WorldWideScience

Sample records for modelling spatially distributed

  1. Spatial distribution of emissions to air – the SPREAD model

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Gyldenkærne, Steen

    The National Environmental Research Institute (NERI), Aarhus University, completes the annual national emission inventories for greenhouse gases and air pollutants according to Denmark’s obligations under international conventions, e.g. the climate convention, UNFCCC and the convention on long......-range transboundary air pollution, CLRTAP. NERI has developed a model to distribute emissions from the national emission inventories on a 1x1 km grid covering the Danish land and sea territory. The new spatial high resolution distribution model for emissions to air (SPREAD) has been developed according...... to the requirements for reporting of gridded emissions to CLRTAP. Spatial emission data is e.g. used as input for air quality modelling, which again serves as input for assessment and evaluation of health effects. For these purposes distributions with higher spatial resolution have been requested. Previously...

  2. Validating a spatially distributed hydrological model with soil morphology data

    Directory of Open Access Journals (Sweden)

    T. Doppler

    2013-10-01

    Full Text Available Spatially distributed hydrological models are popular tools in hydrology and they are claimed to be useful to support management decisions. Despite the high spatial resolution of the computed variables, calibration and validation is often carried out only on discharge time-series at specific locations due to the lack of spatially distributed reference data. Because of this restriction, the predictive power of these models, with regard to predicted spatial patterns, can usually not be judged. An example of spatial predictions in hydrology is the prediction of saturated areas in agricultural catchments. These areas can be important source areas for the transport of agrochemicals to the stream. We set up a spatially distributed model to predict saturated areas in a 1.2 km2 catchment in Switzerland with moderate topography. Around 40% of the catchment area are artificially drained. We measured weather data, discharge and groundwater levels in 11 piezometers for 1.5 yr. For broadening the spatially distributed data sets that can be used for model calibration and validation, we translated soil morphological data available from soil maps into an estimate of the duration of soil saturation in the soil horizons. We used redox-morphology signs for these estimates. This resulted in a data set with high spatial coverage on which the model predictions were validated. In general, these saturation estimates corresponded well to the measured groundwater levels. We worked with a model that would be applicable for management decisions because of its fast calculation speed and rather low data requirements. We simultaneously calibrated the model to the groundwater levels in the piezometers and discharge. The model was able to reproduce the general hydrological behavior of the catchment in terms of discharge and absolute groundwater levels. However, the accuracy of the groundwater level predictions was not high enough to be used for the prediction of saturated areas

  3. Modelling the spatial distribution of ammonia emissions in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Hellsten, S. [Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Institute of Geography, School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP (United Kingdom); IVL Swedish Environmental Research Institute Ltd, P.O. Box 5302, SE-400 14 Gothenburg (Sweden)], E-mail: sofie.hellsten@ivl.se; Dragosits, U. [Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Place, C.J. [Institute of Geography, School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP (United Kingdom); Vieno, M. [Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Institute of Atmospheric and Environmental Science, School of GeoSciences, University of Edinburgh, Crew Building, The King' s buildings, West Mains Road, Edinburgh EH9 3JN (United Kingdom); Dore, A.J. [Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Misselbrook, T.H. [Institute of Grassland and Environmental Research, North Wyke, Okehampton, Exeter EX 2SB (United Kingdom); Tang, Y.S.; Sutton, M.A. [Centre for Ecology and Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom)

    2008-08-15

    Ammonia emissions (NH{sub 3}) are characterised by a high spatial variability at a local scale. When modelling the spatial distribution of NH{sub 3} emissions, it is important to provide robust emission estimates, since the model output is used to assess potential environmental impacts, e.g. exceedance of critical loads. The aim of this study was to provide a new, updated spatial NH{sub 3} emission inventory for the UK for the year 2000, based on an improved modelling approach and the use of updated input datasets. The AENEID model distributes NH{sub 3} emissions from a range of agricultural activities, such as grazing and housing of livestock, storage and spreading of manures, and fertilizer application, at a 1-km grid resolution over the most suitable landcover types. The results of the emission calculation for the year 2000 are analysed and the methodology is compared with a previous spatial emission inventory for 1996. - It is important to provide robust estimates of the spatial distribution of ammonia emissions, since the model output is used to assess potential environmental impacts, e.g. through the exceedance of critical loads.

  4. [Prediction of spatial distribution of forest carbon storage in Heilongjiang Province using spatial error model].

    Science.gov (United States)

    Liu, Chang; Li, Feng-Ri; Zhen, Zhen

    2014-10-01

    Abstract: Based on the data from Chinese National Forest Inventory (CNFI) and Key Ecological Benefit Forest Monitoring plots (5075 in total) in Heilongjiang Province in 2010 and concurrent meteorological data coming from 59 meteorological stations located in Heilongjiang, Jilin and Inner Mongolia, this paper established a spatial error model (SEM) by GeoDA using carbon storage as dependent variable and several independent variables, including diameter of living trees (DBH), number of trees per hectare (TPH), elevation (Elev), slope (Slope), and product of precipitation and temperature (Rain_Temp). Global Moran's I was computed for describing overall spatial autocorrelations of model results at different spatial scales. Local Moran's I was calculated at the optimal bandwidth (25 km) to present spatial distribution residuals. Intra-block spatial variances were computed to explain spatial heterogeneity of residuals. Finally, a spatial distribution map of carbon storage in Heilongjiang was visualized based on predictions. The results showed that the distribution of forest carbon storage in Heilongjiang had spatial effect and was significantly influenced by stand, topographic and meteorological factors, especially average DBH. SEM could solve the spatial autocorrelation and heterogeneity well. There were significant spatial differences in distribution of forest carbon storage. The carbon storage was mainly distributed in Zhangguangcai Mountain, Xiao Xing'an Mountain and Da Xing'an Mountain where dense, forests existed, rarely distributed in Songnen Plains, while Wanda Mountain had moderate-level carbon storage.

  5. Unleashing spatially distributed ecohydrology modeling using Big Data tools

    Science.gov (United States)

    Miles, B.; Idaszak, R.

    2015-12-01

    Physically based spatially distributed ecohydrology models are useful for answering science and management questions related to the hydrology and biogeochemistry of prairie, savanna, forested, as well as urbanized ecosystems. However, these models can produce hundreds of gigabytes of spatial output for a single model run over decadal time scales when run at regional spatial scales and moderate spatial resolutions (~100-km2+ at 30-m spatial resolution) or when run for small watersheds at high spatial resolutions (~1-km2 at 3-m spatial resolution). Numerical data formats such as HDF5 can store arbitrarily large datasets. However even in HPC environments, there are practical limits on the size of single files that can be stored and reliably backed up. Even when such large datasets can be stored, querying and analyzing these data can suffer from poor performance due to memory limitations and I/O bottlenecks, for example on single workstations where memory and bandwidth are limited, or in HPC environments where data are stored separately from computational nodes. The difficulty of storing and analyzing spatial data from ecohydrology models limits our ability to harness these powerful tools. Big Data tools such as distributed databases have the potential to surmount the data storage and analysis challenges inherent to large spatial datasets. Distributed databases solve these problems by storing data close to computational nodes while enabling horizontal scalability and fault tolerance. Here we present the architecture of and preliminary results from PatchDB, a distributed datastore for managing spatial output from the Regional Hydro-Ecological Simulation System (RHESSys). The initial version of PatchDB uses message queueing to asynchronously write RHESSys model output to an Apache Cassandra cluster. Once stored in the cluster, these data can be efficiently queried to quickly produce both spatial visualizations for a particular variable (e.g. maps and animations), as well

  6. Spatial distribution of emissions to air - the SPREAD model

    Energy Technology Data Exchange (ETDEWEB)

    Plejdrup, M.S.; Gyldenkaerne, S.

    2011-04-15

    The National Environmental Research Institute (NERI), Aarhus University, completes the annual national emission inventories for greenhouse gases and air pollutants according to Denmark's obligations under international conventions, e.g. the climate convention, UNFCCC and the convention on long-range transboundary air pollution, CLRTAP. NERI has developed a model to distribute emissions from the national emission inventories on a 1x1 km grid covering the Danish land and sea territory. The new spatial high resolution distribution model for emissions to air (SPREAD) has been developed according to the requirements for reporting of gridded emissions to CLRTAP. Spatial emission data is e.g. used as input for air quality modelling, which again serves as input for assessment and evaluation of health effects. For these purposes distributions with higher spatial resolution have been requested. Previously, a distribution on the 17x17 km EMEP grid has been set up and used in research projects combined with detailed distributions for a few sectors or sub-sectors e.g. a distribution for emissions from road traffic on 1x1 km resolution. SPREAD is developed to generate improved spatial emission data for e.g. air quality modelling in exposure studies. SPREAD includes emission distributions for each sector in the Danish inventory system; stationary combustion, mobile sources, fugitive emissions from fuels, industrial processes, solvents and other product use, agriculture and waste. This model enables generation of distributions for single sectors and for a number of sub-sectors and single sources as well. This report documents the methodologies in this first version of SPREAD and presents selected results. Further, a number of potential improvements for later versions of SPREAD are addressed and discussed. (Author)

  7. Spatial distribution

    DEFF Research Database (Denmark)

    Borregaard, Michael Krabbe; Hendrichsen, Ditte Katrine; Nachman, Gøsta Støger

    2008-01-01

    Living organisms are distributed over the entire surface of the planet. The distribution of the individuals of each species is not random; on the contrary, they are strongly dependent on the biology and ecology of the species, and vary over different spatial scale. The structure of whole...... populations reflects the location and fragmentation pattern of the habitat types preferred by the species, and the complex dynamics of migration, colonization, and population growth taking place over the landscape. Within these, individuals are distributed among each other in regular or clumped patterns......, depending on the nature of intraspecific interactions between them: while the individuals of some species repel each other and partition the available area, others form groups of varying size, determined by the fitness of each group member. The spatial distribution pattern of individuals again strongly...

  8. Scaling precipitation input to spatially distributed hydrological models by measured snow distribution

    OpenAIRE

    2016-01-01

    Accurate knowledge on snow distribution in alpine terrain is crucial for various applicationssuch as flood risk assessment, avalanche warning or managing water supply and hydro-power.To simulate the seasonal snow cover development in alpine terrain, the spatially distributed,physics-based model Alpine3D is suitable. The model is typically driven by spatial interpolationsof observations from automatic weather stations (AWS), leading to errors in the spatial distributionof atmospheric forcing. ...

  9. Spatial distribution of emissions to air – the SPREAD model

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Gyldenkærne, Steen

    The National Environmental Research Institute (NERI), Aarhus University, completes the annual national emission inventories for greenhouse gases and air pollutants according to Denmark’s obligations under international conventions, e.g. the climate convention, UNFCCC and the convention on long...... to the requirements for reporting of gridded emissions to CLRTAP. Spatial emission data is e.g. used as input for air quality modelling, which again serves as input for assessment and evaluation of health effects. For these purposes distributions with higher spatial resolution have been requested. Previously...

  10. A modal approach to modeling spatially distributed vibration energy dissipation.

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, Daniel Joseph

    2010-08-01

    The nonlinear behavior of mechanical joints is a confounding element in modeling the dynamic response of structures. Though there has been some progress in recent years in modeling individual joints, modeling the full structure with myriad frictional interfaces has remained an obstinate challenge. A strategy is suggested for structural dynamics modeling that can account for the combined effect of interface friction distributed spatially about the structure. This approach accommodates the following observations: (1) At small to modest amplitudes, the nonlinearity of jointed structures is manifest primarily in the energy dissipation - visible as vibration damping; (2) Correspondingly, measured vibration modes do not change significantly with amplitude; and (3) Significant coupling among the modes does not appear to result at modest amplitudes. The mathematical approach presented here postulates the preservation of linear modes and invests all the nonlinearity in the evolution of the modal coordinates. The constitutive form selected is one that works well in modeling spatially discrete joints. When compared against a mathematical truth model, the distributed dissipation approximation performs well.

  11. Scaling precipitation input to spatially distributed hydrological models by measured snow distribution

    Directory of Open Access Journals (Sweden)

    Christian Vögeli

    2016-12-01

    Full Text Available Accurate knowledge on snow distribution in alpine terrain is crucial for various applicationssuch as flood risk assessment, avalanche warning or managing water supply and hydro-power.To simulate the seasonal snow cover development in alpine terrain, the spatially distributed,physics-based model Alpine3D is suitable. The model is typically driven by spatial interpolationsof observations from automatic weather stations (AWS, leading to errors in the spatial distributionof atmospheric forcing. With recent advances in remote sensing techniques, maps of snowdepth can be acquired with high spatial resolution and accuracy. In this work, maps of the snowdepth distribution, calculated from summer and winter digital surface models based on AirborneDigital Sensors (ADS, are used to scale precipitation input data, with the aim to improve theaccuracy of simulation of the spatial distribution of snow with Alpine3D. A simple method toscale and redistribute precipitation is presented and the performance is analysed. The scalingmethod is only applied if it is snowing. For rainfall the precipitation is distributed by interpolation,with a simple air temperature threshold used for the determination of the precipitation phase.It was found that the accuracy of spatial snow distribution could be improved significantly forthe simulated domain. The standard deviation of absolute snow depth error is reduced up toa factor 3.4 to less than 20 cm. The mean absolute error in snow distribution was reducedwhen using representative input sources for the simulation domain. For inter-annual scaling, themodel performance could also be improved, even when using a remote sensing dataset from adifferent winter. In conclusion, using remote sensing data to process precipitation input, complexprocesses such as preferential snow deposition and snow relocation due to wind or avalanches,can be substituted and modelling performance of spatial snow distribution is improved.

  12. FUEL3-D: A Spatially Explicit Fractal Fuel Distribution Model

    Science.gov (United States)

    Russell A. Parsons

    2006-01-01

    Efforts to quantitatively evaluate the effectiveness of fuels treatments are hampered by inconsistencies between the spatial scale at which fuel treatments are implemented and the spatial scale, and detail, with which we model fire and fuel interactions. Central to this scale inconsistency is the resolution at which variability within the fuel bed is considered. Crown...

  13. Distributed multi-criteria model evaluation and spatial association analysis

    Science.gov (United States)

    Scherer, Laura; Pfister, Stephan

    2015-04-01

    Model performance, if evaluated, is often communicated by a single indicator and at an aggregated level; however, it does not embrace the trade-offs between different indicators and the inherent spatial heterogeneity of model efficiency. In this study, we simulated the water balance of the Mississippi watershed using the Soil and Water Assessment Tool (SWAT). The model was calibrated against monthly river discharge at 131 measurement stations. Its time series were bisected to allow for subsequent validation at the same gauges. Furthermore, the model was validated against evapotranspiration which was available as a continuous raster based on remote sensing. The model performance was evaluated for each of the 451 sub-watersheds using four different criteria: 1) Nash-Sutcliffe efficiency (NSE), 2) percent bias (PBIAS), 3) root mean square error (RMSE) normalized to standard deviation (RSR), as well as 4) a combined indicator of the squared correlation coefficient and the linear regression slope (bR2). Conditions that might lead to a poor model performance include aridity, a very flat and steep relief, snowfall and dams, as indicated by previous research. In an attempt to explain spatial differences in model efficiency, the goodness of the model was spatially compared to these four phenomena by means of a bivariate spatial association measure which combines Pearson's correlation coefficient and Moran's index for spatial autocorrelation. In order to assess the model performance of the Mississippi watershed as a whole, three different averages of the sub-watershed results were computed by 1) applying equal weights, 2) weighting by the mean observed river discharge, 3) weighting by the upstream catchment area and the square root of the time series length. Ratings of model performance differed significantly in space and according to efficiency criterion. The model performed much better in the humid Eastern region than in the arid Western region which was confirmed by the

  14. Temporal and spatial distribution characteristics of water resources in Guangdong Province based on a cloud model

    Directory of Open Access Journals (Sweden)

    Qi Zhou

    2015-10-01

    Full Text Available With a focus on the difficulty of quantitatively describing the degree of nonuniformity of temporal and spatial distributions of water resources, quantitative research was carried out on the temporal and spatial distribution characteristics of water resources in Guangdong Province from 1956 to 2000 based on a cloud model. The spatial variation of the temporal distribution characteristics and the temporal variation of the spatial distribution characteristics were both analyzed. In addition, the relationships between the numerical characteristics of the cloud model of temporal and spatial distributions of water resources and precipitation were also studied. The results show that, using a cloud model, it is possible to intuitively describe the temporal and spatial distribution characteristics of water resources in cloud images. Water resources in Guangdong Province and their temporal and spatial distribution characteristics are differentiated by their geographic locations. Downstream and coastal areas have a larger amount of water resources with greater uniformity and stronger stability in terms of temporal distribution. Regions with more precipitation possess larger amounts of water resources, and years with more precipitation show greater nonuniformity in the spatial distribution of water resources. The correlation between the nonuniformity of the temporal distribution and local precipitation is small, and no correlation is found between the stability of the nonuniformity of the temporal and spatial distributions of water resources and precipitation. The amount of water resources in Guangdong Province shows an increasing trend from 1956 to 2000, the nonuniformity of the spatial distribution of water resources declines, and the stability of the nonuniformity of the spatial distribution of water resources is enhanced.

  15. Spatial sensitivity analysis of snow cover data in a distributed rainfall-runoff model

    Science.gov (United States)

    Berezowski, T.; Nossent, J.; Chormański, J.; Batelaan, O.

    2015-04-01

    As the availability of spatially distributed data sets for distributed rainfall-runoff modelling is strongly increasing, more attention should be paid to the influence of the quality of the data on the calibration. While a lot of progress has been made on using distributed data in simulations of hydrological models, sensitivity of spatial data with respect to model results is not well understood. In this paper we develop a spatial sensitivity analysis method for spatial input data (snow cover fraction - SCF) for a distributed rainfall-runoff model to investigate when the model is differently subjected to SCF uncertainty in different zones of the model. The analysis was focussed on the relation between the SCF sensitivity and the physical and spatial parameters and processes of a distributed rainfall-runoff model. The methodology is tested for the Biebrza River catchment, Poland, for which a distributed WetSpa model is set up to simulate 2 years of daily runoff. The sensitivity analysis uses the Latin-Hypercube One-factor-At-a-Time (LH-OAT) algorithm, which employs different response functions for each spatial parameter representing a 4 × 4 km snow zone. The results show that the spatial patterns of sensitivity can be easily interpreted by co-occurrence of different environmental factors such as geomorphology, soil texture, land use, precipitation and temperature. Moreover, the spatial pattern of sensitivity under different response functions is related to different spatial parameters and physical processes. The results clearly show that the LH-OAT algorithm is suitable for our spatial sensitivity analysis approach and that the SCF is spatially sensitive in the WetSpa model. The developed method can be easily applied to other models and other spatial data.

  16. A Spatially Distributed Hydrological Model For The Okavango Delta, Botswana

    Science.gov (United States)

    Bauer, P.; Kinzelbach, W.; Thabeng, G.

    2003-04-01

    The Okavango Delta is a large (˜30 000 km^2) inland delta situated in northern Botswana. It is subject to annual flooding due to the strong seasonality of the inflowing Okavango River and of local rainfall. The inflowing waters spread out over vast perennial and seasonal floodplains and partially infiltrate into the underlying sand aquifer. Ultimately, the water is consumed by evapotranspiration, there is no significant outflow from the Delta. The system's response to the annual flood in the Okavango River as well as local rainfall and evapotranspiration is modelled within a finite difference scheme based on MODFLOW. The wetland and the underlying sand aquifer are incorporated as two separate layers. In the superficial layer, either steady uniform channel flow (Darcy-Weisbach equation) or potential flow (Darcy flow) can be chosen on a cell-by-cell basis. The coarse spatial resolution does not capture the small-scale variation in the topographic elevation. Therefore, upscaling techniques are applied to incorporate the statistics of that variation into effective parameters for the hydraulic conductivity, the storage coefficient and the evapotranspiration. Modelled flooding patterns are compared with flooding patterns derived from NOAA-AVHRR and other remote sensing data (1 km resolution). Good correspondence between the two is achieved based on parameters chosen according to prior knowledge and field data. Global indicators like the average size of the Delta and the temporal variance of its size are closely reproduced. Ultimately, the remotely sensed flooding patterns will be used to calibrate the model. Apart from flooding patterns, model outputs include cell-by-cell flow terms. Water balances can be calculated for arbitrary sub-regions of the grid. Other monitoring data like water levels in rivers and boreholes as well as discharges at gauging points may be used for validation of the model. The Okavango Delta is one of the prime conservation areas in Africa and a

  17. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    Directory of Open Access Journals (Sweden)

    Yu Liang

    Full Text Available Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance. We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  18. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    Science.gov (United States)

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  19. Analysing the distribution of synaptic vesicles using a spatial point process model

    DEFF Research Database (Denmark)

    Khanmohammadi, Mahdieh; Waagepetersen, Rasmus; Nava, Nicoletta

    2014-01-01

    Stress can affect the brain functionality in many ways. As the synaptic vesicles have a major role in nervous signal transportation in synapses, their distribution in relationship to the active zone is very important in studying the neuron responses. We study the effect of stress on brain functio...... in the two groups. The spatial distributions are modelled using spatial point process models with an inhomogeneous conditional intensity and repulsive pairwise interactions. Our results verify the hypothesis that the two groups have different spatial distributions....

  20. Continuous time modelling of dynamical spatial lattice data observed at sparsely distributed times

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl; Møller, Jesper

    2007-01-01

    Summary. We consider statistical and computational aspects of simulation-based Bayesian inference for a spatial-temporal model based on a multivariate point process which is only observed at sparsely distributed times. The point processes are indexed by the sites of a spatial lattice, and they ex......Summary. We consider statistical and computational aspects of simulation-based Bayesian inference for a spatial-temporal model based on a multivariate point process which is only observed at sparsely distributed times. The point processes are indexed by the sites of a spatial lattice......, and they exhibit spatial interaction. For specificity we consider a particular dynamical spatial lattice data set which has previously been analysed by a discrete time model involving unknown normalizing constants. We discuss the advantages and disadvantages of using continuous time processes compared...

  1. Spatial sensitivity analysis of snow cover data in a distributed rainfall–runoff model

    Directory of Open Access Journals (Sweden)

    T. Berezowski

    2014-10-01

    Full Text Available As the availability of spatially distributed data sets for distributed rainfall–runoff modelling is strongly growing, more attention should be paid to the influence of the quality of the data on the calibration. While a lot of progress has been made on using distributed data in simulations of hydrological models, sensitivity of spatial data with respect to model results is not well understood. In this paper we develop a spatial sensitivity analysis (SA method for snow cover fraction input data (SCF for a distributed rainfall–runoff model to investigate if the model is differently subjected to SCF uncertainty in different zones of the model. The analysis was focused on the relation between the SCF sensitivity and the physical, spatial parameters and processes of a distributed rainfall–runoff model. The methodology is tested for the Biebrza River catchment, Poland for which a distributed WetSpa model is setup to simulate two years of daily runoff. The SA uses the Latin-Hypercube One-factor-At-a-Time (LH-OAT algorithm, which uses different response functions for each 4 km × 4 km snow zone. The results show that the spatial patterns of sensitivity can be easily interpreted by co-occurrence of different environmental factors such as: geomorphology, soil texture, land-use, precipitation and temperature. Moreover, the spatial pattern of sensitivity under different response functions is related to different spatial parameters and physical processes. The results clearly show that the LH-OAT algorithm is suitable for the spatial sensitivity analysis approach and that the SCF is spatially sensitive in the WetSpa model.

  2. Spatial Distribution of the Errors in Modeling the Mid-Latitude Critical Frequencies by Different Models

    Science.gov (United States)

    Kilifarska, N. A.

    There are some models that describe the spatial distribution of greatest frequency yielding reflection from the F2 ionospheric layer (foF2). However, the distribution of the models' errors over the globe and how they depend on seasons, solar activity, etc., are unknown till this time. So the aim of the present paper is to compare the accuracy in describing the latitudinal and longitudinal variation of the mid-latitude maximum electron density, of CCIR, URSI, and a new created theoretical model. A comparison between the above mentioned models and all available from Boulder's data bank VI data (among 35 deg and 70 deg) have been made. Data for three whole years with different solar activity - 1976 (F_10.7 = 73.6), 1981 (F_10.7 = 20.6), 1983 (F_10.7 = 119.6) have been compared. The final results show that: 1. the areas with greatest and smallest errors depend on UT, season and solar activity; 2. the error distribution of CCIR and URSI models are very similar and are not coincident with these ones of theoretical model. The last result indicates that the theoretical model, described briefly bellow, may be a real alternative to the empirical CCIR and URSI models. The different spatial distribution of the models' errors gives a chance for the users to choose the most appropriate model, depending on their needs. Taking into account that the theoretical models have equal accuracy in region with many or without any ionosonde station, this result shows that our model can be used to improve the global mapping of the mid-latitude ionosphere. Moreover, if Re values of the input aeronomical parameters (neutral composition, temperatures and winds), are used - it may be expected that this theoretical model can be applied for Re or almost Re-time mapping of the main ionospheric parameters (foF2 and hmF2).

  3. Data Accuracy Model for Distributed Clustering Algorithm based on Spatial Data Correlation in Wireless Sensor Networks

    CERN Document Server

    Karjee, Jyotirmoy

    2011-01-01

    Objective: The main objective of this paper is to construct a distributed clustering algorithm based upon spatial data correlation among sensor nodes and perform data accuracy for each distributed cluster at their respective cluster head node. Design Procedure/Approach: We investigate that due to deployment of high density of sensor nodes in the sensor field, spatial data are highly correlated among sensor nodes in spatial domain. Based on high data correlation among sensor nodes, we propose a non -overlapping irregular distributed clustering algorithm with different sizes to collect most accurate or precise data at the cluster head node for each respective distributed cluster. To collect the most accurate data at the cluster head node for each distributed cluster in sensor field, we propose a Data accuracy model and compare the results with Information accuracy model. Finding: Simulation results shows that our propose Data accuracy model collects more accurate data and gives better performance than Informati...

  4. Hierarchical spatial models for predicting pygmy rabbit distribution and relative abundance

    Science.gov (United States)

    Wilson, T.L.; Odei, J.B.; Hooten, M.B.; Edwards, T.C.

    2010-01-01

    Conservationists routinely use species distribution models to plan conservation, restoration and development actions, while ecologists use them to infer process from pattern. These models tend to work well for common or easily observable species, but are of limited utility for rare and cryptic species. This may be because honest accounting of known observation bias and spatial autocorrelation are rarely included, thereby limiting statistical inference of resulting distribution maps. We specified and implemented a spatially explicit Bayesian hierarchical model for a cryptic mammal species (pygmy rabbit Brachylagus idahoensis). Our approach used two levels of indirect sign that are naturally hierarchical (burrows and faecal pellets) to build a model that allows for inference on regression coefficients as well as spatially explicit model parameters. We also produced maps of rabbit distribution (occupied burrows) and relative abundance (number of burrows expected to be occupied by pygmy rabbits). The model demonstrated statistically rigorous spatial prediction by including spatial autocorrelation and measurement uncertainty. We demonstrated flexibility of our modelling framework by depicting probabilistic distribution predictions using different assumptions of pygmy rabbit habitat requirements. Spatial representations of the variance of posterior predictive distributions were obtained to evaluate heterogeneity in model fit across the spatial domain. Leave-one-out cross-validation was conducted to evaluate the overall model fit. Synthesis and applications. Our method draws on the strengths of previous work, thereby bridging and extending two active areas of ecological research: species distribution models and multi-state occupancy modelling. Our framework can be extended to encompass both larger extents and other species for which direct estimation of abundance is difficult. ?? 2010 The Authors. Journal compilation ?? 2010 British Ecological Society.

  5. A unified model for the spatial and mass distribution of subhaloes

    CERN Document Server

    Han, Jiaxin; Frenk, Carlos S; Jing, Yipeng

    2015-01-01

    N-body simulations suggest that the substructures that survive inside dark matter haloes follow universal distributions in mass and radial number density. We demonstrate that a simple analytical model can explain these subhalo distributions as resulting from tidal stripping which increasingly reduces the mass of subhaloes with decreasing halo-centric distance. As a starting point, the spatial distribution of subhaloes of any given infall mass is shown to be largely indistinguishable from the overall mass distribution of the host halo. Using a physically motivated statistical description of the amount of mass stripped off individual subhaloes, the model fully describes the joint distribution of subhaloes in final mass, infall mass and radius. As a result, it can be used to predict several derived distributions involving combinations of these quantities including, but not limited to, the universal subhalo mass function, the subhalo spatial distribution, the lensing profile, the dark matter annihilation radiatio...

  6. Simplified Spatially-distributed Model for Inundation Simulations

    Science.gov (United States)

    Hsu, M. H.; Huang, C. J.; Su, Y. H.; Chen, A. S.

    2009-04-01

    Although traditional inundation models have been applied with good accuracy in Taiwan, they usually require a long computing time for simulations. However, the meteorological and geographical conditions in Taiwan frequently cause inundation within a short time period when storm occurs. The lead-time for emergency response in too short to indicate the areas with high flood risks for evacuation by using the traditional inundation models. The study established an inundation model for Taiwan and integrated the QPESUMS system which constructed and developed by the Central Weather Bureau. The radar precipitations by the QPESUMS system, as well as the rain-gauge records, are considered in the inundation model for real-time simulations. The precipitation data of typhoon NARI were simulated and evaluated different scale of grid size that the accuracy and efficiency of model would be suggested for practical applications. The Keelung River basin is adopted as the study areas of the inundation model. By use of QPESUMS radar precipitation for the typhoon HAITANG and KROSA, the inundation simulations can be calculated in a short time. The model will be executed in the future, to simulate the flood scenarios induced by the occurring and the forecasted rainfalls. The inundation will be predicted in 1-3 hours ahead to help the emergency managers taking proper strategies for disaster mitigations. Traditional inundation models have been widely applied with good accuracy to many studies in Taiwan. The main drawback of these models is that extraordinary requirement of computing time, which causes the obstacle for real-time applications. The meteorological and geographical conditions in Taiwan frequently result in flashfloods within short time periods when storms occur. The lead time for emergency response is too short to indicate the areas with high flood risks by using the traditional inundation models.

  7. A model for the spatial distribution of snow water equivalent parameterized from the spatial variability of precipitation

    Science.gov (United States)

    Skaugen, Thomas; Weltzien, Ingunn H.

    2016-09-01

    Snow is an important and complicated element in hydrological modelling. The traditional catchment hydrological model with its many free calibration parameters, also in snow sub-models, is not a well-suited tool for predicting conditions for which it has not been calibrated. Such conditions include prediction in ungauged basins and assessing hydrological effects of climate change. In this study, a new model for the spatial distribution of snow water equivalent (SWE), parameterized solely from observed spatial variability of precipitation, is compared with the current snow distribution model used in the operational flood forecasting models in Norway. The former model uses a dynamic gamma distribution and is called Snow Distribution_Gamma, (SD_G), whereas the latter model has a fixed, calibrated coefficient of variation, which parameterizes a log-normal model for snow distribution and is called Snow Distribution_Log-Normal (SD_LN). The two models are implemented in the parameter parsimonious rainfall-runoff model Distance Distribution Dynamics (DDD), and their capability for predicting runoff, SWE and snow-covered area (SCA) is tested and compared for 71 Norwegian catchments. The calibration period is 1985-2000 and validation period is 2000-2014. Results show that SDG better simulates SCA when compared with MODIS satellite-derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" and giving spurious positive trends in SWE, typical for SD_LN, is prevented. The precision of runoff simulations using SDG is slightly inferior, with a reduction in Nash-Sutcliffe and Kling-Gupta efficiency criterion of 0.01, but it is shown that the high precision in runoff prediction using SD_LN is accompanied with erroneous simulations of SWE.

  8. Benefits of incorporating spatial organisation of catchments for a semi-distributed hydrological model

    Science.gov (United States)

    Schumann, Andreas; Oppel, Henning

    2017-04-01

    To represent the hydrological behaviour of catchments a model should reproduce/reflect the hydrologically most relevant catchment characteristics. These are heterogeneously distributed within a watershed but often interrelated and subject of a certain spatial organisation. Since common models are mostly based on fundamental assumptions about hydrological processes, the reduction of variance of catchment properties as well as the incorporation of the spatial organisation of the catchment is desirable. We have developed a method that combines the idea of the width-function used for determination of the geomorphologic unit hydrograph with information about soil or topography. With this method we are able to assess the spatial organisation of selected catchment characteristics. An algorithm was developed that structures a watershed into sub-basins and other spatial units to minimise its heterogeneity. The outcomes of this algorithm are used for the spatial setup of a semi-distributed model. Since the spatial organisation of a catchment is not bound to a single characteristic, we have to embed information of multiple catchment properties. For this purpose we applied a fuzzy-based method to combine the spatial setup for multiple single characteristics into a union, optimal spatial differentiation. Utilizing this method, we are able to propose a spatial structure for a semi-distributed hydrological model, comprising the definition of sub-basins and a zonal classification within each sub-basin. Besides the improved spatial structuring, the performed analysis ameliorates modelling in another way. The spatial variability of catchment characteristics, which is considered by a minimum of heterogeneity in the zones, can be considered in a parameter constrained calibration scheme in a case study both options were used to explore the benefits of incorporating the spatial organisation and derived parameter constraints for the parametrisation of a HBV-96 model. We use two benchmark

  9. Speed Spatial Distribution Models for Traffic Accident Section of Freeway Based on Computer Simulation

    Institute of Scientific and Technical Information of China (English)

    Decai Li; Jiangwei Chu; Wenhui Zhang; Xiaojuan Wang; Guosheng Zhang

    2015-01-01

    Simulation models for accident section on freeway are built in microscopic traffic flow simulation environment. In these models involving 2⁃lane, 3⁃lane and 4⁃lane freeway, one detector is set every 10 m to measure section running speed. According to the simulation results, speed spatial distribution curves for traffic accident section on freeway are drawn which help to determine dangerous sections on upstream of accident section. Furthermore, the speed spatial distribution models are obtained for every speed distribution curve. The results provide theoretical basis for determination on temporal and spatial influence ranges of traffic accident and offer reference to formulation of speed limit scheme and other management measures.

  10. Impact of precipitation spatial resolution on the hydrological response of an integrated distributed water resources model

    DEFF Research Database (Denmark)

    Fu, Suhua; Sonnenborg, Torben; Jensen, Karsten Høgh

    2011-01-01

    was analyzed in the Alergaarde catchment in Denmark. Six different precipitation spatial resolutions were used as inputs to a physically based, distributed hydrological model, the MIKE SHE model. The results showed that the resolution of precipitation input had no apparent effect on annual water balance...

  11. A spatially distributed model of pesticide movement in Dutch macroporous soils

    NARCIS (Netherlands)

    Tiktak, A.; Hendriks, R.F.A.; Boesten, J.J.T.I.; Linden, van der A.M.A.

    2012-01-01

    In the Netherlands, a spatially distributed version of the pesticide fate model PEARL is routinely used to assess the leaching potential of pesticides to groundwater. Recently, the model was modified to simulate the movement of pesticides to surface water. The peak concentration is considered to be

  12. From spatially variable streamflow to distributed hydrological models: Analysis of key modeling decisions

    Science.gov (United States)

    Fenicia, Fabrizio; Kavetski, Dmitri; Savenije, Hubert H. G.; Pfister, Laurent

    2016-02-01

    This paper explores the development and application of distributed hydrological models, focusing on the key decisions of how to discretize the landscape, which model structures to use in each landscape element, and how to link model parameters across multiple landscape elements. The case study considers the Attert catchment in Luxembourg—a 300 km2 mesoscale catchment with 10 nested subcatchments that exhibit clearly different streamflow dynamics. The research questions are investigated using conceptual models applied at hydrologic response unit (HRU) scales (1-4 HRUs) on 6 hourly time steps. Multiple model structures are hypothesized and implemented using the SUPERFLEX framework. Following calibration, space/time model transferability is tested using a split-sample approach, with evaluation criteria including streamflow prediction error metrics and hydrological signatures. Our results suggest that: (1) models using geology-based HRUs are more robust and capture the spatial variability of streamflow time series and signatures better than models using topography-based HRUs; this finding supports the hypothesis that, in the Attert, geology exerts a stronger control than topography on streamflow generation, (2) streamflow dynamics of different HRUs can be represented using distinct and remarkably simple model structures, which can be interpreted in terms of the perceived dominant hydrologic processes in each geology type, and (3) the same maximum root zone storage can be used across the three dominant geological units with no loss in model transferability; this finding suggests that the partitioning of water between streamflow and evaporation in the study area is largely independent of geology and can be used to improve model parsimony. The modeling methodology introduced in this study is general and can be used to advance our broader understanding and prediction of hydrological behavior, including the landscape characteristics that control hydrologic response, the

  13. Spatial sensitivity analysis of remote sensing snow cover fraction data in a distributed hydrological model

    Science.gov (United States)

    Berezowski, Tomasz; Chormański, Jarosław; Nossent, Jiri; Batelaan, Okke

    2014-05-01

    Distributed hydrological models enhance the analysis and explanation of environmental processes. As more spatial input data and time series become available, more analysis is required of the sensitivity of the data on the simulations. Most research so far focussed on the sensitivity of precipitation data in distributed hydrological models. However, these results can not be compared until a universal approach to quantify the sensitivity of a model to spatial data is available. The frequently tested and used remote sensing data for distributed models is snow cover. Snow cover fraction (SCF) remote sensing products are easily available from the internet, e.g. MODIS snow cover product MOD10A1 (daily snow cover fraction at 500m spatial resolution). In this work a spatial sensitivity analysis (SA) of remotely sensed SCF from MOD10A1 was conducted with the distributed WetSpa model. The aim is to investigate if the WetSpa model is differently subjected to SCF uncertainty in different areas of the model domain. The analysis was extended to look not only at SA quantities but also to relate them to the physical parameters and processes in the study area. The study area is the Biebrza River catchment, Poland, which is considered semi natural catchment and subject to a spring snow melt regime. Hydrological simulations are performed with the distributed WetSpa model, with a simulation period of 2 hydrological years. For the SA the Latin-Hypercube One-factor-At-a-Time (LH-OAT) algorithm is used, with a set of different response functions in regular 4 x 4 km grid. The results show that the spatial patterns of sensitivity can be easily interpreted by co-occurrence of different landscape features. Moreover, the spatial patterns of the SA results are related to the WetSpa spatial parameters and to different physical processes. Based on the study results, it is clear that spatial approach of SA can be performed with the proposed algorithm and the MOD10A1 SCF is spatially sensitive in

  14. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts.

    Science.gov (United States)

    Crase, Beth; Liedloff, Adam; Vesk, Peter A; Fukuda, Yusuke; Wintle, Brendan A

    2014-08-01

    Species distribution models (SDMs) are widely used to forecast changes in the spatial distributions of species and communities in response to climate change. However, spatial autocorrelation (SA) is rarely accounted for in these models, despite its ubiquity in broad-scale ecological data. While spatial autocorrelation in model residuals is known to result in biased parameter estimates and the inflation of type I errors, the influence of unmodeled SA on species' range forecasts is poorly understood. Here we quantify how accounting for SA in SDMs influences the magnitude of range shift forecasts produced by SDMs for multiple climate change scenarios. SDMs were fitted to simulated data with a known autocorrelation structure, and to field observations of three mangrove communities from northern Australia displaying strong spatial autocorrelation. Three modeling approaches were implemented: environment-only models (most frequently applied in species' range forecasts), and two approaches that incorporate SA; autologistic models and residuals autocovariate (RAC) models. Differences in forecasts among modeling approaches and climate scenarios were quantified. While all model predictions at the current time closely matched that of the actual current distribution of the mangrove communities, under the climate change scenarios environment-only models forecast substantially greater range shifts than models incorporating SA. Furthermore, the magnitude of these differences intensified with increasing increments of climate change across the scenarios. When models do not account for SA, forecasts of species' range shifts indicate more extreme impacts of climate change, compared to models that explicitly account for SA. Therefore, where biological or population processes induce substantial autocorrelation in the distribution of organisms, and this is not modeled, model predictions will be inaccurate. These results have global importance for conservation efforts as inaccurate

  15. Comparison of alternative spatial resolutions in the application of a spatially distributed biogeochemical model over complex terrain

    Science.gov (United States)

    Turner, D.P.; Dodson, R.; Marks, D.

    1996-01-01

    Spatially distributed biogeochemical models may be applied over grids at a range of spatial resolutions, however, evaluation of potential errors and loss of information at relatively coarse resolutions is rare. In this study, a georeferenced database at the 1-km spatial resolution was developed to initialize and drive a process-based model (Forest-BGC) of water and carbon balance over a gridded 54976 km2 area covering two river basins in mountainous western Oregon. Corresponding data sets were also prepared at 10-km and 50-km spatial resolutions using commonly employed aggregation schemes. Estimates were made at each grid cell for climate variables including daily solar radiation, air temperature, humidity, and precipitation. The topographic structure, water holding capacity, vegetation type and leaf area index were likewise estimated for initial conditions. The daily time series for the climatic drivers was developed from interpolations of meteorological station data for the water year 1990 (1 October 1989-30 September 1990). Model outputs at the 1-km resolution showed good agreement with observed patterns in runoff and productivity. The ranges for model inputs at the 10-km and 50-km resolutions tended to contract because of the smoothed topography. Estimates for mean evapotranspiration and runoff were relatively insensitive to changing the spatial resolution of the grid whereas estimates of mean annual net primary production varied by 11%. The designation of a vegetation type and leaf area at the 50-km resolution often subsumed significant heterogeneity in vegetation, and this factor accounted for much of the difference in the mean values for the carbon flux variables. Although area wide means for model outputs were generally similar across resolutions, difference maps often revealed large areas of disagreement. Relatively high spatial resolution analyses of biogeochemical cycling are desirable from several perspectives and may be particularly important in the

  16. Modelling the potential spatial distribution of mosquito species using three different techniques

    NARCIS (Netherlands)

    Cianci, D.; Hartemink, N.; Ibáñez-Justicia, A.

    2015-01-01

    Background: Models for the spatial distribution of vector species are important tools in the assessment of the risk of establishment and subsequent spread of vector-borne diseases. The aims of this study are to define the environmental conditions suitable for several mosquito species through species

  17. Modelling the spatial distribution of SO2 and NO(x) emissions in Ireland

    NARCIS (Netherlands)

    Kluizenaar, Y.de; Aherne, J.; Farrell, E.P.

    2001-01-01

    The spatial distributions of sulphur dioxide (SO2) and nitrogen oxides (NO(x)) emissions are essential inputs to models of atmospheric transport and deposition. Information of this type is required for international negotiations on emission reduction through the critical load approach. High-resoluti

  18. Modelling the potential spatial distribution of mosquito species using three different techniques

    NARCIS (Netherlands)

    Cianci, Daniela; Hartemink, Nienke; Ibáñez-Justicia, Adolfo

    2015-01-01

    BACKGROUND: Models for the spatial distribution of vector species are important tools in the assessment of the risk of establishment and subsequent spread of vector-borne diseases. The aims of this study are to define the environmental conditions suitable for several mosquito species through species

  19. Modelling the Spatial Distribution of Culicoides imicola: Climatic versus Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Jasper Van Doninck

    2014-07-01

    Full Text Available Culicoides imicola is the main vector of the bluetongue virus in the Mediterranean Basin. Spatial distribution models for this species traditionally employ either climatic data or remotely sensed data, or a combination of both. Until now, however, no studies compared the accuracies of C. imicola distribution models based on climatic versus remote sensing data, even though remotely sensed datasets may offer advantages over climatic datasets with respect to spatial and temporal resolution. This study performs such an analysis for datasets over the peninsula of Calabria, Italy. Spatial distribution modelling based on climatic data using the random forests machine learning technique resulted in a percentage of correctly classified C. imicola trapping sites of nearly 88%, thereby outperforming the linear discriminant analysis and logistic regression modelling techniques. When replacing climatic data by remote sensing data, random forests modelling accuracies decreased only slightly. Assessment of the different variables’ importance showed that precipitation during late spring was the most important amongst 48 climatic variables. The dominant remotely sensed variables could be linked to climatic variables. Notwithstanding the slight decrease in predictive performance in this study, remotely sensed datasets could be preferred over climatic datasets for the modelling of C. imicola. Unlike climatic observations, remote sensing provides an equally high spatial resolution globally. Additionally, its high temporal resolution allows for investigating changes in species’ presence and changing environment.

  20. Application of the Multitype Strauss Point Model for Characterizing the Spatial Distribution of Landslides

    Directory of Open Access Journals (Sweden)

    Iswar Das

    2016-01-01

    Full Text Available Landslides are common but complex natural hazards. They occur on the Earth’s surface following a mass movement process. This study applies the multitype Strauss point process model to analyze the spatial distributions of small and large landslides along with geoenvironmental covariates. It addresses landslides as a set of irregularly distributed point-type locations within a spatial region. Their intensity and spatial interactions are analyzed by means of the distance correlation functions, model fitting, and simulation. We use as a dataset the landslide occurrences for 28 years from a landslide prone road corridor in the Indian Himalayas. The landslides are investigated for their spatial character, that is, whether they show inhibition or occur as a regular or a clustered point pattern, and for their interaction with landslides in the neighbourhood. Results show that the covariates lithology, land cover, road buffer, drainage density, and terrain units significantly improved model fitting. A comparison of the output made with logistic regression model output showed a superior prediction performance for the multitype Strauss model. We compared results of this model with the multitype/hard core Strauss point process model that further improved the modeling. Results from the study can be used to generate landslide susceptibility scenarios. The paper concludes that a multitype Strauss point process model enriches the set of statistical tools that can comprehensively analyze landslide data.

  1. Spatial variability of the parameters of a semi-distributed hydrological model

    Science.gov (United States)

    de Lavenne, Alban; Thirel, Guillaume; Andréassian, Vazken; Perrin, Charles; Ramos, Maria-Helena

    2016-05-01

    Ideally, semi-distributed hydrologic models should provide better streamflow simulations than lumped models, along with spatially-relevant water resources management solutions. However, the spatial distribution of model parameters raises issues related to the calibration strategy and to the identifiability of the parameters. To analyse these issues, we propose to base the evaluation of a semi-distributed model not only on its performance at streamflow gauging stations, but also on the spatial and temporal pattern of the optimised value of its parameters. We implemented calibration over 21 rolling periods and 64 catchments, and we analysed how well each parameter is identified in time and space. Performance and parameter identifiability are analysed comparatively to the calibration of the lumped version of the same model. We show that the semi-distributed model faces more difficulties to identify stable optimal parameter sets. The main difficulty lies in the identification of the parameters responsible for the closure of the water balance (i.e. for the particular model investigated, the intercatchment groundwater flow parameter).

  2. General Ripple Mobility Model: A Novel Mobility Model of Uniform Spatial Distribution and Diverse Average Speed

    Science.gov (United States)

    Chen, Chun-Hung; Wu, Ho-Ting; Ke, Kai-Wei

    Simulations are often deployed to evaluate proposed mechanisms or algorithms in Mobile Ad Hoc Networks (MANET). In MANET, the impacts of some simulation parameters are noticeable, such as transmission range, data rate etc. However, the effect of mobility model is not clear until recently. Random Waypoint (RWP) is one of the most applied nodal mobility models in many simulations due to its clear procedures and easy employments. However, it exhibits the two major problems: decaying average speed and border effect. Both problems will overestimate the performance of the employed protocols and applications. Although many recently proposed mobility models are able to reduce or eliminate the above-mentioned problems, the concept of Diverse Average Speed (DAS) has not been introduced. DAS aims to provide different average speeds within the same speed range. In most mobility models, the average speed is decided when the minimum and maximum speeds are set. In this paper, we propose a novel mobility model, named General Ripple Mobility Model (GRMM). GRMM targets to provide a uniform nodal spatial distribution and DAS without decaying average speed. The simulations and analytic results have demonstrated the merits of the outstanding properties of the GRMM model.

  3. The limits of splitting: a framework to test model spatial distribution

    Science.gov (United States)

    Lobligeois, F.; Andréassian, V.; Perrin, C.; Loumagne, C.

    2012-04-01

    When it comes to deciding of the necessary spatial representation of a catchment, hydrologists need to choose between spatially lumped and spatially distributed approaches. This decision is not trivial: on the one hand, lumped models have proved both efficient and robust over the years (moreover their relatively low number of parameters limits the numerical problems such as secondary optima, parameter interaction, poor sensitivity); on the other hand many hydrologists believe that distributed models could potentially have a greater ability to take into account the spatial heterogeneity of both rainfall and land surface. Few attempts have been made to test rigorously alternative distributed schemes (see the discussion of semi-lumped and semi-distributed alternatives in Andréassian et al. (2004)). The purpose of our work was to identify whether an optimum level of spatialisation exists: to investigate "the limits of splitting" (Beven, 1996). We propose a framework to evaluate the effect of the distribution over a large set of 181 French catchments, using a newly available high resolution rainfall product of Météo France, combining radar data and raingage measurements. Five grid sizes are studied, as catchments are splitted into 1, 2, 4, 8 and 16 sub-catchments and streamflow simulation results are analysed in validation mode. For each type of basin, we study the trend of model efficiency with the number of sub-catchments. We find paradoxical results: while some catchments clearly benefit from the distribution, others show opposite trends. The large variability between basins underlines the necessity to have enough case studies to reach a robust conclusion. Andréassian, V. et al., 2004. Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: a theoretical study using chimera watersheds. Water Resour. Res., 40(5): W05209, doi: 10.1029/2003WR002854. Beven, K., 1996. The limits of splitting: hydrology. The Science of the

  4. Dispersal leads to spatial autocorrelation in species distributions: A simulation model

    Science.gov (United States)

    Bahn, V.; Krohn, W.B.; O'Connor, R.J.

    2008-01-01

    Compared to population growth regulated by local conditions, dispersal has been underappreciated as a central process shaping the spatial distribution of populations. This paper asks: (a) which conditions increase the importance of dispersers relative to local recruits in determining population sizes? and (b) how does dispersal influence the spatial distribution patterns of abundances among connected populations? We approached these questions with a simulation model of populations on a coupled lattice with cells of continuously varying habitat quality expressed as carrying capacities. Each cell contained a population with the basic dynamics of density-regulated growth, and was connected to other populations by immigration and emigration. The degree to which dispersal influenced the distribution of population sizes depended most strongly on the absolute amount of dispersal, and then on the potential population growth rate. Dispersal decaying in intensity with distance left close neighbours more alike in population size than distant populations, leading to an increase in spatial autocorrelation. The spatial distribution of species with low potential growth rates is more dependent on dispersal than that of species with high growth rates; therefore, distribution modelling for species with low growth rates requires particular attention to autocorrelation, and conservation management of these species requires attention to factors curtailing dispersal, such as fragmentation and dispersal barriers. ?? 2007 Elsevier B.V. All rights reserved.

  5. Calibration of a distributed hydrologic model using observed spatial patterns from MODIS data

    Science.gov (United States)

    Demirel, Mehmet C.; González, Gorka M.; Mai, Juliane; Stisen, Simon

    2016-04-01

    Distributed hydrologic models are typically calibrated against streamflow observations at the outlet of the basin. Along with these observations from gauging stations, satellite based estimates offer independent evaluation data such as remotely sensed actual evapotranspiration (aET) and land surface temperature. The primary objective of the study is to compare model calibrations against traditional downstream discharge measurements with calibrations against simulated spatial patterns and combinations of both types of observations. While the discharge based model calibration typically improves the temporal dynamics of the model, it seems to give rise to minimum improvement of the simulated spatial patterns. In contrast, objective functions specifically targeting the spatial pattern performance could potentially increase the spatial model performance. However, most modeling studies, including the model formulations and parameterization, are not designed to actually change the simulated spatial pattern during calibration. This study investigates the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale hydrologic model (mHM). This model is selected as it allows for a change in the spatial distribution of key soil parameters through the optimization of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) values directly as input. In addition the simulated aET can be estimated at a spatial resolution suitable for comparison to the spatial patterns observed with MODIS data. To increase our control on spatial calibration we introduced three additional parameters to the model. These new parameters are part of an empirical equation to the calculate crop coefficient (Kc) from daily LAI maps and used to update potential evapotranspiration (PET) as model inputs. This is done instead of correcting/updating PET with just a uniform (or aspect driven) factor used in the mHM model

  6. Spatial distribution modelling of the endangered bivalve Pinna nobilis in a Marine Protected Area

    Directory of Open Access Journals (Sweden)

    M. VÁZQUEZ-LUIS

    2014-09-01

    Full Text Available The spatial distribution of Pinna nobilis densities have been analysed through a geostatistical approach in the MPA of Cabrera National Park, Balearic Islands (Spain, Western Mediterranean Sea. Regression kriging was used to model the effect of environmental variables on the density of living individuals of P. nobilis and generate a predictive map of its distribution within the MPA. The environmental variables considered for the model were: depth; slope; habitat type and heterogeneity; wave exposure; and MPA zoning. A total of 378 transects were randomly distributed with a total of 149,000 m2 surveyed at a depth range from 4.2 to 46 m. The recorded P. nobilis densities are among the highest in the Mediterranean Sea. With respect to the prediction model, results indicate that benthic habitats play a key role in the spatial distribution of P. nobilis, with higher densities in seagrass meadows of Posidonia oceanica. The fan mussel population density peaked at 9 m depth, decreasing with depth. Also, decreasing densities are expected with increasing exposure to waves. The predicted map shows some hotspots of density different in size and distributed along the MPA, and provides valuable information for the spatial conservation management of this species.

  7. Analysing the distribution of synaptic vesicles using a spatial point process model

    DEFF Research Database (Denmark)

    Khanmohammadi, Mahdieh; Waagepetersen, Rasmus; Nava, Nicoletta

    2014-01-01

    Stress can affect the brain functionality in many ways. As the synaptic vesicles have a major role in nervous signal transportation in synapses, their distribution in relationship to the active zone is very important in studying the neuron responses. We study the effect of stress on brain...... functionality by statistically modelling the distribution of the synaptic vesicles in two groups of rats: a control group subjected to sham stress and a stressed group subjected to a single acute foot-shock (FS)-stress episode. We hypothesize that the synaptic vesicles have different spatial distributions...

  8. Forecasting the behaviour of complex landslides with a spatially distributed hydrological model

    Directory of Open Access Journals (Sweden)

    J.-P. Malet

    2005-01-01

    Full Text Available The relationships between rainfall, hydrology and landslide movement are often difficult to establish. In this context, ground-water flow analyses and dynamic modelling can help to clarify these complex relations, simulate the landslide hydrological behaviour in real or hypothetical situations, and help to forecast future scenarios based on environmental change. The primary objective of this study is to investigate the possibility of including more temporal and spatial information in landslide hydrology forecasting, by using a physically based spatially distributed model. Results of the hydrological and geomorphological investigation of the Super-Sauze earthflow, one of the persistently active landslide occurring in clay-rich material of the French Alps, are presented. Field surveys, continuous monitoring and interpretation of the data have shown that, in such material, the groundwater level fluctuates on a seasonal time scale, with a strong influence of the unsaturated zone. Therefore a coupled unsaturated/saturated model, incorporating Darcian saturated flow, fissure flow and meltwater flow is needed to adequately represent the landslide hydrology. The conceptual model is implemented in a 2.5-D spatially distributed hydrological model. The model is calibrated and validated on a multi-parameters database acquired on the site since 1997. The complex time-dependent and three-dimensional groundwater regime is well described, in both the short- and long-term. The hydrological model is used to forecast the future hydrological behaviour of the earthflow in response to potential environmental changes.

  9. Evaluation of a spatially-distributed Thornthwaite water-balance model

    Energy Technology Data Exchange (ETDEWEB)

    Lough, J.A. (Univ. of New Hampshire, Durham, NH (United States). Complex Systems Research Center)

    1993-03-01

    A small watershed of low relief in coastal New Hampshire was divided into hydrologic sub-areas in a geographic information system on the basis of soils, sub-basins and remotely-sensed landcover. Three variables were spatially modeled for input to 49 individual water-balances: available water content of the root zone, water input and potential evapotranspiration (PET). The individual balances were weight-summed to generate the aggregate watershed-balance, which saw 9% (48--50 mm) less annual actual-evapotranspiration (AET) compared to a lumped approach. Analysis of streamflow coefficients suggests that the spatially-distributed approach is more representative of the basin dynamics. Variation of PET by landcover accounted for the majority of the 9% AET reduction. Variation of soils played a near-negligible role. As a consequence of the above points, estimates of landcover proportions and annual PET by landcover are sufficient to correct a lumped water-balance in the Northeast. If remote sensing is used to estimate the landcover area, a sensor with a high spatial resolution is required. Finally, while the lower Thornthwaite model has conceptual limitations for distributed application, the upper Thornthwaite model is highly adaptable to distributed problems and may prove useful in many earth-system models.

  10. A watershed scale spatially-distributed model for streambank erosion rate driven by channel curvature

    Science.gov (United States)

    McMillan, Mitchell; Hu, Zhiyong

    2017-10-01

    Streambank erosion is a major source of fluvial sediment, but few large-scale, spatially distributed models exist to quantify streambank erosion rates. We introduce a spatially distributed model for streambank erosion applicable to sinuous, single-thread channels. We argue that such a model can adequately characterize streambank erosion rates, measured at the outsides of bends over a 2-year time period, throughout a large region. The model is based on the widely-used excess-velocity equation and comprised three components: a physics-based hydrodynamic model, a large-scale 1-dimensional model of average monthly discharge, and an empirical bank erodibility parameterization. The hydrodynamic submodel requires inputs of channel centerline, slope, width, depth, friction factor, and a scour factor A; the large-scale watershed submodel utilizes watershed-averaged monthly outputs of the Noah-2.8 land surface model; bank erodibility is based on tree cover and bank height as proxies for root density. The model was calibrated with erosion rates measured in sand-bed streams throughout the northern Gulf of Mexico coastal plain. The calibrated model outperforms a purely empirical model, as well as a model based only on excess velocity, illustrating the utility of combining a physics-based hydrodynamic model with an empirical bank erodibility relationship. The model could be improved by incorporating spatial variability in channel roughness and the hydrodynamic scour factor, which are here assumed constant. A reach-scale application of the model is illustrated on ∼1 km of a medium-sized, mixed forest-pasture stream, where the model identifies streambank erosion hotspots on forested and non-forested bends.

  11. The properties of tests for spatial effects in discrete Markov chain models of regional income distribution dynamics

    Science.gov (United States)

    Rey, Sergio J.; Kang, Wei; Wolf, Levi

    2016-10-01

    Discrete Markov chain models (DMCs) have been widely applied to the study of regional income distribution dynamics and convergence. This popularity reflects the rich body of DMC theory on the one hand and the ability of this framework to provide insights on the internal and external properties of regional income distribution dynamics on the other. In this paper we examine the properties of tests for spatial effects in DMC models of regional distribution dynamics. We do so through a series of Monte Carlo simulations designed to examine the size, power and robustness of tests for spatial heterogeneity and spatial dependence in transitional dynamics. This requires that we specify a data generating process for not only the null, but also alternatives when spatial heterogeneity or spatial dependence is present in the transitional dynamics. We are not aware of any work which has examined these types of data generating processes in the spatial distribution dynamics literature. Results indicate that tests for spatial heterogeneity and spatial dependence display good power for the presence of spatial effects. However, tests for spatial heterogeneity are not robust to the presence of strong spatial dependence, while tests for spatial dependence are sensitive to the spatial configuration of heterogeneity. When the spatial configuration can be considered random, dependence tests are robust to the dynamic spatial heterogeneity, but not so to the process mean heterogeneity when the difference in process means is large relative to the variance of the time series.

  12. Habitat modeling for cetacean management: Spatial distribution in the southern Pelagos Sanctuary (Mediterranean Sea)

    Science.gov (United States)

    Pennino, Maria Grazia; Mérigot, Bastien; Fonseca, Vinícius Prado; Monni, Virginia; Rotta, Andrea

    2017-07-01

    Effective management and conservation of wild populations requires knowledge of their habitats, especially by mean of quantitative analyses of their spatial distributions. The Pelagos Sanctuary is a dedicated marine protected area for Mediterranean marine mammals covering an area of 90,000 km2 in the north-western Mediterranean Sea between Italy, France and the Principate of Monaco. In the south of the Sanctuary, i.e. along the Sardinian coast, a range of diverse human activities (cities, industry, fishery, tourism) exerts several current ad potential threats to cetacean populations. In addition, marine mammals are recognized by the EU Marine Strategy Framework Directive as essential components of sustainable ecosystems. Yet, knowledge on the spatial distribution and ecology of cetaceans in this area is quite scarce. Here we modeled occurrence of the three most abundant species known in the Sanctuary, i.e. the striped dolphin (Stenella coeruleoalba), the bottlenose dolphin (Tursiops truncatus) and the fin whales (Balaenoptera physalus), using sighting data from scientific surveys collected from 2012 to 2014 during summer time. Bayesian site-occupancy models were used to model their spatial distribution in relation to habitat taking into account oceanographic (sea surface temperature, primary production, photosynthetically active radiation, chlorophyll-a concentration) and topographic (depth, slope, distance of the land) variables. Cetaceans responded differently to the habitat features, with higher occurrence predicted in the more productive areas on submarine canyons. These results provide ecological information useful to enhance management plans and establish baseline for future population trend studies.

  13. Considering spatial heterogeneity in the distributed lag non-linear model when analyzing spatiotemporal data.

    Science.gov (United States)

    Chien, Lung-Chang; Guo, Yuming; Li, Xiao; Yu, Hwa-Lung

    2016-11-16

    The distributed lag non-linear (DLNM) model has been frequently used in time series environmental health research. However, its functionality for assessing spatial heterogeneity is still restricted, especially in analyzing spatiotemporal data. This study proposed a solution to take a spatial function into account in the DLNM, and compared the influence with and without considering spatial heterogeneity in a case study. This research applied the DLNM to investigate non-linear lag effect up to 7 days in a case study about the spatiotemporal impact of fine particulate matter (PM2.5) on preschool children's acute respiratory infection in 41 districts of northern Taiwan during 2005 to 2007. We applied two spatiotemporal methods to impute missing air pollutant data, and included the Markov random fields to analyze district boundary data in the DLNM. When analyzing the original data without a spatial function, the overall PM2.5 effect accumulated from all lag-specific effects had a slight variation at smaller PM2.5 measurements, but eventually decreased to relative risk significantly analyzing spatiotemporal imputed data without a spatial function, the overall PM2.5 effect did not decrease but increased in monotone as PM2.5 increased over 20 μg/m(3). After adding a spatial function in the DLNM, spatiotemporal imputed data conducted similar results compared with the overall effect from the original data. Moreover, the spatial function showed a clear and uneven pattern in Taipei, revealing that preschool children living in 31 districts of Taipei were vulnerable to acute respiratory infection. Our findings suggest the necessity of including a spatial function in the DLNM to make a spatiotemporal analysis available and to conduct more reliable and explainable research. This study also revealed the analytical impact if spatial heterogeneity is ignored.Journal of Exposure Science and Environmental Epidemiology advance online publication, 16 November 2016; doi:10.1038/jes

  14. Review and possible development direction of the methods for modeling of soil pollutants spatial distribution

    Science.gov (United States)

    Tarasov, D. A.; Medvedev, A. N.; Sergeev, A. P.; Buevich, A. G.

    2017-07-01

    Forecasting of environmental pollutants spatial distribution is a significant field of research in view of the current concerns regarding environment all over the world. Due to the danger to health and environment associated with an increase in pollution of air, soil, water and biosphere, it is very important to have the models that are capable to describe the modern distribution of contaminants and to forecast the dynamic of their spreading in future at different territories. This article addresses the methods, which applied the most often in this field, with an accent on soil pollution. The possible direction of such methods further development is suggested.

  15. Distributed Proportional-spatial Derivative control of nonlinear parabolic systems via fuzzy PDE modeling approach.

    Science.gov (United States)

    Wang, Jun-Wei; Wu, Huai-Ning; Li, Han-Xiong

    2012-06-01

    In this paper, a distributed fuzzy control design based on Proportional-spatial Derivative (P-sD) is proposed for the exponential stabilization of a class of nonlinear spatially distributed systems described by parabolic partial differential equations (PDEs). Initially, a Takagi-Sugeno (T-S) fuzzy parabolic PDE model is proposed to accurately represent the nonlinear parabolic PDE system. Then, based on the T-S fuzzy PDE model, a novel distributed fuzzy P-sD state feedback controller is developed by combining the PDE theory and the Lyapunov technique, such that the closed-loop PDE system is exponentially stable with a given decay rate. The sufficient condition on the existence of an exponentially stabilizing fuzzy controller is given in terms of a set of spatial differential linear matrix inequalities (SDLMIs). A recursive algorithm based on the finite-difference approximation and the linear matrix inequality (LMI) techniques is also provided to solve these SDLMIs. Finally, the developed design methodology is successfully applied to the feedback control of the Fitz-Hugh-Nagumo equation.

  16. Analysis of Spatial Distribution And Statistical Characteristics of Typhoon In The Western Pacific Based On Spatial Point Model

    Science.gov (United States)

    Wang, Jingmei; Gong, Adu; Li, Jing; Chen, Yanling

    2017-04-01

    Typhoon is a kind of strong weather system formed in tropical or subtropical oceans. China, located on the west side of the Pacific Ocean, is the country affected by the typhoon most frequently and seriously. To provide theoretical support for effectively reducing the damage caused by typhoon, the variation law of typhoon frequency is explored by analyzing the distribution of typhoon path and landing sites, sphere of influence, and the statistical characteristics of typhoon for every 5 years. In this study, the typhoon point data set was formed using the Best Path Data Set (0.1 ° × 0.1 °) compiled by China Meteorological Administration from 1950 to 2014. By using the tool of Point to Line in software ArgGIS, the typhoon paths are produced from the point data set. The influence sphere of typhoon is calculated from Euclidean distance of typhoon, whose threshold is set to 1°.The typhoon landing site was extracted by using the Chinese vector layer provided by the research group. By counting the frequency of typhoons, the landing sites, and the sphere of influence, some conclusions can be drawn as follows. In recent years, the number of typhoons generated has been reduced, typhoon intensity is relatively stable, but the impact of typhoon area has increased. Specific performance can be seen from the typhoon statistical and spatial distribution characteristics in China. In terms of frequency of typhoon landing, the number of typhoons landing in China has increased while the total number of typhoons is reduced. In terms of distribution of landing sites, the range of typhoon landing fluctuates. However, during the process of fluctuation, the range is gradually expanding. For example, in south of China, Hainan Island is affected by typhoon more frequently meanwhile China's northeast region is also gradually affected, which is extremely unusual before. Key words: spatial point model, distribution of typhoon, frequency of typhoon

  17. Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas

    Energy Technology Data Exchange (ETDEWEB)

    Barros, A.P.; Lettenmaier, D.P. (Univ. of Washington, Seattle (United States))

    1993-04-01

    Precipitation in remote mountainous areas dominates the water balance of many water-short areas of the globe, such as western North America. The inaccessibility of such environments prevents adequate measurement of the spatial distribution of precipitation and, hence, direct estimation of the water balance from observations of precipitation and runoff. Resolution constraints in atmospheric models can likewise result in large biases in prediction of the water balance for grid cells that include highly diverse topography. Modeling of the advection of moisture over topographic barriers at a spatial be sufficient to resolve the dominant topographic features offers one method of better predicting the spatial distribution of precipitation in mountainous areas. A model is described herein that simulates Lagrangian transport of moist static energy and total water through a 3D finite-element grid, where precipitation is the only scavenging agent of both variables. The model is aimed primarily at the reproduction of the properties of high-elevation precipitation for long periods of time, but it operates at a time scale (during storm periods) of 10 min to 1 h and, therefore, is also able to reproduce the distribution of storm precipitation with an accuracy that may make it appropriate for the forecasting of extreme events. The model was tested by application to the Olympic Mountains, Washington, for a period of eight years (1967-74). Areal average precipitation, estimated through use of seasonal and annual runoff, was reproduced with errors in the 10%-15% range. Similar accuracy was achieved using point estimates of monthly precipitation from snow courses and low-elevation precipitation gauges. 36 refs., 15 figs., 6 tabs.

  18. Spatial Distribution of Nucleosynthesis Products in Cassiopeia A: Comparison Between Observations and 3D Explosion Models

    CERN Document Server

    Young, Patrick; Timmes, Francis X; Arnett, David; Fryer, Christopher L; Rockefeller, Gabriel; Hungerford, Aimee; Diehl, Steven; Bennett, Michael; Hirschi, Raphael; Pignatari, Marco; Herwig, Falk; Magkotsios, Georgios

    2008-01-01

    We examine observed heavy element abundances in the Cassiopeia A supernova remnant as a constraint on the nature of the Cas A supernova. We compare bulk abundances from 1D and 3D explosion models and spatial distribution of elements in 3D models with those derived from X-ray observations. We also examine the cospatial production of 26Al with other species. We find that the most reliable indicator of the presence of 26Al in unmixed ejecta is a very low S/Si ratio (~0.05). Production of N in O/S/Si-rich regions is also indicative. The biologically important element P is produced at its highest abundance in the same regions. Proxies should be detectable in supernova ejecta with high spatial resolution multiwavelength observations.

  19. Modelling the potential spatial distribution of mosquito species using three different techniques.

    Science.gov (United States)

    Cianci, Daniela; Hartemink, Nienke; Ibáñez-Justicia, Adolfo

    2015-02-27

    Models for the spatial distribution of vector species are important tools in the assessment of the risk of establishment and subsequent spread of vector-borne diseases. The aims of this study are to define the environmental conditions suitable for several mosquito species through species distribution modelling techniques, and to compare the results produced with the different techniques. Three different modelling techniques, i.e., non-linear discriminant analysis, random forest and generalised linear model, were used to investigate the environmental suitability in the Netherlands for three indigenous mosquito species (Culiseta annulata, Anopheles claviger and Ochlerotatus punctor). Results obtained with the three statistical models were compared with regard to: (i) environmental suitability maps, (ii) environmental variables associated with occurrence, (iii) model evaluation. The models indicated that precipitation, temperature and population density were associated with the occurrence of Cs. annulata and An. claviger, whereas land surface temperature and vegetation indices were associated with the presence of Oc. punctor. The maps produced with the three different modelling techniques showed consistent spatial patterns for each species, but differences in the ranges of the predictions. Non-linear discriminant analysis had lower predictions than other methods. The model with the best classification skills for all the species was the random forest model, with specificity values ranging from 0.89 to 0.91, and sensitivity values ranging from 0.64 to 0.95. We mapped the environmental suitability for three mosquito species with three different modelling techniques. For each species, the maps showed consistent spatial patterns, but the level of predicted environmental suitability differed; NLDA gave lower predicted probabilities of presence than the other two methods. The variables selected as important in the models were in agreement with the existing knowledge about

  20. Applying different spatial distribution and modelling concepts in three nested mesoscale catchments of Germany

    Science.gov (United States)

    Bongartz, K.

    Distributed, physically based river basin models are receiving increasing importance in integrated water resources management (IWRM) in Germany and in Europe, especially after the release of the new European Water Framework Directive (WFD). Applications in mesoscale catchments require an appropriate approach to represent the spatial distribution of related catchment properties such as land use, soil physics and topography by utilizing techniques of remote sensing and GIS analyses. The challenge is to delineate scale independent homogeneous modelling entities which, on the one hand may represent the dynamics of the dominant hydrological processes and, on the other hand can be derived from spatially distributed physiographical catchment properties. This scaling problem is tackled in this regional modelling study by applying the concept of hydrological response units (HRUs). In a nested catchment approach three different modelling conceptualisations are used to describe the runoff processes: (i) the topographic stream-segment-based HRU delineation proposed by Leavesley et al. [Precipitation-Runoff-Modelling-System, User’s Manual, Water Resource Investigations Report 83-4238, US Geological Survey, 1983]; (ii) the process based physiographic HRU-concept introduced by Flügel [Hydrol. Process. 9 (1995) 423] and (iii) an advanced HRU-concept adapted from (ii), which included the topographic topology of HRU-areas and the river network developed by Staudenraush [Eco Regio 8 (2000) 121]. The influence of different boundary conditions associated with changing the landuse classes, the temporal data resolution and the landuse scenarios were investigated. The mesoscale catchment of the river Ilm ( A∼895 km 2) in Thuringia, Germany, and the Precipitation-Runoff-Modelling-System (PRMS) were selected for this study. Simulations show that the physiographic based concept is a reliable method for modelling basin dynamics in catchments up to 200 km 2 whereas in larger catchments

  1. SPATIAL AND SPECTRAL MODELING OF THE GAMMA-RAY DISTRIBUTION IN THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Foreman, Gary; Chu, You-Hua; Gruendl, Robert; Fields, Brian; Ricker, Paul [Department of Astronomy, University of Illinois, 1002 W. Green St., Urbana, IL 61801 (United States); Hughes, Annie, E-mail: gforema2@illinois.edu [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2015-07-20

    We perform spatial and spectral analyses of the LMC gamma-ray emission collected over 66 months by the Fermi Gamma-ray Space Telescope. In our spatial analysis, we model the LMC cosmic-ray distribution and gamma-ray production using observed maps of the LMC interstellar medium, star formation history, interstellar radiation field, and synchrotron emission. We use bootstrapping of the data to quantify the robustness of spatial model performance. We model the LMC gamma-ray spectrum using fitting functions derived from the physics of π{sup 0} decay, Bremsstrahlung, and inverse Compton scattering. We find the integrated gamma-ray flux of the LMC from 200 MeV to 20 GeV to be 1.37 ± 0.02 × 10{sup −7} ph cm{sup −2} s{sup −1}, of which we attribute about 6% to inverse Compton scattering and 44% to Bremsstrahlung. From our work, we conclude that the spectral index of the LMC cosmic-ray proton population is 2.4 ± 0.2, and we find that cosmic-ray energy loss through gamma-ray production is concentrated within a few 100 pc of acceleration sites. Assuming cosmic-ray energy equipartition with magnetic fields, we estimate LMC cosmic rays encounter an average magnetic field strength ∼3 μG.

  2. Spatial distribution of mineral dust single scattering albedo based on DREAM model

    Science.gov (United States)

    Kuzmanoski, Maja; Ničković, Slobodan; Ilić, Luka

    2016-04-01

    Mineral dust comprises a significant part of global aerosol burden. There is a large uncertainty in estimating role of dust in Earth's climate system, partly due to poor characterization of its optical properties. Single scattering albedo is one of key optical properties determining radiative effects of dust particles. While it depends on dust particle sizes, it is also strongly influenced by dust mineral composition, particularly the content of light-absorbing iron oxides and the mixing state (external or internal). However, an assumption of uniform dust composition is typically used in models. To better represent single scattering albedo in dust atmospheric models, required to increase accuracy of dust radiative effect estimates, it is necessary to include information on particle mineral content. In this study, we present the spatial distribution of dust single scattering albedo based on the Dust Regional Atmospheric Model (DREAM) with incorporated particle mineral composition. The domain of the model covers Northern Africa, Middle East and the European continent, with horizontal resolution set to 1/5°. It uses eight particle size bins within the 0.1-10 μm radius range. Focusing on dust episode of June 2010, we analyze dust single scattering albedo spatial distribution over the model domain, based on particle sizes and mineral composition from model output; we discuss changes in this optical property after long-range transport. Furthermore, we examine how the AERONET-derived aerosol properties respond to dust mineralogy. Finally we use AERONET data to evaluate model-based single scattering albedo. Acknowledgement We would like to thank the AERONET network and the principal investigators, as well as their staff, for establishing and maintaining the AERONET sites used in this work.

  3. A model for spatially and temporally distributed shallow landslide initiation by rainfall infiltration

    Science.gov (United States)

    Savage, W.Z.; Godt, J.W.; Baum, R.L.; ,

    2003-01-01

    We describe a model for regional initiation of shallow landslides based on an approximate analytic solution to Richards equation combined with an infinite-slope calculation. The model applied over digital topography computes pressure heads and factors of safety as functions of depth for geographic information system (GIS) grid cells at any time during and after rainfall events. An example is presented that simulates the progressive development of shallow landslides on steep slopes during a rainfall event. This example shows how this modeling provides insights into transient rainfall-caused processes that trigger shallow slope instability and consequent regionally distributed debris-flow events. Specifically, we infer that the spatial pattern of instability is primarily controlled by topography, while intensity and duration of rainfall, and the subsequent pore-pressure responses control the temporal pattern of instability. ?? 2003 Millpress.

  4. Species distribution models predict temporal but not spatial variation in forest growth.

    Science.gov (United States)

    van der Maaten, Ernst; Hamann, Andreas; van der Maaten-Theunissen, Marieke; Bergsma, Aldo; Hengeveld, Geerten; van Lammeren, Ron; Mohren, Frits; Nabuurs, Gert-Jan; Terhürne, Renske; Sterck, Frank

    2017-04-01

    Bioclimate envelope models have been widely used to illustrate the discrepancy between current species distributions and their potential habitat under climate change. However, the realism and correct interpretation of such projections has been the subject of considerable discussion. Here, we investigate whether climate suitability predictions correlate to tree growth, measured in permanent inventory plots and inferred from tree-ring records. We use the ensemble classifier RandomForest and species occurrence data from ~200,000 inventory plots to build species distribution models for four important European forestry species: Norway spruce, Scots pine, European beech, and pedunculate oak. We then correlate climate-based habitat suitability with volume measurements from ~50-year-old stands, available from ~11,000 inventory plots. Secondly, habitat projections based on annual historical climate are compared with ring width from ~300 tree-ring chronologies. Our working hypothesis is that habitat suitability projections from species distribution models should to some degree be associated with temporal or spatial variation in these growth records. We find that the habitat projections are uncorrelated with spatial growth records (inventory plot data), but they do predict interannual variation in tree-ring width, with an average correlation of .22. Correlation coefficients for individual chronologies range from values as high as .82 or as low as -.31. We conclude that tree responses to projected climate change are highly site-specific and that local suitability of a species for reforestation is difficult to predict. That said, projected increase or decrease in climatic suitability may be interpreted as an average expectation of increased or reduced growth over larger geographic scales.

  5. Modelling climate change impact on the spatial distribution of fresh water snails hosting trematodes in Zimbabwe.

    Science.gov (United States)

    Pedersen, Ulrik B; Stendel, Martin; Midzi, Nicholas; Mduluza, Takafira; Soko, White; Stensgaard, Anna-Sofie; Vennervald, Birgitte J; Mukaratirwa, Samson; Kristensen, Thomas K

    2014-12-12

    Freshwater snails are intermediate hosts for a number of trematodes of which some are of medical and veterinary importance. The trematodes rely on specific species of snails to complete their life cycle; hence the ecology of the snails is a key element in transmission of the parasites. More than 200 million people are infected with schistosomes of which 95% live in sub-Saharan Africa and many more are living in areas where transmission is on-going. Human infection with the Fasciola parasite, usually considered more of veterinary concern, has recently been recognised as a human health problem. Many countries have implemented health programmes to reduce morbidity and prevalence of schistosomiasis, and control programmes to mitigate food-borne fascioliasis. As these programmes are resource demanding, baseline information on disease prevalence and distribution becomes of great importance. Such information can be made available and put into practice through maps depicting spatial distribution of the intermediate snail hosts. A biology driven model for the freshwater snails Bulinus globosus, Biomphalaria pfeifferi and Lymnaea natalensis was used to make predictions of snail habitat suitability by including potential underlying environmental and climatic drivers. The snail observation data originated from a nationwide survey in Zimbabwe and the prediction model was parameterised with a high resolution Regional Climate Model. Georeferenced prevalence data on urinary and intestinal schistosomiasis and fascioliasis was used to calibrate the snail habitat suitability predictions to produce binary maps of snail presence and absence. Predicted snail habitat suitability across Zimbabwe, as well as the spatial distribution of snails, is reported for three time slices representative for present (1980-1999) and future climate (2046-2065 and 2080-2099). It is shown from the current study that snail habitat suitability is highly variable in Zimbabwe, with distinct high- and low

  6. The contributions of resource availability and social forces to foraging distributions: a spatial lag modelling approach

    NARCIS (Netherlands)

    Folmer, E.O.; Piersma, T.

    2012-01-01

    The spatial distribution of foraging animals at a given time simultaneously depends on (1) exogenous environmental variables such as resource availability and abiotic habitat characteristics, and (2) the endogenous variable social aggregation made up of the opposing mechanisms of conspecific

  7. The contributions of resource availability and social forces to foraging distributions : a spatial lag modelling approach

    NARCIS (Netherlands)

    Folmer, Eelke O.; Piersma, Theunis

    2012-01-01

    The spatial distribution of foraging animals at a given time simultaneously depends on (1) exogenous environmental variables such as resource availability and abiotic habitat characteristics, and (2) the endogenous variable social aggregation made up of the opposing mechanisms of conspecific

  8. A three-dimensional point process model for the spatial distribution of disease occurrence in relation to an exposure source

    DEFF Research Database (Denmark)

    Grell, Kathrine; Diggle, Peter J; Frederiksen, Kirsten

    2015-01-01

    We study methods for how to include the spatial distribution of tumours when investigating the relation between brain tumours and the exposure from radio frequency electromagnetic fields caused by mobile phone use. Our suggested point process model is adapted from studies investigating spatial...

  9. Spatial modelling of arsenic distribution and human health effects in Lake Victoria basin, Tanzania

    Science.gov (United States)

    Ijumulana, Julian; Mtalo, Felix; Bhattacharya, Prosun

    2016-04-01

    Increasing incidences of naturally occurring geogenic pollutants in drinking water sources and associated human health risks are the two major challenges requiring detailed knowledge to support decision making process at various levels. The presence, location and extent of environmental contamination is needed towards developing mitigation measures to achieve required standards. In this study we are developing a GIS-based model to detect and predict drinking water pollutants at the identified hotspots and monitor its variation in space. In addition, the mobility of pollutants within the affected region needs to be evaluated using topographic and hydrogeological data. Based on these geospatial data on contaminant distribution, spatial relationship of As and F contamination and reported human health effects such as dental caries, dental fluorosis, skeletal fluorosis and bone crippling, skin and other cancers etc. can be modeled for potential interventions for safe drinking water supplies.

  10. Use of spatially distributed time-integrated sediment sampling networks and distributed fine sediment modelling to inform catchment management.

    Science.gov (United States)

    Perks, M T; Warburton, J; Bracken, L J; Reaney, S M; Emery, S B; Hirst, S

    2017-11-01

    Under the EU Water Framework Directive, suspended sediment is omitted from environmental quality standards and compliance targets. This omission is partly explained by difficulties in assessing the complex dose-response of ecological communities. But equally, it is hindered by a lack of spatially distributed estimates of suspended sediment variability across catchments. In this paper, we demonstrate the inability of traditional, discrete sampling campaigns for assessing exposure to fine sediment. Sampling frequencies based on Environmental Quality Standard protocols, whilst reflecting typical manual sampling constraints, are unable to determine the magnitude of sediment exposure with an acceptable level of precision. Deviations from actual concentrations range between -35 and +20% based on the interquartile range of simulations. As an alternative, we assess the value of low-cost, suspended sediment sampling networks for quantifying suspended sediment transfer (SST). In this study of the 362 km(2) upland Esk catchment we observe that spatial patterns of sediment flux are consistent over the two year monitoring period across a network of 17 monitoring sites. This enables the key contributing sub-catchments of Butter Beck (SST: 1141 t km(2) yr(-1)) and Glaisdale Beck (SST: 841 t km(2) yr(-1)) to be identified. The time-integrated samplers offer a feasible alternative to traditional infrequent and discrete sampling approaches for assessing spatio-temporal changes in contamination. In conjunction with a spatially distributed diffuse pollution model (SCIMAP), time-integrated sediment sampling is an effective means of identifying critical sediment source areas in the catchment, which can better inform sediment management strategies for pollution prevention and control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Modelling the spatial distribution of the nuisance mosquito species Anopheles plumbeus (Diptera: Culicidae) in the Netherlands.

    Science.gov (United States)

    Ibañez-Justicia, Adolfo; Cianci, Daniela

    2015-05-01

    Landscape modifications, urbanization or changes of use of rural-agricultural areas can create more favourable conditions for certain mosquito species and therefore indirectly cause nuisance problems for humans. This could potentially result in mosquito-borne disease outbreaks when the nuisance is caused by mosquito species that can transmit pathogens. Anopheles plumbeus is a nuisance mosquito species and a potential malaria vector. It is one of the most frequently observed species in the Netherlands. Information on the distribution of this species is essential for risk assessments. The purpose of the study was to investigate the potential spatial distribution of An. plumbeus in the Netherlands. Random forest models were used to link the occurrence and the abundance of An. plumbeus with environmental features and to produce distribution maps in the Netherlands. Mosquito data were collected using a cross-sectional study design in the Netherlands, from April to October 2010-2013. The environmental data were obtained from satellite imagery and weather stations. Statistical measures (accuracy for the occurrence model and mean squared error for the abundance model) were used to evaluate the models performance. The models were externally validated. The maps show that forested areas (centre of the Netherlands) and the east of the country were predicted as suitable for An. plumbeus. In particular high suitability and high abundance was predicted in the south-eastern provinces Limburg and North Brabant. Elevation, precipitation, day and night temperature and vegetation indices were important predictors for calculating the probability of occurrence for An. plumbeus. The probability of occurrence, vegetation indices and precipitation were important for predicting its abundance. The AUC value was 0.73 and the error in the validation was 0.29; the mean squared error value was 0.12. The areas identified by the model as suitable and with high abundance of An. plumbeus, are

  12. The spatial distribution of cold gas in hierarchical galaxy formation models

    CERN Document Server

    Kim, Han-Seek; Benson, A J; Cole, S; Frenk, C S; Lacey, C G; Power, C; Schneider, M

    2010-01-01

    The distribution of cold gas in dark matter haloes is driven by key processes in galaxy formation: gas cooling, galaxy mergers, star formation and reheating of gas by supernovae. We compare the predictions of four different galaxy formation models for the spatial distribution of cold gas. We find that satellite galaxies make little contribution to the abundance or clustering strength of cold gas selected samples, and are far less important than they are in optically selected samples. The halo occupation distribution function of present-day central galaxies with cold gas mass > 10^9 h^-1 Msun is peaked around a halo mass of ~ 10^11 h^-1 Msun, a scale that is set by the AGN suppression of gas cooling. The model predictions for the projected correlation function are in good agreement with measurements from the HI Parkes All-Sky Survey. We compare the effective volume of possible surveys with the Square Kilometre Array with those expected for a redshift survey in the near-infrared. Future redshift surveys using n...

  13. Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model.

    Science.gov (United States)

    Hijmans, Robert J

    2012-03-01

    Species distribution models are usually evaluated with cross-validation. In this procedure evaluation statistics are computed from model predictions for sites of presence and absence that were not used to train (fit) the model. Using data for 226 species, from six regions, and two species distribution modeling algorithms (Bioclim and MaxEnt), I show that this procedure is highly sensitive to "spatial sorting bias": the difference between the geographic distance from testing-presence to training-presence sites and the geographic distance from testing-absence (or testing-background) to training-presence sites. I propose the use of pairwise distance sampling to remove this bias, and the use of a null model that only considers the geographic distance to training sites to calibrate cross-validation results for remaining bias. Model evaluation results (AUC) were strongly inflated: the null model performed better than MaxEnt for 45% and better than Bioclim for 67% of the species. Spatial sorting bias and area under the receiver-operator curve (AUC) values increased when using partitioned presence data and random-absence data instead of independently obtained presence-absence testing data from systematic surveys. Pairwise distance sampling removed spatial sorting bias, yielding null models with an AUC close to 0.5, such that AUC was the same as null model calibrated AUC (cAUC). This adjustment strongly decreased AUC values and changed the ranking among species. Cross-validation results for different species are only comparable after removal of spatial sorting bias and/or calibration with an appropriate null model.

  14. Spatial distribution of overtopping

    NARCIS (Netherlands)

    Lioutas, A.; Smith, G.M.; Verhagen, H.J.

    2012-01-01

    The scope of this research is to find an empirical formula to describe the distribution of wave overtopping in the region behind the crest. A physical model was set up in which irregular waves were generated. In order to find a formula which adequately describes the test observations, the influence

  15. Cetacean occurrence and spatial distribution: Habitat modelling for offshore waters in the Portuguese EEZ (NE Atlantic)

    Science.gov (United States)

    Correia, Ana M.; Tepsich, Paola; Rosso, Massimiliano; Caldeira, Rui; Sousa-Pinto, Isabel

    2015-03-01

    In the Portuguese Economic Exclusive Zone (EEZ) (NE Atlantic), little survey effort dedicated to cetacean species has been carried out in offshore waters. As a consequence, data on their occurrence, distribution and habitat preferences is scarce. In this area, 48 sea surveys along fixed transects within Continental Portugal and Madeira Island were performed in 2012 and 2013, from July to October, using platforms of opportunity. We used an environmental envelope approach and GAM habitat models to identify the role of oceanographic, topographic and geographical variables in shaping cetacean distribution. Results demonstrate the richness of offshore waters in this area as in 10,668 nmi sampled, we recorded 218 sightings from at least nine cetacean species, resulting in an overall ER of 2.04 sightings/100 nmi. The interaction of topographic and oceanographic features was shown to influence the distribution of the species/groups along the routes. Among the sighted species, only common dolphin showed a preference for coastal waters, while for all the other species high seas proved to be determinant. This result reinforces the need to address conservation issues in open ocean. This preliminary assessment showed the importance of the entire area for the distribution of different cetacean species and allowed the identification of several species/group specific potential suitable habitats. Considering the Habitats Directive resolutions, ACCOBAMS priorities, EEZ extension for the area and Maritime Spatial Planning Directive, and the urgent need for management plans, we suggest that the sampling strategy here presented is a cost-effective method to gather valuable data, to be used to improve cetacean habitat models in the area.

  16. A spatial model for sporadic tree species distribution in support of tree oriented silviculture

    Directory of Open Access Journals (Sweden)

    Davide Melini

    2013-12-01

    Full Text Available This technical note describes how a spatial model for sporadic tree species distribution in the territory of the Unione di Comuni Montana Colline Metallifere (UCMCM was built using the Random Forest (RF algorithm and 48 predictors, including reflectance values from ground cover - provided by satellite sensors - and ecological factors. The  P.Pro.SPO.T. project - Policy and Protection of Sporadic tree species in Tuscany forest (LIFE 09 ENV/IT/000087 is currently carried out in this area with the purpose of initiating the implementation of tree oriented silviculture in the Tuscany forests. Tree oriented silviculture aims at obtaining both forest biodiversity protection and local production of valuable timber. After creating a map showing the probability of presence of sporadic tree species, it was possible to identify the most suitable areas for sporadic tree species which are under protection according to the regulation of the Tuscany Region.Using data and software provided free of charge, and applying the RF algorithm, distribution models could be developed in order to identify the most suitable areas for the application of tree oriented silviculture. This can provide a support to forestry planning that includes tree oriented silviculture, thus reducing its implementation cost.

  17. Predicting habitat suitability for rare plants at local spatial scales using a species distribution model.

    Science.gov (United States)

    Gogol-Prokurat, Melanie

    2011-01-01

    If species distribution models (SDMs) can rank habitat suitability at a local scale, they may be a valuable conservation planning tool for rare, patchily distributed species. This study assessed the ability of Maxent, an SDM reported to be appropriate for modeling rare species, to rank habitat suitability at a local scale for four edaphic endemic rare plants of gabbroic soils in El Dorado County, California, and examined the effects of grain size, spatial extent, and fine-grain environmental predictors on local-scale model accuracy. Models were developed using species occurrence data mapped on public lands and were evaluated using an independent data set of presence and absence locations on surrounding lands, mimicking a typical conservation-planning scenario that prioritizes potential habitat on unsurveyed lands surrounding known occurrences. Maxent produced models that were successful at discriminating between suitable and unsuitable habitat at the local scale for all four species, and predicted habitat suitability values were proportional to likelihood of occurrence or population abundance for three of four species. Unfortunately, models with the best discrimination (i.e., AUC) were not always the most useful for ranking habitat suitability. The use of independent test data showed metrics that were valuable for evaluating which variables and model choices (e.g., grain, extent) to use in guiding habitat prioritization for conservation of these species. A goodness-of-fit test was used to determine whether habitat suitability values ranked habitat suitability on a continuous scale. If they did not, a minimum acceptable error predicted area criterion was used to determine the threshold for classifying habitat as suitable or unsuitable. I found a trade-off between model extent and the use of fine-grain environmental variables: goodness of fit was improved at larger extents, and fine-grain environmental variables improved local-scale accuracy, but fine-grain variables

  18. A three-dimensional point process model for the spatial distribution of disease occurrence in relation to an exposure source.

    Science.gov (United States)

    Grell, Kathrine; Diggle, Peter J; Frederiksen, Kirsten; Schüz, Joachim; Cardis, Elisabeth; Andersen, Per K

    2015-10-15

    We study methods for how to include the spatial distribution of tumours when investigating the relation between brain tumours and the exposure from radio frequency electromagnetic fields caused by mobile phone use. Our suggested point process model is adapted from studies investigating spatial aggregation of a disease around a source of potential hazard in environmental epidemiology, where now the source is the preferred ear of each phone user. In this context, the spatial distribution is a distribution over a sample of patients rather than over multiple disease cases within one geographical area. We show how the distance relation between tumour and phone can be modelled nonparametrically and, with various parametric functions, how covariates can be included in the model and how to test for the effect of distance. To illustrate the models, we apply them to a subset of the data from the Interphone Study, a large multinational case-control study on the association between brain tumours and mobile phone use.

  19. A Modelling Approach on Fine Particle Spatial Distribution for Street Canyons in Asian Residential Community

    Science.gov (United States)

    Ling, Hong; Lung, Shih-Chun Candice; Uhrner, Ulrich

    2016-04-01

    Rapidly increasing urban pollution poses severe health risks.Especially fine particles pollution is considered to be closely related to respiratory and cardiovascular disease. In this work, ambient fine particles are studied in street canyons of a typical Asian residential community using a computational fluid dynamics (CFD) dispersion modelling approach. The community is characterised by an artery road with a busy traffic flow of about 4000 light vehicles (mainly cars and motorcycles) per hour at rush hours, three streets with hundreds light vehicles per hour at rush hours and several small lanes with less traffic. The objective is to study the spatial distribution of the ambient fine particle concentrations within micro-environments, in order to assess fine particle exposure of the people living in the community. The GRAL modelling system is used to simulate and assess the emission and dispersion of the traffic-related fine particles within the community. Traffic emission factors and traffic situation is assigned using both field observation and local emissions inventory data. High resolution digital elevation data (DEM) and building height data are used to resolve the topographical features. Air quality monitoring and mobile monitoring within the community is used to validate the simulation results. By using this modelling approach, the dispersion of fine particles in street canyons is simulated; the impact of wind condition and street orientation are investigated; the contributions of car and motorcycle emissions are quantified respectively; the residents' exposure level of fine particles is assessed. The study is funded by "Taiwan Megacity Environmental Research (II)-chemistry and environmental impacts of boundary layer aerosols (Year 2-3) (103-2111-M-001-001-); Spatial variability and organic markers of aerosols (Year 3)(104-2111-M-001 -005 -)"

  20. Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: a model study

    Directory of Open Access Journals (Sweden)

    C. Lancelot

    2009-12-01

    Full Text Available An upgraded version of the biogeochemical model SWAMCO is coupled to the ocean-sea-ice model NEMO-LIM to explore processes governing the spatial distribution of the iron supply to phytoplankton in the Southern Ocean. The 3-D NEMO-LIM-SWAMCO model is implemented in the ocean domain south of latitude 30° S and runs are performed over September 1989–December 2000. Model scenarios include potential iron sources (atmospheric deposition, iceberg calving/melting and continental sediments as well as iron storage within sea ice, all formulated based on a literature review. When all these processes are included, the simulated iron profiles and phytoplankton bloom distributions show satisfactory agreement with observations. Analyses of simulations and sensitivity tests point to the key role played by continental sediments as a primary source for iron. Iceberg calving and melting contribute by up to 25% of Chl-a simulated in areas influenced by icebergs while atmospheric deposition has little effect at high latitudes. Activating sea ice-ocean iron exchanges redistribute iron geographically. Stored in the ice during winter formation, iron is then transported due to ice motion and is released and made available to phytoplankton during summer melt, in the vicinity of the marginal ice zones. Transient iron storage and transport associated with sea ice dynamics stimulate summer phytoplankton blooming (up to 3 mg Chl-a m-3 in the Weddell Sea and off East Antarctica but not in the Ross, Bellingshausen and Amundsen Seas. This contrasted feature results from the simulated variable content of iron in sea ice and release of melting ice showing higher ice-ocean iron fluxes in the continental shelves of the Weddell and Ross Seas than in the Eastern Weddell Sea and the Bellingshausen-Amundsen Seas. This study confirms that iron sources and transport in the Southern Ocean likely provide important mechanisms in the geographical development of

  1. Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: a model study

    Directory of Open Access Journals (Sweden)

    C. Lancelot

    2009-05-01

    Full Text Available An upgraded version of the biogeochemical model SWAMCO is coupled to the ocean-sea-ice model NEMO-LIM to explore processes governing the spatial distribution of the iron supply to phytoplankton in the Southern Ocean. The 3-D NEMO-LIM-SWAMCO model is implemented in the ocean domain south of latitude 30° S and runs are performed over September 1989–December 2000. Model scenarios include potential iron sources (atmospheric deposition, iceberg calving and continental sediments as well as iron storage within sea ice, all formulated based on a literature review. When all these processes are included, the simulated iron profiles and phytoplankton bloom distributions show satisfactory agreement with observations. Analysis of simulations points to the key role played by continental sediments as a primary source for iron. Iceberg calving and melting contribute by up to 25% of Chl a simulated in areas under influence of icebergs while atmospheric deposition has little effect at high latitudes. Activating sea ice-ocean iron exchanges redistribute iron geographically. Stored in the ice during winter formation, iron is then transported due to ice motion and is released and made available to phytoplankton during summer melt, in the vicinity of the marginal ice zones. Transient iron storage and transport associated with sea ice dynamics stimulate summer phytoplankton blooming (up to 3 mg Chl a m−3 in the Weddell Sea and off East Antarctica but not in the Ross, Bellingshausen and Amundsen Seas. This contrasted feature results from the simulated variable content of iron in sea ice and release of melting ice showing higher ice-ocean iron fluxes in the continental shelves of the Weddell and Ross Seas than in the Eastern Weddell Sea and the Bellingshausen-Amundsen Seas. This study confirms that iron sources and transport in the Southern Ocean likely provide important mechanisms in the geographical development of phytoplankton blooms and

  2. A hierarchical model for estimating the spatial distribution and abundance of animals detected by continuous-time recorders

    Science.gov (United States)

    Dorazio, Robert; Karanth, K. Ullas

    2017-01-01

    MotivationSeveral spatial capture-recapture (SCR) models have been developed to estimate animal abundance by analyzing the detections of individuals in a spatial array of traps. Most of these models do not use the actual dates and times of detection, even though this information is readily available when using continuous-time recorders, such as microphones or motion-activated cameras. Instead most SCR models either partition the period of trap operation into a set of subjectively chosen discrete intervals and ignore multiple detections of the same individual within each interval, or they simply use the frequency of detections during the period of trap operation and ignore the observed times of detection. Both practices make inefficient use of potentially important information in the data.Model and data analysisWe developed a hierarchical SCR model to estimate the spatial distribution and abundance of animals detected with continuous-time recorders. Our model includes two kinds of point processes: a spatial process to specify the distribution of latent activity centers of individuals within the region of sampling and a temporal process to specify temporal patterns in the detections of individuals. We illustrated this SCR model by analyzing spatial and temporal patterns evident in the camera-trap detections of tigers living in and around the Nagarahole Tiger Reserve in India. We also conducted a simulation study to examine the performance of our model when analyzing data sets of greater complexity than the tiger data.BenefitsOur approach provides three important benefits: First, it exploits all of the information in SCR data obtained using continuous-time recorders. Second, it is sufficiently versatile to allow the effects of both space use and behavior of animals to be specified as functions of covariates that vary over space and time. Third, it allows both the spatial distribution and abundance of individuals to be estimated, effectively providing a species

  3. A hierarchical model for estimating the spatial distribution and abundance of animals detected by continuous-time recorders.

    Science.gov (United States)

    Dorazio, Robert M; Karanth, K Ullas

    2017-01-01

    Several spatial capture-recapture (SCR) models have been developed to estimate animal abundance by analyzing the detections of individuals in a spatial array of traps. Most of these models do not use the actual dates and times of detection, even though this information is readily available when using continuous-time recorders, such as microphones or motion-activated cameras. Instead most SCR models either partition the period of trap operation into a set of subjectively chosen discrete intervals and ignore multiple detections of the same individual within each interval, or they simply use the frequency of detections during the period of trap operation and ignore the observed times of detection. Both practices make inefficient use of potentially important information in the data. We developed a hierarchical SCR model to estimate the spatial distribution and abundance of animals detected with continuous-time recorders. Our model includes two kinds of point processes: a spatial process to specify the distribution of latent activity centers of individuals within the region of sampling and a temporal process to specify temporal patterns in the detections of individuals. We illustrated this SCR model by analyzing spatial and temporal patterns evident in the camera-trap detections of tigers living in and around the Nagarahole Tiger Reserve in India. We also conducted a simulation study to examine the performance of our model when analyzing data sets of greater complexity than the tiger data. Our approach provides three important benefits: First, it exploits all of the information in SCR data obtained using continuous-time recorders. Second, it is sufficiently versatile to allow the effects of both space use and behavior of animals to be specified as functions of covariates that vary over space and time. Third, it allows both the spatial distribution and abundance of individuals to be estimated, effectively providing a species distribution model, even in cases where

  4. Modelling the distribution of fish accounting for spatial correlation and overdispersion

    DEFF Research Database (Denmark)

    Lewy, Peter; Kristensen, Kasper

    2009-01-01

    correlation between observations. It is therefore possible to predict and interpolate unobserved densities at any location in the area. This is important for obtaining unbiased estimates of stock concentration and other measures depending on the distribution in the entire area. Results show that the spatial...

  5. Modeling Spatial Distribution of a Rare and Endangered Plant Species (Brainea insignis) in Central Taiwan

    Science.gov (United States)

    Wang, W.-C.; Lo, N.-J.; Chang, W.-I.; Huang, K.-Y.

    2012-07-01

    With an increase in the rate of species extinction, we should choose right methods that are sustainable on the basis of appropriate science and human needs to conserve ecosystems and rare species. Species distribution modeling (SDM) uses 3S technology and statistics and becomes increasingly important in ecology. Brainea insignis (cycad-fern, CF) has been categorized a rare, endangered plant species, and thus was chosen as a target for the study. Five sampling schemes were created with different combinations of CF samples collected from three sites in Huisun forest station and one site, 10 km farther north from Huisun. Four models, MAXENT, GARP, generalized linear models (GLM), and discriminant analysis (DA), were developed based on topographic variables, and were evaluated by five sampling schemes. The accuracy of MAXENT was the highest, followed by GLM and GARP, and DA was the lowest. More importantly, they can identify the potential habitat less than 10% of the study area in the first round of SDM, thereby prioritizing either the field-survey area where microclimatic, edaphic or biotic data can be collected for refining predictions of potential habitat in the later rounds of SDM or search areas for new population discovery. However, it was shown unlikely to extend spatial patterns of CFs from one area to another with a big separation or to a larger area by predictive models merely based on topographic variables. Follow-up studies will attempt to incorporate proxy indicators that can be extracted from hyperspectral images or LIDAR DEM and substitute for direct parameters to make predictive models applicable on a broader scale.

  6. Simulating pesticide transport in urbanized catchments: a new spatially-distributed dynamic pesticide runoff model

    Science.gov (United States)

    Tang, Ting; Seuntjens, Piet; van Griensven, Ann; Bronders, Jan

    2016-04-01

    depression storage (including degradation, infiltration and runoff). Processes on hard surfaces employs the conceptualization described in the paragraph above. The WetSpa-PST model can account for various spatial details of the urban features in a catchment, such as asphalt, concrete and roof areas. The distributed feature also allows users to input detailed pesticide application data of both non-point and point origins. Thanks to the Python modelling framework prototype used in the WetSpa-Python model, processes in the WetSpa-PST model can be simulated at different time steps depending on data availability and the characteristic temporal scale of each process. This helps to increase the computational accuracy during heavy rainfall events, especially for the associated fast transport of pesticides into surface water. Overall, the WetSpa-PST model has good potential in predicting effects of management options on pesticide releases from heavily urbanized catchments.

  7. Using High Resolution Tracer Data to Constrain Storage and Flux Estimates in a Spatially Distributed Rainfall-runoff Model

    Science.gov (United States)

    Van Huijgevoort, M.; Tetzlaff, D.; Sutanudjaja, E.; Soulsby, C.

    2015-12-01

    Models simulating both stream flow and conservative tracers can provide a more realistic representation of flow paths, storage distributions and mixing processes that is advantageous for many predictions. Conceptual models with such integration have provided useful insights, but tend to be lumped and thus crude representations of catchment processes. Using tracers to aid spatially-distributed models has considerable potential to improve the conceptualisation of the dynamics of internal hydrological stores and fluxes. Here, we examine the strengths and weaknesses of a data-driven, spatially-distributed tracer-aided rainfall-runoff model. The model structure allows the assessment of the effect of landscape properties on the routing and mixing of water and tracers. The model was applied to an experimental site (3.2 km2) in the Scottish Highlands with a unique tracer data set; 4 years of daily isotope ratios in stream water and precipitation were available, as well as 2 years of weekly soil and ground water isotopes. The model evolved from an empirically-based, lumped tracer-aided model previously developed for the catchment. The best model runs were selected from Monte Carlo simulations based on a dual calibration criterion that included objective functions for both stream water isotopes and discharge at the outlet. Model results were also tested against observed spatially-distributed soil water isotope data. Model performance for both criteria was good and the model could reproduce the variable isotope signals in steeper hillslopes where storage was low and damped isotope responses in valley bottom cells with high storage. The model also allows us to estimate the age distributions of internal water fluxes and stream flow and has substantially improved spatial and temporal dynamics of process representation. This gives a more robust framework for projecting the effects of environmental change.

  8. Two Conceptual Approaches For The Continuous Time Computation of Infiltration and Surface Runoff In Spatially Distributed Rainfall-runoff Models

    Science.gov (United States)

    Brath, A.; Crosta, G.; Frattini, P.; Montanari, A.; Moretti, G.

    Distributed rainfall-runoff models are often applied for performing hydrological sim- ulations extended to the time span of single flood events, in order to limit the compu- tational effort. The increasing availability of computing powers makes now possible to move towards standard techniques for flood hydrograph estimation based upon the application of continuous simulation distributed models. These allow to perform hy- drological analyses that would be not possible by using lumped models, such as, for instance, the assessment of the effects on river discharges of spatially distributed land- use changes. In order to perform spatially-distributed and continuous time hydrologi- cal simulations, one has to represent the infiltration process at the local scale by using schemes which are capable of simulating the soil water content redistribution during the interstorm periods. To this end, the present study aims at presenting an application of two conceptual schemes, which have been derived by modifying the event-based Green-Ampt and Curve Number infiltration models. The proposed approaches have been embedded in a spatially distributed, DEM-based, rainfall-runoff model. An ap- plication of the model is presented, that refers to a river basin located in Northern Italy.

  9. Incorporation of a spatial source distribution and a spatial sensor sensitivity in a laser ultrasound propagation model using a streamlined Huygens' principle.

    Science.gov (United States)

    Laloš, Jernej; Babnik, Aleš; Možina, Janez; Požar, Tomaž

    2016-03-01

    The near-field, surface-displacement waveforms in plates are modeled using interwoven concepts of Green's function formalism and streamlined Huygens' principle. Green's functions resemble the building blocks of the sought displacement waveform, superimposed and weighted according to the simplified distribution. The approach incorporates an arbitrary circular spatial source distribution and an arbitrary circular spatial sensitivity in the area probed by the sensor. The displacement histories for uniform, Gaussian and annular normal-force source distributions and the uniform spatial sensor sensitivity are calculated, and the corresponding weight distributions are compared. To demonstrate the applicability of the developed scheme, measurements of laser ultrasound induced solely by the radiation pressure are compared with the calculated waveforms. The ultrasound is induced by laser pulse reflection from the mirror-surface of a glass plate. The measurements show excellent agreement not only with respect to various wave-arrivals but also in the shape of each arrival. Their shape depends on the beam profile of the excitation laser pulse and its corresponding spatial normal-force distribution.

  10. Modelling the spatial distribution of snow water equivalent at the catchment scale taking into account changes in snow covered area

    Directory of Open Access Journals (Sweden)

    T. Skaugen

    2011-12-01

    Full Text Available A successful modelling of the snow reservoir is necessary for water resources assessments and the mitigation of spring flood hazards. A good estimate of the spatial probability density function (PDF of snow water equivalent (SWE is important for obtaining estimates of the snow reservoir, but also for modelling the changes in snow covered area (SCA, which is crucial for the runoff dynamics in spring. In a previous paper the PDF of SWE was modelled as a sum of temporally correlated gamma distributed variables. This methodology was constrained to estimate the PDF of SWE for snow covered areas only. In order to model the PDF of SWE for a catchment, we need to take into account the change in snow coverage and provide the spatial moments of SWE for both snow covered areas and for the catchment as a whole. The spatial PDF of accumulated SWE is, also in this study, modelled as a sum of correlated gamma distributed variables. After accumulation and melting events the changes in the spatial moments are weighted by changes in SCA. The spatial variance of accumulated SWE is, after both accumulation- and melting events, evaluated by use of the covariance matrix. For accumulation events there are only positive elements in the covariance matrix, whereas for melting events, there are both positive and negative elements. The negative elements dictate that the correlation between melt and SWE is negative. The negative contributions become dominant only after some time into the melting season so at the onset of the melting season, the spatial variance thus continues to increase, for later to decrease. This behaviour is consistent with observations and called the "hysteretic" effect by some authors. The parameters for the snow distribution model can be estimated from observed historical precipitation data which reduces by one the number of parameters to be calibrated in a hydrological model. Results from the model are in good agreement with observed spatial moments

  11. Modelling the spatial distribution of snow water equivalent at the catchment scale taking into account changes in snow covered area

    Science.gov (United States)

    Skaugen, T.; Randen, F.

    2011-12-01

    A successful modelling of the snow reservoir is necessary for water resources assessments and the mitigation of spring flood hazards. A good estimate of the spatial probability density function (PDF) of snow water equivalent (SWE) is important for obtaining estimates of the snow reservoir, but also for modelling the changes in snow covered area (SCA), which is crucial for the runoff dynamics in spring. In a previous paper the PDF of SWE was modelled as a sum of temporally correlated gamma distributed variables. This methodology was constrained to estimate the PDF of SWE for snow covered areas only. In order to model the PDF of SWE for a catchment, we need to take into account the change in snow coverage and provide the spatial moments of SWE for both snow covered areas and for the catchment as a whole. The spatial PDF of accumulated SWE is, also in this study, modelled as a sum of correlated gamma distributed variables. After accumulation and melting events the changes in the spatial moments are weighted by changes in SCA. The spatial variance of accumulated SWE is, after both accumulation- and melting events, evaluated by use of the covariance matrix. For accumulation events there are only positive elements in the covariance matrix, whereas for melting events, there are both positive and negative elements. The negative elements dictate that the correlation between melt and SWE is negative. The negative contributions become dominant only after some time into the melting season so at the onset of the melting season, the spatial variance thus continues to increase, for later to decrease. This behaviour is consistent with observations and called the "hysteretic" effect by some authors. The parameters for the snow distribution model can be estimated from observed historical precipitation data which reduces by one the number of parameters to be calibrated in a hydrological model. Results from the model are in good agreement with observed spatial moments of SWE and SCA

  12. Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling

    NARCIS (Netherlands)

    Naimi, B.; Skidmore, A.K.; Groen, T.A.; Hamm, N.A.S.

    2011-01-01

    Aim To investigate the impact of positional uncertainty in species occurrences on the predictions of seven commonly used species distribution models (SDMs), and explore its interaction with spatial autocorrelation in predictors. Methods A series of artificial datasets covering 155 scenarios includin

  13. Modeling the Spatial Distribution and Fruiting Pattern of a Key Tree Species in a Neotropical Forest : Methodology and Potential Applications

    NARCIS (Netherlands)

    Caillaud, Damien; Crofoot, Margaret C.; Scarpino, Samuel V.; Jansen, Patrick A.; Garzon-Lopez, Carol X.; Winkelhagen, Annemarie J. S.; Bohlman, Stephanie A.; Walsh, Peter D.

    2010-01-01

    Background: The movement patterns of wild animals depend crucially on the spatial and temporal availability of resources in their habitat. To date, most attempts to model this relationship were forced to rely on simplified assumptions about the spatiotemporal distribution of food resources. Here we

  14. Conceptualizing Peatlands in a Physically-Based Spatially Distributed Hydrologic Model

    Science.gov (United States)

    Downer, Charles; Wahl, Mark

    2017-04-01

    In as part of a research effort focused on climate change effects on permafrost near Fairbanks, Alaska, it became apparent that peat soils, overlain by thick sphagnum moss, had a considerable effect on the overall hydrology. Peatlands represent a confounding mixture of vegetation, soils, and water that present challenges for conceptualizing and parametrizing hydrologic models. We employed the Gridded Surface Subsurface Hydrologic Analysis Model (GSSHA) in our analysis of the Caribou Poker Creek Experimental Watershed (CPCRW). GSSHA is a physically-based, spatially distributed, watershed model developed by the U.S. Army to simulate important streamflow-generating processes (Downer and Ogden, 2004). The model enables simulation of surface water and groundwater interactions, as well as soil temperature and frozen ground effects on subsurface water movement. The test site is a 104 km2 basin located in the Yukon-Tanana Uplands of the Northern Plateaus Physiographic Province centered on 65˚10' N latitude and 147˚30' W longitude. The area lies above the Chattanika River floodplain and is characterized by rounded hilltops with gentle slopes and alluvium-floored valleys having minimal relief (Wahrhaftig, 1965) underlain by a mica shist of the Birch Creek formation (Rieger et al., 1972). The region has a cold continental climate characterized by short warm summers and long cold winters. Observed stream flows indicated significant groundwater contribution with sustained base flows even during dry periods. A site visit exposed the presence of surface water flows indicating a mixed basin that would require both surface and subsurface simulation capability to properly capture the response. Soils in the watershed are predominately silt loam underlain by shallow fractured bedrock. Throughout much of the basin, a thick layer of live sphagnum moss and fine peat covers the ground surface. A restrictive layer of permafrost is found on north facing slopes. The combination of thick

  15. Modeling spatial distribution of oxygen in 3d culture of islet beta-cells.

    Science.gov (United States)

    McReynolds, John; Wen, Yu; Li, Xiaofei; Guan, Jianjun; Jin, Sha

    2017-01-01

    Three-dimensional (3D) scaffold culture of pancreatic β-cell has been proven to be able to better mimic physiological conditions in the body. However, one critical issue with culturing pancreatic β-cells is that β-cells consume large amounts of oxygen, and hence insufficient oxygen supply in the culture leads to loss of β-cell mass and functions. This becomes more significant when cells are cultured in a 3D scaffold. In this study, in order to understand the effect of oxygen tension inside a cell-laden collagen culture on β-cell proliferation, a culture model with encapsulation of an oxygen-generator was established. The oxygen-generator was made by embedding hydrogen peroxide into nontoxic polydimethylsiloxane to avoid the toxicity of a chemical reaction in the β-cell culture. To examine the effectiveness of the oxygenation enabled 3D culture, the spatial-temporal distribution of oxygen tension inside a scaffold was evaluated by a mathematical modeling approach. Our simulation results indicated that an oxygenation-aided 3D culture would augment the oxygen supply required for the β-cells. Furthermore, we identified that cell seeding density and the capacity of the oxygenator are two critical parameters in the optimization of the culture. Notably, cell-laden scaffold cultures with an in situ oxygen supply significantly improved the β-cells' biological function. These β-cells possess high insulin secretion capacity. The results obtained in this work would provide valuable information for optimizing and encouraging functional β-cell cultures. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:221-228, 2017.

  16. Effect of precipitation spatial distribution uncertainty on the uncertainty bounds of a snowmelt runoff model output

    Science.gov (United States)

    Jacquin, A. P.

    2012-04-01

    This study analyses the effect of precipitation spatial distribution uncertainty on the uncertainty bounds of a snowmelt runoff model's discharge estimates. Prediction uncertainty bounds are derived using the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. The model analysed is a conceptual watershed model operating at a monthly time step. The model divides the catchment into five elevation zones, where the fifth zone corresponds to the catchment glaciers. Precipitation amounts at each elevation zone i are estimated as the product between observed precipitation (at a single station within the catchment) and a precipitation factor FPi. Thus, these factors provide a simplified representation of the spatial variation of precipitation, specifically the shape of the functional relationship between precipitation and height. In the absence of information about appropriate values of the precipitation factors FPi, these are estimated through standard calibration procedures. The catchment case study is Aconcagua River at Chacabuquito, located in the Andean region of Central Chile. Monte Carlo samples of the model output are obtained by randomly varying the model parameters within their feasible ranges. In the first experiment, the precipitation factors FPi are considered unknown and thus included in the sampling process. The total number of unknown parameters in this case is 16. In the second experiment, precipitation factors FPi are estimated a priori, by means of a long term water balance between observed discharge at the catchment outlet, evapotranspiration estimates and observed precipitation. In this case, the number of unknown parameters reduces to 11. The feasible ranges assigned to the precipitation factors in the first experiment are slightly wider than the range of fixed precipitation factors used in the second experiment. The mean squared error of the Box-Cox transformed discharge during the calibration period is used for the evaluation of the

  17. Modelled spatial and seasonal distribution of Blue Whiting (Micromesistius poutassou) larvae in the North-East Atlantic (1951 to 2005)

    DEFF Research Database (Denmark)

    2014-01-01

    Recorder (CPR) during the period 1951-2005. The observations are analysed using Generalised Additive Models (GAMs) of the the spatial, seasonal and interannual variation in the occurrence of larvae. The best fitting model is chosen using the Aikaike Information Criteria (AIC). The probability of occurrence...... in the continous plankton recorder is then normalised and converted to a probability distribution function in space (UTM projection Zone 28) and season (day of year). The best fitting model splits the distribution into two separate spawning grounds north and south of a dividing line at 53 N. The probability...

  18. Spatially distributed modeling of sediment and associated heavy metal transport on regional and catchment scale

    Science.gov (United States)

    Schindewolf, Marcus; Schmidt, Jürgen; Käpermann, Philipp

    2013-04-01

    Achievements of new legislations, as EU-Water Framework Directive (EU-WFD), require great efforts in order to reduce the yields of sediment and sediment attached heavy metals of surface water bodies. In this regard planning authorities strongly need comparable assessments on regional scale, which enables predictions on the level of measures. The study aims to identify the main sediment delivery areas in the German federal state of Saxony (18400 km²) and to locate pass over points of sediment and associated heavy metals into surface waters. Applying the process based EROSION 3D simulation model spatially distributed (20 m grid cell) estimates of sediment and particle attached heavy metal inputs are realized on regional and catchment scale related to three land use scenarios and a 10years rainfall event. Concerning these calculations it has to be considered, that this substances are predominantly attached to the fine-grained soil particles. The selective nature of soil erosion causes a preferentially transport of this fine particles while less contaminated larger particles remain on site. Consequently heavy metals are enriched in the eroded sediment compared to the origin soil. Hence it is essential that EROSION 3D provides the particle size distribution (clay, silt and sand) of transported sediments. Regarding heavy metal input calculations from sediment inputs, heavy metal contents of particle size classes has to be known. For this purpose particle size separates of erosion susceptible soils are analyzed. Comprehensive heavy metal contents of origin top soils are interpolated via kriging using available monitoring data. The regional scaled simulations identify the Saxon loess belt as the main affected region of sediment inputs. Since particle attached heavy metal transport to surface waters is strongly related to sediment delivery, the streams of this region suffer from considerable inputs. Compared to empirical estimates, the results of this study suggest that

  19. Effects of spatially distributed sectoral water management on the redistribution of water resources in an integrated water model

    Science.gov (United States)

    Voisin, Nathalie; Hejazi, Mohamad I.; Leung, L. Ruby; Liu, Lu; Huang, Maoyi; Li, Hong-Yi; Tesfa, Teklu

    2017-05-01

    Realistic representations of sectoral water withdrawals and consumptive demands and their allocation to surface and groundwater sources are important for improving modeling of the integrated water cycle. To inform future model development, we enhance the representation of water management in a regional Earth system (ES) model with a spatially distributed allocation of sectoral water demands simulated by a regional integrated assessment (IA) model to surface and groundwater systems. The integrated modeling framework (IA-ES) is evaluated by analyzing the simulated regulated flow and sectoral supply deficit in major hydrologic regions of the conterminous U.S, which differ from ES studies looking at water storage variations. Decreases in historical supply deficit are used as metrics to evaluate IA-ES model improvement in representating the complex sectoral human activities for assessing future adaptation and mitigation strategies. We also assess the spatial changes in both regulated flow and unmet demands, for irrigation and nonirrigation sectors, resulting from the individual and combined additions of groundwater and return flow modules. Results show that groundwater use has a pronounced regional and sectoral effect by reducing water supply deficit. The effects of sectoral return flow exhibit a clear east-west contrast in the hydrologic patterns, so the return flow component combined with the IA sectoral demands is a major driver for spatial redistribution of water resources and water deficits in the US. Our analysis highlights the need for spatially distributed sectoral representation of water management to capture the regional differences in interbasin redistribution of water resources and deficits.

  20. A model for simulating the influence of a spatial distribution of large circular macropores on surface runoff

    Science.gov (United States)

    Léonard, J.; Perrier, E.; de Marsily, G.

    2001-12-01

    This paper reports the development and test, at the scale of 1 m2, of an event- based model that aims at simulating the influence of a spatial distribution of large circular macropores on surface runoff. The main originality of this model is that it focuses on the way macropores are supplied with water at the soil surface, by coupling an original model for water interception by individual macropores to a high-resolution spatialized overland flow model. A three-step evaluation of the model was carried out, involving (1) an experimental test of the model for water interception by macropores; (2) a sensitivity analysis of the model to time and space discretization; and (3) a comparison between numerical and field results in the case of runoff on a crusted soil surface with a population of large macropores made by termites in the Sahel. The model was found to accurately simulate the effect of a spatial distribution of large macropores on runoff, and it showed that small heterogeneities, like macropores or areas where a crust has been destroyed, which cover a very limited proportion of the soil surface, can have a high impact on runoff.

  1. Modelling the current and future spatial distribution of NPP in a Mediterranean watershed

    Science.gov (United States)

    Donmez, Cenk; Berberoglu, Suha; Curran, Paul J.

    2011-06-01

    The aim of this study is to use full spatial resolution Envisat MERIS data to drive an ecosystem productivity model for pine forests along the Mediterranean coast of Turkey. The Carnegie, Ames, Stanford Approach (CASA) terrestrial biogeochemical model, designed to simulate the terrestrial carbon cycle using satellite sensor and meteorological data, was used to estimate annual regional fluxes in terrestrial net primary productivity (NPP). At its core this model is based on light-use efficiency, influenced by temperature, rainfall and solar radiation. Present climate data was generated from 50 climate stations within the watershed using co-kriging. Regional scale pseudo-warming data for year 2070 were derived using a Regional Climate Model (RCM) these data were used to downscale the GCM General Circulation Model for the research area as part of an international research project called Impact of Climate Changes on Agricultural Production Systems in Arid Areas (ICCAP). Outputs of climate data can be moderated using the four variables of percent tree cover, land cover, soil texture and NDVI. This study employed 47 MERIS images recorded between March 2003 and September 2005 to derive percent tree cover, land cover and NDVI. Envisat MERIS data hold great potential for estimating NPP with the CASA model because of the appropriateness of both its spatial and its spectral resolution.

  2. Spatial modeling of the geographic distribution of wildlife populations: A case study in the lower Mississippi River region

    Science.gov (United States)

    Ji, W.; Jeske, C.

    2000-01-01

    A geographic information system (GIS)-based spatial modeling approach was developed to study environmental and land use impacts on the geographic distribution of wintering northern pintails (Arias acuta) in the Lower Mississippi River region. Pintails were fitted with backpack radio transmitter packages at Catahoula Lake, LA, in October 1992-1994 and located weekly through the following March. Pintail survey data were converted into a digital database in ARC/INFO GIS format and integrated with environmental GIS data through a customized modeling interface. The study verified the relationship between pintail distributions and major environmental factors and developed a conceptual relation model. Visualization-based spatial simulations were used to display the movement patterns of specific population groups under spatial and temporal constraints. The spatial modeling helped understand the seasonal movement patterns of pintails in relation to their habitat usage in Arkansas and southwestern Louisiana for wintering and interchange situations among population groups wintering in Texas and southeastern Louisiana. (C) 2000 Elsevier Science B.V.

  3. Integration of Spatially Hydrological Modelling on Bentong Catchment, Pahang, Peninsular Malaysia Using Distributed GIS-based Rainfall Runoff Model

    Directory of Open Access Journals (Sweden)

    Rosli, M.H.

    2017-07-01

    Full Text Available With the advance of GIS technology, hydrology model can simulated at catchment wide scale. The objective is to integrate National Resource Conservation Service (NRCS Curve Number (CN with kinematic wave and manning’s equation using GIS to develop a simple GIS-based distributed model to simulate rainfall runoff in Bentong catchment. Model was built using Spatial Distributed Direct Hydrograph (SDDH concept and applying the time area (TA approach in presenting the predicted discharge hydrograph. The effective precipitation estimation was first calculated using the NRCS CN method. Then, the core maps that consists of digital elevation model (DEM, soil and land use map in grid. DEM was used to derive slope, flow direction and flow accumulation while soil and land use map used to derive roughness coefficient and CN. The overland velocity and channel velocity estimation derived from combination of kinematic wave theory with Manning’s equation. To capture the time frame, the travel time map was divided into isochrones in order to generate the TA histogram and finally. The creation of SDDH using the TA histogram which will lead to the estimation of travel time for the catchment. Simulated hydrograph was plotted together with the observed discharge for comparison. Six storm events used for model performance evaluation using statistical measure such as Nash-Sutcliffe efficiency (NSE, percent bias (PBIAS and coefficient of determination (R2;. SDDH model performed quite well as NSE gave result ranging from 0.55 to 0.68 with mean of 0.6. PBIAS indicate that the model slightly over predicted compared to observed hydrograph with result ranges from -46.71 (the most over predicted to +4.83 (the most under predicted with average of -20.73%. R2; ranges between 0.55 to 0.82 with mean of 0.67. When comparing the time to peak, (tp, min, and peak discharge, (pd, m3/s, results gave NSEtp 0.82, PBIAStp 0.65, R2tp 0.32, NSEpd 0.95, PBIASpd 14.49 and R2pd 0

  4. Integrating remote sensing and spatial statistics to model herbaceous biomass distribution in a tropical savanna

    NARCIS (Netherlands)

    Mutanga, O.; Rugege, D.

    2006-01-01

    Modelling herbaceous biomass is critical for an improved understanding of wildlife feeding patterns and distribution as well as for the development of early warning systems for fire management. Most savannas in South Africa are characterized by complex stand structure and abundant vegetation species

  5. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using GIS and CLIMEX.

    Science.gov (United States)

    Khormi, Hassan M; Kumar, Lalit

    2014-05-01

    We examined the potential added risk posed by global climate change on the dengue vector Aedes aegypti abundance using CLIMEX, a powerful tool for exploring the relationship between the fundamental and realised niche of any species. After calibrating the model using data from several knowledge domains, including geographical distribution records, we estimated potential distributions of the mosquito under current and future potential scenarios. The impact of climate change on its potential distribution was assessed with two global climate models, the CSIRO-Mk3.0 and the MIROC-H, run with two potential, future emission scenarios (A1B and A2) published by the Intergovernmental Panel on Climate Change. We compared today's climate situation with two arbitrarily chosen future time points (2030 and 2070) to see the impact on the worldwide distribution of A. aegypti . The model for the current global climate indicated favourable areas for the mosquito within its known distribution in tropical and subtropical areas. However, even if much of the tropics and subtropics will continue to be suitable, the climatically favourable areas for A. aegypti globally are projected to contract under the future scenarios produced by these models, while currently unfavourable areas, such as inland Australia, the Arabian Peninsula, southern Iran and some parts of North America may become climatically favourable for this mosquito species. The climate models for the Aedes dengue vector presented here should be useful for management purposes as they can be adapted for decision/making regarding allocation of resources for dengue risk toward areas where risk infection remains and away from areas where climatic suitability is likely to decrease in the future.

  6. Application of an extended equalization-cancellation model to speech intelligibility with spatially distributed maskers.

    Science.gov (United States)

    Wan, Rui; Durlach, Nathaniel I; Colburn, H Steven

    2010-12-01

    An extended version of the equalization-cancellation (EC) model of binaural processing is described and applied to speech intelligibility tasks in the presence of multiple maskers. The model incorporates time-varying jitters, both in time and amplitude, and implements the equalization and cancellation operations in each frequency band independently. The model is consistent with the original EC model in predicting tone-detection performance for a large set of configurations. When the model is applied to speech, the speech intelligibility index is used to predict speech intelligibility performance in a variety of conditions. Specific conditions addressed include different types of maskers, different numbers of maskers, and different spatial locations of maskers. Model predictions are compared with empirical measurements reported by Hawley et al. [J. Acoust. Soc. Am. 115, 833-843 (2004)] and by Marrone et al. [J. Acoust. Soc. Am. 124, 1146-1158 (2008)]. The model succeeds in predicting speech intelligibility performance when maskers are speech-shaped noise or broadband-modulated speech-shaped noise but fails when the maskers are speech or reversed speech.

  7. Spatial distribution maps for benthic communities

    DEFF Research Database (Denmark)

    Sørensen, Per S.

    1999-01-01

    simulation, Markov random fields and Boolean models. Geostatistical simulation provides a means of assessing the variability of random field functionals such as the estimated distribution area of a benthic species. The Markov random field allows the spatial distribution of the benthic communities......The application of hydroacoustic measurements for preparation of spatial distribution maps of benthic communities is reported. For the present study common mussels (Mytilus edulis), neptune grass (Posidonia oceanica) and Cymodocea nodosa, serving as canonical species of many European marine....... The estimates of variability obtained for estimated distribution areas with the two approaches compare satisfactorily. The Boolean models are suggested as a point of departure for embedding models of spatial patterns on the minor scales of observations to be used in up-scaling approaches to enhance the quality...

  8. Evaluating Methods of Estimation and Modelling Spatial Distribution of Evapotranspiration in the Middle Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Chuanyan Zhao

    2005-01-01

    Full Text Available Seven models commonly used to estimate the daily reference evapotranspiration (ET0 were evaluated in the middle Heihe River Basin of the arid northwestern part of China. The objectives of the study are to choose the appropriate model for estimating the areal distribution of ET0 and to explain the spatial-temporal distribution of the same through GIS in the study area. The results indicated that the FAO-Penman model is the best way to estimate ET0; its RMSE ranged from 1.11 to 1.70 mm, and r2 from 0.59 to 0.93. The spatial variations of ET0 are higher in the western part than in the middle-eastern part of the study area. The temporal variations of daily differences in ET0 rates are mainly due to the differences in irradiance (Rn and to daily differences in the vapor pressure deficit (D. The spatially modeled ET0 results (r2 = 0.88 are in agreement with the corresponding data in situ on the 15th of each month.

  9. Automated modelling of spatially-distributed glacier ice thickness and volume

    Science.gov (United States)

    James, William H. M.; Carrivick, Jonathan L.

    2016-07-01

    Ice thickness distribution and volume are both key parameters for glaciological and hydrological applications. This study presents VOLTA (Volume and Topography Automation), which is a Python script tool for ArcGISTM that requires just a digital elevation model (DEM) and glacier outline(s) to model distributed ice thickness, volume and bed topography. Ice thickness is initially estimated at points along an automatically generated centreline network based on the perfect-plasticity rheology assumption, taking into account a valley side drag component of the force balance equation. Distributed ice thickness is subsequently interpolated using a glaciologically correct algorithm. For five glaciers with independent field-measured bed topography, VOLTA modelled volumes were between 26.5% (underestimate) and 16.6% (overestimate) of that derived from field observations. Greatest differences were where an asymmetric valley cross section shape was present or where significant valley infill had occurred. Compared with other methods of modelling ice thickness and volume, key advantages of VOLTA are: a fully automated approach and a user friendly graphical user interface (GUI), GIS consistent geometry, fully automated centreline generation, inclusion of a side drag component in the force balance equation, estimation of glacier basal shear stress for each individual glacier, fully distributed ice thickness output and the ability to process multiple glaciers rapidly. VOLTA is capable of regional scale ice volume assessment, which is a key parameter for exploring glacier response to climate change. VOLTA also permits subtraction of modelled ice thickness from the input surface elevation to produce an ice-free DEM, which is a key input for reconstruction of former glaciers. VOLTA could assist with prediction of future glacier geometry changes and hence in projection of future meltwater fluxes.

  10. A method to employ the spatial organization of catchments into semi-distributed rainfall-runoff models

    Science.gov (United States)

    Oppel, Henning; Schumann, Andreas

    2017-08-01

    A distributed or semi-distributed deterministic hydrological model should consider the hydrologically most relevant catchment characteristics. These are heterogeneously distributed within a watershed but often interrelated and subject to a certain spatial organization which results in archetypes of combined characteristics. In order to reproduce the natural rainfall-runoff response the reduction of variance of catchment properties as well as the incorporation of the spatial organization of the catchment are desirable. In this study the width-function approach is utilized as a basic characteristic to analyse the succession of catchment characteristics. By applying this technique we were able to assess the context of catchment properties like soil or topology along the streamflow length and the network geomorphology, giving indications of the spatial organization of a catchment. Moreover, this information and this technique have been implemented in an algorithm for automated sub-basin ascertainment, which included the definition of zones within the newly defined sub-basins. The objective was to provide sub-basins that were less heterogeneous than common separation schemes. The algorithm was applied to two parameters characterizing the topology and soil of four mid-European watersheds. Resulting partitions indicated a wide range of applicability for the method and the algorithm. Additionally, the intersection of derived zones for different catchment characteristics could give insights into sub-basin similarities. Finally, a HBV96 case study demonstrated the potential benefits of modelling with the new subdivision technique.

  11. Reconstruction of spatial distributions of sound velocity and absorption in soft biological tissues using model ultrasonic tomographic data

    Science.gov (United States)

    Burov, V. A.; Zotov, D. I.; Rumyantseva, O. D.

    2014-07-01

    A two-step algorithm is used to reconstruct the spatial distributions of the acoustic characteristics of soft biological tissues-the sound velocity and absorption coefficient. Knowing these distributions is urgent for early detection of benign and malignant neoplasms in biological tissues, primarily in the breast. At the first stage, large-scale distributions are estimated; at the second step, they are refined with a high resolution. Results of reconstruction on the base of model initial data are presented. The principal necessity of preliminary reconstruction of large-scale distributions followed by their being taken into account at the second step is illustrated. The use of CUDA technology for processing makes it possible to obtain final images of 1024 × 1024 samples in only a few minutes.

  12. Modelling shallow landslide susceptibility by means of a subsurface flow path connectivity index and estimates of soil depth spatial distribution

    Directory of Open Access Journals (Sweden)

    C. Lanni

    2012-11-01

    Full Text Available Topographic index-based hydrological models have gained wide use to describe the hydrological control on the triggering of rainfall-induced shallow landslides at the catchment scale. A common assumption in these models is that a spatially continuous water table occurs simultaneously across the catchment. However, during a rainfall event isolated patches of subsurface saturation form above an impeding layer and their hydrological connectivity is a necessary condition for lateral flow initiation at a point on the hillslope.

    Here, a new hydrological model is presented, which allows us to account for the concept of hydrological connectivity while keeping the simplicity of the topographic index approach. A dynamic topographic index is used to describe the transient lateral flow that is established at a hillslope element when the rainfall amount exceeds a threshold value allowing for (a development of a perched water table above an impeding layer, and (b hydrological connectivity between the hillslope element and its own upslope contributing area. A spatially variable soil depth is the main control of hydrological connectivity in the model. The hydrological model is coupled with the infinite slope stability model and with a scaling model for the rainfall frequency–duration relationship to determine the return period of the critical rainfall needed to cause instability on three catchments located in the Italian Alps, where a survey of soil depth spatial distribution is available. The model is compared with a quasi-dynamic model in which the dynamic nature of the hydrological connectivity is neglected. The results show a better performance of the new model in predicting observed shallow landslides, implying that soil depth spatial variability and connectivity bear a significant control on shallow landsliding.

  13. Modelling spatial distribution of snails transmitting parasitic worms with importance to human and animal health and analysis of distributional changes in relation to climate

    Directory of Open Access Journals (Sweden)

    Ulrik B. Pedersen

    2014-05-01

    Full Text Available The environment, the on-going global climate change and the ecology of animal species determine the localisation of habitats and the geographical distribution of the various species in nature. The aim of this study was to explore the effects of such changes on snail species not only of interest to naturalists but also of importance to human and animal health. The spatial distribution of freshwater snail intermediate hosts involved in the transmission of schistosomiasis, fascioliasis and paramphistomiasis (i.e. Bulinus globosus, Biomphalaria pfeifferi and Lymnaea natalensis were modelled by the use of a maximum entropy algorithm (Maxent. Two snail observation datasets from Zimbabwe, from 1988 and 2012, were com- pared in terms of geospatial distribution and potential distributional change over this 24-year period investigated. Climate data, from the two years were identified and used in a species distribution modelling framework to produce maps of pre- dicted suitable snail habitats. Having both climate- and snail observation data spaced 24 years in time represent a unique opportunity to evaluate biological response of snails to changes in climate variables. The study shows that snail habitat suit- ability is highly variable in Zimbabwe with foci mainly in the central Highveld but also in areas to the South and West. It is further demonstrated that the spatial distribution of suitable habitats changes with variation in the climatic conditions, and that this parallels that of the predicted climate change.

  14. Spatial modeling of permafrost distribution using rock glacier inventories, topographic attributes and temperature data in the semiarid Andes, Chile

    Science.gov (United States)

    Azocar Sandoval, G.; Brenning, A.; Bodin, X.

    2012-12-01

    Statistical-empirical models have been widely used to estimate the spatial distribution of permafrost in the European Alps and North America using topographic, climatic data and geomorphic indicators of permafrost (i.e. rock glaciers). At present, little knowledge about mountain permafrost distribution is available for the Andes. As a first approximation of permafrost distribution, a logistic regression model was fitted to predict rock glacier activity status. The model is based on explanatory variables elevation and potential incoming solar radiation (PISR) derived from an ASTER G-DEM v. 2 digital elevations model and air temperature data in the Chilean Andes between 29 and 34°S. Rock glacier activity status (intact versus fossil) was obtained from several recent rock glacier inventories and is based on the interpretation of aerial photographs or satellite imagery with a resolution higher than 5 m. Constant lapse rates of temperature are obtained for several weather stations in the study region. These are used to estimate the change in temperature with elevation based on the digital elevation model. The model's predictive performance was evaluated using the area under the ROC curve. As a preliminary result using a probability threshold of 0.5, mountain permafrost may be present in up to 21% (1510 km2) of the Huasco watershed (29°S) located in the northern part of the study area. Considering a threshold > 0.75, about 12% (709 km2) of this watershed may be underlain by mountain permafrost. As next steps toward a permafrost distribution model, sources of bias related to the thermal offset and displacement of rock glaciers will be eliminated, and downscaling as well as spatial interpolation approaches will be evaluated in order to replace elevation as a proxy variable with estimates of mean annual air temperature.

  15. Modeling for spatial multilevel structural data

    Science.gov (United States)

    Min, Suqin; He, Xiaoqun

    2013-03-01

    The traditional multilevel model assumed independence between groups. However, the datasets grouped by geographical units often has spatial dependence. The individual is influenced not only by its region but also by the adjacent regions, and level-2 residual distribution assumption of traditional multilevel model is violated. In order to deal with such spatial multilevel data, we introduce spatial statistics and spatial econometric models into multilevel model, and apply spatial parameters and adjacency matrix in traditional level-2 model to reflect the spatial autocorrelation. Spatial lag model express spatial effects. We build spatial multilevel model which consider both multilevel thinking and spatial correlation.

  16. Modeling the spatial distribution of wolf (Canis lupus pallipes attacks on human using genetic algorithm (GARP in Hamedan province

    Directory of Open Access Journals (Sweden)

    N Behdarvand

    2012-06-01

    Full Text Available In recent decades due to steady human population growth coupled with increased use of resources and habitat degradation, conflicts between humans and carnivores have greatly been expanded. In order to mitigate these conflicts based on a clear understanding of conflict patterns, applying the species distribution models as helpful methods has been suggested. Occurring the recent conflict between wolves and local communities in Hamedan province is a clear case of this problem. In this study, capabilities of the genetic algorithm (GARP were assessed in the modeling spatial distribution of wolf attacks in Hamedan province during 2006-2012. The area under the receiver operating characteristic curve (ROC was used to evaluate performance of the model. Findings indicated that the applied modelingapproach has a very good performance (area under curve=0.856 inpredicting the spatial distribution of wolf attacks on humans. In addition, based on the results of sensitivity analysis, land-cover t ype, human population density and distance from main road were the most effective parameters. Findings of the present study can be applied in formulation of an adaptive management plan for wolf conservation and mitigation of the conflicts with local communities.

  17. Constructing the reduced dynamical models of interannual climate variability from spatial-distributed time series

    Science.gov (United States)

    Mukhin, Dmitry; Gavrilov, Andrey; Loskutov, Evgeny; Feigin, Alexander

    2016-04-01

    dynamical models from time series," Phys. Rev. E, vol. 85, no. 3, p. 036216, 2012. [2] D. Mukhin, D. Kondrashov, E. Loskutov, A. Gavrilov, A. Feigin, and M. Ghil, "Predicting Critical Transitions in ENSO models. Part II: Spatially Dependent Models," J. Clim., vol. 28, no. 5, pp. 1962-1976, 2015.

  18. Integrating a reservoir regulation scheme into a spatially distributed hydrological model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Gang; Gao, Huilin; Naz, Bibi S.; Kao, Shih-Chieh; Voisin, Nathalie

    2016-12-01

    During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal/industrial water supplies, and hydropower generation. Consequently, natural streamflow timing and magnitude have been altered significantly by reservoir operations. In addition, the hydrological cycle can be modified by land use/land cover and climate changes. To understand the fine scale feedback between hydrological processes and water management decisions, a distributed hydrological model embedded with a reservoir component is of desire. In this study, a multi-purpose reservoir module with predefined complex operational rules was integrated into the Distributed Hydrology Soil Vegetation Model (DHSVM). Conditional operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The performance of the integrated model was tested over the upper Brazos River Basin in Texas, where two U.S. Army Corps of Engineers reservoirs, Lake Whitney and Aquilla Lake, are located. The integrated DHSVM model was calibrated and validated using observed reservoir inflow, outflow, and storage data. The error statistics were summarized for both reservoirs on a daily, weekly, and monthly basis. Using the weekly reservoir storage for Lake Whitney as an example, the coefficients of determination (R2) and the Nash-Sutcliff Efficiency (NSE) are 0.85 and 0.75, respectively. These results suggest that this reservoir module has promise for use in sub-monthly hydrological simulations. Enabled with the new reservoir component, the DHSVM model provides a platform to support adaptive water resources management under the impacts of evolving anthropogenic activities and substantial environmental changes.

  19. Predicting spatial and temporal distribution of Indo-Pacific lionfish (Pterois volitans) in Biscayne Bay through habitat suitability modeling

    Science.gov (United States)

    Bernal, Nicholas A.; DeAngelis, Donald L.; Schofield, Pamela J.; Sullivan Sealey, Kathleen

    2014-01-01

    Invasive species may exhibit higher levels of growth and reproduction when environmental conditions are most suitable, and thus their effects on native fauna may be intensified. Understanding potential impacts of these species, especially in the nascent stages of a biological invasion, requires critical information concerning spatial and temporal distributions of habitat suitability. Using empirically supported environmental variables (e.g., temperature, salinity, dissolved oxygen, rugosity, and benthic substrate), our models predicted habitat suitability for the invasive lionfish (Pterois volitans) in Biscayne Bay, Florida. The use of Geographic Information Systems (GIS) as a platform for the modeling process allowed us to quantify correlations between temporal (seasonal) fluctuations in the above variables and the spatial distribution of five discrete habitat quality classes, whose ranges are supported by statistical deviations from the apparent best conditions described in prior studies. Analysis of the resulting models revealed little fluctuation in spatial extent of the five habitat classes on a monthly basis. Class 5, which represented the area with environmental variables closest to the best conditions for lionfish, occupied approximately one-third of Biscayne Bay, with subsequent habitats declining in area. A key finding from this study was that habitat suitability increased eastward from the coastline, where higher quality habitats were adjacent to the Atlantic Ocean and displayed marine levels of ambient water quality. Corroboration of the models with sightings from the USGS-NAS database appeared to support our findings by nesting 79 % of values within habitat class 5; however, field testing (i.e., lionfish surveys) is necessary to confirm the relationship between habitat classes and lionfish distribution.

  20. Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: A multi-resolution, multi-sensor comparison

    Science.gov (United States)

    Molotch, Noah P.; Margulis, Steven A.

    2008-11-01

    Time series of fractional snow covered area (SCA) estimates from Landsat Enhanced Thematic Mapper (ETM+), Moderate Resolution Imaging Spectroradiometer (MODIS), and Advanced Very High Resolution Radiometer (AVHRR) data were combined with a spatially distributed snowmelt model to reconstruct snow water equivalent (SWE) in the Rio Grande headwaters (3419 km 2). In this reconstruction approach, modeled snowmelt over each pixel is integrated during the period of satellite-observed snow cover to estimate SWE. Due to underestimates in snow cover detection, maximum basin-wide mean SWE using MODIS and AVHRR were, respectively, 45% and 68% lower than SWE estimates obtained using ETM+ data. The mean absolute error (MAE) of SWE estimated at 100-m resolution using ETM+ data was 23% relative to observed SWE from intensive field campaigns. Model performance deteriorated when MODIS (MAE = 50%) and AVHRR (MAE = 89%) SCA data were used. Relative to differences in the SCA products, model output was less sensitive to spatial resolution (MAE = 39% and 73% for ETM+ and MODIS simulations run at 1 km resolution, respectively), indicating that SWE reconstructions at the scale of MODIS acquisitions may be tractable provided the SCA product is improved. When considering tradeoffs between spatial and temporal resolution of different sensors, our results indicate that higher spatial resolution products such as ETM+ remain more accurate despite the lower frequency of acquisition. This motivates continued efforts to improve MODIS snow cover products.

  1. Modelling spatial distribution of snails transmitting parasitic worms with importance to human and animal health and analysis of distributional changes in relation to climate

    DEFF Research Database (Denmark)

    Pedersen, Ulrik Bo; Midzi, Nicholas; Mduluza, Takafira

    2014-01-01

    The environment, the on-going global climate change and the ecology of animal species determine the localisation of habitats and the geographical distribution of the various species in nature. The aim of this study was to explore the effects of such changes on snail species not only of interest...... to naturalists but also of importance to human and animal health. The spatial distribution of freshwater snail intermediate hosts involved in the transmission of schistosomiasis, fascioliasis and paramphistomiasis (i.e. Bulinus globosus, Biomphalaria pfeifferi and Lymnaea natalensis) were modelled by the use...... of a maximum entropy algorithm (Maxent). Two snail observation datasets from Zimbabwe, from 1988 and 2012, were compared in terms of geospatial distribution and potential distributional change over this 24-year period investigated. Climate data, from the two years were identified and used in a species...

  2. Development of a spatially distributed model of fish population density for habitat assessment of rivers

    Science.gov (United States)

    Sui, Pengzhe; Iwasaki, Akito; Ryo, Masahiro; Saavedra, Oliver; Yoshimura, Chihiro

    2013-04-01

    Flow conditions play an important role in sustaining biodiversity of river ecosystem. However, their relations to freshwater fishes, especially to fish population density, have not been clearly described. This study, therefore, aimed to propose a new methodology to quantitatively link habitat conditions, including flow conditions and other physical conditions, to population density of fish species. We developed a basin-scale fish distribution model by integrating the concept of habitat suitability assessment with a distributed hydrological model (DHM) in order to estimate fish population density with particular attention to flow conditions. Generalized linear model (GLM) was employed to evaluate the relationship between population density of fish species and major environmental factors. The target basin was Sagami River in central Japan, where the river reach was divided into 10 sections by estuary, confluences of tributaries, and river-crossing structures (dams, weirs). The DHM was employed to simulate river discharge from 1998 to 2005, which was used to calculate 10 flow indices including mean discharge, 25th and 75th percentile discharge, duration of low and high flows, number of floods. In addition, 5 water quality parameters and 13 other physical conditions (such as basin area, river width, mean diameter of riverbed material, and number of river-crossing structures upstream and downstream) of each river section were considered as environmental variables. In case of Sagami River, 10 habitat variables among them were then selected based on their correlations to avoid multicollinearity. Finally, the best GLM was developed for each species based on Akaike's information criterion. As results, population densities of 16 fish species in Sagami River were modelled, and correlation coefficients between observed and calculated population densities for 10 species were more than 0.70. The key habitat factors for population density varied among fish species. Minimum

  3. Integrating a reservoir regulation scheme into a spatially distributed hydrological model

    Science.gov (United States)

    Zhao, Gang; Gao, Huilin; Naz, Bibi S.; Kao, Shih-Chieh; Voisin, Nathalie

    2016-12-01

    During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal/industrial water supplies, and hydropower generation. Consequently, the timing and magnitude of natural streamflow have been altered significantly by reservoir operations. In addition, the hydrological cycle is also modified by land-use/land-cover change and by climate change. To understand the fine-scale feedback between hydrological processes and water management decisions, a distributed hydrological model embedded with a reservoir component is desired. In this study, a multi-purpose reservoir module with predefined complex operational rules was integrated into the Distributed Hydrology Soil Vegetation Model (DHSVM). Conditional operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The performance of the integrated model was tested over the upper Brazos River Basin in Texas, where two U.S. Army Corps of Engineers managed reservoirs, Lake Whitney and Aquilla Lake, are located. The integrated model was calibrated and validated using observed reservoir inflow, outflow, and storage data. The error statistics were summarized for both reservoirs on a daily, weekly, and monthly basis. Using the weekly reservoir storage for Lake Whitney as an example, the coefficient of determination (R2) was 0.85 and the Nash-Sutcliff Efficiency (NSE) was 0.75. These results suggest that this reservoir module holds promise for use in sub-monthly hydrological simulations. With the new reservoir component, the DHSVM provides a platform to support adaptive water resources management under the impacts of evolving anthropogenic activities and substantial environmental changes.

  4. Multi-objective calibration of a spatially semi-distributed rainfall runoff model and its snow water equivalent module.

    Science.gov (United States)

    Valent, Peter; Výleta, Roman; Danáčová, Michaela; Sleziak, Patrik; Kotríková, Katarína

    2016-04-01

    The snow cover is an important environmental and water management factor in mid latitudes. From the water management point of view the impact of the water accumulated in the snow cover is significant mainly during the spring season when it's melting causes a significant flooding threat when melting is accompanied by precipitation (rain on snow floods). Modelling of spatial and temporal distribution of the snow water equivalent is therefore an important component of rainfall-runoff models. The main objective of this work was to study the possibility to include information on the spatial distribution of the snow cover into runoff modelling and evaluate the quality of the simulation of both of the snow water equivalent and catchment runoff. A conceptual semi-distributed rainfall-runoff model was used in order to model the snow water equivalent in a daily time step. In order to calibrate and validate the model a multi-calibration techniques were used taking into account both runoff from the catchment and the observed values of the snow water equivalents and snow heights in elevation and vegetation zones. The multi-objective calibration linearly combines two optimization functions and aggregates them into one. While the first optimization function compares observed and simulated flows, the second one is based on an indirect comparison of a snow water equivalent simulated by a rainfall-runoff model and the snow cover heights measured in rainfall gauges within the catchment. The aim of the paper is to optimize the ratio of the weights in the optimization. The methodology was tested on the Upper Hron River catchment, which could be considered as a mountainous catchment.

  5. A proposed-standard format to represent and distribute tomographic models and other earth spatial data

    Science.gov (United States)

    Postpischl, L.; Morelli, A.; Danecek, P.

    2009-04-01

    Formats used to represent (and distribute) tomographic earth models differ considerably and are rarely self-consistent. In fact, each earth scientist, or research group, uses specific conventions to encode the various parameterizations used to describe, e.g., seismic wave speed or density in three dimensions, and complete information is often found in related documents or publications (if available at all) only. As a consequence, use of various tomographic models from different authors requires considerable effort, is more cumbersome than it should be and prevents widespread exchange and circulation within the community. We propose a format, based on modern web standards, able to represent different (grid-based) model parameterizations within the same simple text-based environment, easy to write, to parse, and to visualise. The aim is the creation of self-describing data-structures, both human and machine readable, that are automatically recognised by general-purpose software agents, and easily imported in the scientific programming environment. We think that the adoption of such a representation as a standard for the exchange and distribution of earth models can greatly ease their usage and enhance their circulation, both among fellow seismologists and among a broader non-specialist community. The proposed solution uses semantic web technologies, fully fitting the current trends in data accessibility. It is based on Json (JavaScript Object Notation), a plain-text, human-readable lightweight computer data interchange format, which adopts a hierarchical name-value model for representing simple data structures and associative arrays (called objects). Our implementation allows integration of large datasets with metadata (authors, affiliations, bibliographic references, units of measure etc.) into a single resource. It is equally suited to represent other geo-referenced volumetric quantities — beyond tomographic models — as well as (structured and unstructured

  6. Sustainable Development and Spatial Distribution of Industries

    Institute of Scientific and Technical Information of China (English)

    ShengYi

    2005-01-01

    At the cost of overdrawing from the environment, spatial distribution of industries takes promoting the economic growth as goal and makes the overload of industries coexist with the unreasonable arrangement in some areas, which is unable to satisfy the demand of sustainable development. To change the present development model, the spatial distribution of industries must coordinate with the environmental bearing capacity. The present practice we take to change resources distribution to meet the existing arrangement of industries will bring incredible calamitous consequence to the development in the future. To make industry's arrangement coordinate with ecological environment, and to adopt the method similar to “arranging along the rivers” should become the guidefines of spatial distribution of industries.

  7. Spatial distributions of niche-constructing populations

    Directory of Open Access Journals (Sweden)

    Xiaozhuo Han

    2015-12-01

    Full Text Available Niche construction theory regards organisms not only as the object of natural selection but also an active subject that can change their own selective pressure through eco-evolutionary feedbacks. Through reviewing the existing works on the theoretical models of niche construction, here we present the progress made on how niche construction influences genetic structure of spatially structured populations and the spatial-temporal dynamics of metapopulations, with special focuses on mathematical models and simulation methods. The majority of results confirmed that niche construction can significantly alter the evolutionary trajectories of structured populations. Organism-environmental interactions induced by niche construction can have profound influence on the dynamics, competition and diversity of metapopulations. It can affect fine-scale spatially distribution of species and spatial heterogeneity of the environment. We further propose a few research directions with potentials, such as applying adaptive dynamics or spatial game theory to explore the effect of niche construction on phenotypic evolution and diversification.

  8. Mapping Spruce Beetle Outbreak Severity and Distribution in Colorado Using Landsat and Integrative Spatial Modelling

    Science.gov (United States)

    Woodward, B. D.; Rounds, E.; Carroll, S.; Engelstad, P.; Miltenberger, O.

    2016-12-01

    Over the last fifteen years Colorado forests have experienced epidemic bark beetle outbreaks with increasing severity. The outbreaks have wide-reaching impacts on forest health, wildlife habitat, wildfire regimes, and the safety of recreational forest users. While the majority of existing studies have focused on the mountain pine beetle (Dendroctonus ponderosae), an increasing amount of research is focusing on the ongoing spruce beetle (Dendroctonus rufipennis) outbreak. The spruce beetle outbreak in southwest Colorado is the largest ongoing outbreak in the state. This project utilizes Landsat 8 OLI, NAIP imagery, and forest health indices to produce spruce mortality data. These combined data were fed into an integrative spatial model to produce fine scale maps of spruce mortality across southwestern Colorado for the year 2011, 2013, and 2015. These maps have the potential to be a significant improvement on the roughly estimated map products available to Colorado land managers, and will be used to plan treatment operations and estimate aboveground biomass in the study area.

  9. A biomimetic physiological model for human adipose tissue by adipocytes and endothelial cell cocultures with spatially controlled distribution.

    Science.gov (United States)

    Yao, Rui; Du, Yanan; Zhang, Renji; Lin, Feng; Luan, Jie

    2013-08-01

    An in vitro model that recapitulates the characteristics of native human adipose tissue would largely benefit pathology studies and therapy development. In this paper, we fabricated a physiological model composed of both human adipocytes and endothelial cells with spatially controlled distribution that biomimics the structure and composition of human adipose tissue. Detailed studies into the cell-cell interactions between the adipocytes and endothelial cells revealed a mutual-enhanced effect which resembles the in vivo routine. Furthermore, comparisons between planar coculture and model coculture demonstrated improved adipocyte function as well as endothelial cell proliferation under the same conditions. This research provided a reliable model for human adipose tissue development studies and potential obesity-related therapy development.

  10. Advancing the retrievals of surface emissivity by modelling the spatial distribution of temperature in the thermal hyperspectral scene

    Science.gov (United States)

    Shimoni, M.; Haelterman, R.; Lodewyckx, P.

    2016-05-01

    Land Surface Temperature (LST) and Land Surface Emissivity (LSE) are commonly retrieved from thermal hyperspectral imaging. However, their retrieval is not a straightforward procedure because the mathematical problem is ill-posed. This procedure becomes more challenging in an urban area where the spatial distribution of temperature varies substantially in space and time. For assessing the influence of several spatial variances on the deviation of the temperature in the scene, a statistical model is created. The model was tested using several images from various times in the day and was validated using in-situ measurements. The results highlight the importance of the geometry of the scene and its setting relative to the position of the sun during day time. It also shows that when the position of the sun is in zenith, the main contribution to the thermal distribution in the scene is the thermal capacity of the landcover materials. In this paper we propose a new Temperature and Emissivity Separation (TES) method which integrates 3D surface and landcover information from LIDAR and VNIR hyperspectral imaging data in an attempt to improve the TES procedure for a thermal hyperspectral scene. The experimental results prove the high accuracy of the proposed method in comparison to another conventional TES model.

  11. Spatial variability and prediction modeling of groundwater arsenic distributions in the shallowest alluvial aquifers in Bangladesh

    OpenAIRE

    Shamsudduha, M.

    2007-01-01

    Elevated arsenic in groundwater is the greatest environmental problem in Bangladesh. Spatial variability of arsenic in groundwater has been examined by semivariogram analysis that revealed high degree of small-scale spatial variability in alluvial aquifers. Small-scale variability of arsenic concentrations, indicated by high "nugget" values in semivariograms, is associated with heterogeneity in local-scale geology and geochemical processes. In unsampled locations, arsenic concentrations have ...

  12. [Spatial distribution of soil total nitrogen in Liangshui National Nature Reserve based on local model].

    Science.gov (United States)

    Zhen, Zhen; Guo, Zhi-ying; Zhao, Ying-hui; Li, Feng-ri; Wei, Qing-bin

    2016-02-01

    Based on LiDAR data of Liangshui National Nature Reserve, digital elevation model (DEM) was constructed and both primary terrain attributes (slope, aspect, profile curvature, etc.) and secondary terrain attributes (wetness index, sediment transport index, relative stream power index, etc.) were extracted. According to the theory of soil formation, geographically weighted regression (GWR) was applied to predict soil total nitrogen (TN) of the area, and the predicted results were compared with those of three traditional interpolation methods including inverse distance weighting (IDW), ordinary Kriging (OK) and universal Kriging (UK). Results showed that the prediction accuracy of GWR (77.4%) was higher than that of other three interpolation methods and the accuracy of IDW (69.4%) was higher than that of OK (63.5%) and UK (60.6%). The average of TN predicted by GWR reached 4.82 g . kg-1 in the study area and TN tended to be higher in the region with higher elevation, bigger wetness index and stronger relative stream power index than in other areas. Further, TN also varied partly with various aspects and slopes. Thus, local model using terrain attributes as independent variables was effective in predicting soil attribute distribution.

  13. The random field model of the spatial distribution of heavy vehicle loads on long-span bridges

    Science.gov (United States)

    Chen, Zhicheng; Bao, Yuequan; Li, Hui

    2016-04-01

    A stochastic model based on Markov random field is proposed to model the spatial distribution of vehicle loads on longspan bridges. The bridge deck is divided into a finite set of discrete grid cells, each cell has two states according to whether the cell is occupied by the heavy vehicle load or not, then a four-neighbor lattice-structured undirected graphical model with each node corresponding to a cell state variable is proposed to model the location distribution of heavy vehicle loads on the bridge deck. The node potential is defined to quantitatively describe the randomness of node state, and the edge potential is defined to quantitatively describe the correlation of the connected node pair. The junction tree algorithm is employed to obtain the systematic solutions of inference problems of the graphical model. A marked random variable is assigned to each node to represent the amplitude of the total weight of vehicle applied on the corresponding cell of the bridge deck. The rationality of the model is validated by a Monte Carlo simulation of a learned model based on monitored data of a cable-stayed bridge.

  14. Modeling of spatial distribution for scorpions of medical importance in the São Paulo State, Brazil.

    Science.gov (United States)

    Brites-Neto, José; Duarte, Keila Maria Roncato

    2015-07-01

    In this work, we aimed to develop maps of modeling geographic distribution correlating to environmental suitability for the two species of scorpions of medical importance at São Paulo State and to develop spatial configuration parameters for epidemiological surveillance of these species of venomous animals. In this study, 54 georeferenced points for Tityus serrulatus and 86 points for Tityus bahiensis and eight environmental indicators, were used to generate species distribution models in Maxent (maximum entropy modeling of species geographic distributions) version 3.3.3k using 70% of data for training (n=38 to T. serrulatus and n=60 to T. bahiensis) and 30% to test the models (n=16 for T. serrulatus and n=26 for T. bahiensis). The logistic threshold used to cut models in converting the continuous probability model into a binary model was the "maximum test sensitivity plus specificity," provided by Maxent, with results of 0.4143 to T. serrulatus and of 0.3401 to T. bahiensis. The models were evaluated by the area under the curve (AUC), using the omission error and the binomial probability. With the data generated by Maxent, distribution maps were produced using the "ESRI(®) ArcGIS 10.2.2 for Desktop" software. The models had high predictive success (AUC=0.7698±0.0533, omission error=0.2467 and p<0.001 for T. serrulatus and AUC=0.8205±0.0390, omission error=0.1917 and p<0.001 for T. bahiensis) and the resultant maps showed a high environmental suitability in the north, central, and southeast of the state, confirming the increasing spread of these species. The environmental variables that mostly contributed to the scorpions species distribution model were rain precipitation (28.9%) and tree cover (28.2%) for the T. serrulatus and temperature (45.8%) and thermal amplitude (12.6%) for the T. bahiensis. The distribution model of these species of medical importance scorpions in São Paulo State revealed a higher environmental suitability of these species in the

  15. Modeling of spatial distribution for scorpions of medical importance in the São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    José Brites-Neto

    2015-07-01

    Full Text Available Aim: In this work, we aimed to develop maps of modeling geographic distribution correlating to environmental suitability for the two species of scorpions of medical importance at São Paulo State and to develop spatial configuration parameters for epidemiological surveillance of these species of venomous animals. Materials and Methods: In this study, 54 georeferenced points for Tityus serrulatus and 86 points for Tityus bahiensis and eight environmental indicators, were used to generate species distribution models in Maxent (maximum entropy modeling of species geographic distributions version 3.3.3k using 70% of data for training (n=38 to T. serrulatus and n=60 to T. bahiensis and 30% to test the models (n=16 for T. serrulatus and n=26 for T. bahiensis. The logistic threshold used to cut models in converting the continuous probability model into a binary model was the “maximum test sensitivity plus specificity,” provided by Maxent, with results of 0.4143 to T. serrulatus and of 0.3401 to T. bahiensis. The models were evaluated by the area under the curve (AUC, using the omission error and the binomial probability. With the data generated by Maxent, distribution maps were produced using the “ESRI® ArcGIS 10.2.2 for Desktop” software. Results: The models had high predictive success (AUC=0.7698±0.0533, omission error=0.2467 and p<0.001 for T. serrulatus and AUC=0.8205±0.0390, omission error=0.1917 and p<0.001 for T. bahiensis and the resultant maps showed a high environmental suitability in the north, central, and southeast of the state, confirming the increasing spread of these species. The environmental variables that mostly contributed to the scorpions species distribution model were rain precipitation (28.9% and tree cover (28.2% for the T. serrulatus and temperature (45.8% and thermal amplitude (12.6% for the T. bahiensis. Conclusion: The distribution model of these species of medical importance scorpions in São Paulo State

  16. a Model Analysis of the Spatial Distribution and Temporal Trends of Nitrous Oxide Sources and Sinks

    Science.gov (United States)

    Nevison, Cynthia Dale

    1994-01-01

    Nitrous oxide ({N_ {2}O}), an atmospheric trace gas that contributes to both greenhouse warming and stratospheric ozone depletion, is increasing at an annual rate of about 0.25%/yr. By use of a global model of the changing terrestrial nitrogen cycle, the timing and magnitude of this increase are shown to be consistent with enhanced microbial N _2O production due to fertilizer, land clearing, livestock manure, and human sewage. Fertilizer appears to be a particularly important source. Increasing emissions from additional anthropogenic N_2O sources, including fossil fuel combustion and nylon production are also shown to coincide with and contribute to N _2O's annual atmospheric increase. Collectively, these industrial, combustion-related, and enhanced microbial N_2O emissions add up to a total anthropogenic source of about 5 Tg N/yr. Natural N_2O emissions from microbial activity in soils and oceans and from natural fires are estimated to produce an annual source of about 11 Tg N/yr, of which the oceans contribute a substantially larger fraction than reported in most current budgets. In contrast to anthropogenic emissions, which are increasing rapidly, natural emissions are predicted to remain relatively constant from 1860 to 2050, although this prediction ignores possible enhancements in microbial N_2O production due to global warming. Also in contrast to anthropogenic emissions, which are heavily dominated by the northern hemisphere, the natural source is fairly evenly distributed over the Earth. The predicted magnitude of the natural source is checked against an estimate of the N_2O stratospheric sink, while the predicted present day distribution of natural and anthropogenic sources is tested in a 3-dimensional transport model run. This run reproduces the observed 1ppb interhemispheric gradient (higher in the north), and suggests that larger gradients may exist over strong continental source regions. Substantial increases in most anthropogenic N _2O sources are

  17. A spatial entropy reflecting distribution of spatial objects

    Institute of Scientific and Technical Information of China (English)

    Youn-Kyung Jang; Byeong-Seob You; Ho-Seok Kim; Kyoung-Bae Kim; Hae-Young Bae

    2007-01-01

    Decision trees are mainly used to classify data and predict data classes. A spatial decision tree has been designed using Euclidean distance between objects for reflecting spatial data characteristic. Even though this method explains the distance of objects in spatial dimension, it fails to represent distributions of spatial data and their relationships. But distributions of spatial data and relationships with their neighborhoods are very important in real world. This paper proposes decision tree based on spatial entropy that represents distributions of spatial data with dispersion and dissimilarity. The rate of dispersion by dissimilarity presents how related distribution of spatial data and non-spatial attributes. The experiment evaluates the accuracy and building time of decision tree as compared to previous methods and it shows that the proposed method makes efficient and scalable classification for spatial decision support.

  18. Evaluation of Spatial Pattern of Altered Flow Regimes on a River Network Using a Distributed Hydrological Model

    Science.gov (United States)

    Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V., Oliver C.

    2015-01-01

    Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov–Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities. PMID:26207997

  19. Evaluation of Spatial Pattern of Altered Flow Regimes on a River Network Using a Distributed Hydrological Model.

    Directory of Open Access Journals (Sweden)

    Masahiro Ryo

    Full Text Available Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4 and the Kolmogorov-Smirnov test (α = 0.05 by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively. These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities.

  20. Evaluation of Spatial Pattern of Altered Flow Regimes on a River Network Using a Distributed Hydrological Model.

    Science.gov (United States)

    Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V, Oliver C

    2015-01-01

    Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov-Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities.

  1. Periodicity in the spatial-temporal earthquake distributions for the Pacific region: observation and modeling.

    Science.gov (United States)

    Sasorova, Elena; Levin, Boris

    2014-05-01

    In the course of the last century a cyclic increasing and decreasing of the Earth's seismic activity (SA) was marked. The variations of the SA for the events with M>=7.0 from 1900 up to date were under study. The two subsets of the worldwide NEIC (USGS) catalog were used: USGS/NEIC from 1973 to 2012 and catalog of the significant worldwide earthquakes (2150 B.C. - 1994 A.D.), compiled by USGS/NEIC from the NOAA agency. The preliminary standardization of magnitudes and elimination of aftershocks from list of events was performed. The entire period of observations was subdivided into 5-year intervals. The temporal distributions of the earthquake (EQ) density and released energy density were calculated separately for the Southern hemisphere (SH), and for the Northern hemisphere (NH) and for eighteen latitudinal belts: 90°-80°N, 80°-70°N, 70°-60°N, 60°-50°N and so on (the size of each belt is equal to 10°). The periods of the SA was compared for different latitudinal belts of the Earth. The peaks and decays of the seismicity do not coincide in time for different latitudinal belts and especially for the belts located in NH and SH. The peaks and decays of the SA for the events (with M>=8) were marked in the temporal distributions of the EQ for all studied latitudinal belts. The two-dimension distributions (over latitudes and over time) of the EQ density and released energy density highlighted that the periods of amplification of the SA are equal to 30-35 years approximately. Next, we check the existence of a non-random component in the EQ occurrence between the NH and the SH. All events were related to the time axis according to their origin time. We take into consideration the set of the EQs in the studied catalog as the sequence of events if each event may have only one of two possible outcome (occurrence in the NH or in the SH). A nonparametric run test was used for testing of hypothesis about an existence the nonrandom component in the examined sequence of

  2. A photoionization model of the spatial distribution of the optical and mid-IR properties in NGC595

    CERN Document Server

    Perez-Montero, Enrique; Vilchez, Jose M; Monreal-Ibero, Ana

    2010-01-01

    We present a set of photoionization models that reproduce simultaneously the observed optical and mid-infrared spatial distribution of the HII region NGC595 in the disk of M33 using the code CLOUDY. Both optical (PMAS-Integral Field Spectroscopy) and mid-infrared (8 mi and 24 mi bands from Spitzer) data provide enough spatial resolution to model in a novel approach the inner structure of the HII region. We define a set of elliptical annular regions around the central ionizing cluster with an uniformity in their observed properties and consider each annulus as an independent thin shell structure. For the first time our models fit the relative surface brightness profiles in both the optical (Halpha, [OII], [OIII]) and the mid-infrared emissions (8 mi and 24 mi), under the assumption of a uniform metallicity (12+log(O/H) = 8.45; Esteban et al. 2009) and an age for the stellar cluster of 4.5 Myr (Malumuth et al. 1996). Our models also reproduce the observed uniformity of the R23 parameter and the increase of the ...

  3. Increasing parameter certainty and data utility through multi-objective calibration of a spatially distributed temperature and solute model

    Directory of Open Access Journals (Sweden)

    C. Bandaragoda

    2011-05-01

    Full Text Available To support the goal of distributed hydrologic and instream model predictions based on physical processes, we explore multi-dimensional parameterization determined by a broad set of observations. We present a systematic approach to using various data types at spatially distributed locations to decrease parameter bounds sampled within calibration algorithms that ultimately provide information regarding the extent of individual processes represented within the model structure. Through the use of a simulation matrix, parameter sets are first locally optimized by fitting the respective data at one or two locations and then the best results are selected to resolve which parameter sets perform best at all locations, or globally. This approach is illustrated using the Two-Zone Temperature and Solute (TZTS model for a case study in the Virgin River, Utah, USA, where temperature and solute tracer data were collected at multiple locations and zones within the river that represent the fate and transport of both heat and solute through the study reach. The result was a narrowed parameter space and increased parameter certainty which, based on our results, would not have been as successful if only single objective algorithms were used. We also found that the global optimum is best defined by multiple spatially distributed local optima, which supports the hypothesis that there is a discrete and narrowly bounded parameter range that represents the processes controlling the dominant hydrologic responses. Further, we illustrate that the optimization process itself can be used to determine which observed responses and locations are most useful for estimating the parameters that result in a global fit to guide future data collection efforts.

  4. HABITAT SUITABILITY MODELING FOR EXPLORATION OF THE SPATIAL DISTRIBUTION OF KASHMIR MUSK DEER IN DACHIGAM NATIONAL PARK, KASHMIR

    Directory of Open Access Journals (Sweden)

    Mudasir Ali

    2014-01-01

    Full Text Available Musk deer are highly important as a medicinal species that are severely exploited throughout their range of occurrence due to the medicinal value of the musk produced only by the male individuals. Methods used for studying the populations and distributions of other ungulates do not work well with musk deer and the presence of a unified methodology for studying musk deer appear to be lacking worldwide. Therefore, the development of a simple predictive model for studying the distribution of the musk deer habitats stands as an important task to be accomplished. Two kinds of research questions were pursued during the present study-examining through field research what kind of habitat musk deer used and mapping the habitat in the park using a GIS and remote sensing environment. The parameters which were found to have a profound influence in predicting the species’s spatial distribution have been used in the modeling of the current habitat suitability for the Kashmir musk deer (Moschus cupreus. The study was conducted at the upper reaches (elevations 2200 m and above of the Dachigam National Park, Kashmir (34°05΄18.40΄΄N-34°06΄04.69΄΄N and 75°03΄32.05΄΄E-75°04΄27.26΄΄E during January 2005-January 2008 to evaluate the characteristics of the musk deer habitats. The environmental attributes which were found to have a profound influence in predicting the species’s spatial distribution included the slope exposures in the range of 293°Northwest -68° Northeast, slope gradients of 25-40° and elevations of 2100 m and above, with the preference ratings of aspect > slope > elevation and, therefore, were considered for the development of the habitat suitability model for prediction of the spatial distribution of the Kashmir musk deer. The current suitable musk deer habitat in Dachigam National Park is estimated in the extent of about 40 sq. km. (~28% area of the national

  5. Modeling the spatial distribution of above-ground carbon in Mexican coniferous forests using remote sensing and a geostatistical approach

    Science.gov (United States)

    Galeana-Pizaña, J. Mauricio; López-Caloca, Alejandra; López-Quiroz, Penélope; Silván-Cárdenas, José Luis; Couturier, Stéphane

    2014-08-01

    Forest conservation is considered an option for mitigating the effect of greenhouse gases on global climate, hence monitoring forest carbon pools at global and local levels is important. The present study explores the capability of remote-sensing variables (vegetation indices and textures derived from SPOT-5; backscattering coefficient and interferometric coherence of ALOS PALSAR images) for modeling the spatial distribution of above-ground biomass in the Environmental Conservation Zone of Mexico City. Correlation and spatial autocorrelation coefficients were used to select significant explanatory variables in fir and pine forests. The correlation for interferometric coherence in HV polarization was negative, with correlations coefficients r = -0.83 for the fir and r = -0.75 for the pine forests. Regression-kriging showed the least root mean square error among the spatial interpolation methods used, with 37.75 tC/ha for fir forests and 29.15 tC/ha for pine forests. The results showed that a hybrid geospatial method, based on interferometric coherence data and a regression-kriging interpolator, has good potential for estimating above-ground biomass carbon.

  6. Predicting wildfire occurrence distribution with spatial point process models and its uncertainty assessment: a case study in the Lake Tahoe Basin, USA

    Science.gov (United States)

    Jian Yang; Peter J. Weisberg; Thomas E. Dilts; E. Louise Loudermilk; Robert M. Scheller; Alison Stanton; Carl Skinner

    2015-01-01

    Strategic fire and fuel management planning benefits from detailed understanding of how wildfire occurrences are distributed spatially under current climate, and from predictive models of future wildfire occurrence given climate change scenarios. In this study, we fitted historical wildfire occurrence data from 1986 to 2009 to a suite of spatial point process (SPP)...

  7. Competitive spatially distributed population dynamics models: Does diversity in diffusion strategies promote coexistence?

    Science.gov (United States)

    Braverman, E; Kamrujjaman, Md; Korobenko, L

    2015-06-01

    We study the interaction between different types of dispersal, intrinsic growth rates and carrying capacities of two competing species in a heterogeneous environment: one of them is subject to a regular diffusion while the other moves in the direction of most per capita available resources. If spatially heterogeneous carrying capacities coincide, and intrinsic growth rates are proportional then competitive exclusion of a regularly diffusing population is inevitable. However, the situation may change if intrinsic growth rates for the two populations have different spatial forms. We also consider the case when carrying capacities are different. If the carrying capacity of a regularly diffusing population is higher than for the other species, the two populations may coexist; as the difference between the two carrying capacities grows, competitive exclusion of the species with a lower carrying capacity occurs.

  8. Fluvial Transport Model from Spatial Distribution Analysis of Libyan Desert Glass Mass on the Great Sand Sea (Southwest Egypt: Clues to Primary Glass Distribution

    Directory of Open Access Journals (Sweden)

    Nancy Jimenez-Martinez

    2015-04-01

    Full Text Available Libyan Desert Glass (LDG is a natural silica-rich melted rock found as pieces scattered over the sand and bedrock of the Western Desert of Egypt, northeast of the Gilf Kebir. In this work, a population mixture analysis serves to relate the present spatial distribution of LDG mass density with the Late Oligocene–Early Miocene fluvial dynamics in the Western Desert of Egypt. This was verified from a spatial distribution model that was predicted from the log-normal kriging method using the LDG–mass-dependent transformed variable, Y(x. Both low- and high-density normal populations (–9.2 < Y(x < –3.5 and –3.8 < Y(x < 2.1, respectively were identified. The low-density population was the result of an ordinary fluvial LDG transport/deposition sequence that was active from the time of the melting process, and which lasted until the end of activity of the Gilf River. The surface distribution of the high-density population allowed us to restrict the source area of the melting process. We demonstrate the importance of this geostatistical study in unveiling the probable location of the point where the melting of surficial material occurred and the role of the Gilf River in the configuration of the observed strewn field.

  9. Which spatial discretization for distributed hydrological models? Proposition of a methodology and illustration for medium to large-scale catchments

    Directory of Open Access Journals (Sweden)

    J. Dehotin

    2008-05-01

    Full Text Available Distributed hydrological models are valuable tools to derive distributed estimation of water balance components or to study the impact of land-use or climate change on water resources and water quality. In these models, the choice of an appropriate spatial discretization is a crucial issue. It is obviously linked to the available data, their spatial resolution and the dominant hydrological processes. For a given catchment and a given data set, the "optimal" spatial discretization should be adapted to the modelling objectives, as the latter determine the dominant hydrological processes considered in the modelling. For small catchments, landscape heterogeneity can be represented explicitly, whereas for large catchments such fine representation is not feasible and simplification is needed. The question is thus: is it possible to design a flexible methodology to represent landscape heterogeneity efficiently, according to the problem to be solved? This methodology should allow a controlled and objective trade-off between available data, the scale of the dominant water cycle components and the modelling objectives.

    In this paper, we propose a general methodology for such catchment discretization. It is based on the use of nested discretizations. The first level of discretization is composed of the sub-catchments, organised by the river network topology. The sub-catchment variability can be described using a second level of discretizations, which is called hydro-landscape units. This level of discretization is only performed if it is consistent with the modelling objectives, the active hydrological processes and data availability. The hydro-landscapes take into account different geophysical factors such as topography, land-use, pedology, but also suitable hydrological discontinuities such as ditches, hedges, dams, etc. For numerical reasons these hydro-landscapes can be further subdivided into smaller elements that will constitute the

  10. Numerical modeling calculation for the spatial distribution characteristics of horizontal field transfer functions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Applying 3-dimension finite difference method, the distribution characteristics of horizontal field transfer func-tions for rectangular conductor have been computed, and the law of distribution for Re-part and Im-part has been given. The influences of source field period, the conductivity, the buried depth and the length of the conductor on the transfer functions were studied. The extrema of transfer functions appear at the center, the four corners and around the edges of conductor, and move with the edges. This feature demonstrates that around the edges are best places for transfer functions¢ observation.

  11. Spatial analysis of plague in California: niche modeling predictions of the current distribution and potential response to climate change

    Directory of Open Access Journals (Sweden)

    Tucker James R

    2009-06-01

    Full Text Available Abstract Background Plague, caused by the bacterium Yersinia pestis, is a public and wildlife health concern in California and the western United States. This study explores the spatial characteristics of positive plague samples in California and tests Maxent, a machine-learning method that can be used to develop niche-based models from presence-only data, for mapping the potential distribution of plague foci. Maxent models were constructed using geocoded seroprevalence data from surveillance of California ground squirrels (Spermophilus beecheyi as case points and Worldclim bioclimatic data as predictor variables, and compared and validated using area under the receiver operating curve (AUC statistics. Additionally, model results were compared to locations of positive and negative coyote (Canis latrans samples, in order to determine the correlation between Maxent model predictions and areas of plague risk as determined via wild carnivore surveillance. Results Models of plague activity in California ground squirrels, based on recent climate conditions, accurately identified case locations (AUC of 0.913 to 0.948 and were significantly correlated with coyote samples. The final models were used to identify potential plague risk areas based on an ensemble of six future climate scenarios. These models suggest that by 2050, climate conditions may reduce plague risk in the southern parts of California and increase risk along the northern coast and Sierras. Conclusion Because different modeling approaches can yield substantially different results, care should be taken when interpreting future model predictions. Nonetheless, niche modeling can be a useful tool for exploring and mapping the potential response of plague activity to climate change. The final models in this study were used to identify potential plague risk areas based on an ensemble of six future climate scenarios, which can help public managers decide where to allocate surveillance resources

  12. Spatial analysis of plague in California: niche modeling predictions of the current distribution and potential response to climate change.

    Science.gov (United States)

    Holt, Ashley C; Salkeld, Daniel J; Fritz, Curtis L; Tucker, James R; Gong, Peng

    2009-06-28

    Plague, caused by the bacterium Yersinia pestis, is a public and wildlife health concern in California and the western United States. This study explores the spatial characteristics of positive plague samples in California and tests Maxent, a machine-learning method that can be used to develop niche-based models from presence-only data, for mapping the potential distribution of plague foci. Maxent models were constructed using geocoded seroprevalence data from surveillance of California ground squirrels (Spermophilus beecheyi) as case points and Worldclim bioclimatic data as predictor variables, and compared and validated using area under the receiver operating curve (AUC) statistics. Additionally, model results were compared to locations of positive and negative coyote (Canis latrans) samples, in order to determine the correlation between Maxent model predictions and areas of plague risk as determined via wild carnivore surveillance. Models of plague activity in California ground squirrels, based on recent climate conditions, accurately identified case locations (AUC of 0.913 to 0.948) and were significantly correlated with coyote samples. The final models were used to identify potential plague risk areas based on an ensemble of six future climate scenarios. These models suggest that by 2050, climate conditions may reduce plague risk in the southern parts of California and increase risk along the northern coast and Sierras. Because different modeling approaches can yield substantially different results, care should be taken when interpreting future model predictions. Nonetheless, niche modeling can be a useful tool for exploring and mapping the potential response of plague activity to climate change. The final models in this study were used to identify potential plague risk areas based on an ensemble of six future climate scenarios, which can help public managers decide where to allocate surveillance resources. In addition, Maxent model results were significantly

  13. A mathematical model of soil moisture spatial distribution on the hill slopes of the Loess Plateau

    Institute of Scientific and Technical Information of China (English)

    FU; Bojie

    2001-01-01

    in China, Ser. B, 1995, 38(2): 238-244.[14]Zhu, R. X., Zhou, L. P., Laj, C. et al., The Blake geomagnetic polarity episode recorded in Chinese Loess, Geophys. Res. Lett., 1994, 21(8): 697-700.[15]Kligfield, R., Channel, J. E. T., Widespread remagnetization of Helvetic limestones, J. Geophys. Res., 1981, 86: 1888-1900.[16]Maher, B. A., Thompson, R., Zhou, L. P., Spatial and temporal reconstruction of changes in the Asian paleomonsoon: A new mineral magnetic approach, Earth Planet Sci. Lett., 1994, 125: 461-471.[17]Liu, X. M., Rolph, T., Bloemendal, J. et al., Quantitative estimates of paleoprecipitation at Xifeng in the Loess Plateau of China, Palaeogeogr. Palaeoclim. Palaeoecol., 1995, 113: 243-248.[18]Thompson, R., Maher, B. A., Age models, sediment fluxes and paleoclimatic reconstructions for the Chinese loess and paleosol sequences, Geophys. J. Int., 1995, 123: 611-622.[19]Liu, T. S., Guo, Z. T., Liu, J. Q. et al., Variations of eastern Asian monsoon over the last 140000 years, Bull. Soc. Geol. France, 1995, 166: 221-229.[20]Guo, Z. T., Liu, T. S., Guiot, J. et al., High frequency pulses of East Asian monsoon climate in the last two glaciations: link with the North Atlatic, Climate Dynamics, 1996, 12: 701-709.[21]Han, J. M., Lü, H. Y., Wu, N. Q. et al., The magnetic susceptibility of modern soils in China and its uses for paleocli-mate reconstruction, Studia Geoph et Geod., 1996, 40: 262-275.[22]Zhu, R. X., History of anisotropy of the magnetic susceptibility and its implications: Preliminary results along an E-W transect of the Chinese Loess Plateau, Geophys. Res. Abs., 2000, 2: 226.

  14. A Spatial Distribution Pattern-driven Spatial Index

    Directory of Open Access Journals (Sweden)

    WU Mingguang

    2015-01-01

    Full Text Available Packing spatial data into blocks and processing of global impact of local operations are two important tasks for spatial index to support bulk operations. In this paper, we present a new spatial index called Pattern-tree for bulk operations with spatial distribution pattern analysis. For packing objects into blocks, a new spatial data partitioning method based on the detection of the spatial distribution pattern was presented. This paper introduces a novel spatial index construction algorithm that combines of top-down and bottom-up methods; For processing of local update operations and its global impact, this paper introduces a new algorithm based on change analysis of the spatial distribution pattern. Empirical results demonstrate that performance improvements are achieved in practice in the case of spatial index construction and windows query compared with STLT, GBI and SCB.

  15. MODELING THE POTENTIAL SPATIAL DISTRIBUTION OF BEEF CATTLE GRAZING USING A GEOGRAPHIC INFORMATION SYSTEM

    Science.gov (United States)

    Data regarding grazing utilization in the western United States are typically compiled within administrative boundaries(e.g. allotment,pasture). For large areas, an assumption of uniform distribution is seldom valid. Previous studies show that vegetation type, degree of slope, an...

  16. Thermodynamic Model of Spatial Memory

    Science.gov (United States)

    Kaufman, Miron; Allen, P.

    1998-03-01

    We develop and test a thermodynamic model of spatial memory. Our model is an application of statistical thermodynamics to cognitive science. It is related to applications of the statistical mechanics framework in parallel distributed processes research. Our macroscopic model allows us to evaluate an entropy associated with spatial memory tasks. We find that older adults exhibit higher levels of entropy than younger adults. Thurstone's Law of Categorical Judgment, according to which the discriminal processes along the psychological continuum produced by presentations of a single stimulus are normally distributed, is explained by using a Hooke spring model of spatial memory. We have also analyzed a nonlinear modification of the ideal spring model of spatial memory. This work is supported by NIH/NIA grant AG09282-06.

  17. Quantification of the impact of precipitation spatial distribution uncertainty on predictive uncertainty of a snowmelt runoff model

    Science.gov (United States)

    Jacquin, A. P.

    2012-04-01

    This study is intended to quantify the impact of uncertainty about precipitation spatial distribution on predictive uncertainty of a snowmelt runoff model. This problem is especially relevant in mountain catchments with a sparse precipitation observation network and relative short precipitation records. The model analysed is a conceptual watershed model operating at a monthly time step. The model divides the catchment into five elevation zones, where the fifth zone corresponds to the catchment's glaciers. Precipitation amounts at each elevation zone i are estimated as the product between observed precipitation at a station and a precipitation factor FPi. If other precipitation data are not available, these precipitation factors must be adjusted during the calibration process and are thus seen as parameters of the model. In the case of the fifth zone, glaciers are seen as an inexhaustible source of water that melts when the snow cover is depleted.The catchment case study is Aconcagua River at Chacabuquito, located in the Andean region of Central Chile. The model's predictive uncertainty is measured in terms of the output variance of the mean squared error of the Box-Cox transformed discharge, the relative volumetric error, and the weighted average of snow water equivalent in the elevation zones at the end of the simulation period. Sobol's variance decomposition (SVD) method is used for assessing the impact of precipitation spatial distribution, represented by the precipitation factors FPi, on the models' predictive uncertainty. In the SVD method, the first order effect of a parameter (or group of parameters) indicates the fraction of predictive uncertainty that could be reduced if the true value of this parameter (or group) was known. Similarly, the total effect of a parameter (or group) measures the fraction of predictive uncertainty that would remain if the true value of this parameter (or group) was unknown, but all the remaining model parameters could be fixed

  18. Geostatistical modeling of uncertainty of the spatial distribution of available phosphorus in soil in a sugarcane field

    Science.gov (United States)

    Tadeu Pereira, Gener; Ribeiro de Oliveira, Ismênia; De Bortoli Teixeira, Daniel; Arantes Camargo, Livia; Rodrigo Panosso, Alan; Marques, José, Jr.

    2015-04-01

    Phosphorus is one of the limiting nutrients for sugarcane development in Brazilian soils. The spatial variability of this nutrient is great, defined by the properties that control its adsorption and desorption reactions. Spatial estimates to characterize this variability are based on geostatistical interpolation. Thus, the assessment of the uncertainty of estimates associated with the spatial distribution of available P (Plabile) is decisive to optimize the use of phosphate fertilizers. The purpose of this study was to evaluate the performance of sequential Gaussian simulation (sGs) and ordinary kriging (OK) in the modeling of uncertainty in available P estimates. A sampling grid with 626 points was established in a 200-ha experimental sugarcane field in Tabapuã, São Paulo State, Brazil. The soil was sampled in the crossover points of a regular grid with intervals of 50 m. From the observations, 63 points, approximately 10% of sampled points were randomly selected before the geostatistical modeling of the composition of a data set used in the validation process modeling, while the remaining 563 points were used for the predictions variable in a place not sampled. The sGs generated 200 realizations. From the realizations generated, different measures of estimation and uncertainty were obtained. The standard deviation, calculated point to point, all simulated maps provided the map of deviation, used to assess local uncertainty. The visual analysis of maps of the E-type and KO showed that the spatial patterns produced by both methods were similar, however, it was possible to observe the characteristic smoothing effect of the KO especially in regions with extreme values. The Standardized variograms of selected realizations sGs showed both range and model similar to the variogram of the Observed date of Plabile. The variogram KO showed a distinct structure of the observed data, underestimating the variability over short distances, presenting parabolic behavior near

  19. Advances in the spatially distributed ages-w model: parallel computation, java connection framework (JCF) integration, and streamflow/nitrogen dynamics assessment

    Science.gov (United States)

    AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic and water quality (H/WQ) simulation components under the Java Connection Framework (JCF) and the Object Modeling System (OMS) environmental modeling framework. AgES-W is implicitly scala...

  20. Modeling the Spatial Distribution of Eshnan (seidlitzia Rosmarinus) Shrubs to Exploring Their Ecological Interactions in Drylands of Central Iran

    Science.gov (United States)

    Erfanifard, Y.; Khosravi, E.

    2015-12-01

    Evaluating the interactions of woody plants has been a major research topic of ecological investigations in arid ecosystems. Plant-plant interactions can shift from positive (facilitation) to negative (competition) depending on levels of environmental stress and determine the spatial pattern of plants. The spatial distribution analysis of plants via different summary statistics can reveal the interactions of plants and how they influence one another. An aggregated distribution indicates facilitative interactions among plants, while dispersion of species reflects their competition for scarce resources. This study was aimed to explore the intraspecific interactions of eshnan (Seidlitzia rosmarinus) shrubs in arid lands, central Iran, using different summary statistics (i.e., pair correlation function g(r), O-ring function O(r), nearest neighbour distribution function D(r), spherical contact distribution function Hs(r)). The observed pattern of shrubs showed significant spatial heterogeneity as compared to inhomogeneous Poisson process (α=0.05). The results of g(r) and O(r) revealed the significant aggregation of eshnan shrubs up to scale of 3 m (α=0.05). The results of D(r) and Hs(r) also showed that maximum distance to nearest shrub was 6 m and the distribution of the sizes of gaps was significantly different from random distribution up to this spatial scale. In general, it was concluded that there were positive interactions between eshnan shrubs at small scales and they were aggregated due to their intraspecific facilitation effects in the study area.

  1. Characteristics of the mixing volume model with the interactions among spatially distributed particles for Lagrangian simulations of turbulent mixing

    Science.gov (United States)

    Watanabe, Tomoaki; Nagata, Koji

    2016-11-01

    The mixing volume model (MVM), which is a mixing model for molecular diffusion in Lagrangian simulations of turbulent mixing problems, is proposed based on the interactions among spatially distributed particles in a finite volume. The mixing timescale in the MVM is derived by comparison between the model and the subgrid scale scalar variance equation. A-priori test of the MVM is conducted based on the direct numerical simulations of planar jets. The MVM is shown to predict well the mean effects of the molecular diffusion under various conditions. However, a predicted value of the molecular diffusion term is positively correlated to the exact value in the DNS only when the number of the mixing particles is larger than two. Furthermore, the MVM is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (ILES/LPS). The ILES/LPS with the present mixing model predicts well the decay of the scalar variance in planar jets. This work was supported by JSPS KAKENHI Nos. 25289030 and 16K18013. The numerical simulations presented in this manuscript were carried out on the high performance computing system (NEC SX-ACE) in the Japan Agency for Marine-Earth Science and Technology.

  2. 水温—冰盖模式对大湖水面温度的模拟%SPATIALLY DISTRIBUTED WATER SURFACE TEMPERATURE MODELING FOR THE GREAT LAKES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper describes the development and validation of a water temperature model for the Great Lakes.This model is keyed to simulate horizontally and temporally varying surface temperature.An ice cover model is coupled with the water temper ature model,forming a spatially distributed thermodynamic model for the Great La kes.This model can be used to give long-term or short-term simulations of wate r surface temperature and ice cover for the Great Lakes.

  3. Simple Models of the Spatial Distribution of Cloud Radiative Properties for Remote Sensing Studies

    Science.gov (United States)

    2004-01-01

    This project aimed to assess the degree to which estimates of three-dimensional cloud structure can be inferred from a time series of profiles obtained at a point. The work was motivated by the desire to understand the extent to which high-frequency profiles of the atmosphere (e.g. ARM data streams) can be used to assess the magnitude of non-plane parallel transfer of radiation in thc atmosphere. We accomplished this by performing an observing system simulation using a large-eddy simulation and a Monte Carlo radiative transfer model. We define the 3D effect as the part of the radiative transfer that isn't captured by one-dimensional radiative transfer calculations. We assess the magnitude of the 3D effect in small cumulus clouds by using a fine-scale cloud model to simulate many hours of cloudiness over a continental site. We then use a Monte Carlo radiative transfer model to compute the broadband shortwave fluxes at the surface twice, once using the complete three-dimensional radiative transfer F(sup 3D), and once using the ICA F (sup ICA); the difference between them is the 3D effect given.

  4. Spatial models to predict ash pH and Electrical Conductivity distribution after a grassland fire in Lithuania

    Science.gov (United States)

    Pereira, Paulo; Cerda, Artemi; Misiūnė, Ieva

    2015-04-01

    Fire mineralizes the organic matter, increasing the pH level and the amount of dissolved ions (Pereira et al., 2014). The degree of mineralization depends among other factors on fire temperature, burned specie, moisture content, and contact time. The impact of wildland fires it is assessed using the fire severity, an index used in the absence of direct measures (e.g temperature), important to estimate the fire effects in the ecosystems. This impact is observed through the loss of soil organic matter, crown volume, twig diameter, ash colour, among others (Keeley et al., 2009). The effects of fire are highly variable, especially at short spatial scales (Pereira et al., in press), due the different fuel conditions (e.g. moisture, specie distribution, flammability, connectivity, arrangement, etc). This variability poses important challenges to identify the best spatial predictor and have the most accurate spatial visualization of the data. Considering this, the test of several interpolation methods it is assumed to be relevant to have the most reliable map. The aims of this work are I) study the ash pH and Electrical Conductivity (EC) after a grassland fire according to ash colour and II) test several interpolation methods in order to identify the best spatial predictor of pH and EC distribution. The study area is located near Vilnius at 54.42° N and 25.26°E and 154 ma.s.l. After the fire it was designed a plot with a 27 x 9 m space grid. Samples were taken every 3 meters for a total of 40 (Pereira et al., 2013). Ash color was classified according to Úbeda et al. (2009). Ash pH and EC laboratory analysis were carried out according to Pereira et al. (2014). Previous to data comparison and modelling, normality and homogeneity were assessed with the Shapiro-wilk and Levene test. pH data respected the normality and homogeneity, while EC only followed the Gaussian distribution and the homogeneity criteria after a logarithmic transformation. Data spatial correlation was

  5. Micro CT imaging assessment for spatial distribution of magnetic nanoparticles in an ex vivo thrombolysis model

    Science.gov (United States)

    Wang, Fu-Sheng; Chao, Tsi-Chian; Tu, Shu-Ju

    2012-03-01

    In recent nanotechnology development, iron-based magnetic nanoparticles (MNPs) have been used in several investigations on biomedical research for small animal experiments. Their important applications include targeted drug delivery for therapeutic purpose, contrast agent for magnetic resonance imaging, and hyperthermia treatment for tumors. These MNPs can be guided by an external magnetic field due to their physical characteristics of superparamagnetism. In a recent report, authors indicated that covalently bound recombinant tissue plasminogen activator (rtPA) to MNP (MNPrtPA) with preserved enzyme activity may be guided by a bar magnet and induce target thrombolysis in an embolic model in rats. Delivery of rtPA by binding the thrombolytic drug to MNPs will improve the possibility of the drug to be delivered under magnetic guidance and retained in a local targeted area in the circulation system. In this work, an ex vivo intravascular thrombolysis model was developed to study the impact of external magnetic field on the penetration of MNP-rtPA in the blood clot samples. The samples were then scanned by a micro CT system for quantification. Images of MNPs show strong contrast with their surrounding blood clot materials. The optimum drug loading was found when 0.5 mg/ml rtPA is conjugated with 10 mg SiO2-MNP where 98% drug was attached to the carrier with full retention of its thrombolytic activity. Effective thrombolysis with tPA bound to SiO2-MNP under magnetic guidance was demonstrated in our ex vivo model where substantial reduction in time for blood clot lysis was observed compared with control groups without magnetic field application.

  6. Remote sensing and spatially distributed erosion models as a tool to really understand biocrust effects on soil erosion

    Science.gov (United States)

    Rodriguez-Caballero, Emilio; Chamizo, Sonia; Román, Raul; Roncero, Beatriz; Weber, Bettina; Jetten, Victor; Cantón, Yolanda

    2016-04-01

    Since publication of the first Ecological Stides volume on biological soil crusts (biocrusts) in 2003, numerous studies have been conducted trying to understand the role of biocrusts in runoff generation and water erosion. Most of them considered these communities as one of the most important stabilizing factors dryland regions. However, these studies were concentrated only on patch or hillslope scales, and there is a lack of information on biocrust interactions with other surface components at catchment scale. Even on fine textured soils, where biocrusts increase water infiltration, they act as runoff source when compared to vegetation. Run-on from biocrusted areas may be harvested by downslope vegetation, but sometimes it may promote downslope erosion. Thus, to really understand the effect of biocrusts on soil erosion, studies on larger scales, preferably on a catchment scale are needed. For this we developed a new approach, based on field measurements and remote sensing techniques, to include biocrust effects in physically-based runoff and erosion modeling. Doing this we were able to analyze how runoff generated in biocrust areas is redistributed within the landscape and its effect on catchment water erosion. The Limburg Soil Erosion Model (LISEM) was used to parameterize and simulate the effects of biocrusts on soil erosion in a small badlands catchment, where biocrusts represent one of the main surface components. Biocrust stability and cohesion were measured in the field, their hydrological properties were obtained from runoff plots, and their cover and spatial distribution was estimated from a hyperspectral image by linear mixture analysis. Then, the model was run under different rainfall intensities and final runoff and erosion rates were compared with field data measured at the catchment outlet. Moreover, these results were compared with the hypothetical scenario in which biocrusts were removed, simulating human disturbances or climatic change effects on

  7. Combined statistical and spatially distributed hydrological model for evaluating future drought indices in Virginia

    Directory of Open Access Journals (Sweden)

    Hyunwoo Kang

    2017-08-01

    New hydrological insights for the region: The results of the ensemble mean of SSI indicated that there was an overall increase in agricultural drought occurrences projected in the New (>1.3 times and Rappahannock (>1.13 times river basins due to increases in evapotranspiration and surface and groundwater flow. However, MSDI and MPDSI exhibited a decrease in projected future drought, despite increases in precipitation, which suggests that it is essential to use hybrid-modeling approaches and to interpret application-specific drought indices that consider both precipitation and temperature changes.

  8. Spatial models for the rational allocation of routinely distributed bed nets to public health facilities in Western Kenya.

    Science.gov (United States)

    Macharia, Peter M; Odera, Patroba A; Snow, Robert W; Noor, Abdisalan M

    2017-09-12

    proposed spatial modelling framework presents a rationale for equitable allocation of routine LLINs and could be used for quantification of other maternal and child health commodities applicable in different settings. Western Kenya region received adequate LLINs for routine distribution in line with government of Kenya targets, however, the model shows important inefficiencies in the allocation of the LLINs at clinic level.

  9. Impact of DEM Resolution and Spatial Scale: Analysis of Influence Factors and Parameters on Physically Based Distributed Model

    Directory of Open Access Journals (Sweden)

    Hanchen Zhang

    2016-01-01

    Full Text Available Physically based distributed hydrological models were used to describe small-scale hydrological information in detail. However, the sensitivity of the model to spatially varied parameters and inputs limits the accuracy for application. In this paper, relevant influence factors and sensitive parameters were analyzed to solve this problem. First, a set of digital elevation model (DEM resolutions and channel thresholds were generated to extract the hydrological influence factors. Second, a numerical relationship between sensitive parameters and influence factors was established to define parameters reasonably. Next, the topographic index (TI was computed to study the similarity. At last, simulation results were analyzed in two different ways: (1 to observe the change regularity of influence factors and sensitive parameters through the variation of DEM resolutions and channel thresholds and (2 to compare the simulation accuracy of the nested catchment, particularly in the subcatchments and interior grids. Increasing the grid size from 250 m to 1000 m, the TI increased from 9.08 to 11.16 and the Nash-Sutcliffe efficiency (NSE decreased from 0.77 to 0.75. Utilizing the parameters calculated by the established relationship, the simulation results show the same NSE in the outlet and a better NSE in the simple subcatchment than the calculated interior grids.

  10. Spatially distributed modelling of surface water-groundwater exchanges during overbank flood events - a case study at the Garonne River

    Science.gov (United States)

    Bernard-Jannin, Léonard; Brito, David; Sun, Xiaoling; Jauch, Eduardo; Neves, Ramiro; Sauvage, Sabine; Sánchez-Pérez, José-Miguel

    2016-08-01

    Exchanges between surface water (SW) and groundwater (GW) are of considerable importance to floodplain ecosystems and biogeochemical cycles. Flood events in particular are important for riparian water budget and element exchanges and processing. However SW-GW exchanges present complex spatial and temporal patterns and modelling can provide useful knowledge about the processes involved at the scale of the reach and its adjacent floodplain. This study used a physically-based, spatially-distributed modelling approach for studying SW-GW exchanges. The modelling in this study is based on the MOHID Land model, combining the modelling of surface water flow in 2D with the Saint-Venant equation and the modelling of unsaturated groundwater flow in 3D with the Richards' equation. Overbank flow during floods was also integrated, as well as water exchanges between the two domains across the entire floodplain. Conservative transport simulations were also performed to study and validate the simulation of the mixing between surface water and groundwater. The model was applied to the well-monitored study site of Monbéqui (6.6 km²) in the Garonne floodplain (south-west France) for a five-month period and was able to represent the hydrology of the study area. Infiltration (SW to GW) and exfiltration (SW to GW) were characterised over the five-month period. Results showed that infiltration and exfiltration exhibited strong spatiotemporal variations, and infiltration from overbank flow accounted for 88% of the total simulated infiltration, corresponding to large flood periods. The results confirmed that overbank flood events played a determinant role in floodplain water budget and SW-GW exchanges compared to smaller (below bankfull) flood events. The impact of floods on water budget appeared to be similar for flood events exceeding a threshold corresponding to the five-year return period event due to the study area's topography. Simulation of overbank flow during flood events was an

  11. Simulation and Prediction of Water Allocation Using Artificial Neural Networks and a Spatially Distributed Hydrological Model

    Directory of Open Access Journals (Sweden)

    A. Papagera

    2014-12-01

    Full Text Available Lake Koronia is located in the North part of Greece and is protected by the Ramsar Convention of wetlands. A deficit in the water balance has been presented at the last twenty years due to the excessive water consumption for agricultural uses. This research is an attempt to simulate water flow with MIKE SHE model in order to observe how the water is allocated in the study area. The results of water flow module used for the estimation of Lake’s water balance for 4 hydrological years (2008-2012. Furthermore the Artificial Neural Networks (ANNs was used for the prediction of water flow in two sub-catchments. The coefficient correlation (R was found for Bogdanas (0.9 and Kolxikos (0.86. The Root Mean Square Error (RMSE and the Mean Absolute Percentages Error (MAPE were also calculated in order to evaluate the quality of the ANNs results.

  12. Perceived loudness of spatially distributed sound sources

    DEFF Research Database (Denmark)

    Song, Woo-keun; Ellermeier, Wolfgang; Minnaar, Pauli

    2005-01-01

    psychoacoustic attributes into account. Therefore, a method for deriving loudness maps was developed in an earlier study [Song, Internoise2004, paper 271]. The present experiment investigates to which extent perceived loudness depends on the distribution of individual sound sources. Three loudspeakers were...... of a microphone (monaural) and a dummy head (binaural) placed at the listening position. The results show that while loudness metrics fared well in predicting perceived loudness for any single-sound condition, they failed to predict loudness for two simultaneous sounds. This suggests that current loudness...... modelling will have to be extended to take the spatial distribution of sources into account....

  13. Modeling the spatial distribution of fragments formed from tidally disrupted stars

    Science.gov (United States)

    Girma, Eden; Guillochon, James

    2017-01-01

    Roughly once every 104 years, a star passes close enough to the supermassive black hole Sgr A* at the center of the Milky Way to be pulled apart by the black hole’s tidal forces. The star is then ‘spaghettified’ into a long stream of mass, with approximately one half being bound to Sgr A* and the other half unbound. Hydrodynamical simulations of this process have revealed that within this stream, the local self-gravity dominates the tidal field of Sgr A*. This residual self-gravity allows for planetary-mass fragments to form along the stream that are then shot out into the galaxy at velocities determined by a spread of binding energies. We develop a Monte Carlo code in Python that models and plots the evolving position of these fragments for a variety of initial conditions that are likely realized in nature. This code utilizes an n-body integrator to differentially solve for the position, velocity, and acceleration of each fragment at every time step. We find that the while the most unbound fragments seem to escape the galaxy entirely, there could potentially be fragments travelling within a few hundred parsecs of our solar system.

  14. Contribution of topographically based landslide hazard modelling to the analysis of the spatial distribution and ecology of kauri

    NARCIS (Netherlands)

    Claessens, L.F.G.; Verburg, P.H.; Schoorl, J.M.; Veldkamp, A.

    2006-01-01

    In this paper the use of topographical attributes for the analysis of the spatial distribution and ecological cycle of kauri (Agathis australis), a canopy emergent conifer tree from northern New Zealand, is studied. Several primary and secondary topographical attributes are derived from a Digital

  15. Ecological and spatial modeling : mapping ecosystems, landscape changes, and plant species distribution in Llanos del Orinoco, Venezuela

    NARCIS (Netherlands)

    Moreno, E.J.C.

    2007-01-01

    The transformation of Llanos del Orinoco, focused on the flooding savanna, is evaluated in terms of the change and replacement of the savanna ecosystem and the plant species distribution under a Landscape Ecological approach. This research is carried out at three spatial scales: sub-continental, reg

  16. Contribution of topographically based landslide hazard modelling to the analysis of the spatial distribution and ecology of kauri

    NARCIS (Netherlands)

    Claessens, L.F.G.; Verburg, P.H.; Schoorl, J.M.; Veldkamp, A.

    2006-01-01

    In this paper the use of topographical attributes for the analysis of the spatial distribution and ecological cycle of kauri (Agathis australis), a canopy emergent conifer tree from northern New Zealand, is studied. Several primary and secondary topographical attributes are derived from a Digital El

  17. Impact of rainfall spatial distribution on rainfall-runoff modelling efficiency and initial soil moisture conditions estimation

    Directory of Open Access Journals (Sweden)

    Y. Tramblay

    2011-01-01

    Full Text Available A good knowledge of rainfall is essential for hydrological operational purposes such as flood forecasting. The objective of this paper was to analyze, on a relatively large sample of flood events, how rainfall-runoff modeling using an event-based model can be sensitive to the use of spatial rainfall compared to mean areal rainfall over the watershed. This comparison was based not only on the model's efficiency in reproducing the flood events but also through the estimation of the initial conditions by the model, using different rainfall inputs. The initial conditions of soil moisture are indeed a key factor for flood modeling in the Mediterranean region. In order to provide a soil moisture index that could be related to the initial condition of the model, the soil moisture output of the Safran-Isba-Modcou (SIM model developed by Météo-France was used. This study was done in the Gardon catchment (545 km2 in South France, using uniform or spatial rainfall data derived from rain gauge and radar for 16 flood events. The event-based model considered combines the SCS runoff production model and the Lag and Route routing model. Results show that spatial rainfall increases the efficiency of the model. The advantage of using spatial rainfall is marked for some of the largest flood events. In addition, the relationship between the model's initial condition and the external predictor of soil moisture provided by the SIM model is better when using spatial rainfall, in particular when using spatial radar data with R2 values increasing from 0.61 to 0.72.

  18. Modelling the spatial distribution of Fasciola hepatica in bovines using decision tree, logistic regression and GIS query approaches for Brazil.

    Science.gov (United States)

    Bennema, S C; Molento, M B; Scholte, R G; Carvalho, O S; Pritsch, I

    2017-11-01

    Fascioliasis is a condition caused by the trematode Fasciola hepatica. In this paper, the spatial distribution of F. hepatica in bovines in Brazil was modelled using a decision tree approach and a logistic regression, combined with a geographic information system (GIS) query. In the decision tree and the logistic model, isothermality had the strongest influence on disease prevalence. Also, the 50-year average precipitation in the warmest quarter of the year was included as a risk factor, having a negative influence on the parasite prevalence. The risk maps developed using both techniques, showed a predicted higher prevalence mainly in the South of Brazil. The prediction performance seemed to be high, but both techniques failed to reach a high accuracy in predicting the medium and high prevalence classes to the entire country. The GIS query map, based on the range of isothermality, minimum temperature of coldest month, precipitation of warmest quarter of the year, altitude and the average dailyland surface temperature, showed a possibility of presence of F. hepatica in a very large area. The risk maps produced using these methods can be used to focus activities of animal and public health programmes, even on non-evaluated F. hepatica areas.

  19. Spatial distributions and seasonal cycles of aerosol climate effects in India seen in global climate-aerosol model

    Directory of Open Access Journals (Sweden)

    S. V. Henriksson

    2013-07-01

    Full Text Available Climate-aerosol interactions in India are studied by employing the global climate-aerosol model ECHAM5-HAM and the GAINS inventory for anthropogenic aerosol emissions. Seasonal cycles and spatial distributions of radiative forcing and the temperature and rainfall responses are presented for different model setups. While total aerosol radiative forcing is strongest in the summer, anthropogenic forcing is considerably stronger in winter than in summer. Local seasonal temperature anomalies caused by aerosols are mostly negative with some exceptions, e.g. Northern India in March–May and the eastern Himalayas in September–November. Rainfall increases due to the elevated heat pump (EHP mechanism and decreases due to solar dimming effects are studied. Aerosol light absorption does increase rainfall significantly in Northern India, but effects due to solar dimming and circulation work to cancel the increase. The total aerosol effect on rainfall is negative when considering all effects if assuming that aerosols have cooled the Northern Indian Ocean by 0.5 °K compared to the equator.

  20. Spatial cluster modelling

    CERN Document Server

    Lawson, Andrew B

    2002-01-01

    Research has generated a number of advances in methods for spatial cluster modelling in recent years, particularly in the area of Bayesian cluster modelling. Along with these advances has come an explosion of interest in the potential applications of this work, especially in epidemiology and genome research. In one integrated volume, this book reviews the state-of-the-art in spatial clustering and spatial cluster modelling, bringing together research and applications previously scattered throughout the literature. It begins with an overview of the field, then presents a series of chapters that illuminate the nature and purpose of cluster modelling within different application areas, including astrophysics, epidemiology, ecology, and imaging. The focus then shifts to methods, with discussions on point and object process modelling, perfect sampling of cluster processes, partitioning in space and space-time, spatial and spatio-temporal process modelling, nonparametric methods for clustering, and spatio-temporal ...

  1. KING GEORGE ISLAND SPATIAL DATA MODEL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Distribution,interoperability,interactivity,component are four main features of distributed GIS.Based on the principle of hypermap,hypermedia and distributed database,the paper comes up with a kind of distributed spatial data model which is in accordance with those features of distributed GIS.The model takes catalog service as the outline of spatial information globalization,and defines data structure of hypermap node in different level.Based on the model,it is feasible to manage and process distributed spatial information,and integrate multi_source,heterogeneous spatial data into a framework.Traditionally,to retrieve and access spatial data via Internet is only by theme or map name.With the concept of the model,it is possible to retrieve,load,and link spatial data by vector_based graphics on the Internet.

  2. Modelling spatial distribution of soil steady state infiltration rate in an urban park (Vingis Parkas, Vilnius, Lithuania)

    Science.gov (United States)

    Pereira, Paulo; Cerda, Artemi; Depellegrin, Daniel; Misiune, Ieva; Bogunovic, Igor; Menchov, Oleksandr

    2016-04-01

    larger urban park in Vilnius, Vinguis Parkas. The studied area is located near the Neris River and occupies an area of approximately 162 hectares. Inside the park a total of 95 randomly points were selected to measure soil steady infiltration, between April and September of 2016. At each sampling point, 4 infiltration measurements were carried out using a cylinder infiltrometer with 15 cm higher and a diameter of 7 cm (Cerda, 1996). Each experiment has the duration of 1 hour and the measurements of the infiltrated water were carried out 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 minutes (Cerda, 1996). The steady state infiltration value of each sampling point corresponds to the average value of the 4 measurements. In each point, the 4 measurements were separated by 5 meters to take in account the spatial variability (Neris et al., 2013). In total 380 infiltration tests were carried out (95x4). Previous to data modelling, data normality was assessed using the shapiro wilk-test and homogeneity of the variances, using Levene test, respectively. The original data was not normally distributed and, only respected the Gaussian distribution and heteroscedasticity after a logarithmic transformation. Data modelling was carried out using transformed data. The accuracy of steady-state soil infiltration spatial distribution was carried out testing several interpolation methods, as Inverse Distance to a Weight (IDW) with the power of 1,2,3,4 and 5, Local Polynomial methods, with the power of 1 and 2 Radial Basis Functions - Spline With Tension (SPT), Completely Regularized Spline (CRS), Multiquadratic (MTQ), Inverse Multiquadratic (IMTQ) and Thin Plate Spline (TPS) - and Geostatistical methods as, Ordinary Kriging (OK), Simple Kriging (SK) and Universal Kriging (UK) (Pereira et al., 2015). Methods performance was assessed calculating the Root Square Mean Error (RMSE) from the errors obtained from cross-validation. The results showed that on average steady state

  3. First measurement of the small-scale spatial variability of the rain drop size distribution: Results from a crucial experiment and maximum entropy modeling

    CERN Document Server

    Checa-Garcia, Ramiro

    2013-01-01

    The main challenges of measuring precipitation are related to the spatio-temporal variability of the drop-size distribution, to the uncertainties that condition the modeling of that distribution, and to the instrumental errors present in the in situ estimations. This PhD dissertation proposes advances in all these questions. The relevance of the spatial variability of the drop-size distribution for remote sensing measurements and hydro-meteorology field studies is asserted by analyzing the measurement of a set of disdrometers deployed on a network of 5 squared kilometers. This study comprises the spatial variability of integral rainfall parameters, the ZR relationships, and the variations within the one moment scaling method. The modeling of the drop-size distribution is analyzed by applying the MaxEnt method and comparing it with the methods of moments and the maximum likelihood. The instrumental errors are analyzed with a compressive comparison of sampling and binning uncertainties that affect actual device...

  4. Competitive exclusion over broad spatial extents is a slow process: Evidence and implications for species distribution modeling

    Science.gov (United States)

    Yackulic, Charles B.

    2016-01-01

    There is considerable debate about the role of competition in shaping species distributions over broad spatial extents. This debate has practical implications because predicting changes in species' geographic ranges in response to ongoing environmental change would be simpler if competition could be ignored. While this debate has been the subject of many reviews, recent literature has not addressed the rates of relevant processes. This omission is surprising in that ecologists hypothesized decades ago that regional competitive exclusion is a slow process. The goal of this review is to reassess the debate under the hypothesis that competitive exclusion over broad spatial extents is a slow process.Available evidence, including simulations presented for the first time here, suggests that competitive exclusion over broad spatial extents occurs slowly over temporal extents of many decades to millennia. Ecologists arguing against an important role for competition frequently study modern patterns and/or range dynamics over periods of decades, while much of the evidence for competition shaping geographic ranges at broad spatial extents comes from paleoecological studies over time scales of centuries or longer. If competition is slow, as evidence suggests, the geographic distributions of some, perhaps many species, would continue to change over time scales of decades to millennia, even if environmental conditions did not continue to change. If the distributions of competing species are at equilibrium it is possible to predict species distributions based on observed species–environment relationships. However, disequilibrium is widespread as a result of competition and many other processes. Studies whose goal is accurate predictions over intermediate time scales (decades to centuries) should focus on factors associated with range expansion (colonization) and loss (local extinction), as opposed to current patterns. In general, understanding of modern range dynamics would be

  5. Calibration of a physically based, spatially distributed hydrological model in a glacierized basin: On the use of knowledge from glaciometeorological processes to constrain model parameters

    Science.gov (United States)

    Ragettli, S.; Pellicciotti, F.

    2012-03-01

    In the Dry Andes of central Chile, summer water resources originate mostly from snowmelt and ice melt. We use the physically based, spatially distributed hydrological model TOPKAPI to study the exchange between glaciers and climate in the upper Aconcagua River Basin during the summer season and identify the model parameters that are robust and transferable and those that are more dependent on calibration. TOPKAPI has recently been adapted to incorporate an enhanced temperature index approach for snow and ice melting. We suggest a calibration procedure that allows calibration of parameters in three steps by separating parameters governing distinct processes. We evaluate the parameters' transferability in time and in space by applying the model at two spatial scales. TOPKAPI's ability to simulate the relevant processes is tested against meteorological, ablation, and glacier runoff data measured on Juncal Norte Glacier during two glacier ablation seasons. The model was applied successfully to the climatic setting of the Dry Andes once its parameters were recalibrated. We found a clear distinction between parameters that are stable in time and those that need recalibration. The parameters of the melt model are transferable from one season to the other, while the parameters governing the extrapolation of meteorological input data and the routing of glacier meltwater need recalibration from one season to the other. Sensitivity analysis revealed that the model is most sensitive to the temperature lapse rate governing the extrapolation of air temperature from point measurements to the glacier scale and to the melt parameter that multiplies the shortwave radiation balance.

  6. Revised spatially distributed global livestock emissions

    Science.gov (United States)

    Asrar, G.; Wolf, J.; West, T. O.

    2015-12-01

    Livestock play an important role in agricultural carbon cycling through consumption of biomass and emissions of methane. Quantification and spatial distribution of methane and carbon dioxide produced by livestock is needed to develop bottom-up estimates for carbon monitoring. These estimates serve as stand-alone international emissions estimates, as input to global emissions modeling, and as comparisons or constraints to flux estimates from atmospheric inversion models. Recent results for the US suggest that the 2006 IPCC default coefficients may underestimate livestock methane emissions. In this project, revised coefficients were calculated for cattle and swine in all global regions, based on reported changes in body mass, quality and quantity of feed, milk production, and management of living animals and manure for these regions. New estimates of livestock methane and carbon dioxide emissions were calculated using the revised coefficients and global livestock population data. Spatial distribution of population data and associated fluxes was conducted using the MODIS Land Cover Type 5, version 5.1 (i.e. MCD12Q1 data product), and a previously published downscaling algorithm for reconciling inventory and satellite-based land cover data at 0.05 degree resolution. Preliminary results for 2013 indicate greater emissions than those calculated using the IPCC 2006 coefficients. Global total enteric fermentation methane increased by 6%, while manure management methane increased by 38%, with variation among species and regions resulting in improved spatial distributions of livestock emissions. These new estimates of total livestock methane are comparable to other recently reported studies for the entire US and the State of California. These new regional/global estimates will improve the ability to reconcile top-down and bottom-up estimates of methane production as well as provide updated global estimates for use in development and evaluation of Earth system models.

  7. Spatial prediction of Lactarius deliciosus and Lactarius salmonicolor mushroom distribution with logistic regression models in the Kızılcasu Planning Unit, Turkey.

    Science.gov (United States)

    Mumcu Kucuker, Derya; Baskent, Emin Zeki

    2015-01-01

    Integration of non-wood forest products (NWFPs) into forest management planning has become an increasingly important issue in forestry over the last decade. Among NWFPs, mushrooms are valued due to their medicinal, commercial, high nutritional and recreational importance. Commercial mushroom harvesting also provides important income to local dwellers and contributes to the economic value of regional forests. Sustainable management of these products at the regional scale requires information on their locations in diverse forest settings and the ability to predict and map their spatial distributions over the landscape. This study focuses on modeling the spatial distribution of commercially harvested Lactarius deliciosus and L. salmonicolor mushrooms in the Kızılcasu Forest Planning Unit, Turkey. The best models were developed based on topographic, climatic and stand characteristics, separately through logistic regression analysis using SPSS™. The best topographic model provided better classification success (69.3 %) than the best climatic (65.4 %) and stand (65 %) models. However, the overall best model, with 73 % overall classification success, used a mix of several variables. The best models were integrated into an Arc/Info GIS program to create spatial distribution maps of L. deliciosus and L. salmonicolor in the planning area. Our approach may be useful to predict the occurrence and distribution of other NWFPs and provide a valuable tool for designing silvicultural prescriptions and preparing multiple-use forest management plans.

  8. Three-dimensional analytical model for the spatial variation of the foreshock electron distribution function - Systematics and comparisons with ISEE observations

    Science.gov (United States)

    Fitzenreiter, R. J.; Scudder, J. D.; Klimas, A. J.

    1990-01-01

    A model which is consistent with the solar wind and shock surface boundary conditions for the foreshock electron distribution in the absence of wave-particle effects is formulated for an arbitrary location behind the magnetic tangent to the earth's bow shock. Variations of the gyrophase-averaged velocity distribution are compared and contrasted with in situ ISEE observations. It is found that magnetic mirroring of solar wind electrons is the most important process by which nonmonotonic reduced electron distributions in the foreshock are produced. Leakage of particles from the magnetosheath is shown to be relatively unimportant in determining reduced distributions that are nonmonotonic. The two-dimensional distribution function off the magnetic field direction is the crucial contribution in producing reduced distributions which have beams. The time scale for modification of the electron velocity distribution in velocity space can be significantly influenced by steady state spatial gradients in the background imposed by the curved shock geometry.

  9. Spatial patterns of distribution, abundance, and species diversity of small odontocetes estimated using density surface modeling with line transect sampling

    Science.gov (United States)

    Kanaji, Yu; Okazaki, Makoto; Miyashita, Tomio

    2017-06-01

    Spatial patterns of distribution, abundance, and species diversity of small odontocetes including species in the Delphinidae and Phocoenidae families were investigated using long-term dedicated sighting survey data collected between 1983 and 2006 in the North Pacific. Species diversity indices were calculated from abundance estimated using density surface modeling of line-transect data. The estimated abundance ranged from 19,521 individuals in killer whale to 1,886,022 in pantropical spotted dolphin. The predicted density maps showed that the habitats of small odontocetes corresponded well with distinct oceanic domains. Species richness was estimated to be highest between 30 and 40°N where warm- and cold-water currents converge. Simpson's Diversity Index showed latitudinal diversity gradients of decreasing species numbers toward the poles. Higher diversity was also estimated in the coastal areas and the zonal areas around 35-42°N. Coastal-offshore gradients and latitudinal gradients are known for many taxa. The zonal areas around 35°N and 40°N coincide with the Kuroshio Current and its extension and the subarctic boundary, respectively. These results suggest that the species diversity of small odontocetes primarily follows general patterns of latitudinal and longitudinal gradients, while the confluence of faunas originating in distinct water masses increases species diversify in frontal waters around 30-40°N. Population densities tended to be higher for the species inhabiting higher latitudes, but were highest for intermediate latitudes at approximately 35-40°N. According to latitudinal gradients in water temperature and biological productivity, the costs for thermoregulation will decrease in warmer low latitudes, while feeding efficiency will increase in colder high latitudes. These trade-offs could optimize population density in intermediate latitudes.

  10. Anticipating potential biodiversity conflicts for future biofuel crops in South Africa: incorporating spatial filters with species distribution models

    CSIR Research Space (South Africa)

    Blanchard, R

    2014-04-01

    Full Text Available distribution models, land cover, land capability and various biodiversity conservation data to identify natural areas with (i) a potentially high risk of transformation for biofuel production and (ii) potential impact to biodiversity conservation areas...

  11. A data-driven model of the generation of human EEG based on a spatially distributed stochastic wave equation

    OpenAIRE

    Galka, Andreas; Ozaki, Tohru; Muhle, Hiltrud; Stephani, Ulrich; Siniatchkin, Michael

    2008-01-01

    We discuss a model for the dynamics of the primary current density vector field within the grey matter of human brain. The model is based on a linear damped wave equation, driven by a stochastic term. By employing a realistically shaped average brain model and an estimate of the matrix which maps the primary currents distributed over grey matter to the electric potentials at the surface of the head, the model can be put into relation with recordings of the electroencephalogram (EEG). Through ...

  12. RSS as a distribution medium for geo-spatial hypermedia

    DEFF Research Database (Denmark)

    Hansen, Frank Allan; Christensen, Bent Guldbjerg; Bouvin, Niels Olof

    2005-01-01

    This paper describes how the XML based RSS syndication formats used in weblogs can be utilized as the distribution medium for geo-spatial hypermedia, and how this approach can be used to create a highly distributed multi-user annotation system for geo-spatial hypermedia. It is demonstrated, how...... the HyCon annotation model [2] can be formulated as a RSS 2.0 feed and how such feeds allow annotation threads to be distributed across multiple weblogs and servers....

  13. Spatial distribution of grassland productivity and land use in Europe

    NARCIS (Netherlands)

    Smit, H.J.; Metzger, M.J.; Ewert, F.

    2008-01-01

    Grasslands are an important land use in Europe with essential functions for feed and ecosystem service supply. Impact assessment modelling of European agriculture and the environment needs to consider grasslands and requires spatially explicit information on grassland distribution and productivity,

  14. Spatial distribution of grassland productivity and land use in Europe

    NARCIS (Netherlands)

    Smit, H.J.; Metzger, M.J.; Ewert, F.

    2008-01-01

    Grasslands are an important land use in Europe with essential functions for feed and ecosystem service supply. Impact assessment modelling of European agriculture and the environment needs to consider grasslands and requires spatially explicit information on grassland distribution and productivity,

  15. A Spatially Explicit and Seasonally Varying Cholera Prevalence Model With Distributed Macro-Scale Environmental and Hydroclimatic Forcings

    Science.gov (United States)

    Akanda, A. S.; Jutla, A. S.; Eltahir, E. A.; Islam, S.

    2011-12-01

    Despite major advances in the ecological and microbiological understanding of the bacterium Vibrio cholerae, the role of underlying large-scale processes in the progression of the cholera disease in space and time is not well understood. Here, we present a spatially explicit and seasonally varying coupled hydroclimatology-epidemiology model for understanding regional scale cholera prevalence in response to large scale hydroclimatic and environmental forcings. Our results show that environmental cholera transmission can be modulated by two spatially and seasonally distinct mechanisms - influenced by dry and wet season hydrologic determinants. The model is applied to the Ganges-Brahmaputra-Meghna Basin areas in Bangladesh to simulate spatially explicit cholera prevalence rates, and validated with long-term cholera data from Dhaka and shorter-term records from regional surveillance locations. The model reproduces the variability of cholera prevalence at monthly, seasonal, and interannual timescales and highlights the role of asymmetric large scale hydroclimatic processes as the dominant controls. Our findings have important implications for formulating effective cholera intervention strategies, and for understanding the impacts of changing climate patterns on seasonal cholera transmission.

  16. A simple daily soil-water balance model for estimating the spatial and temporal distribution of groundwater recharge in temperate humid areas

    Science.gov (United States)

    Dripps, W.R.; Bradbury, K.R.

    2007-01-01

    Quantifying the spatial and temporal distribution of natural groundwater recharge is usually a prerequisite for effective groundwater modeling and management. As flow models become increasingly utilized for management decisions, there is an increased need for simple, practical methods to delineate recharge zones and quantify recharge rates. Existing models for estimating recharge distributions are data intensive, require extensive parameterization, and take a significant investment of time in order to establish. The Wisconsin Geological and Natural History Survey (WGNHS) has developed a simple daily soil-water balance (SWB) model that uses readily available soil, land cover, topographic, and climatic data in conjunction with a geographic information system (GIS) to estimate the temporal and spatial distribution of groundwater recharge at the watershed scale for temperate humid areas. To demonstrate the methodology and the applicability and performance of the model, two case studies are presented: one for the forested Trout Lake watershed of north central Wisconsin, USA and the other for the urban-agricultural Pheasant Branch Creek watershed of south central Wisconsin, USA. Overall, the SWB model performs well and presents modelers and planners with a practical tool for providing recharge estimates for modeling and water resource planning purposes in humid areas. ?? Springer-Verlag 2007.

  17. Vineyard weeds control practices impact on surface water transfers: using numerical tracer experiment coupled to a distributed hydrological model to manage agricultural practices spatial arrangements.

    Science.gov (United States)

    Colin, F.; Moussa, R.

    2009-04-01

    In rural basins, agricultural landscape management highly influences water and pollutants transfers. Landuse, agricultural practices and their spatial arrangements are at issue. Hydrological model are widely used to explore impacts of anthropogenic influences on experimental catchments. But planning all spatial arrangements leads to a possible cases count which cannot be considered. On the basis of the recent « numerical experiment » approach, we propose a « numerical tracer function » which had to be coupled to a distributed rainfall-runoff model. This function simulate the transfer of a virtual tracer successively spread on each distributed unit inside the catchment. It allows to rank hydrological spatial units according to their hydrological contribution to the surface flows, particularly at the catchment outlet. It was used with the distributed model MHYDAS in an agricultural context. The case study concerns the experimental Roujan vine-growing catchment (1km², south of France) studied since 1992. In this Mediterranean context, we focus on the soil hydraulic conductivity distributed parameter because it highly depends on weed control practices (chemical weeding induces a lot more runoff than mechanical weeding). We checked model sensitivity analysis to soil hydraulic conductivity spatial arrangement on runoff coefficient, peak discharge and catchment lag-time. Results show (i) the use of the tracer function is more efficient than a random approach to improve sensitivity to spatial arrangements from point of view of simulated discharge range, (ii) the first factor explaining hydrological simulations variability was practices area ratio, (iii) variability induced by practices spatial arrangements was significant on runoff coefficient and peak discharge for balanced practices area ratio and on lag-time for low area ratio of chemical weeding practices. From the actual situation on the experimental Roujan catchment (40% of tilled and 60% of non tilled vineyard

  18. Emergence of Strange Spatial Pattern in a Spatial Epidemic Model

    Institute of Scientific and Technical Information of China (English)

    SUN Gui-Quan; JIN Zhen; LIU Quan-Xing; LI Li

    2008-01-01

    Pattern formation of a spatial epidemic model with nonlinear incidence rate kI2 S/ (1 + αI2) is investigated. Our results show that strange spatial dynamics, i.e., filament-like pattern, can be obtained by both mathematical analysis and numerical simulation, which are different from the previous results in the spatial epidemic model such as stripe-like or spotted or coexistence of both pattern and so on. The obtained results well extend the finding of pattern formation in the epidemic model and may well explain the distribution of the infected of some epidemic.

  19. Spatially Explicit Models to Investigate Geographic Patterns in the Distribution of Forensic STRs: Application to the North-Eastern Mediterranean

    Science.gov (United States)

    Messina, Francesco; Finocchio, Andrea; Akar, Nejat; Loutradis, Aphrodite; Michalodimitrakis, Emmanuel I.; Brdicka, Radim; Jodice, Carla

    2016-01-01

    Human forensic STRs used for individual identification have been reported to have little power for inter-population analyses. Several methods have been developed which incorporate information on the spatial distribution of individuals to arrive at a description of the arrangement of diversity. We genotyped at 16 forensic STRs a large population sample obtained from many locations in Italy, Greece and Turkey, i.e. three countries crucial to the understanding of discontinuities at the European/Asian junction and the genetic legacy of ancient migrations, but seldom represented together in previous studies. Using spatial PCA on the full dataset, we detected patterns of population affinities in the area. Additionally, we devised objective criteria to reduce the overall complexity into reduced datasets. Independent spatially explicit methods applied to these latter datasets converged in showing that the extraction of information on long- to medium-range geographical trends and structuring from the overall diversity is possible. All analyses returned the picture of a background clinal variation, with regional discontinuities captured by each of the reduced datasets. Several aspects of our results are confirmed on external STR datasets and replicate those of genome-wide SNP typings. High levels of gene flow were inferred within the main continental areas by coalescent simulations. These results are promising from a microevolutionary perspective, in view of the fast pace at which forensic data are being accumulated for many locales. It is foreseeable that this will allow the exploitation of an invaluable genotypic resource, assembled for other (forensic) purposes, to clarify important aspects in the formation of local gene pools. PMID:27898725

  20. The Spatial Clustering of ROSAT All-Sky Survey AGNs II. Halo Occupation Distribution Modeling of the Cross Correlation Function

    CERN Document Server

    Miyaji, Takamitsu; Coil, Alison L; Aceves, Hector

    2010-01-01

    This is the second paper of a series that reports on our investigation of the clustering properties of AGNs in the ROSAT All-Sky Survey (RASS) through cross-correlation functions (CCFs) with Sloan Digital Sky Survey (SDSS) galaxies. In this paper, we apply the Halo Occupation Distribution (HOD) model to the CCFs between the RASS Broad-line AGNs with SDSS Luminous Red Galaxies (LRGs) in the redshift range 0.16modeling approach, we use the known HOD of LRGs and constrain the HOD of the AGNs by a model fit to the CCF. For the first time, we are able to go beyond quoting merely a `typical' AGN host halo mass, M_h, and model the full distribution function of AGN host dark matter halos. In addition, we are able to determine the large-scale bias and the mean M_h more accurately. We explore the behavior of three simple HOD models. Our first model (Model A) is a truncated power-law HOD model in which all AGNs are satellites. With this model, we find an upper lim...

  1. Spatial distribution analysis on climatic variables in northeast China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Information ecology is a new research area of modern ecology.Here describes spatial distribution analysis methods of four sorts of climatic variables, i.e. temperature, precipitation, relative humidity and sunshine fraction on Northeast China. First,Digital terrain models was built with large-scale maps and vector data. Then trend surface analysis and interpolation method were used to analyze the spatial distribution of these four kinds of climatic variables at three temporal scale: (1) monthly data; (2)mean monthly data of thirty years, and (3) mean annual data of thirty years. Ecological information system were used for graphics analysis on the spatial distribution of these climate variables.

  2. Distributed Parameter Modelling Applications

    DEFF Research Database (Denmark)

    2011-01-01

    Here the issue of distributed parameter models is addressed. Spatial variations as well as time are considered important. Several applications for both steady state and dynamic applications are given. These relate to the processing of oil shale, the granulation of industrial fertilizers and the d......Here the issue of distributed parameter models is addressed. Spatial variations as well as time are considered important. Several applications for both steady state and dynamic applications are given. These relate to the processing of oil shale, the granulation of industrial fertilizers...... sands processing. The fertilizer granulation model considers the dynamics of MAP-DAP (mono and diammonium phosphates) production within an industrial granulator, that involves complex crystallisation, chemical reaction and particle growth, captured through population balances. A final example considers...

  3. Global distribution and sources of dissolved inorganic nitrogen export to the coastal zone: Results from a spatially explicit, global model

    Science.gov (United States)

    Dumont, E.; Harrison, J. A.; Kroeze, C.; Bakker, E. J.; Seitzinger, S. P.

    2005-12-01

    Here we describe, test, and apply a spatially explicit, global model for predicting dissolved inorganic nitrogen (DIN) export by rivers to coastal waters (NEWS-DIN). NEWS-DIN was developed as part of an internally consistent suite of global nutrient export models. Modeled and measured DIN export values agree well (calibration R2 = 0.79), and NEWS-DIN is relatively free of bias. NEWS-DIN predicts: DIN yields ranging from 0.0004 to 5217 kg N km-2 yr-1 with the highest DIN yields occurring in Europe and South East Asia; global DIN export to coastal waters of 25 Tg N yr-1, with 16 Tg N yr-1 from anthropogenic sources; biological N2 fixation is the dominant source of exported DIN; and globally, and on every continent except Africa, N fertilizer is the largest anthropogenic source of DIN export to coastal waters.

  4. Fine-Scale Mapping by Spatial Risk Distribution Modeling for Regional Malaria Endemicity and Its Implications under the Low-to-Moderate Transmission Setting in Western Cambodia.

    Directory of Open Access Journals (Sweden)

    Suguru Okami

    Full Text Available The disease burden of malaria has decreased as malaria elimination efforts progress. The mapping approach that uses spatial risk distribution modeling needs some adjustment and reinvestigation in accordance with situational changes. Here we applied a mathematical modeling approach for standardized morbidity ratio (SMR calculated by annual parasite incidence using routinely aggregated surveillance reports, environmental data such as remote sensing data, and non-environmental anthropogenic data to create fine-scale spatial risk distribution maps of western Cambodia. Furthermore, we incorporated a combination of containment status indicators into the model to demonstrate spatial heterogeneities of the relationship between containment status and risks. The explanatory model was fitted to estimate the SMR of each area (adjusted Pearson correlation coefficient R2 = 0.774; Akaike information criterion AIC = 149.423. A Bayesian modeling framework was applied to estimate the uncertainty of the model and cross-scale predictions. Fine-scale maps were created by the spatial interpolation of estimated SMRs at each village. Compared with geocoded case data, corresponding predicted values showed conformity [Spearman's rank correlation r = 0.662 in the inverse distance weighed interpolation and 0.645 in ordinal kriging (95% confidence intervals of 0.414-0.827 and 0.368-0.813, respectively, Welch's t-test; Not significant]. The proposed approach successfully explained regional malaria risks and fine-scale risk maps were created under low-to-moderate malaria transmission settings where reinvestigations of existing risk modeling approaches were needed. Moreover, different representations of simulated outcomes of containment status indicators for respective areas provided useful insights for tailored interventional planning, considering regional malaria endemicity.

  5. Effect of Energetic Ion on Spatial Distribution of Recombining Plasma

    Science.gov (United States)

    Okamoto, A.; Daibo, A.; Kitajima, S.; Kumagai, T.; Takahashi, H.; Takahashi, T.; Tsubota, S.

    Spatial distribution of electron density is considered. By using a one-dimensional recombining plasma model, effects of transient energetic ion flux are investigated. The time response of the system against the transient flux is dominated by the recombination frequency. The magnitude of modification of the spatial distribution is determined by the ratio between the ionization due to the energetic ion and the recombination of the bulk plasma.

  6. Simulating spatially distributed catchment response using a fully-integrated surface-subsurface model based on dual calibration with streamflow and evapotranspiration

    Science.gov (United States)

    Ala-aho, Pertti; Soulsby, Chris; Wang, Hailong; Tetzlaff, Doerthe

    2016-04-01

    We use above-ground hydrological fluxes (streamflow and evapotranspiration (ET)) to calibrate an integrated hydrological simulator for a headwater catchment located in the Scottish highlands. Our study explores the feasibility of simulating spatially distributed catchment response in a physically based framework whilst having only preliminary data about the subsurface hydrological parameters. Furthermore we investigate the added value of insitu ET data in the calibration process. Transient simulations are performed with a fully integrated surface-subsurface hydrological model HydroGeoSphere and calibration of model parameters is done in PEST framework. In the first calibration step only the stream hydrograph is included using the original time series alongside with log-transformed hydrograph and weekly flow volumes in the objective function. ET is estimated with energy balance technique using above canopy temperatures, humidity and net radiation measured within the catchment. In the second calibration step, the ET time series are introduced in the calibration objective function. Parameter identifiability along with uncertainty in the model output will be examined as a part of the model calibration for both calibration steps. Furthermore, the post-calibration model will allow us to simulate spatially distributed hydrological fluxes and to distinguish between different water sources that make up the stream hydrograph using the hydraulic mixing-cell method. Preliminary simulations have shown that transient and spatially distributed surface water, subsurface water and evaporative fluxes of a headwater catchment can be reproduced in integrated modelling framework using only above-ground hydrological data in model calibration. We hypothesize that the evapotranspiration dataset informs the catchment water budget and water transmission rates and is therefore useful in constraining subsurface hydraulic parameters, such as hydraulic conductivities, which are typically

  7. Methods and theory in bone modeling drift: comparing spatial analyses of primary bone distributions in the human humerus.

    Science.gov (United States)

    Maggiano, Corey M; Maggiano, Isabel S; Tiesler, Vera G; Chi-Keb, Julio R; Stout, Sam D

    2016-01-01

    This study compares two novel methods quantifying bone shaft tissue distributions, and relates observations on human humeral growth patterns for applications in anthropological and anatomical research. Microstructural variation in compact bone occurs due to developmental and mechanically adaptive circumstances that are 'recorded' by forming bone and are important for interpretations of growth, health, physical activity, adaptation, and identity in the past and present. Those interpretations hinge on a detailed understanding of the modeling process by which bones achieve their diametric shape, diaphyseal curvature, and general position relative to other elements. Bone modeling is a complex aspect of growth, potentially causing the shaft to drift transversely through formation and resorption on opposing cortices. Unfortunately, the specifics of modeling drift are largely unknown for most skeletal elements. Moreover, bone modeling has seen little quantitative methodological development compared with secondary bone processes, such as intracortical remodeling. The techniques proposed here, starburst point-count and 45° cross-polarization hand-drawn histomorphometry, permit the statistical and populational analysis of human primary tissue distributions and provide similar results despite being suitable for different applications. This analysis of a pooled archaeological and modern skeletal sample confirms the importance of extreme asymmetry in bone modeling as a major determinant of microstructural variation in diaphyses. Specifically, humeral drift is posteromedial in the human humerus, accompanied by a significant rotational trend. In general, results encourage the usage of endocortical primary bone distributions as an indicator and summary of bone modeling drift, enabling quantitative analysis by direction and proportion in other elements and populations.

  8. Modeling the spatial distribution of landslide-prone colluvium and shallow groundwater on hillslopes of Seattle, WA

    Science.gov (United States)

    Schulz, W.H.; Lidke, D.J.; Godt, J.W.

    2008-01-01

    Landslides in partially saturated colluvium on Seattle, WA, hillslopes have resulted in property damage and human casualties. We developed statistical models of colluvium and shallow-groundwater distributions to aid landslide hazard assessments. The models were developed using a geographic information system, digital geologic maps, digital topography, subsurface exploration results, the groundwater flow modeling software VS2DI and regression analyses. Input to the colluvium model includes slope, distance to a hillslope-crest escarpment, and escarpment slope and height. We developed different statistical relations for thickness of colluvium on four landforms. Groundwater model input includes colluvium basal slope and distance from the Fraser aquifer. This distance was used to estimate hydraulic conductivity based on the assumption that addition of finer-grained material from down-section would result in lower conductivity. Colluvial groundwater is perched so we estimated its saturated thickness. We used VS2DI to establish relations between saturated thickness and the hydraulic conductivity and basal slope of the colluvium. We developed different statistical relations for three groundwater flow regimes. All model results were validated using observational data that were excluded from calibration. Eighty percent of colluvium thickness predictions were within 25% of observed values and 88% of saturated thickness predictions were within 20% of observed values. The models are based on conditions common to many areas, so our method can provide accurate results for similar regions; relations in our statistical models require calibration for new regions. Our results suggest that Seattle landslides occur in native deposits and colluvium, ultimately in response to surface-water erosion of hillstope toes. Regional groundwater conditions do not appear to strongly affect the general distribution of Seattle landslides; historical landslides were equally dispersed within and

  9. An Improved Method for Modeling Spatial Distribution of δD in Surface Snow over Antarctic Ice Sheet

    Institute of Scientific and Technical Information of China (English)

    WANG Yetang; HOU Shugui; Bjorn GRIGHOLM; SONG Linlin

    2009-01-01

    Using the recent compilation of the isotopic composition data of surface snow of Antarctic ice sheet, we proposed an improved interpolation method of δD, which utilizes geographical factors (i.e., latitude and altitude) as the primary predictors and incorporates inverse distance weighting (IDW) technique. The method was applied to a high-resolution digital elevation model (DEM) to produce a grid map of multi-year mean δD values with 1km spatial resolution for Antarctic& The mean absolute deviation between observed and estimated data in the map is about 5.4‰, and the standard deviation is 9‰. The resulting δD pattern resembles well known characteristics such as the depletion of the heavy isotopes with increasing latitude and distance from coast line, but also reveals the complex topographic effects.

  10. Ensemble filter based estimation of spatially distributed parameters in a mesoscale dust model: experiments with simulated and real data

    Directory of Open Access Journals (Sweden)

    V. M. Khade

    2013-03-01

    Full Text Available The ensemble adjustment Kalman filter (EAKF is used to estimate the erodibility fraction parameter field in a coupled meteorology and dust aerosol model (Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS over the Sahara desert. Erodibility is often employed as the key parameter to map dust source. It is used along with surface winds (or surface wind stress to calculate dust emissions. Using the Saharan desert as a test bed, a perfect model Observation System Simulation Experiments (OSSEs with 40 ensemble members, and observations of aerosol optical depth (AOD, the EAKF is shown to recover correct values of erodibility at about 80% of the points in the domain. It is found that dust advected from upstream grid points acts as noise and complicates erodibility estimation. It is also found that the rate of convergence is significantly impacted by the structure of the initial distribution of erodibility estimates; isotropic initial distributions exhibit slow convergence, while initial distributions with geographically localized structure converge more quickly. Experiments using observations of Deep Blue AOD retrievals from the MODIS satellite sensor result in erodibility estimates that are considerably lower than the values used operationally. Verification shows that the use of the tuned erodibility field results in better predictions of AOD over the west Sahara and the Arabian Peninsula.

  11. The use of bivariate spatial modeling of questionnaire and parasitology data to predict the distribution of Schistosoma haematobium in Coastal Kenya.

    Directory of Open Access Journals (Sweden)

    Hugh J W Sturrock

    Full Text Available BACKGROUND: Questionnaires of reported blood in urine (BIU distributed through the existing school system provide a rapid and reliable method to classify schools according to the prevalence of Schistosoma haematobium, thereby helping in the targeting of schistosomiasis control. However, not all schools return questionnaires and it is unclear whether treatment is warranted in such schools. This study investigates the use of bivariate spatial modelling of available and multiple data sources to predict the prevalence of S. haematobium at every school along the Kenyan coast. METHODOLOGY: Data from a questionnaire survey conducted by the Kenya Ministry of Education in Coast Province in 2009 were combined with available parasitological and environmental data in a Bayesian bivariate spatial model. This modeled the relationship between BIU data and environmental covariates, as well as the relationship between BIU and S. haematobium infection prevalence, to predict S. haematobium infection prevalence at all schools in the study region. Validation procedures were implemented to assess the predictive accuracy of endemicity classification. PRINCIPAL FINDINGS: The prevalence of BIU was negatively correlated with distance to nearest river and there was considerable residual spatial correlation at small (~15 km spatial scales. There was a predictable relationship between the prevalence of reported BIU and S. haematobium infection. The final model exhibited excellent sensitivity (0.94 but moderate specificity (0.69 in identifying low (<10% prevalence schools, and had poor performance in differentiating between moderate and high prevalence schools (sensitivity 0.5, specificity 1. CONCLUSIONS: Schistosomiasis is highly focal and there is a need to target treatment on a school-by-school basis. The use of bivariate spatial modelling can supplement questionnaire data to identify schools requiring mass treatment, but is unable to distinguish between moderate and high

  12. Spatial distribution and leaching behavior of pollutants from phosphogypsum stocked in a gypstack: Geochemical characterization and modeling.

    Science.gov (United States)

    Bisone, Sara; Gautier, Mathieu; Chatain, Vincent; Blanc, Denise

    2017-05-15

    Phosphogypsum (PPG) is the byproduct of the production of phosphoric acid and phosphate fertilizers from phosphate rocks (PR) by acid digestion. Despite the technical feasibility, the impurities present in this waste make its reuse critical and large amounts of PPG are stockpiled, resulting in the production of polluted acid leachates. The aim of the present study was to characterize the spatial variability and evolution in time of a 20-year-old gypstack and to study the geochemical behavior of the waste in order to assess the best management options. Chemical and mineralogical analyses were performed on core samples taken from 4 different depths of the stack down to 13.5 m. Despite the high homogeneity shown by chemical and mineral characterization, leaching tests revealed a different chemical behavior with depth. pH-dependent leaching tests were also performed to measure the acid neutralization capacity of the studied matrices and to determine the leachability of the elements or pollutants of concern as a function of pH. The study was focused on Ca, Fe Na, Si, Cd and Sr and on F(-), PO4(3-) and SO4(2-) anions. The geochemical modeling of these tests with PHREEQC enabled the identification of the minor phases controlling the solubilization of the elements analyzed. Validation of the model by the simulation of a column leaching test suggested that the model could be used as a predictive tool to assess different management scenarios.

  13. Modeling fish egg production and spatial distribution from acoustic data: a step forward into the analysis of recruitment.

    Directory of Open Access Journals (Sweden)

    Andrés Ospina-Álvarez

    Full Text Available To date, there are numerous transport simulation studies demonstrating the relevance of the hydrodynamics for the advection, dispersion and recruitment of early stages of marine organisms. However, the lack of data has conditioned the use of realistic locations for the model setup and configuration in transport studies. This work (I demonstrates the key role played by the use of the realistic initial position of the eggs of small pelagic fishes in the analysis of late-larval recruitment in coastal nursery areas and (II provides a general solution for deriving future egg positions and abundances from adult biomass obtained from acoustic surveys and available fecundity data. Using European anchovy in the NW Mediterranean as a case study, we first analyzed the impact of the initial location, timing, egg buoyancy and diel vertical migration of larvae on the potential late-larval recruitment to coastal areas. The results suggested that prior knowledge of the initial spawning grounds may substantially affect the estimates of potential recruitment. We then integrated biological and acoustics-derived data (the biomass and size structure, sex ratio, a weight-batch fecundity model, mean weight, number of fish and mean spawning to build a predictive model for interannual egg production. This model was satisfactorily contrasted with field data for two years obtained with the Daily Egg Production Method (DEPM. We discuss our results in the context of the fluctuations of European anchovy egg abundance from 2003 through 2010 in the NW Mediterranean and in terms of the potential applicability of the acoustics-based spatial predictive egg production model.

  14. Computational model of vascular endothelial growth factor spatial distribution in muscle and pro-angiogenic cell therapy.

    Directory of Open Access Journals (Sweden)

    Feilim Mac Gabhann

    2006-09-01

    Full Text Available Members of the vascular endothelial growth factor (VEGF family of proteins are critical regulators of angiogenesis. VEGF concentration gradients are important for activation and chemotactic guidance of capillary sprouting, but measurement of these gradients in vivo is not currently possible. We have constructed a biophysically and molecularly detailed computational model to study microenvironmental transport of two isoforms of VEGF in rat extensor digitorum longus skeletal muscle under in vivo conditions. Using parameters based on experimental measurements, the model includes: VEGF secretion from muscle fibers; binding to the extracellular matrix; binding to and activation of endothelial cell surface VEGF receptors; and internalization. For 2-D cross sections of tissue, we analyzed predicted VEGF distributions, gradients, and receptor binding. Significant VEGF gradients (up to 12% change in VEGF concentration over 10 mum were predicted in resting skeletal muscle with uniform VEGF secretion, due to non-uniform capillary distribution. These relative VEGF gradients were not sensitive to extracellular matrix composition, or to the overall VEGF expression level, but were dependent on VEGF receptor density and affinity, and internalization rate parameters. VEGF upregulation in a subset of fibers increased VEGF gradients, simulating transplantation of pro-angiogenic myoblasts, a possible therapy for ischemic diseases. The number and relative position of overexpressing fibers determined the VEGF gradients and distribution of VEGF receptor activation. With total VEGF expression level in the tissue unchanged, concentrating overexpression into a small number of adjacent fibers can increase the number of capillaries activated. The VEGF concentration gradients predicted for resting muscle (average 3% VEGF/10 mum is sufficient for cellular sensing; the tip cell of a vessel sprout is approximately 50 mum long. The VEGF gradients also result in heterogeneity in

  15. Asymptotic distribution of Moran test in spatial econometric autoregressive models%空间经济计量滞后模型Moran检验的渐近分布

    Institute of Scientific and Technical Information of China (English)

    欧变玲; 龙志和; 林光平

    2011-01-01

    基于空间经济计量滞后模型的2SLS残差,证明误差项服从正态独立同分布时,空间滞后模型Moran检验渐近服从正态分布,提出OLL-Moran检验②.Monte Carlo实验结果显示,与KP-Moran检验相比,提出的OLL-Moran检验的水平扭曲更低、功效更高.OLL-Moran检验具有良好的有限样本性质,能够更有效地检验空间经济计量滞后模型估计残差间的空间关系.%In this paper, based on the 2SLS residuals in the spatial econometric autoregressive model, we prove that Moran test is asymptotically normal distribution when the error is independent and identically distributed , and then establish OLL-Moran test. Monte Carlo experiment results show that size distortion of OLL-Moran test in this research is less than that of KP-Moran, and the power of OLL-Moran test is more than that of KP-Moran. OLL-Moran test has good finite sample performance, and could check effectively spatial correlation among 2SLS residuals in the spatial econometric autoregressive model.

  16. FORHYCS - a coupled, spatially distributed eco-hydrological model for assessing climate and land use change impact in Switzerland at landscape scale

    Science.gov (United States)

    Speich, Matthias; Lischke, Heike; Scherstjanoi, Marc; Zappa, Massimiliano

    2016-04-01

    Various modeling studies have shown that global climate and land use change are expected to have important impacts on the hydrology and vegetation dynamics of European mountainous regions. However, these models focus on either hydrological or ecological processes, while the respective other processes are represented in a simplified manner, e.g. using static parameters or empirical process formulations. This way, dynamic feedbacks between the water cycle and forest dynamics are neglected, which can influence long-term predictions. Integration of dynamic hydrological and ecological models increases the confidence in long-term forecasts by explicitly addressing this feedback. We present FORHYCS, a spatially distributed, coupled eco-hydrological model. FORHYCS is designed for application in temperate and Alpine regions at landscape scale, and consists of the integration of the rainfall-runoff model PREVAH and the forest-landscape model TreeMig. Both these models have previously been used in long-term climate impact studies in Switzerland. In the new, coupled model, both individual models are run simultaneously while exchanging information via a set of interface variables. The forest-landscape model is driven by annual bioclimatic variables (drought stress, snow cover duration, degree-day sum and winter chill), which are obtained through yearly integration of the local water balance as calculated by the hydrological model at an hourly time step. Growth, establishment and mortality of tree species, as simulated by the forest-landscape model, are used to calculate vegetation parameters (leaf area index and fractional vegetation cover), which in turn influence the partitioning of precipitation into interception loss, transpiration, evaporation, soil moisture storage and runoff. Furthermore, the vegetation cover in each grid cell is used to determine and update its land cover class, which allows the simulation of forest advancement or retreat and its hydrological

  17. A data-driven model of the generation of human EEG based on a spatially distributed stochastic wave equation.

    Science.gov (United States)

    Galka, Andreas; Ozaki, Tohru; Muhle, Hiltrud; Stephani, Ulrich; Siniatchkin, Michael

    2008-06-01

    We discuss a model for the dynamics of the primary current density vector field within the grey matter of human brain. The model is based on a linear damped wave equation, driven by a stochastic term. By employing a realistically shaped average brain model and an estimate of the matrix which maps the primary currents distributed over grey matter to the electric potentials at the surface of the head, the model can be put into relation with recordings of the electroencephalogram (EEG). Through this step it becomes possible to employ EEG recordings for the purpose of estimating the primary current density vector field, i.e. finding a solution of the inverse problem of EEG generation. As a technique for inferring the unobserved high-dimensional primary current density field from EEG data of much lower dimension, a linear state space modelling approach is suggested, based on a generalisation of Kalman filtering, in combination with maximum-likelihood parameter estimation. The resulting algorithm for estimating dynamical solutions of the EEG inverse problem is applied to the task of localising the source of an epileptic spike from a clinical EEG data set; for comparison, we apply to the same task also a non-dynamical standard algorithm.

  18. Application of GIS and logistic regression to fossil pollen data in modelling present and past spatial distribution of the Colombian savanna

    Energy Technology Data Exchange (ETDEWEB)

    Flantua, Suzette G.A.; Boxel, John H. van; Hooghiemstra, Henry; Smaalen, John van [University of Amsterdam, Faculty of Science, Institute for Biodiversity and Ecosystem Dynamics, Amsterdam (Netherlands)

    2007-12-15

    Climate changes affect the abundance, geographic extent, and floral composition of vegetation, which are reflected in the pollen rain. Sediment cores taken from lakes and peat bogs can be analysed for their pollen content. The fossil pollen records provide information on the temporal changes in climate and palaeo-environments. Although the complexity of the variables influencing vegetation distribution requires a multi-dimensional approach, only a few research projects have used GIS to analyse pollen data. This paper presents a new approach to palynological data analysis by combining GIS and spatial modelling. Eastern Colombia was chosen as a study area owing to the migration of the forest-savanna boundary since the last glacial maximum, and the availability of pollen records. Logistic regression has been used to identify the climatic variables that determine the distribution of savanna and forest in eastern Colombia. These variables were used to create a predictive land-cover model, which was subsequently implemented into a GIS to perform spatial analysis on the results. The palynological data from the study area were incorporated into the GIS. Reconstructed maps of past vegetation distribution by interpolation showed a new approach of regional multi-site data synthesis related to climatic parameters. The logistic regression model resulted in a map with 85.7% predictive accuracy, which is considered useful for the reconstruction of future and past land-cover distributions. The suitability of palynological GIS application depends on the number of pollen sites, the distribution of the pollen sites over the area of interest, and the degree of overlap of the age ranges of the pollen records. (orig.)

  19. Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture

    Science.gov (United States)

    Rajib, Mohammad Adnan; Merwade, Venkatesh; Yu, Zhiqiang

    2016-05-01

    The objective of this study is to evaluate the relative potential of spatially distributed surface and root zone soil moisture estimates in calibration of Soil and Water Assessment Tool (SWAT) toward improving its hydrologic predictability with reduced equifinality. The Upper Wabash and Cedar Creek, two agriculture-dominated watersheds in Indiana, USA are considered as test beds to implement this multi-objective SWAT calibration. The proposed calibration approach is performed using remotely sensed Advanced Microwave Scanning Radiometer-Earth Observing System surface soil moisture (∼1 cm top soil) estimates (NASA's Aqua daily level-3 gridded land surface product-version 2) in sub-basin/HRU level together with observed streamflow data at the watershed's outlet. Although application of remote sensing data in calibration improves surface soil moisture simulation, other hydrologic components such as streamflow, evapotranspiration (ET) and deeper layer moisture content in SWAT remain less affected. An extension of this approach to apply root zone soil moisture estimates from limited field sensor data showed considerable improvement in the simulation of root zone moisture content and streamflow with corresponding observed data. Difference in relative sensitivity of parameters and reduced extent of uncertainty are also evident from the proposed method, especially for parameters related to the subsurface hydrologic processes. Regardless, precise representation of vertical soil moisture stratification at different layers is difficult with current SWAT ET depletion mechanism. While the results from this study show that root zone soil moisture can play a major role in SWAT calibration, more studies including various soil moisture data products are necessary to validate the proposed approach.

  20. Assessment of the Impact of the Spatial Distribution of Isolated and Riparian Wetlands on Watershed Hydrology using a Mathematical Modelling Framework

    Science.gov (United States)

    Fossey, M.; Rousseau, A. N.; Savary, S.; Royer, A.

    2014-12-01

    Wetlands play a significant role on the hydrological cycle, reducing peak flows through water storage functions and sustaining low flows through slow release of water. However, their impacts on water resource availability and flood control are mainly driven by wetland types and locations within a watershed. So, despite the general agreement about these major hydrological functions, little is known about their spatial and typological influences. Consequently, assessing the quantitative impact of wetlands on hydrological regimes has become a relevant issue for both the scientific community and the decision-maker community. To investigate the hydrologic response at the watershed scale, mathematical modelling has been a well-accepted framework. Specific isolated and riparian wetland modules were implemented in the PHYSITEL/HYDROTEL distributed hydrological modelling platform to assess the impact of the spatial distribution of isolated and riparian wetlands on the stream flows of the Becancour River watershed, Quebec, Canada. More specifically, the focus was on assessing whether stream flow parameters, including peak flow, low flow and flow volume, were related to: (i) the percentage and the distribution of wetlands in the watershed, (ii) geographic location of wetlands, and (iii) seasons. Preliminary results suggest that: (i) integration of specific wetland modules can slightly improve HYDROTEL's ability to replicate basic hydrograph characteristics; and (ii) isolated and riparian wetlands have individual space- and time-dependent impacts on the hydrologic response of the study watershed.

  1. Spatially Distributed Fossil Fuel CO2 Emissions in Two U.S. Cities Using Activity Data: Applicability for Global Cities and High-resolution Atmospheric Inversion Modeling

    Science.gov (United States)

    Rao, P.; Lauvaux, T.; Oda, T.; Tang, J.; Gurney, K. R.; Eldering, A.; Miller, C. E.; Duren, R. M.

    2015-12-01

    Urban fossil fuel CO2 (FFCO2) emissions play a significant role in the global C cycle and climate change. To better understand and monitor urban FFCO2 emissions, we need timely estimates at fine spatial resolution. However, currently available global estimates have coarse resolution of 10km or more except for some US cities which have finer FFCO2 estimates at ~250m (Hestia Project; Gurney et al. 2012). We construct an urban sectoral emission model for the U.S. based on multiple cities and spatially disaggregate each sector to arrive at finely resolved emissions data products. We then calibrate our results with other datasets to confirm whether this approach can be applicable in any global urban domain. We acquire 2012 annual emissions estimates from EPA's national emissions inventory for the Los Angeles megacity and Indianapolis and apply our U.S. urban sectoral emission model to derive sectoral estimates. We then spatially distribute these sectoral emissions based on activity and other proxy data. We combine remote sensing and open source data such as national land cover data, population density, impervious surface, and road maps to develop intensity metrics of energy use within each sector. These intensity metrics are then used to spatially allocate emissions within each sector. We incorporate global powerplant emissions data to complete our emissions datasets. We validate our urban FFCO2 emissions datasets, both at sectoral and city scales, against Hestia results for two cities and, in case of Indianapolis, compare to results from inverse modeling of atmospheric CO2 concentrations. This study will guide the next phase of research by developing the methodology to determine the spatial variation of FFCO2 emissions in select cities around the world.

  2. Three perceptions of the evapotranspiration landscape: comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances

    Directory of Open Access Journals (Sweden)

    T. Conradt

    2013-01-01

    Full Text Available A problem encountered by many distributed hydrological modelling studies is high simulation errors at interior gauges when the model is only globally calibrated at the outlet. We simulated river runoff in the Elbe River basin in Central Europe (148 268 km2 with the semi-distributed eco-hydrological model SWIM. While global parameter optimisation led to Nash–Sutcliffe efficiencies of 0.9 at the main outlet gauge, comparisons with measured runoff series at interior points revealed large deviations. Therefore, we compared three different stategies for deriving sub-basin evapotranspiration: (1 modelled by SWIM without any spatial calibration, (2 derived from remotely sensed surface temperatures, and (3 calculated from long-term precipitation and discharge data. The results show certain consistencies between the modelled and the remote sensing based evapotranspiration rates, but there seems to be no correlation between remote sensing and water balance based estimations. Subsequent analyses for single sub-basins identify input weather data and systematic error amplification in inter-gauge discharge calculations as sources of uncertainty. Further probable causes for epistemic uncertainties could be pinpointed. The results encourage careful utilisation of different data sources for calibration and validation procedures in distributed hydrological modelling.

  3. Developing a Spatially Distributed Terrestrial Biogeochemical Cycle Modeling System to Support the Management of Fort Benning and its Surrounding Areas

    Science.gov (United States)

    2010-12-01

    39  Figure 25. Spatial variation and temporal changes of soil...stock, major management/disturbance events, biomass removal, etc. (3) Any ground measurements (e.g. leaf area index, canopy cover, tree phenology ...Therefore, it is important to incorporate the impacts of spatial variation of soil and vegetation into the calculation of flow accumulation. In this

  4. 蔬菜冷链物流时空运行模式的研究%Temporal-spatial Distribution Model of Co Chain Logistics for Vegetables

    Institute of Scientific and Technical Information of China (English)

    陈绍慧; 张鹏; 鲁晓翔; 李江阔

    2012-01-01

    [目的]对蔬荣冷链物流的时空运行模式进行研究。[方法]以西兰花为例,以时间和空间转变为依据,从成本和效益角度提出蔬桨冷链物流时空运行模式,并对冷链物流中信息时效性、效率、风险和产品附加值、客户满意度等效益评价体系所产生的效益进行综合评价。[结果]蔬菜冷链物流时空运行模式可有效提高蔬菜冷链物流效率。[结论]蔬菜冷链物流时空运行模式可评价蔬菜时空运行中的成本与效益。%[Objective] The aim was to study on temporal-spatial distribution model of cold chain logistics for vegetables. [Method] Broccoli was taken as an example. Detailedly, time-space distribution model of cold chain logistics for broccoli was proposed from standpoints of costs and benefits based on changes of time and space, and a comprehensive evaluation was made on timeliness, efficiency, risks, added- value of products and satisfaction of information in cold-chain logistics. [Result] The efficiency of cold chain logistics for vegetable can be greatly improved by temporal- spatial distribution model of cold chain logistics. [Conclusion] Costs and benefits of vegetables in temporal-apstial distribution could be evaluated by the model.

  5. Assessing Spatial and Attribute Errors of Input Data in Large National Datasets for use in Population Distribution Models

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Lauren A [ORNL; Urban, Marie L [ORNL; Myers, Aaron T [ORNL; Bhaduri, Budhendra L [ORNL; Bright, Eddie A [ORNL; Coleman, Phil R [ORNL

    2007-01-01

    Geospatial technologies and digital data have developed and disseminated rapidly in conjunction with increasing computing performance and internet availability. The ability to store and transmit large datasets has encouraged the development of national datasets in geospatial format. National datasets are used by numerous agencies for analysis and modeling purposes because these datasets are standardized, and are considered to be of acceptable accuracy. At Oak Ridge National Laboratory, a national population model incorporating multiple ancillary variables was developed and one of the inputs required is a school database. This paper examines inaccuracies present within two national school datasets, TeleAtlas North America (TANA) and National Center of Education Statistics (NCES). Schools are an important component of the population model, because they serve as locations containing dense clusters of vulnerable populations. It is therefore essential to validate the quality of the school input data, which was made possible by increasing national coverage of high resolution imagery. Schools were also chosen since a 'real-world' representation of K-12 schools for the Philadelphia School District was produced; thereby enabling 'ground-truthing' of the national datasets. Analyses found the national datasets not standardized and incomplete, containing 76 to 90% of existing schools. The temporal accuracy of enrollment values of updating national datasets resulted in 89% inaccuracy to match 2003 data. Spatial rectification was required for 87% of the NCES points, of which 58% of the errors were attributed to the geocoding process. Lastly, it was found that by combining the two national datasets together, the resultant dataset provided a more useful and accurate solution. Acknowledgment Prepared by Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6285, managed by UT-Battelle, LLC for the U. S. Department of Energy undercontract no

  6. A sampling and analytical approach to develop spatial distribution models for sagebrush-associated species: Chapter 4

    Science.gov (United States)

    Leu, Matthias; Hanser, Steven E.; Aldridge, Cameron L.; Nielsen, Scott E.; Cade, Brian S.; Knick, Steven T.; Hanser, Steven E.; Leu, Matthias; Knick, Steven T.; Aldridge, Cameron L.

    2011-01-01

    Understanding multi-scale floral and faunal responses to human land use is crucial for informing natural resource management and conservation planning. However, our knowledge on how land use influences sagebrush (Artemisia spp.) ecosystems is limited primarily to site-specific studies. To fill this void, studies across large regions are needed that address how species are distributed relative to type, extent, and intensity of land use. We present a study design for the Wyoming Basin Ecoregional Assessment (WBEA) to sample sagebrush-associated flora and fauna along a land cover-human land use gradient. To minimize field costs, we sampled various taxonomic groups simultaneously on transects (ungulates and lagomorphs), point counts (song birds), and area-searches of 7.29-ha survey blocks (pellet counts, burrow counts, reptile surveys, medium-sized mammals, ant mounds, rodent trapping, and vegetation sampling of native and exotic plants). We then present an exploratory approach to develop species occurrence and abundance models when a priori model building is not an option. Our study design has broad applications for large-scale evaluations of arid ecosystems.

  7. Modelling the local distribution of cold-water corals in relation to bathymetric variables: Adding spatial context to deep-sea video data

    Science.gov (United States)

    Dolan, Margaret F. J.; Grehan, Anthony J.; Guinan, Janine C.; Brown, Colin

    2008-11-01

    Video data and high-resolution multibeam bathymetry were acquired using a Remotely Operated Vehicle (ROV) on the flank of a carbonate mound (˜850 m depth) in the Porcupine Seabight, SW Ireland. The ROV-mounted multibeam system revealed details of bathymetry that were not resolved by ship-borne multibeam survey, but appear to be important in structuring the distribution of the cold-water corals Lophelia pertusa and Madrepora oculata. Quantitative measures of slope, orientation, roughness and curvature were calculated from the ROV multibeam bathymetry data across a range of spatial scales. These parameters were analysed for their ecological relevance to the distribution of the corals and used in an Ecological Niche Factor Analysis (ENFA) to identify the most suitable areas for coral colonisation within the extent of our ROV multibeam data. The suitability map covers an area nine times the size of the area imaged directly by video. Cross-validation of the results with video data indicates that the predictions are reliable. This combined survey and modelling approach offers a comprehensive method for ground-truthing discrete seabed features such as mounds. It provides spatial context to high-resolution deep-water video observations and highlights the importance of bathymetric variables in influencing coral distribution.

  8. Simulation of temporal and spatial distribution of required irrigation water by crop models and the pan evaporation coefficient method

    Science.gov (United States)

    Yang, Yan-min; Yang, Yonghui; Han, Shu-min; Hu, Yu-kun

    2009-07-01

    Hebei Plain is the most important agricultural belt in North China. Intensive irrigation, low and uneven precipitation have led to severe water shortage on the plain. This study is an attempt to resolve this crucial issue of water shortage for sustainable agricultural production and water resources management. The paper models distributed regional irrigation requirement for a range of cultivated crops on the plain. Classic crop models like DSSAT- wheat/maize and COTTON2K are used in combination with pan-evaporation coefficient method to estimate water requirements for wheat, corn, cotton, fruit-trees and vegetables. The approach is more accurate than the static approach adopted in previous studies. This is because the combination use of crop models and pan-evaporation coefficient method dynamically accounts for irrigation requirement at different growth stages of crops, agronomic practices, and field and climatic conditions. The simulation results show increasing Required Irrigation Amount (RIA) with time. RIA ranges from 5.08×109 m3 to 14.42×109 m3 for the period 1986~2006, with an annual average of 10.6×109 m3. Percent average water use by wheat, fruit trees, vegetable, corn and cotton is 41%, 12%, 12%, 11%, 7% and 17% respectively. RIA for April and May (the period with the highest irrigation water use) is 1.78×109 m3 and 2.41×109 m3 respectively. The counties in the piedmont regions of Mount Taihang have high RIA while the central and eastern regions/counties have low irrigation requirement.

  9. Mortality as a key driver of the spatial distribution of aboveground biomass in Amazonian forest: results from a dynamic vegetation model

    Directory of Open Access Journals (Sweden)

    N. Delbart

    2010-10-01

    Full Text Available Dynamic Vegetation Models (DVMs simulate energy, water and carbon fluxes between the ecosystem and the atmosphere, between the vegetation and the soil, and between plant organs. They also estimate the potential biomass of a forest in equilibrium having grown under a given climate and atmospheric CO2 level. In this study, we evaluate the Above Ground Woody Biomass (AGWB and the above ground woody Net Primary Productivity (NPPAGW simulated by the DVM ORCHIDEE across Amazonian forests, by comparing the simulation results to a large set of ground measurements (220 sites for biomass, 104 sites for NPPAGW. We found that the NPPAGW is on average overestimated by 63%. We also found that the fraction of biomass that is lost through mortality is 85% too high. These model biases nearly compensate each other to give an average simulated AGWB close to the ground measurement average. Nevertheless, the simulated AGWB spatial distribution differs significantly from the observations. Then, we analyse the discrepancies in biomass with regards to discrepancies in NPPAGW and those in the rate of mortality. When we correct for the error in NPPAGW, the errors on the spatial variations in AGWB are exacerbated, showing clearly that a large part of the misrepresentation of biomass comes from a wrong modelling of mortality processes.

    Previous studies showed that Amazonian forests with high productivity have a higher mortality rate than forests with lower productivity. We introduce this relationship, which results in strongly improved modelling of biomass and of its spatial variations. We discuss the possibility of modifying the mortality modelling in ORCHIDEE, and the opportunity to improve forest productivity modelling through the integration of biomass measurements, in particular from remote sensing.

  10. Applying the Triangle Method for the parameterization of irrigated areas as input for spatially distributed hydrological modeling - Assessing future drought risk in the Gaza Strip (Palestine).

    Science.gov (United States)

    Gampe, David; Ludwig, Ralf; Qahman, Khalid; Afifi, Samir

    2016-02-01

    In the Mediterranean region, particularly in the Gaza strip, an increased risk of drought is among the major concerns related to climate change. The impacts of climate change on water availability, drought risk and food security can be assessed by means of hydro-climatological modeling. However, the region is prone to severe observation data scarcity, which limits the potential for robust model parameterization, calibration and validation. In this study, the physically based, spatially distributed hydrological model WaSiM is parameterized and evaluated using satellite imagery to assess hydrological quantities. The Triangle Method estimates actual evapotranspiration (ETR) through the Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST) provided by Landsat TM imagery. So-derived spatially distributed evapotranspiration is then used in two ways: first a subset of the imagery is used to parameterize the irrigation module of WaSiM and second, withheld scenes are applied to evaluate the performance of the hydrological model in the data scarce study area. The results show acceptable overall correlation with the validation scenes (r=0.53) and an improvement over the usual irrigation parameterization scheme using land use information exclusively. This model setup is then applied for future drought risk assessment in the Gaza Strip using a small ensemble of four regional climate projections for the period 2041-2070. Hydrological modeling reveals an increased risk of drought, assessed with an evapotranspiration index, compared to the reference period 1971-2000. Current irrigation procedures cannot maintain the agricultural productivity under future conditions without adaptation.

  11. An efficient method for applying a differential equation to deriving the spatial distribution of specific catchment area from gridded digital elevation models

    Science.gov (United States)

    Qin, Cheng-Zhi; Ai, Bei-Bei; Zhu, A.-Xing; Liu, Jun-Zhi

    2017-03-01

    Deriving the spatial distribution of specific catchment area (SCA) from a gridded digital elevation model (DEM) is one of the most important issues in digital terrain analysis. Conventional methods usually estimate SCA for each cell using a flow direction algorithm, but the results obtained are often unsatisfactory. Recently, Gallant and Hutchinson (2011, Water Resources Research, 47(5), W05535) proposed a differential equation which quantifies the change of SCA along a slope line, and thus the numerical solution of SCA at any point on a surface can be calculated accurately by integrating the differential equation. However, obtaining the numerical SCA solution based on this differential equation is so computationally intensive that it is too time-consuming to use it to derive the overall SCA spatial distribution from a gridded DEM. In this study, we developed a parallel algorithm based on OpenMP to make the numerical SCA solution based on Gallant and Hutchinson (2011)'s differential equation practical to derive the spatial distribution of SCA from a gridded DEM. Experiments based on two artificial surfaces with theoretical SCA and a more complex real terrain surface demonstrated that the proposed parallel algorithm obtained satisfactory acceleration performance and a much lower error than the MFD-md algorithm, which is a representative of conventional grid-based flow direction algorithms. Due to the speedup effects of the proposed parallel algorithm, we analyzed the effects of the DEM grid size and integration step length on the numerical SCA solution in detailed experiments. The experimental results suggested that the proposed algorithm performed best normally at the resolution of 5 m. A step ratio of 0.5 is suitable in applications of the proposed parallel algorithm.

  12. Modelling the spatial and seasonal distribution of suitable habitats of schistosomiasis intermediate host snails using Maxent in Ndumo area, KwaZulu-Natal Province, South Africa.

    Science.gov (United States)

    Manyangadze, Tawanda; Chimbari, Moses John; Gebreslasie, Michael; Ceccato, Pietro; Mukaratirwa, Samson

    2016-11-04

    Schistosomiasis is a snail-borne disease endemic in sub-Saharan Africa transmitted by freshwater snails. The distribution of schistosomiasis coincides with that of the intermediate hosts as determined by climatic and environmental factors. The aim of this paper was to model the spatial and seasonal distribution of suitable habitats for Bulinus globosus and Biomphalaria pfeifferi snail species (intermediate hosts for Schistosoma haematobium and Schistosoma mansoni, respectively) in the Ndumo area of uMkhanyakude district, South Africa. Maximum Entropy (Maxent) modelling technique was used to predict the distribution of suitable habitats for B. globosus and B. pfeifferi using presence-only datasets with ≥ 5 and ≤ 12 sampling points in different seasons. Precipitation, maximum and minimum temperatures, Normalised Difference Vegetation Index (NDVI), Normalised Difference Water Index (NDWI), pH, slope and Enhanced Vegetation Index (EVI) were the background variables in the Maxent models. The models were validated using the area under the curve (AUC) and omission rate. The predicted suitable habitats for intermediate snail hosts varied with seasons. The AUC for models in all seasons ranged from 0.71 to 1 and the prediction rates were between 0.8 and 0.9. Although B. globosus was found at more localities in the Ndumo area, there was also evidence of cohabiting with B. pfiefferi at some of the locations. NDWI had significant contribution to the models in all seasons. The Maxent model is robust in snail habitat suitability modelling even with small dataset of presence-only sampling sites. Application of the methods and design used in this study may be useful in developing a control and management programme for schistosomiasis in the Ndumo area.

  13. Spatio-temporal Analysis of Hydrological Drought at Catchment Scale Using a Spatially-distributed Hydrological Model

    NARCIS (Netherlands)

    Mercado, Vitali Diaz; Perez, Gerald Corzo; Solomatine, Dimitri; Lanen, Van Henny A.J.

    2016-01-01

    Lately, drought is more intense and much more severe around the globe, causing more deaths than other hazards in the past century. Drought can be characterized quantitatively for its spatial extent, intensity and duration by using drought indicators. Several indicators have been developed in orde

  14. Spatio-temporal Analysis of Hydrological Drought at Catchment Scale Using a Spatially-distributed Hydrological Model

    NARCIS (Netherlands)

    Mercado, Vitali Diaz; Perez, Gerald Corzo; Solomatine, Dimitri; Lanen, Van Henny A.J.

    2016-01-01

    Lately, drought is more intense and much more severe around the globe, causing more deaths than other hazards in the past century. Drought can be characterized quantitatively for its spatial extent, intensity and duration by using drought indicators. Several indicators have been developed in orde

  15. Integrating field measurements, a geomorphological map and stochastic modelling to estimate the spatially distributed rockfall sediment budget of the Upper Kaunertal, Austrian Central Alps

    Science.gov (United States)

    Heckmann, Tobias; Hilger, Ludwig; Vehling, Lucas; Becht, Michael

    2016-05-01

    The estimation of catchment-scale rockfall rates relies on the regionalisation of local measurements. Here, we propose a new framework for such a regionalisation by the example of a case study in the Upper Kaunertal, Austrian Central Alps (62.5 km2). Measurements of rockfall deposition during 12 months onto six collector nets within the study area were combined with published mean annual rates from the literature, and a probability density function was fitted to these data. A numerical model involving a random walk routing scheme and a one-parameter friction model was used to simulate rockfall trajectories, starting from potential rockfall source areas that were delineated from a digital elevation model. Rockfall rates sampled from the fitted probability density function were assigned to these trajectories in order to model the spatial distribution and to estimate the amount of rockfall deposition. By recording all trajectories as edges of a network of raster cells, and by aggregating the latter to landforms (or landform types) as delineated in a geomorphological map of the study area, rockfall sediment flux from sources to different landforms could be quantified. Specifically, the geomorphic coupling of rockfall sources to storage landforms and the glacial and fluvial sediment cascade was investigated using this network model. The total rockfall contribution to the sediment budget of the Upper Kaunertal is estimated at c. 8000 Mg yr- 1, 16.5% of which is delivered to the glaciers, and hence to the proglacial zone. The network approach is favourable, for example because multiple scenarios (involving different probability density functions) can be calculated on the basis of the same set of trajectories, and because deposits can be back-linked to their respective sources. While the methodological framework constitutes the main aim of our paper, we also discuss how the estimation of the budget can be improved on the basis of spatially distributed production rates.

  16. Spatial distribution of impact craters on Deimos

    Science.gov (United States)

    Hirata, Naoyuki

    2017-05-01

    Deimos, one of the Martian moons, has numerous impact craters. However, it is unclear whether crater saturation has been reached on this satellite. To address this issue, we apply a statistical test known as nearest-neighbor analysis to analyze the crater distribution of Deimos. When a planetary surface such as the Moon is saturated with impact craters, the spatial distribution of craters is generally changed from random to more ordered. We measured impact craters on Deimos from Viking and HiRISE images and found (1) that the power law of the size-frequency distribution of the craters is approximately -1.7, which is significantly shallower than those of potential impactors, and (2) that the spatial distribution of craters over 30 m in diameter cannot be statistically distinguished from completely random distribution, which indicates that the surface of Deimos is inconsistent with a surface saturated with impact craters. Although a crater size-frequency distribution curve with a slope of -2 is generally interpreted as indicating saturation equilibrium, it is here proposed that two competing mechanisms, seismic shaking and ejecta emplacement, have played a major role in erasing craters on Deimos and are therefore responsible for the shallow slope of this curve. The observed crater density may have reached steady state owing to the obliterations induced by the two competing mechanisms. Such an occurrence indicates that the surface is saturated with impact craters despite the random distribution of craters on Deimos. Therefore, this work proposes that the age determined by the current craters on Deimos reflects neither the age of Deimos itself nor that of the formation of the large concavity centered at its south pole because craters should be removed by later impacts. However, a few of the largest craters on Deimos may be indicative of the age of the south pole event.

  17. Spatial and temporal predictions of moose winter distribution.

    Science.gov (United States)

    Månsson, J; Bunnefeld, N; Andrén, H; Ericsson, G

    2012-10-01

    Herbivores are usually distributed unevenly across the landscape often because of variation in resource availability. We used zero-inflated generalised additive models (to account for data with a high number of zeros) that include georeferences to predict winter distribution of a large herbivore (moose Alces alces). Moose distribution was analysed in relation to forage availability and distance to neighbouring sites. Our results showed that the ability to explain moose distribution indexed by pellet count data at a local scale increased when spatial information (longitude and latitude) was added to the model compared to the model only including food availability. By using the relationship between moose and forage distribution, and the spatial information, we predicted patch choice by moose reasonably well in 2 out of 4 years. However, the distribution of moose was also influenced by weather conditions, as it was most clumped in the year with most snow. In conclusion, our study lends support for a non-linear approach using georeferences for a comprehensive understanding of herbivore distribution at a small scale. This result also indicates that the use of a certain patch by moose not only depends on the selected patch itself but is also influenced by the neighbouring patch and factors at a larger spatial scale, such as moose management influencing the density above moose home range level. The relatively high proportion of unexplained variation suggests that the use of a certain patch is also influenced by other factors such as topography, predation, competition, weather conditions, and wildlife management strategies.

  18. ArcNEMO, a spatially distributed nutrient emission model developed in Python to quantify losses of nitrogen and phosphorous from agriculture to surface waters

    Science.gov (United States)

    Van Opstal, Mattias; Tits, Mia; Beckers, Veronique; Batelaan, Okke; Van Orshoven, Jos; Elsen, Annemie; Diels, Jan; D'heygere, Tom; Van Hoof, Kor

    2014-05-01

    Pollution of surface water bodies with nitrogen (N) and phosphorous (P) from agricultural sources is a major problem in areas with intensive agriculture in Europe. The Flemish Environment Agency requires information on how spatially explicit policy measures on manure and fertilizer use, and changes in land use and soil management affect the N and P concentration in the surface waters in the region of Flanders, Belgium. To assist in this, a new spatially distributed, mechanistic nutrient emission model was developed in the open-source language Python. The model is called ArcNEMO (Nutrient Emission MOdel). The model is fully integrated in ArcGIS, but could be easily adapted to work with open-source GIS software. In Flanders, detailed information is available each year on the delineation of each agricultural parcel and the crops grown on them. Parcels are linked to farms, and for each farm yearly manure and fertilizer use is available. To take full advantage of this information and to be able to simulate nutrient losses to the high-density surface water network, the model makes use of grid cells of 50 by 50m. A fertilizer allocation model was developed to calculate from the yearly parcel and farm data the fertilizer and manure input per grid cell for further use in the ArcNEMO-model. The model architecture was chosen such that the model can be used to simulate spatially explicit monthly discharge and losses of N and P to the surface water for the whole of Flanders (13,500 km²) over periods of 10-20 years. The extended time period is necessary because residence times in groundwater and the rates of organic matter turnover imply that water quality reacts slowly to changes of land use and fertilization practices. Vertical water flow and nutrient transport in the unsaturated zone are described per grid cell using a cascading bucket-type model with daily time steps. Groundwater flow is described by solving the 2D-groundwater flow equation using an explicit numerical

  19. The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments

    Directory of Open Access Journals (Sweden)

    C. Zhao

    2010-04-01

    Full Text Available A fully coupled meteorology-chemistry-aerosol model (WRF-Chem is applied to simulate mineral dust and its shortwave (SW radiative forcing over North Africa. Two dust emission schemes (GOCART and DUSTRAN and two aerosol models (MADE/SORGAM and MOSAIC are adopted in simulations to investigate the modeling sensitivities to dust emissions and aerosol size treatments. The modeled size distribution and spatial variability of mineral dust and its radiative properties are evaluated using measurements (ground-based, aircraft, and satellites during the AMMA SOP0 campaign from 6 January to 3 February of 2006 (the SOP0 period over North Africa. Two dust emission schemes generally simulate similar spatial distributions and temporal evolutions of dust emissions. Simulations using the GOCART scheme with different initial (emitted dust size distributions show that the difference of initial dust size distributions can result in significant difference (up to ~50% in simulating SW dust heating and SW dust radiative forcing at the surface over the Sahel region. The modal approach of MADE/SORGAM retains 25% more fine dust particles (radius <1.25 μm but 8% less coarse dust particles (radius >1.25 μm than the sectional approach of MOSAIC in simulations using the same size-resolved dust emissions. Consequently, MADE/SORGAM simulates 11% higher AOD, up to 13% lower SW dust heating rate, and 15% larger (more negative SW dust radiative forcing at the surface than MOSAIC over the Sahel region. In the daytime of the SOP0 period, the model simulations show that mineral dust heats the lower atmosphere (1–3 km with a maximum rate of 0.8±0.5 K day−1 below 1 km and reduces the downwelling SW radiation at the surface by up to 58 W m−2 over the Sahel region. This highlights the importance of including dust radiative impact in understanding the regional climate of North Africa. When compared to the available measurements, the WRF-Chem simulations can

  20. Novel Image Processing Interface to Relate DSB Spatial Distribution from Immunofluorescence Foci Experiments to the State-of-the-Art Models of DNA Breakage

    Science.gov (United States)

    Ponomarev, A. L.; Cucinotta, F. A.

    2004-01-01

    A recently developed software (NASARadiationTrackImage) allows a quick and automatic segmentation of foci that indicate spatial localization of specific proteins that are visualized by immunofluorescence. Of interest are the spatial and temporal distribution of foci such as gammaH2AX, a signal of the phosphorylation of a variant of the histone H2A that has been shown to correspond to DSBs, or proteins involved in DSB processing, such as ATM, Rad51, and p53, following exposures of human cells to high charge and energy (HZE) ion irradiation. Experimental data are recorded as sets of two-dimensional images in color with cells and foci of gammaH2AX, ATM, Rad51 or others shown. Different cells, levels of radiation and timing after radiation were recorded. The software allows us to calculate the number of foci per cell, overall intensity of light in foci and their spatial organization. A simple statistical model allows for testing of foci overlap (eclipse). A more complex statistical model previously known as DNAbreak simulates track structure and random chromosome geometry. It has one adjustable parameter corresponding to an average intensity of DSB creation in cubic micrometers of DNA volume per particle track or unit dose. Its limitation is the low-resolution limit both in physical space and DSB's along DNA. It works adequately on the scale of a cell and provides further insights on how the geometry of tracks and DNA affects genomic damage of the cell and subsequent repair. Future developments of the model for the description of the time evolution of DNA damage response proteins, and more robust track structure models will be discussed.

  1. Analysis of the spatial layer discrete cosine transform coefficient distribution and its application to rate model for H.264/SVC encoder

    Directory of Open Access Journals (Sweden)

    Szu-Wei Lee

    2014-03-01

    Full Text Available Knowledge of the discrete cosine transform coefficient distribution (DCT-DIST is important for the encoder design. For example, rate control relies on this knowledge to estimate a possible bit rate and then decide proper coding parameters before the actual encoding task is performed. Therefore the rate control performance is fairly dependent on how accurately the DCT-DIST is modelled. The spatial enhancement layer (SL DCT-DIST for H.264 scalable video coding (SVC is studied in this Letter. SL DCT-DIST knowledge is furthermore used to derive a novel rate model. Our results can help design a proper rate control module for the H.264/SVC encoder.

  2. Building dynamic spatial environmental models

    NARCIS (Netherlands)

    Karssenberg, D.J.

    2003-01-01

    An environmental model is a representation or imitation of complex natural phenomena that can be discerned by human cognitive processes. This thesis deals with the type of environmental models referred to as dynamic spatial environmental models. The word ‘spatial’ refers to the geographic domain whi

  3. Spatial distribution of pingos in Northern Asia

    Science.gov (United States)

    Grosse, G.; Jones, Benjamin M.

    2010-01-01

    Pingos are prominent periglacial landforms in vast regions of the Arctic and Subarctic. They are indicators of modern and past conditions of permafrost, surface geology, hydrology and climate. A first version of a detailed spatial geodatabase of more than 6000 pingo locations in a 3.5 ?? 106 km2 region of Northern Asia was assembled from topographic maps. A first order analysis was carried out with respect to permafrost, landscape characteristics, surface geology, hydrology, climate, and elevation datasets using a Geographic Information System (GIS). Pingo heights in the dataset vary between 2 and 37 m, with a mean height of 4.8 m. About 64% of the pingos occur in continuous permafrost with high ice content and thick sediments; another 19% in continuous permafrost with moderate ice content and thick sediments. The majority of these pingos likely formed through closed system freezing, typical of those located in drained thermokarst lake basins of northern lowlands with continuous permafrost. About 82% of the pingos are located in the tundra bioclimatic zone. Most pingos in the dataset are located in regions with mean annual ground temperatures between -3 and -11 ??C and mean annual air temperatures between -7 and -18 ??C. The dataset confirms that surface geology and hydrology are key factors for pingo formation and occurrence. Based on model predictions for near-future permafrost distribution, hundreds of pingos along the southern margins of permafrost will be located in regions with thawing permafrost by 2100, which ultimately may lead to increased occurrence of pingo collapse. Based on our dataset and previously published estimates of pingo numbers from other regions, we conclude that there are more than 11 000 pingos on Earth. ?? 2010 Author(s).

  4. The spatial distribution of old neutron stars in the Galaxy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The spatial distributions of old neutron stars (NSs) with ages 109 to 1010 yr in our Galaxy are investigated by Monte Carlo simulation under two different initial random velocity models.It is found that the scale heights of the distribution increase with the Galactic radial distance.The location of the peak of the NS distribution is closer to the Galactic center than that of their progenitors.The results from our detailed numerical analysis reveal that there is resemblance between the simulated old NS distribution and the structure of the observed HI disk.

  5. Ocean Color Products Supporting the Assessment of Good Environmental Status: Development of a Spatial Distribution Model for the Seagrass Posidonia Oceanica (L.) Delille, 1813

    Science.gov (United States)

    Zucchetta, M.; Taji, M. A.; Mangin, A.; Pastres, R.

    2015-12-01

    binomial generalized linear model as a function of the bathymetry and some water characteristics mainly obtained from satellite data. Full resolution (c.a. 300m) Medium Resolution Imaging Spectrometer (MERIS) sensor imagery have been processed in order to extract a set of environmental variables to be coupled to seagrass distribution in the areas used to calibrate the model and for the whole North Africa coast (i.e. model application area). For the period 2003-2011 we processed data of: 1) the diffuse attenuation coefficient 2) coloured dissolved organic matter 3) Particle backscatter at 443nm; 4) Euphotic depth, estimated considering the coefficient of extinction of light; 5) Euphotic depth/ depth ratio, combining the estimation of euphotic depth with the bathymetry. Other variables have been resampled at MERIS full resolution, like data obtained from Moderate Resolution Imaging Spectroradiometer (MODIS; Sea Surface Temperature and Photosynthetically Available Radiation) or by model simulation (e.g. water salinity). The fitted model suggests that water transparency plays a major role, but also other variables, such as salinity and photosynthetically available radiation at surface, are important at larger spatial scales in explaining meadows distribution. The availability of high resolution time-series of input data allowed us to apply the validated model to the whole NA coast. Using model predictions to identify areas with suitable conditions for P. oceanica, it was possible to develop an indicator of potential habitat use and to define baseline reference conditions, necessary for the assessment of Good Environmental Status in Mediterranean coastal waters. This work shows how the Ocean and Land Colour Instrument (OLCI) within the Sentinel-3 mission can be exploited - thanks to the way opened by MERIS - to carry out the operational monitoring needed for the implementation of the UNEP MAP and EU MSFD Ecosystem Approach to the integrated management of land, water and living

  6. The spatial distribution of flocking foragers : disentangling the effects of food availability, interference and conspecific attraction by means of spatial autoregressive modeling

    NARCIS (Netherlands)

    Folmer, Eelke O.; Olff, Han; Piersma, Theunis; Robinson, Rob

    Patch choice of foraging animals is typically assumed to depend positively on food availability and negatively on interference while benefits of the co-occurrence of conspecifics tend to be ignored. In this paper we integrate a classical functional response model based on resource availability and

  7. The spatial distribution of flocking foragers: disentangling the effects of food availability, interference and conspecific attraction by means of spatial autoregressive modeling

    NARCIS (Netherlands)

    Folmer, E.O.; Olff, H.; Piersma, T.

    2012-01-01

    Patch choice of foraging animals is typically assumed to depend positively on food availability and negatively on interference while benefits of the co-occurrence of conspecifics tend to be ignored. In this paper we integrate a classical functional response model based on resource availability and

  8. The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: modeling sensitivities to dust emissions and aerosol size treatments

    Directory of Open Access Journals (Sweden)

    C. Zhao

    2010-09-01

    Full Text Available A fully coupled meteorology-chemistry-aerosol model (WRF-Chem is applied to simulate mineral dust and its shortwave (SW radiative forcing over North Africa. Two dust emission schemes (GOCART and DUSTRAN and two aerosol models (MADE/SORGAM and MOSAIC are adopted in simulations to investigate the modeling sensitivities to dust emissions and aerosol size treatments. The modeled size distribution and spatial variability of mineral dust and its radiative properties are evaluated using measurements (ground-based, aircraft, and satellites during the AMMA SOP0 campaign from 6 January to 3 February of 2006 (the SOP0 period over North Africa. Two dust emission schemes generally simulate similar spatial distributions and temporal evolutions of dust emissions. Simulations using the GOCART scheme with different initial (emitted dust size distributions require ~40% difference in total emitted dust mass to produce similar SW radiative forcing of dust over the Sahel region. The modal approach of MADE/SORGAM retains 25% more fine dust particles (radius<1.25 μm but 8% less coarse dust particles (radius>1.25 μm than the sectional approach of MOSAIC in simulations using the same size-resolved dust emissions. Consequently, MADE/SORGAM simulates 11% higher AOD, up to 13% lower SW dust heating rate, and 15% larger (more negative SW dust radiative forcing at the surface than MOSAIC over the Sahel region. In the daytime of the SOP0 period, the model simulations show that the mineral dust heats the lower atmosphere with an average rate of 0.8 ± 0.5 K day−1 over the Niamey vicinity and 0.5 ± 0.2 K day−1 over North Africa and reduces the downwelling SW radiation at the surface by up to 58 W m−2 with an average of 22 W m−2 over North Africa. This highlights the importance of including dust radiative impact in understanding the regional climate of North Africa. When compared to the available measurements, the WRF

  9. Spatial distribution of hydrocarbon reservoirs in the West Korea Bay Basin in the northern part of the Yellow Sea, estimated by 3-D gravity forward modelling

    Science.gov (United States)

    Choi, Sungchan; Ryu, In-Chang; Götze, H.-J.; Chae, Y.

    2017-01-01

    Although an amount of hydrocarbon has been discovered in the West Korea Bay Basin (WKBB), located in the North Korean offshore area, geophysical investigations associated with these hydrocarbon reservoirs are not permitted because of the current geopolitical situation. Interpretation of satellite-derived potential field data can be alternatively used to image the 3-D density distribution in the sedimentary basin associated with hydrocarbon deposits. We interpreted the TRIDENT satellite-derived gravity field data to provide detailed insights into the spatial distribution of sedimentary density structures in the WKBB. We used 3-D forward density modelling for the interpretation that incorporated constraints from existing geological and geophysical information. The gravity data interpretation and the 3-D forward modelling showed that there are two modelled areas in the central subbasin that are characterized by very low density structures, with a maximum density of about 2000 kg m-3, indicating some type of hydrocarbon reservoir. One of the anticipated hydrocarbon reservoirs is located in the southern part of the central subbasin with a volume of about 250 km3 at a depth of about 3000 m in the Cretaceous/Jurassic layer. The other hydrocarbon reservoir should exist in the northern part of the central subbasin, with an average volume of about 300 km3 at a depth of about 2500 m.

  10. Continuous Spatial Process Models for Spatial Extreme Values

    KAUST Repository

    Sang, Huiyan

    2010-01-28

    We propose a hierarchical modeling approach for explaining a collection of point-referenced extreme values. In particular, annual maxima over space and time are assumed to follow generalized extreme value (GEV) distributions, with parameters μ, σ, and ξ specified in the latent stage to reflect underlying spatio-temporal structure. The novelty here is that we relax the conditionally independence assumption in the first stage of the hierarchial model, an assumption which has been adopted in previous work. This assumption implies that realizations of the the surface of spatial maxima will be everywhere discontinuous. For many phenomena including, e. g., temperature and precipitation, this behavior is inappropriate. Instead, we offer a spatial process model for extreme values that provides mean square continuous realizations, where the behavior of the surface is driven by the spatial dependence which is unexplained under the latent spatio-temporal specification for the GEV parameters. In this sense, the first stage smoothing is viewed as fine scale or short range smoothing while the larger scale smoothing will be captured in the second stage of the modeling. In addition, as would be desired, we are able to implement spatial interpolation for extreme values based on this model. A simulation study and a study on actual annual maximum rainfall for a region in South Africa are used to illustrate the performance of the model. © 2009 International Biometric Society.

  11. Modelling spatial distribution of snails transmitting parasitic worms with importance to human and animal health and analysis of distributional changes in relation to climate

    DEFF Research Database (Denmark)

    Pedersen, Ulrik Bo; Midzi, Nicholas; Mduluza, Takafira;

    2014-01-01

    of a maximum entropy algorithm (Maxent). Two snail observation datasets from Zimbabwe, from 1988 and 2012, were compared in terms of geospatial distribution and potential distributional change over this 24-year period investigated. Climate data, from the two years were identified and used in a species...

  12. Spatial Patterns of Wind Speed Distributions in Switzerland

    CERN Document Server

    Laib, Mohamed

    2016-01-01

    This paper presents an initial exploration of high frequency records of extreme wind speed in two steps. The first consists in finding the suitable extreme distribution for $120$ measuring stations in Switzerland, by comparing three known distributions: Weibull, Gamma, and Generalized extreme value. This comparison serves as a basis for the second step which applies a spatial modelling by using Extreme Learning Machine. The aim is to model distribution parameters by employing a high dimensional input space of topographical information. The knowledge of probability distribution gives a comprehensive information and a global overview of wind phenomena. Through this study, a flexible and a simple modelling approach is presented, which can be generalized to almost extreme environmental data for risk assessment and to model renewable energy.

  13. Spatial and temporal distribution of geophysical disasters

    Directory of Open Access Journals (Sweden)

    Cvetković Vladimir

    2013-01-01

    Full Text Available Natural disasters of all kinds (meteorological, hydrological, geophysical, climatological and biological are increasingly becoming part of everyday life of modern human. The consequences are often devastating, to the life, health and property of people, as well to the security of states and the entire international regions. In this regard, we noted the need for a comprehensive investigation of the phenomenology of natural disasters. In addition, it is particularly important to pay attention to the different factors that might correlate with each other to indicate more dubious and more original facts about their characteristics. However, as the issue of natural disasters is very wide, the subject of this paper will be forms, consequences, temporal and spatial distribution of geophysical natural disasters, while analysis of other disasters will be the subject of our future research. Using an international database on natural disasters of the centre for research on the epidemiology of disasters (CRED based in Brussels, with the support of the statistical analysis (SPSS, we tried to point out the number, trends, consequences, the spatial and temporal distribution of earthquakes, volcanic eruptions and dry mass movements in the world, from 1900 to 2013.

  14. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional-structural plant model

    NARCIS (Netherlands)

    Sarlikioti, V.; Visser, de P.H.B.; Marcelis, L.F.M.

    2011-01-01

    Background and Aims - At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy

  15. Modeling the spatial distribution of forest crown biomass and effects on fire behavior with FUEL3D and WFDS

    Science.gov (United States)

    Russell A. Parsons; William Mell; Peter McCauley

    2010-01-01

    Crown fire poses challenges to fire managers and can endanger fire fighters. Understanding of how fire interacts with tree crowns is essential to informed decisions about crown fire. Current operational crown fire predictions in the United States assume homogeneous crown fuels. While a new class of research fire models, which model fire behavior with computational...

  16. Robust control of a spatially distributed commercial fishery

    OpenAIRE

    William A. Brock; Xepapadeas, Anastasios; Yannacopoulos, Athanasios N.

    2013-01-01

    We consider a robust control model for a spatially distributed commercial fishery under uncertainty, and in particular a tracking problem, i.e. the problem of robust stabilization of a chosen deterministic benchmark state in the presence of model uncertainty. The problem is expressed in the form of a stochastic linear quadratic robust optimal control problem, which is solved analytically. We focus on the emergence of breakdown from the robust stabilization policy, called hot spots, and commen...

  17. Mapping Craters Depths in Terra Cimmeria, Mars: Implications for Spatial Distribution of Ground Ice

    Science.gov (United States)

    Stepinski, T. F.; Urbach, E. R.

    2007-07-01

    Spatial distribution of ground ice is derived from maps of depth/diameter ratio obtained using 7845 craters in the T. Cimmeria region. The result supports models predictions, and indicates spatial variability of depth to ice in the equatorial zone.

  18. Multiscale modelling of the morphology and spatial distribution of θ′ precipitates in Al-Cu alloys

    OpenAIRE

    Liu, H.; Bellón, B.; LLorca, J.

    2017-01-01

    A multiscale approach based on the phase-field model is developed to simulate homogeneous and heterogeneous formation of {\\theta}' precipitates during high temperature ageing in Al-Cu alloys. The model parameters that determine the different energy contributions (chemical free energy, interfacial energy, lattice parameters, elastic constants) were obtained from either computational thermodynamics databases or from first-principles density functional theory and molecular statics simulations. F...

  19. Exact and Numerical Solutions of a Spatially-Distributed Mathematical Model for Fluid and Solute Transport in Peritoneal Dialysis

    Directory of Open Access Journals (Sweden)

    Roman Cherniha

    2016-06-01

    Full Text Available The nonlinear mathematical model for solute and fluid transport induced by the osmotic pressure of glucose and albumin with the dependence of several parameters on the hydrostatic pressure is described. In particular, the fractional space available for macromolecules (albumin was used as a typical example and fractional fluid void volume were assumed to be different functions of hydrostatic pressure. In order to find non-uniform steady-state solutions analytically, some mathematical restrictions on the model parameters were applied. Exact formulae (involving hypergeometric functions for the density of fluid flux from blood to tissue and the fluid flux across tissues were constructed. In order to justify the applicability of the analytical results obtained, a wide range of numerical simulations were performed. It was found that the analytical formulae can describe with good approximation the fluid and solute transport (especially the rate of ultrafiltration for a wide range of values of the model parameters.

  20. Spread of pedigree versus genetic ancestry in spatially distributed populations.

    Science.gov (United States)

    Kelleher, J; Etheridge, A M; Véber, A; Barton, N H

    2016-04-01

    Ancestral processes are fundamental to modern population genetics and spatial structure has been the subject of intense interest for many years. Despite this interest, almost nothing is known about the distribution of the locations of pedigree or genetic ancestors. Using both spatially continuous and stepping-stone models, we show that the distribution of pedigree ancestors approaches a travelling wave, for which we develop two alternative approximations. The speed and width of the wave are sensitive to the local details of the model. After a short time, genetic ancestors spread far more slowly than pedigree ancestors, ultimately diffusing out with radius ∼ t rather than spreading at constant speed. In contrast to the wave of pedigree ancestors, the spread of genetic ancestry is insensitive to the local details of the models. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Modelled spatial and seasonal distribution of Blue Whiting (Micromesistius poutassou) larvae in the North-East Atlantic (1951 to 2005)

    DEFF Research Database (Denmark)

    2014-01-01

    Blue whiting (Micromesistius poutassou, http://www.marinespecies.org/aphia.php?p=taxdetails&id=126439) is a small mesopelagic planktivorous gadoid found throughout the North-East Atlantic. This data contains the results of a model-based analysis of larvae captured by the Continuous Plankton...

  2. Modeling winter wheat phenological responses to water deficits in the Unified Plant Growth Model (UPGM) component of the spatially distributed Agricultural Ecosystem Services (AgES) model

    Science.gov (United States)

    Accurately predicting phenology in crop simulation models is critical for correctly simulating crop production. While extensive work in modeling phenology has focused on the temperature response function (resulting in robust phenology models), limited work on quantifying the phenological responses t...

  3. Spatially resolved elemental distributions in articular cartilage

    Science.gov (United States)

    Reinert, T.; Reibetanz, U.; Vogt, J.; Butz, T.; Werner, A.; Gründer, W.

    2001-07-01

    In this study, the nuclear microprobe technique is employed to analyse the chemistry of joint cartilage in order to correlate internal structures of the collagen network with the elemental distribution. The samples were taken from pig's knee joint. 30 μm thick coronar cross-sections were prepared by means of cryosectioning and freeze-drying. We performed simultaneously particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and elastic recoil detection analysis (ERDA). Thus we obtained spatially resolved distributions of the elements H, C, N, O, P, S, Cl, K and Ca. The main components of the organic matrix are H, C, N and O. It was shown that their relations vary with the cartilage structures. It could be shown that zones with aligned collagen fibrils contain less sulphur and potassium but more chlorine. The higher chlorine concentration is remarkable because newest biochemical studies found that hypochloric acid is involved in cartilage degradation. Furthermore, the calcium distribution is still of great interest. Its correlation to structural changes inside the cartilage is still being discussed. It could be disproved that zones of higher calcium concentration are related to the aligned structures of the collagen network.

  4. A dynamic model for ALA-PDT of skin: simulation of temporal and spatial distributions of ground-state oxygen, photosensitizer and singlet oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Liu Baochang [Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1 (Canada); Farrell, Thomas J; Patterson, Michael S, E-mail: Baochang.Liu@jcc.hhsc.c, E-mail: Mike.Patterson@jcc.hhsc.c [Department of Medical Physics, Juravinski Cancer Centre, 699 Concession Street, Hamilton, Ontario L8V 5C2 (Canada)

    2010-10-07

    Singlet oxygen ({sup 1}O{sub 2}) direct dosimetry and photosensitizer fluorescence photobleaching are being investigated and applied as dosimetric tools during 5-aminolevulinic acid (ALA)-induced protophorphyrin IX (PpIX) photodynamic therapy (PDT) of normal skin and skin cancers. The correlations of photosensitizer fluorescence and singlet oxygen luminescence (SOL) emission signals to {sup 1}O{sub 2} distribution and cumulative {sup 1}O{sub 2} dose are difficult to interpret because of the temporal and spatial variations of three essential components (light fluence rate, photosensitizer concentration and oxygen concentration) in PDT. A one-dimensional model is proposed in this paper to simulate the dynamic process of ALA-PDT of normal human skin in order to investigate the time-resolved evolution of PpIX, ground-state oxygen ({sup 3}O{sub 2}) and {sup 1}O{sub 2} distributions. The model incorporates a simplified three-layer semi-infinite skin tissue, Monte Carlo simulations of excitation light fluence and both PpIX fluorescence and SOL emission signals reaching the skin surface, {sup 1}O{sub 2}-mediated photobleaching mechanism for updating PpIX, {sup 3}O{sub 2} and {sup 1}O{sub 2} distributions after the delivery of each light dose increment, ground-state oxygen supply by diffusion from the atmosphere and perfusion from blood vessels, a cumulative {sup 1}O{sub 2}-dependent threshold vascular response, and the initial non-uniform distribution of PpIX. The PpIX fluorescence simulated using this model is compared with clinical data reported by Cottrell et al (2008 Clin. Cancer Res. 14 4475-83) for a range of irradiances (10-150 mW cm{sup -2}). Except for the vascular response, one set of parameters is used to fit data at all irradiances. The time-resolved depth-dependent distributions of PpIX, {sup 3}O{sub 2} and {sup 1}O{sub 2} at representative irradiances are presented and discussed in this paper, as well as the PDT-induced vascular response at different depths

  5. Spatial soil zinc content distribution from terrain parameters: A GIS-based decision-tree model in Lebanon

    Energy Technology Data Exchange (ETDEWEB)

    Bou Kheir, Rania, E-mail: rania.boukheir@agrsci.d [Lebanese University, Faculty of Letters and Human Sciences, Department of Geography, GIS Research Laboratory, P.O. Box 90-1065, Fanar (Lebanon); Department of Agroecology and Environment, Faculty of Agricultural Sciences (DJF), Aarhus University, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele (Denmark); Greve, Mogens H. [Department of Agroecology and Environment, Faculty of Agricultural Sciences (DJF), Aarhus University, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele (Denmark); Abdallah, Chadi [National Council for Scientific Research, Remote Sensing Center, P.O. Box 11-8281, Beirut (Lebanon); Dalgaard, Tommy [Department of Agroecology and Environment, Faculty of Agricultural Sciences (DJF), Aarhus University, Blichers Alle 20, P.O. Box 50, DK-8830 Tjele (Denmark)

    2010-02-15

    Heavy metal contamination has been and continues to be a worldwide phenomenon that has attracted a great deal of attention from governments and regulatory bodies. In this context, our study proposes a regression-tree model to predict the concentration level of zinc in the soils of northern Lebanon (as a case study of Mediterranean landscapes) under a GIS environment. The developed tree-model explained 88% of variance in zinc concentration using pH (100% in relative importance), surroundings of waste areas (90%), proximity to roads (80%), nearness to cities (50%), distance to drainage line (25%), lithology (24%), land cover/use (14%), slope gradient (10%), conductivity (7%), soil type (7%), organic matter (5%), and soil depth (5%). The overall accuracy of the quantitative zinc map produced (at 1:50.000 scale) was estimated to be 78%. The proposed tree model is relatively simple and may also be applied to other areas. - GIS regression-tree analysis explained 88% of the variability in field/laboratory Zinc concentrations.

  6. Method for spatially distributing a population

    Science.gov (United States)

    Bright, Edward A [Knoxville, TN; Bhaduri, Budhendra L [Knoxville, TN; Coleman, Phillip R [Knoxville, TN; Dobson, Jerome E [Lawrence, KS

    2007-07-24

    A process for spatially distributing a population count within a geographically defined area can include the steps of logically correlating land usages apparent from a geographically defined area to geospatial features in the geographically defined area and allocating portions of the population count to regions of the geographically defined area having the land usages, according to the logical correlation. The process can also include weighing the logical correlation for determining the allocation of portions of the population count and storing the allocated portions within a searchable data store. The logically correlating step can include the step of logically correlating time-based land usages to geospatial features of the geographically defined area. The process can also include obtaining a population count for the geographically defined area, organizing the geographically defined area into a plurality of sectors, and verifying the allocated portions according to direct observation.

  7. The observed spatial distribution of matter on scales ranging from 100kpc to 1Gpc is inconsistent with the standard dark-matter-based cosmological models

    CERN Document Server

    Kroupa, Pavel

    2016-01-01

    The spatial arrangement of galaxies (of satellites on a scale of 100kpc) as well as their three-dimensional distribution in galaxy groups such as the Local Group (on a scale of 1Mpc), the distribution of galaxies in the nearby volume of galaxies (on a scale of 8Mpc) and in the nearby Universe (on a scale of 1Gpc) is considered. There is further evidence that the CMB shows irregularities and for anisotropic cosmic expansion. The overall impression one obtains, given the best data we have, is matter to be arranged as not expected in the dark-matter based standard model of cosmology (SMoC). There appears to be too much structure, regularity and organisation. Dynamical friction on the dark matter halos is a strong direct test for the presence of dark matter particles, but this process does not appear to be operative in the real Universe. This evidence suggests strongly that dynamically relevant dark matter does not exist and therefore cosmology remains largely not understood theoretically. More-accepted awareness...

  8. Application of inverse modeling technique to describe hydrogeochemical processes responsible to spatial distribution of groundwater quality along flowpath

    Directory of Open Access Journals (Sweden)

    Tjahyo NugrohoAdji

    2013-07-01

    The result shows that firstly, the aquifer within the research area can be grouped into several aquifer systems (i.e. denudational hill, colluvial plain, alluvial plain, and beach ridges from recharge to discharge which generally have potential groundwater resources in terms of the depth and fluctuation of groundwater table. Secondly, flownets analysis gives three flowpaths that are plausible to be modeled in order to describe their hydrogeochemical reactions. Thirdly, the Saturation Indices (SI analysis shows that there are a positive correlation between the mineral occurrence and composition and the value of SI from recharge to discharge. In addition, The Mass Balance Model indicates that dissolution and precipitation of aquifer minerals is dominantly change the chemical composition along flowpath and the rate of the mass transfer between two wells shows a discrepancy and be certain of the percentage of the nature of aquifer mineral. Lastly, there is an interesting characteristic of mass balance chemical reaction occurs which is the entire chemical reaction shows that the sum of smallest mineral fmmol/litre will firstly always totally be reacted.

  9. Environmental Distributions of Benzo[a]pyrene in China: Current and Future Emission Reduction Scenarios Explored Using a Spatially Explicit Multimedia Fate Model.

    Science.gov (United States)

    Zhu, Ying; Tao, Shu; Price, Oliver R; Shen, Huizhong; Jones, Kevin C; Sweetman, Andrew J

    2015-12-01

    SESAMe v3.0, a spatially explicit multimedia fate model with 50 × 50 km(2) resolution, has been developed for China to predict environmental concentrations of benzo[a]pyrene (BaP) using an atmospheric emission inventory for 2007. Model predictions are compared with environmental monitoring data obtained from an extensive review of the literature. The model performs well in predicting multimedia concentrations and distributions. Predicted concentrations are compared with guideline values; highest values with some exceedances occur mainly in the North China Plain, Mid Inner Mongolia, and parts of three northeast provinces, Xi'an, Shanghai, and south of Jiangsu province, East Sichuan Basin, middle of Guizhou and Guangzhou. Two potential future scenarios have been assessed using SESAMe v3.0 for 2030 as BaP emission is reduced by (1) technological improvement for coal consumption in energy production and industry sectors in Scenario 1 (Sc1) and (2) technological improvement and control of indoor biomass burning for cooking and indoor space heating and prohibition of open burning of biomass in 2030 in Scenario 2 (Sc2). Sc2 is more efficient in reducing the areas with exceedance of guideline values. Use of SESAMe v3.0 provides insights on future research needs and can inform decision making on options for source reduction.

  10. The Spatial Distribution of Galactic Satellites in the LCDM Cosmology

    CERN Document Server

    Wang, Jie; Cooper, Andrew P

    2012-01-01

    We investigate the spatial distribution of galactic satellites in high resolution simulations of structure formation in the LCDM model: the Aquarius dark matter simulations of individual halos and the Millennium II simulation of a large cosmological volume. To relate the simulations to observations of the Milky Way we use two alternative models to populate dark halos with "visible" galaxies: a semi-analytic model of galaxy formation and an abundance matching technique. We find that the radial density profile of massive satellites roughly follows that of the dark matter halo (unlike the distribution of dark matter subhalos). Furthermore, our two galaxy formation models give results consistent with the observed profile of the 11 classical satellites of the Milky Way. Our simulations predict that larger, fainter samples of satellites should still retain this profile at least up to samples of 100 satellites. The angular distribution of the classical satellites of the Milky Way is known to be highly anisotropic. D...

  11. Spatial distribution and dose-response relationship for different operation modes in a reaction-diffusion model of the MAPK cascade

    Science.gov (United States)

    Zhao, Qi; Yi, Ming; Liu, Yan

    2011-10-01

    The mitogen-activated protein kinase (MAPK) cascade plays a critical role in the control of cell growth. Deregulation of this pathway contributes to the development of many cancers. To better understand its signal transduction, we constructed a reaction-diffusion model for the MAPK pathway. We modeled the three layers of phosphorylation-dephosphorylation reactions and diffusion processes from the cell membrane to the nucleus. Based on different types of feedback in the MAPK cascade, four operation modes are introduced. For each of the four modes, spatial distributions and dose-response curves of active kinases (i.e. ppMAPK) are explored by numerical simulation. The effects of propagation length, diffusion coefficient and feedback strength on the pathway dynamics are investigated. We found that intrinsic bistability in the MAPK cascade can generate a traveling wave of ppMAPK with constant amplitude when the propagation length is short. ppMAPK in this mode of intrinsic bistability decays more slowly than it does in all other modes as the propagation length increases. Moreover, we examined the global and local responses to Ras-GTP of these four modes, and demonstrated how the shapes of these dose-response curves change as the propagation length increases. Also, we found that larger diffusion constant gives a higher response level on the zero-order regime and makes the ppMAPK profiles flatter under strong Ras-GTP stimulus. Furthermore, we observed that spatial responses of ppMAPK are more sensitive to negative feedback than to positive feedback in the broader signal range. Finally, we showed how oscillatory signals pass through the kinase cascade, and found that high frequency signals are damped faster than low frequency ones.

  12. Gulf of California species and catch spatial distributions and historical time series - Developing end-to-end models of the Gulf of California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project is to develop spatially discrete end-to-end models of the northern Gulf of California, linking oceanography, biogeochemistry, food web...

  13. Luminosity dependence of the spatial and velocity distributions of galaxies: Semi-analytic models versus the Sloan Digital Sky Survey

    CERN Document Server

    Li, Cheng; Kauffmann, Guinevere; Boerner, Gerhard; Kang, Xi; Wang, Lan; 10.1111/j.1365-2966.2007.11518.x

    2008-01-01

    By comparing semi-analytic galaxy catalogues with data from the Sloan Digital Sky Survey (SDSS), we show that current galaxy formation models reproduce qualitatively the dependence of galaxy clustering and pairwise peculiar velocities on luminosity, but some subtle discrepancies with the data still remain. The comparisons are carried out by constructing a large set of mock galaxy redshift surveys that have the same selection function as the SDSS Data Release Four (DR4). The mock surveys are based on two sets of semi-analytic catalogues presented by Croton et al. and Kang et al. From the mock catalogues, we measure the redshift-space projected two-point correlation function, the power spectrum, and the pairwise velocity dispersion (PVD) in Fourier space and in configuration space, for galaxies in different luminosity intervals. We then compare these theoretical predictions with the measurements derived from the SDSS DR4. On large scales and for galaxies brighter than L*, both sets of mock catalogues agree well...

  14. Spatial averaging infiltration model for layered soil

    Institute of Scientific and Technical Information of China (English)

    HU HePing; YANG ZhiYong; TIAN FuQiang

    2009-01-01

    To quantify the influences of soil heterogeneity on infiltration, a spatial averaging infiltration model for layered soil (SAI model) is developed by coupling the spatial averaging approach proposed by Chen et al. and the Generalized Green-Ampt model proposed by Jia et al. In the SAI model, the spatial heterogeneity along the horizontal direction is described by a probability distribution function, while that along the vertical direction is represented by the layered soils. The SAI model is tested on a typical soil using Monte Carlo simulations as the base model. The results show that the SAI model can directly incorporate the influence of spatial heterogeneity on infiltration on the macro scale. It is also found that the homogeneous assumption of soil hydraulic conductivity along the horizontal direction will overestimate the infiltration rate, while that along the vertical direction will underestimate the infiltration rate significantly during rainstorm periods. The SAI model is adopted in the spatial averaging hydrological model developed by the authors, and the results prove that it can be applied in the macro-scale hydrological and land surface process modeling in a promising way.

  15. Spatial averaging infiltration model for layered soil

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    To quantify the influences of soil heterogeneity on infiltration, a spatial averaging infiltration model for layered soil (SAI model) is developed by coupling the spatial averaging approach proposed by Chen et al. and the Generalized Green-Ampt model proposed by Jia et al. In the SAI model, the spatial hetero- geneity along the horizontal direction is described by a probability distribution function, while that along the vertical direction is represented by the layered soils. The SAI model is tested on a typical soil using Monte Carlo simulations as the base model. The results show that the SAI model can directly incorporate the influence of spatial heterogeneity on infiltration on the macro scale. It is also found that the homogeneous assumption of soil hydraulic conductivity along the horizontal direction will overes- timate the infiltration rate, while that along the vertical direction will underestimate the infiltration rate significantly during rainstorm periods. The SAI model is adopted in the spatial averaging hydrological model developed by the authors, and the results prove that it can be applied in the macro-scale hy- drological and land surface process modeling in a promising way.

  16. Application of a spatially distributed water balance model for assessing surface water and groundwater resources in the Geba basin, Tigray, Ethiopia

    Science.gov (United States)

    Gebreyohannes, Tesfamichael; De Smedt, Florimond; Walraevens, Kristine; Gebresilassie, Solomon; Hussien, Abdelwasie; Hagos, Miruts; Amare, Kasa; Deckers, Jozef; Gebrehiwot, Kindeya

    2013-08-01

    The Geba basin is one of the most water-stressed areas of Ethiopia, with only a short rainy period from mid-June to mid-September. Because rainfall in this region has been consistently erratic in the last decades, both in time and space, rain-fed agriculture has become problematic. Hence, in order to supplement rain-fed agriculture by irrigation, a detailed understanding of local and regional surface water and groundwater resources is important. The main objective of this study is to assess the available water resources in the Geba basin using a spatially distributed water balance model (WetSpass). Relevant input data for the model is prepared in the form of digital maps using remote sensing images, GIS tools, FAO and NASA databases, field reconnaissance and processing of meteorological and hydrological observations. The model produces digital maps of long-term average, seasonal and annual surface runoff, evapotranspiration and groundwater recharge. Results of the model show that 76% of the precipitation in the basin is lost through evapotranspiration, 18% becomes surface runoff and only 6% recharges the groundwater system. Model predictions are verified against river flow observations and are shown to be reliable. Additional maps are derived of accumulated surface runoff, safe yield for groundwater abstraction and water deficit for crop growth. Comparison of existing reservoirs with the accumulated runoff map shows that many reservoirs have failed because their design capacity is much higher than the actual inflow. Comparison of the safe yield map with the crop water deficit map shows that in most areas groundwater can be safely abstracted to supplement the water deficit for crop growth during the wet summer season. However, in the dry winter season the crop water deficit is too high to be supplemented by groundwater abstraction in a sustainable way.

  17. Spatially distributed characterization of soil-moisture dynamics using travel-time distributions

    Science.gov (United States)

    Heße, Falk; Zink, Matthias; Kumar, Rohini; Samaniego, Luis; Attinger, Sabine

    2017-01-01

    Travel-time distributions are a comprehensive tool for the characterization of hydrological system dynamics. Unlike the streamflow hydrograph, they describe the movement and storage of water within and throughout the hydrological system. Until recently, studies using such travel-time distributions have generally either been applied to lumped models or to real-world catchments using available time series, e.g., stable isotopes. Whereas the former are limited in their realism and lack information on the spatial arrangements of the relevant quantities, the latter are limited in their use of available data sets. In our study, we employ the spatially distributed mesoscale Hydrological Model (mHM) and apply it to a catchment in central Germany. Being able to draw on multiple large data sets for calibration and verification, we generate a large array of spatially distributed states and fluxes. These hydrological outputs are then used to compute the travel-time distributions for every grid cell in the modeling domain. A statistical analysis indicates the general soundness of the upscaling scheme employed in mHM and reveals precipitation, saturated soil moisture and potential evapotranspiration as important predictors for explaining the spatial heterogeneity of mean travel times. In addition, we demonstrate and discuss the high information content of mean travel times for characterization of internal hydrological processes.

  18. Spatial correlation in grain misorientation distribution

    Energy Technology Data Exchange (ETDEWEB)

    Beausir, Benoit, E-mail: benoit.beausir@univ-metz.fr [Laboratoire de Physique et Mecanique des Materiaux, Universite Paul Verlaine - Metz/CNRS, Ile du Saulcy, 57045 Metz (France)] [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Fressengeas, Claude [Laboratoire de Physique et Mecanique des Materiaux, Universite Paul Verlaine - Metz/CNRS, Ile du Saulcy, 57045 Metz (France); Gurao, Nilesh P. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Toth, Laszlo S. [Laboratoire de Physique et Mecanique des Materiaux, Universite Paul Verlaine - Metz/CNRS, Ile du Saulcy, 57045 Metz (France); Suwas, Satyam [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2009-10-15

    Grain misorientation was studied in relation to the nearest neighbor's mutual distance using electron back-scattered diffraction measurements. The misorientation correlation function was defined as the probability density for the occurrence of a certain misorientation between pairs of grains separated by a certain distance. Scale-invariant spatial correlation between neighbor grains was manifested by a power law dependence of the preferred misorientation vs. inter-granular distance in various materials after diverse strain paths. The obtained negative scaling exponents were in the range of -2 {+-} 0.3 for high-angle grain boundaries. The exponent decreased in the presence of low-angle grain boundaries or dynamic recrystallization, indicating faster decay of correlations. The correlations vanished in annealed materials. The results were interpreted in terms of lattice incompatibility and continuity conditions at the interface between neighboring grains. Grain-size effects on texture development, as well as the implications of such spatial correlations on texture modeling, were discussed.

  19. Spatial and luminosity distributions of galactic satellites

    Science.gov (United States)

    Guo, Quan; Cole, Shaun; Eke, Vincent; Frenk, Carlos; Helly, John

    2013-09-01

    We investigate the luminosity functions and projected number density profiles of galactic satellites around isolated primaries of different luminosity. We measure these quantities for model satellites placed into the Millennium and Millennium II dark matter simulations by the GALFORM semi-analytic galaxy formation model for different bins of primary galaxy magnitude and we investigate their dependence on satellite luminosity. We compare our model predictions to the data of Guo et al. from the Sloan Digital Sky Survey Data Release 8 (SDSS DR8). First, we use a mock light-cone catalogue to verify that the method we used to count satellites in the SDSS DR8 is unbiased. We find that the radial distributions of model satellites can be fitted by a Navarro-Frenk-White profile similar to those around comparable primary galaxies in the SDSS DR8, with only slight differences at low luminosities and small projected radii. However, when splitting the satellites by colour, the model and SDSS satellite systems no longer resemble one another, with many red model satellites in contrast to the dominant blue fraction at similar luminosity in the SDSS. The few model blue satellites are also significantly less centrally concentrated in the halo of their stacked primary than their SDSS counterparts. We discuss how these discrepancies may reflect inadequacies in the treatment of the processes that determine the star formation histories of small galaxies in the model.

  20. Spatial interactions in agent-based modeling

    CERN Document Server

    Ausloos, Marcel; Merlone, Ugo

    2014-01-01

    Agent Based Modeling (ABM) has become a widespread approach to model complex interactions. In this chapter after briefly summarizing some features of ABM the different approaches in modeling spatial interactions are discussed. It is stressed that agents can interact either indirectly through a shared environment and/or directly with each other. In such an approach, higher-order variables such as commodity prices, population dynamics or even institutions, are not exogenously specified but instead are seen as the results of interactions. It is highlighted in the chapter that the understanding of patterns emerging from such spatial interaction between agents is a key problem as much as their description through analytical or simulation means. The chapter reviews different approaches for modeling agents' behavior, taking into account either explicit spatial (lattice based) structures or networks. Some emphasis is placed on recent ABM as applied to the description of the dynamics of the geographical distribution o...

  1. Development of a Regression Kriging Model Conditioned with Sequential Gaussian Simulation to Predict the Spatial Distribution of Site Index for The Savannah River Site.

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Lloyd [USDA Forest Service, Southern Research Station; Parresol, Bernie [USDA Forest Service, Southern Research Station

    2012-09-17

    The primary research objective of the project is to determine an optimum model to spatially interpolate point derived tree site index (SI). This optimum model will use relevant data from 635 measured sample points to create continuous 40 meter SI raster layer of entire study extent.

  2. The spatial distribution of attention during covert visual orienting.

    Science.gov (United States)

    McCormick, P A; Klein, R

    1990-12-01

    Many studies of covert orienting of visual attention in response to informative pre-cues have focused on the spatial distribution of improved or impaired performance. One can find at least four different models in the literature, each describing a different distribution: the fixed gradient spotlight; the zoom lens spotlight; the hemifield activation hypothesis; and the flexible allocation of resources model. In previous work examining procedural details that might have led to the formulation of the hemifield activation hypothesis, it was postulated (Klein and McCormick 1989) that under conditions of uncertainty about which of two locations to attend, an observer may focus attention on a visual channel (i.e., midlocation placement of a fixed gradient spotlight) that is spatially intermediate. The present experiment was designed to distinguish among the four models of attentional distribution, and to test the midlocation placement strategy. Our findings show support for midlocation placement, demonstrate evidence against flexible allocation and hemifield activation, but could not differentiate between fixed gradient and zoom lens variants of the spotlight model.

  3. Integrating SMOS brightness temperatures with a new conceptual spatially distributed hydrological model for improving flood and drought predictions at large scale.

    Science.gov (United States)

    Hostache, Renaud; Rains, Dominik; Chini, Marco; Lievens, Hans; Verhoest, Niko E. C.; Matgen, Patrick

    2017-04-01

    Motivated by climate change and its impact on the scarcity or excess of water in many parts of the world, several agencies and research institutions have taken initiatives in monitoring and predicting the hydrologic cycle at a global scale. Such a monitoring/prediction effort is important for understanding the vulnerability to extreme hydrological events and for providing early warnings. This can be based on an optimal combination of hydro-meteorological models and remote sensing, in which satellite measurements can be used as forcing or calibration data or for regularly updating the model states or parameters. Many advances have been made in these domains and the near future will bring new opportunities with respect to remote sensing as a result of the increasing number of spaceborn sensors enabling the large scale monitoring of water resources. Besides of these advances, there is currently a tendency to refine and further complicate physically-based hydrologic models to better capture the hydrologic processes at hand. However, this may not necessarily be beneficial for large-scale hydrology, as computational efforts are therefore increasing significantly. As a matter of fact, a novel thematic science question that is to be investigated is whether a flexible conceptual model can match the performance of a complex physically-based model for hydrologic simulations at large scale. In this context, the main objective of this study is to investigate how innovative techniques that allow for the estimation of soil moisture from satellite data can help in reducing errors and uncertainties in large scale conceptual hydro-meteorological modelling. A spatially distributed conceptual hydrologic model has been set up based on recent developments of the SUPERFLEX modelling framework. As it requires limited computational efforts, this model enables early warnings for large areas. Using as forcings the ERA-Interim public dataset and coupled with the CMEM radiative transfer model

  4. Spatially varying color distributions for interactive multilabel segmentation.

    Science.gov (United States)

    Nieuwenhuis, Claudia; Cremers, Daniel

    2013-05-01

    We propose a method for interactive multilabel segmentation which explicitly takes into account the spatial variation of color distributions. To this end, we estimate a joint distribution over color and spatial location using a generalized Parzen density estimator applied to each user scribble. In this way, we obtain a likelihood for observing certain color values at a spatial coordinate. This likelihood is then incorporated in a Bayesian MAP estimation approach to multiregion segmentation which in turn is optimized using recently developed convex relaxation techniques. These guarantee global optimality for the two-region case (foreground/background) and solutions of bounded optimality for the multiregion case. We show results on the GrabCut benchmark, the recently published Graz benchmark, and on the Berkeley segmentation database which exceed previous approaches such as GrabCut, the Random Walker, Santner's approach, TV-Seg, and interactive graph cuts in accuracy. Our results demonstrate that taking into account the spatial variation of color models leads to drastic improvements for interactive image segmentation.

  5. Towards Bayesian Inference of the Spatial Distribution of Proteins

    DEFF Research Database (Denmark)

    Hooghoudt, Jan Otto; Waagepetersen, Rasmus Plenge; Barroso, Margarida

    2017-01-01

    . In this paper we propose a new likelihood-based approach to statistical inference for FRET microscopic data. The likelihood function is obtained from a detailed modeling of the FRET data generating mechanism conditional on a protein configuration. We next follow a Bayesian approach and introduce a spatial point...... process prior model for the protein configurations depending on hyper parameters quantifying the intensity of the point process. Posterior distributions are evaluated using Markov chain Monte Carlo. We propose to infer microscope related parameters in an initial step from reference data without...

  6. Multi-scale modeling for prediction of distributed cellular properties in response to substrate spatial gradients in a continuously run microreactor

    DEFF Research Database (Denmark)

    Lencastre Fernandes, Rita; Krühne, Ulrich; Nopens, Ingmar;

    2012-01-01

    microbioreactor is simulated. A multiscale model consisting of the coupling of a population balance model, a kinetic model and a flow model was developed in order to predict simultaneously local concentrations of substrate (glucose), product (ethanol) and biomass, as well as the local cell size distributions....

  7. Competition in spatial location models

    NARCIS (Netherlands)

    Webers, H.M.

    1996-01-01

    Models of spatial competition are designed and analyzed to describe the fact that space, by its very nature, is a source of market power. This field of research, lying at the interface of game theory and economics, has attracted much interest because location problems are related to many aspects of

  8. Competition in spatial location models

    NARCIS (Netherlands)

    Webers, H.M.

    1996-01-01

    Models of spatial competition are designed and analyzed to describe the fact that space, by its very nature, is a source of market power. This field of research, lying at the interface of game theory and economics, has attracted much interest because location problems are related to many aspects of

  9. Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.

    Science.gov (United States)

    Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J

    2010-12-01

    Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies

  10. Comparison of electric field strength and spatial distribution of electroconvulsive therapy and magnetic seizure therapy in a realistic human head model

    Science.gov (United States)

    Lee, Won Hee; Lisanby, Sarah H.; Laine, Andrew F.; Peterchev, Angel V.

    2017-01-01

    Background This study examines the strength and spatial distribution of the electric field induced in the brain by electroconvulsive therapy (ECT) and magnetic seizure therapy (MST). Methods The electric field induced by standard (bilateral, right unilateral, and bifrontal) and experimental (focal electrically administered seizure therapy and frontomedial) ECT electrode configurations as well as a circular MST coil configuration was simulated in an anatomically realistic finite element model of the human head. Maps of the electric field strength relative to an estimated neural activation threshold were used to evaluate the stimulation strength and focality in specific brain regions of interest for these ECT and MST paradigms and various stimulus current amplitudes. Results The standard ECT configurations and current amplitude of 800–900 mA produced the strongest overall stimulation with median of 1.8–2.9 times neural activation threshold and more than 94% of the brain volume stimulated at suprathreshold level. All standard ECT electrode placements exposed the hippocampi to suprathreshold electric field, although there were differences across modalities with bilateral and right unilateral producing respectively the strongest and weakest hippocampal stimulation. MST stimulation is up to 9 times weaker compared to conventional ECT, resulting in direct activation of only 21% of the brain. Reducing the stimulus current amplitude can make ECT as focal as MST. Conclusions The relative differences in electric field strength may be a contributing factor for the cognitive sparing observed with right unilateral compared to bilateral ECT, and MST compared to right unilateral ECT. These simulations could help understand the mechanisms of seizure therapies and develop interventions with superior risk/benefit ratio. PMID:27318858

  11. Exploring changes in the spatial distribution of livestock in China

    NARCIS (Netherlands)

    Verburg, P.H.; Keulen, van H.

    1999-01-01

    China's livestock sector is very dynamic as a consequence of increasing demands for animal products. This paper explores the spatial distribution of different groups of livestock in China. Relations between the spatial pattern of livestock distribution and a large number of socio-economic and biophy

  12. Integrated statistical modelling of spatial landslide probability

    Science.gov (United States)

    Mergili, M.; Chu, H.-J.

    2015-09-01

    Statistical methods are commonly employed to estimate spatial probabilities of landslide release at the catchment or regional scale. Travel distances and impact areas are often computed by means of conceptual mass point models. The present work introduces a fully automated procedure extending and combining both concepts to compute an integrated spatial landslide probability: (i) the landslide inventory is subset into release and deposition zones. (ii) We employ a simple statistical approach to estimate the pixel-based landslide release probability. (iii) We use the cumulative probability density function of the angle of reach of the observed landslide pixels to assign an impact probability to each pixel. (iv) We introduce the zonal probability i.e. the spatial probability that at least one landslide pixel occurs within a zone of defined size. We quantify this relationship by a set of empirical curves. (v) The integrated spatial landslide probability is defined as the maximum of the release probability and the product of the impact probability and the zonal release probability relevant for each pixel. We demonstrate the approach with a 637 km2 study area in southern Taiwan, using an inventory of 1399 landslides triggered by the typhoon Morakot in 2009. We observe that (i) the average integrated spatial landslide probability over the entire study area corresponds reasonably well to the fraction of the observed landside area; (ii) the model performs moderately well in predicting the observed spatial landslide distribution; (iii) the size of the release zone (or any other zone of spatial aggregation) influences the integrated spatial landslide probability to a much higher degree than the pixel-based release probability; (iv) removing the largest landslides from the analysis leads to an enhanced model performance.

  13. Integrating distributional, spatial prioritization, and individual-based models to evaluate potential critical habitat networks: A case study using the Northern Spotted Owl

    Science.gov (United States)

    As part of the northern spotted owl recovery planning effort, we evaluated a series of alternative critical habitat scenarios using a species-distribution model (MaxEnt), a conservation-planning model (Zonation), and an individual-based population model (HexSim). With this suite ...

  14. Distributed generation systems model

    Energy Technology Data Exchange (ETDEWEB)

    Barklund, C.R.

    1994-12-31

    A slide presentation is given on a distributed generation systems model developed at the Idaho National Engineering Laboratory, and its application to a situation within the Idaho Power Company`s service territory. The objectives of the work were to develop a screening model for distributed generation alternatives, to develop a better understanding of distributed generation as a utility resource, and to further INEL`s understanding of utility concerns in implementing technological change.

  15. [Thoughts on the spatial distribution of population].

    Science.gov (United States)

    Borisovna, L; Velez, F

    1991-12-01

    city in all age groups, especially in the 15-19 cohort. A large proportion of the migrants were more highly educated than the average city dweller. The average rate of growth of the working age population in the city was 6% from 1970-80, implying a need for 35,000 new jobs annually. But in 1980-90, only 10,000 new jobs were added each year. The relative importance of tertiary sector employment has increased significantly. A review of the population characteristics and spatial distribution of the city and state of Puebla strongly suggests that decentralization should be vigorously pursued as a means of improving the wellbeing of the population.

  16. Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation

    CERN Document Server

    Churmakov, D Y; Piletsky, S A; Greenhalgh, D A

    2003-01-01

    A novel Monte Carlo technique of simulation of spatial fluorescence distribution within the human skin is presented. The computational model of skin takes into account the spatial distribution of fluorophores, which would arise due to the structure of collagen fibres, compared to the epidermis and stratum corneum where the distribution of fluorophores is assumed to be homogeneous. The results of simulation suggest that distribution of auto- fluorescence is significantly suppressed in the near-infrared spectral region, whereas the spatial distribution of fluorescence sources within a sensor layer embedded in the epidermis is localized at an effective depth.

  17. Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Churmakov, D Y [School of Engineering, Cranfield University, Cranfield, MK43 0AL (United Kingdom); Meglinski, I V [School of Engineering, Cranfield University, Cranfield, MK43 0AL (United Kingdom); Piletsky, S A [Institute of BioScience and Technology, Cranfield University, Silsoe, MK45 4DT (United Kingdom); Greenhalgh, D A [School of Engineering, Cranfield University, Cranfield, MK43 0AL (United Kingdom)

    2003-07-21

    A novel Monte Carlo technique of simulation of spatial fluorescence distribution within the human skin is presented. The computational model of skin takes into account the spatial distribution of fluorophores, which would arise due to the structure of collagen fibres, compared to the epidermis and stratum corneum where the distribution of fluorophores is assumed to be homogeneous. The results of simulation suggest that distribution of auto-fluorescence is significantly suppressed in the near-infrared spectral region, whereas the spatial distribution of fluorescence sources within a sensor layer embedded in the epidermis is localized at an 'effective' depth.

  18. Staling of white wheat bread crumb and effect of maltogenic α-amylases. Part 1: Spatial distribution and kinetic modeling of hardness and resilience.

    Science.gov (United States)

    Amigo, José Manuel; Del Olmo Alvarez, Arantxa; Engelsen, Merete Møller; Lundkvist, Henrik; Engelsen, Søren Balling

    2016-10-01

    Bread staling is one of the most costly food deterioration processes. This study presents an in-depth, multivariate, statistical assessment of the differences in the staling process of white wheat bread as a function of storage time, usage of maltogenic α-amylases and spatial position in the loaf by texture measurements and non-linear fitting (Avrami). This study demonstrates the effects of anti-staling enzymes upon bread staling, where significant changes in the spatial staling kinetics occur. While the spatial development of staling is reduced in the outer crumb by anti-staling enzymes, the staling is retarded in the middle. The Avrami model suggests that this happens by two different competing mechanisms: one which increases the initial staling rate, and one which slows the convergence towards the limiting hardness. The two enzyme treated breads differed widely in early and ultimate resilience, despite the fact that they were adjusted to provide the same ultimate hardness.

  19. Survey gear calibration independent of spatial fish distribution

    DEFF Research Database (Denmark)

    Lewy, Peter; Nielsen, J. Rasmus; Hovgård, Holger

    2004-01-01

    factors is developed based on a survey design where paired hauls are taken in the same trawl track line. The method explicitly accounts for changes in fish density caused by trawling disturbance. A generalized linear model for paired hauls catches is analytically derived and the gear conversion...... and disturbance parameters with their precision are obtained using standard software. Simulation studies carried out additionally showed that the estimated conversion factors were practically unbiased. Because of the independence of the spatial fish distribution, the new method is preferable to the traditional...

  20. Comparison of modeling methods to predict the spatial distribution of deep-sea coral and sponge in the Gulf of Alaska

    Science.gov (United States)

    Rooper, Christopher N.; Zimmermann, Mark; Prescott, Megan M.

    2017-08-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska's marine waters, and are associated with many different species of fishes and invertebrates. These ecosystems are vulnerable to the effects of commercial fishing activities and climate change. We compared four commonly used species distribution models (general linear models, generalized additive models, boosted regression trees and random forest models) and an ensemble model to predict the presence or absence and abundance of six groups of benthic invertebrate taxa in the Gulf of Alaska. All four model types performed adequately on training data for predicting presence and absence, with regression forest models having the best overall performance measured by the area under the receiver-operating-curve (AUC). The models also performed well on the test data for presence and absence with average AUCs ranging from 0.66 to 0.82. For the test data, ensemble models performed the best. For abundance data, there was an obvious demarcation in performance between the two regression-based methods (general linear models and generalized additive models), and the tree-based models. The boosted regression tree and random forest models out-performed the other models by a wide margin on both the training and testing data. However, there was a significant drop-off in performance for all models of invertebrate abundance ( 50%) when moving from the training data to the testing data. Ensemble model performance was between the tree-based and regression-based methods. The maps of predictions from the models for both presence and abundance agreed very well across model types, with an increase in variability in predictions for the abundance data. We conclude that where data conforms well to the modeled distribution (such as the presence-absence data and binomial distribution in this study), the four types of models will provide similar results, although the regression-type models may be more consistent with

  1. Flow distributions and spatial correlations in human brain capillary networks

    Science.gov (United States)

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy

    2015-11-01

    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  2. Influence of spatial temperature distribution on high accuracy interferometric metrology

    Science.gov (United States)

    Gu, Yongqiang; Miao, Erlong; Yan, Feng; Zhang, Jian; Yang, Huaijiang

    2010-10-01

    We calculate the influence of temperature change on the refractive index of air, establish a model of air temperature distribution and analyze the effect of different temperature distribution on the high accuracy interferometric metrology. First, a revised Edlen formula is employed to acquire the relation between temperature and refractive index of air, followed by introducing the fixed temperature gradient distribution among the spatial grid within the optical cavity between the reference flat and the test flat of the Fizeau interferometer, accompanied by a temperature change random function within each grid. Finally, all the rays through the air layer with different incident angles are traced by Matlab program in order to obtain the final output position, angle and OPD for each ray. The influence of different temperature distribution and the length of the optical cavity in on the testing accuracy can be analyzed through the RMS value that results from repeatable rays tracing. As a result, the horizontal distribution (vertical to optical axis) has a large effect on the testing accuracy. Thus, to realize the high accuracy figure metrology, the horizontal distribution of temperature must be rigorously controlled as well as to shorten the length of the optical cavity to a large extent. The results from our simulation are of great significant for the accuracy analysis of interferometric testing and the research of manufacturing a interferometer.

  3. Spatial variability of Chinook salmon spawning distribution and habitat preferences

    Science.gov (United States)

    Cram, Jeremy M.; Torgersen, Christian; Klett, Ryan S.; Pess, George R.; May, Darran; Pearsons, Todd N.; Dittman, Andrew H.

    2017-01-01

    We investigated physical habitat conditions associated with the spawning sites of Chinook Salmon Oncorhynchus tshawytscha and the interannual consistency of spawning distribution across multiple spatial scales using a combination of spatially continuous and discrete sampling methods. We conducted a census of aquatic habitat in 76 km of the upper main-stem Yakima River in Washington and evaluated spawning site distribution using redd survey data from 2004 to 2008. Interannual reoccupation of spawning areas was high, ranging from an average Pearson’s correlation of 0.62 to 0.98 in channel subunits and 10-km reaches, respectively. Annual variance in the interannual correlation of spawning distribution was highest in channel units and subunits, but it was low at reach scales. In 13 of 15 models developed for individual years (2004–2008) and reach lengths (800 m, 3 km, 6 km), stream power and depth were the primary predictors of redd abundance. Multiple channels and overhead cover were patchy but were important secondary and tertiary predictors of reach-scale spawning site selection. Within channel units and subunits, pool tails and thermal variability, which may be associated with hyporheic exchange, were important predictors of spawning. We identified spawning habitat preferences within reaches and channel units that are relevant for salmonid habitat restoration planning. We also identified a threshold (i.e., 2-km reaches) beyond which interannual spawning distribution was markedly consistent, which may be informative for prioritizing habitat restoration or conservation. Management actions may be improved through enhanced understanding of spawning habitat preferences and the consistency with which Chinook Salmon reoccupy spawning areas at different spatial scales.

  4. Modelling deep water habitats to develop a spatially explicit, fine scale understanding of the distribution of the western rock lobster, Panulirus cygnus.

    Directory of Open Access Journals (Sweden)

    Renae K Hovey

    Full Text Available BACKGROUND: The western rock lobster, Panulirus cygnus, is endemic to Western Australia and supports substantial commercial and recreational fisheries. Due to and its wide distribution and the commercial and recreational importance of the species a key component of managing western rock lobster is understanding the ecological processes and interactions that may influence lobster abundance and distribution. Using terrain analyses and distribution models of substrate and benthic biota, we assess the physical drivers that influence the distribution of lobsters at a key fishery site. METHODS AND FINDINGS: Using data collected from hydroacoustic and towed video surveys, 20 variables (including geophysical, substrate and biota variables were developed to predict the distributions of substrate type (three classes of reef, rhodoliths and sand and dominant biota (kelp, sessile invertebrates and macroalgae within a 40 km(2 area about 30 km off the west Australian coast. Lobster presence/absence data were collected within this area using georeferenced pots. These datasets were used to develop a classification tree model for predicting the distribution of the western rock lobster. Interestingly, kelp and reef were not selected as predictors. Instead, the model selected geophysical and geomorphic scalar variables, which emphasise a mix of terrain within limited distances. The model of lobster presence had an adjusted D(2 of 64 and an 80% correct classification. CONCLUSIONS: Species distribution models indicate that juxtaposition in fine scale terrain is most important to the western rock lobster. While key features like kelp and reef may be important to lobster distribution at a broad scale, it is the fine scale features in terrain that are likely to define its ecological niche. Determining the most appropriate landscape configuration and scale will be essential to refining niche habitats and will aid in selecting appropriate sites for protecting critical

  5. A tempo-spatial-distributed multi-objective decision-making model for ecological restoration management of water-deficient rivers

    Science.gov (United States)

    Yu, Sen; He, Li; Lu, Hongwei

    2016-11-01

    Worldwide, many rivers experience water deficiency to such an extent that artificial water recharge is the only option for their ecological restoration. In this contribution, a framework was proposed for scenario-based, integrated decision-making, and evaluation of spatial and temporal multi-objectives for the ecological restoration of water-deficient rivers. Firstly, water-deficient rivers are divided into different regions using a GIS tool according to their spatial distribution characteristics. Secondly, decision objectives and variables are chosen, and scenarios are established for different regions over both spatial and temporal scales. Thirdly, the improved principal component projection (IPCP) method is applied to evaluate the different scenarios. Finally, coupled with the output data, scenarios for whole rivers are then optimally combined. Accordingly, decision-makers can then choose satisfactory scenarios as decision schemes. The framework is then tested through a case study in support of decision-making for the ecological restoration of the Yongding River using artificially recharged and recycled water. The case study demonstrates that the proposed framework was practical and effective for Yongding river ecological restoration with artificial recharge. It is also capable of identifying optimal restoration scenarios from a range of scenarios generated by the newly developed decision-support system.

  6. Combining a finite mixture distribution model with indicator kriging to delineate and map the spatial patterns of soil heavy metal pollution in Chunghua County, central Taiwan.

    Science.gov (United States)

    Lin, Yu-Pin; Cheng, Bai-You; Shyu, Guey-Shin; Chang, Tsun-Kuo

    2010-01-01

    This study identifies the natural background, anthropogenic background and distribution of contamination caused by heavy metal pollutants in soil in Chunghua County of central Taiwan by using a finite mixture distribution model (FMDM). The probabilities of contaminated area distribution are mapped using single-variable indicator kriging and multiple-variable indicator kriging (MVIK) with the FMDM cut-off values and regulation thresholds for heavy metals. FMDM results indicate that Cr, Cu, Ni and Zn can be individually fitted by a mixture model representing the background and contamination distributions of the four metals in soil. The FMDM cut-off values for contamination caused by the metals are close to the regulation thresholds, except for the cut-off value of Zn. The receiver operating characteristic (ROC) curve validates that indicator kriging and MVIK with FMDM cut-off values can reliably delineate heavy metals contamination, particularly for areas lacking background information and high heavy metal concentrations in soil.

  7. Predicting the spatial and temporal distributions of marine fish species utilizing earth system data in a MaxEnt model framework

    Science.gov (United States)

    Wang, L.; Kerr, L. A.; Bridger, E.

    2016-02-01

    Changes in species distributions have been widely associated with climate change. Understanding how ocean temperatures influence species distributions is critical for elucidating the role of climate in ecosystem change as well as for forecasting how species may be distributed in the future. As such, species distribution modeling (SDM) is increasingly useful in marine ecosystems research, as it can enable estimation of the likelihood of encountering marine fish in space or time as a function of a set of environmental and ecosystem conditions. Many traditional SDM approaches are applied to species data collected through standardized methods that include both presence and absence records, but are incapable of using presence-only data, such as those collected from fisheries or through citizen science programs. Maximum entropy (MaxEnt) models provide promising tools as they can predict species distributions from incomplete information (presence-only data). We developed a MaxEnt framework to relate the occurrence records of several marine fish species (e.g. Atlantic herring, Atlantic mackerel, and butterfish) to environmental conditions. Environmental variables derived from remote sensing, such as monthly average sea surface temperature (SST), are matched with fish species data, and model results indicate the relative occurrence rate of the species as a function of the environmental variables. The results can be used to provide hindcasts of where species might have been in the past in relation to historical environmental conditions, nowcasts in relation to current conditions, and forecasts of future species distributions. In this presentation, we will assess the relative influence of several environmental factors on marine fish species distributions, and evaluate the effects of data coverage on these presence-only models. We will also discuss how the information from species distribution forecasts can support climate adaptation planning in marine fisheries.

  8. Proximal soil sensing to parameterize spatial environmental modeling

    Science.gov (United States)

    Spatially explicit models are important tools to understand the effects of the interaction of management and landscape factors on water and soil quality. One challenge to application of such models is the need to know spatially-distributed values for input parameters. Some such data can come from av...

  9. Spatial distribution of near-fault ground motion

    Institute of Scientific and Technical Information of China (English)

    刘启方; 袁一凡; 金星

    2004-01-01

    Near-fault strong ground motion of strike-slip and dip-slip of vertical and inclined rectangular fault in half-space and layered half-space is analyzed by dislocation source model. The Fourier spectra ratio of ground motion is adopted to study the characteristics of near-fault ground motion. For both slip models, near-fault strong ground motion with high amplitude is located in a narrow belt area along the projection of the fault on the ground and mainly controlled by the sub-faults nearby. Directivity of strike-slip fault is more dominant in long period for components perpendicular to the fault, and more dominant in long period for components parallel to the fault for dip-slip fault. The deeper the location of the source is, the more slowly the amplitude of ground motion attenuates.There is obvious hanging wall effect in ground motion of inclined fault, and the spatial distribution of ground motion is asymmetric which coincides with observational data. Finally, a fitting function of spatial distribution for near-fault ground motion is proposed and compared with near source factors of the 1997 Uniform Building Code of USA.

  10. City size distributions and spatial economic change.

    Science.gov (United States)

    Sheppard, E

    1982-10-01

    "The concept of the city size distribution is criticized for its lack of consideration of the effects of interurban interdependencies on the growth of cities. Theoretical justifications for the rank-size relationship have the same shortcomings, and an empirical study reveals that there is little correlation between deviations from rank-size distributions and national economic and social characteristics. Thus arguments suggesting a close correspondence between city size distributions and the level of development of a country, irrespective of intranational variations in city location and socioeconomic characteristics, seem to have little foundation." (summary in FRE, ITA, JPN, ) excerpt

  11. Spatial emission modelling for residential wood combustion in Denmark

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Nielsen, Ole-Kenneth; Brandt, Jørgen

    2016-01-01

    Residential wood combustion (RWC) is a major contributor to atmospheric pollution especially for particulate matter. Air pollution has significant impact on human health, and it is therefore important to know the human exposure. For this purpose, it is necessary with a detailed high resolution...... spatial distribution of emissions. In previous studies as well as in the model previously used in Denmark, the spatial resolution is limited, e.g. municipality or county level. Further, in many cases models are mainly relying on population density data as the spatial proxy for distributing the emissions....... This paper describes the new Danish model for high resolution spatial distribution of emissions from RWC to air. The new spatial emission model is based on information regarding building type, and primary and supplementary heating installations from the Danish Building and Dwelling Register (BBR), which...

  12. Climate change and spatial distribution of vegetation in Colombia

    Directory of Open Access Journals (Sweden)

    Juan Carlos Alarcon Hincapie

    2013-12-01

    Full Text Available Vegetation change under two climate change scenarios in different periods of the 21st Century are modeled for Colombia. Vegetation for the years 1970 to 2000 was reproduced using the Holdridge model with climate data with a spatial resolution of 900 meters. The vegetation types that occupied the most territory were sub-humid tropical forest, tropical dry forest and Andean wet forest. These results were validated by comparing with the Colombian ecosystem map (SINA, 2007, which confirmed a high degree of similarity between the modeled spatial vegetation patterns and modern ecosystem distributions. Future vegetation maps were simulated using data generated by a regional climate model under two scenarios (A2 and B2; IPCC, 2007 for the periods 2011-2040 and 2070-2100. Based on our predictions high altitude vegetation will convert to that of lower altitudes and drier provinces with the most dramatic change occurring in the A2 scenario from 2070-2100. The most affected areas are the páramo and other high Andean vegetation types, which in the timeframe of the explored scenarios will disappear by the middle of the 21st Century.

  13. Property Improvement in CZT via Modeling and Processing Innovations . Te-particles in vertical gradient freeze CZT: Size and Spatial Distributions and Constitutional Supercooling

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bliss, Mary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, Jean A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-10-01

    A section of a vertical gradient freeze CZT boule approximately 2100-mm3 with a planar area of 300-mm2 was prepared and examined using transmitted IR microscopy at various magnifications to determine the three-dimensional spatial and size distributions of Te-particles over large longitudinal and radial length scales. The boule section was approximately 50-mm wide by 60-mm in length by 7-mm thick and was doubly polished for TIR work. Te-particles were imaged through the thickness using extended focal imaging to locate the particles in thickness planes spaced 15-µm apart and then in plane of the image using xy-coordinates of the particle center of mass so that a true three dimensional particle map was assembled for a 1-mm by 45-mm longitudinal strip and for a 1-mm by 50-mm radial strip. Te-particle density distributions were determined as a function of longitudinal and radial positions in these strips, and treating the particles as vertices of a network created a 3D image of the particle spatial distribution. Te-particles exhibited a multi-modal log-normal size density distribution that indicated a slight preference for increasing size with longitudinal growth time, while showing a pronounced cellular network structure throughout the boule that can be correlated to dislocation network sizes in CZT. Higher magnification images revealed a typical Rayleigh-instability pearl string morphology with large and small satellite droplets. This study includes solidification experiments in small crucibles of 30:70 mixtures of Cd:Te to reduce the melting point below 1273 K (1000°C). These solidification experiments were performed over a wide range of cooling rates and clearly demonstrated a growth instability with Te-particle capture that is suggested to be responsible for one of the peaks in the size distribution using size discrimination visualization. The results are discussed with regard to a manifold Te-particle genesis history as 1) Te

  14. Bounding species distribution models

    Directory of Open Access Journals (Sweden)

    Thomas J. STOHLGREN, Catherine S. JARNEVICH, Wayne E. ESAIAS,Jeffrey T. MORISETTE

    2011-10-01

    Full Text Available Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for “clamping” model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART and maximum entropy (Maxent models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5: 642–647, 2011].

  15. Bounding Species Distribution Models

    Science.gov (United States)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  16. Inner membrane fusion mediates spatial distribution of axonal mitochondria

    Science.gov (United States)

    Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge

    2016-01-01

    In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution. PMID:26742817

  17. Effect of the spatial distribution of physical aquifer properties on modelled water table depth and stream discharge in a headwater catchment

    Directory of Open Access Journals (Sweden)

    C. Gascuel-Odoux

    2010-07-01

    Full Text Available Water table depth and its dynamics on hillslopes are often poorly predicted despite they control both water transit time within the catchment and solute fluxes at the catchment outlet. This paper analyses how relaxing the assumption of lateral homogeneity of physical properties can improve simulations of water table depth and dynamics. Four different spatial models relating hydraulic conductivity to topography have been tested: a simple linear relationship, a linear relationship with two different topographic indexes, two Ks domains with a transitional area. The Hill-Vi model has been modified to test these hypotheses. The studied catchment (Kervidy-Naizin, Western France is underlain by schist crystalline bedrock. A shallow and perennial groundwater highly reactive to rainfall events mainly develops in the weathered saprolite layer. The results indicate that (1 discharge and the water table in the riparian zone are similarly predicted by the four models, (2 distinguishing two Ks domains constitutes the best model and slightly improves prediction of the water table upslope, and (3 including spatial variations in the other parameters such as porosity or rate of hydraulic conductivity decrease with depth does not improve the results. These results underline the necessity of better investigations of upslope areas in hillslope hydrology.

  18. The Spatial Distribution of Economic Activities in Italy

    NARCIS (Netherlands)

    Dominicis, de Laura; Arbia, Giuseppe; Groot, de Henri L.F.

    2007-01-01

    Existing indices measuring the spatial distribution of economic activity such as the Krugman Specialisation Index, the Hirschmann-Herfindahl index and the Ellison-Glaeser index typically do not take into account the spatial structure of the data. In this paper, we first consider traditional measures

  19. The Spatial Distribution of Attention within and across Objects

    Science.gov (United States)

    Hollingworth, Andrew; Maxcey-Richard, Ashleigh M.; Vecera, Shaun P.

    2012-01-01

    Attention operates to select both spatial locations and perceptual objects. However, the specific mechanism by which attention is oriented to objects is not well understood. We examined the means by which object structure constrains the distribution of spatial attention (i.e., a "grouped array"). Using a modified version of the Egly et…

  20. Spatial Distribution of Key Sectors of West Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Rina Muthia Harahap

    2014-06-01

    Full Text Available ASEAN Economic Community will be implemented in 2015, while West Kalimantanprovince which is located in 2 Sub-Regional Cooperations of ASEAN , yet to be widely discussed by regional economic experts in terms of itsregional potentials. Multi-sector expressions often generalized in majorcategories, seem to be uncleared to share what key sectorsindicated and where they distribute in the region concerned.. Based on this,the paper proposes a combination approach of multi-sector model and inter-linked in spatial dimensions. Input-output method and Location Quotient models introduced and applied in the case of West Kalimantan province in the efficiency of its development efforts towards a Green Plan.

  1. Combination of genetics and spatial modelling highlights the sensitivity of cod (Gadus morhua) population diversity in the North Sea to distributions of fishing

    DEFF Research Database (Denmark)

    Heath, Michael R.; Culling, Mark A.; Crozier, Walter W.

    2014-01-01

    Conserving genetic diversity in animal populations is important for sustaining their ability to respond to environmental change. However, the “between-population” component of genetic diversity (biocomplexity) is threatened in many exploited populations, particularly marine fish, where harvest...... North Sea (Viking) unit by the more widespread (Dogger) unit, and its premature extinction under some spatial patterns of fishing. Fishery catch limits for cod are set at the scale of the whole North Sea without regard to such subpopulation dynamics. Our model offers a method to quantify adjustments...

  2. Spatially Distributed Characterization of Soil Dynamics Using Travel-Time Distributions

    Science.gov (United States)

    Hesse, Falk; Zink, Matthias; Attinger, Sabine

    2016-04-01

    The description of storage and transport of both water and solved contaminants in catchments is very difficult due to the high heterogeneity of the subsurface properties that govern their fate. This heterogeneity, combined with a generally limited knowledge about the subsurface, results in high degrees of uncertainty. As a result, stochastic methods are increasingly applied, where the relevant processes are modeled as being random. Within these methods, quantities like the catchment travel or residence time of a water parcel are described using probability density functions (PDF). The derivation of these PDF's is typically done by using the water fluxes and states of the catchment. A successful application of such frameworks is therefore contingent on a good quantification of these fluxes and states across the different spatial scales. The objective of this study is to use travel times for the characterization of an ca. 1000 square kilometer, humid catchment in Central Germany. To determine the states and fluxes, we apply the mesoscale Hydrological Model mHM, a spatially distributed hydrological model to the catchment. Using detailed data of precipitation, land cover, morphology and soil type as inputs, mHM is able to determine fluxes like recharge and evapotranspiration and states like soil moisture as outputs. Using these data, we apply the above theoretical framework to our catchment. By virtue of the aforementioned properties of mHM, we are able to describe the storage and release of water with a high spatial resolution. This allows for a comprehensive description of the flow and transport dynamics taking place in the catchment. The spatial distribution of such dynamics is then compared with land cover and soil moisture maps as well as driving forces like precipitation and potential evapotranspiration to determine the most predictive factors. In addition, we investigate how non-local data like the age distribution of discharge flows are impacted by, and

  3. Spatially Distributed Characterization of Catchment Dynamics Using Travel-Time Distributions

    Science.gov (United States)

    Heße, F.; Zink, M.; Attinger, S.

    2015-12-01

    The description of storage and transport of both water and solved contaminants in catchments is very difficult due to the high heterogeneity of the subsurface properties that govern their fate. This heterogeneity, combined with a generally limited knowledge about the subsurface, results in high degrees of uncertainty. As a result, stochastic methods are increasingly applied, where the relevant processes are modeled as being random. Within these methods, quantities like the catchment travel or residence time of a water parcel are described using probability density functions (PDF). The derivation of these PDF's is typically done by using the water fluxes and states of the catchment. A successful application of such frameworks is therefore contingent on a good quantification of these fluxes and states across the different spatial scales. The objective of this study is to use travel times for the characterization of an ca. 1000 square kilometer, humid catchment in Central Germany. To determine the states and fluxes, we apply the mesoscale Hydrological Model mHM, a spatially distributed hydrological model to the catchment. Using detailed data of precipitation, land cover, morphology and soil type as inputs, mHM is able to determine fluxes like recharge and evapotranspiration and states like soil moisture as outputs. Using these data, we apply the above theoretical framework to our catchment. By virtue of the aforementioned properties of mHM, we are able to describe the storage and release of water with a high spatial resolution. This allows for a comprehensive description of the flow and transport dynamics taking place in the catchment. The spatial distribution of such dynamics is then compared with land cover and soil moisture maps as well as driving forces like precipitation and temperature to determine the most predictive factors. In addition, we investigate how non-local data like the age distribution of discharge flows are impacted by, and therefore allow to infer

  4. Comparison of regression models with land-use and emissions data to predict the spatial distribution of traffic-related air pollution in Rome.

    Science.gov (United States)

    Rosenlund, Mats; Forastiere, Francesco; Stafoggia, Massimo; Porta, Daniela; Perucci, Mara; Ranzi, Andrea; Nussio, Fabio; Perucci, Carlo A

    2008-03-01

    Spatial modeling of traffic-related air pollution typically involves either regression modeling of land-use and traffic data or dispersion modeling of emissions data, but little is known to what extent land-use regression models might be improved by incorporating emissions data. The aim of this study was to develop a land-use regression model to predict nitrogen dioxide (NO2) concentrations and compare its performance with a model including emissions data. The association between each land-use variable and NO2 concentrations at 68 locations in Rome in 1995 and 1996 was assessed by univariate linear regression and a multiple linear regression model that was constructed based on the importance of each variable. Traffic emissions (particulate matter, carbon monoxide, nitrogen oxides, and benzene) were estimated for 164 areas of the city based on vehicle type, traffic counts and driving patterns. Mean NO2 concentration across the 68 sites was 46.8 microg/m3 (SD 9.8 microg/m3; inter-quartile range 11.5 microg/m3; min 24 microg/m3; max 73 microg/m3). The most important predicting variables were the circular traffic zones (main ring road, green strip, inner ring road, traffic-limited zone), distance from busy streets, size of the census block, the inverse population density, and altitude. A multiple regression model including these variables resulted in an R2 of 0.686. The best-fitting model adding an emission term of benzene resulted in an R2 of 0.690, but was not significantly different from the model without emissions (P=0.147). In conclusion, these results suggest that a land-use regression model explains the traffic-related air pollution levels with reasonable accuracy and that emissions data do not significantly improve the model.

  5. Spatial distribution of soil organic carbon stocks in France

    Directory of Open Access Journals (Sweden)

    M. P. Martin

    2010-11-01

    Full Text Available Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, whereby it can influence the course of climate change. Changes in soil organic soil stocks (SOCS are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOCS is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing circa 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory.

    We calibrated a boosted regression tree model on the observed stocks, modelling SOCS as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOCS for the whole of metropolitan France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on soil organic carbon for such soils.

    The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOCS and pedo-climatic variables (plus their interactions over the French territory. These relationship strongly depended on the land use, and more specifically differed between forest soils and cultivated soil. The total estimate of SOCS in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOCS distributions of France, and consequently that the previously

  6. Spatial distribution of soil organic carbon stocks in France

    Directory of Open Access Journals (Sweden)

    M. P. Martin

    2011-05-01

    Full Text Available Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory.

    We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils.

    The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the

  7. Spatial distribution of soil organic carbon stocks in France

    Science.gov (United States)

    Martin, M. P.; Wattenbach, M.; Smith, P.; Meersmans, J.; Jolivet, C.; Boulonne, L.; Arrouays, D.

    2011-05-01

    Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC) stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory. We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils. The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions) over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the previously published approach at the

  8. The spatial distribution of grains and crystals in rocks

    Science.gov (United States)

    Jerram, D. A.; Cheadle, Michael J.; Hunter, Robert H.; Elliott, Michael T.

    1996-09-01

    Characterisation and analysis of the spatial distribution pattern (SDP) of grains or crystals in rocks is potentially a powerful technique which can be used to constrain the processes which operate in the formation of rocks. A method to quantify the SDP of grains in thin section is presented. The distance betwen the centre of a grain and the centre of its nearest neighbour is calculated for all the grains in the sample area to produce a distribution of distances that characterises the spatial pattern of grains in the rock. This distribution is then normalised to a random distribution of points with the same population density to give a descriptive value, R. Values of R for rock samples are plotted against porosity (modal abundance of other phases in igneous and metamorphic rocks) to characterise the SDP. The SDP of randomly packed distributions of equal size spheres varies systematically with porosity, producing a line on a porosity versus R plot, termed the random sphere distribution line (RSDL). Rocks which plot above the RSDL have an ordered SDP and those that plot below, a clustered SDP. The effects of variation in grain packing order, grain sorting, compaction and random crystallisation (overgrowth) on determined R values were investigated using a combination of 3-D sphere models and 2-D texture models. The maximum possible value of R is 2.148, corresponding to a perfect section through hexagonal/cubic close packing of grains. The minimum value of R is dependent on the proportion of grains in the sample volume and may be as low as 1.2, for a sample volume with 30% grains which are clustered. Variations in size sorting can cause R to vary by approximately 0.25. Mechanical compaction of a loose framework of grains results in a higher packing order and an increase in R. Continued compaction creates a fabric in the texture and R decreases as cluster patterns are developed perpendicular to the principal stress. The overgrowth of grains in a touching framework

  9. StreamFlow 1.0: an extension to the spatially distributed snow model Alpine3D for hydrological modelling and deterministic stream temperature prediction

    Science.gov (United States)

    Gallice, Aurélien; Bavay, Mathias; Brauchli, Tristan; Comola, Francesco; Lehning, Michael; Huwald, Hendrik

    2016-12-01

    Climate change is expected to strongly impact the hydrological and thermal regimes of Alpine rivers within the coming decades. In this context, the development of hydrological models accounting for the specific dynamics of Alpine catchments appears as one of the promising approaches to reduce our uncertainty of future mountain hydrology. This paper describes the improvements brought to StreamFlow, an existing model for hydrological and stream temperature prediction built as an external extension to the physically based snow model Alpine3D. StreamFlow's source code has been entirely written anew, taking advantage of object-oriented programming to significantly improve its structure and ease the implementation of future developments. The source code is now publicly available online, along with a complete documentation. A special emphasis has been put on modularity during the re-implementation of StreamFlow, so that many model aspects can be represented using different alternatives. For example, several options are now available to model the advection of water within the stream. This allows for an easy and fast comparison between different approaches and helps in defining more reliable uncertainty estimates of the model forecasts. In particular, a case study in a Swiss Alpine catchment reveals that the stream temperature predictions are particularly sensitive to the approach used to model the temperature of subsurface flow, a fact which has been poorly reported in the literature to date. Based on the case study, StreamFlow is shown to reproduce hourly mean discharge with a Nash-Sutcliffe efficiency (NSE) of 0.82 and hourly mean temperature with a NSE of 0.78.

  10. Climatic variability and spatial distribution of herbaceous fodders in the Sudanian zone of Benin (West Africa.

    Directory of Open Access Journals (Sweden)

    Myrèse C. Ahoudji

    2016-01-01

    Full Text Available This study focused on future spatial distributions of Andropogon gayanus, Loxodera ledermanii and Alysicarpus ovalifolius regarding bioclimatic variables in the Sudanian zone of Benin, particularly in the W Biosphere Reserve (WBR. These species were selected according to their importance for animals feed and the intensification of exploitation pressure induced change in their natural spatial distribution. Twenty (20 bioclimatic variables were tested and variables with high auto-correlation values were eliminated. Then, we retained seven climatic variables for the model. A MaxEnt (Maximum Entropy method was used to identify all climatic factors which determined the spatial distribution of the three species. Spatial distribution showed for Andropogon gayanus, a regression of high area distribution in detriment of low and moderate areas. The same trend was observed for Loxodera ledermannii spatial distribution. For Alysicarpus ovalifolius, currently area with moderate and low distribution were the most represented but map showed in 2050 that area with high distribution increased. We can deduce that without bioclimatic variables, others factors such as: biotic interactions, dispersion constraints, anthropic pressure, human activities and another historic factor determined spatial distribution of species. Modeling techniques that require only presence data are therefore extremely valuable.

  11. Spatial distribution of erosion and deposition on an agricultural watershed

    Science.gov (United States)

    Pineux, Nathalie; Gilles, Colinet; Degré, Aurore

    2013-04-01

    To better understand the agricultural landscapes evolution becomes an essential preoccupation and, for this, it is needed to take into account the sediments deposition, in a distributed way. As it is not possible in practice to study all terrestrial surfaces in detail by instrumenting sectors to obtain data, models of prediction are valuable tools to control the current problems, to predict the future tendencies and to provide a scientific base to the political decisions. In our case, a landscape evolution model is needed, which aims at representing both erosion and sedimentation and dynamically adjusts the landscape to erosion and deposition by modifying the initial digital elevation model. The Landsoil model (Landscape design for Soil conservation under soil use and climate change), among others, could fulfil this objective. It has the advantage to take the soil variability into account. This model, designed for the analysis of agricultural landscape, is suitable for simulations from parcel to catchment scale, is spatially distributed and event-based. Observed quantitative data are essential (notably to calibrate the model) but still limited. Particularly, we lack observations spatially distributed on the watershed. For this purpose, we choose a watershed in Belgium (Wallonia) which is a 124 ha agricultural zone in the loamy region. Its slopes range from 0% to 9%. To test the predictions of the model, comparisons will be done with: - sediment measurements which are done with water samplings in four points on the site to compare the net erosion results; - sediment selective measurements (depth variation observed along graduated bares placed on site) to compare the erosion and deposition results; - very accurate DSM's (6,76 cm pixel resolution X-Y) obtained by the drone (Gatewing X100) each winter. Besides planning what the landscape evolution should be, a revision of the soil map (drew in 1958) is organized to compare with the past situation and establish how the

  12. How well do food distributions predict spatial distributions of shorebirds with different degrees of self-organization?

    NARCIS (Netherlands)

    Folmer, Eelke O.; Olff, Han; Piersma, Theunis; Coulson, Tim

    2010-01-01

    P>1. Habitat selection models usually assume that the spatial distributions of animals depend positively on the distributions of resources and negatively on interference. However, the presence of conspecifics at a given location also signals safety and the availability of resources. This may induce

  13. Using multi-compartment ensemble modeling as an investigative tool of spatially distributed biophysical balances: application to hippocampal oriens-lacunosum/moleculare (O-LM) cells.

    Science.gov (United States)

    Sekulić, Vladislav; Lawrence, J Josh; Skinner, Frances K

    2014-01-01

    Multi-compartmental models of neurons provide insight into the complex, integrative properties of dendrites. Because it is not feasible to experimentally determine the exact density and kinetics of each channel type in every neuronal compartment, an essential goal in developing models is to help characterize these properties. To address biological variability inherent in a given neuronal type, there has been a shift away from using hand-tuned models towards using ensembles or populations of models. In collectively capturing a neuron's output, ensemble modeling approaches uncover important conductance balances that control neuronal dynamics. However, conductances are never entirely known for a given neuron class in terms of its types, densities, kinetics and distributions. Thus, any multi-compartment model will always be incomplete. In this work, our main goal is to use ensemble modeling as an investigative tool of a neuron's biophysical balances, where the cycling between experiment and model is a design criterion from the start. We consider oriens-lacunosum/moleculare (O-LM) interneurons, a prominent interneuron subtype that plays an essential gating role of information flow in hippocampus. O-LM cells express the hyperpolarization-activated current (Ih). Although dendritic Ih could have a major influence on the integrative properties of O-LM cells, the compartmental distribution of Ih on O-LM dendrites is not known. Using a high-performance computing cluster, we generated a database of models that included those with or without dendritic Ih. A range of conductance values for nine different conductance types were used, and different morphologies explored. Models were quantified and ranked based on minimal error compared to a dataset of O-LM cell electrophysiological properties. Co-regulatory balances between conductances were revealed, two of which were dependent on the presence of dendritic Ih. These findings inform future experiments that differentiate between

  14. Using multi-compartment ensemble modeling as an investigative tool of spatially distributed biophysical balances: application to hippocampal oriens-lacunosum/moleculare (O-LM cells.

    Directory of Open Access Journals (Sweden)

    Vladislav Sekulić

    Full Text Available Multi-compartmental models of neurons provide insight into the complex, integrative properties of dendrites. Because it is not feasible to experimentally determine the exact density and kinetics of each channel type in every neuronal compartment, an essential goal in developing models is to help characterize these properties. To address biological variability inherent in a given neuronal type, there has been a shift away from using hand-tuned models towards using ensembles or populations of models. In collectively capturing a neuron's output, ensemble modeling approaches uncover important conductance balances that control neuronal dynamics. However, conductances are never entirely known for a given neuron class in terms of its types, densities, kinetics and distributions. Thus, any multi-compartment model will always be incomplete. In this work, our main goal is to use ensemble modeling as an investigative tool of a neuron's biophysical balances, where the cycling between experiment and model is a design criterion from the start. We consider oriens-lacunosum/moleculare (O-LM interneurons, a prominent interneuron subtype that plays an essential gating role of information flow in hippocampus. O-LM cells express the hyperpolarization-activated current (Ih. Although dendritic Ih could have a major influence on the integrative properties of O-LM cells, the compartmental distribution of Ih on O-LM dendrites is not known. Using a high-performance computing cluster, we generated a database of models that included those with or without dendritic Ih. A range of conductance values for nine different conductance types were used, and different morphologies explored. Models were quantified and ranked based on minimal error compared to a dataset of O-LM cell electrophysiological properties. Co-regulatory balances between conductances were revealed, two of which were dependent on the presence of dendritic Ih. These findings inform future experiments that

  15. Combining a finite mixture distribution model with indicator kriging to delineate and map the spatial patterns of soil heavy metal pollution in Chunghua County, central Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Lin Yupin, E-mail: yplin@ntu.edu.t [Department of Bioenvironmental Systems Engineering, National Taiwan University, 1, Section 4, Roosevelt Road, Da-an District, Taipei City 106, Taiwan (China); Cheng Baiyou [Department of Bioenvironmental Systems Engineering, National Taiwan University, 1, Section 4, Roosevelt Road, Da-an District, Taipei City 106, Taiwan (China); Shyu, G.-S. [Department of Environmental Management, Tungnan University, 152, Section 3, PeiShen Road, ShenKeng, Taipei 222, Taiwan (China); Chang, T.-K. [Department of Bioenvironmental Systems Engineering, National Taiwan University, 1, Section 4, Roosevelt Road, Da-an District, Taipei City 106, Taiwan (China)

    2010-01-15

    This study identifies the natural background, anthropogenic background and distribution of contamination caused by heavy metal pollutants in soil in Chunghua County of central Taiwan by using a finite mixture distribution model (FMDM). The probabilities of contaminated area distribution are mapped using single-variable indicator kriging and multiple-variable indicator kriging (MVIK) with the FMDM cut-off values and regulation thresholds for heavy metals. FMDM results indicate that Cr, Cu, Ni and Zn can be individually fitted by a mixture model representing the background and contamination distributions of the four metals in soil. The FMDM cut-off values for contamination caused by the metals are close to the regulation thresholds, except for the cut-off value of Zn. The receiver operating characteristic (ROC) curve validates that indicator kriging and MVIK with FMDM cut-off values can reliably delineate heavy metals contamination, particularly for areas lacking background information and high heavy metal concentrations in soil. - Effectively determine pollution threshold and map contaminated areas.

  16. First contact distributions for spatial patterns: regularity and estimation

    NARCIS (Netherlands)

    Hansen, M.B.; Baddeley, A.J.; Gill, R.D.

    2001-01-01

    For applications in spatial statistics an important property of a random set X in Rk is its rst contact distribution This is the distribution of the distance from a xed point to the nearest point of X where distance is measured using scalar dilations of a xed test set B We show that if B is convex

  17. A computational model of spatio-temporal cardiac intracellular calcium handling with realistic structure and spatial flux distribution from sarcoplasmic reticulum and t-tubule reconstructions.

    Directory of Open Access Journals (Sweden)

    Michael A Colman

    2017-08-01

    Full Text Available Intracellular calcium cycling is a vital component of cardiac excitation-contraction coupling. The key structures responsible for controlling calcium dynamics are the cell membrane (comprising the surface sarcolemma and transverse-tubules, the intracellular calcium store (the sarcoplasmic reticulum, and the co-localisation of these two structures to form dyads within which calcium-induced-calcium-release occurs. The organisation of these structures tightly controls intracellular calcium dynamics. In this study, we present a computational model of intracellular calcium cycling in three-dimensions (3-D, which incorporates high resolution reconstructions of these key regulatory structures, attained through imaging of tissue taken from the sheep left ventricle using serial block face scanning electron microscopy. An approach was developed to model the sarcoplasmic reticulum structure at the whole-cell scale, by reducing its full 3-D structure to a 3-D network of one-dimensional strands. The model reproduces intracellular calcium dynamics during control pacing and reveals the high-resolution 3-D spatial structure of calcium gradients and intracellular fluxes in both the cytoplasm and sarcoplasmic reticulum. We also demonstrated the capability of the model to reproduce potentially pro-arrhythmic dynamics under perturbed conditions, pertaining to calcium-transient alternans and spontaneous release events. Comparison with idealised cell models emphasised the importance of structure in determining calcium gradients and controlling the spatial dynamics associated with calcium-transient alternans, wherein the probabilistic nature of dyad activation and recruitment was constrained. The model was further used to highlight the criticality in calcium spark propagation in relation to inter-dyad distances. The model presented provides a powerful tool for future investigation of structure-function relationships underlying physiological and pathophysiological

  18. Modeling the spatial reach of the LFP.

    Science.gov (United States)

    Lindén, Henrik; Tetzlaff, Tom; Potjans, Tobias C; Pettersen, Klas H; Grün, Sonja; Diesmann, Markus; Einevoll, Gaute T

    2011-12-08

    The local field potential (LFP) reflects activity of many neurons in the vicinity of the recording electrode and is therefore useful for studying local network dynamics. Much of the nature of the LFP is, however, still unknown. There are, for instance, contradicting reports on the spatial extent of the region generating the LFP. Here, we use a detailed biophysical modeling approach to investigate the size of the contributing region by simulating the LFP from a large number of neurons around the electrode. We find that the size of the generating region depends on the neuron morphology, the synapse distribution, and the correlation in synaptic activity. For uncorrelated activity, the LFP represents cells in a small region (within a radius of a few hundred micrometers). If the LFP contributions from different cells are correlated, the size of the generating region is determined by the spatial extent of the correlated activity.

  19. Patterns in the spatial distribution of Peruvian anchovy ( Engraulis ringens) revealed by spatially explicit fishing data

    Science.gov (United States)

    Bertrand, Sophie; Díaz, Erich; Lengaigne, Matthieu

    2008-10-01

    Peruvian anchovy ( Engraulis ringens) stock abundance is tightly driven by the high and unpredictable variability of the Humboldt Current Ecosystem. Management of the fishery therefore cannot rely on mid- or long-term management policy alone but needs to be adaptive at relatively short time scales. Regular acoustic surveys are performed on the stock at intervals of 2 to 4 times a year, but there is a need for more time continuous monitoring indicators to ensure that management can respond at suitable time scales. Existing literature suggests that spatially explicit data on the location of fishing activities could be used as a proxy for target stock distribution. Spatially explicit commercial fishing data could therefore guide adaptive management decisions at shorter time scales than is possible through scientific stock surveys. In this study we therefore aim to (1) estimate the position of fishing operations for the entire fleet of Peruvian anchovy purse-seiners using the Peruvian satellite vessel monitoring system (VMS), and (2) quantify the extent to which the distribution of purse-seine sets describes anchovy distribution. To estimate fishing set positions from vessel tracks derived from VMS data we developed a methodology based on artificial neural networks (ANN) trained on a sample of fishing trips with known fishing set positions (exact fishing positions are known for approximately 1.5% of the fleet from an at-sea observer program). The ANN correctly identified 83% of the real fishing sets and largely outperformed comparative linear models. This network is then used to forecast fishing operations for those trips where no observers were onboard. To quantify the extent to which fishing set distribution was correlated to stock distribution we compared three metrics describing features of the distributions (the mean distance to the coast, the total area of distribution, and a clustering index) for concomitant acoustic survey observations and fishing set positions

  20. Perceived loudness of spatially distributed sound sources

    DEFF Research Database (Denmark)

    Song, Woo-keun; Ellermeier, Wolfgang; Minnaar, Pauli

    2005-01-01

    of a microphone (monaural) and a dummy head (binaural) placed at the listening position. The results show that while loudness metrics fared well in predicting perceived loudness for any single-sound condition, they failed to predict loudness for two simultaneous sounds. This suggests that current loudness......In noise-control engineering, one is often faced with the task of identifying the most problematic of several simultaneous sound sources. Traditionally, this has been done by deriving sound pressure (or intensity) maps by means of a microphone array. This approach does not, however, take...... psychoacoustic attributes into account. Therefore, a method for deriving loudness maps was developed in an earlier study [Song, Internoise2004, paper 271]. The present experiment investigates to which extent perceived loudness depends on the distribution of individual sound sources. Three loudspeakers were...

  1. Environmental DNA reflects spatial and temporal jellyfish distribution

    Science.gov (United States)

    Fukuda, Miho; Katsuhara, Koki R.; Fujiwara, Ayaka; Hidaka, Shunsuke; Yamamoto, Satoshi; Takahashi, Kohji; Masuda, Reiji

    2017-01-01

    Recent development of environmental DNA (eDNA) analysis allows us to survey underwater macro-organisms easily and cost effectively; however, there have been no reports on eDNA detection or quantification for jellyfish. Here we present the first report on an eDNA analysis of marine jellyfish using Japanese sea nettle (Chrysaora pacifica) as a model species by combining a tank experiment with spatial and temporal distribution surveys. We performed a tank experiment monitoring eDNA concentrations over a range of time intervals after the introduction of jellyfish, and quantified the eDNA concentrations by quantitative real-time PCR. The eDNA concentrations peaked twice, at 1 and 8 h after the beginning of the experiment, and became stable within 48 h. The estimated release rates of the eDNA in jellyfish were higher than the rates previously reported in fishes. A spatial survey was conducted in June 2014 in Maizuru Bay, Kyoto, in which eDNA was collected from surface water and sea floor water samples at 47 sites while jellyfish near surface water were counted on board by eye. The distribution of eDNA in the bay corresponded with the distribution of jellyfish inferred by visual observation, and the eDNA concentration in the bay was ~13 times higher on the sea floor than on the surface. The temporal survey was conducted from March to November 2014, in which jellyfish were counted by eye every morning while eDNA was collected from surface and sea floor water at three sampling points along a pier once a month. The temporal fluctuation pattern of the eDNA concentrations and the numbers of observed individuals were well correlated. We conclude that an eDNA approach is applicable for jellyfish species in the ocean. PMID:28245277

  2. Controls on the spatial distribution of oceanic δ13CDIC

    Directory of Open Access Journals (Sweden)

    R. M. Death

    2012-08-01

    Full Text Available We describe the design and evaluation of a large ensemble of coupled climate-carbon cycle simulations with the Earth-system model of intermediate complexity GENIE. This ensemble has been designed for application to a range of carbon cycle questions including utilizing carbon isotope (δ13C proxy records to help constrain the state at the last glacial. Here we evaluate the ensemble by applying it to a transient experiment over the recent industrial era (1858 to 2008 AD. We employ singular vector decomposition and principal component emulation to investigate the spatial modes of ensemble-variability of oceanic dissolved inorganic carbon (DIC δ13C, considering both the spun-up pre-industrial state and the transient change due to the 13C Suess Effect. These analyses allow us to separate the natural and anthropogenic controls on the δ13CDIC distribution. We apply the same dimensionally reduced emulation techniques to consider the drivers of the spatial uncertainty in anthropogenic DIC. We show that the sources of uncertainty governing the uptake of anthropogenic δ13CDIC and DIC are quite distinct. Uncertainty in anthropogenic δ13C uptake is dominated by uncertainties in air-sea gas exchange, which explains 63% of modelled variance. This mode of variability is absent from the ensemble variability in CO2 uptake, which is rather driven by uncertainties in ocean parameters that control mixing of intermediate and surface waters. Although the need to account for air-sea gas exchange is well known, these results suggest that, to leading order, uncertainties in the 13C Suess effect and anthropogenic CO2 ocean-uptake are governed by different processes. This illustrates the difficulties in reconstructing one from the other and furthermore highlights the need for improved spatial coverage of both δ13CDIC and DIC observations to better constrain the ocean sink of anthropogenic CO2.

  3. Spatial Distribution of Dopant Incorporation in CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Guthrey, Harvey; Moseley, John; Colegrove, Eric; Burst, James; Albin, David; Metzger, Wyatt; Al-Jassim, Mowafak

    2016-11-21

    In this work we use state-of-the-art cathodoluminescence (CL) spectrum imaging that provides spectrum-per-pixel mapping of the CL emission to examine how dopant elements are incorporated into CdTe. Emission spectra and intensity are used to monitor the spatial distribution of additional charge carriers through characteristic variations in the CL emission based on theoretical modeling. Our results show that grain boundaries play a role in the incorporation of dopants in CdTe, whether intrinsic or extrinsic. This type of analysis is crucial for providing feedback to design different processing schedules that optimize dopant incorporation in CdTe photovoltaic material, which has struggled to reach high carrier concentration values. Here, we present results on CdTe films exposed to copper, phosphorus, and intrinsic doping treatments.

  4. Integrating water by plant roots over spatially distributed soil salinity

    Science.gov (United States)

    Homaee, Mehdi; Schmidhalter, Urs

    2010-05-01

    In numerical simulation models dealing with water movement and solute transport in vadose zone, the water budget largely depends on uptake patterns by plant roots. In real field conditions, the uptake pattern largely changes in time and space. When dealing with soil and water salinity, most saline soils demonstrate spatially distributed osmotic head over the root zone. In order to quantify such processes, the major difficulty stems from lacking a sink term function that adequately accounts for the extraction term especially under variable soil water osmotic heads. The question of how plants integrate such space variable over its rooting depth remains as interesting issue for investigators. To move one step forward towards countering this concern, a well equipped experiment was conducted under heterogeneously distributed salinity over the root zone with alfalfa. The extraction rates of soil increments were calculated with the one dimensional form of Richards equation. The results indicated that the plant uptake rate under different mean soil salinities preliminary reacts to soil salinity, whereas at given water content and salinity the "evaporative demand" and "root activity" become more important to control the uptake patterns. Further analysis revealed that root activity is inconstant when imposed to variable soil salinity. It can be concluded that under heterogeneously distributed salinity, most water is taken from the less saline increment while the extraction from other root zone increments with higher salinities never stops.

  5. A distributed spatial computing prototype system in grid environment

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Digital Earth has been a hot topic and research trend since it was proposed,and Digital China has drawn much attention in China.As a key technique to implement Digital China,grid is an excellent and promising concept to construct a dynamic,inter-domain and distributed computing environment.It is appropriate to process geographic information across dispersed computing resources in networks effectively and cooperatively.A distributed spatial computing prototype system is designed and implemented with the Globus Toolkit.Several important aspects are discussed in detail.The architecture is proposed according to the characteristics of grid firstly,and then the spatial resource query and access interfaces are designed for heterogeneous data sources.An open-up hierarchical architecture for resource discovery and management is represented to detect spatial and computing resources in grid.A standard spatial job management mechanism is implemented by grid service for convenient use.In addition,the control mechanism of spatial datasets access is developed based on GSI.The prototype system utilizes the Globus Toolkit to implement a common distributed spatial computing framework,and it reveals the spatial computing ability of grid to support Digital China.

  6. Positional information generated by spatially distributed signaling cascades.

    Directory of Open Access Journals (Sweden)

    Javier Muñoz-García

    2009-03-01

    Full Text Available The temporal and stationary behavior of protein modification cascades has been extensively studied, yet little is known about the spatial aspects of signal propagation. We have previously shown that the spatial separation of opposing enzymes, such as a kinase and a phosphatase, creates signaling activity gradients. Here we show under what conditions signals stall in the space or robustly propagate through spatially distributed signaling cascades. Robust signal propagation results in activity gradients with long plateaus, which abruptly decay at successive spatial locations. We derive an approximate analytical solution that relates the maximal amplitude and propagation length of each activation profile with the cascade level, protein diffusivity, and the ratio of the opposing enzyme activities. The control of the spatial signal propagation appears to be very different from the control of transient temporal responses for spatially homogenous cascades. For spatially distributed cascades where activating and deactivating enzymes operate far from saturation, the ratio of the opposing enzyme activities is shown to be a key parameter controlling signal propagation. The signaling gradients characteristic for robust signal propagation exemplify a pattern formation mechanism that generates precise spatial guidance for multiple cellular processes and conveys information about the cell size to the nucleus.

  7. Spatial and temporal distributions of migration in bio-retention systems

    OpenAIRE

    Li Yu-Qi; Wang Kai-Wen; Zhang Ke-Li; Zhou Ze-Wei; Yang Xiao-Hua

    2014-01-01

    Urban bio-retention system is meaningful in reducing rainfall runoff and enhancing infiltration capacity. But the moisture migration in bio-retention systems are not clear under climate change. The spatial and temporal distribution of moisture under different rainfall events in bio-retention systems are studied in this paper based on experimental data in Beijing. Richards model is introduced to simulate the spatial and temporal distribution of moisture incl...

  8. Development of Spatial Distribution Patterns by Biofilm Cells.

    Science.gov (United States)

    Haagensen, Janus A J; Hansen, Susse K; Christensen, Bjarke B; Pamp, Sünje J; Molin, Søren

    2015-09-01

    Confined spatial patterns of microbial distribution are prevalent in nature, such as in microbial mats, soil communities, and water stream biofilms. The symbiotic two-species consortium of Pseudomonas putida and Acinetobacter sp. strain C6, originally isolated from a creosote-polluted aquifer, has evolved a distinct spatial organization in the laboratory that is characterized by an increased fitness and productivity. In this consortium, P. putida is reliant on microcolonies formed by Acinetobacter sp. C6, to which it attaches. Here we describe the processes that lead to the microcolony pattern by Acinetobacter sp. C6. Ecological spatial pattern analyses revealed that the microcolonies were not entirely randomly distributed and instead were arranged in a uniform pattern. Detailed time-lapse confocal microscopy at the single-cell level demonstrated that the spatial pattern was the result of an intriguing self-organization: small multicellular clusters moved along the surface to fuse with one another to form microcolonies. This active distribution capability was dependent on environmental factors (carbon source and oxygen) and historical contingency (formation of phenotypic variants). The findings of this study are discussed in the context of species distribution patterns observed in macroecology, and we summarize observations about the processes involved in coadaptation between P. putida and Acinetobacter sp. C6. Our results contribute to an understanding of spatial species distribution patterns as they are observed in nature, as well as the ecology of engineered communities that have the potential for enhanced and sustainable bioprocessing capacity.

  9. Bounding species distribution models

    Institute of Scientific and Technical Information of China (English)

    Thomas J. STOHLGREN; Catherine S. JARNEVICH; Wayne E. ESAIAS; Jeffrey T. MORISETTE

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern.Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development,yet there is no recommended best practice for “clamping” model extrapolations.We relied on two commonly used modeling approaches:classification and regression tree (CART) and maximum entropy (Maxent) models,and we tested a simple alteration of the model extrapolations,bounding extrapolations to the maximum and minimum values of primary environmental predictors,to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States.Findings suggest that multiple models of bounding,and the most conservative bounding of species distribution models,like those presented here,should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5):642-647,2011].

  10. Spatial emission modelling for residential wood combustion in Denmark

    Science.gov (United States)

    Plejdrup, Marlene S.; Nielsen, Ole-Kenneth; Brandt, Jørgen

    2016-11-01

    Residential wood combustion (RWC) is a major contributor to atmospheric pollution especially for particulate matter. Air pollution has significant impact on human health, and it is therefore important to know the human exposure. For this purpose, it is necessary with a detailed high resolution spatial distribution of emissions. In previous studies as well as in the model previously used in Denmark, the spatial resolution is limited, e.g. municipality or county level. Further, in many cases models are mainly relying on population density data as the spatial proxy for distributing the emissions. This paper describes the new Danish model for high resolution spatial distribution of emissions from RWC to air. The new spatial emission model is based on information regarding building type, and primary and supplementary heating installations from the Danish Building and Dwelling Register (BBR), which holds detailed data for all buildings in Denmark. The new model provides a much more accurate distribution of emissions than the previous model used in Denmark, as the resolution has been increased from municipality level to a 1 km × 1 km resolution, and the distribution key has been significantly improved so that it no longer puts an excessive weight on population density. The new model has been verified for the city of Copenhagen, where emissions estimated using both the previous and the new model have been compared to the emissions estimated in a case study. This comparison shows that the new model with the developed weighting factors (76 ton PM2.5) is in good agreement with the case study (95 ton PM2.5), and that the new model has improved the spatial emission distribution significantly compared to the previous model (284 ton PM2.5). Additionally, a sensitivity analysis was done to illustrate the impact of the weighting factors on the result, showing that the new model independently of the weighting factors chosen produce a more accurate result than the old model.

  11. Development of Spatial Distribution Patterns by Biofilm Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Hansen, Susse Kirkelund; Bak Christensen, Bjarke

    2015-01-01

    Confined spatial patterns of microbial distribution are prevalent in nature, such as in microbial mats, soil communities, and water stream biofilms. The symbiotic two-species consortium of Pseudomonas putida and Acinetobacter sp. C6, originally isolated from a creosote-polluted aquifer, has evolved...... a distinct spatial organization in the laboratory that is characterized by an increased fitness and productivity. In this consortium, P. putida is reliant on microcolonies formed by Acinetobacter sp. C6 — to which it attaches. Here we describe the processes that lead to the microcolony......-pattern by Acinetobacter sp. C6. Ecological spatial pattern analyses revealed that the microcolonies were not entirely randomly distributed, and instead arranged in a uniform pattern. Detailed time-lapse confocal microscopy at the single cell level demonstrated that the spatial pattern was the result of an intriguing self...

  12. Mantled howler monkey spatial foraging decisions reflect spatial and temporal knowledge of resource distributions.

    Science.gov (United States)

    Hopkins, Mariah E

    2016-03-01

    An animal's ability to find and relocate food items is directly related to its survival and reproductive success. This study evaluates how mantled howler monkeys make spatial foraging decisions in the wild. Specifically, discrete choice models and agent-based simulations are used to test whether mantled howler monkeys on Barro Colorado Island, Panama, integrate spatial information in order to maximize new leaf flush and fruit gain while minimizing distance traveled. Several heuristic models of decision making are also tested as possible alternative strategies (movement to core home range areas instead of individual trees, travel along a sensory gradient, movement along arboreal pathway networks without a predetermined destination, straight-line travel in a randomly chosen direction, and random walks). Results indicate that although leaves are the single most abundant item in the mantled howler monkey diet, long-distance travel bouts target the areas with the highest concentrations of mature fruits. Observed travel patterns yielded larger estimated quantities of fruit in shorter distances traveled than all alternative foraging strategies. Thus, this study both provides novel information regarding how primates select travel paths and suggests that a highly folivorous primate integrates knowledge of spatiotemporal resource distributions in highly efficient foraging strategies.

  13. Spatial Distribution and Kinematics of OB Stars

    CERN Document Server

    Gontcharov, George

    2016-01-01

    The sample of 37 485 suspected OB stars selected by Gontcharov (2008) from the Tycho-2 catalogue has been cleaned of the stars that are not of spectral types OV--A0V. For this purpose, the apparent magnitude $V_T$ from Tycho-2, the absolute magnitude $M_{V_T}$ calibrated as a function of the dereddened color index $(B_T-V_T)_0$, the interstellar extinction $A_{V_T}$ calculated from the 3D analytical model by Gontcharov (2009) as a function of the Galactic coordinates, and the photometric distance $r_{ph}$ calculated as a function of $V_T$, $M_{V_T}$, and $A_{V_T}$ have been reconciled in an iterative process. The 20 514 stars that passed the iterations have $(B_T-V_T)_0-5$ and are considered as a sample of OV--A0V stars complete within 350 pc of the Sun. Based on the theoretical relation between the dereddened color and age of the stars, the derived sample has been divided into three subsamples: $(B_T-V_T)_0<-0.2^m$, $-0.2^m<(B_T-V_T)_0<-0.1^m$, and $-0.1^m<(B_T-V_T)_0<0^m$, younger than 100, $...

  14. Analyzing the hydrological impact of afforestation and tree species in two catchments with contrasting soil properties using the spatially distributed model MIKE SHE SWET

    DEFF Research Database (Denmark)

    Sonnenborg, Torben Obel; Christiansen, Jesper Riis; Pang, Bo

    2017-01-01

    Groundwater depletion occurs at a global scale but requires regional strategies for sustainable management of freshwater resources. In Denmark the groundwater quantity and quality is under pressure, and forested areas are considered to protect groundwater reservoirs. However, little is known on how...... afforestation or forest conversion impacts the water resource at the catchment scale. We hypothesize that the groundwater formation and streamflow is increased when water consuming conifers are replaced with the less consumptive broadleaf tree species. To test this a distributed hydrological model...

  15. Development of Spatial Distribution Patterns by Biofilm Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Hansen, Susse Kirkelund; Bak Christensen, Bjarke;

    2015-01-01

    in the context of species distribution patterns observed in macroecology, and we summarize observations about the processes involved in co-adaptation between P. putida and Acinetobacter sp. C6. Our results contribute to an understanding of spatial species distribution patterns as they are observed in nature......Confined spatial patterns of microbial distribution are prevalent in nature, such as in microbial mats, soil communities, and water stream biofilms. The symbiotic two-species consortium of Pseudomonas putida and Acinetobacter sp. C6, originally isolated from a creosote-polluted aquifer, has evolved...... a distinct spatial organization in the laboratory that is characterized by an increased fitness and productivity. In this consortium, P. putida is reliant on microcolonies formed by Acinetobacter sp. C6 — to which it attaches. Here we describe the processes that lead to the microcolony...

  16. [Spatial structure analysis and distribution simulation of Therioaphis trifolii population based on geostatistics and GIS].

    Science.gov (United States)

    Zhang, Rong; Leng, Yun-fa; Zhu, Meng-meng; Wang, Fang

    2007-11-01

    Based on geographic information system and geostatistics, the spatial structure of Therioaphis trifolii population of different periods in Yuanzhou district of Guyuan City, the southern Ningxia Province, was analyzed. The spatial distribution of Therioaphis trifolii population was also simulated by ordinary Kriging interpretation. The results showed that Therioaphis trifolii population of different periods was correlated spatially in the study area. The semivariograms of Therioaphis trifolii could be described by exponential model, indicating an aggregated spatial arrangement. The spatial variance varied from 34.13%-48.77%, and the range varied from 8.751-12.049 km. The degree and direction of aggregation showed that the trend was increased gradually from southwest to northeast. The dynamic change of Therioaphis trifolii population in different periods could be analyzed intuitively on the simulated maps of the spatial distribution from the two aspects of time and space, The occurrence position and degree of Therioaphis trifolii to a state of certain time could be determined easily.

  17. Spatial Stochastic Point Models for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Syversveen, Anne Randi

    1997-12-31

    The main part of this thesis discusses stochastic modelling of geology in petroleum reservoirs. A marked point model is defined for objects against a background in a two-dimensional vertical cross section of the reservoir. The model handles conditioning on observations from more than one well for each object and contains interaction between objects, and the objects have the correct length distribution when penetrated by wells. The model is developed in a Bayesian setting. The model and the simulation algorithm are demonstrated by means of an example with simulated data. The thesis also deals with object recognition in image analysis, in a Bayesian framework, and with a special type of spatial Cox processes called log-Gaussian Cox processes. In these processes, the logarithm of the intensity function is a Gaussian process. The class of log-Gaussian Cox processes provides flexible models for clustering. The distribution of such a process is completely characterized by the intensity and the pair correlation function of the Cox process. 170 refs., 37 figs., 5 tabs.

  18. Temporal evolution and spatial distribution of maternal death

    Directory of Open Access Journals (Sweden)

    Ioná Carreno

    2014-08-01

    Full Text Available OBJECTIVE To analyze the temporal evolution of maternal mortality and its spatial distribution. METHODS Ecological study with a sample made up of 845 maternal deaths in women between 10 and 49 years, registered from 1999 to 2008 in the state of Rio Grande do Sul, Southern Brazil. Data were obtained from Information System on Mortality of Ministry of Health. The maternal mortality ratio and the specific maternal mortality ratio were calculated from records, and analyzed by the Poisson regression model. In the spatial distribution, three maps of the state were built with the rates in the geographical macro-regions, in 1999, 2003, and 2008. RESULTS There was an increase of 2.0% in the period of ten years (95%CI 1.00;1.04; p = 0.01, with no significant change in the magnitude of the maternal mortality ratio. The Serra macro-region presented the highest maternal mortality ratio (1.15, 95%CI 1.08;1.21; p < 0.001. Most deaths in Rio Grande do Sul were of white women over 40 years, with a lower level of education. The time of delivery/abortion and postpartum are times of increased maternal risk, with a greater negative impact of direct causes such as hypertension and bleeding. CONCLUSIONS The lack of improvement in maternal mortality ratio indicates that public policies had no impact on women’s reproductive and maternal health. It is needed to qualify the attention to women’s health, especially in the prenatal period, seeking to identify and prevent risk factors, as a strategy of reducing maternal death.

  19. Automatical identification of secondary craters with crater spatial distribution

    Science.gov (United States)

    Kinoshita, T.; Honda, C.; Hirata, N.; Morota, T.

    2013-12-01

    We can estimate relative and absolute ages of geological units on the lunar surface with crater counting. This method is called as crater chronology and based on an assumption that each impact cratering occurs randomly to the surface. In contrast to these primary craters, secondary craters are impact craters formed by ejecta blocks and constitute clustering craters. As a result of the clustering, the secondary craters show a biased spatial distribution of craters. For the crater chronology, researchers have to exclude secondary craters and their regions from the surface image including primary and secondary craters based on his or her subjective views. We can identify most of secondary craters with unique shape and spatial distribution of craters. However, the secondary craters produced by high-velocity ejecta fragments are more circular and may be less clustered than the adjacent secondary craters, and it can therefor be difficult to distinguish from primary craters. So, it has been suggested that individual differences in the recognition of secondary craters exist. We propose an algorithm for evaluating spatial distribution of craters on the lunar images. We have developed two procedures. In these procedures, we evaluated the spatial distribution of craters by using the group average method in one of the hierarchical clustering, or by using the Voronoi diagram. In these procedures, we compare the result of evaluation for observed spatial distribution of craters with the result of evaluation for ideal random spatial distribution of craters. We demonstrated for some regions on the lunar surface. As a result, almost of clustered secondary craters are identified quantitatively by our algorithm.

  20. Consequences of spatial autocorrelation for niche-based models

    DEFF Research Database (Denmark)

    Segurado, P.; Araújo, Miguel B.; Kunin, W. E.

    2006-01-01

    variables, as measured by Moran's I, was analysed and compared between models. The effects of systematic subsampling of the data set and the inclusion of a contagion term to deal with spatial autocorrelation in models were assessed with projections made with GLM, as it was with this method that estimates...... were vulnerable to the effects of spatial autocorrelation. 5.  The procedures utilized to reduce the effects of spatial autocorrelation had varying degrees of success. Subsampling was partially effective in avoiding the inflation effect, whereas the inclusion of a contagion term fully eliminated......1.  Spatial autocorrelation is an important source of bias in most spatial analyses. We explored the bias introduced by spatial autocorrelation on the explanatory and predictive power of species' distribution models, and make recommendations for dealing with the problem. 2.  Analyses were based...

  1. The application of GIS based decision-tree models for generating the spatial distribution of hydromorphic organic landscapes in relation to digital terrain data

    DEFF Research Database (Denmark)

    Kheir, Rania Bou; Bøcher, Peder Klith; Greve, Mette Balslev

    2010-01-01

    ) topographic parameters were generated from Digital Elevation Models (DEMs) acquired using airborne LIDAR (Light Detection and Ranging) systems. They were used along with existing digital data collected from other sources (soil type, geological substrate and landscape type) to explain organic/mineral field......Accurate information about organic/mineral soil occurrence is a prerequisite for many land resources management applications (including climate change mitigation). This paper aims at investigating the potential of using geomorphometrical analysis and decision tree modeling to predict the geographic...... distribution of hydromorphic organic landscapes in unsampled area in Denmark. Nine primary (elevation, slope angle, slope aspect, plan curvature, profile curvature, tangent curvature, flow direction, flow accumulation, and specific catchment area) and one secondary (steady-state topographic wetness index...

  2. Spatially-Distributed Stream Flow and Nutrient Dynamics Simulations Using the Component-Based AgroEcoSystem-Watershed (AgES-W) Model

    Science.gov (United States)

    Ascough, J. C.; David, O.; Heathman, G. C.; Smith, D. R.; Green, T. R.; Krause, P.; Kipka, H.; Fink, M.

    2010-12-01

    The Object Modeling System 3 (OMS3), currently being developed by the USDA-ARS Agricultural Systems Research Unit and Colorado State University (Fort Collins, CO), provides a component-based environmental modeling framework which allows the implementation of single- or multi-process modules that can be developed and applied as custom-tailored model configurations. OMS3 as a “lightweight” modeling framework contains four primary foundations: modeling resources (e.g., components) annotated with modeling metadata; domain specific knowledge bases and ontologies; tools for calibration, sensitivity analysis, and model optimization; and methods for model integration and performance scalability. The core is able to manage modeling resources and development tools for model and simulation creation, execution, evaluation, and documentation. OMS3 is based on the Java platform but is highly interoperable with C, C++, and FORTRAN on all major operating systems and architectures. The ARS Conservation Effects Assessment Project (CEAP) Watershed Assessment Study (WAS) Project Plan provides detailed descriptions of ongoing research studies at 14 benchmark watersheds in the United States. In order to satisfy the requirements of CEAP WAS Objective 5 (“develop and verify regional watershed models that quantify environmental outcomes of conservation practices in major agricultural regions”), a new watershed model development approach was initiated to take advantage of OMS3 modeling framework capabilities. Specific objectives of this study were to: 1) disaggregate and refactor various agroecosystem models (e.g., J2K-S, SWAT, WEPP) and implement hydrological, N dynamics, and crop growth science components under OMS3, 2) assemble a new modular watershed scale model for fully-distributed transfer of water and N loading between land units and stream channels, and 3) evaluate the accuracy and applicability of the modular watershed model for estimating stream flow and N dynamics. The

  3. Non-homogeneous Behaviour of the Spatial Distribution of Macrospicules

    Indian Academy of Sciences (India)

    N. Gyenge; S. Bennett; R. Erdélyi

    2015-03-01

    In this paper the longitudinal and latitudinal spatial distribution of macrospicules is examined. We found a statistical relationship between the active longitude (determined by sunspot groups) and the longitudinal distribution of macrospicules. This distribution of macrospicules shows an inhomogeneity and non-axisymmetrical behaviour in the time interval between June 2010 and December 2012, covered by observations of the Solar Dynamic Observatory (SDO) satellite. The enhanced positions of the activity and its time variation have been calculated. The migration of the longitudinal distribution of macrospicules shows a similar behaviour to that of the sunspot groups.

  4. Global N removal by freshwater aquatic systems using a spatially distributed, within-basin approach

    NARCIS (Netherlands)

    Wollheim, W.M.; Vörösmarty, C.J.; Bouwman, A.F.; Green, P.; Harrison, J.; Linder, E.; Peterson, B.J.; Seitzinger, S.P.; Syvitski, J.P.M.

    2008-01-01

    We explored the role of aquatic systems in the global N cycle using a spatially distributed, within-basin, aquatic nitrogen (N) removal model, implemented within the Framework for Aquatic Modeling in the Earth System (FrAMES-N). The model predicts mean annual total N (TN) removal by small rivers (wi

  5. Sediment spatial distribution evaluated by three methods and its relation to some soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Bacchi, O.O.S. [Centro de Energia Nuclear na Agricultura-CENA/USP, Laboratorio de Fisica do Solo, Piracicaba, SP (Brazil)]. E-mail: osny@ccna.usp.br; Reichardt, K. [Centro de Energia Nuclear na Agricultura-CENA/USP, Laboratorio de Fisica do Solo, Piracicaba, SP (Brazil); Departamento de Ciencias Exatas, Escola Superior de Agricultura ' Luiz de Queiroz' ESALQ/USP, Piracicaba, SP (Brazil); Sparovek, G. [Departamento de Solos e Nutricao de Plantas, Escola Superior de Agricultura ' Luiz de Queiroz' ESALQ/USP, Piracicaba, SP (Brazil)

    2003-02-15

    An investigation of rates and spatial distribution of sediments on an agricultural field cultivated with sugarcane was undertaken using the {sup 137}Cs technique, USLE and WEPP models. The study was carried out on the Ceveiro watershed of the Piracicaba river basin, state of Sao Paulo, Brazil, experiencing severe soil degradation due to soil erosion. The objectives of the study were to compare the spatial distribution of sediments evaluated by the three methods and its relation to some soil properties. Erosion and sedimentation rates and their spatial distribution estimated by the three methods were completely different. Although not able to show sediment deposition, the spatial distribution of erosion rates evaluated by USLE presented the best correlation with other studied soil properties. (author)

  6. Typical features of pedestrian spatial distribution in the inflow process

    Science.gov (United States)

    Liu, Xiaodong; Song, Weiguo; Fu, Libi; Lv, Wei; Fang, Zhiming

    2016-04-01

    Pedestrian inflow is frequently observed in various pedestrian facilities. In this work, we first proposed four hypotheses concerning the inflow process. Then, we performed a series of experiments to test the hypotheses. With several analytical methods, e.g., the proxemics theory and Voronoi diagram method, the features of pedestrian inflow are analyzed in detail. Results demonstrate that the distribution of pedestrians in the room is not uniform. Boundaries are attractive for these pedestrians. The impact of two factors of the inflow are analyzed, i.e., movement rule, and first-out reward. It is found pedestrians can enter the room more effectively under the random rule or two queues. Under some hurry circumstances, pedestrians may prefer to gather around the door, and the spatial distribution is not uniform, leading to the imbalance use of the room. Practical suggestions are given for pedestrians to improve the travel efficiency in the inflow process. This experimental study is meaningful to reveal some fundamental phenomena of inflow process, which can provide the realistic basis for building the theory and mathematical-physical models.

  7. The distribution of soil insects across three spatial scales in agricultural grassland

    Directory of Open Access Journals (Sweden)

    Carly eBenefer

    2016-04-01

    Full Text Available The effects of specific environmental factors on abundance and distribution of some individual soil insect taxa is known, but how scale influences spatial distribution is less well evaluated, particularly at the community level. However, given that many soil insects are pests or beneficial natural enemies, and that collectively they play a role in soil processes, this information is of potential value for predictive modelling and in furthering our understanding of soil ecology and management. The objectives of this study were to characterize the spatial distribution, relative population sizes, effect of sampling scale and taxa co-occurrence on a range of soil insects at the family level over two years. Soil cores were taken from agricultural grassland soils across three different sampling scales (farm, field and core using a systematic sampling approach. Spatial distribution was assessed using the variance-to-mean (VMR ratio and taxa distribution plots and the contribution of scale, spatial (geographical location and biotic (presence-absence of other species factors determined using deviance partitioning. Tipulid larvae (leatherjackets were the most abundant taxa in both years, but the composition of other Dipteran and Coleopteran taxa varied between years. The VMRs revealed differences in spatial distribution between taxa across scales and years, showing a range of underlying distributional patterns. Scale was the most important factor influencing species distributions, but a large proportion of deviance remained unexplained and there was much variation between taxa, suggesting biological and scale-specific factors are driving distributions, in agreement with a previous study.

  8. Integrated spatial sampling modeling of geospatial data

    Institute of Scientific and Technical Information of China (English)

    LI Lianfa; WANG Jinfeng

    2004-01-01

    Spatial sampling is a necessary and important method for extracting geospatial data and its methodology directly affects the geo-analysis results. Counter to the deficiency of separate models of spatial sampling, this article analyzes three crucial elements of spatial sampling (frame, correlation and decision diagram) and induces its general integrated model. The program of Spatial Sampling Integration (SSI) has been developed with Component Object Model (COM) to realize the general integrated model. In two practical applications, i.e. design of the monitoring network of natural disasters and sampling survey of the areas of non-cultivated land, SSI has produced accurate results at less cost, better realizing the cost-effective goal of sampling toward the geo-objects with spatial correlation. The two cases exemplify expanded application and convenient implementation of the general integrated model with inset components in an integrated environment, which can also be extended to other modeling of spatial analysis.

  9. Controls on the spatial distribution of oceanic δ13CDIC

    Directory of Open Access Journals (Sweden)

    P. B. Holden

    2013-03-01

    Full Text Available We describe the design and evaluation of a large ensemble of coupled climate–carbon cycle simulations with the Earth system model of intermediate complexity GENIE. This ensemble has been designed for application to a range of carbon cycle questions, including the causes of late-Quaternary fluctuations in atmospheric CO2. Here we evaluate the ensemble by applying it to a transient experiment over the recent industrial era (1858 to 2008 AD. We employ singular vector decomposition and principal component emulation to investigate the spatial modes of ensemble variability of oceanic dissolved inorganic carbon (DIC δ13C, considering both the spun-up pre-industrial state and the transient change. These analyses allow us to separate the natural (pre-industrial and anthropogenic controls on the δ13CDIC distribution. We apply the same dimensionally-reduced emulation techniques to consider the drivers of the spatial uncertainty in anthropogenic DIC. We show that the sources of uncertainty related to the uptake of anthropogenic δ13CDIC and DIC are quite distinct. Uncertainty in anthropogenic δ13C uptake is controlled by air–sea gas exchange, which explains 63% of modelled variance. This mode of variability is largely absent from the ensemble variability in CO2 uptake, which is rather driven by uncertainties in thermocline ventilation rates. Although the need to account for air–sea gas exchange is well known, these results suggest that, to leading order, uncertainties in the ocean uptake of anthropogenic 13C and CO2 are governed by very different processes. This illustrates the difficulties in reconstructing one from the other, and furthermore highlights the need for careful targeting of both δ13CDIC and DIC observations to better constrain the ocean sink of anthropogenic CO2.

  10. Time-dependent density functional theory (TD-DFT) coupled with reference interaction site model self-consistent field explicitly including spatial electron density distribution (RISM-SCF-SEDD)

    Science.gov (United States)

    Yokogawa, D.

    2016-09-01

    Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced.

  11. Unbiased estimators for spatial distribution functions of classical fluids.

    Science.gov (United States)

    Adib, Artur B; Jarzynski, Christopher

    2005-01-01

    We use a statistical-mechanical identity closely related to the familiar virial theorem, to derive unbiased estimators for spatial distribution functions of classical fluids. In particular, we obtain estimators for both the fluid density rho(r) in the vicinity of a fixed solute and the pair correlation g(r) of a homogeneous classical fluid. We illustrate the utility of our estimators with numerical examples, which reveal advantages over traditional histogram-based methods of computing such distributions.

  12. Modelling evolution in a spatial continuum

    Science.gov (United States)

    Barton, N. H.; Etheridge, A. M.; Véber, A.

    2013-01-01

    We survey a class of models for spatially structured populations which we have called spatial Λ-Fleming-Viot processes. They arise from a flexible framework for modelling in which the key innovation is that random genetic drift is driven by a Poisson point process of spatial 'events'. We demonstrate how this overcomes some of the obstructions to modelling populations which evolve in two-(and higher-) dimensional spatial continua, how its predictions match phenomena observed in data and how it fits with classical models. Finally we outline some directions for future research.

  13. Spatial analysis of snail distribution in Jiangning county

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-ying; ZHOU Yun; XU De-zhong; SUN Zhi-dong; ZHOU Xiao-nong; GONG Zi-li

    2002-01-01

    Objective: To explore the spatial distribution of oncomelenia snails in Jiangning County. Methods:Cluster analysis and the Spatial Scan Statistics were performed based on the density of alive-snails in habitats and its rate infected by the S. Japonicum. Results: Although areas of snail habitats and density of the alivesnails in marshland in 2000 are higher significantly than that in mountain areas in Jiangning County, the numbers of habitats in mountain are more than that in marshland and they distributed sporadically. The snail habitats were classified into 4 in marshlands and 3 classes in mountain areas respectively in cluster analysis.Although they are mainly the one with low density of alive and infected snails, we should alert that there are also some habitats with high snail density and infection rate, which is important for the transmission of schistosomia. The analysis of Spatial Scan Statistics detected 2 significant spatial aggregations for alive-snail in marshland and 4 in mountain areas respectively with p-values less than 0. 01. There are also 2 significant spatial aggregations for infected snails in marshland. Conclusion.. The significant spatial aggregations for alivesnails and infected snails indicated that there are some factors in the habitats suitable for the survival of snails and the transmission of schistosomia.

  14. Spatially distributed nitrate reduction potential in the saturated zone in till areas

    DEFF Research Database (Denmark)

    Hansen, Anne Lausten

    predictive capabilities. The main outcome from this PhD research was that nitrate sensitive and nitrate robust areas can be predicted using a physically-based distributed model, but since catchment models most often lack predictive capabilities at grid scale the uncertainty on the estimated nitrate reduction......The topic of this PhD study was modeling of spatially distributed nitrate transport and reduction at catchment scale, which is of interest in order to delineate so-called nitrate sensitive and nitrate robust areas with respectively low and high nitrate reduction potential. The research firstly...... with increasing scale. The decrease in uncertainty was found to be largest at small scales and then leveled off at a scale corresponding to the mean length of sand lenses in the study area, indicating that the spatial resolution of the geology is constraining at what spatial scale a distributed model has...

  15. The application of GIS based decision-tree models for generating the spatial distribution of hydromorphic organic landscapes in relation to digital terrain data

    Directory of Open Access Journals (Sweden)

    R. Bou Kheir

    2010-06-01

    Full Text Available Accurate information about organic/mineral soil occurrence is a prerequisite for many land resources management applications (including climate change mitigation. This paper aims at investigating the potential of using geomorphometrical analysis and decision tree modeling to predict the geographic distribution of hydromorphic organic landscapes in unsampled area in Denmark. Nine primary (elevation, slope angle, slope aspect, plan curvature, profile curvature, tangent curvature, flow direction, flow accumulation, and specific catchment area and one secondary (steady-state topographic wetness index topographic parameters were generated from Digital Elevation Models (DEMs acquired using airborne LIDAR (Light Detection and Ranging systems. They were used along with existing digital data collected from other sources (soil type, geological substrate and landscape type to explain organic/mineral field measurements in hydromorphic landscapes of the Danish area chosen. A large number of tree-based classification models (186 were developed using (1 all of the parameters, (2 the primary DEM-derived topographic (morphological/hydrological parameters only, (3 selected pairs of parameters and (4 excluding each parameter one at a time from the potential pool of predictor parameters. The best classification tree model (with the lowest misclassification error and the smallest number of terminal nodes and predictor parameters combined the steady-state topographic wetness index and soil type, and explained 68% of the variability in organic/mineral field measurements. The overall accuracy of the predictive organic/inorganic landscapes' map produced (at 1:50 000 cartographic scale using the best tree was estimated to be ca. 75%. The proposed classification-tree model is relatively simple, quick, realistic and practical, and it can be applied to other areas, thereby providing a tool to facilitate the implementation of pedological/hydrological plans for conservation

  16. SPATIAL DISTRIBUTION AND SEQUENTIAL SAMPLING OF Brevipalpus phoenicis IN CITRUS

    Directory of Open Access Journals (Sweden)

    WALTER MALDONADO JR

    Full Text Available ABSTRACT Among the pests of citrus, one of the most important is the red and black flat mite Brevipalpus phoenicis (Geijskes, which transmits the Citrus leprosis virus C (CiLV-C.When a rational pest control plan is adopted, it is important to determine the correct timing for carrying out the control plan. Making this decision demands constant follow-up of the culture through periodic sampling where knowledge about the spatial distribution of the pest is a fundamental part to improve sampling and control decisions. The objective of this work was to study the spatial distribution pattern and build a sequential sampling plan for the pest. The data used were gathered from two blocks of Valencia sweet orange on a farm in São Paulo State, Brazil, by 40 inspectors trained for the data collection. The following aggregation indices were calculated: variance/ mean ratio, Morisita index, Green’s coefficient, and k parameter of the negative binomial distribution. The data were tested for fit with Poisson and negative binomial distributions using the chi-square goodness of fit test. The sequential sampling was developed using Wald’s Sequential Probability Ratio Test and validated through simulations. We concluded that the spatial distribution of B. phoenicis is aggregated, its behavior best fitted to the negative binomial distribution and we built and validated a sequential sampling plan for control decision-making.

  17. Distribution spatiale intra-urbaine des particules fines : monitoring ...

    African Journals Online (AJOL)

    SARAH

    30 sept. 2014 ... Intra-urban spatial distribution of particulate matter: monitoring by leaf Saturation Isothermal Remanent ... les changements microclimatiques au sein des villes ... déterminer l'impact des saisons sur la teneur des ... Ce District jouit d'un climat de type ... Sélection et description des espèces : Un inventaire.

  18. Wind Farms’ Spatial Distribution Effect on Power System Reserves Requirements

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Cutululis, Nicolaos Antonio

    2010-01-01

    in smaller areas, which causes the total wind power fluctuations in power system areas to increase significantly. The impact of future large wind farms spatial distribution with respect to the power system reserve requirements is analyzed in this paper. For this purpose, Correlated Wind (CorWind) power time...

  19. Local models for spatial analysis

    CERN Document Server

    Lloyd, Christopher D

    2010-01-01

    Focusing on solutions, this second edition provides guidance to a wide variety of real-world problems. The text presents a complete introduction to key concepts and a clear mapping of the methods discussed. It also explores connections between methods. New chapters address spatial patterning in single variables and spatial relations. In addition, every chapter now includes links to key related studies. The author clearly distinguishes between local and global methods and provides more detailed coverage of geographical weighting, image texture measures, local spatial autocorrelation, and multic

  20. Spatial distribution of metabolites in the human lens.

    Science.gov (United States)

    Tamara, Semen O; Yanshole, Lyudmila V; Yanshole, Vadim V; Fursova, Anjella Zh; Stepakov, Denis A; Novoselov, Vladimir P; Tsentalovich, Yuri P

    2016-02-01

    Spatial distribution of 34 metabolites along the optical and equatorial axes of the human lens has been determined. For the majority of metabolites, the homogeneous distribution has been observed. That suggests that the rate of the metabolite transformation in the lens is low due to the general metabolic passivity of the lens fiber cells. However, the redox processes are active in the lens; as a result, some metabolites, including antioxidants, demonstrate the "nucleus-depleted" type of distribution, whereas secondary UV filters show the "nucleus-enriched" type. The metabolite concentrations at the lens poles and equator are similar for all metabolites under study. The concentric pattern of the "nucleus-depleted" and "nucleus-enriched" distributions testifies that the metabolite distribution inside the lens is mostly governed by a passive diffusion, relatively free along the fiber cells and retarded in the radial direction across the cells. No significant difference in the metabolite distribution between the normal and cataractous human lenses was found.

  1. Population distribution models: species distributions are better modeled using biologically relevant data partitions.

    Science.gov (United States)

    Gonzalez, Sergio C; Soto-Centeno, J Angel; Reed, David L

    2011-09-19

    Predicting the geographic distribution of widespread species through modeling is problematic for several reasons including high rates of omission errors. One potential source of error for modeling widespread species is that subspecies and/or races of species are frequently pooled for analyses, which may mask biologically relevant spatial variation within the distribution of a single widespread species. We contrast a presence-only maximum entropy model for the widely distributed oldfield mouse (Peromyscus polionotus) that includes all available presence locations for this species, with two composite maximum entropy models. The composite models either subdivided the total species distribution into four geographic quadrants or by fifteen subspecies to capture spatially relevant variation in P. polionotus distributions. Despite high Area Under the ROC Curve (AUC) values for all models, the composite species distribution model of P. polionotus generated from individual subspecies models represented the known distribution of the species much better than did the models produced by partitioning data into geographic quadrants or modeling the whole species as a single unit. Because the AUC values failed to describe the differences in the predictability of the three modeling strategies, we suggest using omission curves in addition to AUC values to assess model performance. Dividing the data of a widespread species into biologically relevant partitions greatly increased the performance of our distribution model; therefore, this approach may prove to be quite practical and informative for a wide range of modeling applications.

  2. Spatial distribution sampling and Monte Carlo simulation of radioactive isotopes

    CERN Document Server

    Krainer, Alexander Michael

    2015-01-01

    This work focuses on the implementation of a program for random sampling of uniformly spatially distributed isotopes for Monte Carlo particle simulations and in specific FLUKA. With FLUKA it is possible to calculate the radio nuclide production in high energy fields. The decay of these nuclide, and therefore the resulting radiation field, however can only be simulated in the same geometry. This works gives the tool to simulate the decay of the produced nuclide in other geometries. With that the radiation field from an irradiated object can be simulated in arbitrary environments. The sampling of isotope mixtures was tested by simulating a 50/50 mixture of $Cs^{137}$ and $Co^{60}$. These isotopes are both well known and provide therefore a first reliable benchmark in that respect. The sampling of uniformly distributed coordinates was tested using the histogram test for various spatial distributions. The advantages and disadvantages of the program compared to standard methods are demonstrated in the real life ca...

  3. Bayesian Spatial Modelling with R-INLA

    Directory of Open Access Journals (Sweden)

    Finn Lindgren

    2015-02-01

    Full Text Available The principles behind the interface to continuous domain spatial models in the R- INLA software package for R are described. The integrated nested Laplace approximation (INLA approach proposed by Rue, Martino, and Chopin (2009 is a computationally effective alternative to MCMC for Bayesian inference. INLA is designed for latent Gaussian models, a very wide and flexible class of models ranging from (generalized linear mixed to spatial and spatio-temporal models. Combined with the stochastic partial differential equation approach (SPDE, Lindgren, Rue, and Lindstrm 2011, one can accommodate all kinds of geographically referenced data, including areal and geostatistical ones, as well as spatial point process data. The implementation interface covers stationary spatial mod- els, non-stationary spatial models, and also spatio-temporal models, and is applicable in epidemiology, ecology, environmental risk assessment, as well as general geostatistics.

  4. Models of distributive justice.

    Science.gov (United States)

    Wolff, Jonathan

    2007-01-01

    Philosophical disagreement about justice rages over at least two questions. The most immediate is a substantial question, concerning the conditions under which particular distributive arrangements can be said to be just or unjust. The second, deeper, question concerns the nature of justice itself. What is justice? Here we can distinguish three views. First, justice as mutual advantage sees justice as essentially a matter of the outcome of a bargain. There are times when two parties can both be better off by making some sort of agreement. Justice, on this view, concerns the distribution of the benefits and burdens of the agreement. Second, justice as reciprocity takes a different approach, looking not at bargaining but at the idea of a fair return or just price, attempting to capture the idea of justice as equal exchange. Finally justice as impartiality sees justice as 'taking the other person's point of view' asking 'how would you like it if it happened to you?' Each model has significantly different consequences for the question of when issues of justice arise and how they should be settled. It is interesting to consider whether any of these models of justice could regulate behaviour between non-human animals.

  5. Moving beyond abundance distributions: neutral theory and spatial patterns in a tropical forest.

    Science.gov (United States)

    May, Felix; Huth, Andreas; Wiegand, Thorsten

    2015-03-01

    Assessing the relative importance of different processes that determine the spatial distribution of species and the dynamics in highly diverse plant communities remains a challenging question in ecology. Previous modelling approaches often focused on single aggregated forest diversity patterns that convey limited information on the underlying dynamic processes. Here, we use recent advances in inference for stochastic simulation models to evaluate the ability of a spatially explicit and spatially continuous neutral model to quantitatively predict six spatial and non-spatial patterns observed at the 50 ha tropical forest plot on Barro Colorado Island, Panama. The patterns capture different aspects of forest dynamics and biodiversity structure, such as annual mortality rate, species richness, species abundance distribution, beta-diversity and the species-area relationship (SAR). The model correctly predicted each pattern independently and up to five patterns simultaneously. However, the model was unable to match the SAR and beta-diversity simultaneously. Our study moves previous theory towards a dynamic spatial theory of biodiversity and demonstrates the value of spatial data to identify ecological processes. This opens up new avenues to evaluate the consequences of additional process for community assembly and dynamics.

  6. Dynamic spatial panels : models, methods, and inferences

    NARCIS (Netherlands)

    Elhorst, J. Paul

    This paper provides a survey of the existing literature on the specification and estimation of dynamic spatial panel data models, a collection of models for spatial panels extended to include one or more of the following variables and/or error terms: a dependent variable lagged in time, a dependent

  7. Continuous-Time Modeling with Spatial Dependence

    NARCIS (Netherlands)

    Oud, J.H.L.; Folmer, H.; Patuelli, R.; Nijkamp, P.

    2012-01-01

    (Spatial) panel data are routinely modeled in discrete time (DT). However, compelling arguments exist for continuous-time (CT) modeling of (spatial) panel data. Particularly, most social processes evolve in CT, so that statistical analysis in DT is an oversimplification, gives an incomplete

  8. Continuous-Time Modeling with Spatial Dependence

    NARCIS (Netherlands)

    Oud, J.; Folmer, H.; Patuelli, R.; Nijkamp, P.

    (Spatial) panel data are routinely modeled in discrete time (DT). However, compelling arguments exist for continuous-time (CT) modeling of (spatial) panel data. Particularly, most social processes evolve in CT, so that statistical analysis in DT is an oversimplification, gives an incomplete

  9. Spatial paradigms of lotic diatom distribution: A landscape ecology perspective

    Science.gov (United States)

    Passy, S.I.

    2001-01-01

    Spatial distributional patterns of benthic diatoms and their relation to current velocity were investigated in an unshaded cobble-bottom reach of White Creek (Washington County, NY). On 27 August 1999, diatoms were sampled and current velocity and depth were measured on a regular square sampling grid with a grain size of 0.01 m2, interval of 0.5 m, and extent of 16 m2. The relative abundance of the 18 common diatom species enumerated in the 81 samples was subjected to detrended correspondence analysis (DCA). The first axis (DCA1) explained 51% of the variance in diatom data and separated the samples according to current regimes. The spatial autocorrelation of DCA1 sample scores in deposition and erosion regions of White Creek was determined by Moran's I statistic to indicate patch size. In White Creek the patch length of all diatom communities was more than 3.1 m, whereas the patch width was 1 m in the deposition region and 0.5 m in the erosion region. There were 5 dominant diatom taxa, Achnanthes minutissima Ku??tz. et vars, Fragilaria capucina Dezmazie??res et vars, F. crotonensis Kitt., Diatoma vulgaris Bory, and Synedra ulna (Nitz.) Ehr. et vars. The patch length of the dominant species varied from 1 to more than 4.1 m, whereas the patch width, if defined, was 0.5 m. Achnanthes minutissima and F. capucina, the two diatom species with the highest relative abundance, displayed spatially structured patches of low abundance and comparatively random patches of high abundance, suggesting broad scale abiotic control of species performance in low abundance regions and finer scale biotic control of high abundance areas. Another objective of this study was to test the hypothesis that higher current velocities, which generally impede immigration, would increase randomness and complexity (i.e. homogeneity of diatom distributional patterns). The spatial complexity in low versus high velocity transects was determined by calculating the respective fractal dimension (D) of DCA

  10. Development of EMC-based empirical model for estimating spatial distribution of pollutant loads and its application in rural areas of Korea.

    Science.gov (United States)

    Yi, Qitao; Li, Hui; Lee, Jin-Woo; Kim, Youngchul

    2015-09-01

    An integrated approach to easily calculate pollutant loads from agricultural watersheds is suggested and verified in this research. The basic concepts of this empirical tool were based on the assumption that variations in event mean concentrations (EMCs) of pollutants from a given agricultural watershed during rainstorms were only attributable to the rainfall pattern. Fifty one sets of EMC values were obtained from nine different watersheds located in the rural areas of Korea, and these data were used to develop predictive tools for the EMCs in rainfall runoff. The results of statistical tests of these formulas show that they are fairly good in predicting actual EMC values of some parameters, and useful in terms of calculating pollutant loads for any rainfall event time span such as daily, weekly, monthly, and yearly. This model was further checked in for its field applicability in a reservoir receiving stormwater after a cleanup of the sediments, covering 17 consecutive rainfall events from 1 July to 15 August in 2007. Overall the predicted values matched the observed values, indicating the feasibility of this empirical tool as a simple and useful solution in evaluating timely distribution of nonpoint source pollution loads from small rural watersheds of Korea.

  11. Finessing atlas data for species distribution models

    NARCIS (Netherlands)

    Niamir, A.; Skidmore, A.K.; Toxopeus, A.G.; Munoz, A.R.; Real, R.

    2011-01-01

    Aim The spatial resolution of species atlases and therefore resulting model predictions are often too coarse for local applications. Collecting distribution data at a finer resolution for large numbers of species requires a comprehensive sampling effort, making it impractical and expensive. This stu

  12. Finessing atlas data for species distribution models

    NARCIS (Netherlands)

    Niamir, A.; Skidmore, A.K.; Toxopeus, A.G.; Munoz, A.R.; Real, R.

    2011-01-01

    Aim The spatial resolution of species atlases and therefore resulting model predictions are often too coarse for local applications. Collecting distribution data at a finer resolution for large numbers of species requires a comprehensive sampling effort, making it impractical and expensive. This

  13. Spatial-Temporal Correlation Properties of the 3GPP Spatial Channel Model and the Kronecker MIMO Channel Model

    Directory of Open Access Journals (Sweden)

    Wu Hanguang

    2007-01-01

    Full Text Available The performance of multiple-input multiple-output (MIMO systems is greatly influenced by the spatial-temporal correlation properties of the underlying MIMO channels. This paper investigates the spatial-temporal correlation characteristics of the spatial channel model (SCM in the Third Generation Partnership Project (3GPP and the Kronecker-based stochastic model (KBSM at three levels, namely, the cluster level, link level, and system level. The KBSM has both the spatial separability and spatial-temporal separability at all the three levels. The spatial-temporal separability is observed for the SCM only at the system level, but not at the cluster and link levels. The SCM shows the spatial separability at the link and system levels, but not at the cluster level since its spatial correlation is related to the joint distribution of the angle of arrival (AoA and angle of departure (AoD. The KBSM with the Gaussian-shaped power azimuth spectrum (PAS is found to fit best the 3GPP SCM in terms of the spatial correlations. Despite its simplicity and analytical tractability, the KBSM is restricted to model only the average spatial-temporal behavior of MIMO channels. The SCM provides more insights of the variations of different MIMO channel realizations, but the implementation complexity is relatively high.

  14. Spatial-Temporal Correlation Properties of the 3GPP Spatial Channel Model and the Kronecker MIMO Channel Model

    Directory of Open Access Journals (Sweden)

    Cheng-Xiang Wang

    2007-02-01

    Full Text Available The performance of multiple-input multiple-output (MIMO systems is greatly influenced by the spatial-temporal correlation properties of the underlying MIMO channels. This paper investigates the spatial-temporal correlation characteristics of the spatial channel model (SCM in the Third Generation Partnership Project (3GPP and the Kronecker-based stochastic model (KBSM at three levels, namely, the cluster level, link level, and system level. The KBSM has both the spatial separability and spatial-temporal separability at all the three levels. The spatial-temporal separability is observed for the SCM only at the system level, but not at the cluster and link levels. The SCM shows the spatial separability at the link and system levels, but not at the cluster level since its spatial correlation is related to the joint distribution of the angle of arrival (AoA and angle of departure (AoD. The KBSM with the Gaussian-shaped power azimuth spectrum (PAS is found to fit best the 3GPP SCM in terms of the spatial correlations. Despite its simplicity and analytical tractability, the KBSM is restricted to model only the average spatial-temporal behavior of MIMO channels. The SCM provides more insights of the variations of different MIMO channel realizations, but the implementation complexity is relatively high.

  15. Bayesian Spatial Modelling with R-INLA

    OpenAIRE

    Finn Lindgren; Håvard Rue

    2015-01-01

    The principles behind the interface to continuous domain spatial models in the R- INLA software package for R are described. The integrated nested Laplace approximation (INLA) approach proposed by Rue, Martino, and Chopin (2009) is a computationally effective alternative to MCMC for Bayesian inference. INLA is designed for latent Gaussian models, a very wide and flexible class of models ranging from (generalized) linear mixed to spatial and spatio-temporal models. Combined with the stochastic...

  16. Mapping spatial distribution of forest age in China

    Science.gov (United States)

    Zhang, Yuan; Yao, Yitong; Wang, Xuhui; Liu, Yongwen; Piao, Shilong

    2017-03-01

    Forest stand age is a meaningful metric, which reflects the past disturbance legacy, provides guidelines for forest management practices, and is an important factor in qualifying forest carbon cycles and carbon sequestration potential. Reliable large-scale forest stand age information with high spatial resolutions, however, is difficult to obtain. In this study, we developed a top-down method to downscale the provincial statistics of national forest inventory data into 1 km stand age map using climate data and light detection and ranging-derived forest height. We find that the distribution of forest stand age in China is highly heterogeneous across the country, with a mean value of 42.6 years old. The relatively young stand age for Chinese forests is mostly due to the large proportion of newly planted forests (0-40 years old), which are more prevailing in south China. Older forests (stand age > 60 years old) are more frequently found in east Qinghai-Tibetan Plateau and the central mountain areas of west and northeast China, where human activities are less intensive. Among the 15 forest types, forests dominated by species of Taxodiaceae, with the exception of Cunninghamia lanceolata stands, have the oldest mean stand age (136 years), whereas Pinus massoniana forests are the youngest (18 years). We further identified uncertainties associated with our forest age map, which are high in west and northeast China. Our work documents the distribution of forest stand age in China at a high resolution which is useful for carbon cycle modeling and the sustainable use of China's forest resources.

  17. Modeling of Spatially Correlated Energetic Disorder in Organic Semiconductors.

    Science.gov (United States)

    Kordt, Pascal; Andrienko, Denis

    2016-01-12

    Mesoscale modeling of organic semiconductors relies on solving an appropriately parametrized master equation. Essential ingredients of the parametrization are site energies (driving forces), which enter the charge transfer rate between pairs of neighboring molecules. Site energies are often Gaussian-distributed and are spatially correlated. Here, we propose an algorithm that generates these energies with a given Gaussian distribution and spatial correlation function. The method is tested on an amorphous organic semiconductor, DPBIC, illustrating that the accurate description of correlations is essential for the quantitative modeling of charge transport in amorphous mesophases.

  18. Geometry and spatial distribution of lenticulae on Europa

    Science.gov (United States)

    Culha, C.; Manga, M.

    2015-12-01

    Title: Geometry and spatial distribution of lenticulae on Europa Order of Authors: Cansu Culha (Stanford University); Michael Manga (University of California, Berkeley) The surface of Europa contains several types of elliptical features, collectively called lenticulae. These features may have positive relief (domes) or negative relief (pits), may disrupt the crust (chaos), or discolor the surface (spots); some lenticulae have attributes of both domes and chaos (dome/chaos). We map the location, dimensions and shapes of all these features and their interactions with other surface features. We find (1) pits and domes have similar sizes; (2) pits are clustered in certain regions of the surface whereas domes, dome/chaos, and chaos terrains are more uniformly distributed; (3) chaos are larger than the other lenticulae; (4) lineaments do not divert their paths around lenticulae. Taken together, these observations are consistent with conceptual models in which lenticulae are created by convection or intrusion of liquid water bodies within the ice shell. Additionally, the observations are consistent with the notion that each type of lenticulae is a surface expression of dynamics within the ice shell at a different stage of the lenticulae evolution. The similar size and shape of pits and domes suggests that one may evolve into the other. Because domes are more numerous and more uniformly distributed than pits, they are more likely to represent the end stage of this evolution assuming the end-stage leaves a longer-lasting surface expression. We find no examples of lineaments crossing pits but lineaments do cross some chaos, implying that pits are younger than chaos and consistent with pits being the earliest stage in the evolution of lenticulae. Models also predict that larger features are more likely to disrupt the crust, which is consistent with dome/chaos and chaos being larger than pits and domes. The absence of lineaments deflected by lenticulae implies either that the

  19. A spatial pattern analysis of the halophytic species distribution in an arid coastal environment.

    Science.gov (United States)

    Badreldin, Nasem; Uria-Diez, J; Mateu, J; Youssef, Ali; Stal, Cornelis; El-Bana, Magdy; Magdy, Ahmed; Goossens, Rudi

    2015-05-01

    Obtaining information about the spatial distribution of desert plants is considered as a serious challenge for ecologists and environmental modeling due to the required intensive field work and infrastructures in harsh and remote arid environments. A new method was applied for assessing the spatial distribution of the halophytic species (HS) in an arid coastal environment. This method was based on the object-based image analysis for a high-resolution Google Earth satellite image. The integration of the image processing techniques and field work provided accurate information about the spatial distribution of HS. The extracted objects were based on assumptions that explained the plant-pixel relationship. Three different types of digital image processing techniques were implemented and validated to obtain an accurate HS spatial distribution. A total of 2703 individuals of the HS community were found in the case study, and approximately 82% were located above an elevation of 2 m. The micro-topography exhibited a significant negative relationship with pH and EC (r = -0.79 and -0.81, respectively, p < 0.001). The spatial structure was modeled using stochastic point processes, in particular a hybrid family of Gibbs processes. A new model is proposed that uses a hard-core structure at very short distances, together with a cluster structure in short-to-medium distances and a Poisson structure for larger distances. This model was found to fit the data perfectly well.

  20. Prediction of the Spatial Distribution of Bovine Endemic Fluorosis Using Ordinary Kriging

    Directory of Open Access Journals (Sweden)

    Li Lin

    2015-04-01

    Full Text Available The aim of the studies was to develop an alternative method which could overcome the lack of sampling to improve the efficiency of control efforts for bovine endemic fluorosis. The spatial distribution characteristics of the disease were analysed and a prediction model for the estimation of fluorosis distribution in some districts in northwest Liaoning province in China was established. The model used ordinary kriging, and was evaluated using cross-validation. Analysis showed that the distribution of the disease was spatial autocorrelation. The prediction error of the cross-validation (ME = -0.0092, PMSE = 0.627, AKSE = 0.597, and RMSP = 1.007 and comparison with the actual disease distribution indicated that the prediction map accurately distributed bovine endemic fluorosis. It is feasible to predict bovine endemic fluorosis in the area by using ordinary kriging and limited data.

  1. Managing distributed dynamic systems with spatial grasp technology

    CERN Document Server

    Sapaty, Peter Simon

    2017-01-01

    The book describes a novel ideology and supporting information technology for integral management of both civil and defence-orientated large, distributed dynamic systems. The approach is based on a high-level Spatial Grasp Language, SGL, expressing solutions in physical, virtual, executive and combined environments in the form of active self-evolving and self-propagating patterns spatially matching the systems to be created, modified and controlled. The communicating interpreters of SGL can be installed in key system points, which may be in large numbers (up to millions and billions) and represent equipped humans, robots, laptops, smartphones, smart sensors, etc. Operating under gestalt-inspired scenarios in SGL initially injected from any points, these systems can be effectively converted into goal-driven spatial machines (rather than computers as dealing with physical matter too) capable of responding to numerous challenges caused by growing world dynamics in the 21st century. Including numerous practical e...

  2. Evaluating spatial patterns in hydrological modelling

    DEFF Research Database (Denmark)

    Koch, Julian

    of spatial information in a holistic assessment. Opposed, statistical measures typically only address a limited amount of spatial information. A web-based survey and a citizen science project are employed to quantify the collective perceptive skills of humans aiming at benchmarking spatial metrics...... of environmental science, such as meteorology, geostatistics or geography. In total, seven metrics are evaluated with respect to their capability to quantitatively compare spatial patterns. The human visual perception is often considered superior to computer based measures, because it integrates various dimensions...... with respect to their capability to mimic human evaluations. This PhD thesis aims at expanding the standard toolbox of spatial model evaluation with innovative metrics that adequately compare spatial patterns. Driven by the rise of more complex model structures and the increase of suitable remote sensing...

  3. Spatial uncertainty model for visual features using a Kinect™ sensor.

    Science.gov (United States)

    Park, Jae-Han; Shin, Yong-Deuk; Bae, Ji-Hun; Baeg, Moon-Hong

    2012-01-01

    This study proposes a mathematical uncertainty model for the spatial measurement of visual features using Kinect™ sensors. This model can provide qualitative and quantitative analysis for the utilization of Kinect™ sensors as 3D perception sensors. In order to achieve this objective, we derived the propagation relationship of the uncertainties between the disparity image space and the real Cartesian space with the mapping function between the two spaces. Using this propagation relationship, we obtained the mathematical model for the covariance matrix of the measurement error, which represents the uncertainty for spatial position of visual features from Kinect™ sensors. In order to derive the quantitative model of spatial uncertainty for visual features, we estimated the covariance matrix in the disparity image space using collected visual feature data. Further, we computed the spatial uncertainty information by applying the covariance matrix in the disparity image space and the calibrated sensor parameters to the proposed mathematical model. This spatial uncertainty model was verified by comparing the uncertainty ellipsoids for spatial covariance matrices and the distribution of scattered matching visual features. We expect that this spatial uncertainty model and its analyses will be useful in various Kinect™ sensor applications.

  4. Spatial Uncertainty Model for Visual Features Using a Kinect™ Sensor

    Directory of Open Access Journals (Sweden)

    Jae-Han Park

    2012-06-01

    Full Text Available This study proposes a mathematical uncertainty model for the spatial measurement of visual features using Kinect™ sensors. This model can provide qualitative and quantitative analysis for the utilization of Kinect™ sensors as 3D perception sensors. In order to achieve this objective, we derived the propagation relationship of the uncertainties between the disparity image space and the real Cartesian space with the mapping function between the two spaces. Using this propagation relationship, we obtained the mathematical model for the covariance matrix of the measurement error, which represents the uncertainty for spatial position of visual features from Kinect™ sensors. In order to derive the quantitative model of spatial uncertainty for visual features, we estimated the covariance matrix in the disparity image space using collected visual feature data. Further, we computed the spatial uncertainty information by applying the covariance matrix in the disparity image space and the calibrated sensor parameters to the proposed mathematical model. This spatial uncertainty model was verified by comparing the uncertainty ellipsoids for spatial covariance matrices and the distribution of scattered matching visual features. We expect that this spatial uncertainty model and its analyses will be useful in various Kinect™ sensor applications.

  5. Spatial distribution of enzyme activities in the rhizosphere

    Science.gov (United States)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    The rhizosphere, the tiny zone of soil surrounding roots, certainly represents one of the most dynamic habitat and interfaces on Earth. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. That is why there is an urgent need in spatially explicit methods for the determination of the rhizosphere extension and enzyme distribution. Recently, zymography as a new technique based on diffusion of enzymes through the 1 mm gel plate for analysis has been introduced (Spohn & Kuzyakov, 2013). We developed the zymography technique to visualize the enzyme activities with a higher spatial resolution. For the first time, we aimed at quantitative imaging of enzyme activities as a function of distance from the root tip and the root surface in the soil. We visualized the two dimensional distribution of the activity of three enzymes: β-glucosidase, phosphatase and leucine amino peptidase in the rhizosphere of maize using fluorogenically labelled substrates. Spatial-resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography visualized heterogeneity of enzyme activities along the roots. The activity of all enzymes was the highest at the apical parts of individual roots. Across the roots, the enzyme activities were higher at immediate vicinity of the roots (1.5 mm) and gradually decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere hotspots. References Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry 61: 69-75

  6. Gravimetric Measurement of Magnetic Field Gradient Spatial Distribution

    CERN Document Server

    Arutunian, S G; Egiazarian, S L; Mailian, M R; Sinenko, I G; Sinjavski, A V; Vasiniuk, I E

    1999-01-01

    Magnetic interaction between a weighing sample and an external magnetic field allows to measure characteristics of magnetic field (a sample with known magnetic characteristics), as well as the magnetic properties of a sample (a known magnetic field). Measurement of materials magnetic permeability is a well known application of this method. In this paper we restrict ourselves to the measurement of magnetic field spatial distribution, which was achieved by scanning of samples from known materials along the vertical axis. Field measurements by Hall detector were done to calibrate obtained data. Such measurements are of great interest in some branches of physics, in particular, in accelerator physics, where the quality of magnetic system parts eventually determine the quality of accelerated bunches. Development of a simple and cheep device for measurement of magnetic field spatial distribution is an urgent problem. The developed system for gravimetric measurement of magnetic field gradients partially solves this ...

  7. A neuromorphic model of spatial lookahead planning.

    Science.gov (United States)

    Ivey, Richard; Bullock, Daniel; Grossberg, Stephen

    2011-04-01

    In order to create spatial plans in a complex and changing world, organisms need to rapidly adapt to novel configurations of obstacles that impede simple routes to goal acquisition. Some animals can mentally create successful multistep spatial plans in new visuo-spatial layouts that preclude direct, one-segment routes to goal acquisition. Lookahead multistep plans can, moreover, be fully developed before an animal executes any step in the plan. What neural computations suffice to yield preparatory multistep lookahead plans during spatial cognition of an obstructed two-dimensional scene? To address this question, we introduce a novel neuromorphic system for spatial lookahead planning in which a feasible sequence of actions is prepared before movement begins. The proposed system combines neurobiologically plausible mechanisms of recurrent shunting competitive networks, visuo-spatial diffusion, and inhibition-of-return. These processes iteratively prepare a multistep trajectory to the desired goal state in the presence of obstacles. The planned trajectory can be stored using a primacy gradient in a sequential working memory and enacted by a competitive queuing process. The proposed planning system is compared with prior planning models. Simulation results demonstrate system robustness to environmental variations. Notably, the model copes with many configurations of obstacles that lead other visuo-spatial planning models into selecting undesirable or infeasible routes. Our proposal is inspired by mechanisms of spatial attention and planning in primates. Accordingly, our simulation results are compared with neurophysiological and behavioral findings from relevant studies of spatial lookahead behavior.

  8. Nuclear signature effect on spatial distribution of molecular harmonic in the presence of spatial inhomogeneous field

    Science.gov (United States)

    Feng, Liqiang; Li, Wenliang

    2017-01-01

    Spatial distribution of the molecular harmonic spectra from \\text{H}\\text{2}+ in the presence of inhomogeneous field has been theoretically investigated. It shows that (i) the harmonic intensities from the negative-H nucleus play the dominating role in harmonic emission spectra. (ii) Through the investigations of the nuclear signature effect on the spatial distribution of the molecular harmonic spectra, the differences of the harmonic intensities between the negative-H nucleus and the positive-H nucleus can be enhanced and reduced with the introduction of the higher vibrational state and the heavy nucleus (i.e. \\text{D}2+ ), respectively. The time-frequency analyses of the harmonic spectra, the time-dependent wave function and the electron localization have been shown to explain the harmonic spatial distribution and the electron motion. (iii) Due to the plasmon-resonance-enhancement near the metallic nanostructure, the harmonic cutoff can be remarkably enhanced as the spatial position of the inhomogeneous field moving away from the gap center. The ionization probabilities have been shown to explain the harmonic cutoff extension.

  9. Hierarchical modeling and analysis for spatial data

    CERN Document Server

    Banerjee, Sudipto; Gelfand, Alan E

    2003-01-01

    Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis, or written at a level often inaccessible to those lacking a strong background in mathematical statistics.Hierarchical Modeling and Analysis for Spatial Data is the first accessible, self-contained treatment of hierarchical methods, modeling, and dat

  10. 基于空间特性的组团城市出行分布模型优化%The optimization of travel distribution model in cluster city based on spatial pattern

    Institute of Scientific and Technical Information of China (English)

    李涵; 连齐才

    2014-01-01

    This article chooses three factors representing spatial pattern for cluster city, which are job-housing balance factor, auxiliary facilities measure degree and trip distribute probability factor. The model based on the characteristics of trip distribution in cluster city to optimizing the intervening opportunities model. Used the job-housing balance and auxiliary facilities to demarcate trip ratio factor, and trip distribute probability factor replace general probability value in intervening opportunities model. The test found that the model accuracy in traditional gravity model has been increased significantly, especial y in short distance trip.%本文选取表征组团空间结构的三大因子:职住平衡因子、配套设施完善度、出行分布概率因子,以组团城市出行分布规律为基础,对介入机会模型进行优化。用职住平衡因子和配套设施完善度标定出行比例因子,采用出行分布概率因子替代介入机会模型中笼统的概率值。检验优化模型可靠性发现,模型精度在传统重力模型基础上有较大幅度的提升,尤其是中短距离。

  11. A theoretical validation of the B-matrix spatial distribution approach to diffusion tensor imaging.

    Science.gov (United States)

    Borkowski, Karol; Kłodowski, Krzysztof; Figiel, Henryk; Krzyżak, Artur Tadeusz

    2017-02-01

    The recently presented B-matrix Spatial Distribution (BSD) approach is a calibration technique which derives the actual distribution of the B-matrix in space. It is claimed that taking into account the spatial variability of the B-matrix improves the accuracy of diffusion tensor imaging (DTI). The purpose of this study is to verify this approach theoretically through computer simulations. Assuming three different spatial distributions of the B-matrix, diffusion weighted signals were calculated for the six orientations of a model anisotropic phantom. Subsequently two variants of the BSD calibration were performed for each of the three cases; one with the assumption of high uniformity of the model phantom (uBSD-DTI) and the other taking into account imperfections in phantom structure (BSD-DTI). Several cases of varying degrees of phantom uniformity were analyzed and the distributions of the B-matrix obtained were used for the calculation of the diffusion tensor of a model isotropic phantom. The results were compared with standard diffusion tensor calculation. The simulations confirmed the improvement of accuracy in the determination of the diffusion tensor after the calibration. BSD-DTI improves accuracy independent of both the degree of uniformity of the phantom and the inhomogeneity of the B-matrix. In cases of a relatively good uniformity of the phantom and minor distortions in the spatial distribution of the B-matrix, the uBSD-DTI approach is sufficient.

  12. Analysis of shifts in the spatial distribution of vegetation due to climate change

    Science.gov (United States)

    del Jesus, Manuel; Díez-Sierra, Javier; Rinaldo, Andrea; Rodríguez-Iturbe, Ignacio

    2017-04-01

    Climate change will modify the statistical regime of most climatological variables, inducing changes on average values and in the natural variability of environmental variables. These environmental variables may be used to explain the spatial distribution of functional types of vegetation in arid and semiarid watersheds through the use of plant optimization theories. Therefore, plant optimization theories may be used to approximate the response of the spatial distribution of vegetation to a changing climate. Predicting changes in these spatial distributions is important to understand how climate change may affect vegetated ecosystems, but it is also important for hydrological engineering applications where climate change effects on water availability are assessed. In this work, Maximum Entropy Production (MEP) is used as the plant optimization theory that describes the spatial distribution of functional types of vegetation. Current climatological conditions are obtained from direct observations from meteorological stations. Climate change effects are evaluated for different temporal horizons and different climate change scenarios using numerical model outputs from the CMIP5. Rainfall estimates are downscaled by means of a stochastic point process used to model rainfall. The study is carried out for the Rio Salado watershed, located within the Sevilleta LTER site, in New Mexico (USA). Results show the expected changes in the spatial distribution of vegetation and allow to evaluate the expected variability of the changes. The updated spatial distributions allow to evaluate the vegetated ecosystem health and its updated resilience. These results can then be used to inform the hydrological modeling part of climate change assessments analyzing water availability in arid and semiarid watersheds.

  13. Modelling the emergence of spatial patterns of economic activity

    CERN Document Server

    Yang, Jung-Hun; Frenken, Koen

    2012-01-01

    Understanding how spatial configurations of economic activity emerge is important when formulating spatial planning and economic policy. A simple model was proposed by Simon, who assumed that firms grow at a rate proportional to their size, and that new divisions of firms with certain probabilities relocate to other firms or to new centres of economic activity. Simon's model produces realistic results in the sense that the sizes of economic centres follow a Zipf distribution, which is also observed in reality. It lacks realism in the sense that mechanisms such as cluster formation, congestion (defined as an overly high density of the same activities) and dependence on the spatial distribution of external parties (clients, labour markets) are ignored. The present paper proposed an extension of the Simon model that includes both centripetal and centrifugal forces. Centripetal forces are included in the sense that firm divisions are more likely to settle in locations that offer a higher accessibility to other fi...

  14. Using GIS Spatial Distribution to Predict Soil Organic Carbon in Subtropical China

    Institute of Scientific and Technical Information of China (English)

    CHENG Xian-Fu; SHI Xue-Zheng; YU Dong-Sheng; PAN Xian-Zhang; WANG Hong-Jie; SUN Wei-Xia

    2004-01-01

    Spatial distribution of organic carbon in soils is difficult to estimate because of inherent spatial variability and insufficient data. A soil-landscape model for a region, based on 151 samples for parent material and topographic factors,was established using a GIS spatial analysis technique and a digital elevation model (DEM) to reveal spatial distribution characteristics ofsoil organic carbon (SOC). Correlations between organic carbon and topographic factors were analyzed and a regression model was established to predict SOC content. Results for surface soils (0-20 cm) showed that the average SOC content was 12.8 g kg-1, with the SOC content between 6 and 12 g kg-1 occupying the largest area and SOC over 24 g kg-1 the smallest. Also, soils derived from phyllite were the highest in the SOC content and area, while soils developed on purple shale the lowest. Although parent material, elevation, and slope exposure were all significant topographic variables (P <0.01), slope exposure had the highest correlation to SOC content (r = 0.66). Using a multiple regression model (R2 = 0.611) and DEM (with a 30 m × 30 m grid), spatial distribution of SOC could be forecasted.

  15. Spatial distribution of cancer in Kohgilooyeh and Boyerahmad province

    Directory of Open Access Journals (Sweden)

    M Fararouei

    2016-02-01

    Full Text Available Spatial distribution of cancer is one of the powerful tools in epidemiology of cancer. The present study is designed to understand the geographical distribution of most frequent types of cancer in K&B province. Methods: All registered cases of cancer are reviewed and duplicate cases were removed. The data was analyzed using Arcgis software. Results: Of all registered cases, 1273  remained for analysis of which 57% were residences of urban areas. Cities including  Sisakht, Yasuj and Dehdsasht were shown to have highest incidence rates among the Urban areas. Dena, Sepidar and Kohmare Khaleghi had the highest rates among the rural areas in the province. Skin cancer was the most common type of cancer which had the highest rates of incidence in Sisakht and Dehdasht and Dena and Sepidar among urban and rural areas respectively. Conclusion: The distribution of cancer was not even in the province. Attitude and consumption of wild and regional plants are introduced as the potential risk factors for such a spatial distribution of the common cancers I the province. The results of this study could be used for further analytical studies to understand the regional etiology of cancer in the province.

  16. Mathematical Modeling of spatial disease variables by Spatial Fuzzy Logic for Spatial Decision Support Systems

    Science.gov (United States)

    Platz, M.; Rapp, J.; Groessler, M.; Niehaus, E.; Babu, A.; Soman, B.

    2014-11-01

    A Spatial Decision Support System (SDSS) provides support for decision makers and should not be viewed as replacing human intelligence with machines. Therefore it is reasonable that decision makers are able to use a feature to analyze the provided spatial decision support in detail to crosscheck the digital support of the SDSS with their own expertise. Spatial decision support is based on risk and resource maps in a Geographic Information System (GIS) with relevant layers e.g. environmental, health and socio-economic data. Spatial fuzzy logic allows the representation of spatial properties with a value of truth in the range between 0 and 1. Decision makers can refer to the visualization of the spatial truth of single risk variables of a disease. Spatial fuzzy logic rules that support the allocation of limited resources according to risk can be evaluated with measure theory on topological spaces, which allows to visualize the applicability of this rules as well in a map. Our paper is based on the concept of a spatial fuzzy logic on topological spaces that contributes to the development of an adaptive Early Warning And Response System (EWARS) providing decision support for the current or future spatial distribution of a disease. It supports the decision maker in testing interventions based on available resources and apply risk mitigation strategies and provide guidance tailored to the geo-location of the user via mobile devices. The software component of the system would be based on open source software and the software developed during this project will also be in the open source domain, so that an open community can build on the results and tailor further work to regional or international requirements and constraints. A freely available EWARS Spatial Fuzzy Logic Demo was developed wich enables a user to visualize risk and resource maps based on individual data in several data formats.

  17. Modelling the spatial distribution of endemic Caesalpinioideae in Central Africa, a contribution to the evaluation of actual protected areas in the region

    DEFF Research Database (Denmark)

    Ndayishimiye, Joël; Greve, Michelle; Stoffelen, P.

    2012-01-01

    variables (soil, elevation, and slope). Environmental variables and species occurrence data were obtained respectively from the WorldClim database and from herbarium specimens kept at the National Botanic Garden of Belgium and the Université Libre de Bruxelles. Our results suggest that the distribution...

  18. Modelling the spatial distribution of endemic Caesalpinioideae in Central Africa, a contribution to the evaluation of actual protected areas in the region

    DEFF Research Database (Denmark)

    Ndayishimiye, Joël; Greve, Michelle; Stoffelen, P.

    2012-01-01

    Understanding why some regions have higher levels of diversity and which factors are driving the occurrence of species in a particular area is crucial for environmental management and for the development of species conservation strategies. In this study, we studied seven species of the Caesalpini......Understanding why some regions have higher levels of diversity and which factors are driving the occurrence of species in a particular area is crucial for environmental management and for the development of species conservation strategies. In this study, we studied seven species...... of the Caesalpinioideae that are endemic in Central Africa (Democratic Republic of the Congo, Burundi and Rwanda). The objectives of this study were to identify the environmental factors that constrain their distribution, to determine the potential areas where each species could be present, to assess the current...... conservation status of each species and to evaluate how well the species are protected by the protected areas in the region. Distributions were analyzed and potential distributions predicted using the Maxent species distribution algorithm with climatic (precipitation and temperature) and non-climatic predictor...

  19. On spatially explicit models of cholera epidemics

    National Research Council Canada - National Science Library

    Bertuzzo, E; Casagrandi, R; Gatto, M; Rodriguez-Iturbe, I; Rinaldo, A

    2010-01-01

    We generalize a recently proposed model for cholera epidemics that accounts for local communities of susceptibles and infectives in a spatially explicit arrangement of nodes linked by networks having...

  20. SIMULATION MODELING SLOW SPATIALLY HETER- OGENEOUS COAGULATION

    Directory of Open Access Journals (Sweden)

    P. A. Zdorovtsev

    2013-01-01

    Full Text Available A new model of spatially inhomogeneous coagulation, i.e. formation of larger clusters by joint interaction of smaller ones, is under study. The results of simulation are compared with known analytical and numerical solutions.

  1. Spatial Distribution of Infection Risk of SARS Transmission in a Hospital Ward

    DEFF Research Database (Denmark)

    Qian, Hua; Li, Yuguo; Nielsen, Peter V.;

    2009-01-01

    diseases by integrating the Wells-Riley equation into computational fluid dynamics. We applied our new integrated model to analyze a large nosocomial SARS outbreak in Hong Kong during the 2003 SARS epidemics, which was studied in the literature with regard to the association between airflow and SARS......The classical Wells-Riley model for predicting risk of airborne transmission of diseases assumes a uniform spatial distribution of the infected cases in an enclosed space. A new mathematical model is developed here for predicting the spatial distribution of infection risk of airborne transmitted...... inpatients during the entire infection period. The new developed model provides a new modelling tool for investigating the airborne transmission of diseases in enclosed spaces. The model is applicable when the susceptible stays mostly at the same location in an enclosed space during the infectious period...

  2. Spatial occupancy models for large data sets

    Science.gov (United States)

    Johnson, Devin S.; Conn, Paul B.; Hooten, Mevin B.; Ray, Justina C.; Pond, Bruce A.

    2013-01-01

    Since its development, occupancy modeling has become a popular and useful tool for ecologists wishing to learn about the dynamics of species occurrence over time and space. Such models require presence–absence data to be collected at spatially indexed survey units. However, only recently have researchers recognized the need to correct for spatially induced overdisperison by explicitly accounting for spatial autocorrelation in occupancy probability. Previous efforts to incorporate such autocorrelation have largely focused on logit-normal formulations for occupancy, with spatial autocorrelation induced by a random effect within a hierarchical modeling framework. Although useful, computational time generally limits such an approach to relatively small data sets, and there are often problems with algorithm instability, yielding unsatisfactory results. Further, recent research has revealed a hidden form of multicollinearity in such applications, which may lead to parameter bias if not explicitly addressed. Combining several techniques, we present a unifying hierarchical spatial occupancy model specification that is particularly effective over large spatial extents. This approach employs a probit mixture framework for occupancy and can easily accommodate a reduced-dimensional spatial process to resolve issues with multicollinearity and spatial confounding while improving algorithm convergence. Using open-source software, we demonstrate this new model specification using a case study involving occupancy of caribou (Rangifer tarandus) over a set of 1080 survey units spanning a large contiguous region (108 000 km2) in northern Ontario, Canada. Overall, the combination of a more efficient specification and open-source software allows for a facile and stable implementation of spatial occupancy models for large data sets.

  3. Burkholderia pseudomallei is spatially distributed in soil in northeast Thailand.

    Directory of Open Access Journals (Sweden)

    Direk Limmathurotsakul

    Full Text Available BACKGROUND: Melioidosis is a frequently fatal infectious disease caused by the soil dwelling Gram-negative bacterium Burkholderia pseudomallei. Environmental sampling is important to identify geographical distribution of the organism and related risk of infection to humans and livestock. The aim of this study was to evaluate spatial distribution of B. pseudomallei in soil and consider the implications of this for soil sampling strategies. METHODS AND FINDINGS: A fixed-interval sampling strategy was used as the basis for detection and quantitation by culture of B. pseudomallei in soil in two environmental sites (disused land covered with low-lying scrub and rice field in northeast Thailand. Semivariogram and indicator semivariogram were used to evaluate the distribution of B. pseudomallei and its relationship with range between sampling points. B. pseudomallei was present on culture of 80/100 sampling points taken from the disused land and 28/100 sampling points from the rice field. The median B. pseudomallei cfu/gram from positive sampling points was 378 and 700 for the disused land and the rice field, respectively (p = 0.17. Spatial autocorrelation of B. pseudomallei was present, in that samples taken from areas adjacent to sampling points that were culture positive (negative for B. pseudomallei were also likely to be culture positive (negative, and samples taken from areas adjacent to sampling points with a high (low B. pseudomallei count were also likely to yield a high (low count. Ranges of spatial autocorrelation in quantitative B. pseudomallei count were 11.4 meters in the disused land and 7.6 meters in the rice field. CONCLUSIONS: We discuss the implications of the uneven distribution of B. pseudomallei in soil for future environmental studies, and describe a range of established geostatistical sampling approaches that would be suitable for the study of B. pseudomallei that take account of our findings.

  4. Spatial distribution of magnetization and fluctuations in a nanopyramid Ising system interacting with the substrate

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, L S; Jacyna-Onyszkiewicz, Z, E-mail: lsb@man.poznan.p [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland)

    2009-03-01

    We study the Ising model of a ferromagnetic nanopyramid deposited on a ferromagnetic substrate. The interaction between the pyramid and the substrate is calculated in terms of the reduced-state (density) operator. The spatial distribution of fluctuations of the molecular field and magnetization is obtained within the Gaussian approximation.

  5. Simulation of multiple scattering of seismic waves by spatially distributed inclusions

    Institute of Scientific and Technical Information of China (English)

    刘恩儒; QUEEN; John; H; 张中杰; 陈东

    2000-01-01

    A 2D elastodynamic boundary element method (BEM) is used to solve multiple scattering of elastic waves. The method is based on the integral representation of an elastic wave-field by assuming a fictitious source distribution on the scattering objects or inclusions, i.e. a mathematical description of Huygens’ principle, and the fictitious source distribution can be found by matching appropriate boundary conditions at the boundary of the inclusions. Numerical studies show that in the presence of cracks, spatial and scale-length distributions are important and different spatial arrangements of the same scatters lead to profound differences in scattering characteristics, in particular the frequency contents of the transmitted wave-fields. The frequency characteristics, such as the frequency of peak attenuation , can be related to spatial size parameters of the model.

  6. Simulation of multiple scattering of seismic waves by spatially distributed inclusions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A 2D elastodynamic boundary element method (BEM) is used to solve multiple scattering of elastic waves. The method is based on the integral representation of an elastic wave-field by assuming a fictitious source distribution on the scattering objects or inclusions, i.e. a mathematical description of Huygens' principle, and the fictitious source distribution can be found by matching appropriate boundary conditions at the boundary of the inclusions. Numerical studies show that in the presence of cracks, spatial and scale-length distributions are important and different spatial arrangements of the same scatters lead to profound differences in scattering characteristics, in particular the frequency contents of the transmitted wave-fields. The frequency characteristics, such as the frequency of peak attenuation, can be related to spatial size parameters of the model.

  7. Spatial distribution effect of feedback reactivity in TRACY experiments. Evaluation of the first power peak characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Toru; Sekimoto, Hiroshi [Tokyo Inst. of Technology, Research Lab. for Nuclear Reactors, Tokyo (Japan); Nakajima, Ken; Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-06-01

    To investigate the spatial effect of feedback reactivity in TRACY experiments, evaluations of the first power peak characteristics using the one-point reactor approximation model and a space dependent kinetics code, PCTAC, were conducted. Analyses for a core with uniform temperature distribution using the temperature feedback reactivity multiplied by a weight of 1.5 gave the same results as those for a core with space dependent power distribution. Neutronic calculations for spatial effect of temperature and space dependent kinetics analyses showed that the spatial effect of the temperature feedback reactivity at the peak power was dominated by the power distribution without feedback, and this resulted in a weight of 1.5. (author)

  8. Evaluating spatial patterns in hydrological modelling

    DEFF Research Database (Denmark)

    Koch, Julian

    is not fully exploited by current modelling frameworks due to the lack of suitable spatial performance metrics. Furthermore, the traditional model evaluation using discharge is found unsuitable to lay confidence on the predicted catchment inherent spatial variability of hydrological processes in a fully...... the contiguous United Sates (10^6 km2). To this end, the thesis at hand applies a set of spatial performance metrics on various hydrological variables, namely land-surface-temperature (LST), evapotranspiration (ET) and soil moisture. The inspiration for the applied metrics is found in related fields...

  9. Modeling signalized intersection safety with corridor-level spatial correlations.

    Science.gov (United States)

    Guo, Feng; Wang, Xuesong; Abdel-Aty, Mohamed A

    2010-01-01

    Intersections in close spatial proximity along a corridor should be considered as correlated due to interacted traffic flows as well as similar road design and environmental characteristics. It is critical to incorporate this spatial correlation for assessing the true safety impacts of risk factors. In this paper, several Bayesian models were developed to model the crash data from 170 signalized intersections in the state of Florida. The safety impacts of risk factors such as geometric design features, traffic control, and traffic flow characteristics were evaluated. The Poisson and Negative Binomial Bayesian models with non-informative priors were fitted but the focus is to incorporate spatial correlations among intersections. Two alternative models were proposed to capture this correlation: (1) a mixed effect model in which the corridor-level correlation is incorporated through a corridor-specific random effect and (2) a conditional autoregressive model in which the magnitude of correlations is determined by spatial distances among intersections. The models were compared using the Deviance Information Criterion. The results indicate that the Poisson spatial model provides the best model fitting. Analysis of the posterior distributions of model parameters indicated that the size of intersection, the traffic conditions by turning movement, and the coordination of signal phase have significant impacts on intersection safety.

  10. Directional spatial frequency analysis of lipid distribution in atherosclerotic plaque

    Science.gov (United States)

    Korn, Clyde; Reese, Eric; Shi, Lingyan; Alfano, Robert; Russell, Stewart

    2016-04-01

    Atherosclerosis is characterized by the growth of fibrous plaques due to the retention of cholesterol and lipids within the artery wall, which can lead to vessel occlusion and cardiac events. One way to evaluate arterial disease is to quantify the amount of lipid present in these plaques, since a higher disease burden is characterized by a higher concentration of lipid. Although therapeutic stimulation of reverse cholesterol transport to reduce cholesterol deposits in plaque has not produced significant results, this may be due to current image analysis methods which use averaging techniques to calculate the total amount of lipid in the plaque without regard to spatial distribution, thereby discarding information that may have significance in marking response to therapy. Here we use Directional Fourier Spatial Frequency (DFSF) analysis to generate a characteristic spatial frequency spectrum for atherosclerotic plaques from C57 Black 6 mice both treated and untreated with a cholesterol scavenging nanoparticle. We then use the Cauchy product of these spectra to classify the images with a support vector machine (SVM). Our results indicate that treated plaque can be distinguished from untreated plaque using this method, where no difference is seen using the spatial averaging method. This work has the potential to increase the effectiveness of current in-vivo methods of plaque detection that also use averaging methods, such as laser speckle imaging and Raman spectroscopy.

  11. The spatial distribution of workplace accidents in Spain: assessing the role of workplace inspections

    OpenAIRE

    Bande, Roberto; López-Mourelo, Elva

    2014-01-01

    This paper analyses the spatial distribution of workplace accidents in Spain and analyses the role of economic and institutional variables in this geographical outcome. After estimating an econometric model that explains regional variation in job accidents incidence, we compute conditional regional distributions of workplace accidents under the assumption of no regional variation in workplace inspections. Results show that much of the regional differences in severe and fatal accidents are exp...

  12. Landscape genetics and the spatial distribution of chronic wasting disease.

    Science.gov (United States)

    Blanchong, Julie A; Samuel, Michael D; Scribner, Kim T; Weckworth, Byron V; Langenberg, Julia A; Filcek, Kristine B

    2008-02-23

    Predicting the spread of wildlife disease is critical for identifying populations at risk, targeting surveillance and designing proactive management programmes. We used a landscape genetics approach to identify landscape features that influenced gene flow and the distribution of chronic wasting disease (CWD) in Wisconsin white-tailed deer. CWD prevalence was negatively correlated with genetic differentiation of study area deer from deer in the area of disease origin (core-area). Genetic differentiation was greatest, and CWD prevalence lowest, in areas separated from the core-area by the Wisconsin River, indicating that this river reduced deer gene flow and probably disease spread. Features of the landscape that influence host dispersal and spatial patterns of disease can be identified based on host spatial genetic structure. Landscape genetics may be used to predict high-risk populations based on their genetic connection to infected populations and to target disease surveillance, control and preventative activities.

  13. Landscape genetics and the spatial distribution of chronic wasting disease

    Science.gov (United States)

    Blanchong, Julie A.; Samuel, M.D.; Scribner, K.T.; Weckworth, B.V.; Langenberg, J.A.; Filcek, K.B.

    2008-01-01

    Predicting the spread of wildlife disease is critical for identifying populations at risk, targeting surveillance and designing proactive management programmes. We used a landscape genetics approach to identify landscape features that influenced gene flow and the distribution of chronic wasting disease (CWD) in Wisconsin white-tailed deer. CWD prevalence was negatively correlated with genetic differentiation of study area deer from deer in the area of disease origin (core-area). Genetic differentiation was greatest, and CWD prevalence lowest, in areas separated from the core-area by the Wisconsin River, indicating that this river reduced deer gene flow and probably disease spread. Features of the landscape that influence host dispersal and spatial patterns of disease can be identified based on host spatial genetic structure. Landscape genetics may be used to predict high-risk populations based on their genetic connection to infected populations and to target disease surveillance, control and preventative activities. ?? 2007 The Royal Society.

  14. AN IMAGE RETRIEVAL METHOD BASED ON SPATIAL DISTRIBUTION OF COLOR

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Color histogram is now widely used in image retrieval. Color histogram-based image retrieval methods are simple and efficient but without considering the spatial distribution information of the color. To overcome the shortcoming of conventional color histogram-based image retrieval methods, an image retrieval method based on Radon Transform (RT) is proposed. In order to reduce the computational complexity,wavelet decomposition is used to compress image data. Firstly, images are decomposed by Mallat algorithm.The low-frequency components are then projected by RT to generate the spatial color feature. Finally the moment feature matrices which are saved along with original images are obtained. Experimental results show that the RT based retrieval is more accurate and efficient than traditional color histogram-based method in case that there are obvious objects in images. Further more, RT based retrieval runs significantly faster than the traditional color histogram methods.

  15. Spatial distribution of soil erosion and suspended sediment transport rate for Chou-Shui river basin

    Indian Academy of Sciences (India)

    Chin-Ping Lin; Ching-Nuo Chen; Yu-Min Wang; Chih-Heng Tsai; Chang-Tai Tsai

    2014-10-01

    In this study, a Physiographic Soil Erosion–Deposition Model (PSED) is applied for better management of a watershed. The PSED model can effectively evaluate the key parameters of watershed management: surface runoff discharge, suspended sediment transport rate, quantity of soil erosion, and spatial distribution of soil erosion and deposition. A basin usually contains multiple watersheds. These watersheds may have complex topography and heterogeneous physiographic properties. The PSED model, containing a physiographic rainfall-runoff model and a basin scale erosion–deposition model, can simulate the physical mechanism of the entire erosion process based on a detailed calculation of bed-load transportation, surface soil entrainment, and the deposition mechanism. With the assistance of Geographic Information Systems (GIS), the PSED model can handle and analyze extremely large hydrologic and physiographic datasets and simulate the physical erosion process without the need for simplification. We verified the PSED model using three typhoon events and 40 rainfall events. The application of PSED to Chou-Shui River basin shows that the PSED model can accurately estimate discharge hydrographs, suspended sediment transport rates, and sediment yield. Additionally, we obtained reasonable quantities of soil erosion as well as the spatial distribution of soil erosion and deposition. The results show that the PSED model is capable of calculating spatially distributed soil erosion and suspended sediment transport rates for a basin with multiple watersheds even if these watersheds have complex topography and heterogeneous physiographic properties.

  16. A spatial model of mosquito host-seeking behavior.

    Science.gov (United States)

    Cummins, Bree; Cortez, Ricardo; Foppa, Ivo M; Walbeck, Justin; Hyman, James M

    2012-01-01

    Mosquito host-seeking behavior and heterogeneity in host distribution are important factors in predicting the transmission dynamics of mosquito-borne infections such as dengue fever, malaria, chikungunya, and West Nile virus. We develop and analyze a new mathematical model to describe the effect of spatial heterogeneity on the contact rate between mosquito vectors and hosts. The model includes odor plumes generated by spatially distributed hosts, wind velocity, and mosquito behavior based on both the prevailing wind and the odor plume. On a spatial scale of meters and a time scale of minutes, we compare the effectiveness of different plume-finding and plume-tracking strategies that mosquitoes could use to locate a host. The results show that two different models of chemotaxis are capable of producing comparable results given appropriate parameter choices and that host finding is optimized by a strategy of flying across the wind until the odor plume is intercepted. We also assess the impact of changing the level of host aggregation on mosquito host-finding success near the end of the host-seeking flight. When clusters of hosts are more tightly associated on smaller patches, the odor plume is narrower and the biting rate per host is decreased. For two host groups of unequal number but equal spatial density, the biting rate per host is lower in the group with more individuals, indicative of an attack abatement effect of host aggregation. We discuss how this approach could assist parameter choices in compartmental models that do not explicitly model the spatial arrangement of individuals and how the model could address larger spatial scales and other probability models for mosquito behavior, such as Lévy distributions.

  17. A spatial model of mosquito host-seeking behavior.

    Directory of Open Access Journals (Sweden)

    Bree Cummins

    Full Text Available Mosquito host-seeking behavior and heterogeneity in host distribution are important factors in predicting the transmission dynamics of mosquito-borne infections such as dengue fever, malaria, chikungunya, and West Nile virus. We develop and analyze a new mathematical model to describe the effect of spatial heterogeneity on the contact rate between mosquito vectors and hosts. The model includes odor plumes generated by spatially distributed hosts, wind velocity, and mosquito behavior based on both the prevailing wind and the odor plume. On a spatial scale of meters and a time scale of minutes, we compare the effectiveness of different plume-finding and plume-tracking strategies that mosquitoes could use to locate a host. The results show that two different models of chemotaxis are capable of producing comparable results given appropriate parameter choices and that host finding is optimized by a strategy of flying across the wind until the odor plume is intercepted. We also assess the impact of changing the level of host aggregation on mosquito host-finding success near the end of the host-seeking flight. When clusters of hosts are more tightly associated on smaller patches, the odor plume is narrower and the biting rate per host is decreased. For two host groups of unequal number but equal spatial density, the biting rate per host is lower in the group with more individuals, indicative of an attack abatement effect of host aggregation. We discuss how this approach could assist parameter choices in compartmental models that do not explicitly model the spatial arrangement of individuals and how the model could address larger spatial scales and other probability models for mosquito behavior, such as Lévy distributions.

  18. Near-Infrared Spectroscopy and Geostatistical Analysis for Modeling Spatial Distribution of Analytical Constituents in Bulk Animal By-Product Protein Meals.

    Science.gov (United States)

    Adame-Siles, José A; Fearn, Tom; Guerrero-Ginel, José E; Garrido-Varo, Ana; Maroto-Molina, Francisco; Pérez-Marín, Dolores

    2017-03-01

    Control and inspection operations within the context of safety and quality assessment of bulk foods and feeds are not only of particular importance, they are also demanding challenges, given the complexity of food/feed production systems and the variability of product properties. Existing methodologies have a variety of limitations, such as high costs of implementation per sample or shortcomings in early detection of potential threats for human/animal health or quality deviations. Therefore, new proposals are required for the analysis of raw materials in situ in a more efficient and cost-effective manner. For this purpose, a pilot laboratory study was performed on a set of bulk lots of animal by-product protein meals to introduce and test an approach based on near-infrared (NIR) spectroscopy and geostatistical analysis. Spectral data, provided by a fiber optic probe connected to a Fourier transform (FT) NIR spectrometer, were used to predict moisture and crude protein content at each sampling point. Variographic analysis was carried out for spatial structure characterization, while ordinary Kriging achieved continuous maps for those parameters. The results indicated that the methodology could be a first approximation to an approach that, properly complemented with the Theory of Sampling and supported by experimental validation in real-life conditions, would enhance efficiency and the decision-making process regarding safety and adulteration issues.

  19. Spatial distribution of environmental DNA in a nearshore marine habitat

    Directory of Open Access Journals (Sweden)

    James L. O’Donnell

    2017-02-01

    Full Text Available In the face of increasing threats to biodiversity, the advancement of methods for surveying biological communities is a major priority for ecologists. Recent advances in molecular biological technologies have made it possible to detect and sequence DNA from environmental samples (environmental DNA or eDNA; however, eDNA techniques have not yet seen widespread adoption as a routine method for biological surveillance primarily due to gaps in our understanding of the dynamics of eDNA in space and time. In order to identify the effective spatial scale of this approach in a dynamic marine environment, we collected marine surface water samples from transects ranging from the intertidal zone to four kilometers from shore. Using PCR primers that target a diverse assemblage of metazoans, we amplified a region of mitochondrial 16S rDNA from the samples and sequenced the products on an Illumina platform in order to detect communities and quantify their spatial patterns using a variety of statistical tools. We find evidence for multiple, discrete eDNA communities in this habitat, and show that these communities decrease in similarity as they become further apart. Offshore communities tend to be richer but less even than those inshore, though diversity was not spatially autocorrelated. Taxon-specific relative abundance coincided with our expectations of spatial distribution in taxa lacking a microscopic, pelagic life-history stage, though most of the taxa detected do not meet these criteria. Finally, we use carefully replicated laboratory procedures to show that laboratory treatments were remarkably similar in most cases, while allowing us to detect a faulty replicate, emphasizing the importance of replication to metabarcoding studies. While there is much work to be done before eDNA techniques can be confidently deployed as a standard method for ecological monitoring, this study serves as a first analysis of diversity at the fine spatial scales relevant to

  20. Spatial distribution of environmental DNA in a nearshore marine habitat

    Science.gov (United States)

    Kelly, Ryan P.; Shelton, Andrew Olaf; Samhouri, Jameal F.; Lowell, Natalie C.; Williams, Gregory D.

    2017-01-01

    In the face of increasing threats to biodiversity, the advancement of methods for surveying biological communities is a major priority for ecologists. Recent advances in molecular biological technologies have made it possible to detect and sequence DNA from environmental samples (environmental DNA or eDNA); however, eDNA techniques have not yet seen widespread adoption as a routine method for biological surveillance primarily due to gaps in our understanding of the dynamics of eDNA in space and time. In order to identify the effective spatial scale of this approach in a dynamic marine environment, we collected marine surface water samples from transects ranging from the intertidal zone to four kilometers from shore. Using PCR primers that target a diverse assemblage of metazoans, we amplified a region of mitochondrial 16S rDNA from the samples and sequenced the products on an Illumina platform in order to detect communities and quantify their spatial patterns using a variety of statistical tools. We find evidence for multiple, discrete eDNA communities in this habitat, and show that these communities decrease in similarity as they become further apart. Offshore communities tend to be richer but less even than those inshore, though diversity was not spatially autocorrelated. Taxon-specific relative abundance coincided with our expectations of spatial distribution in taxa lacking a microscopic, pelagic life-history stage, though most of the taxa detected do not meet these criteria. Finally, we use carefully replicated laboratory procedures to show that laboratory treatments were remarkably similar in most cases, while allowing us to detect a faulty replicate, emphasizing the importance of replication to metabarcoding studies. While there is much work to be done before eDNA techniques can be confidently deployed as a standard method for ecological monitoring, this study serves as a first analysis of diversity at the fine spatial scales relevant to marine ecologists

  1. Predicting a roadkill hotspots based on spatial distribution of Korean water deer (Hydropotes inermis argyropus) using Maxent model in South Korea Expressway : In Case of Cheongju-Sangju Expressway

    Science.gov (United States)

    Park, Hyomin; Lee, Sangdon

    2016-04-01

    Road construction has direct and indirect effects on ecosystems. Especially wildlife-vehicle conflicts (roadkills) caused by roads are a considerable threat for population of many species. This study aims to identify the effects of topographic characteristics and spatial distribution of Korean water deer (Hydropotes inermis). Korean water deer is indigenous and native species in Korea that listed LC (least concern) by IUCN redlist categories. Korean water deer population is growing every year occupying for most of roadkills (>70%) in Korean express highway. In order to predict a distribution of the Korean water deer, we selected factors that most affected water deer's habitat. Major habitats of waterdeer are known as agricultural area, forest area and water. Based on this result, eight factors were selected (land cover map, vegetation map, age class of forest, diameter class of tree, population, slope of study site, elevation of study site, distance of river), and made a thematic map by using GIS program (ESRI, Arc GIS 10.3.1 ver.). To analyze the affected factors of waterdeer distribution, GPS data and thematic map of study area were entered into Maxent model (Maxent 3.3.3.k.). Results of analysis were verified by the AUC (Area Unit Curve) of ROC (Receiver Operating Characteristic). The ROC curve used the sensitivity and specificity as a reference for determining the prediction efficiency of the model and AUC area of ROC curve was higher prediction efficiency closer to '1.' Selecting factors that affected the distribution of waterdeer were land cover map, diameter class of tree and elevation of study site. The value of AUC was 0.623. To predict the water deer's roadkills hot spot on Cheongju-Sangju Expressway, the thematic map was prepared based on GPS data of roadkill spots. As a result, the topographic factors that affected waterdeer roadkill were land cover map, actual vegetation map and age class of forest and the value of AUC was 0.854. Through this study, we

  2. Performance of Information Criteria for Spatial Models.

    Science.gov (United States)

    Lee, Hyeyoung; Ghosh, Sujit K

    2009-01-01

    Model choice is one of the most crucial aspect in any statistical data analysis. It is well known that most models are just an approximation to the true data generating process but among such model approximations it is our goal to select the "best" one. Researchers typically consider a finite number of plausible models in statistical applications and the related statistical inference depends on the chosen model. Hence model comparison is required to identify the "best" model among several such candidate models. This article considers the problem of model selection for spatial data. The issue of model selection for spatial models has been addressed in the literature by the use of traditional information criteria based methods, even though such criteria have been developed based on the assumption of independent observations. We evaluate the performance of some of the popular model selection critera via Monte Carlo simulation experiments using small to moderate samples. In particular, we compare the performance of some of the most popular information criteria such as Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Corrected AIC (AICc) in selecting the true model. The ability of these criteria to select the correct model is evaluated under several scenarios. This comparison is made using various spatial covariance models ranging from stationary isotropic to nonstationary models.

  3. Agent-based Algorithm for Spatial Distribution of Objects

    KAUST Repository

    Collier, Nathan

    2012-06-02

    In this paper we present an agent-based algorithm for the spatial distribution of objects. The algorithm is a generalization of the bubble mesh algorithm, initially created for the point insertion stage of the meshing process of the finite element method. The bubble mesh algorithm treats objects in space as bubbles, which repel and attract each other. The dynamics of each bubble are approximated by solving a series of ordinary differential equations. We present numerical results for a meshing application as well as a graph visualization application.

  4. Spatial distribution of China׳s renewable energy industry

    DEFF Research Database (Denmark)

    Dong, Liang; Liang, Hanwei; Gao, Zhiqiu

    2016-01-01

    China applies no efforts to promote the development of renewable energy (REE) so as to enhance China׳s energy security and address climate change. National top-down support scheme and the local renewable energy industry (REEI) development are the two important and intervened countermeasures...... for promoting REEI development in China. Considering China׳s vast regional disparity, the review on the spatial distribution of REEI in provincial level is critical and enlightening for future appropriate policy-making, while to date, there has been few related studies. With this circumstance, this paper made...

  5. Spatial patterns of seaweed distribution in Malaysia using GIS

    Science.gov (United States)

    Lian, Du Hai; Sim, Jillian Ooi Lean; Fauzi, Rosmadi; Moi, Phang Siew

    2008-10-01

    The objective of this article is to represent spatial patterns of seaweed distribution in Malaysia. Seaweeds have been collected since 1984 along coastlines of 4675 km of peninsular Malaysia, Sabah, and Sarawak. However, there is no seaweed database and they cannot be displayed in a geographic view. Therefore, a database with 805 georeferenced observations was setup and GIS is used to analyze seaweed diversity based on this database. The highest number of observations is 94 which occur along east coastline of peninsular Malaysia. The highest number of species richness is 82 which are also along east coastline of peninsular Malaysia. Rhodophyta has the highest species richness while Chlorophyta has the least species richness.

  6. Improving the accuracy of livestock distribution estimates through spatial interpolation

    Directory of Open Access Journals (Sweden)

    Ward Bryssinckx

    2012-11-01

    Full Text Available Animal distribution maps serve many purposes such as estimating transmission risk of zoonotic pathogens to both animals and humans. The reliability and usability of such maps is highly dependent on the quality of the input data. However, decisions on how to perform livestock surveys are often based on previous work without considering possible consequences. A better understanding of the impact of using different sample designs and processing steps on the accuracy of livestock distribution estimates was acquired through iterative experiments using detailed survey. The importance of sample size, sample design and aggregation is demonstrated and spatial interpolation is presented as a potential way to improve cattle number estimates. As expected, results show that an increasing sample size increased the precision of cattle number estimates but these improvements were mainly seen when the initial sample size was relatively low (e.g. a median relative error decrease of 0.04% per sampled parish for sample sizes below 500 parishes. For higher sample sizes, the added value of further increasing the number of samples declined rapidly (e.g. a median relative error decrease of 0.01% per sampled parish for sample sizes above 500 parishes. When a two-stage stratified sample design was applied to yield more evenly distributed samples, accuracy levels were higher for low sample densities and stabilised at lower sample sizes compared to one-stage stratified sampling. Aggregating the resulting cattle number estimates yielded significantly more accurate results because of averaging under- and over-estimates (e.g. when aggregating cattle number estimates from subcounty to district level, P <0.009 based on a sample of 2,077 parishes using one-stage stratified samples. During aggregation, area-weighted mean values were assigned to higher administrative unit levels. However, when this step is preceded by a spatial interpolation to fill in missing values in non

  7. Fine-Scale Spatial Heterogeneity in the Distribution of Waterborne Protozoa in a Drinking Water Reservoir

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Burnet

    2015-09-01

    Full Text Available Background: The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Methods: Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Results: Parasites displayed heterogeneous distribution patterns, as reflected by significant (oocyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. Conclusion: This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies.

  8. Fine-Scale Spatial Heterogeneity in the Distribution of Waterborne Protozoa in a Drinking Water Reservoir.

    Science.gov (United States)

    Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel

    2015-09-23

    The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies.

  9. The application of GIS based decision-tree models for generating the spatial distribution of hydromorphic organic landscapes in relation to digital terrain data

    DEFF Research Database (Denmark)

    Kheir, Rania Bou; Bøcher, Peder Klith; Greve, Mette Balslev

    2010-01-01

    ) topographic parameters were generated from Digital Elevation Models (DEMs) acquired using airborne LIDAR (Light Detection and Ranging) systems. They were used along with existing digital data collected from other sources (soil type, geological substrate and landscape type) to explain organic/mineral field...... measurements in hydromorphic landscapes of the Danish area chosen. A large number of tree-based classification models (186) were developed using (1) all of the parameters, (2) the primary DEM-derived topographic (morphological/hydrological) parameters only, (3) selected pairs of parameters and (4) excluding...... each parameter one at a time from the potential pool of predictor parameters. The best classification tree model (with the lowest misclassification error and the smallest number of terminal nodes and predictor parameters) combined the steady-state topographic wetness index and soil type, and explained...

  10. Spatial distribution of female genital mutilation in Nigeria.

    Science.gov (United States)

    Kandala, Ngianga-Bakwin; Nwakeze, Ngozi; Kandala, Shadrack Ngianga I I

    2009-11-01

    The harmful effects of female genital mutilation (FGM) on women are recognized worldwide. Although it is practiced by persons of all socioeconomic backgrounds, there are differences within countries and between communities. The aim of this study was to use the 2003 Nigeria Demographic and Health Survey data to determine the spatial distribution of the prevalence of FGM and associated risk factors. Data were available for 7,620 women; 1,673 (22.0%) interviewed had had FGM and 2,168 women had living children, of whom 485 (22.4%) daughters had undergone FGM. Unmarried women were more likely to report a lower prevalence of FGM. Modernization (education and high socioeconomic status) had minimal impact on the likelihood of FGM, but education plays an important role in the mother's decision not to circumcise her daughter. It follows from these findings that community factors have a large effect on FGM, with individual factors having little effect on the distribution of FGM.

  11. Gravitational force in weakly correlated particle spatial distributions.

    Science.gov (United States)

    Gabrielli, Andrea; Masucci, Adolfo Paolo; Labini, Francesco Sylos

    2004-03-01

    We study the statistics of the gravitational (Newtonian) force in a particular class of weakly correlated spatial distributions of pointlike and unitary mass particles generated by the so-called Gauss-Poisson point processes. In particular we extend to these distributions the analysis that Chandrasekhar introduced for purely Poisson processes. In this way we can find the explicit asymptotic behavior of the probability density function of the force for both large and small values of the field as a generalization of the Holtzmark statistics. In particular, we show how the modifications at large fields depend on the density correlations introduced at small scales. The validity of the introduced approximations is positively tested through a direct comparison with the analysis of the statistics of the gravitational force in numerical simulations of Gauss-Poisson processes.

  12. Linking Spatial Distributions of Potential and Current in Viscous Electronics

    Science.gov (United States)

    Falkovich, Gregory; Levitov, Leonid

    2017-08-01

    Viscous electronics is an emerging field dealing with systems in which strongly interacting electrons behave as a fluid. Electron viscous flows are governed by a nonlocal current-field relation which renders the spatial patterns of the current and electric field strikingly dissimilar. Notably, driven by the viscous friction force from adjacent layers, current can flow against the electric field, generating negative resistance, vorticity, and vortices. Moreover, different current flows can result in identical potential distributions. This sets a new situation where inferring the electron flow pattern from the measured potentials presents a nontrivial problem. Using the inherent relation between these patterns through complex analysis, here we propose a method for extracting the current flows from potential distributions measured in the presence of a magnetic field.

  13. Spatial Bayesian hierarchical modelling of extreme sea states

    Science.gov (United States)

    Clancy, Colm; O'Sullivan, John; Sweeney, Conor; Dias, Frédéric; Parnell, Andrew C.

    2016-11-01

    A Bayesian hierarchical framework is used to model extreme sea states, incorporating a latent spatial process to more effectively capture the spatial variation of the extremes. The model is applied to a 34-year hindcast of significant wave height off the west coast of Ireland. The generalised Pareto distribution is fitted to declustered peaks over a threshold given by the 99.8th percentile of the data. Return levels of significant wave height are computed and compared against those from a model based on the commonly-used maximum likelihood inference method. The Bayesian spatial model produces smoother maps of return levels. Furthermore, this approach greatly reduces the uncertainty in the estimates, thus providing information on extremes which is more useful for practical applications.

  14. Holling's fun