integrated understanding and management of species-rich ecosystems.

  9. Experimental factors affecting PCR-based estimates of microbial species richness and evenness

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrektson, Anna; Kunin, Victor; Wrighton, Kelly C.; Zvenigorodsky, Natasha; Chen, Feng; Ochman, Howard; Hugenholtz, Philip

    2009-12-01

    Pyrosequencing of 16S rRNA gene amplicons for microbial community profiling can, for equivalent costs, yield greater than two orders of magnitude more sensitivity than traditional PCR-cloning and Sanger sequencing. With this increased sensitivity and the ability to analyze multiple samples in parallel, it has become possible to evaluate several technical aspects of PCRbased community structure profiling methods. We tested the effect of amplicon length and primer pair on estimates of species richness number of species and evenness relative abundance of species by assessing the potentially tractable microbial community residing in the termite hindgut. Two regions of the 16S rRNA gene were sequenced from one of two common priming sites, spanning the V1-V2 or V8 regions, using amplicons ranging n length from 352 to 1443 bp. Our results demonstrate that both amplicon length and primer pair markedly influence estimates of richness and evenness. However, estimates of species evenness are consistent among different primer pairs targeting the same region. These results highlight the importance of experimental methodology when comparing diversity estimates across communities.

  10. Shrubs as ecosystem engineers across an environmental gradient: effects on species richness and exotic plant invasion.

    Science.gov (United States)

    Kleinhesselink, Andrew R; Magnoli, Susan M; Cushman, J Hall

    2014-08-01

    Ecosystem-engineering plants modify the physical environment and can increase species diversity and exotic species invasion. At the individual level, the effects of ecosystem engineers on other plants often become more positive in stressful environments. In this study, we investigated whether the community-level effects of ecosystem engineers also become stronger in more stressful environments. Using comparative and experimental approaches, we assessed the ability of a native shrub (Ericameria ericoides) to act as an ecosystem engineer across a stress gradient in a coastal dune in northern California, USA. We found increased coarse organic matter and lower wind speeds within shrub patches. Growth of a dominant invasive grass (Bromus diandrus) was facilitated both by aboveground shrub biomass and by growing in soil taken from shrub patches. Experimental removal of shrubs negatively affected species most associated with shrubs and positively affected species most often found outside of shrubs. Counter to the stress-gradient hypothesis, the effects of shrubs on the physical environment and individual plant growth did not increase across the established stress gradient at this site. At the community level, shrub patches increased beta diversity, and contained greater rarified richness and exotic plant cover than shrub-free patches. Shrub effects on rarified richness increased with environmental stress, but effects on exotic cover and beta diversity did not. Our study provides evidence for the community-level effects of shrubs as ecosystem engineers in this system, but shows that these effects do not necessarily become stronger in more stressful environments.

  11. Species richness of soil and leaf litter tardigrades in the Great Smoky Mountains National Park (North Carolina/Tennessee, USA

    Directory of Open Access Journals (Sweden)

    Diane R. Nelson

    2013-05-01

    Full Text Available A large database now exists for tardigrades in the Great Smoky Mountains National Park (GSMNP consisting of 780 samples, 15,618 specimens, and 80 species including 14 new to science. We found 43 species of tardigrades in 150 soil/leaf litter samples. We calculated the Chao 1 species richness estimate with the species accumulation curve for the GSMNP and confirmed that our species list is virtually complete. Compared with soil data from mt. Fuji, Japan, estimated species richness in GSMNP was significantly higher. In our comparison of previous studies of soil/leaf litter tardigrades in other geographic areas, only the Kanagawa prefecture of Japan reported a higher number of species (47 than the GSMNP. Species richness estimators are valuable tools for comparing diversity in different habitats, even when sampling effort varies between studies.

  12. Long-term monitoring data provide evidence of declining species richness in a river valued for biodiversity conservation

    Science.gov (United States)

    Freeman, Mary C.; Hagler, Megan M.; Bumpers, Phillip M.; Wheeler, Kit; Wengerd, Seth J.; Freeman, Byron J.

    2017-01-01

    Free-flowing river segments provide refuges for many imperiled aquatic biota that have been extirpated elsewhere in their native ranges. These biodiversity refuges are also foci of conservation concerns because species persisting within isolated habitat fragments may be particularly vulnerable to local environmental change. We have analyzed long-term (14- and 20-y) survey data to assess evidence of fish species declines in two southeastern U.S. rivers where managers and stakeholders have identified potentially detrimental impacts of current and future land uses. The Conasauga River (Georgia and Tennessee) and the Etowah River (Georgia) form free-flowing headwaters of the extensively dammed Coosa River system. These rivers are valued in part because they harbor multiple species of conservation concern, including three federally endangered and two federally threatened fishes. We used data sets comprising annual surveys for fish species at multiple, fixed sites located at river shoals to analyze occupancy dynamics and temporal changes in species richness. Our analyses incorporated repeated site-specific surveys in some years to estimate and account for incomplete species detection, and test for species-specific (rarity, mainstem-restriction) and year-specific (elevated frequencies of low- or high-flow days) covariates on occupancy dynamics. In the Conasauga River, analysis of 26 species at 13 sites showed evidence of temporal declines in colonization rates for nearly all taxa, accompanied by declining species richness. Four taxa (including one federally endangered species) had reduced occupancy across the Conasauga study sites, with three of these taxa apparently absent for at least the last 5 y of the study. In contrast, a similar fauna of 28 taxa at 10 sites in the Etowah River showed no trends in species persistence, colonization, or occupancy. None of the tested covariates showed strong effects on persistence or colonization rates in either river. Previous studies

  13. Diversity and biogeography of a species-rich ant fauna of the Australian seasonal tropics.

    Science.gov (United States)

    Andersen, Alan N; Hoffmann, Benjamin D; Oberprieler, Stefanie

    2016-09-15

    Although ants are an ecologically dominant and extensively studied faunal group throughout the tropics, there is a poor understanding of tropical ant diversity and distribution at large spatial scales. Here we use a collection developed from 3 decades of ant surveys to present the first analysis of ant diversity and biogeography of a large tropical region. Our objective was to document the species richness, composition, and biogeographic distributions of the ant fauna of the 400 000 km 2 "Top End" of Australia's Northern Territory. The known Top End ant fauna comprises 901 native species from 59 genera. The richest genera are Pheidole (90 species), Melophorus (83), Monomorium (83), Camponotus (71), Meranoplus (63), Polyrhachis (57), Rhytidoponera (50), Tetramorium (43), Cerapachys (32), and Iridomyrmex (31). The fauna is the center of diverse radiations within species-groups of genera such as Meranoplus, Rhytidoponera, and Leptogenys. It also includes IndoMalayan species that have likely bypassed the normal dispersal route into Australia through Cape York Peninsula in North Queensland. Faunistic similarity with other regions of far northern Australia is associated more with rainfall than with geographic proximity. Most (60%) of Top End ant species have not been recorded elsewhere, and, despite uncertainties relating to species delimitation and sampling intensity, this appears to be a credible estimate of the level of endemism. Such exceptionally high endemism can be attributed to the Top End's geographic isolation from other regions of northern Australia with comparably high rainfall. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  14. Low species richness of non-biting midges (Diptera: Chironomidae) in Neotropical artificial urban water bodies

    DEFF Research Database (Denmark)

    Hamerlik, Ladislav; Jacobsen, Dean; Brodersen, Klaus Peter

    2011-01-01

    Chironomid assemblages of 22 artificial water bodies, mainly fountains, in two South American cities were surveyed. We found surprisingly low diversities, with a total of 11 taxa, averaging two taxa per site. The typical fountain assemblages mainly consisted of common species that have a wide...... of the water bodies of Quito and Bogota differed significantly. There was no correlation between sample similarities and distances among the sites either. The low number of taxa recorded can be attributed to the combination of naturally limited species pool and the heavy pollution in natural water bodies...... distribution pattern and are tolerant to organic pollution. Also taxa independent of the natural aquatic sources, such as tap-water and semi-terrestrial species were represented. There was no significant difference between the taxa richness of the two S. American regions, however, the assemblage structures...

  15. Duck productivity in restored species-rich native and species-poor non-native plantings.

    Directory of Open Access Journals (Sweden)

    Ryan D Haffele

    Full Text Available Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5 mixtures of introduced cool season vegetation often termed dense nesting cover (DNC. The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32 plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010-2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years.

  16. Duck productivity in restored species-rich native and species-poor non-native plantings.

    Science.gov (United States)

    Haffele, Ryan D; Eichholz, Michael W; Dixon, Cami S

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010-2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years.

  17. Macroparasite community of the Eurasian red squirrel (Sciurus vulgaris): poor species richness and diversity.

    Science.gov (United States)

    Romeo, Claudia; Pisanu, Benoît; Ferrari, Nicola; Basset, Franck; Tillon, Laurent; Wauters, Lucas A; Martinoli, Adriano; Saino, Nicola; Chapuis, Jean-Louis

    2013-10-01

    The Eurasian red squirrel (Sciurus vulgaris) is the only naturally occurring tree squirrel throughout its range. We aim at improving current knowledge on its macroparasite fauna, expecting that it will have a poor parasite diversity because in species that have no sympatric congeners parasite richness should be lower than in hosts sharing their range with several closely related species, where host-switching events and lateral transmission are promoted. We examined gastro-intestinal helminth and ectoparasite communities (excluding mites) of, respectively, 147 and 311 red squirrel roadkills collected in four biogeographic regions in Italy and France. As expected, the macroparasite fauna was poor: we found five species of nematodes and some unidentified cestodes, three fleas, two sucking lice and two hard ticks. The helminth community was dominated by a single species, the oxyurid Trypanoxyuris (Rodentoxyuris) sciuri (prevalence, 87%; mean abundance, 373 ± 65 worms/host). Its abundance varied among seasons and biogeographic regions and increased with body mass in male hosts while decreased in females. The most prevalent ectoparasites were the flea Ceratophyllus (Monopsyllus) sciurorum (28%), whose presence was affected by season, and the generalist tick Ixodes (Ixodes) ricinus that was found only in France (34%). All the other helminths and arthropod species were rare, with prevalence below 10%. However, the first record of Strongyloides robustus, a common nematode of North American Eastern grey squirrels (S. carolinensis), in two red squirrels living in areas where this alien species co-inhabits, deserves further attention, since low parasite richness could result in native red squirrels being particularly vulnerable to parasite spillover.

  18. Frog species richness, composition and beta-diversity in coastal Brazilian restinga habitats

    Directory of Open Access Journals (Sweden)

    CFD. Rocha

    Full Text Available We studied the species richness and composition of frogs in 10 restinga habitats (sand dune environments dominated by herbaceous and shrubby vegetation along approximately 1500 km of coastal areas of three Brazilian States: Rio de Janeiro (Grumari, Maricá, Massambaba, Jurubatiba and Grussaí, Espírito Santo (Praia das Neves and Setiba and Bahia (Prado and Trancoso. We estimated beta-diversity and similarity among areas and related these parameters to geographic distance between areas. All areas were surveyed with a similar sampling procedure. We found 28 frog species belonging to the families Hylidae, Microhylidae, Leptodactylidae and Bufonidae. Frogs in restingas were in general nocturnal with no strictly diurnal species. The richest restinga was Praia das Neves (13 species, followed by Grussaí and Trancoso (eight species in each. The commonest species in the restingas was Scinax alter (found in eight restingas, followed by Aparasphenodon brunoi (seven areas. Our data shows that richness and composition of frog communities vary consistently along the eastern Brazilian coast and, in part, the rate of species turnover is affected by the distance among areas. Geographic distance explained approximately 12% of species turnover in restingas and about 9.5% of similarity among frog assemblages. Although geographic distance somewhat affects frog assemblages, other factors (e.g. historical factors, disturbances seem to be also involved in explaining present frog assemblage composition in each area and species turnover among areas. The frog fauna along restinga habitats was significantly nested (matrix community temperature = 26.13°; p = 0.007. Our data also showed that the most hospitable restinga was Praia das Neves and indicated that this area should be protected as a conservation unit. Frog assemblage of each area seems to partially represent a nested subset of the original assemblage, although we should not ignore the importance of historical

  19. Frog species richness, composition and beta-diversity in coastal Brazilian restinga habitats.

    Science.gov (United States)

    Rocha, C F D; Hatano, F H; Vrcibradic, D; Van Sluys, M

    2008-02-01

    We studied the species richness and composition of frogs in 10 restinga habitats (sand dune environments dominated by herbaceous and shrubby vegetation) along approximately 1500 km of coastal areas of three Brazilian States: Rio de Janeiro (Grumari, Maricá, Massambaba, Jurubatiba and Grussaí), Espírito Santo (Praia das Neves and Setiba) and Bahia (Prado and Trancoso). We estimated beta-diversity and similarity among areas and related these parameters to geographic distance between areas. All areas were surveyed with a similar sampling procedure. We found 28 frog species belonging to the families Hylidae, Microhylidae, Leptodactylidae and Bufonidae. Frogs in restingas were in general nocturnal with no strictly diurnal species. The richest restinga was Praia das Neves (13 species), followed by Grussaí and Trancoso (eight species in each). The commonest species in the restingas was Scinax alter (found in eight restingas), followed by Aparasphenodon brunoi (seven areas). Our data shows that richness and composition of frog communities vary consistently along the eastern Brazilian coast and, in part, the rate of species turnover is affected by the distance among areas. Geographic distance explained approximately 12% of species turnover in restingas and about 9.5% of similarity among frog assemblages. Although geographic distance somewhat affects frog assemblages, other factors (e.g. historical factors, disturbances) seem to be also involved in explaining present frog assemblage composition in each area and species turnover among areas. The frog fauna along restinga habitats was significantly nested (matrix community temperature = 26.13 degrees; p = 0.007). Our data also showed that the most hospitable restinga was Praia das Neves and indicated that this area should be protected as a conservation unit. Frog assemblage of each area seems to partially represent a nested subset of the original assemblage, although we should not ignore the importance of historical

  20. Simulating Species Richness Using Agents with Evolving Niches, with an Example of Galápagos Plants

    Directory of Open Access Journals (Sweden)

    Randall B. Boone

    2010-01-01

    Full Text Available I sought to evolve plant species richness patterns on 22 Galápagos Islands, Ecuador, as an exploration of the utility of evolutionary computation and an agent-based approach in biogeography research. The simulation was spatially explicit, where agents were plant monocultures defined by three niche dimensions, lava (yes or no, elevation, and slope. Niches were represented as standard normal curves subjected to selection pressure, where neighboring plants bred if their niches overlapped sufficiently, and were considered the same species, otherwise they were different species. Plants that bred produced seeds with mutated niches. Seeds dispersed locally and longer distances, and established if the habitat was appropriate given the seed's niche. From a single species colonizing a random location, hundreds of species evolved to fill the islands. Evolved plant species richness agreed very well with observed plant species richness. I review potential uses of an agent-based representation of evolving niches in biogeography research.

  1. First record of bat-pollination in the species-rich genus Tillandsia (Bromeliaceae).

    Science.gov (United States)

    Aguilar-Rodríguez, Pedro Adrián; MacSwiney G, M Cristina; Krömer, Thorsten; García-Franco, José G; Knauer, Anina; Kessler, Michael

    2014-05-01

    Bromeliaceae is a species-rich neotropical plant family that uses a variety of pollinators, principally vertebrates. Tillandsia is the most diverse genus, and includes more than one-third of all bromeliad species. Within this genus, the majority of species rely on diurnal pollination by hummingbirds; however, the flowers of some Tillandsia species show some characteristics typical for pollination by nocturnal animals, particularly bats and moths. In this study an examination is made of the floral and reproductive biology of the epiphytic bromeliad Tillandsia macropetala in a fragment of humid montane forest in central Veracruz, Mexico. The reproductive system of the species, duration of anthesis, production of nectar and floral scent, as well as diurnal and nocturnal floral visitors and their effectiveness in pollination were determined. Tillandsia macropetala is a self-compatible species that achieves a higher fruit production through outcrossing. Nectar production is restricted to the night, and only nocturnal visits result in the development of fruits. The most frequent visitor (75 % of visits) and the only pollinator of this bromeliad (in 96 % of visits) was the nectarivorous bat Anoura geoffroyi (Phyllostomidae: Glossophaginae). This is the first report of chiropterophily within the genus Tillandsia. The results on the pollination biology of this bromeliad suggest an ongoing evolutionary switch from pollination by birds or moths to bats.

  2. Local and Landscape Correlates of Spider Activity Density and Species Richness in Urban Gardens.

    Science.gov (United States)

    Otoshi, Michelle D; Bichier, Peter; Philpott, Stacy M

    2015-08-01

    Urbanization is a major threat to arthropod biodiversity and abundance due to reduction and loss of suitable natural habitat. Green spaces and small-scale agricultural areas may provide habitat and resources for arthropods within densely developed cities. We studied spider activity density (a measure of both abundance and degree of movement) and diversity in urban gardens in Santa Cruz, Santa Clara, and Monterey counties in central California, USA. We sampled for spiders with pitfall traps and sampled 38 local site characteristics for 5 mo in 19 garden sites to determine the relative importance of individual local factors. We also analyzed 16 landscape variables at 500-m and 1-km buffers surrounding each garden to determine the significance of landscape factors. We identified individuals from the most common families to species and identified individuals from other families to morphospecies. Species from the families Lycosidae and Gnaphosidae composed 81% of total adult spider individuals. Most of the significant factors that correlated with spider activity density and richness were local rather than landscape factors. Spider activity density and richness increased with mulch cover and flowering plant species, and decreased with bare soil. Thus, changes in local garden management have the potential to promote diversity of functionally important spiders in urban environments. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Species richness effects on grassland recovery from drought depend on community productivity in a multisite experiment.

    Science.gov (United States)

    Kreyling, Juergen; Dengler, Jürgen; Walter, Julia; Velev, Nikolay; Ugurlu, Emin; Sopotlieva, Desislava; Ransijn, Johannes; Picon-Cochard, Catherine; Nijs, Ivan; Hernandez, Pauline; Güler, Behlül; von Gillhaussen, Philipp; De Boeck, Hans J; Bloor, Juliette M G; Berwaers, Sigi; Beierkuhnlein, Carl; Arfin Khan, Mohammed A S; Apostolova, Iva; Altan, Yasin; Zeiter, Michaela; Wellstein, Camilla; Sternberg, Marcelo; Stampfli, Andreas; Campetella, Giandiego; Bartha, Sándor; Bahn, Michael; Jentsch, Anke

    2017-11-01

    Biodiversity can buffer ecosystem functioning against extreme climatic events, but few experiments have explicitly tested this. Here, we present the first multisite biodiversity × drought manipulation experiment to examine drought resistance and recovery at five temperate and Mediterranean grassland sites. Aboveground biomass production declined by 30% due to experimental drought (standardised local extremity by rainfall exclusion for 72-98 consecutive days). Species richness did not affect resistance but promoted recovery. Recovery was only positively affected by species richness in low-productive communities, with most diverse communities even showing overcompensation. This positive diversity effect could be linked to asynchrony of species responses. Our results suggest that a more context-dependent view considering the nature of the climatic disturbance as well as the productivity of the studied system will help identify under which circumstances biodiversity promotes drought resistance or recovery. Stability of biomass production can generally be expected to decrease with biodiversity loss and climate change. © 2017 John Wiley & Sons Ltd/CNRS.

  4. Elucidation of the chemical environment for zinc species in an electron-rich zinc-incorporated zeolite

    International Nuclear Information System (INIS)

    Wang, Jing-Feng; Wang, Kai-Xue; Wang, Jian-Qiang; Li, Lu; Jiang, Yan-Mei; Guo, Xing-Xing; Chen, Jie-Sheng

    2013-01-01

    An electron-rich zinc-modified zeolite has been prepared by the incorporation of zinc vapor into the channels of a dehydrated HY (protonated zeolite Y). The chemical environment of the zinc species in the electron-rich zeolite has been elucidated on the basis of X-ray absorption spectroscopy. The formation of univalent zinc (Zn + ) within the electron-rich zeolite was observed upon the irradiation of X-ray from either a synchrotron radiation source or a conventional X-ray diffractometer. The X-ray irradiation initiated the electron transfer from the electron-rich framework of zeolite Y to the nearby Zn 2+ cations, generating Zn + species. The variation of the coordination environment of the zinc species upon interaction with water molecules has also been investigated. - Graphical abstract: The chemical environment of the zinc species in an electorn-rich zeolite has been elucidated on the basis of X-ray absorption spectroscopy. - Highlights: • An electron-rich zinc-incorporated zeolite has been prepared by chemical vapor reaction. • Univalent zinc is detected after the electron-rich zeolite is irradiated with X-ray. • The chemical environment of the zinc species is elucidated by X-ray absorption spectroscopy. • The coordination environment of the zinc species changes upon interaction with water molecules

  5. Responses of Cryptofaunal Species Richness and Trophic Potential to Coral Reef Habitat Degradation

    Directory of Open Access Journals (Sweden)

    Derek P. Manzello

    2012-02-01

    Full Text Available Coral reefs are declining worldwide as a result of many anthropogenic disturbances. This trend is alarming because coral reefs are hotspots of marine biodiversity and considered the ‘rainforests of the sea. As in the rainforest, much of the diversity on a coral reef is cryptic, remaining hidden among the cracks and crevices of structural taxa. Although the cryptofauna make up the majority of a reef’s metazoan biodiversity, we know little about their basic ecology or how these communities respond to reef degradation. Emerging research shows that the species richness of the motile cryptofauna is higher among dead (framework vs. live coral substrates and, surprisingly, increases within successively more eroded reef framework structures, ultimately reaching a maximum in dead coral rubble. Consequently, the paradigm that abundant live coral is the apex of reef diversity needs to be clarified. This provides guarded optimism amidst alarming reports of declines in live coral cover and the impending doom of coral reefs, as motile cryptic biodiversity should persist independent of live coral cover. Granted, the maintenance of this high species richness is contingent on the presence of reef rubble, which will eventually be lost due to physical, chemical, and biological erosion if not replenished by live coral calcification and mortality. The trophic potential of a reef, as inferred from the abundance of cryptic organisms, is highest on live coral. Among dead framework substrates, however, the density of cryptofauna reaches a peak at intermediate levels of degradation. In summary, the response of the motile cryptofauna, and thus a large fraction of the reef’s biodiversity, to reef degradation is more complex and nuanced than currently thought; such that species richness may be less sensitive than overall trophic function.

  6. Environmental correlates for tree occurrences, species distribution and richness on a high-elevation tropical island.

    Science.gov (United States)

    Birnbaum, Philippe; Ibanez, Thomas; Pouteau, Robin; Vandrot, Hervé; Hequet, Vanessa; Blanchard, Elodie; Jaffré, Tanguy

    2015-07-10

    High-elevation tropical islands are ideally suited for examining the factors that determine species distribution, given the complex topographies and climatic gradients that create a wide variety of habitats within relatively small areas. New Caledonia, a megadiverse Pacific archipelago, has long focussed the attention of botanists working on the spatial and environmental ranges of specific groups, but few studies have embraced the entire tree flora of the archipelago. In this study we analyse the distribution of 702 native species of rainforest trees of New Caledonia, belonging to 195 genera and 80 families, along elevation and rainfall gradients on ultramafic (UM) and non-ultramafic (non-UM) substrates. We compiled four complementary data sources: (i) herbarium specimens, (ii) plots, (iii) photographs and (iv) observations, totalling 38 936 unique occurrences distributed across the main island. Compiled into a regular 1-min grid (1.852 × 1.852 km), this dataset covered ∼22 % of the island. The studied rainforest species exhibited high environmental tolerance; 56 % of them were not affiliated to a substrate type and they exhibited wide elevation (average 891 ± 332 m) and rainfall (average 2.2 ± 0.8 m year(-1)) ranges. Conversely their spatial distribution was highly aggregated, which suggests dispersal limitation. The observed species richness was driven mainly by the density of occurrences. However, at the highest elevations or rainfalls, and particularly on UM, the observed richness tends to be lower, independently of the sampling effort. The study highlights the imbalance of the dataset in favour of higher values of rainfall and of elevation. Projected onto a map, under-represented areas are a guide as to where future sampling efforts are most required to complete our understanding of rainforest tree species distribution. Published by Oxford University Press on behalf of the Annals of Botany Company.

  7. Dataset on species incidence, species richness and forest characteristics in a Danish protected area

    Directory of Open Access Journals (Sweden)

    Adriano Mazziotta

    2016-12-01

    Full Text Available The data presented in this article are related to the research article entitled “Restoring hydrology and old-growth structures in a former production forest: Modelling the long-term effects on biodiversity” (A. Mazziotta, J. Heilmann-Clausen, H. H.Bruun, Ö. Fritz, E. Aude, A.P. Tøttrup [1]. This article describes how the changes induced by restoration actions in forest hydrology and structure alter the biodiversity value of a Danish forest reserve. The field dataset is made publicly available to enable critical or extended analyses.

  8. Dataset on species incidence, species richness and forest characteristics in a Danish protected area

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Heilmann-Clausen, Jacob; Bruun, Hans Henrik

    2016-01-01

    The data presented in this article are related to the research article entitled "Restoring hydrology and old-growth structures in a former production forest: Modelling the long-term effects on biodiversity" (A. Mazziotta, J. Heilmann-Clausen, H. H.Bruun, Ö. Fritz, E. Aude, A.P. Tøttrup) [1......]. This article describes how the changes induced by restoration actions in forest hydrology and structure alter the biodiversity value of a Danish forest reserve. The field dataset is made publicly available to enable critical or extended analyses....

  9. Correlation between the habitats productivity and species richness (amphibians and reptiles) in Portugal through remote sensed data

    Science.gov (United States)

    Teodoro, A. C.; Sillero, N.; Alves, S.; Duarte, L.

    2013-10-01

    Several biogeographic theories propose that the species richness depends on the structure and ecosystems diversity. The habitat productivity, a surrogate for these variables, can be evaluated through satellite imagery, namely using vegetation indexes (e.g. NDVI). We analyzed the correlation between species richness (from the Portuguese Atlas of Amphibians and Reptiles) and NDVI (from Landsat, MODIS, and Vegetation images). The species richness database contains more than 80000 records, collected from bibliographic sources (at 1 or 10 km of spatial resolution) and fieldwork sampling stations (recorded with GPS devices). Several study areas were chosen for Landsat images (three subsets), and all Portugal for MODIS and Vegetation images. The Landsat subareas had different climatic and habitat characteristics, located in the north, center and south of Portugal. Different species richness datasets were used depending on the image spatial resolution: data with metric resolution were used for Landsat, and with 1 km resolution, for MODIS and Vegetation images. The NDVI indexes and all the images were calculated/processed in an open source software (Quantum GIS). Several plug-ins were applied in order to automatize several procedures. We did not find any correlation between the species richness of amphibians and reptiles (not even after separating both groups by species of Atlantic and Mediterranean affinity) and the NDVI calculated with Landsat, MODIS and Vegetation images. Our results may fail to find a relationship because as the species richness is not correlated with only one variable (NDVI), and thus other environmental variables must be considered.

  10. Effects of Management on Lichen Species Richness, Ecological Traits and Community Structure in the Rodnei Mountains National Park (Romania).

    Science.gov (United States)

    Ardelean, Ioana Violeta; Keller, Christine; Scheidegger, Christoph

    2015-01-01

    Lichens are valuable bio-indicators for evaluating the consequences of human activities that are increasingly changing the earth's ecosystems. Since a major objective of national parks is the preservation of biodiversity, our aim is to analyse how natural resource management, the availability of lichen substrates and environmental parameters influence lichen diversity in Rodnei Mountains National Park situated in the Eastern Carpathians. Three main types of managed vegetation were investigated: the transhumance systems in alpine meadows, timber exploitation in mixed and pure spruce forests, and the corresponding conserved sites. The data were sampled following a replicated design. For the analysis, we considered not only all lichen species, but also species groups from different substrates such as soil, trees and deadwood. The lichen diversity was described according to species richness, red-list status and substrate-specialist species richness. The variation in species composition was related to the environmental variables. Habitat management was found to negatively influence species richness and alter the lichen community composition, particularly for threatened and substrate-specialist species. It reduced the mean level of threatened species richness by 59%, when all lichen species were considered, and by 81%, when only epiphytic lichens were considered. Management-induced disturbance significantly decreased lichen species richness in forest landscapes with long stand continuity. The diversity patterns of the lichens indicate a loss of species richness and change in species composition in areas where natural resources are still exploited inside the borders of the national park. It is thus imperative for protected areas, in particular old-growth forests and alpine meadows, to receive more protection than they have received in the past to ensure populations of the characteristic species remain viable in the future.

  11. Effectiveness of turf stripping as a measure for restoring species-rich fen meadows in suboptimal hydrological conditions

    NARCIS (Netherlands)

    Hoek, van der D.; Heijmans, M.M.P.D.

    2007-01-01

    Most species-rich fen meadows in nature reserves in The Netherlands are acidified due to weaker upwelling of base-rich groundwater. The present study investigated whether and why turf stripping combined with superficial drainage might promote the long-term recovery of such meadows and restore the

  12. Allium species from Central and Southwest Asia are rich sources of marasmin.

    Science.gov (United States)

    Kusterer, Jan; Fritsch, Reinhard M; Keusgen, Michael

    2011-08-10

    Marasmin, which is especially known from the two South African species Tulbaghia alliacea and Tulbaghia violacea , but was also described for the garlic mushroom Marasmius alliaceus , is the precursor of the thiosulfinate marasmicin. Marasmicin has attracted considerable attention because of its antifungal and tuberculostatic activities. However, many Allium species of the subgenus Melanocrommyum, especially Allium suworowii , are also very rich in marasmin. A. suworowii revealed concentrations of marasmin up to 1.6%, related to the fresh weight of bulbs, and up to 3.0%, related to air-dried fruiting bodies, of the corresponding γ-glutamylmarsmin was found in M. alliaceus. Both species show much higher amounts of marasmin as Tulbaghia and could be considered as natural sources for the isolation of this compound. Further promising Allium species with considerable amounts of marasmin besides other cysteine sulfoxides are Allium stipitatum and Allium altissimum . (R(S),R(C))-Marasmin is typical for the investigated species of the subgenus Melanocrommyum, whereas γ-glutamyl-(S(S),R(C))-marasmin is the only cysteine sulfoxide for the genus Marasmius known until now. Both cysteine sulfoxides were isolated and described as o-phthaldialdehyde (OPA) derivatives. Furthermore, the cysteine sulfoxides methiin, propiin, S-(2-pyrrolyl)-cysteine sulfoxide, eventually S-(2-pyridyl)-cysteine sulfoxide and S-(2-pyridyl)-L-cysteine N-oxide were found.

  13. Octocoral Species Richness for the Florida Keys National Marine Sanctuary from 1999-2009 (NODC Accession 0123059)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset includes species richness of benthic branching and encrusting gorgonians collected from multiple habitat types across the south Florida shelf, inside and...

  14. (macro- Evolutionary ecology of parasite diversity: From determinants of parasite species richness to host diversification

    Directory of Open Access Journals (Sweden)

    Serge Morand

    2015-04-01

    Full Text Available The present review summarized the factors or determinants that may explain parasite diversity among host species and the consequences of this parasite diversity on the evolution of host-life history traits. As host–parasite interactions are asymmetrical exploited–exploiter relationships, ecological and epidemiological theories produce hypotheses to find the potential determinants of parasite species richness, while life-history theory helps for testing potential consequences on parasite diversity on the evolution of hosts. This review referred only to studies that have specifically controlled or took into account phylogenetic information illustrated with parasites of mammals. Several points needing more investigation were identified with a special emphasis to develop the metabolic theory of epidemiology.

  15. Weeds in Organic Fertility-Building Leys: Aspects of Species Richness and Weed Management

    Directory of Open Access Journals (Sweden)

    Thomas F. Döring

    2017-02-01

    Full Text Available Legume-based leys (perennial sod crops are an important component of fertility management in organic rotations in many parts of Europe. Despite their importance, however, relatively little is known about how these leys affect weed communities or how the specific composition of leys may contribute to weed management. To determine whether the choice of plant species in the ley affects weeds, we conducted replicated field trials at six locations in the UK over 24 months, measuring weed cover and biomass in plots sown with monocultures of 12 legume and 4 grass species, and in plots sown with a mixture of 10 legume species and 4 grass species. Additionally, we monitored weed communities in leys on 21 organic farms across the UK either sown with a mixture of the project species or the farmers’ own species mix. In total, 63 weed species were found on the farms, with the annuals Stellaria media, Sonchus arvensis, and Veronica persica being the most frequent species in the first year after establishment of the ley, while Stellaria media and the two perennials Ranunculus repens and Taraxacum officinale dominated the weed spectrum in the second year. Our study shows that organic leys constitute an important element of farm biodiversity. In both replicated and on-farm trials, weed cover and species richness were significantly lower in the second year than in the first, owing to lower presence of annual weeds in year two. In monocultures, meadow pea (Lathyrus pratensis was a poor competitor against weeds, and a significant increase in the proportion of weed biomass was observed over time, due to poor recovery of meadow pea after mowing. For red clover (Trifolium pratense, we observed the lowest proportion of weed biomass in total biomass among the tested legume species. Crop biomass and weed biomass were negatively correlated across species. Residuals from the linear regression between crop biomass and weed biomass indicated that at similar levels of crop

  16. Species Richness and Community Structure on a High Latitude Reef: Implications for Conservation and Management

    Directory of Open Access Journals (Sweden)

    Wayne Houston

    2011-07-01

    Full Text Available In spite of the wealth of research on the Great Barrier Reef, few detailed biodiversity assessments of its inshore coral communities have been conducted. Effective conservation and management of marine ecosystems begins with fine-scale biophysical assessments focused on diversity and the architectural species that build the structural framework of the reef. In this study, we investigate key coral diversity and environmental attributes of an inshore reef system surrounding the Keppel Bay Islands near Rockhampton in Central Queensland, Australia, and assess their implications for conservation and management. The Keppels has much higher coral diversity than previously found. The average species richness for the 19 study sites was ~40 with representatives from 68% of the ~244 species previously described for the southern Great Barrier Reef. Using scleractinian coral species richness, taxonomic distinctiveness and coral cover as the main criteria, we found that five out of 19 sites had particularly high conservation value. A further site was also considered to be of relatively high value. Corals at this site were taxonomically distinct from the others (representatives of two families were found here but not at other sites and a wide range of functionally diverse taxa were present. This site was associated with more stressful conditions such as high temperatures and turbidity. Highly diverse coral communities or biodiversity ‘hotspots’ and taxonomically distinct reefs may act as insurance policies for climatic disturbance, much like Noah’s Arks for reefs. While improving water quality and limiting anthropogenic impacts are clearly important management initiatives to improve the long-term outlook for inshore reefs, identifying, mapping and protecting these coastal ‘refugia’ may be the key for ensuring their regeneration against catastrophic climatic disturbance in the meantime.

  17. Species richness of vascular plants along the climatic range of the Spanish dehesas at two spatial scales

    OpenAIRE

    Jose M. Garcia del Barrio; Rafael Alonso Ponce; Raquel Benavides; Sonia Roig

    2014-01-01

    Aims of study: The goals of this paper are to summarize and to compare plant species richness and floristic similarity at two spatial scales; mesohabitat (normal, eutrophic, and oligotrophic dehesas) and dehesa habitat; and to establish guidelines for conserving species diversity in dehesas.Area of study: We considered four dehesa sites in the western Peninsular Spain, located along a climatic and biogeographic gradient from north to south. Main results: Average alpha richness for mesohabitat...

  18. The effects of global change on the distribution, species richness and life history of European dragonflies

    DEFF Research Database (Denmark)

    Olsen, Kent

    2016-01-01

    Climate change and human land-use strongly impacts ranges and distributional borders of dragonfly (Odonata) species which are therefore a good model group for understanding how the strength of such impacts depend on species specific ecology and functional traits. The specificity of their larvae t...

  19. Two common species dominate the species-rich Euglossine bee fauna of an Atlantic Rainforest remnant in Pernambuco, Brazil.

    Science.gov (United States)

    Oliveira, R; Pinto, C E; Schlindwein, C

    2015-11-01

    Nowadays, the northern part of the Atlantic Rainforest of Brazil is largely destroyed and forest remnants rarely exceed 100 ha. In a 118 ha forest fragment within a state nature reserve of Pernambuco (Reserva Ecológica Gurjaú), we surveyed the orchid bee fauna (Apidae, Euglossini) using eight different scent baits to attract males. Once a month during one year, the bees were actively collected with entomological nets, from November 2002 to October 2003 by two collectors. We collected 2,908 orchid bee males belonging to 23 species, one of the highest richness values of the Northern Atlantic Rainforest. Bees of only two species, Euglossa carolina (50%) and Eulaema nigrita (25%), which occurred throughout the year, accounted for three quarter of the collected individuals. Both species are typical for open or disturbed areas. Rainforest remnants like those of Gurjaú within the predominant sugar cane monocultures in the coastal plains of the northern Atlantic Rainforest play an important role in orchid bee conservation and maintenance of biodiversity.

  20. Housing is positively associated with invasive exotic plant species richness in New England, USA.

    Science.gov (United States)

    Gavier-Pizarro, Gregorio I; Radeloff, Volker C; Stewart, Susan I; Huebner, Cynthia D; Keuler, Nicholas S

    2010-10-01

    Understanding the factors related to invasive exotic species distributions at broad spatial scales has important theoretical and management implications, because biological invasions are detrimental to many ecosystem functions and processes. Housing development facilitates invasions by disturbing land cover, introducing nonnative landscaping plants, and facilitating dispersal of propagules along roads. To evaluate relationships between housing and the distribution of invasive exotic plants, we asked (1) how strongly is housing associated with the spatial distribution of invasive exotic plants compared to other anthropogenic and environmental factors; (2) what type of housing pattern is related to the richness of invasive exotic plants; and (3) do invasive plants represent ecological traits associated with specific housing patterns? Using two types of regression analysis (best subset analysis and hierarchical partitioning analysis), we found that invasive exotic plant richness was equally or more strongly related to housing variables than to other human (e.g., mean income and roads) and environmental (e.g., topography and forest cover) variables at the county level across New England. Richness of invasive exotic plants was positively related to area of wildland-urban interface (WUI), low-density residential areas, change in number of housing units between 1940 and 2000, mean income, plant productivity (NDVI), and altitudinal range and rainfall; it was negatively related to forest area and connectivity. Plant life history traits were not strongly related to housing patterns. We expect the number of invasive exotic plants to increase as a result of future housing growth and suggest that housing development be considered a primary factor in plans to manage and monitor invasive exotic plant species.

  1. Species richness, alpha and beta diversity of trees, shrubs and herbaceous plants in the woodlands of swat, pakistan

    International Nuclear Information System (INIS)

    Akhtar, N.; Bergmeier, E.

    2015-01-01

    The variation in species richness and diversity of trees, shrubs and herbs in the mountains of Miandam, Swat, North Pakistan, along an elevation gradient between 1600 m and 3400 m was explored. Field data were collected in 18 altitudinal intervals of 100 m each. Polynomial regression was used to find relations of the different growth forms with elevation. The Shannon index was used for calculating α-diversity and the Simpson index for β-diversity. Species richness and α-diversity of herbs were unrelated to elevation. Herbaceous species turnover was high, ranging between 0.46 and 0.89, with its maximum between 2700 and 3000 m. Hump-shaped relationship was observed for shrubs with maximum richness between 2000 and 2200 m; and α-diversity decreased monotonically. Turnover of shrub species was highest between 2000 and 2500 m. Tree species richness was highest at low elevations, and α-diversity was relatively low along the entire gradient. Tree species turnover was also high in the lower zone and again at 2600-2800 m. Species richness of all vascular plants was highest at 2200-2500 m, and α-diversity was highest in the lower part of the gradient. Beta diversity of all growth forms was quite high ranging between 0.53 and 0.87 along the entire gradient reflecting high species and structural turnover. (author)

  2. Deconstructing the mammal species richness pattern in Europe - towards and understanding of the relative importance of climate, biogeographic history, habitat heterogeneity and humans

    DEFF Research Database (Denmark)

    Fløjgaard, Camilla; Normand, Signe; Skov, Flemming

    2011-01-01

    Aim  We deconstructed the mammal species richness pattern in Europe to assess the importance of large-scale gradients in current macroclimate relative to biogeographic history, habitat heterogeneity and human influence (HHH variables) as richness determinants for total species, and for widespread...... variables (history, habitat heterogeneity and human influence) proved important predictors of species richness, but also difficult to disentangle. Notably, biogeographic history, in particular peninsular dynamics, is an important determinant of widespread and endemic species richness....

  3. Species richness and relative species abundance of Nymphalidae (Lepidoptera in three forests with different perturbations in the North-Central Caribbean of Costa Rica

    Directory of Open Access Journals (Sweden)

    Carolyn Stephen

    2014-09-01

    Full Text Available Measurements of species richness and species abundance can have important implications for regulations and conservation. This study investigated species richness and abundance of butterflies in the family Nymphalidae at undisturbed, and disturbed habitats in Tirimbina Biological Reserve and Nogal Private Reserve, Sarapiquí, Costa Rica. Traps baited with rotten banana were placed in the canopy and the understory of three habitats: within mature forest, at a river/forest border, and at a banana plantation/forest border. In total, 71 species and 487 individuals were caught and identified during May and June 2011 and May 2013. Species richness and species abundance were found to increase significantly at perturbed habitats (p<0.0001, p<0.0001, respectively. The edge effect, in which species richness and abundance increase due to greater complementary resources from different habitats, could be one possible explanation for increased species richness and abundance. Rev. Biol. Trop. 62 (3: 919-928. Epub 2014 September 01.

  4. Relative abundance and species richness of cerambycid beetles in partial cut and uncut bottomland hardwood forests

    Science.gov (United States)

    Newell, P.; King, S.

    2009-01-01

    Partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife. However, partial cutting may or may not benefit species dependent on deadwood; harvesting can supplement coarse woody debris in the form of logging slash, but standing dead trees may be targeted for removal. We sampled cerambycid beetles during the spring and summer of 2006 and 2007 with canopy malaise traps in 1- and 2-year-old partial cut and uncut bottomland hardwood forests of Louisiana. We captured a total of 4195 cerambycid beetles representing 65 species. Relative abundance was higher in recent partial cuts than in uncut controls and with more dead trees in a plot. Total species richness and species composition were not different between treatments. The results suggest partial cuts with logging slash left on site increase the abundance of cerambycid beetles in the first few years after partial cutting and that both partial cuts and uncut forest should be included in the bottomland hardwood forest landscape.

  5. Can biosecurity and local network properties predict pathogen species richness in the salmonid industry?

    Science.gov (United States)

    Yatabe, Tadaishi; More, Simon J; Geoghegan, Fiona; McManus, Catherine; Hill, Ashley E; Martínez-López, Beatriz

    2018-01-01

    Salmonid farming in Ireland is mostly organic, which implies limited disease treatment options. This highlights the importance of biosecurity for preventing the introduction and spread of infectious agents. Similarly, the effect of local network properties on infection spread processes has rarely been evaluated. In this paper, we characterized the biosecurity of salmonid farms in Ireland using a survey, and then developed a score for benchmarking the disease risk of salmonid farms. The usefulness and validity of this score, together with farm indegree (dichotomized as ≤ 1 or > 1), were assessed through generalized Poisson regression models, in which the modeled outcome was pathogen richness, defined here as the number of different diseases affecting a farm during a year. Seawater salmon (SW salmon) farms had the highest biosecurity scores with a median (interquartile range) of 82.3 (5.4), followed by freshwater salmon (FW salmon) with 75.2 (8.2), and freshwater trout (FW trout) farms with 74.8 (4.5). For FW salmon and trout farms, the top ranked model (in terms of leave-one-out information criteria, looic) was the null model (looic = 46.1). For SW salmon farms, the best ranking model was the full model with both predictors and their interaction (looic = 33.3). Farms with a higher biosecurity score were associated with lower pathogen richness, and farms with indegree > 1 (i.e. more than one fish supplier) were associated with increased pathogen richness. The effect of the interaction between these variables was also important, showing an antagonistic effect. This would indicate that biosecurity effectiveness is achieved through a broader perspective on the subject, which includes a minimization in the number of suppliers and hence in the possibilities for infection to enter a farm. The work presented here could be used to elaborate indicators of a farm's disease risk based on its biosecurity score and indegree, to inform risk-based disease surveillance and control

  6. Tree species identity and diversity drive fungal richness and community composition along an elevational gradient in a Mediterranean ecosystem.

    Science.gov (United States)

    Saitta, Alessandro; Anslan, Sten; Bahram, Mohammad; Brocca, Luca; Tedersoo, Leho

    2018-01-01

    Ecological and taxonomic knowledge is important for conservation and utilization of biodiversity. Biodiversity and ecology of fungi in Mediterranean ecosystems is poorly understood. Here, we examined the diversity and spatial distribution of fungi along an elevational gradient in a Mediterranean ecosystem, using DNA metabarcoding. This study provides novel information about diversity of all ecological and taxonomic groups of fungi along an elevational gradient in a Mediterranean ecosystem. Our analyses revealed that among all biotic and abiotic variables tested, host species identity is the main driver of the fungal richness and fungal community composition. Fungal richness was strongly associated with tree richness and peaked in Quercus-dominated habitats and Cistus-dominated habitats. The highest taxonomic richness of ectomycorrhizal fungi was observed under Quercus ilex, whereas the highest taxonomic richness of saprotrophs was found under Pinus. Our results suggest that the effect of plant diversity on fungal richness and community composition may override that of abiotic variables across environmental gradients.

  7. The effect of altitude, patch size and disturbance on species richness and density of lianas in montane forest patches

    Science.gov (United States)

    Mohandass, Dharmalingam; Campbell, Mason J.; Hughes, Alice C.; Mammides, Christos; Davidar, Priya

    2017-08-01

    The species richness and density of lianas (woody vines) in tropical forests is determined by various abiotic and biotic factors. Factors such as altitude, forest patch size and the degree of forest disturbance are known to exert strong influences on liana species richness and density. We investigated how liana species richness and density were concurrently influenced by altitude (1700-2360 m), forest patch size, forest patch location (edge or interior) and disturbance intensity in the tropical montane evergreen forests, of the Nilgiri and Palni hills, Western Ghats, southern India. All woody lianas (≥1 cm dbh) were enumerated in plots of 30 × 30 m in small, medium and large forest patches, which were located along an altitudinal gradient ranging from 1700 to 2360 m. A total of 1980 individual lianas were recorded, belonging to 45 species, 32 genera and 21 families, from a total sampling area of 13.86 ha (across 154 plots). Liana species richness and density decreased significantly with increasing altitude and increased with increasing forest patch size. Within forest patches, the proportion of forest edge or interior habitat influenced liana distribution and succession especially when compared across the patch size categories. Liana species richness and density also varied along the altitudinal gradient when examined using eco-physiological guilds (i.e. shade tolerance, dispersal mode and climbing mechanism). The species richness and density of lianas within these ecological guilds responded negatively to increasing altitude and positively to increasing patch size and additionally displayed differing sensitivities to forest disturbance. Importantly, the degree of forest disturbance significantly altered the relationship between liana species richness and density to increasing altitude and patches size, and as such is likely the primary influence on liana response to montane forest succession. Our findings suggest that managing forest disturbance in the examined

  8. Anuran site occupancy and species richness as tools for evaluating restoration of a hydrologically-modified landscape

    Science.gov (United States)

    Walls, Susan; Waddle, J. Hardin; Barichivich, William J.; Bartoszek, Ian A.; Brown, Mary E.; Hefner, J. M.; Schuman, Melinda J.

    2014-01-01

    A fundamental goal of wetland restoration is to reinstate pre-disturbance hydrological conditions to degraded landscapes, facilitating recolonization by native species and the production of resilient, functional ecosystems. To evaluate restoration success, baseline conditions need to be determined and a reference target needs to be established that will serve as an ecological blueprint in the restoration process. During the summer wet seasons of 2010 and 2011, we used automated recording units to monitor a community of calling anuran amphibians in the Picayune Strand State Forest of Southwest Florida, USA. This area is undergoing hydrological restoration as part of the Comprehensive Everglades Restoration Plan. We compared occurrence of anurans at sites in the restoration area, to nearby locations in relatively undisturbed habitat (reference sites). We assessed the utility of the latter as restoration targets, using a hierarchical model of community species occupancy to estimate the probability of occurrence of anurans in restoration and reference locations. We detected 14 species, 13 of which were significantly more likely to occur in reference areas. All 14 species were estimated by our model to occur at these sites but, across both years, only 8–13 species were estimated to occur at restoration sites. The composition and structure of these habitats within and adjacent to the Picayune Strand State Forest indicate that they are suitable targets for habitat restoration, as measured by amphibian occurrence and species richness. These areas are important sources for recolonization of anuran amphibians as the hydrologically degraded Picayune Strand undergoes restoration to mitigate the effects of overdrainage and habitat loss.

  9. Bryophyte Species Richness and Composition along an Altitudinal Gradient in Gongga Mountain, China

    Science.gov (United States)

    Sun, Shou-Qin; Wu, Yan-Hong; Wang, Gen-Xu; Zhou, Jun; Yu, Dong; Bing, Hai-Jian; Luo, Ji

    2013-01-01

    An investigation of terrestrial bryophyte species diversity and community structure along an altitudinal gradient from 2,001 to 4,221 m a.s.l. in Gongga Mountain in Sichuan, China was carried out in June 2010. Factors which might affect bryophyte species composition and diversity, including climate, elevation, slope, depth of litter, vegetation type, soil pH and soil Eh, were examined to understand the altitudinal feature of bryophyte distribution. A total of 14 representative elevations were chosen along an altitudinal gradient, with study sites at each elevation chosen according to habitat type (forests, grasslands) and accessibility. At each elevation, three 100 m × 2 m transects that are 50 m apart were set along the contour line, and three 50 cm × 50 cm quadrats were set along each transect at an interval of 30 m. Species diversity, cover, biomass, and thickness of terrestrial bryophytes were examined. A total of 165 species, including 42 liverworts and 123 mosses, are recorded in Gongga mountain. Ground bryophyte species richness does not show any clear elevation trend. The terrestrial bryophyte cover increases with elevation. The terrestrial bryophyte biomass and thickness display a clear humped relationship with the elevation, with the maximum around 3,758 m. At this altitude, biomass is 700.3 g m−2 and the maximum thickness is 8 cm. Bryophyte distribution is primarily associated with the depth of litter, the air temperature and the precipitation. Further studies are necessary to include other epiphytes types and vascular vegetation in a larger altitudinal range. PMID:23472146

  10. Bryophyte species richness and composition along an altitudinal gradient in Gongga Mountain, China.

    Directory of Open Access Journals (Sweden)

    Shou-Qin Sun

    Full Text Available An investigation of terrestrial bryophyte species diversity and community structure along an altitudinal gradient from 2,001 to 4,221 m a.s.l. in Gongga Mountain in Sichuan, China was carried out in June 2010. Factors which might affect bryophyte species composition and diversity, including climate, elevation, slope, depth of litter, vegetation type, soil pH and soil Eh, were examined to understand the altitudinal feature of bryophyte distribution. A total of 14 representative elevations were chosen along an altitudinal gradient, with study sites at each elevation chosen according to habitat type (forests, grasslands and accessibility. At each elevation, three 100 m × 2 m transects that are 50 m apart were set along the contour line, and three 50 cm × 50 cm quadrats were set along each transect at an interval of 30 m. Species diversity, cover, biomass, and thickness of terrestrial bryophytes were examined. A total of 165 species, including 42 liverworts and 123 mosses, are recorded in Gongga mountain. Ground bryophyte species richness does not show any clear elevation trend. The terrestrial bryophyte cover increases with elevation. The terrestrial bryophyte biomass and thickness display a clear humped relationship with the elevation, with the maximum around 3,758 m. At this altitude, biomass is 700.3 g m(-2 and the maximum thickness is 8 cm. Bryophyte distribution is primarily associated with the depth of litter, the air temperature and the precipitation. Further studies are necessary to include other epiphytes types and vascular vegetation in a larger altitudinal range.

  11. Geographic variation in species richness, rarity, and the selection of areas for conservation: An integrative approach with Brazilian estuarine fishes

    Science.gov (United States)

    Vilar, Ciro C.; Joyeux, Jean-Christophe; Spach, Henry L.

    2017-09-01

    While the number of species is a key indicator of ecological assemblages, spatial conservation priorities solely identified from species richness are not necessarily efficient to protect other important biological assets. Hence, the results of spatial prioritization analysis would be greatly enhanced if richness were used in association to complementary biodiversity measures. In this study, geographic patterns in estuarine fish species rarity (i.e. the average range size in the study area), endemism and richness, were mapped and integrated to identify regions important for biodiversity conservation along the Brazilian coast. Furthermore, we analyzed the effectiveness of the national system of protected areas to represent these regions. Analyses were performed on presence/absence data of 412 fish species in 0.25° latitudinal bands covering the entire Brazilian biogeographical province. Species richness, rarity and endemism patterns differed and strongly reflected biogeographical limits and regions. However, among the existing 154 latitudinal bands, 48 were recognized as conservation priorities by concomitantly harboring high estuarine fish species richness and assemblages of geographically rare species. Priority areas identified for all estuarine fish species largely differed from those identified for Brazilian endemics. Moreover, there was no significant correlation between the different aspects of the fish assemblages considered (i.e. species richness, endemism or rarity), suggesting that designating reserves based on a single variable may lead to large gaps in the overall protection of biodiversity. Our results further revealed that the existing system of protected areas is insufficient for representing the priority bands we identified. This highlights the urgent need for expanding the national network of protected areas to maintain estuarine ecosystems with high conservation value.

  12. Coleoptera in the Altai Mountains (Mongolia: species richness and community patterns along an ecological gradient

    Directory of Open Access Journals (Sweden)

    Oyundelger Khurelpurev

    2017-09-01

    Full Text Available The Altai Mountains located in western Mongolia comprise diverse habitats including forest, mountain steppe, dry steppe, semidesert, and desert. This study used advanced statistics to examine how diversity and species composition of beetle communities depend on vegetation pattern and environmental factors along an ecological gradient from steppe to desert. Our study included the beetle families Tenebrionidae, Carabidae, Curculionidae, and Coccinellidae, which account for the majority of the known beetle fauna in the area. The most abundant Coleoptera in all plots were Harpalus limbaris, Corsyra fusula, and Anatolica cellicola; otherwise, we caught a large number of rare species. The beta diversity of communities was correlated with distance between plots. Species richness of beetles was positively impacted by plant cover and correlated negatively with rising temperatures, whereas Shannon diversity of beetle communities was significantly higher in areas with higher precipitation. Distribution and community composition of Coleopterans were governed by environmental factors, especially plant diversity, mean annual temperature, and summer precipitation, as revealed by redundancy analysis.

  13. Contrasting Holocene environmental histories may explain patterns of species richness and rarity in a Central European landscape

    Czech Academy of Sciences Publication Activity Database

    Hájek, M.; Dudová, Lydie; Hájková, Petra; Roleček, Jan; Moutelíková, J.; Jamrichová, Eva; Horsák, M.

    2016-01-01

    Roč. 133, FEB 1 2016 (2016), s. 48-61 ISSN 0277-3791 Institutional support: RVO:67985939 Keywords : species pool * extreme species richness * biogeography * Carpathians * palaeoecology Subject RIV: EH - Ecology, Behaviour Impact factor: 4.797, year: 2016

  14. Restoration of species-rich grasslands on ex-arable land: Seed addition outweighs soil fertility reduction

    NARCIS (Netherlands)

    Kardol, P.; Van der Wal, A.; Bezemer, T.M.; De Boer, W.; Duyts, H.; Holtkamp, R.; Van der Putten, W.H.

    2008-01-01

    A common practice in biodiversity conservation is restoration of former species-rich grassland on ex-arable land. Major constraints for grassland restoration are high soil fertility and limited dispersal ability of plant species to target sites. Usually, studies focus on soil fertility or on methods

  15. Staged invasions across disparate grasslands: Effects of seed provenance, consumers and disturbance on productivity and species richness

    Science.gov (United States)

    John L. Maron; Harald Auge; Dean E. Pearson; Lotte Korell; Isabell Hensen; Katharine N. Suding; Claudia Stein

    2014-01-01

    Exotic plant invasions are thought to alter productivity and species richness, yet these patterns are typically correlative. Few studies have experimentally invaded sites and asked how addition of novel species influences ecosystem function and community structure and examined the role of competitors and/or consumers in mediating these patterns. We invaded disturbed...

  16. Impacts of non-native Norway spruce plantation on abundance and species richness of ground beetles (Coleoptera: Carabidae

    Directory of Open Access Journals (Sweden)

    Z. Elek

    2001-06-01

    Full Text Available The impacts of non-native Norway spruce plantation on the abundance and species richness of carabids were studied in the Bükk National Park in Hungary, central Europe. Pitfall catches from recently established (5 yr old, young (15 yr after planting, middle-aged (30 yr after planting, old Norway spruce Picea abies plantation (50 yr after planting, and a native submontane beech forest (Fagetum sylvaticae as a control stand were compared.

    Our results showed that deciduous forest species decreased significantly in abundance in the plantations, and appeared in high abundance only in the native beech forest. Furthermore, open habitat species increased remarkably in abundance in the recently established plantation. Carabids were significantly more abundant and species rich in the native forest than in the plantations, while differences were not significant among the plantations. Multiple regression between the abundance and species richness of carabids and twelve environmental measurements showed that pH of the soil, herb cover and density of the carabids’ prey had a significant effect in determining abundance and species richness.

    Our results showed that plantation of non-native Norway spruce species had a detrimental effect on the composition of carabid communities and no regeneration could be observed during the growth of plantations even 50 yr after the establishment. This emphasises the importance of an active nature management practice to facilitate the recolonization of the native species.

  17. What determines positive, neutral, and negative impacts of Solidago canadensis invasion on native plant species richness?

    Science.gov (United States)

    Dong, Li-Jia; Yu, Hong-Wei; He, Wei-Ming

    2015-11-17

    Whether plant invasions pose a great threat to native plant diversity is still hotly debated due to conflicting findings. More importantly, we know little about the mechanisms of invasion impacts on native plant richness. We examined how Solidago canadensis invasion influenced native plants using data from 291 pairs of invaded and uninvaded plots covering an entire invaded range, and quantified the relative contributions of climate, recipient communities, and S. canadensis to invasion impacts. There were three types of invasion consequences for native plant species richness (i.e., positive, neutral, and negative impacts). Overall, the relative contributions of recipient communities, S. canadensis and climate to invasion impacts were 71.39%, 21.46% and 7.15%, respectively; furthermore, the roles of recipient communities, S. canadensis and climate were largely ascribed to plant diversity, density and cover, and precipitation. In terms of direct effects, invasion impacts were negatively linked to temperature and native plant communities, and positively to precipitation and soil microbes. Soil microbes were crucial in the network of indirect effects on invasion impacts. These findings suggest that the characteristics of recipient communities are the most important determinants of invasion impacts and that invasion impacts may be a continuum across an entire invaded range.

  18. A global evaluation of metabolic theory as an explanation for terrestrial species richness gradients

    DEFF Research Database (Denmark)

    Hawkins, Bradford A.; Albuquerque, Fabio S.; Araújo, Miguel B.

    2007-01-01

    We compiled 46 broadscale data sets of species richness for a wide range of terrestrial plant, invertebrate, and ectothermic vertebrate groups in all parts of the world to test the ability of metabolic theory to account for observed diversity gradients. The theory makes two related predictions: (1...... component to test prediction 2 for subsets of the data. Of the 46 data sets analyzed in their entirety using OLS regression one was consistent with metabolic theory (meeting both predictions), and one was possibly consistent. Using RMA regression, no data sets were consistent. Of 67 analyses of prediction 2...... by metabolic theory based on both OLS and RMA regressions. We conclude that metabolic theory, as currently formulated, is a poor predictor of observed diversity gradients in most terrestrial systems....

  19. Mathematical modelling of anisotropy of illite-rich shale

    Science.gov (United States)

    Chesnokov, E.M.; Tiwary, D.K.; Bayuk, I.O.; Sparkman, M.A.; Brown, R.L.

    2009-01-01

    The estimation of illite-rich shale anisotropy to account for the alignment of clays and gas- or brine-filled cracks is presented via mathematical modelling. Such estimation requires analysis to interpret the dominance of one effect over another. This knowledge can help to evaluate the permeability in the unconventional reservoir, stress orientation, and the seal capacity for the conventional reservoir. Effective media modelling is used to predict the elastic properties of the illite-rich shale and to identify the dominant contributions to the shale anisotropy. We consider two principal reasons of the shale anisotropy: orientation of clay platelets and orientation of fluid-filled cracks. In reality, both of these two factors affect the shale anisotropy. The goal of this study is, first, to separately analyse the effect of these two factors to reveal the specific features in P- and S-wave velocity behaviour typical of each of the factors, and, then, consider a combined effect of the factors when the cracks are horizontally or vertically aligned. To do this, we construct four models of shale. The behaviour of P- and S-wave velocities is analysed when gas- and water-filled cracks embedded in a host matrix are randomly oriented, or horizontally or vertically aligned. The host matrix can be either isotropic or anisotropic (of VTI symmetry). In such a modelling, we use published data on mineralogy and clay platelet alignment along with other micromechanical measurements. In the model, where the host matrix is isotropic, the presence of a singularity point (when the difference VS1 - VS2 changes its sign) in shear wave velocities is an indicator of brine-filled aligned cracks. In the model with the VTI host matrix and horizontally aligned cracks filled with gas, an increase in their volume concentration leads to that the azimuth at which the singularity is observed moves toward the symmetry axis. In this case, if the clay content is small (around 20 per cent), the

  20. Evidence for hybridization and introgression within a species-rich oak (Quercus spp. community

    Directory of Open Access Journals (Sweden)

    Finkeldey Reiner

    2007-11-01

    Full Text Available Abstract Background Analysis of interspecific gene flow is crucial for the understanding of speciation processes and maintenance of species integrity. Oaks (genus Quercus, Fagaceae are among the model species for the study of hybridization. Natural co-occurrence of four closely related oak species is a very rare case in the temperate forests of Europe. We used both morphological characters and genetic markers to characterize hybridization in a natural community situated in west-central Romania and which consists of Quercus robur, Q. petraea, Q. pubescens, and Q. frainetto, respectively. Results On the basis of pubescence and leaf morphological characters ~94% of the sampled individuals were assigned to pure species. Only 16 (~6% individual trees exhibited intermediate morphologies or a combination of characters of different species. Four chloroplast DNA haplotypes were identified in the study area. The distribution of haplotypes within the white oak complex showed substantial differences among species. However, the most common haplotypes were present in all four species. Furthermore, based on a set of 7 isozyme and 6 microsatellite markers and using a Bayesian admixture analysis without any a priori information on morphology we found that four genetic clusters best fit the data. There was a very good correspondence of each species with one of the inferred genetic clusters. The estimated introgression level varied markedly between pairs of species ranging from 1.7% between Q. robur and Q. frainetto to 16.2% between Q. pubescens and Q. frainetto. Only nine individuals (3.4% appeared to be first-generation hybrids. Conclusion Our data indicate that natural hybridization has occurred at relatively low rates. The different levels of gene flow among species might be explained by differences in flowering time and spatial position within the stand. In addition, a partial congruence between phenotypically and genetically intermediate individuals was

  1. Bat species richness and activity over an elevation gradient in mediterranean shrublands of Crete

    Directory of Open Access Journals (Sweden)

    Panagiotis Georgiakakis

    2010-08-01

    Full Text Available Abstract
    The effect of elevation on bat species richness and activity was investigated in shrublands of central Crete (Greece using broad-band acoustic surveys. Recordings of echolocation calls were made in 15 transects equally distributed in three distinct elevation zones (500, 1000 and 1500 m a.s.l. during spring and autumn 2007-2008. Time-expanded calls were subsequently identified with the use of quadratic discriminant functions.
    Out of 13 species recorded, Hypsugo savii, Pipistrellus kuhlii and Tadarida teniotis were the most common and abundant. Many Rhinolophus hipposideros were also recorded in all elevation zones. Thirteen species were recorded in the lower elevation zone, 7 species in the mid one and 8 species in the 1500 m a.s.l. sites. Species richness, the number of bat passes of the most abundant species, as well as the total number of bat passes were not significantly affected by elevation. In spring both species richness and bat activity were higher than in autumn, although the corresponding difference in temperature was not significant.
    The high variability in both bat activity and the number of species found per transect in each elevation zone probably depended on the presence of other habitat types in the close vicinity, while roost availability and location might also have played an important role.
    We suggest that the ability of bats to perform regular movements along the elevational gradient has to be taken in account when assessing elevational patterns in bat diversity and activity. The geology of the study area is also of considerable importance through its effect on foraging and roosting opportunities for bats.

    Riassunto
    Ricchezza specifica e attività dei chirotteri lungo un gradiente altitudinale nella macchia mediterranea di Creta
    L’effetto della quota su ricchezza in specie e

  2. Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity

    Science.gov (United States)

    Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.

    2014-08-01

    Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03-0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.

  3. Elevational plant species richness patterns and their drivers across non-endemics, endemics and growth forms in the Eastern Himalaya.

    Science.gov (United States)

    Manish, Kumar; Pandit, Maharaj K; Telwala, Yasmeen; Nautiyal, Dinesh C; Koh, Lian Pin; Tiwari, Sudha

    2017-09-01

    Despite decades of research, ecologists continue to debate how spatial patterns of species richness arise across elevational gradients on the Earth. The equivocal results of these studies could emanate from variations in study design, sampling effort and data analysis. In this study, we demonstrate that the richness patterns of 2,781 (2,197 non-endemic and 584 endemic) angiosperm species along an elevational gradient of 300-5,300 m in the Eastern Himalaya are hump-shaped, spatial scale of extent (the proportion of elevational gradient studied) dependent and growth form specific. Endemics peaked at higher elevations than non-endemics across all growth forms (trees, shrubs, climbers, and herbs). Richness patterns were influenced by the proportional representation of the largest physiognomic group (herbs). We show that with increasing spatial scale of extent, the richness patterns change from a monotonic to a hump-shaped pattern and richness maxima shift toward higher elevations across all growth forms. Our investigations revealed that the combination of ambient energy (air temperature, solar radiation, and potential evapo-transpiration) and water availability (soil water content and precipitation) were the main drivers of elevational plant species richness patterns in the Himalaya. This study highlights the importance of factoring in endemism, growth forms, and spatial scale when investigating elevational gradients of plant species distributions and advances our understanding of how macroecological patterns arise.

  4. Consistency of effects of tropical-forest disturbance on species composition and richness relative to use of indicator taxa.

    Science.gov (United States)

    Stork, N E; Srivastava, D S; Eggleton, P; Hodda, M; Lawson, G; Leakey, R R B; Watt, A D

    2017-08-01

    Lawton et al. (1998) found, in a highly cited study, that the species richness of 8 taxa each responds differently to anthropogenic disturbance in Cameroon forests. Recent developments in conservation science suggest that net number of species is an insensitive measure of change and that understanding which species are affected by disturbance is more important. It is also recognized that all disturbance types are not equal in their effect on species and that grouping species according to function rather than taxonomy is more informative of responses of biodiversity to change. In a reanalysis of most of the original Cameroon data set (canopy and ground ants, termites, canopy beetles, nematodes, and butterflies), we focused on changes in species and functional composition rather than richness and used a more inclusive measure of forest disturbance based on 4 component drivers of change: years since disturbance, tree cover, soil compaction, and degree of tree removal. Effects of disturbance on compositional change were largely concordant between taxa. Contrary to Lawton et al.'s findings, species richness for most groups did not decline with disturbance level, providing support for the view that trends in species richness at local scales do not reflect the resilience of ecosystems to disturbance. Disturbance affected species composition more strongly than species richness for butterflies, canopy beetles, and litter ants. For these groups, disturbance caused species replacements rather than just species loss. Only termites showed effects of disturbance on species richness but not composition, indicating species loss without replacement. Although disturbance generally caused changes in composition, the strength of this relationship depended on the disturbance driver. Butterflies, litter ants, and nematodes were correlated with amount of tree cover, canopy beetles were most strongly correlated with time since disturbance, and termites were most strongly correlated with

  5. Evolutionary dynamics of an at-rich satellite DNA and its contribution to karyotype differentiation in wild diploid Arachis species.

    Science.gov (United States)

    Samoluk, Sergio Sebastián; Robledo, Germán; Bertioli, David; Seijo, José Guillermo

    2017-04-01

    Satellite DNA (satDNA) is a major component of the heterochromatic regions of eukaryote genomes and usually shows a high evolutionary dynamic, even among closely related species. Section Arachis (genus Arachis) is composed of species belonging to six different genomes (A, B, D, F, G and K). The most distinguishing features among these genomes are the amount and distribution of the heterochromatin in the karyotypes. With the objective of gaining insight into the sequence composition and evolutionary dynamics of the heterochromatin fraction in Arachis, we investigated here the sequence diversity, genomic abundance, and chromosomal distribution of a satDNA family (ATR-2) among seven diploid species of section Arachis. All of the isolated sequences were AT-rich and highly conserved at both intraspecific and interspecific levels, without any species-specific polymorphism. Pairwise comparisons of isolated ATR-2 monomers revealed that most of the nucleotide sites were in the first two transitional stages of Strachan's model. However, the abundance of ATR-2 was significantly different among genomes according to the 'library hypothesis'. Fluorescent in situ hybridization revealed that ATR-2 is a main component of the DAPI + centromeric heterochromatin of the A, F, and K genomes. Thus, the evolution of the different heterochromatin patterns observed in Arachis genomes can be explained, at least in part, by the differential representation of ATR-2 among the different species or even among the chromosomes of the same complement. These findings are the first to demonstrate the participation of satDNA sequences in the karyotype diversification of wild diploid Arachis species.

  6. Species Richness and Abundance of Cerambycidae (Coleoptera) in Huatulco, Oaxaca, Mexico; Relationships with Phenological Changes in the Tropical Dry Forest.

    Science.gov (United States)

    Noguera, F A; Ortega-Huerta, M A; Zaragoza-Caballero, S; González-Soriano, E; Ramírez-García, E

    2017-07-26

    Cerambycidae have an important ecological role in initiating the degradation process of dead wood, but few studies have evaluated Cerambycidae community attributes in relation to ecosystem phenology. We surveyed the cerambicid fauna of the tropical dry forest in Huatulco, Oaxaca, Mexico, and explored the relationship of Cerambycidae species richness and abundance with phenological changes in vegetation. We applied three collecting methods of light traps, direct collection, and Malaise traps to survey Cerambycidae throughout 2005. To determine seasonal variations, we collected samples in the dry season month of February in the rainy season of May-July and August-September, and in the transition months of October and November through. We collected and identified 145 species, 88 genera, 37 tribes, and four subfamilies. The subfamily with the highest number of species was Cerambycinae (100 species), and the tribe with the highest number of genera and species was Elaphidiini with 13 genera and 33 species. The ICE non-parametric estimator determined an overall expected richness of 373 species, while the overall Shannon Diversity Index was 4.1. Both species richness and abundance varied seasonally, with the highest values recorded in the rainy season and the lowest in the dry season. Overall species abundance was not significantly correlated to monthly rainfall or EVI neither, only for "direct collecting" the EVI vs Richness and EVI vs Shannon Diversity Index were significantly correlated. We propose that the seemingly contradictory relationships between seasonal richness patterns of Cerambycidae and the greening/senescence of vegetation (EVI) may be explained by the seasonal availability of dead organic matter, flowers, or leafy vegetation that may be synchronized with the behavior of different cerambycid species.

  7. Phylogeny, classification, and fruit evolution of the species-rich Neotropical bellflowers (Campanulaceae: Lobelioideae).

    Science.gov (United States)

    Lagomarsino, Laura P; Antonelli, Alexandre; Muchhala, Nathan; Timmermann, Allan; Mathews, Sarah; Davis, Charles C

    2014-12-01

    • The species-rich Neotropical genera Centropogon, Burmeistera, and Siphocampylus represent more than half of the ∼1200 species in the subfamily Lobelioideae (Campanulaceae). They exhibit remarkable morphological variation in floral morphology and habit. Limited taxon sampling and phylogenetic resolution, however, obscures our understanding of relationships between and within these genera and underscores our uncertainty of the systematic value of fruit type as a major diagnostic character.• We inferred a phylogeny from five plastid DNA regions (rpl32-trnL, ndhF-rpl32, rps16-trnK, trnG-trnG-trns, rbcL) using maximum-likelihood and Bayesian inference. Ancestral character reconstructions were applied to infer patterns of fruit evolution.• Our results demonstrate that the majority of species in the genera Centropogon, Burmeistera, and Siphocampylus together form a primarily mainland Neotropical clade, collectively termed the "centropogonids." Caribbean Siphocampylus, however, group with other Caribbean lobelioid species. We find high support for the monophyly of Burmeistera and the polyphyly of Centropogon and mainland Siphocampylus. The ancestral fruit type of the centropogonids is a capsule; berries have evolved independently multiple times.• Our plastid phylogeny greatly improves the phylogenetic resolution within Neotropical Lobelioideae and highlights the need for taxonomic revisions in the subfamily. Inference of ancestral character states identifies a dynamic pattern of fruit evolution within the centropogonids, emphasizing the difficulty of diagnosing broad taxonomic groups on the basis of fruit type. Finally, we identify that the centropogonids, Lysipomia, and Lobelia section Tupa form a Pan-Andean radiation with broad habitat diversity. This clade is a prime candidate for investigations of Neotropical biogeography and morphological evolution. © 2014 Botanical Society of America, Inc.

  8. The endemic Patagonian vespertilionid assemblage is a depauperate ecomorphological vicariant of species-rich neotropical assemblages

    Science.gov (United States)

    Giannini, Norberto P.

    2017-01-01

    Abstract Vespertilionidae is the most diverse chiropteran family, and its diversity is concentrated in warm regions of the World; however, due to physiological and behavioral adaptations, these bats also dominate bat faunas in temperate regions. Here we performed a comparative study of vespertilionid assemblages from two broad regions of the New World, the cold and harsh Patagonia, versus the remaining temperate-to-subtropical, extra-Patagonian eco-regions of the South American Southern Cone. We took an ecomorphological approach and analyzed the craniodental morphological structure of these assemblages within a phylogenetic framework. We measured 17 craniodental linear variables from 447 specimens of 22 currently recognized vespertilionid species of the study regions. We performed a multivariate analysis to define the morphofunctional space, and calculated the pattern and degree of species packing for each assemblage. We assessed the importance of phylogeny and biogeography, and their impact on depauperate (Patagonian) versus rich (extra-Patagonian) vespertilionid assemblages as determinants of morphospace structuring. We implemented a sensitivity analysis associated to small samples of rare species. The morphological patterns were determined chiefly by the evolutionary history of the family. The Patagonian assemblage can be described as a structurally similar but comparatively depauperate ecomorphological version of those assemblages from neighboring extra-Patagonian eco-regions. The Patagonian assemblage seems to have formed by successively adding populations from Northern regions that eventually speciated in the region, leaving corresponding sisters (vicariants) in extra-Patagonian eco-regions that continued to be characteristically richer. Despite being structurally akin, degree of species packing in Patagonia was comparatively very low, which may reflect the effect of limited dispersal success into a harsh region for bat survival. PMID:29492009

  9. Statistical Model Checking of Rich Models and Properties

    DEFF Research Database (Denmark)

    Poulsen, Danny Bøgsted

    Software is in increasing fashion embedded within safety- and business critical processes of society. Errors in these embedded systems can lead to human casualties or severe monetary loss. Model checking technology has proven formal methods capable of finding and correcting errors in software...... motivates why existing model checking technology should be supplemented by new techniques. It also contains a brief introduction to probability theory and concepts covered by the six papers making up the second part. The first two papers are concerned with developing online monitoring techniques...... systems. The fifth paper shows how stochastic hybrid automata are useful for modelling biological systems and the final paper is concerned with showing how statistical model checking is efficiently distributed. In parallel with developing the theory contained in the papers, a substantial part of this work...

  10. Batrachochytrium dendrobatidis and the collapse of anuran species richness and abundance in the Upper Manu National Park, Southeastern Peru.

    Science.gov (United States)

    Catenazzi, Alessandro; Lehr, Edgar; Rodriguez, Lily O; Vredenburg, Vance T

    2011-04-01

    Amphibians are declining worldwide, but these declines have been particularly dramatic in tropical mountains, where high endemism and vulnerability to an introduced fungal pathogen, Batrachochytrium dendrobatidis (Bd), is associated with amphibian extinctions. We surveyed frogs in the Peruvian Andes in montane forests along a steep elevational gradient (1200-3700 m). We used visual encounter surveys to sample stream-dwelling and arboreal species and leaf-litter plots to sample terrestrial-breeding species. We compared species richness and abundance among the wet seasons of 1999, 2008, and 2009. Despite similar sampling effort among years, the number of species (46 in 1999) declined by 47% between 1999 and 2008 and by 38% between 1999 and 2009. When we combined the number of species we found in 2008 and 2009, the decline from 1999 was 36%. Declines of stream-dwelling and arboreal species (a reduction in species richness of 55%) were much greater than declines of terrestrial-breeding species (reduction of 20% in 2008 and 24% in 2009). Similarly, abundances of stream-dwelling and arboreal frogs were lower in the combined 2008-2009 period than in 1999, whereas densities of frogs in leaf-litter plots did not differ among survey years. These declines may be associated with the infection of frogs with Bd. B. dendrobatidis prevalence correlated significantly with the proportion of species that were absent from the 2008 and 2009 surveys along the elevational gradient. Our results suggest Bd may have arrived at the site between 1999 and 2007, which is consistent with the hypothesis that this pathogen is spreading in epidemic waves along the Andean cordilleras. Our results also indicate a rapid decline of frog species richness and abundance in our study area, a national park that contains many endemic amphibian species and is high in amphibian species richness. ©2010 Society for Conservation Biology.

  11. Effects of Climate and Land Use on Herbaceous Species Richness and Vegetation Composition in West African Savanna Ecosystems

    OpenAIRE

    Zerbo, Issouf; Bernhardt-Römermann, Markus; Ouédraogo, Oumarou; Hahn, Karen; Thiombiano, Adjima

    2016-01-01

    West African Savanna ecosystems are undergoing severe changes in their vegetation composition due to the impact of human land use and changes in climatic conditions. This study aims to examine the effect of climate, land use, and their interaction on species richness and composition of West African herbaceous vegetation. Plot based vegetation sampling was done in Burkina Faso. Specific richness and diversity indices were used to determine the effect of land use, climate, and their interaction...

  12. Can biosecurity and local network properties predict pathogen species richness in the salmonid industry?

    Science.gov (United States)

    More, Simon J.; Geoghegan, Fiona; McManus, Catherine; Hill, Ashley E.; Martínez-López, Beatriz

    2018-01-01

    Salmonid farming in Ireland is mostly organic, which implies limited disease treatment options. This highlights the importance of biosecurity for preventing the introduction and spread of infectious agents. Similarly, the effect of local network properties on infection spread processes has rarely been evaluated. In this paper, we characterized the biosecurity of salmonid farms in Ireland using a survey, and then developed a score for benchmarking the disease risk of salmonid farms. The usefulness and validity of this score, together with farm indegree (dichotomized as ≤ 1 or > 1), were assessed through generalized Poisson regression models, in which the modeled outcome was pathogen richness, defined here as the number of different diseases affecting a farm during a year. Seawater salmon (SW salmon) farms had the highest biosecurity scores with a median (interquartile range) of 82.3 (5.4), followed by freshwater salmon (FW salmon) with 75.2 (8.2), and freshwater trout (FW trout) farms with 74.8 (4.5). For FW salmon and trout farms, the top ranked model (in terms of leave-one-out information criteria, looic) was the null model (looic = 46.1). For SW salmon farms, the best ranking model was the full model with both predictors and their interaction (looic = 33.3). Farms with a higher biosecurity score were associated with lower pathogen richness, and farms with indegree > 1 (i.e. more than one fish supplier) were associated with increased pathogen richness. The effect of the interaction between these variables was also important, showing an antagonistic effect. This would indicate that biosecurity effectiveness is achieved through a broader perspective on the subject, which includes a minimization in the number of suppliers and hence in the possibilities for infection to enter a farm. The work presented here could be used to elaborate indicators of a farm’s disease risk based on its biosecurity score and indegree, to inform risk-based disease surveillance and

  13. Plant species richness and shrub cover attenuate drought effects on ecosystem functioning across Patagonian rangelands.

    Science.gov (United States)

    Gaitán, Juan J; Bran, Donaldo; Oliva, Gabriel; Maestre, Fernando T; Aguiar, Martín R; Jobbágy, Esteban; Buono, Gustavo; Ferrante, Daniela; Nakamatsu, Viviana; Ciari, Georgina; Salomone, Jorge; Massara, Virginia

    2014-10-01

    Drought is an increasingly common phenomenon in drylands as a consequence of climate change. We used 311 sites across a broad range of environmental conditions in Patagonian rangelands to evaluate how drought severity and temperature (abiotic factors) and vegetation structure (biotic factors) modulate the impact of a drought event on the annual integral of normalized difference vegetation index (NDVI-I), our surrogate of ecosystem functioning. We found that NDVI-I decreases were larger with both increasing drought severity and temperature. Plant species richness (SR) and shrub cover (SC) attenuated the effects of drought on NDVI-I. Grass cover did not affect the impacts of drought on NDVI-I. Our results suggest that warming and species loss, two important imprints of global environmental change, could increase the vulnerability of Patagonian ecosystems to drought. Therefore, maintaining SR through appropriate grazing management can attenuate the adverse effects of climate change on ecosystem functioning. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Geographical Gradients in Argentinean Terrestrial Mammal Species Richness and Their Environmental Correlates

    Science.gov (United States)

    Márquez, Ana L.; Real, Raimundo; Kin, Marta S.; Guerrero, José Carlos; Galván, Betina; Barbosa, A. Márcia; Olivero, Jesús; Palomo, L. Javier; Vargas, J. Mario; Justo, Enrique

    2012-01-01

    We analysed the main geographical trends of terrestrial mammal species richness (SR) in Argentina, assessing how broad-scale environmental variation (defined by climatic and topographic variables) and the spatial form of the country (defined by spatial filters based on spatial eigenvector mapping (SEVM)) influence the kinds and the numbers of mammal species along these geographical trends. We also evaluated if there are pure geographical trends not accounted for by the environmental or spatial factors. The environmental variables and spatial filters that simultaneously correlated with the geographical variables and SR were considered potential causes of the geographic trends. We performed partial correlations between SR and the geographical variables, maintaining the selected explanatory variables statistically constant, to determine if SR was fully explained by them or if a significant residual geographic pattern remained. All groups and subgroups presented a latitudinal gradient not attributable to the spatial form of the country. Most of these trends were not explained by climate. We used a variation partitioning procedure to quantify the pure geographic trend (PGT) that remained unaccounted for. The PGT was larger for latitudinal than for longitudinal gradients. This suggests that historical or purely geographical causes may also be relevant drivers of these geographical gradients in mammal diversity. PMID:23028254

  15. Species Richness, Community Organization, and Spatiotemporal Distribution of Earthworms in the Pineapple Agroecosystems of Tripura, India

    Directory of Open Access Journals (Sweden)

    Animesh Dey

    2016-01-01

    Full Text Available The impact that plant communities may have on underground faunal diversity is unclear. Therefore, understanding the links between plants and organisms is of major interest. Earthworm population dynamics were studied in the pineapple agroecosystems of Tripura to evaluate the impact of monoculture plantation on earthworm communities. A total of thirteen earthworm species belonging to four families and five genera were collected from different sampling sites. Application of sample-based rarefaction curve and nonparametric richness estimators reveal 90–95% completeness of sampling. Earthworm community of pineapple agroecosystems was dominated by endogeic earthworms and Drawida assamensis was the dominant species with respect to its density, biomass, and relative abundance. Vertical distribution of earthworms was greatly influenced by seasonal variations. Population density and biomass of earthworms peaked during monsoon and postmonsoon period, respectively. Overall density and biomass of earthworms were in increasing trend with an increase in plantation age and were highest in the 30–35-year-old plantation. Significant decrease in the Shannon diversity and evenness index and increase in Simpson’s dominance and spatial aggregation index with an increase in the age of pineapple plantation were recorded. Soil temperature and soil moisture were identified as the most potent regulators of earthworm distribution in the pineapple plantation.

  16. Changes of bacterioplankton apparent species richness in two ornamental fish aquaria.

    Science.gov (United States)

    Vlahos, Nikolaos; Kormas, Konstantinos Ar; Pachiadaki, Maria G; Meziti, Alexandra; Hotos, George N; Mente, Eleni

    2013-12-01

    We analysed the 16S rRNA gene diversity within the bacterioplankton community in the water column of the ornamental fish Pterophyllum scalare and Archocentrus nigrofasciatus aquaria during a 60-day growth experiment in order to detect any dominant bacterial species and their possible association with the rearing organisms. The basic physical and chemical parameters remained stable but the bacterial community at 0, 30 and 60 days showed marked differences in bacterial cell abundance and diversity. We found high species richness but no dominant phylotypes were detected. Only few of the phylotypes were found in more than one time point per treatment and always with low relative abundance. The majority of the common phylotypes belonged to the Proteobacteria phylum and were closely related to Acinetobacter junii, Pseudomonas sp., Nevskia ramosa, Vogesella perlucida, Chitinomonas taiwanensis, Acidovorax sp., Pelomonas saccharophila and the rest belonged to the α-Proteobacteria, Bacteroidetes, Actinobacteria, candidate division OP11 and one unaffiliated group. Several of these phylotypes were closely related to known taxa including Sphingopyxis chilensis, Flexibacter aurantiacus subsp. excathedrus and Mycobacterium sp. Despite the high phylogenetic diversity most of the inferred ecophysiological roles of the found phylotypes are related to nitrogen metabolism, a key process for fish aquaria.

  17. Vibrational Spectroscopy of Chemical Species in Silicon and Silicon-Rich Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Kirill O. Bugaev

    2012-01-01

    Full Text Available Vibrational properties of hydrogenated silicon-rich nitride (SiN:H of various stoichiometry (0.6≤≤1.3 and hydrogenated amorphous silicon (a-Si:H films were studied using Raman spectroscopy and Fourier transform infrared spectroscopy. Furnace annealing during 5 hours in Ar ambient at 1130∘C and pulse laser annealing were applied to modify the structure of films. Surprisingly, after annealing with such high-thermal budget, according to the FTIR data, the nearly stoichiometric silicon nitride film contains hydrogen in the form of Si–H bonds. From analysis of the FTIR data of the Si–N bond vibrations, one can conclude that silicon nitride is partly crystallized. According to the Raman data a-Si:H films with hydrogen concentration 15% and lower contain mainly Si–H chemical species, and films with hydrogen concentration 30–35% contain mainly Si–H2 chemical species. Nanosecond pulse laser treatments lead to crystallization of the films and its dehydrogenization.

  18. Geographical Gradients in Argentinean Terrestrial Mammal Species Richness and Their Environmental Correlates

    Directory of Open Access Journals (Sweden)

    Ana L. Márquez

    2012-01-01

    Full Text Available We analysed the main geographical trends of terrestrial mammal species richness (SR in Argentina, assessing how broad-scale environmental variation (defined by climatic and topographic variables and the spatial form of the country (defined by spatial filters based on spatial eigenvector mapping (SEVM influence the kinds and the numbers of mammal species along these geographical trends. We also evaluated if there are pure geographical trends not accounted for by the environmental or spatial factors. The environmental variables and spatial filters that simultaneously correlated with the geographical variables and SR were considered potential causes of the geographic trends. We performed partial correlations between SR and the geographical variables, maintaining the selected explanatory variables statistically constant, to determine if SR was fully explained by them or if a significant residual geographic pattern remained. All groups and subgroups presented a latitudinal gradient not attributable to the spatial form of the country. Most of these trends were not explained by climate. We used a variation partitioning procedure to quantify the pure geographic trend (PGT that remained unaccounted for. The PGT was larger for latitudinal than for longitudinal gradients. This suggests that historical or purely geographical causes may also be relevant drivers of these geographical gradients in mammal diversity.

  19. Can Airborne Laser Scanning (ALS and Forest Estimates Derived from Satellite Images Be Used to Predict Abundance and Species Richness of Birds and Beetles in Boreal Forest?

    Directory of Open Access Journals (Sweden)

    Eva Lindberg

    2015-04-01

    Full Text Available In managed landscapes, conservation planning requires effective methods to identify high-biodiversity areas. The objective of this study was to evaluate the potential of airborne laser scanning (ALS and forest estimates derived from satellite images extracted at two spatial scales for predicting the stand-scale abundance and species richness of birds and beetles in a managed boreal forest landscape. Multiple regression models based on forest data from a 50-m radius (i.e., corresponding to a homogenous forest stand had better explanatory power than those based on a 200-m radius (i.e., including also parts of adjacent stands. Bird abundance and species richness were best explained by the ALS variables “maximum vegetation height” and “vegetation cover between 0.5 and 3 m” (both positive. Flying beetle abundance and species richness, as well as epigaeic (i.e., ground-living beetle richness were best explained by a model including the ALS variable “maximum vegetation height” (positive and the satellite-derived variable “proportion of pine” (negative. Epigaeic beetle abundance was best explained by “maximum vegetation height” at 50 m (positive and “stem volume” at 200 m (positive. Our results show that forest estimates derived from satellite images and ALS data provide complementary information for explaining forest biodiversity patterns. We conclude that these types of remote sensing data may provide an efficient tool for conservation planning in managed boreal landscapes.

  20. Diversity, richness, and vertical stratification of bat species in an Atlantic Forest remnant in the Brazilian southern region

    Directory of Open Access Journals (Sweden)

    Marta Elena Fabián

    2013-11-01

    Full Text Available In this study, we evaluated the diversity, richness, and composition of bat species in the canopy and understory of an Atlantic Forest remnant in the Brazilian southern region, in the municipally of Porto Alegre, Rio Grande do Sul. Between July 2010 and June 2011, bats were captured by means of 10 mist nets, 5 in the canopy and 5 in the understory. We calculated the Shannon-Wiener diversity index (H’, the expected richness (Chao 1 and Jackknife 2, and the constancy index of species for the entire area. We applied Fisher’s Exact test to check if the catches were different in the canopy and understory. We captured 107 chiropteran specimens, 20 individuals of 5 species in the canopy and 87 individuals of 7 species in the understory. The diversity index was 1,481 and the expected richness was 9 (Chao 1 and 10 (Jackknife 2. The constancy index showed that Sturnira lilium and Glossophaga soricina are relatively common in the study area. The registered richness represents about 22% of bat species listed for the state of Rio Grande do Sul. Vertical stratification analysis showed that some species are more frequent in the canopy and others in the understory.

  1. High Species Richness of Scinax Treefrogs (Hylidae) in a Threatened Amazonian Landscape Revealed by an Integrative Approach

    Science.gov (United States)

    Ferrão, Miquéias; Colatreli, Olavo; de Fraga, Rafael; Kaefer, Igor L.; Moravec, Jiří; Lima, Albertina P.

    2016-01-01

    Rising habitat loss is one of the main drivers of the global amphibian decline. Nevertheless, knowledge of amphibian diversity needed for effective habitat protection is still highly inadequate in remote tropical regions, the greater part of the Amazonia. In this study we integrated molecular, morphological and bioacoustic evidence to evaluate the species richness of the treefrogs genus Scinax over a 1000 km transect across rainforest of the Purus-Madeira interfluve, and along the east bank of the upper Madeira river, Brazilian Amazonia. Analysis revealed that 82% of the regional species richness of Scinax is still undescribed; two nominal species, seven confirmed candidate species, two unconfirmed candidate species, and one deep conspecific lineage were detected in the study area. DNA barcoding based analysis of the 16s rRNA gene indicates possible existence of three discrete species groups within the genus Scinax, in addition to the already-known S. rostratus species Group. Quantifying and characterizing the number of undescribed Scinax taxa on a regional scale, we provide a framework for future taxonomic study in Amazonia. These findings indicate that the level to which Amazonian anura species richness has been underestimated is far greater than expected. Consequently, special attention should be paid both to taxonomic studies and protection of the still-neglected Amazonian Scinax treefrogs. PMID:27806089

  2. Higher species richness and abundance of fish and benthic invertebrates around submarine groundwater discharge in Obama Bay, Japan

    Directory of Open Access Journals (Sweden)

    Tatsuya Utsunomiya

    2017-06-01

    New hydrological insights: Species richness, abundance and biomass of fishes and abundance and biomass of turban snail and hermit crab were significantly higher in the area with high 222Rn concentration. Abundance of gammarids, the most major prey item of the fishes, was 18 times higher in the area with high 222Rn concentration. Since the turban snail, hermit crab and gammarids feed on producers (phytoplankton and benthic microalgae, submarine groundwater are concluded to increase species richness and production of fishes and invertebrates through providing nutrients and enhancing primary production.

  3. Climatic controls on the global distribution, abundance, and species richness of mangrove forests

    Science.gov (United States)

    Osland, Michael J.; Feher, Laura C.; Griffith, Kereen; Cavanaugh, Kyle C.; Enwright, Nicholas M.; Day, Richard H.; Stagg, Camille L.; Krauss, Ken W.; Howard, Rebecca J.; Grace, James B.; Rogers, Kerrylee

    2017-01-01

    Mangrove forests are highly productive tidal saline wetland ecosystems found along sheltered tropical and subtropical coasts. Ecologists have long assumed that climatic drivers (i.e., temperature and rainfall regimes) govern the global distribution, structure, and function of mangrove forests. However, data constraints have hindered the quantification of direct climate-mangrove linkages in many parts of the world. Recently, the quality and availability of global-scale climate and mangrove data have been improving. Here, we used these data to better understand the influence of air temperature and rainfall regimes upon the distribution, abundance, and species richness of mangrove forests. Although our analyses identify global-scale relationships and thresholds, we show that the influence of climatic drivers is best characterized via regional range limit-specific analyses. We quantified climatic controls across targeted gradients in temperature and/or rainfall within 14 mangrove distributional range limits. Climatic thresholds for mangrove presence, abundance, and species richness differed among the 14 studied range limits. We identified minimum temperature-based thresholds for range limits in eastern North America, eastern Australia, New Zealand, eastern Asia, eastern South America, and southeast Africa. We identified rainfall-based thresholds for range limits in western North America, western Gulf of Mexico, western South America, western Australia, Middle East, northwest Africa, east central Africa, and west central Africa. Our results show that in certain range limits (e.g., eastern North America, western Gulf of Mexico, eastern Asia), winter air temperature extremes play an especially important role. We conclude that rainfall and temperature regimes are both important in western North America, western Gulf of Mexico, and western Australia. With climate change, alterations in temperature and rainfall regimes will affect the global distribution, abundance, and

  4. Effects of Habitat and Human Activities on Species Richness and Assemblages of Staphylinidae (Coleoptera in the Baltic Sea Coast

    Directory of Open Access Journals (Sweden)

    Ulrich Irmler

    2012-01-01

    Full Text Available In 2009, the staphylind fauna was studied in six habitats of the Baltic Sea coast of Schleswig-Holstein (northern Germany. The following habitats lagoon, sandy beach, shingle beach, primary dune, wooded cliff, and woodless cliff were significantly separated by their species composition. Vegetation and soil moisture were the most important factors separating the assemblages. Lagoons exhibited the most species-rich habitat. Sandy beaches provided the highest number of endangered species. Both sandy beaches and woodless cliffs showed the highest number of exclusive species. A loss of species was determined in the gradient from sandy to shingle beaches. Few species preferred shingle beaches; abundance of Cafius xantholoma increased with the increasing amount of shingle. More species preferred the sandy conditions, for example, Polystomota grisea, P. punctatella, and Phytosus spinifer. Anotylus insecatus and Bledius defensus require distinct mixtures of sand and silt on woodless cliffs. Tourist impact on sandy beaches accounts for approximately 50% loss of species.

  5. Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico)

    Science.gov (United States)

    Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe

    2015-01-01

    . chihuahuana trees and P. chihuahuana tree community and but to specific spatial scales measured by the univariate L-function. The spatial distribution pattern of P. chihuahuana trees was found to be independent of patches of other tree species measured by the bivariate L-function. The spatial distribution was not significantly related to tree density, diameter distribution or tree species diversity. The index of Clark and Evans decreased significantly from the southern to northern plots containing all tree species. Self-thinning due to intra and inter-specific competition-induced mortality is probably the main cause of the decrease in aggregation intensity during the course of population development in this tree community. We recommend the use of larger sampling plots (> 0.25 ha) in uneven-aged and species-rich forest ecosystems to detect less obvious, but important, relationships between spatial tree pattern and functioning and diversity in these forests. PMID:26496189

  6. Data gaps in anthropogenically driven local-scale species richness change studies across the Earth's terrestrial biomes.

    Science.gov (United States)

    Murphy, Grace E P; Romanuk, Tamara N

    2016-05-01

    There have been numerous attempts to synthesize the results of local-scale biodiversity change studies, yet several geographic data gaps exist. These data gaps have hindered ecologist's ability to make strong conclusions about how local-scale species richness is changing around the globe. Research on four of the major drivers of global change is unevenly distributed across the Earth's biomes. Here, we use a dataset of 638 anthropogenically driven species richness change studies to identify where data gaps exist across the Earth's terrestrial biomes based on land area, future change in drivers, and the impact of drivers on biodiversity, and make recommendations for where future studies should focus their efforts. Across all drivers of change, the temperate broadleaf and mixed forests and the tropical moist broadleaf forests are the best studied. The biome-driver combinations we have identified as most critical in terms of where local-scale species richness change studies are lacking include the following: land-use change studies in tropical and temperate coniferous forests, species invasion and nutrient addition studies in the boreal forest, and warming studies in the boreal forest and tropics. Gaining more information on the local-scale effects of the specific human drivers of change in these biomes will allow for better predictions of how human activity impacts species richness around the globe.

  7. Quantifying Effects of Spatial Heterogeneity of Farmlands on Bird Species Richness by Means of Similarity Index Pairwise

    Directory of Open Access Journals (Sweden)

    Federico Morelli

    2013-01-01

    Full Text Available Many studies have shown how intensification of farming is the main cause of loss biodiversity in these environments. During the last decades, agroecosystems in Europe have changed drastically, mainly due to mechanization of agriculture. In this work, species richness in bird communities was examined on a gradient of spatial heterogeneity of farmlands, in order to quantify its effects. Four categories of farmland spatial heterogeneity were defined, based on landscape and landuse parameters. The impact of features increasing the spatial heterogeneity was quantified comparing the similarity indexes between bird communities in several farmlands of Central Italy. The effects of environmental variables on bird richness were analyzed using GLM. The results highlighted that landscape features surrogates of high nature values (HNVs of farmlands can increase more than 50% the bird species richness. The features more related to bird richness were hedgerows, scattered shrubs, uncultivated patches, and powerlines. The results confirm that the approach based on HNV for evaluating the farmlands is also suitable in order to study birds’ diversity. However, some species are more sensitive to heterogeneity, while other species occupy mainly homogeneous farmlands. As a consequence, different conservation methods must be considered for each farmland bird species.

  8. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China

    Science.gov (United States)

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y. Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region. PMID:27097325

  9. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China.

    Directory of Open Access Journals (Sweden)

    Yanjing Lou

    Full Text Available Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region.

  10. What determines species richness of parasitic organisms? A meta-analysis across animal, plant and fungal hosts.

    Science.gov (United States)

    Kamiya, Tsukushi; O'Dwyer, Katie; Nakagawa, Shinichi; Poulin, Robert

    2014-02-01

    Although a small set of external factors account for much of the spatial variation in plant and animal diversity, the search continues for general drivers of variation in parasite species richness among host species. Qualitative reviews of existing evidence suggest idiosyncrasies and inconsistent predictive power for all proposed determinants of parasite richness. Here, we provide the first quantitative synthesis of the evidence using a meta-analysis of 62 original studies testing the relationship between parasite richness across animal, plant and fungal hosts, and each of its four most widely used presumed predictors: host body size, host geographical range size, host population density, and latitude. We uncover three universal predictors of parasite richness across host species, namely host body size, geographical range size and population density, applicable regardless of the taxa considered and independently of most aspects of study design. A proper match in the primary studies between the focal predictor and both the spatial scale of study and the level at which parasite species richness was quantified (i.e. within host populations or tallied across a host species' entire range) also affected the magnitude of effect sizes. By contrast, except for a couple of indicative trends in subsets of the full dataset, there was no strong evidence for an effect of latitude on parasite species richness; where found, this effect ran counter to the general latitude gradient in diversity, with parasite species richness tending to be higher further from the equator. Finally, the meta-analysis also revealed a negative relationship between the magnitude of effect sizes and the year of publication of original studies (i.e. a time-lag bias). This temporal bias may be due to the increasing use of phylogenetic correction in comparative analyses of parasite richness over time, as this correction yields more conservative effect sizes. Overall, these findings point to common underlying

  11. Influences of Human-induced Habitat Modifications on Basin-wide Fish Species Richness in the Danshuei River Watershed of Taiwan

    Science.gov (United States)

    Cheng, S. T.; Yu, C. J.; Tsai, W. P.; Chang, F. J.

    2016-12-01

    The intensive exploitation of water resources has seriously degraded riverine environments and threatened inhabitant biota. In this study, we aim to assess the influences of human-induced habitat modifications on basin-wide fish species richness based on multi-year heterogeneous datasets collected from the Danshuei River Watershed of Taiwan. We aggregated long-term datasets (2003-2012) of fish composition, river network structures, dam locations and water quality parameters including water temperature, pH, conductivity, turbidity, dissolved oxygen and total phosphorus, at 45 sampling sites across the Danshuei River Watershed. We first used a multiple linear regression model to relate river network structures, water quality parameters, land-use changes and dam locations with fish species richness. Then we performed an unsupervised learning and clustering method, the self-organizing map (SOM), to nonlinearly interrelate the complex hydro-chemo-ecosystems. Following that, we compared the major forcing factors detected by different models to evaluate the anthropogenic influences on fish species richness. Our results showed that although based on the same datasets, the forcing factors identified by different methods may not be consistent, and therefore would result in distinct method-oriented stressor-response relationships. Patterns described by linear models focused on the changes of fish species richness with the use of the selected predictors; while patterns described by nonlinear models tended to systematically link multiple variables without the identification of major predictors. Based on the results of our analysis, we recommend that a more effective watershed management strategy should consider landscape as well as riverine habitats as a whole and maintain long-term monitoring programs as a key element to river conservation.

  12. A Chick Model of Retinal Detachment: Cone Rich and Novel

    Science.gov (United States)

    Cebulla, Colleen M.; Zelinka, Chris P.; Scott, Melissa A.; Lubow, Martin; Bingham, Amanda; Rasiah, Stephen; Mahmoud, Ashraf M.; Fischer, Andy J.

    2012-01-01

    Background Development of retinal detachment models in small animals can be difficult and expensive. Here we create and characterize a novel, cone-rich retinal detachment (RD) model in the chick. Methodology/Principal Findings Retinal detachments were created in chicks between postnatal days 7 and 21 by subretinal injections of either saline (SA) or hyaluronic acid (HA). Injections were performed through a dilated pupil with observation via surgical microscope, using the fellow eye as a control. Immunohistochemical analyses were performed at days 1, 3, 7, 10 and 14 after retinal detachment to evaluate the cellular responses of photoreceptors, Müller glia, microglia and nonastrocytic inner retinal glia (NIRG). Cell proliferation was detected with bromodeoxyuridine (BrdU)-incorporation and by the expression of proliferating cell nuclear antigen (PCNA). Cell death was detected with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). As in mammalian models of RD, there is shortening of photoreceptor outer segments and mis-trafficking of photoreceptor opsins in areas of RD. Photoreceptor cell death was maximal 1 day after RD, but continued until 14 days after RD. Müller glia up-regulated glial fibriliary acidic protein (GFAP), proliferated, showed interkinetic nuclear migration, and migrated to the subretinal space in areas of detachment. Microglia became reactive; they up-regulated CD45, acquired amoeboid morphology, and migrated toward outer retina in areas of RD. Reactive NIRG cells accumulated in detached areas. Conclusions/Significance Subretinal injections of SA or HA in the chick eye successfully produced retinal detachments and cellular responses similar to those seen in standard mammalian models. Given the relatively large eye size, and considering the low cost, the chick model of RD offers advantages for high-throughput studies. PMID:22970190

  13. Extending the scope of Darwin's 'abominable mystery': integrative approaches to understanding angiosperm origins and species richness.

    Science.gov (United States)

    Katz, Ofir

    2018-01-25

    Angiosperms are the most species-rich group of land plants, but their origins and fast and intense diversification still require an explanation. Extending research scopes can broaden theoretical frameworks and lines of evidence that can lead to solving this 'abominable mystery'. Solutions lie in understanding evolutionary trends across taxa and throughout the Phanerozoic, and integration between hypotheses and ideas that are derived from multiple disciplines. Descriptions of evolutionary chronologies should integrate between molecular phylogenies, descriptive palaeontology and palaeoecology. New molecular chronologies open new avenues of research of possible Palaeozoic angiosperm ancestors and how they evolved during as many as 200Myr until the emergence of true angiosperms. The idea that 'biodiversity creates biodiversity' requires evidence from past and present ecologies, with changes in herbivory and resource availability throughout the Phanerozoic appearing to be particularly promising. Promoting our understanding of angiosperm origins and diversification in particular, and the evolution of biodiversity in general, requires more profound understanding of the ecological past through integrating taxonomic, temporal and ecological scopes. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Three dimensional marine seismic survey has no measurable effect on species richness or abundance of a coral reef associated fish community

    International Nuclear Information System (INIS)

    Miller, Ian; Cripps, Edward

    2013-01-01

    Highlights: • A marine seismic survey was conducted at Scott Reef, North Western Australia. • Effects of the survey on demersal fish were gauged using underwater visual census. • There was no detectable impact of the seismic survey on species abundance. • There was no detectable impact of the seismic survey on species richness. -- Abstract: Underwater visual census was used to determine the effect of a three dimensional seismic survey on the shallow water coral reef slope associated fish community at Scott Reef. A census of the fish community was conducted on six locations at Scott Reef both before and after the survey. The census included small site attached demersal species belonging to the family Pomacentridae and larger roving demersal species belonging to the non-Pomacentridae families. These data were combined with a decade of historical data to assess the impact of the seismic survey. Taking into account spatial, temporal, spatio-temporal and observer variability, modelling showed no significant effect of the seismic survey on the overall abundance or species richness of Pomacentridae or non-Pomacentridae. The six most abundant species were also analysed individually. In all cases no detectable effect of the seismic survey was found on the abundance of these fish species at Scott Reef

  15. Effects of habitat and landscape characteristics on medium and large mammal species richness and composition in northern Uruguay

    Directory of Open Access Journals (Sweden)

    María José Andrade-Núñez

    2010-01-01

    Full Text Available The increasing world population and demand for food and other products has accelerated the conversion of natural habitats into agricultural lands, plantations and urban areas. Changes in habitat and landscape characteristics due to land-use change can have a significant effect on species presence, abundance, and distribution. Multi-scale approaches have been used to determine the proper spatial scales at which species and communities are responding to habitat transformation. In this context, we evaluated medium and large mammal species richness and composition in gallery forest (n = 10, grassland (n = 10, and exotic tree plantation (n = 10 in a region where grasslands have been converted into exotic tree plantations. We quantified mammal species richness and composition with camera traps and track surveys. The composition of the mammal community was related with local habitat variables, and landscape variables measured at seven spatial scales. We found 14 mammal species in forest, 11 species in plantation, and 7 mammal species in grassland. Two species are exotics, the wild boar Sus scrofa Linnaeus, 1758 and the European hare Lepus europaeus Pallas, 1778. The most common species are the crab-eating fox Cerdocyon thous Linnaeus, 1766, the nine-banded armadillo Dasypus novemcinctus Linnaeus, 1758 and the gray brocket deer Mazama gouazoubira G. Fischer, 1814 which are generalist species. Our results showed significant differences in mammal species richness and composition among the three habitat types. Plantations can have positive and negative effects on the presence of species restricted to grasslands. Positive effects are reflected in a wider local distribution of some forest species that rarely use grassland. The most important habitat and landscape variables that influenced mammal species richness and composition were vertical structure index, canopy cover, tree species diversity, percentage of grass, and the percentage of forest and grassland

  16. Species richness and relative abundance of birds in natural and anthropogenic fragments of Brazilian Atlantic forest

    Directory of Open Access Journals (Sweden)

    Luiz dos Anjos

    2004-06-01

    Full Text Available Bird communities were studied in two types of fragmented habitat of Atlantic forest in the State of Paraná, southern Brazil; one consisted of forest fragments that were created as a result of human activities (forest remnants, the other consisted of a set of naturally occurring forest fragments (forest patches. Using quantitative data obtained by the point counts method in 3 forest patches and 3 forest remnants during one year, species richness and relative abundance were compared in those habitats, considering species groups according to their general feeding habits. Insectivores, omnivores, and frugivores presented similar general tendencies in both habitats (decrease of species number with decreasing size and increasing isolation of forest fragment. However, these tendencies were different, when considering the relative abundance data: the trunk insectivores presented the highest value in the smallest patch while the lowest relative abundance was in the smallest remnant. In the naturally fragmented landscape, time permitted that the loss of some species of trunk insectivores be compensated for the increase in abundance of other species. In contrast, the remnants essentially represented newly formed islands that are not yet at equilibrium and where future species losses would make them similar to the patches.Comunidades de aves foram estudadas em duas regiões fragmentadas de floresta Atlântica no Estado do Paraná, sul do Brasil; uma região é constituída de fragmentos florestais que foram criados como resultado de atividades humanas (remanescentes florestais e a outra de um conjunto de fragmentos florestais naturais (manchas de floresta. Usando dados quantitativos (o método de contagens pontuais previamente obtidos em 3 manchas de floresta e em 3 remanescentes florestais durante um ano, a riqueza e a abundância relativa de aves foram comparadas naqueles habitats considerando as espécies pelos seus hábitos alimentares. Inset

  17. Contrasting Patterns of Species Richness and Functional Diversity in Bird Communities of East African Cloud Forest Fragments.

    Science.gov (United States)

    Ulrich, Werner; Lens, Luc; Tobias, Joseph A; Habel, Jan C

    2016-01-01

    Rapid fragmentation and degradation of large undisturbed habitats constitute major threats to biodiversity. Several studies have shown that populations in small and highly isolated habitat patches are prone to strong environmental and demographic stochasticity and increased risk of extinction. Based on community assembly theory, we predict recent rapid forest fragmentation to cause a decline in species and functional guild richness of forest birds combined with a high species turnover among habitat patches, and well defined dominance structures, if competition is the major driver of community assembly. To test these predictions, we analysed species co-occurrence, nestedness, and competitive strength to infer effects of interspecific competition, habitat structure, and species' traits on the assembly of bird species communities from 12 cloud forest fragments in southern Kenya. Our results do not point to a single ecological driver of variation in species composition. Interspecific competition does not appear to be a major driver of species segregation in small forest patches, while its relative importance appears to be higher in larger ones, which may be indicative for a generic shift from competition-dominated to colonisation-driven community structure with decreasing fragment size. Functional trait diversity was independent of fragment size after controlling for species richness. As fragmentation effects vary among feeding guilds and habitat generalists, in particular, tend to decline in low quality forest patches, we plead for taking species ecology fully into account when predicting tropical community responses to habitat change.

  18. Contrasting Patterns of Species Richness and Functional Diversity in Bird Communities of East African Cloud Forest Fragments.

    Directory of Open Access Journals (Sweden)

    Werner Ulrich

    Full Text Available Rapid fragmentation and degradation of large undisturbed habitats constitute major threats to biodiversity. Several studies have shown that populations in small and highly isolated habitat patches are prone to strong environmental and demographic stochasticity and increased risk of extinction. Based on community assembly theory, we predict recent rapid forest fragmentation to cause a decline in species and functional guild richness of forest birds combined with a high species turnover among habitat patches, and well defined dominance structures, if competition is the major driver of community assembly. To test these predictions, we analysed species co-occurrence, nestedness, and competitive strength to infer effects of interspecific competition, habitat structure, and species' traits on the assembly of bird species communities from 12 cloud forest fragments in southern Kenya. Our results do not point to a single ecological driver of variation in species composition. Interspecific competition does not appear to be a major driver of species segregation in small forest patches, while its relative importance appears to be higher in larger ones, which may be indicative for a generic shift from competition-dominated to colonisation-driven community structure with decreasing fragment size. Functional trait diversity was independent of fragment size after controlling for species richness. As fragmentation effects vary among feeding guilds and habitat generalists, in particular, tend to decline in low quality forest patches, we plead for taking species ecology fully into account when predicting tropical community responses to habitat change.

  19. The paradox of long-term ungulate impact: increase of plant species richness in a temperate forest

    Czech Academy of Sciences Publication Activity Database

    Vild, Ondřej; Hédl, Radim; Kopecký, Martin; Szabó, Péter; Suchánková, Silvie; Zouhar, V.

    2017-01-01

    Roč. 20, č. 2 (2017), s. 282-292 ISSN 1402-2001 R&D Projects: GA AV ČR IAA600050812 EU Projects: European Commission(XE) 278065 - LONGWOOD Institutional support: RVO:67985939 Keywords : plant-herbivore interactions * vegetation resurvey * species richness Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 2.474, year: 2016

  20. Understanding the extreme species richness of semi-dry grasslands in east-central Europe: a comparative approach

    Czech Academy of Sciences Publication Activity Database

    Roleček, Jan; Čornej, I. I.; Tokarjuk, A. I.

    2014-01-01

    Roč. 86, č. 1 (2014), s. 13-34 ISSN 0032-7786 R&D Projects: GA ČR(CZ) GAP504/12/0649 Institutional support: RVO:67985939 Keywords : species richness * environmental history * disjunct distribution Subject RIV: EF - Botanics Impact factor: 4.104, year: 2014

  1. Decline in the species richness contribution of Echinodermata to the macrobenthos in the shelf seas of China

    Science.gov (United States)

    Jin, Shaofei; Wang, Yongli; Xia, Jiangjiang; Xiao, Ning; Zhang, Junlong; Xiong, Zhe

    Echinoderms play crucial roles in the structure of marine macrobenthic communities. They are sensitive to excess absorption of CO2 by the ocean, which induces ocean acidification and ocean warming. In the shelf seas of China, the mean sea surface temperature has a faster warming rate compared with the mean rate of the global ocean, and the apparent decrease in pH is due not only to the increased CO2 absorption in seawater, but also eutrophication. However, little is known about the associated changes in the diversity of echinoderms and their roles in macrobenthic communities in the seas of China. In this study, we conducted a meta-analysis of 77 case studies in 51 papers to examine the changes in the contribution of echinoderm species richness to the macrobenthos in the shelf seas of China since the 1980s. The relative species richness (RSR) was considered as the metric to evaluate these changes. Trends analysis revealed significant declines in RSR in the shelf seas of China, the Yellow Sea, and the East China Sea from 1997 to 2009. Compared with the RSR before 1997, no significant changes in mean RSR were found after 1997, except in the Bohai Sea. In addition, relative change in the RSR of echinoderms and species richness of macrobenthos led to more changes (decrease or increase) in their respective biomasses. Our results imply that changes in species richness may alter the macrobenthic productivity of the marine benthic ecosystem.

  2. Factors associated with grassland bird species richness: The relative roles of grassland area, landscape structure, and prey

    Science.gov (United States)

    Tammy L. Hamer; Curtis H. Flather; Barry R. Noon

    2006-01-01

    The factors responsible for widespread declines of grassland birds in the United States are not well understood. This study, conducted in the short-grass prairie of eastern Wyoming, was designed to investigate the relationship between variation in habitat amount, landscape heterogeneity, prey resources, and spatial variation in grassland bird species richness. We...

  3. Study of neutron-rich Mo isotopes by the projected shell model ...

    Indian Academy of Sciences (India)

    also predicts a decrease in the quantum of triaxiality with increasing neutron number and angular momentum for odd mass neutron-rich Mo isotopes. Keywords. Neutron-rich nuclei; electromagnetic quantities; projected shell model. PACS Nos 21.60.Cs; 21.10.Ky; 21.10.Re; 27.60.+j. 1. Introduction. Neutron-rich nuclei in the ...

  4. SESAM – a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages

    DEFF Research Database (Denmark)

    Guisan, Antoine; Rahbek, Carsten

    2011-01-01

    , and ecological assembly rules to constrain predictions of the richness and composition of species assemblages obtained by stacking predictions of individual species distributions. We believe that such a framework could prove useful in many theoretical and applied disciplines of ecology and evolution, both......Two different approaches currently prevail for predicting spatial patterns of species assemblages. The first approach (macroecological modelling, MEM) focuses directly on realized properties of species assemblages, whereas the second approach (stacked species distribution modelling, S-SDM) starts...... with constituent species to approximate the properties of assemblages. Here, we propose to unify the two approaches in a single ‘spatially explicit species assemblage modelling’ (SESAM) framework. This framework uses relevant designations of initial species source pools for modelling, macroecological variables...

  5. Educational Modelling Language: modelling reusable, interoperable, rich and personalised units of learning

    NARCIS (Netherlands)

    Koper, Rob; Manderveld, Jocelyn

    2003-01-01

    Published:
    Koper, E, J, R., & Manderveld, J. M. (2004). Educational modelling language: modelling reusable, interoperable, rich and personalised units of learning. British Journal of Educational Technology, 35 (5), 537-552.
    Please refer to the printed version of the article. Rob Koper and

  6. Species richness and abundance of bats in fragments of the stational semidecidual forest, Upper Paraná River, southern Brazil

    Directory of Open Access Journals (Sweden)

    H. Ortêncio-Filho

    Full Text Available The Upper Paraná River floodplain is inserted in a region of the Mata Atlântica biome, which is a critical area to preserve. Due to the scarcity of researches about the chiropterofauna in this region, the present study investigated species richness and abundance of bats in remnants from the stational semidecidual forest of the Upper Paraná River, southern Brazil. Samplings were taken every month, from January to December 2006, using 32 mist nets with 8.0 x 2.5 m, resulting in 640 m²/h and totaling a capture effort of 87,040 m²/h. In order to estimate the species richness, the following estimators were employed Chao1 and Jack2. During the study, a total of 563 individuals belonging to 17 species (Artibeus planirostris, Artibeus lituratus, Carollia perspicillata, Platyrrhinus lineatus, Sturnira lilium, Artibeus fimbriatus, Myotis nigricans, Desmodus rotundus, Artibeus obscurus, Noctilio albiventris, Phylostomus discolor, Phylostomus hastatus, Chrotopterus auritus, Lasiurus ega, Chiroderma villosum, Pygoderma bilabiatum and Lasiurus blossevillii were captured. The estimated richness curves tended to stabilize, indicating that most of the species were sampled. Captured species represented 10% of the taxa recorded in Brazil and 28% in Paraná State, revealing the importance of this area for the diversity of bats. These findings indicate the need to determine actions aiming to restrict human activities in these forest fragments, in order to minimize anthropogenic impacts on the chiropterofauna.

  7. Galling Insects of the Brazilian Páramos: Species Richness and Composition Along High-Altitude Grasslands.

    Science.gov (United States)

    Coelho, Marcel S; Carneiro, Marco Antônio Alves; Branco, Cristina A; Borges, Rafael Augusto Xavier; Fernandes, G Wilson

    2017-12-08

    In this work, we investigated the factors that determine the distribution of galling insects in high-altitude grasslands, locally called 'campos de altitude' of Mantiqueira Range and tested whether 1) richness of galling insects decreases with altitude, 2) galling insect richness increases with plant richness, 3) variation in galling insect diversity is predominantly a consequence of its β component, and 4) turnover is the main mechanism driving the beta diversity of both galling insects and plants. Galling insect richness did not exhibit a negative relationship with altitude, but it did increase with plant richness. The additive partition of regional richness (γ) into its local and beta components showed that local diversity (α) of galling insects and plants was relatively low in relation to regional diversity; the β component incorporated most of the regional diversity. This pattern was also found in the multiscale analysis of the additive partition for galling insects and plants. The beta diversity of galling insects and plants was driven predominantly by the process of turnover and minimally by nesting. The results reported here point out that the spatial distribution of galling insects is best explained by historical factors, such as the distribution of genera and species of key host plants, as well as their relation to habitat, than ecological effects such as hygrothermal stress - here represented by altitude. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Tree Species Richness Promotes Invertebrate Herbivory on Congeneric Native and Exotic Tree Saplings in a Young Diversity Experiment.

    Directory of Open Access Journals (Sweden)

    Annika Wein

    Full Text Available Tree diversity in forests is an important driver of ecological processes including herbivory. Empirical evidence suggests both negative and positive effects of tree diversity on herbivory, which can be, respectively, attributed to associational resistance or associational susceptibility. Tree diversity experiments allow testing for associational effects, but evidence regarding which pattern predominates is mixed. Furthermore, it is unknown if herbivory on tree species of native vs. exotic origin is influenced by changing tree diversity in a similar way, or if exotic tree species escape natural enemies, resulting in lower damage that is unrelated to tree diversity. To address these questions, we established a young tree diversity experiment in temperate southwestern Germany that uses high planting density (49 trees per plot; plot size 13 m2. The species pool consists of six congeneric species pairs of European and North American origin (12 species in total planted in monocultures and mixtures (1, 2, 4, 6 species. We assessed leaf damage by leaf-chewing insects on more than 5,000 saplings of six broadleaved tree species. Plot-level tree species richness increased leaf damage, which more than doubled from monocultures to six-species mixtures, strongly supporting associational susceptibility. However, leaf damage among congeneric native and exotic species pairs was similar. There were marked differences in patterns of leaf damage across tree genera, and only the genera likely having a predominately generalist herbivore community showed associational susceptibility, irrespective of the geographical origin of a tree species. In conclusion, an increase in tree species richness in young temperate forests may result in associational susceptibility to feeding by generalist herbivores.

  9. Tree Species Richness Promotes Invertebrate Herbivory on Congeneric Native and Exotic Tree Saplings in a Young Diversity Experiment.

    Science.gov (United States)

    Wein, Annika; Bauhus, Jürgen; Bilodeau-Gauthier, Simon; Scherer-Lorenzen, Michael; Nock, Charles; Staab, Michael

    2016-01-01

    Tree diversity in forests is an important driver of ecological processes including herbivory. Empirical evidence suggests both negative and positive effects of tree diversity on herbivory, which can be, respectively, attributed to associational resistance or associational susceptibility. Tree diversity experiments allow testing for associational effects, but evidence regarding which pattern predominates is mixed. Furthermore, it is unknown if herbivory on tree species of native vs. exotic origin is influenced by changing tree diversity in a similar way, or if exotic tree species escape natural enemies, resulting in lower damage that is unrelated to tree diversity. To address these questions, we established a young tree diversity experiment in temperate southwestern Germany that uses high planting density (49 trees per plot; plot size 13 m2). The species pool consists of six congeneric species pairs of European and North American origin (12 species in total) planted in monocultures and mixtures (1, 2, 4, 6 species). We assessed leaf damage by leaf-chewing insects on more than 5,000 saplings of six broadleaved tree species. Plot-level tree species richness increased leaf damage, which more than doubled from monocultures to six-species mixtures, strongly supporting associational susceptibility. However, leaf damage among congeneric native and exotic species pairs was similar. There were marked differences in patterns of leaf damage across tree genera, and only the genera likely having a predominately generalist herbivore community showed associational susceptibility, irrespective of the geographical origin of a tree species. In conclusion, an increase in tree species richness in young temperate forests may result in associational susceptibility to feeding by generalist herbivores.

  10. Endangered species toxicity extrapolation using ICE models

    Science.gov (United States)

    The National Research Council’s (NRC) report on assessing pesticide risks to threatened and endangered species (T&E) included the recommendation of using interspecies correlation models (ICE) as an alternative to general safety factors for extrapolating across species. ...

  11. On the well posedness and further regularity of a diffusive three species aquatic model

    KAUST Repository

    Parshad, R.D.

    2012-01-01

    We consider Upadhay\\'s three species aquatic food chain model, with the inclusion of spatial spread. This is a well established food chain model for the interaction of three given aquatic species. It exhibits rich dynamical behavior, including chaos. We prove the existence of a global weak solution to the diffusive system, followed by existence of local mild and strong solution.

  12. Ohio USA stoneflies (Insecta, Plecoptera: species richness estimation, distribution of functional niche traits, drainage affiliations, and relationships to other states

    Directory of Open Access Journals (Sweden)

    R. DeWalt

    2012-03-01

    Full Text Available Ohio is an eastern USA state that historically was >70% covered in upland and mixed coniferous forest; about 60% of it glaciated by the Wisconsinan glacial episode. Its stonefly fauna has been studied in piecemeal fashion until now. The assemblage of Ohio stoneflies was assessed from over 4,000 records accumulated from 18 institutions, new collections, and trusted literature sources. Species richness totaled 102 with estimators Chao2 and ICE Mean predicting 105.6 and 106.4, respectively. Singletons and doubletons totaled 18 species. All North American families were represented with Perlidae accounted for the highest number of species at 34. The family Peltoperlidae contributed a single species. Most species had univoltine–fast life cycles with the vast majority emerging in summer, although there was a significant component of winter stoneflies. Nine United States Geological Survey hierarchical drainage units level 6 (HUC6 were used to stratify specimen data. Species richness was significantly related to the number of unique HUC6 locations, but there was no relationship with HUC6 drainage area. A nonparametric multidimensional scaling analysis found that larger HUC6s in the western part of the state had similar assemblages with lower species richness that were found to align with more savanna and wetland habitat. Other drainagesricher assemblages were aligned with upland deciduous and mixed coniferous forests of the east and south where slopes were higher. The Ohio assemblage was most similar to the well–studied fauna of Indiana (88 spp. and Kentucky (108 spp., two neighboring states. Many rare species and several high quality stream reaches should be considered for greater protection.

  13. Multi-species occurrence models to evaluate the effects of conservation and management actions

    Science.gov (United States)

    Zipkin, E.F.; Andrew, Royle J.; Dawson, D.K.; Bates, S.

    2010-01-01

    Conservation and management actions often have direct and indirect effects on a wide range of species. As such, it is important to evaluate the impacts that such actions may have on both target and non-target species within a region. Understanding how species richness and composition differ as a result of management treatments can help determine potential ecological consequences. Yet it is difficult to estimate richness because traditional sampling approaches detect species at variable rates and some species are never observed. We present a framework for assessing management actions on biodiversity using a multi-species hierarchical model that estimates individual species occurrences, while accounting for imperfect detection of species. Our model incorporates species-specific responses to management treatments and local vegetation characteristics and a hierarchical component that links species at a community-level. This allows for comprehensive inferences on the whole community or on assemblages of interest. Compared to traditional species models, occurrence estimates are improved for all species, even for those that are rarely observed, resulting in more precise estimates of species richness (including species that were unobserved during sampling). We demonstrate the utility of this approach for conservation through an analysis comparing bird communities in two geographically similar study areas: one in which white-tailed deer (Odocoileus virginianus) densities have been regulated through hunting and one in which deer densities have gone unregulated. Although our results indicate that species and assemblage richness were similar in the two study areas, point-level richness was significantly influenced by local vegetation characteristics, a result that would have been underestimated had we not accounted for variability in species detection.

  14. Hydro-edaphic conditions defining richness and species composition in savanna areas of the northern Brazilian Amazonia.

    Science.gov (United States)

    Araújo, Maria Aparecida de Moura; da Rocha, Antônio Elielson Sousa; Miranda, Izildinha de Souza; Barbosa, Reinaldo Imbrozio

    2017-01-01

    Studies on plant communities in the Amazon have reported that different hydro-edaphic conditions can affect the richness and the species composition of different ecosystems. However, this aspect is poorly known in the different savanna habitats. Understanding how populations and plant communities are distributed in these open vegetation areas is important to improve the knowledge about which environmental variables influence the occurrence and diversity of plants in this type of regional ecosystem. Thus, this study investigated the richness and composition of plant species in two savanna areas of the northern Brazilian Amazonia, using the coverage (%) of the different life forms observed under different hydro-edaphic conditions as a structural reference. We report 128 plant species classified in 34 botanical families distributed in three savanna habitats with different levels of hydro-edaphic restrictions. In this study, the habitats are conceptually presented and they integrate environmental information (edaphic factors and drainage type), which determines differences between floristic composition, species richness and coverage (%) of plant life forms.

  15. A stochastic, evolutionary model for range shifts and richness on tropical elevational gradients under Quaternary glacial cycles.

    Science.gov (United States)

    Colwell, Robert K; Rangel, Thiago F

    2010-11-27

    Quaternary glacial-interglacial cycles repeatedly forced thermal zones up and down the slopes of mountains, at all latitudes. Although no one doubts that these temperature cycles have left their signature on contemporary patterns of geography and phylogeny, the relative roles of ecology and evolution are not well understood, especially for the tropics. To explore key mechanisms and their interactions in the context of chance events, we constructed a geographical range-based, stochastic simulation model that incorporates speciation, anagenetic evolution, niche conservatism, range shifts and extinctions under late Quaternary temperature cycles along tropical elevational gradients. In the model, elevational patterns of species richness arise from the differential survival of founder lineages, consolidated by speciation and the inheritance of thermal niche characteristics. The model yields a surprisingly rich variety of realistic patterns of phylogeny and biogeography, including close matches to a variety of contemporary elevational richness profiles from an elevational transect in Costa Rica. Mountaintop extinctions during interglacials and lowland extinctions at glacial maxima favour mid-elevation lineages, especially under the constraints of niche conservatism. Asymmetry in temperature (greater duration of glacial than of interglacial episodes) and in lateral area (greater land area at low than at high elevations) have opposing effects on lowland extinctions and the elevational pattern of species richness in the model--and perhaps in nature, as well.

  16. The impact of land abandonment on species richness and abundance in the Mediterranean Basin: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Tobias Plieninger

    Full Text Available Land abandonment is common in the Mediterranean Basin, a global biodiversity hotspot, but little is known about its impacts on biodiversity. To upscale existing case-study insights to the Pan-Mediterranean level, we conducted a meta-analysis of the effects of land abandonment on plant and animal species richness and abundance in agroforestry, arable land, pastures, and permanent crops of the Mediterranean Basin. In particular, we investigated (1 which taxonomic groups (arthropods, birds, lichen, vascular plants are more affected by land abandonment; (2 at which spatial and temporal scales the effect of land abandonment on species richness and abundance is pronounced; (3 whether previous land use and current protected area status affect the magnitude of changes in the number and abundance of species; and (4 how prevailing landforms and climate modify the impacts of land abandonment. After identifying 1240 potential studies, 154 cases from 51 studies that offered comparisons of species richness and abundance and had results relevant to our four areas of investigation were selected for meta-analysis. Results are that land abandonment showed slightly increased (effect size  = 0.2109, P<0.0001 plant and animal species richness and abundance overall, though results were heterogeneous, with differences in effect size between taxa, spatial-temporal scales, land uses, landforms, and climate. In conclusion, there is no "one-size-fits-all" conservation approach that applies to the diverse contexts of land abandonment in the Mediterranean Basin. Instead, conservation policies should strive to increase awareness of this heterogeneity and the potential trade-offs after abandonment. The strong role of factors at the farm and landscape scales that was revealed by the analysis indicates that purposeful management at these scales can have a powerful impact on biodiversity.

  17. Species richness of Eurasian Zephyrus hairstreaks (Lepidoptera: Lycaenidae: Theclini) with implications on historical biogeography: An NDM/VNDM approach.

    Science.gov (United States)

    Zhuang, Hailing; Yago, Masaya; Settele, Josef; Li, Xiushan; Ueshima, Rei; Grishin, Nick V; Wang, Min

    2018-01-01

    A database based on distributional records of Eurasian Zephyrus hairstreaks (Lepidoptera: Lycaenidae: Theclini) was compiled to analyse their areas of endemism (AoEs), species richness and distribution patterns, to explore their locations of past glacial refugia and dispersal routes. Over 2000 Zephyrus hairstreaks occurrences are analysed using the NDM/VNDM algorithm, for the recognition of AoEs. Species richness was calculated by using the option 'Number of different classes' to count the different classes of a variable presented in each 3.0°×3.0° grid cell, and GIS software was used to visualize distribution patterns of endemic species. Centres of species richness of Zephyrus hairstreaks are situated in the eastern Qinghai-Tibet Plateau (EQTP), Hengduan Mountain Region (HDMR) and the Qinling Mountain Region (QLMR). Latitudinal gradients in species richness show normal distribution with the peak between 25° N and 35° N in the temperate zone, gradually decreasing towards the poles. Moreover, most parts of central and southern China, especially the area of QLMR-EQTP-HDMR, were identified as AoEs that may have played a significant role as refugia during Quaternary global cooling. There are four major distributional patterns of Zephyrus hairstreaks in Eurasia: Sino-Japanese, Sino-Himalayan, high-mountain and a combined distribution covering all three patterns. Zephyrus hairstreaks probably originated at least 23-24 Myr ago in E. Asia between 25° N to 35° N in the temperate zone. Cenozoic orogenies caused rapid speciation of this tribe and extrusion of the Indochina block resulted in vicariance between the Sino-Japanese and the Sino-Himalayan patterns. The four distribution patterns provided two possible dispersal directions: Sino-Japanese dispersal and Sino-Himalayan dispersal.

  18. Evolution of Helicobacter: Acquisition by Gastric Species of Two Histidine-Rich Proteins Essential for Colonization.

    Directory of Open Access Journals (Sweden)

    Daniel Vinella

    2015-12-01

    Full Text Available Metal acquisition and intracellular trafficking are crucial for all cells and metal ions have been recognized as virulence determinants in bacterial pathogens. Virulence of the human gastric pathogen Helicobacter pylori is dependent on nickel, cofactor of two enzymes essential for in vivo colonization, urease and [NiFe] hydrogenase. We found that two small paralogous nickel-binding proteins with high content in Histidine (Hpn and Hpn-2 play a central role in maintaining non-toxic intracellular nickel content and in controlling its intracellular trafficking. Measurements of metal resistance, intracellular nickel contents, urease activities and interactomic analysis were performed. We observed that Hpn acts as a nickel-sequestration protein, while Hpn-2 is not. In vivo, Hpn and Hpn-2 form homo-multimers, interact with each other, Hpn interacts with the UreA urease subunit while Hpn and Hpn-2 interact with the HypAB hydrogenase maturation proteins. In addition, Hpn-2 is directly or indirectly restricting urease activity while Hpn is required for full urease activation. Based on these data, we present a model where Hpn and Hpn-2 participate in a common pathway of controlled nickel transfer to urease. Using bioinformatics and top-down proteomics to identify the predicted proteins, we established that Hpn-2 is only expressed by H. pylori and its closely related species Helicobacter acinonychis. Hpn was detected in every gastric Helicobacter species tested and is absent from the enterohepatic Helicobacter species. Our phylogenomic analysis revealed that Hpn acquisition was concomitant with the specialization of Helicobacter to colonization of the gastric environment and the duplication at the origin of hpn-2 occurred in the common ancestor of H. pylori and H. acinonychis. Finally, Hpn and Hpn-2 were found to be required for colonization of the mouse model by H. pylori. Our data show that during evolution of the Helicobacter genus, acquisition of Hpn

  19. Fossils and a large molecular phylogeny show that the evolution of species richness, generic diversity, and turnover rates are disconnected.

    Science.gov (United States)

    Xing, Yaowu; Onstein, Renske E; Carter, Richard J; Stadler, Tanja; Peter Linder, H

    2014-10-01

    The magnitude and extent of global change during the Cenozoic is remarkable, yet the impacts of these global changes on the biodiversity and evolutionary dynamics of species diversification remain poorly understood. To investigate this question, we combine paleontological and neontological data for the angiosperm order Fagales, an ecologically important clade of about 1370 species of trees with an exceptional fossil record. We show differences in patterns of accumulation of generic diversity, species richness, and turnover rates for Fagales. Generic diversity evolved rapidly since the Late Cretaceous and peaked during the Eocene or Oligocene. Turnover rates were high during periods of extreme global climate change, but relatively low when the climate remained stable. Species richness accumulated gradually throughout the Cenozoic, possibly at an accelerated pace after the Middle Miocene. Species diversification occurred in new environments: Quercoids radiating in Oligocene subtropical seasonally arid habitats, Casuarinaceae in Australian pyrophytic biomes, and Betula in Late Neogene holarctic habitats. These radiations were counterbalanced by regional extinctions in Late Neogene mesic warm-temperate forests. Thus, the overall diversification at species level is linked to regional radiations of clades with appropriate ecologies exploiting newly available habitats. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  20. Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A + T-Rich DNA, and nuclear DNA analyses

    Science.gov (United States)

    Freeman, S.; Pham, M.; Rodriguez, R.J.

    1993-01-01

    Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A + T-rich DNA, and nuclear DNA analyses. Experimental Mycology 17, 309-322. Isolates of Colletotrichum were grouped into 10 separate species based on arbitrarily primed PCR (ap-PCR), A + T-rich DNA (AT-DNA) and nuclear DNA banding patterns. In general, the grouping of Colletotrichum isolates by these molecular approaches corresponded to that done by classical taxonomic identification, however, some exceptions were observed. PCR amplification of genomic DNA using four different primers allowed for reliable differentiation between isolates of the 10 species. HaeIII digestion patterns of AT-DNA also distinguished between species of Colletotrichum by generating species-specific band patterns. In addition, hybridization of the repetitive DNA element (GcpR1) to genomic DNA identified a unique set of Pst 1-digested nuclear DNA fragments in each of the 10 species of Colletotrichum tested. Multiple isolates of C. acutatum, C. coccodes, C. fragariae, C. lindemuthianum, C. magna, C. orbiculare, C. graminicola from maize, and C. graminicola from sorghum showed 86-100% intraspecies similarity based on ap-PCR and AT-DNA analyses. Interspecies similarity determined by ap-PCR and AT-DNA analyses varied between 0 and 33%. Three distinct banding patterns were detected in isolates of C. gloeosporioides from strawberry. Similarly, three different banding patterns were observed among isolates of C. musae from diseased banana.

  1. Climate change is projected to reduce carrying capacity and redistribute species richness in North Pacific pelagic marine ecosystems.

    Science.gov (United States)

    Woodworth-Jefcoats, Phoebe A; Polovina, Jeffrey J; Drazen, Jeffrey C

    2017-03-01

    Climate change is expected to impact all aspects of marine ecosystems, including fisheries. Here, we use output from a suite of 11 earth system models to examine projected changes in two ecosystem-defining variables: temperature and food availability. In particular, we examine projected changes in epipelagic temperature and, as a proxy for food availability, zooplankton density. We find that under RCP8.5, a high business-as-usual greenhouse gas scenario, increasing temperatures may alter the spatial distribution of tuna and billfish species richness across the North Pacific basin. Furthermore, warmer waters and declining zooplankton densities may act together to lower carrying capacity for commercially valuable fish by 2-5% per decade over the 21st century. These changes have the potential to significantly impact the magnitude, composition, and distribution of commercial fish catch across the pelagic North Pacific. Such changes will in turn ultimately impact commercial fisheries' economic value. Fishery managers should anticipate these climate impacts to ensure sustainable fishery yields and livelihoods. © 2016 John Wiley & Sons Ltd.

  2. Aquatic dance flies (Diptera, Empididae, Clinocerinae and Hemerodromiinae) of Greece: species richness, distribution and description of five new species

    Science.gov (United States)

    Ivković, Marija; Ćevid, Josipa; Horvat, Bogdan; Sinclair, Bradley J.

    2017-01-01

    Abstract All records of aquatic dance flies (37 species in subfamily Clinocerinae and 10 species in subfamily Hemerodromiinae) from the territory of Greece are summarized, including previously unpublished data and data on five newly described species (Chelifera horvati Ivković & Sinclair, sp. n., Wiedemannia iphigeniae Ivković & Sinclair, sp. n., W. ljerkae Ivković & Sinclair, sp. n., W. nebulosa Ivković & Sinclair, sp. n. and W. pseudoberthelemyi Ivković & Sinclair, sp. n.). The new species are described and illustrated, the male terminalia of Clinocera megalatlantica (Vaillant) are illustrated and the distributions of all species within Greece are listed. The aquatic Empididae fauna of Greece consists of 47 species, with the following described species reported for the first time: Chelifera angusta Collin, Hemerodromia melangyna Collin, Clinocera megalatlantica, Kowarzia plectrum (Mik), Phaeobalia dimidiata (Loew), W. (Chamaedipsia) beckeri (Mik), W. (Philolutra) angelieri Vaillant and W. (P.) chvali Joost. A key to species of aquatic Empididae of Greece is provided for the first time. Information related to the European Ecoregions in which species were found is given. Compared to the other studied countries in the Balkans, the Greek species assemblage is most similar to that of the Former Yugoslav Republic of Macedonia. PMID:29362533

  3. Spatial patterns of primary productivity derived from the Dynamic Habitat Indices predict patterns of species richness and distributions in the tropics

    Science.gov (United States)

    Suttidate, Naparat

    Humans are changing the Earth's ecosystems, which has profound consequences for biodiversity. To understand how species respond to these changes, biodiversity science requires accurate assessments of biodiversity. However, biodiversity assessments are still limited in tropical regions. The Dynamic Habitat Indices (DHIs), derived from satellite data, summarize dynamic patterns of annual primary productivity: (a) cumulative annual productivity, (b) minimum annual productivity, and (c) seasonal variation in productivity. The DHIs have been successfully used in temperate regions, but not yet in the tropics. My goal was to evaluate the importance of primary productivity measured via the DHIs for assessing patterns of species richness and distributions in Thailand. First, I assessed the relationships between the DHIs and tropical bird species richness. I also evaluated the complementarity of the DHIs and topography, climate, latitudinal gradients, habitat heterogeneity, and habitat area in explaining bird species richness. I found that among three DHIs, cumulative annual productivity was the most important factor in explaining bird species richness and that the DHIs outperformed other environmental variables. Second, I developed texture measures derive from DHI cumulative annual productivity, and compared them to habitat composition and fragmentation as predictors of tropical forest bird distributions. I found that adding texture measures to habitat composition and fragmentation models improved the prediction of tropical bird distributions, especially area- and edge-sensitive tropical forest bird species. Third, I predicted the effects of trophic interactions between primary productivity, prey, and predators in relation to habitat connectivity for Indochinese tigers (Panthera tigris). I found that including trophic interactions improved habitat suitability models for tigers. However, tiger habitat is highly fragmented with few dispersal corridors. I also identified

  4. Wet season cyanobacterial N enrichment highly correlated with species richness and Nostoc in the northern Australian savannah

    Directory of Open Access Journals (Sweden)

    W. Williams

    2018-04-01

    Full Text Available The Boodjamulla National Park research station is situated in the north-western Queensland dry savannah, where the climate is dominated by summer monsoons and virtually dry winters. Under shrub canopies and in between the tussock grasses cyanobacterial crusts almost entirely cover the flood plain soil surfaces. Seasonality drives N fixation, and in the savannah this has a large impact on both plant and soil function. Many cyanobacteria fix dinitrogen that is liberated into the soil in both inorganic and organic N forms. We examined cyanobacterial species richness and bioavailable N spanning 7 months of a typical wet season. Over the wet season cyanobacterial richness ranged from 6 to 19 species. N-fixing Scytonema accounted for seasonal averages between 51 and 93 % of the biocrust. Cyanobacterial richness was highly correlated with N fixation and bioavailable N in 0–1 cm. Key N-fixing species such as Nostoc, Symploca and Gloeocapsa significantly enriched soil N although Nostoc was the most influential. Total seasonal N fixation by cyanobacteria demonstrated the variability in productivity according to the number of wet days as well as the follow-on days where the soil retained adequate moisture. Based on total active days per month we estimated that N soil enrichment via cyanobacteria would be  ∼  5.2 kg ha−1 annually which is comparable to global averages. This is a substantial contribution to the nutrient-deficient savannah soils that are almost entirely reliant on the wet season for microbial turnover of organic matter. Such well-defined seasonal trends and synchronisation in cyanobacterial species richness, N fixation, bioavailable N and C fixation (Büdel et al., 2018 provide important contributions to multifunctional microprocesses and soil fertility.

  5. Wet season cyanobacterial N enrichment highly correlated with species richness and Nostoc in the northern Australian savannah

    Science.gov (United States)

    Williams, Wendy; Büdel, Burkhard; Williams, Stephen

    2018-04-01

    The Boodjamulla National Park research station is situated in the north-western Queensland dry savannah, where the climate is dominated by summer monsoons and virtually dry winters. Under shrub canopies and in between the tussock grasses cyanobacterial crusts almost entirely cover the flood plain soil surfaces. Seasonality drives N fixation, and in the savannah this has a large impact on both plant and soil function. Many cyanobacteria fix dinitrogen that is liberated into the soil in both inorganic and organic N forms. We examined cyanobacterial species richness and bioavailable N spanning 7 months of a typical wet season. Over the wet season cyanobacterial richness ranged from 6 to 19 species. N-fixing Scytonema accounted for seasonal averages between 51 and 93 % of the biocrust. Cyanobacterial richness was highly correlated with N fixation and bioavailable N in 0-1 cm. Key N-fixing species such as Nostoc, Symploca and Gloeocapsa significantly enriched soil N although Nostoc was the most influential. Total seasonal N fixation by cyanobacteria demonstrated the variability in productivity according to the number of wet days as well as the follow-on days where the soil retained adequate moisture. Based on total active days per month we estimated that N soil enrichment via cyanobacteria would be ˜ 5.2 kg ha-1 annually which is comparable to global averages. This is a substantial contribution to the nutrient-deficient savannah soils that are almost entirely reliant on the wet season for microbial turnover of organic matter. Such well-defined seasonal trends and synchronisation in cyanobacterial species richness, N fixation, bioavailable N and C fixation (Büdel et al., 2018) provide important contributions to multifunctional microprocesses and soil fertility.

  6. Dietary species richness as a measure of food biodiversity and nutritional quality of diets

    Science.gov (United States)

    Raneri, Jessica E.; Smith, Katherine Walker; Kolsteren, Patrick; Van Damme, Patrick; Verzelen, Kaat; Penafiel, Daniela; Vanhove, Wouter; Kennedy, Gina; Hunter, Danny; Odhiambo, Francis Oduor; Ntandou-Bouzitou, Gervais; De Baets, Bernard; Ratnasekera, Disna; Ky, Hoang The; Remans, Roseline; Termote, Céline

    2018-01-01

    Biodiversity is key for human and environmental health. Available dietary and ecological indicators are not designed to assess the intricate relationship between food biodiversity and diet quality. We applied biodiversity indicators to dietary intake data from and assessed associations with diet quality of women and young children. Data from 24-hour diet recalls (55% in the wet season) of n = 6,226 participants (34% women) in rural areas from seven low- and middle-income countries were analyzed. Mean adequacies of vitamin A, vitamin C, folate, calcium, iron, and zinc and diet diversity score (DDS) were used to assess diet quality. Associations of biodiversity indicators with nutrient adequacy were quantified using multilevel models, receiver operating characteristic curves, and test sensitivity and specificity. A total of 234 different species were consumed, of which food biodiversity in diets. PMID:29255049

  7. Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical forests: the diversification of Bursera (Burseraceae, Sapindales).

    Science.gov (United States)

    De-Nova, J Arturo; Medina, Rosalinda; Montero, Juan Carlos; Weeks, Andrea; Rosell, Julieta A; Olson, Mark E; Eguiarte, Luis E; Magallón, Susana

    2012-01-01

    • Mesoamerican arid biomes epitomize neotropical rich and complex biodiversity. To document some of the macroevolutionary processes underlying the vast species richness of Mesoamerican seasonally dry tropical forests (SDTFs), and to evaluate specific predictions about the age, geographical structure and niche conservatism of SDTF-centered woody plant lineages, the diversification of Bursera is reconstructed. • Using a nearly complete Bursera species-level phylogeny from nuclear and plastid genomic markers, we estimate divergence times, test for phylogenetic and temporal diversification heterogeneity, test for geographical structure, and reconstruct habitat shifts. • Bursera became differentiated in the earliest Eocene, but diversified during independent early Miocene consecutive radiations that took place in SDTFs. The late Miocene average age of Bursera species, the presence of phylogenetic geographical structure, and its strong conservatism to SDTFs conform to expectations derived from South American SDTF-centered lineages. • The diversification of Bursera suggests that Mesoamerican SDTF richness derives from high speciation from the Miocene onwards uncoupled from habitat shifts, during a period of enhanced aridity resulting mainly from global cooling and regional rain shadows. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  8. Specialization in plant-hummingbird networks is associated with species richness, contemporary precipitation and quaternary climate-change velocity.

    Science.gov (United States)

    Dalsgaard, Bo; Magård, Else; Fjeldså, Jon; Martín González, Ana M; Rahbek, Carsten; Olesen, Jens M; Ollerton, Jeff; Alarcón, Ruben; Cardoso Araujo, Andrea; Cotton, Peter A; Lara, Carlos; Machado, Caio Graco; Sazima, Ivan; Sazima, Marlies; Timmermann, Allan; Watts, Stella; Sandel, Brody; Sutherland, William J; Svenning, Jens-Christian

    2011-01-01

    Large-scale geographical patterns of biotic specialization and the underlying drivers are poorly understood, but it is widely believed that climate plays an important role in determining specialization. As climate-driven range dynamics should diminish local adaptations and favor generalization, one hypothesis is that contemporary biotic specialization is determined by the degree of past climatic instability, primarily Quaternary climate-change velocity. Other prominent hypotheses predict that either contemporary climate or species richness affect biotic specialization. To gain insight into geographical patterns of contemporary biotic specialization and its drivers, we use network analysis to determine the degree of specialization in plant-hummingbird mutualistic networks sampled at 31 localities, spanning a wide range of climate regimes across the Americas. We found greater biotic specialization at lower latitudes, with latitude explaining 20-22% of the spatial variation in plant-hummingbird specialization. Potential drivers of specialization--contemporary climate, Quaternary climate-change velocity, and species richness--had superior explanatory power, together explaining 53-64% of the variation in specialization. Notably, our data provides empirical evidence for the hypothesized roles of species richness, contemporary precipitation and Quaternary climate-change velocity as key predictors of biotic specialization, whereas contemporary temperature and seasonality seem unimportant in determining specialization. These results suggest that both ecological and evolutionary processes at Quaternary time scales can be important in driving large-scale geographical patterns of contemporary biotic specialization, at least for co-evolved systems such as plant-hummingbird networks.

  9. Specialization in plant-hummingbird networks is associated with species richness, contemporary precipitation and quaternary climate-change velocity.

    Directory of Open Access Journals (Sweden)

    Bo Dalsgaard

    Full Text Available Large-scale geographical patterns of biotic specialization and the underlying drivers are poorly understood, but it is widely believed that climate plays an important role in determining specialization. As climate-driven range dynamics should diminish local adaptations and favor generalization, one hypothesis is that contemporary biotic specialization is determined by the degree of past climatic instability, primarily Quaternary climate-change velocity. Other prominent hypotheses predict that either contemporary climate or species richness affect biotic specialization. To gain insight into geographical patterns of contemporary biotic specialization and its drivers, we use network analysis to determine the degree of specialization in plant-hummingbird mutualistic networks sampled at 31 localities, spanning a wide range of climate regimes across the Americas. We found greater biotic specialization at lower latitudes, with latitude explaining 20-22% of the spatial variation in plant-hummingbird specialization. Potential drivers of specialization--contemporary climate, Quaternary climate-change velocity, and species richness--had superior explanatory power, together explaining 53-64% of the variation in specialization. Notably, our data provides empirical evidence for the hypothesized roles of species richness, contemporary precipitation and Quaternary climate-change velocity as key predictors of biotic specialization, whereas contemporary temperature and seasonality seem unimportant in determining specialization. These results suggest that both ecological and evolutionary processes at Quaternary time scales can be important in driving large-scale geographical patterns of contemporary biotic specialization, at least for co-evolved systems such as plant-hummingbird networks.

  10. Analysis of the hybrid proline-rich protein families from seven plant species suggests rapid diversification of their sequences and expression patterns

    Directory of Open Access Journals (Sweden)

    Fischer Lukáš

    2007-11-01

    Full Text Available Abstract Background Plant hybrid proline-rich proteins (HyPRPs are putative cell wall proteins consisting, usually, of a repetitive proline-rich (PR N-terminal domain and a conserved eight-cysteine motif (8 CM C-terminal domain. Understanding the evolutionary dynamics of HyPRPs might provide not only insight into their so far elusive function, but also a model for other large protein families in plants. Results We have performed a phylogenetic analysis of HyPRPs from seven plant species, including representatives of gymnosperms and both monocot and dicot angiosperms. Every species studied possesses a large family of 14–52 HyPRPs. Angiosperm HyPRPs exhibit signs of recent major diversification involving, at least in Arabidopsis and rice, several independent tandem gene multiplications. A distinct subfamily of relatively well-conserved C-type HyPRPs, often with long hydrophobic PR domains, has been identified. In most of gymnosperm (pine HyPRPs, diversity appears within the C-type group while angiosperms have only a few of well-conserved C-type representatives. Atypical (glycine-rich or extremely short N-terminal domains apparently evolved independently in multiple lineages of the HyPRP family, possibly via inversion or loss of sequences encoding proline-rich domains. Expression profiles of potato and Arabidopsis HyPRP genes exhibit instances of both overlapping and complementary organ distribution. The diversified non-C-type HyPRP genes from recently amplified chromosomal clusters in Arabidopsis often share their specialized expression profiles. C-type genes have broader expression patterns in both species (potato and Arabidopsis, although orthologous genes exhibit some differences. Conclusion HyPRPs represent a dynamically evolving protein family apparently unique to seed plants. We suggest that ancestral HyPRPs with long proline-rich domains produced the current diversity through ongoing gene duplications accompanied by shortening

  11. Long-term nitrogen addition leads to loss of species richness due to litter accumulation and soil acidification in a temperate steppe.

    Directory of Open Access Journals (Sweden)

    Ying Fang

    Full Text Available BACKGROUND: Although community structure and species richness are known to respond to nitrogen fertilization dramatically, little is known about the mechanisms underlying specific species replacement and richness loss. In an experiment in semiarid temperate steppe of China, manipulative N addition with five treatments was conducted to evaluate the effect of N addition on the community structure and species richness. METHODOLOGY/PRINCIPAL FINDINGS: Species richness and biomass of community in each plot were investigated in a randomly selected quadrat. Root element, available and total phosphorus (AP, TP in rhizospheric soil, and soil moisture, pH, AP, TP and inorganic N in the soil were measured. The relationship between species richness and the measured factors was analyzed using bivariate correlations and stepwise multiple linear regressions. The two dominant species, a shrub Artemisia frigida and a grass Stipa krylovii, responded differently to N addition such that the former was gradually replaced by the latter. S. krylovii and A. frigida had highly-branched fibrous and un-branched tap root systems, respectively. S. krylovii had higher height than A. frigida in both control and N added plots. These differences may contribute to the observed species replacement. In addition, the analysis on root element and AP contents in rhizospheric soil suggests that different calcium acquisition strategies, and phosphorus and sodium responses of the two species may account for the replacement. Species richness was significantly reduced along the five N addition levels. Our results revealed a significant relationship between species richness and soil pH, litter amount, soil moisture, AP concentration and inorganic N concentration. CONCLUSIONS/SIGNIFICANCE: Our results indicate that litter accumulation and soil acidification accounted for 52.3% and 43.3% of the variation in species richness, respectively. These findings would advance our knowledge on the

  12. Management and conservation of tree squirrels: the importance of endemism, species richness, and forest condition

    Science.gov (United States)

    John L. Koprowski

    2005-01-01

    Tree squirrels are excellent indicators of forest health yet the taxon is understudied. Most tree squirrels in the Holarctic Region are imperiled with some level of legal protection. The Madrean Archipelago is the epicenter for tree squirrel diversity in North America with 5 endemic species and 2 introduced species. Most species of the region are poorly studied in...

  13. Feather mites (Acari, Astigmata from Azorean passerines (Aves, Passeriformes: lower species richness compared to European mainland

    Directory of Open Access Journals (Sweden)

    Rodrigues Pedro

    2015-01-01

    Full Text Available Ten passerine species were examined on three islands of the Azores (North Atlantic during 2013 and 2014 in order to identify their feather mite assemblages. We recorded 19 feather mite species belonging to four families of the superfamily Analgoidea (Analgidae, Proctophyllodidae, Psoroptoididae and Trouessartiidae. A high prevalence of feather mite species was recorded on the majority of the examined host species. Only three passerine species (Sylvia atricapilla, Regulus regulus and Serinus canaria presented the same full complex of mite species as commonly occurs in the plumage of their closest relatives in continental Europe. Passer domesticus presented the same limited fauna of feather mites living in the plumage as do its co-specifics in continental Europe. Carduelis carduelis bears the same feather mite species as do most of its continental populations in Europe, but it lacks one mite species occurring on this host in Egypt. Turdus merula, Pyrrhula murina and Fringilla coelebs are missing several mite species common to their continental relatives. This diminution could be explained by the founder effect, whereby a limited number of colonizing individuals did not transport the full set of feather mite species, or by the extinction of some mite species after initially having reached the Azores. The only individual of Motacilla cinerea sampled in this study presented a new host record for the mite species Trouessartia jedliczkai.

  14. Feather mites (Acari, Astigmata) from Azorean passerines (Aves, Passeriformes): lower species richness compared to European mainland.

    Science.gov (United States)

    Rodrigues, Pedro; Mironov, Sergey; Sychra, Oldrich; Resendes, Roberto; Literak, Ivan

    2015-01-01

    Ten passerine species were examined on three islands of the Azores (North Atlantic) during 2013 and 2014 in order to identify their feather mite assemblages. We recorded 19 feather mite species belonging to four families of the superfamily Analgoidea (Analgidae, Proctophyllodidae, Psoroptoididae and Trouessartiidae). A high prevalence of feather mite species was recorded on the majority of the examined host species. Only three passerine species (Sylvia atricapilla, Regulus regulus and Serinus canaria) presented the same full complex of mite species as commonly occurs in the plumage of their closest relatives in continental Europe. Passer domesticus presented the same limited fauna of feather mites living in the plumage as do its co-specifics in continental Europe. Carduelis carduelis bears the same feather mite species as do most of its continental populations in Europe, but it lacks one mite species occurring on this host in Egypt. Turdus merula, Pyrrhula murina and Fringilla coelebs are missing several mite species common to their continental relatives. This diminution could be explained by the founder effect, whereby a limited number of colonizing individuals did not transport the full set of feather mite species, or by the extinction of some mite species after initially having reached the Azores. The only individual of Motacilla cinerea sampled in this study presented a new host record for the mite species Trouessartia jedliczkai. © P. Rodrigues et al., published by EDP Sciences, 2015.

  15. Mammal predator and prey species richness are strongly linked at macroscales

    DEFF Research Database (Denmark)

    Sandom, Christopher James; Dalby, Lars; Fløjgaard, Camilla

    2013-01-01

    in predator richness (R2 = 0.13). Adding predator-to-prey or prey-to- predator paths strongly increased the explained variance in both cases (prey R2 = 0.79, predator R2 = 0.57), suggesting that predator–prey interactions play an important role in driving global diversity gradients. Prey-bottom-up effects...

  16. Stochastic species abundance models involving special copulas

    Science.gov (United States)

    Huillet, Thierry E.

    2018-01-01

    Copulas offer a very general tool to describe the dependence structure of random variables supported by the hypercube. Inspired by problems of species abundances in Biology, we study three distinct toy models where copulas play a key role. In a first one, a Marshall-Olkin copula arises in a species extinction model with catastrophe. In a second one, a quasi-copula problem arises in a flagged species abundance model. In a third model, we study completely random species abundance models in the hypercube as those, not of product type, with uniform margins and singular. These can be understood from a singular copula supported by an inflated simplex. An exchangeable singular Dirichlet copula is also introduced, together with its induced completely random species abundance vector.

  17. Influence of soil physical and chemical variables on species composition and richness of plants in the arid region of Tabuk, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Al-Mutairi Khalid Awadh

    2017-06-01

    Full Text Available The present study aims to investigate the effect of soil physical and chemical variables on the species richness and the floristic composition in four sites (Alwaz, Alqan, Sharma and Zetah of Tabuk region in the Northwestern part of Arabian Peninsula. Only organic matter (OM, pH and calcium (Ca showed significant differences (P < 0.05 amongst the four studied sites. Only magnesium and sodium were selected in the forward regression model and showed to be strong drivers of species richness of plants in Tabuk region (Adj-R2 = 0.438, F2,13 = 6.85, P = 0.009. The multivariate analysis of canonical correspondence analysis (CCA was applied to reveal the effect of the physical and chemical variables on the species composition of the plants. The CCA classifies the plant species into three groups based on their preference to the environmental variables. The first group of plant species (Group 1 is characterised by positive preference to the chloride (Cl and negative relationship with OM and pH. The second group (Group 2 is positively correlated with most of the soil variables such as OM, calcium (Ca, potassium (K, bicarbonate (HCO3, electrical conductivity (EC, sulphate (SO4 and sodium (Na. The third group (Group 3 has positive relationship with carbonate (CO3 and negative relationship with EC and magnesium (Mg. The chloride, sodium, sulphate, EC and carbonate are the main environmental factors influencing the plant species composition in Tabuk region. The cluster analysis based on the Euclidian measure shows that Alqan and Zetah have closer species composition compared to Sharma.

  18. Modelling community dynamics based on species-level abundance models from detection/nondetection data

    Science.gov (United States)

    Yamaura, Yuichi; Royle, J. Andrew; Kuboi, Kouji; Tada, Tsuneo; Ikeno, Susumu; Makino, Shun'ichi

    2011-01-01

    1. In large-scale field surveys, a binary recording of each species' detection or nondetection has been increasingly adopted for its simplicity and low cost. Because of the importance of abundance in many studies, it is desirable to obtain inferences about abundance at species-, functional group-, and community-levels from such binary data. 2. We developed a novel hierarchical multi-species abundance model based on species-level detection/nondetection data. The model accounts for the existence of undetected species, and variability in abundance and detectability among species. Species-level detection/nondetection is linked to species- level abundance via a detection model that accommodates the expectation that probability of detection (at least one individuals is detected) increases with local abundance of the species. We applied this model to a 9-year dataset composed of the detection/nondetection of forest birds, at a single post-fire site (from 7 to 15 years after fire) in a montane area of central Japan. The model allocated undetected species into one of the predefined functional groups by assuming a prior distribution on individual group membership. 3. The results suggest that 15–20 species were missed in each year, and that species richness of communities and functional groups did not change with post-fire forest succession. Overall abundance of birds and abundance of functional groups tended to increase over time, although only in the winter, while decreases in detectabilities were observed in several species. 4. Synthesis and applications. Understanding and prediction of large-scale biodiversity dynamics partly hinge on how we can use data effectively. Our hierarchical model for detection/nondetection data estimates abundance in space/time at species-, functional group-, and community-levels while accounting for undetected individuals and species. It also permits comparison of multiple communities by many types of abundance-based diversity and similarity

  19. Species richness and distribution patterns of echinoderms in the southwestern Atlantic Ocean (34-56°S

    Directory of Open Access Journals (Sweden)

    Valeria Souto

    2014-06-01

    Full Text Available The aim of this study was to compile and analyse available historical information on echinoderms in the southwestern Atlantic Ocean in order to make a synthesis of present taxonomical knowledge, to identify patterns of geographical distribution of echinoderm assemblages and to test the validity of the current zoogeographic scheme for this group. This study was conducted on the Argentinean continental shelf, southwestern Atlantic Ocean (34-56°S. An intensive research on geo-referenced data was carried out to make a knowledge synthesis on echinoderm species and thus create a historical database. Multivariate analysis was used to analyse the faunal composition through latitudinal and bathymetric gradients as well as echinoderm associations. The results confirmed the existence of two faunal associations that correspond to the traditional zoogeographic scheme established for the Argentine Sea: the Argentinean and Magellan Provinces. The Argentinean Province had 46 widely distributed species. Of the 86 species recorded in the Magellan Province, a high percentage (25% were also found in Antarctic waters, suggesting a strong connection between the echinoderm fauna of this province and the Antarctic Region. The species richness between 34 and 56°S in the Atlantic Ocean showed a significant increase in reference to latitude, with the highest values being recorded between 46 and 56°S. In view of the high percentage of shared species with Antarctica, considered a hot-spot region in terms of echinoderm diversity, the pattern of distribution of species richness observed in our study area could correspond to a dispersion of this species from Antarctic to sub-Antarctic regions.

  20. Plant species richness and abundance in residential yards across a tropical watershed: implications for urban sustainability

    Directory of Open Access Journals (Sweden)

    Cristina P. Vila-Ruiz

    2014-09-01

    Full Text Available Green spaces within residential areas provide important contributions to the sustainability of urban systems. Therefore, studying the characteristics of these areas has become a research priority in cities worldwide. This project evaluated various aspects of the plant biodiversity of residential yards (i.e., front yards and back yards within the Río Piedras watershed in the San Juan metropolitan area of Puerto Rico. Our work included gathering information on vegetation composition and abundance of woody species (i.e., trees, shrubs, palms, ferns and large herbs (>2 m height, species origin (native vs. introduced, and species uses (ornamental, food, and medicinal plants. A total of 424 yards were surveyed within an area of 187,191 m². We found 383 woody species, with shrubs being the most abundant plant habitat. As expected, residential yards hosted a disproportionate amount of introduced species (69.5%. The most common shrub species were all non-native ornamentals, whereas the most common tree species included food trees as well as ornamental plants and two native species. Front yards hosted more ornamental species per unit area than backyards, while the latter had more food plants. The high amount of introduced species may present a challenge in terms of implementation of plant conservation initiatives if there is no clear definition of urban conservation goals. On the other hand, the high frequency of yards containing food plants may facilitate the development of residential initiatives that could provide future adaptive capacity to food shortages.

  1. Species richness and abundance of hesperioidea and papilionoidea (lepidoptera) in Las Delicias natural reserve, Santa Marta, Magdalena, Colombia

    International Nuclear Information System (INIS)

    Vargas Zapata, Maria A; Martinez Hernandez, Neis Jose; Gutierrez Moreno, Luis C and others

    2011-01-01

    In the foothills of the Sierra Nevada de Santa Marta, Colombia, are formations of dry tropical secondary forest hosting a fauna representative of lepidoptera, which can be used as an indicator of group condition, because of their sensitivity to intervention and specificity in the use of resources; in the present study the changes in richness and abundance of butterflies hesperioidea papilionoidea in nature reserve Las Delicias were evaluated. Two sampling sites with different degrees of intervention were selected. The first site is located between 400- 550 over sea level, while the second at 200 m. We performed four samples, from April to July 2008; using two networks lepidopterist and 10 van someren rydon traps baited with macerated fruit and fish. We captured 432 individuals belonging to 66 species, distributed in 52 genera. Nymphalidae were the most rich family (42) and abundance (250); highlighting the species mechanitis lysimnia fabricius (41 specimens), typical in forest with very good coverage. Site 2, was the most diverse (48) and abundance (236), because in this place there was a greater stratification and tree coverage, and the presence of water resources during the sampling. With the arrival of rain in June and July, there was greater flowering and fruiting of vegetation in the area, increasing the availability of resources and therefore a greater richness and abundance of papilionoidea and hesperioidea in the study area.

  2. Detection and quantification of 14 Campylobacter species in pet dogs reveals an increase in species richness in feces of diarrheic animals

    Directory of Open Access Journals (Sweden)

    Ngeleka Musangu

    2010-03-01

    Full Text Available Abstract Background The genus Campylobacter includes many species, some of which are known human and animal pathogens. Even though studies have repeatedly identified domestic dogs as a risk factor for human campylobacteriosis, our understanding of Campylobacter ecology in this reservoir is limited. Work to date has focused primarily on a limited number of species using culture-based methods. To expand our understanding of Campylobacter ecology in dogs, a collection of fecal samples from 70 healthy and 65 diarrheic pet dogs were examined for the presence and levels of 14 Campylobacter species using quantitative PCR. Results It was found that 58% of healthy dogs and 97% of diarrheic dogs shed detectable levels of Campylobacter spp., with C. coli, C. concisus, C. fetus, C. gracilis, C. helveticus, C. jejuni, C. lari, C. mucosalis, C. showae, C. sputorum and C. upsaliensis levels significantly higher in the diarrheic population. Levels of individual Campylobacter species detected ranged from 103 to 108 organisms per gram of feces. In addition, many individual samples contained multiple species of Campylobacter, with healthy dogs carrying from 0-7 detectable species while diarrheic dogs carried from 0-12 detectable species. Conclusions These findings represent the largest number of Campylobacter species specifically tested for in animals and is the first report to determine quantifiable levels of Campylobacter being shed from dogs. This study demonstrates that domestic dogs can carry a wide range of Campylobacter species naturally and that there is a notable increase in species richness detectable in the diarrheic population. With several of the detected Campylobacter species known or emerging pathogens, these results are relevant to both ecological and public health discussions.

  3. Rates of climatic niche evolution are correlated with species richness in a large and ecologically diverse radiation of songbirds.

    Science.gov (United States)

    Title, Pascal O; Burns, Kevin J

    2015-05-01

    By employing a recently inferred phylogeny and museum occurrence records, we examine the relationship of ecological niche evolution to diversification in the largest family of songbirds, the tanagers (Thraupidae). We test whether differences in species numbers in the major clades of tanagers can be explained by differences in rate of climatic niche evolution. We develop a methodological pipeline to process and filter occurrence records. We find that, of the ecological variables examined, clade richness is higher in clades with higher climatic niche rate, and that this rate is also greater for clades that occupy a greater extent of climatic space. Additionally, we find that more speciose clades contain species with narrower niche breadths, suggesting that clades in which species are more successful at diversifying across climatic gradients have greater potential for speciation or are more buffered from the risk of extinction. © 2015 John Wiley & Sons Ltd/CNRS.

  4. Plant community composition and species richness in the High Arctic tundra: from the present to the future

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; Normand, Signe; Hui, Francis K.C.

    2017-01-01

    .0 % of the variation in community composition was explained by variables related to topography, while distance to the inland ice explained an additional 6.4 %. This indicates that some species are associated with environmental conditions found in only some parts of the coast–inland gradient. Inclusion of macroclimatic......1. Arctic plant communities are altered by climate changes. The magnitude of these alterations depends on whether species distributions are determined by macroclimatic conditions, by factors related to local topography, or by biotic interactions. Our current understanding of the relative importance...... of these conditions is limited due to the scarcity of studies, especially in the High Arctic. 2. We investigated variations in vascular plant community composition and species richness based on 288 plots distributed on three sites along a coast-inland gradient in Northeast Greenland using a stratified random design...

  5. Wet season bird species richness and diversity along urban-rural ...

    African Journals Online (AJOL)

    This study examined the variation in diversity and distribution of avian species across an urban–rural gradient during the wet season in Morogoro municipality and its surroundings. A total of 2547 individuals comprising 86 species belonging to 11 orders and 37 families were recorded across urban-rural habitats.

  6. New trends in species distribution modelling

    Science.gov (United States)

    Zimmermann, Niklaus E.; Edwards, Thomas C.; Graham, Catherine H.; Pearman, Peter B.; Svenning, Jens-Christian

    2010-01-01

    Species distribution modelling has its origin in the late 1970s when computing capacity was limited. Early work in the field concentrated mostly on the development of methods to model effectively the shape of a species' response to environmental gradients (Austin 1987, Austin et al. 1990). The methodology and its framework were summarized in reviews 10–15 yr ago (Franklin 1995, Guisan and Zimmermann 2000), and these syntheses are still widely used as reference landmarks in the current distribution modelling literature. However, enormous advancements have occurred over the last decade, with hundreds – if not thousands – of publications on species distribution model (SDM) methodologies and their application to a broad set of conservation, ecological and evolutionary questions. With this special issue, originating from the third of a set of specialized SDM workshops (2008 Riederalp) entitled 'The Utility of Species Distribution Models as Tools for Conservation Ecology', we reflect on current trends and the progress achieved over the last decade.

  7. Associations between patterns of human intestinal schistosomiasis and snail and mammal species richness in Uganda: can we detect a decoy effect?

    Directory of Open Access Journals (Sweden)

    Anna-Sofie Stensgaard

    2016-10-01

    Full Text Available In recent years, ecological research has suggested several mechanisms by which biodiversity might affect the risk of acquiring infectious diseases (i.e., the decoy, dilution or amplification effects, but the topic remains controversial. While many experimental studies suggest a negative relationship between biodiversity and disease, this relationship is inherently complex, and might be negative, positive or neutral depending on the geographical scale and ecological context. Here, applying a macroecological approach, we look for associations between diversity and disease by comparing the distribution of human schistosomiasis and biogeographical patterns of freshwater snail and mammal species richness in Uganda. We found that the association between estimated snail richness and human infection was best described by a negative correlation in non-spatial bi- and multivariate logistic mixed effect models. However, this association lost significance after the inclusion of a spatial component in a full geostatistical model, highlighting the importance of accounting for spatial correlation to obtain more precise parameter estimates. Furthermore, we found no significant relationships between mammal richness and schistosomiasis risk. We discuss the limitations of the data and methods used to test the decoy hypothesis for schistosomiasis, and highlight key future research directions that can facilitate more powerful tests of the decoy effect in snail-borne infections, at geographical scales that are relevant for public health and conservation.

  8. Evolutionary rates of mitochondrial genomes correspond to diversification rates and to contemporary species richness in birds and reptiles

    Science.gov (United States)

    Eo, Soo Hyung; DeWoody, J. Andrew

    2010-01-01

    Rates of biological diversification should ultimately correspond to rates of genome evolution. Recent studies have compared diversification rates with phylogenetic branch lengths, but incomplete phylogenies hamper such analyses for many taxa. Herein, we use pairwise comparisons of confamilial sauropsid (bird and reptile) mitochondrial DNA (mtDNA) genome sequences to estimate substitution rates. These molecular evolutionary rates are considered in light of the age and species richness of each taxonomic family, using a random-walk speciation–extinction process to estimate rates of diversification. We find the molecular clock ticks at disparate rates in different families and at different genes. For example, evolutionary rates are relatively fast in snakes and lizards, intermediate in crocodilians and slow in turtles and birds. There was also rate variation across genes, where non-synonymous substitution rates were fastest at ATP8 and slowest at CO3. Family-by-gene interactions were significant, indicating that local clocks vary substantially among sauropsids. Most importantly, we find evidence that mitochondrial genome evolutionary rates are positively correlated with speciation rates and with contemporary species richness. Nuclear sequences are poorly represented among reptiles, but the correlation between rates of molecular evolution and species diversification also extends to 18 avian nuclear genes we tested. Thus, the nuclear data buttress our mtDNA findings. PMID:20610427

  9. Effects of soil water table regime on tree community species richness and structure of alluvial forest fragments in Southeast Brazil

    Directory of Open Access Journals (Sweden)

    AC. Silva

    Full Text Available In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh, total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes.

  10. Evolution of Epiphytism and Fruit Traits Act Unevenly on the Diversification of the Species-Rich Genus Peperomia (Piperaceae

    Directory of Open Access Journals (Sweden)

    Lena Frenze

    2016-08-01

    Full Text Available The species-rich genus Peperomia (Black Pepper relatives is the only genus among early diverging angiosperms where epiphytism evolved. The majority of fruits of Peperomia release sticky secretions or exhibit hook-shaped appendages indicative of epizoochorous dispersal, which is in contrast to other flowering plants, where epiphytes are generally characterized by fruit morphological adaptations for anemochory or endozoochory. We investigate fruit characters using Cryo-SEM. Comparative phylogenetic analyses are applied for the first time to include life form and fruit character information to study diversification in Peperomia. Likelihood ratio tests uncover correlated character evolution. We demonstrate that diversification within Peperomia is not homogenous across its phylogeny, and that net diversification rates increase by twofold within the most species-rich subgenus. In contrast to former land plant studies that provide general evidence for increased diversification in epiphytic lineages, we demonstrate that the evolution of epiphytism within Peperomia predates the diversification shift. An epiphytic-dependent diversification is only observed for the background phylogeny. An elevated frequency of life form transitions between epiphytes and terrestrials and thus evolutionary flexibility of life forms is uncovered to coincide with the diversification shift. The evolution of fruits showing dispersal related structures is key to diversification in the foreground region of the phylogeny and postdates the evolution of epiphytism. We conclude that the success of Peperomia, measured in species numbers, is likely the result of enhanced vertical and horizontal dispersal ability and life form flexibility but not the evolution of epiphytism itself.

  11. Finessing atlas data for species distribution models

    NARCIS (Netherlands)

    Niamir, A.; Skidmore, A.K.; Toxopeus, A.G.; Munoz, A.R.; Real, R.

    2011-01-01

    Aim The spatial resolution of species atlases and therefore resulting model predictions are often too coarse for local applications. Collecting distribution data at a finer resolution for large numbers of species requires a comprehensive sampling effort, making it impractical and expensive. This

  12. No consistent effect of plant species richness on resistance to simulated climate change for above- or below-ground processes in managed grasslands.

    Science.gov (United States)

    Dormann, Carsten F; von Riedmatten, Lars; Scherer-Lorenzen, Michael

    2017-06-17

    Species richness affects processes and functions in many ecosystems. Since management of temperate grasslands is directly affecting species composition and richness, it can indirectly govern how systems respond to fluctuations in environmental conditions. Our aim in this study was to investigate whether species richness in managed grasslands can buffer the effects of drought and warming manipulations and hence increase the resistance to climate change. We established 45 plots in three regions across Germany, each with three different management regimes (pasture, meadow and mown pasture). We manipulated spring warming using open-top chambers and summer drought using rain-out shelters for 4 weeks. Measurements of species richness, above- and below-ground biomass and soil carbon and nitrogen concentrations showed significant but inconsistent differences among regions, managements and manipulations. We detected a three-way interaction between species richness, management and region, indicating that our study design was sensitive enough to detect even intricate effects. We could not detect a pervasive effect of species richness on biomass differences between treatments and controls, indicating that a combination of spring warming and summer drought effects on grassland systems are not consistently moderated by species richness. We attribute this to the relatively high number of species even at low richness levels, which already provides the complementarity required for positive biodiversity-ecosystem functioning relationships. A review of the literature also indicates that climate manipulations largely fail to show richness-buffering, while natural experiments do, suggesting that such manipulations are milder than reality or incur treatment artefacts.

  13. Sown species richness and realized diversity can influence functioning of plant communities differently

    Czech Academy of Sciences Publication Activity Database

    Rychtecká, Terezie; Lanta, V.; Weiterová, I.; Lepš, Jan

    2014-01-01

    Roč. 101, č. 8 (2014), s. 637-644 ISSN 0028-1042 Institutional support: RVO:60077344 Keywords : biodiversity * realized diversity * species pool Subject RIV: EF - Botanics Impact factor: 2.098, year: 2014

  14. Recreational freshwater fishing drives non-native aquatic species richness patterns at a continental scale

    Data.gov (United States)

    U.S. Environmental Protection Agency — Aim. Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental...

  15. What explains patterns of species richness? The relative importance of climatic?niche evolution, morphological evolution, and ecological limits in salamanders

    OpenAIRE

    Kozak, Kenneth H.; Wiens, John J.

    2016-01-01

    Abstract A major goal of evolutionary biology and ecology is to understand why species richness varies among clades. Previous studies have suggested that variation in richness among clades might be related to variation in rates of morphological evolution among clades (e.g., body size and shape). Other studies have suggested that richness patterns might be related to variation in rates of climatic?niche evolution. However, few studies, if any, have tested the relative importance of these varia...

  16. Coral Reefs at the Northernmost Tip of Borneo: An Assessment of Scleractinian Species Richness Patterns and Benthic Reef Assemblages.

    Science.gov (United States)

    Waheed, Zarinah; van Mil, Harald G J; Syed Hussein, Muhammad Ali; Jumin, Robecca; Golam Ahad, Bobita; Hoeksema, Bert W

    2015-01-01

    The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39), Agariciidae (n = 30) and Euphylliidae (n = 15). The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51%) and good (38%). Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park.

  17. An evaluation of species richness estimators for tardigrades of the Great Smoky Mountains National Park, Tennessee and North Carolina, USA

    Directory of Open Access Journals (Sweden)

    Diane R. NELSON

    2007-09-01

    Full Text Available For the past 5 years we have been conducting a large-scale, multi-habitat inventory of the tardigrades in the Great Smoky Mountains National Park (U.S.A. as part of the All Taxa Biodiversity Inventory (ATBI (see www.dlia.org. In terrestrial habitats, we collected moss, lichen, and soil samples from 19 permanent ATBI plots, representing all major land cover types within the park. Each ATBI plot is 100 × 100 m. In each plot, when available, 16 moss samples, 16 lichen samples, and 4 soil samples were collected in paper bags and air dried in the laboratory. Specimens were isolated with LudoxAM centrifugation, and for each sample up to 50 adults plus eggs were individually mounted on microscope slides in Hoyer's medium and identified using phase contrast and DIC microscopy. Additional collections were made in the limestone caves of the Cades Cove region of the park, bird nests, and 13 different streams. To date (1-Jun-06, 589 samples have been collected, and of these 401 have been analyzed, yielding a total of 8133 identifiable tardigrades or, in some cases, species groups. A total of 73 species have been found in the park, 14 of which we believe are new to science. Seven species richness estimators have been developed to predict total species richness (see EstimateS 7.5 software, viceroy.eeb.uconn.edu/estimates, and these were evaluated by comparing predictions from half of our data to the actual numbers from the total database. The results of this comparison indicate that different estimators work best in different habitats. Using the best estimators in each habitat, EstimateS 7.5 indicates that a total of 96 species are likely to occur throughout the park. Thus, Great Smoky Mountains National Park tardigrade diversity represents 10% of the world's known tardigrade fauna.

  18. Richness and abundance of caterpillars on Byrsonima (Malpighiaceae species in an area of cerrado vegetation in Central Brazil

    Directory of Open Access Journals (Sweden)

    Isabel Andrade

    1999-12-01

    Full Text Available We sampled lepidopteran caterpillars on three Byrsonima species (Malpighiaceae in Central Brazil: Byrsonima crassa , Byrsonima verbascifolia and Byrsonima coccolobifolia between May 1993 and July 1994. Fifteen individuals of each plant species were censused weekly. Our main goal was to estimate the abundance and richness of lepidopteran larvae within each plant species. Only 13% of the 1 621 sampled plants had caterpillars on their leaves. This percentage was similar within each plant species. We found a pattern of low abundance and high richness of lepidopteran species associated with Byrsonima. There were 48 morphospecies and 46% of them occurred just once. There was a higher similarity between the fauna of B. crassa and B. verbascifolia than between these and B. coccolobifolia. Once it is known that hairy leaves can affect herbivore colonization and foraging strategy, we suggest that differences in the lepidopteran community associated with Byrsonima spp. are linked with different levels of pubescence on the leaf surface of each plant species. This tendency in Byrsonima is supported by the small number of caterpillars found on young leaves of B. crassa and B. verbascifolia, which are quite hairy.Hicimos un registro cuantitativo de larvas de Lepidoptera que se alimentán de tres espécies de Byrsonima (Malpighiaceae que ocurren en el Brasil Central: B. crassa Nied , B. verbascifolia L. Rich and B. coccolobifolia (Spr. Kunth. Nuestro principal objetivo fué estimar la abundancia y riqueza de orugas en cada una de las espécies de planta. Encontramos un patrón de baja abundancia y alta riqueza de espécies de orugas asociadas a las espécies de Byrsonima. Verificamos, todavía, que la similaridade entre la fauna de B. crassa y B. verbascifolia fué más alta que entre estas espécies y B. coccolobifolia. Una vez que se sabe que hojas con mayor cantidad de vellos pueden afectar la colonización y estratégias de forrageo de herb

  19. Delineating landscape-scale processes of hydrology and plant dispersal for species-rich fen conservation : the Operational Landscape Unit approach

    NARCIS (Netherlands)

    Verhoeven, Jos T.A.; Beltman, Boudewijn; Janssen, Ron; Soons, Merel B.

    2017-01-01

    Restoration and conservation of species-rich nature reserves requires inclusion of landscape-scale connections and transport processes such as hydrologic flows and species dispersal. These are important because they provide suitable habitat conditions and an adequate species pool. This study aimed

  20. Intratendon Delivery of Leukocyte-Poor Platelet-Rich Plasma Improves Healing Compared With Leukocyte-Rich Platelet-Rich Plasma in a Rabbit Achilles Tendinopathy Model.

    Science.gov (United States)

    Yan, Ruijian; Gu, Yanjia; Ran, Jisheng; Hu, Yejun; Zheng, Zefeng; Zeng, Mengfeng; Heng, Boon Chin; Chen, Xiao; Yin, Zi; Chen, Weishan; Shen, Weiliang; Ouyang, Hongwei

    2017-07-01

    Chronic tendinopathy is a commonly occurring clinical problem that affects both athletes and inactive middle-aged patients. Although some studies have shown that different platelet-rich plasma (PRP) preparations could exert various therapeutic effects in vitro, the role of leukocytes in PRP has not yet been defined under tendinopathy conditions in vivo. This study compared the effects of the intratendon delivery of leukocyte-poor PRP (Lp-PRP) versus leukocyte-rich PRP (Lr-PRP) in a rabbit chronic tendinopathy model in vivo. Controlled laboratory study. Four weeks after a local injection of collagenase in the Achilles tendon, the following treatments were randomly administered on the lesions: injections of (1) 200 μL of Lp-PRP (n = 8), (2) 200 μL of Lr-PRP (n = 8), or (3) 200 μL of saline (n = 8). Healing outcomes were assessed at 4 weeks after therapy with magnetic resonance imaging (MRI), cytokine quantification, real-time polymerase chain reaction analysis of gene expression, histology, and transmission electron microscopy (TEM). MRI revealed that the Lr-PRP and saline groups displayed higher signal intensities compared with the Lp-PRP group with T2 mapping. Histologically, the Lp-PRP group displayed significantly better general scores compared with the Lr-PRP ( P = .001) and saline ( P tendon healing and is a preferable option for the clinical treatment of tendinopathy. PRP is widely used in the clinical management of chronic tendinopathy. However, the clinical results are ambiguous. It is imperative to understand the influence of leukocytes on PRP-mediated tissue healing in vivo, which could facilitate the better clinical management of chronic tendinopathy. Further studies are needed to translate our findings to the clinical setting.

  1. Chasing the hare - Evaluating the phylogenetic utility of a nuclear single copy gene region at and below species level within the species rich group Peperomia (Piperaceae

    Directory of Open Access Journals (Sweden)

    Naumann Julia

    2011-12-01

    Full Text Available Abstract Background The rapidly increasing number of available plant genomes opens up almost unlimited prospects for biology in general and molecular phylogenetics in particular. A recent study took advantage of this data and identified a set of nuclear genes that occur in single copy in multiple sequenced angiosperms. The present study is the first to apply genomic sequence of one of these low copy genes, agt1, as a phylogenetic marker for species-level phylogenetics. Its utility is compared to the performance of several coding and non-coding chloroplast loci that have been suggested as most applicable for this taxonomic level. As a model group, we chose Tildenia, a subgenus of Peperomia (Piperaceae, one of the largest plant genera. Relationships are particularly difficult to resolve within these species rich groups due to low levels of polymorphisms and fast or recent radiation. Therefore, Tildenia is a perfect test case for applying new phylogenetic tools. Results We show that the nuclear marker agt1, and in particular the agt1 introns, provide a significantly increased phylogenetic signal compared to chloroplast markers commonly used for low level phylogenetics. 25% of aligned characters from agt1 intron sequence are parsimony informative. In comparison, the introns and spacer of several common chloroplast markers (trnK intron, trnK-psbA spacer, ndhF-rpl32 spacer, rpl32-trnL spacer, psbA-trnH spacer provide less than 10% parsimony informative characters. The agt1 dataset provides a deeper resolution than the chloroplast markers in Tildenia. Conclusions Single (or very low copy nuclear genes are of immense value in plant phylogenetics. Compared to other nuclear genes that are members of gene families of all sizes, lab effort, such as cloning, can be kept to a minimum. They also provide regions with different phylogenetic content deriving from coding and non-coding parts of different length. Thus, they can be applied to a wide range of

  2. Tree species richness, diversity, and regeneration status in different oak (Quercus spp. dominated forests of Garhwal Himalaya, India

    Directory of Open Access Journals (Sweden)

    Sushma Singh

    2016-09-01

    Full Text Available Himalayan forests are dominated by different species of oaks (Quercus spp. at different altitudes. These oaks are intimately linked with hill agriculture as they protect soil fertility, watershed, and local biodiversity. They also play an important role in maintaining ecosystem stability. This work was carried out to study the diversity and regeneration status of some oak forests in Garhwal Himalaya, India. A total of 18 tree species belonging to 16 genera and 12 families were reported from the study area. Species richness varied for trees (4–7, saplings (3–10, and seedlings (2–6. Seedling and sapling densities (Ind/ha varied between 1,376 Ind/ha and 9,600 Ind/ha and 167 Ind/ha and 1,296 Ind/ha, respectively. Species diversity varied from 1.27 to 1.86 (trees, from 0.93 to 3.18 (saplings, and from 0.68 to 2.26 (seedlings. Total basal area (m2/ha of trees and saplings was 2.2–87.07 m2/ha and 0.20–2.24 m2/ha, respectively, whereas that of seedlings varied from 299 cm2/ha to 8,177 cm2/ha. Maximum tree species (20–80% had “good” regeneration. Quercus floribunda, the dominant tree species in the study area, showed “poor” regeneration, which is a matter of concern, and therefore, proper management and conservation strategies need to be developed for maintenance and sustainability of this oak species along with other tree species that show poor or no regeneration.

  3. Pre-Dispersal Seed Predation in a Species-Rich Forest Community: Patterns and the Interplay with Determinants.

    Directory of Open Access Journals (Sweden)

    Yue Xu

    Full Text Available Pre-dispersal seed predation (PDSP is commonly observed in woody plants, and recognized as a driver of seed production variability that is critical for successful regeneration. Earlier studies on PDSP and its determinants were mostly species specific, with community-level PDSP rarely estimated; and the interactions between the temporal variability of seed production and PDSP remain elusive. In this study, the community seed rain of woody plants in a mixed evergreen-deciduous broadleaf forest was monitored for seven years. We examined predation on collected seeds and analyzed the determinants of PDSP. PDSP was recorded in 17 out of 44 woody plant species, and three-quarters of PDSP was due to insect predators. Annual seed production varied substantially at community level, reversely linked with the temporal variation of PDSP rate. The PDSP rate was biased regarding fruit types, and being significantly correlated with seed mass when using phylogenetic independent contrasts (PICs or without taking into account phylogenetic relations, especially for nuts. PDSP rate was also negatively correlated with seed density, showing a threshold-related predator satiation effect. The community-level PDSP rate was primarily determined by tree height, fruit type, and interannual variation of seed production and seed mass. Our analysis revealed a causal link between seed production and the dynamics of PDSP rate at the community level. The predator satiation effect was primarily contributed by the dominant species, whereas the rare species seemed to apply a distinct "hide-and-seek" strategy to control the risk of PDSP. The mechanistic difference of seed production between the common and rare species can shed new light on species coexistence and community assembly. Long-term monitoring of both seed rain and seed predation is required for understanding the ecological and evolutionary implications of species regeneration strategies in a species-rich forest community.

  4. Diversification and germ-line determination revisited: Linking developmental mechanism with species richness

    Directory of Open Access Journals (Sweden)

    Brian I Crother

    2016-03-01

    Full Text Available Abstract.– Background: Explanations for asymmetric patterns of diversification continue to challenge paleontologists and neontologists with competing hypotheses within genetic-development and ecological frameworks. In 1988, a hypothesis was proposed that tied a primordial germ cell (PGC determination mechanism to clade (phyla diversification. Two general mechanisms for PGC determination are recognized: one is termed induced because induction signals are required for the production of primordial germ cells. The other mechanism is cell-autonomous, i.e. determinative, because the cells that develop in response to specific cytoplasmic determinants in the oocyte are pre-destined to become PGCs. We revisited the hypothesis and analyzed phyla diversity with germ cell determination mechanisms and examined sister clade asymmetry.Results: After 25 years of additional data accumulation, the hypothesis that high levels of species diversification are associated with the induced mode is falsified, with the determinative mode revealed as associated with higher rates of diversification. The greater species numbers are significantly associated (ANOVA p>0.003 with the determinative mode. Analysis with appropriate sister clades is unanimous in showing the clade with the determinative mode has a significantly greater number of species relative to its induced sister clade .Conclusions: The primordial germ cell determination mechanism hypothesis explains asymmetrical species diversity and morphological disparity at the phylum level. We argue that the determinative mode of primordial germ cell determination is a constraint release that has enhanced evolvability and increased rates of speciation and morphological disparity among clades. Knowledge of the mechanism for extant theropods allows speculation that its sister clade, the Sauropodomorpha would have exhibited the induced mode.Results: After 25 years of additional data accumulation, the hypothesis that high

  5. Leishmanicidal activity of fractions rich in aporphine alkaloids from Amazonian Unonopsis species

    Directory of Open Access Journals (Sweden)

    Felipe M. A. da Silva

    2012-09-01

    Full Text Available In vitro evaluation of alkaloidal fractions of twigs, barks and leaves from two Unonopsis species, Unonopsis guatterioides R.E. Fr. and Unonopsis duckei R.E. Fr., Annonaceae, against promastigote forms of Leishmania amazonensis revealed these species as sources of substances with promising leishmanicidal potential. All alkaloidal fractions from twigs, barks and leaves of U. guatterioides were classified as highly active, with IC50 1.07, 1.90, and 2.79 mg/mL, respectively. Only the alkaloidal fraction from the twigs of U. duckei was classified as inactive.

  6. Day–Night Changes of Energy-rich Compounds in Crassulacean Acid Metabolism (CAM) Species Utilizing Hexose and Starch

    Science.gov (United States)

    CHEN, LI-SONG; NOSE, AKIHIRO

    2004-01-01

    • Background and Aims Plants with crassulacean acid metabolism (CAM) can be divided into two groups according to the major carbohydrates used for malic acid synthesis, either polysaccharide (starch) or monosaccharide (hexose). This is related to the mechanism and affects energy metabolism in the two groups. In Kalanchoë pinnata and K. daigremontiana, which utilize starch, ATP-dependent phosphofructokinase (tonoplast inorganic pyrophosphatase) activity is greater than inorganic pyrophosphate-dependent phosphofructokinase (tonoplast adenosine triphosphatase) activity, but the reverse is the case in pineapple (Ananas comosus) utilizing hexose. To test the hypothesis that the energy metabolism of the two groups differs, day-night changes in the contents of ATP, ADP, AMP, inorganic phosphate (Pi), phosphoenolpyruvate (PEP) and inorganic pyrophosphate (PPi) in K. pinnata and K. daigremontiana leaves and in pineapple chlorenchyma were analysed. • Methods The contents of energy-rich compounds were measured spectrophotometrically in extracts of tissue sampled in the light and dark, using potted plants, kept for 15 d before the experiments in a growth chamber. • Key Results In the three species, ATP content and adenylate energy charge (AEC) increased in the dark and decreased in the light, in contrast to ADP and AMP. Changes in ATP and AEC were greater in Kalanchoë leaves than in pineapple chlorenchyma. PPi content in the three species increased in the dark, but on illumination it decreased rapidly and substantially, remaining little changed through the rest of the light period. Pi content of Kalanchoë leaves did not change between dark and light, whereas Pi in pineapple chlorenchyma increased in the dark and decreased in the light, and the changes were far greater than in Kalanchoë leaves. Light-dark changes in PEP content in the three species were similar. • Conclusions These results corroborate our hypothesis that day–night changes in the contents of energy-rich

  7. Day-night changes of energy-rich compounds in crassulacean acid metabolism (CAM) species utilizing hexose and starch.

    Science.gov (United States)

    Chen, Li-Song; Nose, Akihiro

    2004-09-01

    Plants with crassulacean acid metabolism (CAM) can be divided into two groups according to the major carbohydrates used for malic acid synthesis, either polysaccharide (starch) or monosaccharide (hexose). This is related to the mechanism and affects energy metabolism in the two groups. In Kalanchoë pinnata and K. daigremontiana, which utilize starch, ATP-dependent phosphofructokinase (tonoplast inorganic pyrophosphatase) activity is greater than inorganic pyrophosphate-dependent phosphofructokinase (tonoplast adenosine triphosphatase) activity, but the reverse is the case in pineapple (Ananas comosus) utilizing hexose. To test the hypothesis that the energy metabolism of the two groups differs, day-night changes in the contents of ATP, ADP, AMP, inorganic phosphate (Pi), phosphoenolpyruvate (PEP) and inorganic pyrophosphate (PPi) in K. pinnata and K. daigremontiana leaves and in pineapple chlorenchyma were analysed. The contents of energy-rich compounds were measured spectrophotometrically in extracts of tissue sampled in the light and dark, using potted plants, kept for 15 d before the experiments in a growth chamber. In the three species, ATP content and adenylate energy charge (AEC) increased in the dark and decreased in the light, in contrast to ADP and AMP. Changes in ATP and AEC were greater in Kalanchoë leaves than in pineapple chlorenchyma. PPi content in the three species increased in the dark, but on illumination it decreased rapidly and substantially, remaining little changed through the rest of the light period. Pi content of Kalanchoë leaves did not change between dark and light, whereas Pi in pineapple chlorenchyma increased in the dark and decreased in the light, and the changes were far greater than in Kalanchoë leaves. Light-dark changes in PEP content in the three species were similar. These results corroborate our hypothesis that day-night changes in the contents of energy-rich compounds differ between CAM species and are related to the

  8. Elevational gradient in species richness pattern of epigaeic beetles and underlying mechanisms at east slope of Balang Mountain in southwestern China.

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Yu

    Full Text Available We report on the species richness patterns of epigaeic beetles (Coleoptera: Carabidae and Staphylinidae along a subtropical elevational gradient of Balang Mountain, southwestern China. We tested the roles of environmental factors (e.g. temperature, area and litter cover and direct biotic interactions (e.g. foods and antagonists that shape elevational diversity gradients. Beetles were sampled at 19 sites using pitfall traps along the studied elevational gradient ranging from 1500 m-4000 m during the 2004 growing season. A total of 74416 specimens representing 260 species were recorded. Species richness of epigaeic beetles and two families showed unimodal patterns along the elevational gradient, peaking at mid-elevations (c. 2535 m, and the ranges of most beetle species were narrow along the gradient. The potential correlates of both species richness and environmental variables were examined using linear and second order polynomial regressions. The results showed that temperature, area and litter cover had strong explanatory power of beetle species richness for nearly all richness patterns, of beetles as a whole and of Carabidae and Staphylinidae, but the density of antagonists was associated with species richness of Carabidae only. Multiple regression analyses suggested that the three environmental factors combined contributed most to richness patterns for most taxa. The results suggest that environmental factors associated with temperature, area and habitat heterogeneity could account for most variation in richness pattern of epigaeic beetles. Additionally, the mid-elevation peaks and the small range size of most species indicate that conservation efforts should give attention to the entire gradient rather than just mid-elevations.

  9. Elevational gradient in species richness pattern of epigaeic beetles and underlying mechanisms at east slope of Balang Mountain in southwestern China.

    Science.gov (United States)

    Yu, Xiao-Dong; Lü, Liang; Luo, Tian-Hong; Zhou, Hong-Zhang

    2013-01-01

    We report on the species richness patterns of epigaeic beetles (Coleoptera: Carabidae and Staphylinidae) along a subtropical elevational gradient of Balang Mountain, southwestern China. We tested the roles of environmental factors (e.g. temperature, area and litter cover) and direct biotic interactions (e.g. foods and antagonists) that shape elevational diversity gradients. Beetles were sampled at 19 sites using pitfall traps along the studied elevational gradient ranging from 1500 m-4000 m during the 2004 growing season. A total of 74416 specimens representing 260 species were recorded. Species richness of epigaeic beetles and two families showed unimodal patterns along the elevational gradient, peaking at mid-elevations (c. 2535 m), and the ranges of most beetle species were narrow along the gradient. The potential correlates of both species richness and environmental variables were examined using linear and second order polynomial regressions. The results showed that temperature, area and litter cover had strong explanatory power of beetle species richness for nearly all richness patterns, of beetles as a whole and of Carabidae and Staphylinidae, but the density of antagonists was associated with species richness of Carabidae only. Multiple regression analyses suggested that the three environmental factors combined contributed most to richness patterns for most taxa. The results suggest that environmental factors associated with temperature, area and habitat heterogeneity could account for most variation in richness pattern of epigaeic beetles. Additionally, the mid-elevation peaks and the small range size of most species indicate that conservation efforts should give attention to the entire gradient rather than just mid-elevations.

  10. From the Atlantic Forest to the borders of Amazonia: species richness, distribution, and host association of ectoparasitic flies (Diptera: Nycteribiidae and Streblidae) in northeastern Brazil.

    Science.gov (United States)

    Barbier, Eder; Bernard, Enrico

    2017-11-01

    Better knowledge of the geographical distribution of parasites and their hosts can contribute to clarifying aspects of host specificity, as well as on the interactions among hosts, parasites, and the environment in which both exist. Ectoparasitic flies of the Nycteribiidae and Streblidae families are highly specialized hematophagous parasites of bats, whose distributional patterns, species richness, and associations with hosts remain underexplored and poorly known in Brazil. Here, we used information available in the literature and unpublished data to verify if the occurrence of bat hosts in a given environment influences the occurrence and distribution of nycteribiid and streblid flies in different ecoregions in the northeastern Brazil. We evaluate species richness and similarity between ecoregions and tested correlations between species richness and the number of studies in each ecoregion and federative unit. We recorded 50 species and 15 genera of bat ectoparasitic flies on 36 species and 27 genera of bat hosts. The Atlantic Forest had the highest fly species richness (n = 31; 62%), followed by Caatinga (n = 27; 54%). We detected the formation of distinct groups, with low species overlap between ecoregions for both flies and bats. Fly species richness was correlated with host species richness and with the number of studies in each federative unit, but not with the number of studies by ecoregion. Due to the formation of distinct groups with low species overlap for both groups, host availability is likely to be one of the factors that most influence the occurrence of highly specific flies. We also discuss host specificity for some species, produced an updated list of species and distribution for both nycteribiid and streblid flies with information on interaction networks, and conclude by presenting recommendations for more effective inventories of bat ectoparasites in the future.

  11. Three dimensional marine seismic survey has no measurable effect on species richness or abundance of a coral reef associated fish community.

    Science.gov (United States)

    Miller, Ian; Cripps, Edward

    2013-12-15

    Underwater visual census was used to determine the effect of a three dimensional seismic survey on the shallow water coral reef slope associated fish community at Scott Reef. A census of the fish community was conducted on six locations at Scott Reef both before and after the survey. The census included small site attached demersal species belonging to the family Pomacentridae and larger roving demersal species belonging to the non-Pomacentridae families. These data were combined with a decade of historical data to assess the impact of the seismic survey. Taking into account spatial, temporal, spatio-temporal and observer variability, modelling showed no significant effect of the seismic survey on the overall abundance or species richness of Pomacentridae or non-Pomacentridae. The six most abundant species were also analysed individually. In all cases no detectable effect of the seismic survey was found on the abundance of these fish species at Scott Reef. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Polymorphism versus species richness - systematics of large Dendrobates from the eastern Guiana Shield (Amphibia: Dendrobatidae)

    NARCIS (Netherlands)

    Wollenberg, K.; Veith, M.K.H.; Noonan, B.P.; Lötters, S.

    2006-01-01

    Abstract A molecular phylogeny based on a fragment of the mitochondrial 16S rRNA gene and morphological comparisons suggest that only one polymorphic species of large Dendrobates, commonly assigned to D. tinctorius, occurs on the eastern Guiana Shield and its vicinities. The oldest available name

  13. Species richness and distribution of chondrichthyan fishes in the Arctic Ocean and adjacent seas

    DEFF Research Database (Denmark)

    Lynghammar, A.; Christiansen, J. S.; Mecklenburg, C. W.

    2013-01-01

    The sea ice cover decreases and human activity increases in Arctic waters. Fisheries and bycatch issues, shipping and petroleum exploitation (pollution issues) make it imperative to establish biological baselines for the marine fishes inhabiting the Arctic Ocean and adjacent seas (AOAS). Species...

  14. Species richness and distribution of benthic tidal flat fauna of the Banc d'Arguin, Mauritania

    NARCIS (Netherlands)

    Wijnsma, G; Wolff, WJ; Meijboom, A; Duiven, P; De Vlas, J

    1999-01-01

    The Banc d'Arguin in Mauritania, West Africa, is an area of tidal flats and shallow inshore waters bordering the sandy desert of the Sahara. The project Banc d'Arguin 1985-1986 investigated predominantly benthic biomass and production, the same data allow investigation of the species diversity and