WorldWideScience

Sample records for modelling potential impacts

  1. Modeling low impact development potential with hydrological response units.

    Science.gov (United States)

    Eric, Marija; Fan, Celia; Joksimovic, Darko; Li, James Y

    2013-01-01

    Evaluations of benefits of implementing low impact development (LID) stormwater management techniques can extend up to a watershed scale. This presents a challenge for representing them in watershed models, since they are typically orders of magnitude smaller in size. This paper presents an approach that is focused on trying to evaluate the benefits of implementing LIDs on a lot level. The methodology uses the concept of urban hydrological response Unit and results in developing and applying performance curves that are a function of lot properties to estimate the potential benefit of large-scale LID implementation. Lot properties are determined using a municipal geographic information system database and processed to determine groups of lots with similar properties. A representative lot from each group is modeled over a typical rainfall year using USEPA Stormwater Management Model to develop performance functions that relate the lot properties and the change in annual runoff volume and corresponding phosphorus loading with different LIDs implemented. The results of applying performance functions on all urban areas provide the potential locations, benefit and cost of implementation of all LID techniques, guiding future decisions for LID implementation by watershed area municipalities.

  2. Potential climatic impacts of vegetation change: A regional modeling study

    Science.gov (United States)

    Copeland, J.H.; Pielke, R.A.; Kittel, T.G.F.

    1996-01-01

    The human species has been modifying the landscape long before the development of modern agrarian techniques. Much of the land area of the conterminous United States is currently used for agricultural production. In certain regions this change in vegetative cover from its natural state may have led to local climatic change. A regional climate version of the Colorado State University Regional Atmospheric Modeling System was used to assess the impact of a natural versus current vegetation distribution on the weather and climate of July 1989. The results indicate that coherent regions of substantial changes, of both positive and negative sign, in screen height temperature, humidity, wind speed, and precipitation are a possible consequence of land use change throughout the United States. The simulated changes in the screen height quantities were closely related to changes in the vegetation parameters of albedo, roughness length, leaf area index, and fractional coverage. Copyright 1996 by the American Geophysical Union.

  3. Regional models for distributed flash-flood nowcasting: towards an estimation of potential impacts and damages

    Directory of Open Access Journals (Sweden)

    Le Bihan Guillaume

    2016-01-01

    Full Text Available Flash floods monitoring systems developed up to now generally enable a real-time assessment of the potential flash-floods magnitudes based on highly distributed hydrological models and weather radar records. The approach presented here aims to go one step ahead by offering a direct assessment of the potential impacts of flash floods on inhabited areas. This approach is based on an a priori analysis of the considered area in order (1 to evaluate based on a semi-automatic hydraulic approach (Cartino method the potentially flooded areas for different discharge levels, and (2 to identify the associated buildings and/or population at risk based on geographic databases. This preliminary analysis enables to build a simplified impact model (discharge-impact curve for each river reach, which can be used to directly estimate the importance of potentially affected assets based on the outputs of a distributed rainfall-runoff model. This article presents a first case study conducted in the Gard region (south eastern France. The first validation results are presented in terms of (1 accuracy of the delineation of the flooded areas estimated based on the Cartino method and using a high resolution DTM, and (2 relevance and usefulness of the impact model obtained. The impacts estimated at the event scale will now be evaluated in a near future based on insurance claim data provided by CCR (Caisse Centrale de Réassurrance.

  4. Assessing potential health impacts of waste recovery and reuse business models in Hanoi, Vietnam.

    Science.gov (United States)

    Winkler, Mirko S; Fuhrimann, Samuel; Pham-Duc, Phuc; Cissé, Guéladio; Utzinger, Jürg; Nguyen-Viet, Hung

    2017-02-01

    In resource-constrained settings, the recovery of nutrients and the production of energy from liquid and solid waste are important. We determined the range and magnitude of potential community health impacts of six solid and liquid waste recovery and reuse business models in Hanoi, Vietnam. We employed a health impact assessment (HIA) approach using secondary data obtained from various sources supplemented with primary data collection. For determining the direction (positive or negative) and magnitude of potential health impacts in the population, a semiquantitative impact assessment was pursued. From a public health perspective, wastewater reuse for inland fish farming, coupled with on-site water treatment has considerable potential for individual and community-level health benefits. One of the business models investigated (i.e. dry fuel manufacturing with agro-waste) resulted in net negative health impacts. In Hanoi, the reuse of liquid and solid waste-as a mean to recover water and nutrients and to produce energy-has considerable potential for health benefits if appropriately managed and tailored to local contexts. Our HIA methodology provides an evidence-based decision-support tool for identification and promotion of business models for implementation in Hanoi.

  5. Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea; Geerlofs, Simon H.

    2014-09-30

    In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.

  6. Potential Negative Impact of DG on Reliability Index: A Study Based on Time-Domain Modeling

    Science.gov (United States)

    Ran, Xuanchang

    This thesis presents an original insight of the negative impact of distributed generation on reliability index based on dynamic time-domain modeling. Models for essential power system components, such as protective devices and synchronous generators, were developed and tested. A 4 kV distribution loop which carries relatively high power demand was chosen for the analysis. The characteristic curves of all protective devices were extracted from utility database and applied to the time domain relay model. The performance of each device was investigated in details. The negative effect on reliability is due to the fuse opening caused by the installation of DG at the wrong location and inappropriate relay setup. Over 50% of the possible DG locations can produce an undesirable impact. The study conclusion is that there exists a significant potential for the installation of DG to negatively affect the reliability of power systems.

  7. Making the case for cumulative impacts assessment : modelling the potential impacts of climate change, harvesting, oil and gas, and fire

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, S.H.; Duchesneau, R.; Doyon, F. [Inst. quebecois d' Amenagement de la Foret feuillue, Ripon, PQ (Canada); Russell, J.S. [Millar Western Forest Products Ltd., Whitecourt, AB (Canada); Gooding, T. [Forestry Corp., Edmonton, AB (Canada)

    2008-05-15

    Oil and gas activities and wildfires are altering the composition, age-class structure, and spatial configuration of Alberta's forests. Climate change may also be modifying forest dynamics which will lead to important changes in the future. This paper presented a landscape model designed to simulate the long-term cumulative effects of forestry, oil and gas activities, climate change, wildlife, and demographic change for the Whitecourt forest management area. Various landscape scenarios were presented for the forest, and key indicators for biodiversity and forest productivity were evaluated. Multiple disturbance agents were simulated in order to detect potential interactions among disturbance agents. Results of the study showed that climate and demographic changes will intensify the impacts of fires on timber supplies. It was concluded that cumulative impacts assessments and spatial and temporal stochastic modelling should be included in forest management practices. 34 refs., 2 tabs., 22 figs.

  8. The impact of sea surface currents in wave power potential modeling

    Science.gov (United States)

    Zodiatis, George; Galanis, George; Kallos, George; Nikolaidis, Andreas; Kalogeri, Christina; Liakatas, Aristotelis; Stylianou, Stavros

    2015-11-01

    The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.

  9. SOIL EROSION PROCESS RESEARCH AND ITS POTENTIAL IMPACT ON EROSION PREDICTION MODEL DEVELOPMENT

    Institute of Scientific and Technical Information of China (English)

    Chi-hua HUANG; Fenli ZHENG

    2005-01-01

    This paper highlights past efforts in developing erosion process concepts that lead to the development of the current process-based erosion prediction model, i.e., WEPP. Recent progress includes the development of a multiple-box system that can simulate hillslope hydrologic conditions. Laboratory procedures enable the quantification of near-surface hydrologic effects, i.e.,artesian seepage vs. drainage, on the soil erosion process and sediment regime, flow hydraulics, and sediment transport and deposition processes. These recent findings improve soil erosion science and provide new erosion control strategies that may have additional environmental benefits relative to the traditional erosion control practices. The paper also discusses the potential impacts of the erosion process on erosion model development and future research directions of soil erosion process research and model development.

  10. The impact of surface area, volume, curvature, and Lennard-Jones potential to solvation modeling.

    Science.gov (United States)

    Nguyen, Duc D; Wei, Guo-Wei

    2017-01-05

    This article explores the impact of surface area, volume, curvature, and Lennard-Jones (LJ) potential on solvation free energy predictions. Rigidity surfaces are utilized to generate robust analytical expressions for maximum, minimum, mean, and Gaussian curvatures of solvent-solute interfaces, and define a generalized Poisson-Boltzmann (GPB) equation with a smooth dielectric profile. Extensive correlation analysis is performed to examine the linear dependence of surface area, surface enclosed volume, maximum curvature, minimum curvature, mean curvature, and Gaussian curvature for solvation modeling. It is found that surface area and surfaces enclosed volumes are highly correlated to each other's, and poorly correlated to various curvatures for six test sets of molecules. Different curvatures are weakly correlated to each other for six test sets of molecules, but are strongly correlated to each other within each test set of molecules. Based on correlation analysis, we construct twenty six nontrivial nonpolar solvation models. Our numerical results reveal that the LJ potential plays a vital role in nonpolar solvation modeling, especially for molecules involving strong van der Waals interactions. It is found that curvatures are at least as important as surface area or surface enclosed volume in nonpolar solvation modeling. In conjugation with the GPB model, various curvature-based nonpolar solvation models are shown to offer some of the best solvation free energy predictions for a wide range of test sets. For example, root mean square errors from a model constituting surface area, volume, mean curvature, and LJ potential are less than 0.42 kcal/mol for all test sets. © 2016 Wiley Periodicals, Inc.

  11. Current use of impact models for agri-environment schemes and potential for improvements of policy design and assessment.

    Science.gov (United States)

    Primdahl, Jørgen; Vesterager, Jens Peter; Finn, John A; Vlahos, George; Kristensen, Lone; Vejre, Henrik

    2010-06-01

    Agri-Environment Schemes (AES) to maintain or promote environmentally-friendly farming practices were implemented on about 25% of all agricultural land in the EU by 2002. This article analyses and discusses the actual and potential use of impact models in supporting the design, implementation and evaluation of AES. Impact models identify and establish the causal relationships between policy objectives and policy outcomes. We review and discuss the role of impact models at different stages in the AES policy process, and present results from a survey of impact models underlying 60 agri-environmental schemes in seven EU member states. We distinguished among three categories of impact models (quantitative, qualitative or common sense), depending on the degree of evidence in the formal scheme description, additional documents, or key person interviews. The categories of impact models used mainly depended on whether scheme objectives were related to natural resources, biodiversity or landscape. A higher proportion of schemes dealing with natural resources (primarily water) were based on quantitative impact models, compared to those concerned with biodiversity or landscape. Schemes explicitly targeted either on particular parts of individual farms or specific areas tended to be based more on quantitative impact models compared to whole-farm schemes and broad, horizontal schemes. We conclude that increased and better use of impact models has significant potential to improve efficiency and effectiveness of AES. (c) 2009 Elsevier Ltd. All rights reserved.

  12. Current use of impact models for agri-environment schemes and potential for improvements of policy design and assessment

    DEFF Research Database (Denmark)

    Primdahl, Jorgen; Vesterager, Jens Peter; Finn, John A.

    2010-01-01

    Agri-Environment Schemes (AES) to maintain or promote environmentally-friendly farming practices were implemented on about 25% of all agricultural land in the EU by 2002. This article analyses and discusses the actual and potential use of impact models in supporting the design, implementation...... and evaluation of AES. Impact models identify and establish the causal relationships between policy objectives and policy outcomes. We review and discuss the role of impact models at different stages in the AES policy process, and present results from a survey of impact models underlying 60 agri-environmental...... schemes in seven EU member states. We distinguished among three categories of impact models (quantitative, qualitative or common sense), depending on the degree of evidence in the formal scheme description, additional documents, or key person interviews. The categories of impact models used mainly...

  13. Assessing the potential for fish predation to impact zebra mussels (Dreissena polymorpha): Insight from bioenergetics models

    Science.gov (United States)

    Eggleton, M.A.; Miranda, L.E.; Kirk, J.P.

    2004-01-01

    Rates of annual food consumption and biomass were modeled for several fish species across representative rivers and lakes in eastern North America. Results were combined to assess the relative potential of fish predation to impact zebra mussels (Dreissena polymorpha). Predicted annual food consumption by fishes in southern waters was over 100% greater than that in northern systems because of warmer annual water temperatures and presumed increases in metabolic demand. Although generally increasing with latitude, biomasses of several key zebra mussel fish predators did not change significantly across latitudes. Biomasses of some less abundant fish predators did increase significantly with latitude, but increases were not of the magnitude to offset predicted decreases in food consumption. Our results generally support the premise that fishes in rivers and lakes of the southern United States (U.S.) have inherently greater potential to impact zebra mussels by predation. Our simulations may provide a partial explanation of why zebra mussel invasions have not been as rapid and widespread in southern U.S. waters compared to the Great Lakes region. ?? Blackwell Munksgaard, 2004.

  14. Climate change and hydropower production in the Swiss Alps: quantification of potential impacts and related modelling uncertainties

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available This paper addresses two major challenges in climate change impact analysis on water resources systems: (i incorporation of a large range of potential climate change scenarios and (ii quantification of related modelling uncertainties. The methodology of climate change impact modelling is developed and illustrated through application to a hydropower plant in the Swiss Alps that uses the discharge of a highly glacierised catchment. The potential climate change impacts are analysed in terms of system performance for the control period (1961–1990 and for the future period (2070–2099 under a range of climate change scenarios. The system performance is simulated through a set of four model types, including the production of regional climate change scenarios based on global-mean warming scenarios, the corresponding discharge model, the model of glacier surface evolution and the hydropower management model. The modelling uncertainties inherent in each model type are characterised and quantified separately. The overall modelling uncertainty is simulated through Monte Carlo simulations of the system behaviour for the control and the future period. The results obtained for both periods lead to the conclusion that potential climate change has a statistically significant negative impact on the system performance.

  15. The potential impact of an HIV vaccine with limited protection on HIV incidence in Thailand: a modeling study.

    NARCIS (Netherlands)

    Nagelkerke, N.J.; Hontelez, J.A.; Vlas, S.J. de

    2011-01-01

    BACKGROUND: The RV144 trial on the ALVAC/AIDSVAX candidate HIV vaccine, carried out in Thailand, showed short-lived protection against infection. METHODS: Using a deterministic compartmental model we explored the potential impact of this vaccine on heterosexual HIV transmission in Thailand. Both

  16. Sodium intake in US ethnic subgroups and potential impact of a new sodium reduction technology: NHANES Dietary Modeling

    OpenAIRE

    Fulgoni, Victor L.; Agarwal, Sanjiv; Spence, Lisa; Samuel, Priscilla

    2014-01-01

    Background Because excessive dietary sodium intake is a major contributor to hypertension, a reduction in dietary sodium has been recommended for the US population. Using the National Health and Nutrition Examination Survey (NHANES) 2007–2010 data, we estimated current sodium intake in US population ethnic subgroups and modeled the potential impact of a new sodium reduction technology on sodium intake. Methods NHANES 2007–2010 data were analyzed using The National Cancer Institute method to e...

  17. Modelling potential impacts of bottom trawl fisheries on soft sediment biogeochemistry in the North Sea†

    Directory of Open Access Journals (Sweden)

    Parker Ruth

    2001-12-01

    Full Text Available Bottom trawling causes physical disturbance to sediments particularly in shelf areas. The disturbance due to trawling is most significant in deeper areas with softer sediments where levels of natural disturbance due to wave and tidal action are low. In heavily fished areas, trawls may impact the same area of seabed more than four times per year. A single pass of a beam trawl, the heaviest gear routinely used in shelf sea fisheries, can kill 5–65% of the resident fauna and mix the top few cm of sediment. We expect that sediment community function, carbon mineralisation and biogeochemical fluxes will be strongly affected by trawling activity because the physical effects of trawling are equivalent to those of an extreme bioturbator, and yet, unlike bioturbating macrofauna, trawling does not directly contribute to community metabolism. We used an existing box-model of a generalised soft sediment system to examine the effects of trawling disturbance on carbon mineralisation and chemical concentrations. We contrasted the effects of a natural scenario, where bioturbation is a function of macrobenthos biomass, with an anthropogenic impact scenario where physical disturbance results from trawling rather than the action of bioturbating macrofauna. Simulation results suggest that the effects of low levels of trawling disturbance will be similar to those of natural bioturbators but that high levels of trawling disturbance prevent the modelled system from reaching equilibrium due to large carbon fluxes between oxic and anoxic carbon compartments. The presence of macrobenthos in the natural disturbance scenario allowed sediment chemical storage and fluxes to reach equilibrium. This is because the macrobenthos are important carbon consumers in the system whose presence reduces the magnitude of available carbon fluxes. In soft sediment systems, where the level physical disturbance due to waves and tides is low, model results suggest that intensive trawling

  18. Investigation of potential sea level rise impact on the Nile Delta, Egypt using digital elevation models.

    Science.gov (United States)

    Hasan, Emad; Khan, Sadiq Ibrahim; Hong, Yang

    2015-10-01

    In this study, the future impact of Sea Level Rise (SLR) on the Nile Delta region in Egypt is assessed by evaluating the elevations of two freely available Digital Elevation Models (DEMs): the SRTM and the ASTER-GDEM-V2. The SLR is a significant worldwide dilemma that has been triggered by recent climatic changes. In Egypt, the Nile Delta is projected to face SLR of 1 m by the end of the 21th century. In order to provide a more accurate assessment of the future SLR impact on Nile Delta's land and population, this study corrected the DEM's elevations by using linear regression model with ground elevations from GPS survey. The information for the land cover types and future population numbers were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and the Gridded Population of the Worlds (GPWv3) datasets respectively. The DEM's vertical accuracies were assessed using GPS measurements and the uncertainty analysis revealed that the SRTM-DEM has positive bias of 2.5 m, while the ASTER-GDEM-V2 showed a positive bias of 0.8 m. The future inundated land cover areas and the affected population were illustrated based on two SLR scenarios of 0.5 m and 1 m. The SRTM DEM data indicated that 1 m SLR will affect about 3900 km(2) of cropland, 1280 km(2) of vegetation, 205 km(2) of wetland, 146 km(2) of urban areas and cause more than 6 million people to lose their houses. The overall vulnerability assessment using ASTER-GDEM-V2 indicated that the influence of SLR will be intense and confined along the coastal areas. For instance, the data indicated that 1 m SLR will inundate about 580 Km(2) (6%) of the total land cover areas and approximately 887 thousand people will be relocated. Accordingly, the uncertainty analysis of the DEM's elevations revealed that the ASTER-GDEM-V2 dataset product was considered the best to determine the future impact of SLR on the Nile Delta region.

  19. Modeling the potential impact of emerging innovations on achievement of Sustainable Development Goals related to maternal, newborn, and child health.

    Science.gov (United States)

    Herrick, Tara; Harner-Jay, Claudia; Shaffer, Craig; Zwisler, Greg; Digre, Peder; Batson, Amie

    2017-01-01

    Innovations that improve the affordability, accessibility, or effectiveness of health care played a major role in the Millennium Development Goal achievements and will be critical for reaching the ambitious new Sustainable Development Goal (SDG) health targets. Mechanisms to identify and prioritize innovations are essential to inform future investment decisions. Innovation Countdown 2030 crowdsourced health innovations from around the world and engaged recognized experts to systematically assess their lifesaving potential by 2030. A health impact modeling approach was developed and used to quantify the costs and lives saved for select innovations identified as having great promise for improving maternal, newborn, and child health. Preventive innovations targeting health conditions with a high mortality burden had the greatest impact in regard to the absolute number of estimated lives saved. The largest projected health impact was for a new tool for small-scale water treatment that automatically chlorinates water to a safe concentration without using electricity or moving parts. An estimated 1.5 million deaths from diarrheal disease among children under five could be prevented by 2030 by scaling up use of this technology. Use of chlorhexidine for umbilical cord care was associated with the second highest number of lives saved. The results show why a systematic modeling approach that can compare and contrast investment opportunities is important for prioritizing global health innovations. Rigorous impact estimates are needed to allocate limited resources toward the innovations with great potential to advance the SDGs.

  20. Application of General Circulation Models to Assess the Potential Impact of Climate Change on Potential Distribution and Relative Abundance of Melanoplus sanguinipes (Fabricius (Orthoptera: Acrididae in North America

    Directory of Open Access Journals (Sweden)

    O. Olfert

    2011-01-01

    Full Text Available Climate is the dominant factor determining the distribution and abundance of most insect species. In recent years, the issue of climatic changes caused by human activities and the effects on agriculture has raised concern. General circulation model scenarios were applied to a bioclimatic model of Melanoplus sanguinipes to assess the potential impact of global warming on its distribution and relative abundance. Native to North America and widely distributed, M. sanguinipes is one of the grasshopper species of the continent most responsible for economic damage to grain, oilseed, pulse, and forage crops. Compared to predicted range and distribution under current climate conditions, model results indicated that M. sanguinipes would have increased range and relative abundance under the three general circulation model scenarios in more northern regions of North America. Conversely, model output predicted that the range of this crop pest could contract in regions where climate conditions became limiting.

  1. Modeling the potential impact of host population survival on the evolution of M. tuberculosis latency.

    Science.gov (United States)

    Zheng, Nibiao; Whalen, Christopher C; Handel, Andreas

    2014-01-01

    Tuberculosis (TB) is an infectious disease with a peculiar feature: Upon infection with the causative agent, Mycobacterium Tuberculosis (MTB), most hosts enter a latent state during which no transmission of MTB to new hosts occurs. Only a fraction of latently infected hosts develop TB disease and can potentially infect new hosts. At first glance, this seems like a waste of transmission potential and therefore an evolutionary suboptimal strategy for MTB. It might be that the human immune response keeps MTB in check in most hosts, thereby preventing it from achieving its evolutionary optimum. Another possible explanation is that long latency and progression to disease in only a fraction of hosts are evolutionary beneficial to MTB by allowing it to persist better in small host populations. Given that MTB has co-evolved with human hosts for millenia or longer, it likely encountered small host populations for a large share of its evolutionary history and had to evolve strategies of persistence. Here, we use a mathematical model to show that indeed, MTB persistence is optimal for an intermediate duration of latency and level of activation. The predicted optimal level of activation is above the observed value, suggesting that human co-evolution has lead to host immunity, which keeps MTB below its evolutionary optimum.

  2. Modeling the potential impact of host population survival on the evolution of M. tuberculosis latency.

    Directory of Open Access Journals (Sweden)

    Nibiao Zheng

    Full Text Available Tuberculosis (TB is an infectious disease with a peculiar feature: Upon infection with the causative agent, Mycobacterium Tuberculosis (MTB, most hosts enter a latent state during which no transmission of MTB to new hosts occurs. Only a fraction of latently infected hosts develop TB disease and can potentially infect new hosts. At first glance, this seems like a waste of transmission potential and therefore an evolutionary suboptimal strategy for MTB. It might be that the human immune response keeps MTB in check in most hosts, thereby preventing it from achieving its evolutionary optimum. Another possible explanation is that long latency and progression to disease in only a fraction of hosts are evolutionary beneficial to MTB by allowing it to persist better in small host populations. Given that MTB has co-evolved with human hosts for millenia or longer, it likely encountered small host populations for a large share of its evolutionary history and had to evolve strategies of persistence. Here, we use a mathematical model to show that indeed, MTB persistence is optimal for an intermediate duration of latency and level of activation. The predicted optimal level of activation is above the observed value, suggesting that human co-evolution has lead to host immunity, which keeps MTB below its evolutionary optimum.

  3. Regional hydrological models for distributed flash-floods forecasting: towards an estimation of potential impacts and damages

    Science.gov (United States)

    Le Bihan, Guillaume; Payrastre, Olivier; Gaume, Eric; Pons, Frederic; Moncoulon, David

    2016-04-01

    Hydrometeorological forecasting is an essential component of real-time flood management. The information it provides is of great help for crisis managers to anticipate the inundations and the associated risks. In the particular case of flash-floods, which may affect a large amount of small watersheds spread over the territory (up to 300 000 km of waterways considering a drained area of 5 km² minimum in France), appropriate flood forecasting systems are still under development. In France, highly distributed hydrological models have been implemented, enabling a real-time assessment of the potential intensity of flash-floods from the records of weather radars: AIGA-hydro system (Lavabre et al., 2005; Javelle et al., 2014), PreDiFlood project (Naulin et al., 2013). The approach presented here aims to go one step further by offering a direct assessment of the potential impacts of the simulated floods on inhabited areas. This approach is based on an a priori analysis of the study area in order (1) to evaluate with a simplified hydraulic approach (DTM treatment) the potentially flooded areas for different discharge levels, and (2) to identify the associated buildings and/or population at risk from geographic databases. This preliminary analysis enables to build an impact model (discharge-impact curve) on each river reach, which is then used to directly estimate the potentially affected assets based on a distributed rainfall runoff model. The overall principle of this approach was already presented at the 8th Hymex workshop. Therefore, the presentation will be here focused on the first validation results in terms of (1) accuracy of flooded areas simulated from DTM treatments, and (2) relevance of estimated impacts. The inundated areas simulated were compared to the European Directive cartography results (where available), showing an overall good correspondence in a large majority of cases, but also very significant errors for approximatively 10% of the river reaches

  4. Impact Assessment of Mikania Micrantha on Land Cover and Maxent Modeling to Predict its Potential Invasion Sites

    Science.gov (United States)

    Baidar, T.; Shrestha, A. B.; Ranjit, R.; Adhikari, R.; Ghimire, S.; Shrestha, N.

    2017-05-01

    Mikania micrantha is one of the major invasive alien plant species in tropical moist forest regions of Asia including Nepal. Recently, this weed is spreading at an alarming rate in Chitwan National Park (CNP) and threatening biodiversity. This paper aims to assess the impacts of Mikania micrantha on different land cover and to predict potential invasion sites in CNP using Maxent model. Primary data for this were presence point coordinates and perceived Mikania micrantha cover collected through systematic random sampling technique. Rapideye image, Shuttle Radar Topographic Mission data and bioclimatic variables were acquired as secondary data. Mikania micrantha distribution maps were prepared by overlaying the presence points on image classified by object based image analysis. The overall accuracy of classification was 90 % with Kappa coefficient 0.848. A table depicting the number of sample points in each land cover with respective Mikania micrantha coverage was extracted from the distribution maps to show the impact. The riverine forest was found to be the most affected land cover with 85.98 % presence points and sal forest was found to be very less affected with only 17.02 % presence points. Maxent modeling predicted the areas near the river valley as the potential invasion sites with statistically significant Area Under the Receiver Operating Curve (AUC) value of 0.969. Maximum temperature of warmest month and annual precipitation were identified as the predictor variables that contribute the most to Mikania micrantha's potential distribution.

  5. Three-dimensional modeling of HCFC-123 in the atmosphere: assessing its potential environmental impacts and rationale for continued use.

    Science.gov (United States)

    Wuebbles, Donald J; Patten, Kenneth O

    2009-05-01

    HCFC-123 (C2HCl2F3) is used in large refrigeration systems and as a fire suppression agent blend. Like other hydrochlorofluorocarbons, production and consumption of HCFC-123 is limited under the Montreal Protocol on Substances that Deplete the Ozone Layer. The purpose of this study is to update the understanding of the current and projected impacts of HCFC-123 on stratospheric ozone and on climate and to discuss the potential environmental effects from continued use of this chemical for specific applications. For the first time, the Ozone Depletion Potential (ODP) of a HCFC is determined using a three-dimensional model (MOZART-3) of atmospheric physics and chemistry. All previous studies have relied on results from two-dimensional models. The derived HCFC-123 ODP of 0.0098 is smaller than previous values. Analysis of the projected uses and emissions of HCFC-123, assuming reasonable levels of projected growth and use in centrifugal chiller and fire suppressant applications, suggests an extremely small impact on the environment due to its short atmospheric lifetime, low ODP, low Global Warming Potential (GWP), and the small production and emission of its limited applications. The current contribution of HCFC-123 to stratospheric reactive chlorine is too small to be measurable.

  6. The Potential Impact of Preventive HIV Vaccines in China: Results and Benefits of a Multi-Province Modeling Collaboration

    Science.gov (United States)

    Harmon, Thomas; Guo, Wei; Stover, John; Wu, Zunyou; Kaufman, Joan; Schneider, Kammerle; Liu, Li; Feng, Liao; Schwartländer, Bernard

    2015-01-01

    China’s commitment to implementing established and emerging HIV/AIDS prevention and control strategies has led to substantial gains in terms of access to antiretroviral treatment and prevention services, but the evolving and multifaceted HIV/AIDS epidemic in China highlights the challenges of maintaining that response. This study presents modeling results exploring the potential impact of HIV vaccines in the Chinese context at varying efficacy and coverage rates, while further exploring the potential implications of vaccination programs aimed at reaching populations at highest risk of HIV infection. A preventive HIV vaccine would add a powerful tool to China’s response, even if not 100% efficacious or available to the full population. PMID:26344945

  7. Modeling the Potential Impact of Host Population Survival on the Evolution of M. tuberculosis Latency

    OpenAIRE

    Nibiao Zheng; Whalen, Christopher C.; Andreas Handel

    2014-01-01

    Tuberculosis (TB) is an infectious disease with a peculiar feature: Upon infection with the causative agent, Mycobacterium Tuberculosis (MTB), most hosts enter a latent state during which no transmission of MTB to new hosts occurs. Only a fraction of latently infected hosts develop TB disease and can potentially infect new hosts. At first glance, this seems like a waste of transmission potential and therefore an evolutionary suboptimal strategy for MTB. It might be that the human immune respo...

  8. Summary of Model Toxics Control Act (MTCA) Potential Impacts Related to Hanford Cleanup and the Tri-Party Agreement (TPA)

    Energy Technology Data Exchange (ETDEWEB)

    IWATATE, D.F.

    2000-07-14

    This white paper provides an initial assessment of the potential impacts of the Model Toxics Control Act (MTCA) regulations (and proposed revisions) on the Hanford site cleanup and addresses concerns that MTCA might impose inappropriate or unachievable clean-up levels and drive clean-up costs higher. The white paper and supporting documentation (Appendices A and B) provide DOE with a concise and up-to-date review of potential MTCA impacts to cost and schedule for the Hanford site activities. MTCA, Chapter 70.105D RCW, is the State of Washington's risk based law governing clean-up of contaminated sites and is implemented by The Washington Department of Ecology (Ecology) under the MTCA Clean-up Regulations, Chapter 173-340 WAC. Hanford cleanup is subject to the MTCA requirements as Applicable, Relevant and Appropriate Requirements (ARARs) for those areas of Hanford being managed under the authority of the Federal Resource Conservation and Recovery Act (RCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), and the state Dangerous Waste Regulations. MTCA provides Ecology with authority to implement site clean-up actions under both the federal RCRA and CERCLA regulations as well as the state regulations. Most of the Hanford clean-up actions are being implemented under the CERCLA program, however, there is a trend is toward increased use of MTCA procedures and standards. The application of MTCA to the Hanford clean-up has been an evolving process with some of the Hanford clean-up actions considering MTCA standards as an ARAR and using MTCA procedures for remedy selection. The increased use and application of MTCA standards and procedures could potentially impact both cost and schedule for the Hanford cleanup.

  9. The potential impact of an HIV vaccine with limited protection on HIV incidence in Thailand: a modeling study.

    Science.gov (United States)

    Nagelkerke, Nico J D; Hontelez, Jan A C; de Vlas, Sake J

    2011-08-18

    The RV144 trial on the ALVAC/AIDSVAX candidate HIV vaccine, carried out in Thailand, showed short-lived protection against infection. Using a deterministic compartmental model we explored the potential impact of this vaccine on heterosexual HIV transmission in Thailand. Both one-off vaccination strategies, as well as strategies with regular boosting, either annually or every two years, were explored. Both targeting the general adult population and prioritizing sex workers were modeled. The impact of risk compensation among high risk groups, as well as whether higher levels of safe sex in high risk groups could be an alternative to vaccination, was studied. One-off vaccination campaigns had only transient effects, and boosting appears to be a key component of successful vaccination campaigns. Intensive vaccination campaigns may reduce HIV incidence by up to 75% after 10 years of vaccination. Targeting only sex workers has a smaller impact but has a more favorable cost-benefit ratio. Risk compensation has the potential of undoing much of the benefits of a vaccination program and may even increase incidence. In contrast, higher levels of safe sex among sex workers would provide a viable alternative to vaccinating this group. The new vaccine holds promise for controlling HIV in Thailand and similar countries. In view of the short lived protection of the vaccine, regular boosting of immunity as well as avoidance of risk compensation are essential. Targeting sex workers would achieve the greatest reduction in incidence per vaccination and may be considered for expensive vaccines but its cost-effectiveness has to be compared to alternatives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Comprehensive flood economic losses: review of the potential damage and implementation of an agricultural impact model

    Directory of Open Access Journals (Sweden)

    Mao Gwladys

    2016-01-01

    Full Text Available With an annual loss averaging 580 M€ between 1990 and 2014, floods are the main natural catastrophe (Nat Cat risk for the French Nat Cat compensation scheme. As part of its role in this scheme, the Caisse Centrale de Réassurance (CCR offers state guaranteed reinsurance programs and has been modelling the risk of flooding since 2003. This model is based on the traditional valuation approach of direct tangible costs which pairs a physical model with exposure through damage curves. CCR wishes now to widen the studied damage scope to insured and noninsured economic costs and has been collaborating with the SAF research laboratory from the Institute of Financial and Insurance Sciences (ISFA since 2014. CCR’s model has been used to estimate the insured direct damage to residential and non-residential properties and it is now being developed to include damage to vehicles, agriculture and network infrastructures. Research is also being carried out to take into account business interruptions and indirect losses using an Input-Output model. This article describes the undergoing work on model development to estimate the damage to agriculture.

  11. The potential impact of new generation transgenic methods on creating rabbit models of cardiac diseases.

    Science.gov (United States)

    Bősze, Z; Major, P; Baczkó, I; Odening, K E; Bodrogi, L; Hiripi, L; Varró, A

    2016-07-01

    Since the creation of the first transgenic rabbit thirty years ago, pronuclear microinjection remained the single applied method and resulted in numerous important rabbit models of human diseases, including cardiac deficiencies, albeit with low efficiency. For additive transgenesis a novel transposon mediated method, e.g., the Sleeping Beauty transgenesis, increased the efficiency, and its application to create cardiac disease models is expected in the near future. The targeted genome engineering nuclease family, e.g., the zink finger nuclease (ZFN), the transcription activator-like effector nuclease (TALEN) and the newest, clustered regularly interspaced short palindromic repeats (CRISPR) with the CRISPR associated effector protein (CAS), revolutionized the non-mouse transgenesis. The latest gene-targeting technology, the CRISPR/CAS system, was proven to be efficient in rabbit to create multi-gene knockout models. In the future, the number of tailor-made rabbit models produced with one of the above mentioned methods is expected to exponentially increase and to provide adequate models of heart diseases.

  12. A numerical model to evaluate potential impacts of sea-level rise on groundwater resources in the Delaware coastal plain

    Science.gov (United States)

    He, C.; McKenna, T. E.; Wang, L.

    2013-12-01

    Sea level rise on the U.S. East Coast has accelerated much faster than in other parts of the world. In Delaware, the estimated sea level could rise as high as 1.5 meters by the year 2100 based on the information in IPCC (2007) and CCSP (2009). In this study, we used a 3-D variable-density groundwater flow model to study the movement of the fresh-water/salt-water interface and water table changes due to sea-level rise. Rather than developing a site-specific model, we analyzed the geospatial features of a serious of sub-watersheds along the coastline of the Delaware Estuary in Delaware using ArcGIS and constructed a representative model to capture the generalized flow patterns and saltwater intrusion rates that occur in typical area. Different scenarios with varying parameters were simulated. The simulation results were then applied to the Delaware River region to evaluate potential impacts of groundwater level changes on the potential land lose.

  13. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis.

    Directory of Open Access Journals (Sweden)

    Pierre Casadebaig

    Full Text Available A crop can be viewed as a complex system with outputs (e.g. yield that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background. The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90 was evaluated in a wide target population of environments (4 sites × 125 years, management practices (3 sowing dates × 3 nitrogen fertilization levels and CO2 (2 levels. The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total. The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear and interaction (i.e. non-linear and interaction sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model improvement.

  14. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis.

    Science.gov (United States)

    Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine

    2016-01-01

    A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.

  15. Modeling potential impacts of the Garrison Diversion Unit project on Sand Lake and Arrowwood National Wildlife Refuges: a feasibility analysis

    Science.gov (United States)

    Hamilton, David B.; Auble, Gregor T.; Farmer, Adrian H.; Roelle, James E.

    1987-01-01

    The Garrison Diversion Unit (GDU) of the Pick-Sloan Missouri Basin program was authorized in 1965, with the purpose of diverting Missouri River water to the James River for irrigation, municipal and industrial water supply, fish and wildlife habitat, recreation, and flood control. The project was reauthorized in 1986, with the specification that comprehensive studies be conducted to address a variety of issues. One of these ongoing studies addresses potential impacts of GDU construction and operation on lands of the National Wildlife Refuge (NWR) system, including Arrowwood and Sand Lake Refuges (the Refuges) on the James River. A number of concerns at these Refuges have been identified; the primary concerns addressed in this report include increased winter return flows, which would limit control of rough fish; increased turbidity during project construction, which would decrease production of sago pondweed; and increased water level fluctuations in the late spring and early summer, which would destroy the nests of some over-water nesting birds. The facilitated workshop described in this report was conducted February 18-20, 1987, under the joint sponsorship of the U.S. Bureau of Reclamation, the U.S. Fish and Wildlife Service, and the North Dakota Game and Fish Department. The primary objectives of the workshop were to evaluate the feasibility of using simulation modeling techniques to estimate GDU impacts on Arrowwood and Sand Lake Refuges and to suggest enhancements to the James River Refuge monitoring program. The workshop was structured around the formulation of four submodels: a Hydrology and Water Quality submodel to simulate changes in Refuge pool elevations, turnover rates, and water quality parameters (e.g., total dissolved solids, turbidity, dissolved oxygen, nutrients, water temperature, pesticides) due to GDU construction and operation; a Vegetation submodel to simulate concomitant changes in wetland communities (e.g., sago pondweed, wet meadows, deep

  16. Potential impact of EU Common Agriculture Policy on Croatian dairy sector - modelling results

    Directory of Open Access Journals (Sweden)

    Magdalena Zrakić

    2015-07-01

    Full Text Available Milk in terms of production value has the second biggest share in Croatian agricultural sector in 2013 (CBS, 2014. It could be speculated that after the abolition of quotas in the European Union, the declining trend in domestic production will continue and that exposure to free European market will significantly affect the competitiveness of domestic production. The aim of this paper is to analyse the prospects of Croatian dairy industry (sector under certain conditions of the EU Common Agricultural Policy (CAP and to present projections simulated with the help of partial equilibrium model AGMEMOD. The main model inputs are policy and macroeconomic variables, supply-use balances of agro-food products and producer prices. The Baseline projections has shown that in 2025 in line with the CAP implementation there might be a decrease of dairy cows number by 33 %, the raw milk price by 14 % and the collected cow’s milk amount by 13 % compared to the five-year average of 2008-2012. The positive effect was noted in productivity, according to the simulation, with an increase by 25 %, which consequently may lead to increased deliveries to dairies for about 17 %. Therefore preliminary results show that accounting for milk processing the dairy sector in Croatia might obtain a favourable situation by 2025. Taking into account the EU market situation, there is an opportunity to increase milk processing given the current level of prices in the EU market and global markets, and taking into account the abolition of milk quotas. Also, the results suggest, according to the experience of other states, that the utilization of funds of 1st and 2nd pillar of the CAP (utilization measures across projects in order to improve the production structure and efficiency will play an important role.

  17. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts

    Directory of Open Access Journals (Sweden)

    M. Astitha

    2010-07-01

    Full Text Available Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates, natural (desert dust, sea salt and chemically aged (sulphate and nitrate on dust aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, indicating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols shows that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud, and by entrainment. The sodium (sea salt related aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  18. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean - potential impacts

    Science.gov (United States)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier van der Gon, H. A. C.

    2010-07-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates), natural (desert dust, sea salt) and chemically aged (sulphate and nitrate on dust) aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode) are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, indicating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols shows that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud, and by entrainment). The sodium (sea salt related) aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  19. Epidemiology of HPV 16 and cervical cancer in Finland and the potential impact of vaccination: mathematical modelling analyses.

    Directory of Open Access Journals (Sweden)

    Ruanne V Barnabas

    2006-05-01

    Full Text Available BACKGROUND: Candidate human papillomavirus (HPV vaccines have demonstrated almost 90%-100% efficacy in preventing persistent, type-specific HPV infection over 18 mo in clinical trials. If these vaccines go on to demonstrate prevention of precancerous lesions in phase III clinical trials, they will be licensed for public use in the near future. How these vaccines will be used in countries with national cervical cancer screening programmes is an important question. METHODS AND FINDINGS: We developed a transmission model of HPV 16 infection and progression to cervical cancer and calibrated it to Finnish HPV 16 seroprevalence over time. The model was used to estimate the transmission probability of the virus, to look at the effect of changes in patterns of sexual behaviour and smoking on age-specific trends in cancer incidence, and to explore the impact of HPV 16 vaccination. We estimated a high per-partnership transmission probability of HPV 16, of 0.6. The modelling analyses showed that changes in sexual behaviour and smoking accounted, in part, for the increase seen in cervical cancer incidence in 35- to 39-y-old women from 1990 to 1999. At both low (10% in opportunistic immunisation and high (90% in a national immunisation programme coverage of the adolescent population, vaccinating women and men had little benefit over vaccinating women alone. We estimate that vaccinating 90% of young women before sexual debut has the potential to decrease HPV type-specific (e.g., type 16 cervical cancer incidence by 91%. If older women are more likely to have persistent infections and progress to cancer, then vaccination with a duration of protection of less than 15 y could result in an older susceptible cohort and no decrease in cancer incidence. While vaccination has the potential to significantly reduce type-specific cancer incidence, its combination with screening further improves cancer prevention. CONCLUSIONS: HPV vaccination has the potential to

  20. Results of an adaptive environmental assessment modeling workshop concerning potential impacts of drilling muds and cuttings on the marine environment

    Science.gov (United States)

    Auble, Gregor T.; Andrews, Austin K.; Ellison, Richard A.; Hamilton, David B.; Johnson, Richard A.; Roelle, James E.; Marmorek, David R.

    1983-01-01

    Drilling fluids or "muds" are essential components of modern drilling operations. They provide integrity for the well bore, a medium for removal of formation cuttings, and lubrication and cooling of the drill bit and pipe. The modeling workshop described in this report was conducted September 14-18, 1981 in Gulf Breeze, Florida to consider potential impacts of discharged drilling muds and cuttings on the marine environment. The broad goals of the workshop were synthesis of information on fate and effects, identification of general relationships between drilling fluids and the marine environment, and identification of site-specific variables likely to determine impacts of drilling muds and cuttings in various marine sites. The workshop was structured around construction of a model simulating fate and effects of discharges from a single rig into open water areas of the Gulf of Mexico, and discussion of factors that might produce different fate and effects in enclosed areas such as bays and estuaries. The simulation model was composed of four connected submodels. A Discharge/Fate submodel dealt with the discharge characteristics of the rig and the subsequent fate of discharged material. Three effects submodels then calculated biological responses at distances away from the rig for the water column, soft bottom benthos (assuming the rig was located over a soft bottom environment), and hard bottom benthos (assuming the rig was located over a hard bottom environment). The model focused on direct linkages between the discharge and various organisms rather than on how the marine ecosystem itself is interconnected. Behavior of the simulation model indicated relatively localized effects of drilling muds and cuttings discharged from a single platform into open water areas. Water column fate and effects were dominated by rapid dilution. Effects from deposition of spent mud and cuttings were spatially limited with relatively rapid recovery, especially in soft bottom benthic

  1. Modeling the potential contribution of land cover changes to the late twentieth century Sahel drought using a regional climate model: impact of lateral boundary conditions

    Science.gov (United States)

    Wang, Guiling; Yu, Miao; Xue, Yongkang

    2016-12-01

    This paper investigates the potential impact of "idealized-but-realistic" land cover degradation on the late twentieth century Sahel drought using a regional climate model (RCM) driven with lateral boundary conditions (LBCs) from three different sources, including one re-analysis data and two global climate models (GCMs). The impact of land cover degradation is quantified based on a large number of control-and-experiment pairs of simulations, where the experiment features a degraded land cover relative to the control. Two different approaches of experimental design are tested: in the 1st approach, the RCM land cover degradation experiment shares the same LBCs as the corresponding RCM control, which can be derived from either reanalysis data or a GCM; with the 2nd approach, the LBCs for the RCM control are derived from a GCM control, and the LBCs for the RCM land cover degradation experiment are derived from a corresponding GCM land cover degradation experiment. When the 1st approach is used, results from the RCM driven with the three different sources of LBCs are generally consistent with each other, indicating robustness of the model response against LBCs; when the 2nd approach is used, the RCM results show strong sensitivity to the source of LBCs and the response in the RCM is dominated by the response of the driving GCMs. The spatiotemporal pattern of the precipitation response to land cover degradation as simulated by RCM using the 1st approach closely resembles that of the observed historical changes, while results from the GCMs and the RCM using the 2nd approach bear less similarity to observations. Compared with the 1st approach, the 2nd approach has the advantage of capturing the impact on large scale circulation, but has the disadvantage of being influenced by the GCMs' internal variability and any potential erroneous response of the driving GCMs to land degradation. The 2nd approach therefore requires a large ensemble to reduce the uncertainties derived

  2. Improved hydrological model parametrization for climate change impact assessment under data scarcity - The potential of field monitoring techniques and geostatistics.

    Science.gov (United States)

    Meyer, Swen; Blaschek, Michael; Duttmann, Rainer; Ludwig, Ralf

    2016-02-01

    According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The Water Simulation Model (WaSiM) was set up to model current and future hydrological conditions. The availability of measured meteorological and hydrological data is poor as it is common for many Mediterranean catchments. In this study we conducted a soil sampling campaign in the Rio Mannu catchment. We tested different deterministic and hybrid geostatistical interpolation methods on soil textures and tested the performance of the applied models. We calculated a new soil texture map based on the best prediction method. The soil model in WaSiM was set up with the improved new soil information. The simulation results were compared to standard soil parametrization. WaSiMs was validated with spatial evapotranspiration rates using the triangle method (Jiang and Islam, 1999). WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. The climate change impact was assessed based on differences between reference and future time series. The simulated results show a reduction of all hydrological quantities in the future in the spring season. Furthermore simulation results reveal an earlier onset of dry conditions in the catchment. We show that a solid soil model setup based on short-term field measurements can improve long-term modeling results, which is especially important

  3. Modeling Potential Impacts of Planting Palms or Tree in Small Holder Fruit Plantations on Ecohydrological Processes in the Central Amazon

    Directory of Open Access Journals (Sweden)

    Norbert Kunert

    2015-07-01

    Full Text Available Native fruiting plants are widely cultivated in the Amazon, but little information on their water use characteristics can be found in the literature. To explore the potential impacts of plantations on local to regional water balance, we studied plant water use characteristics of two native fruit plants commonly occurring in the Amazon region. The study was conducted in a mixed fruit plantation containing a dicot tree species (Cupuaçu, Theobroma grandiflorum and a monocot palm species (Açai, Euterpe oleracea close to the city of Manaus, in the Central Amazon. Scaling from sap flux measurements, palms had a 3.5-fold higher water consumption compared to trees with a similar diameter. Despite the high transpiration rates of the palms, our plantation had only one third of the potential water recycling capacity of natural forests in the area. Converting natural forest into such plantations will thus result in significantly higher runoff rates.

  4. Energy recovery potential and life cycle impact assessment of municipal solid waste management technologies in Asian countries using ELP model

    Energy Technology Data Exchange (ETDEWEB)

    Pandyaswargo, Andante Hadi; Onoda, Hiroshi; Nagata, Katsuya [Waseda Univ., Saitama (Japan). Graduate School of Environment and Energy Engineering

    2012-11-01

    Natural resource scarcity and the effects of environmental destruction have pushed societies to use and reuse resources more efficiently. Waste should no longer be seen as a burden but rather as another source of material such as energy fuel. This study analyzes the potential of three waste management technologies - incineration with energy recovery, composting, and sanitary landfill gas collection - as ways to recover energy and material from municipal solid waste. The study applies the environmental load point (ELP) method and utilizes municipal waste characteristics and composition from India, Indonesia, and China as case studies. The ELP methodology employs integrated weighting in the quantification process to get a one-unit result. This study particularly uses analytic hierarchical process questionnaires to get the weighting value of the nine impact categories: energy depletion, global warming, ozone depletion, resource consumption, ecosystem influence, water pollution, waste disposal, air pollution, and acid rain. The results show that the scenario which includes composting organic waste and sanitary landfill with gas collection for energy recovery has medium environmental impact and the highest practicability. The optimum material and energy potential is from the Chinese case study in which 254 tonnes of compost fertilizer and 60 MWh of electricity is the estimated output for every 1,000 tonnes of waste treated. (orig.)

  5. A mechanistic-bioclimatic modeling analysis of the potential impact of climate change on biomes of the Tibetan Plateau.

    Science.gov (United States)

    Ye, Jian-Sheng; Reynolds, James F; Li, Feng-Min

    2014-08-01

    The Tibetan Plateau (TP) is experiencing high rates of climatic change. We present a novel combined mechanistic-bioclimatic modeling approach to determine how changes in precipitation and temperature on the TP may impact net primary production (NPP) in four major biomes (forest, shrub, grass, desert) and if there exists a maximum rain use efficiency (RUE(MAX)) that represents Huxman et al.'s "boundary that constrain[s] site-level productivity and efficiency." We used a daily mechanistic ecosystem model to generate 40-yr outputs using observed climatic data for scenarios of decreased precipitation (25-100%); increased air temperature (1 degrees - 6 degrees C); simultaneous changes in both precipitation (+/- 50%, +/- 25%) and air temperature (+1 to +6 degrees C) and increased interannual variability (IAV) of precipitation (+1 sigma to +3 sigma, with fixed means, where sigma is SD). We fitted model output from these scenarios to Huxman et al.'s RUE(MAX) bioclimatic model, NPP = alpha + RUE x PPT (where alpha is the intercept, RUE is rain use efficiency, and PPT is annual precipitation). Based on these analyses, we conclude that there is strong support (when not explicit, then trend-wise) for Huxman et al.'s assertion that biomes converge to a common RUE(MAX) during the driest years at a site, thus representing the boundary for highest rain use efficiency; the interactive effects of simultaneously decreasing precipitation and increasing temperature on NPP for the TP is smaller than might be expected from additive, single-factor changes in these drivers; and that increasing IAV of precipitation may ultimately have a larger impact on biomes of the Tibetan Plateau than changing amounts of rainfall and air temperature alone.

  6. Sources of Error in Synthetic Remote Sensing Data and Potential Impacts on Ecohydrological Models in Semiarid Rangelands

    Science.gov (United States)

    Olsoy, P.; Flores, A. N.; Glenn, N. F.

    2014-12-01

    Semiarid rangelands have a high level of both spatial and temporal vegetation heterogeneity due to slow net primary production rates and highly variable rainfall. Ecohydrological modeling in these ecosystems requires high resolution inputs of vegetation structure and function. We used the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to create eight synthetic Landsat TM images across a growing season (April - September). STARFM fuses the high spatial resolution of Landsat TM with the high temporal resolution of Terra MODIS. Previous attempts to assess the accuracy and quantify model errors of STARFM have used pixel-based regression and difference image analysis, as well as examining the distribution of those errors across land cover types. However, those model errors have not previously been compared to a null model (i.e., using the nearest available Landsat scene). If there is very little change occurring, then you would expect the model to have artificially high correlation coefficients and low error estimates. Additionally, we examined several other potential sources of error: i) time of year or season, ii) vegetation height class from airborne LiDAR, iii) solar radiation (i.e., aspect), and iv) snow. We found that STARFM added new information when compared to the null model, yet the null model was highly accurate during large parts of the growing season (June through September, r2 = 0.95 - 0.97) suggesting that simply reporting r2 values from pixel-based regression is insufficient to assess model accuracy. We found that areas with snow in the preceding model input imagery (NDSI > 0.4) increased errors threefold (RMSE(snow) = 0.3223, RMSE(not-snow) = 0.1017). We also found that pixels with shrub or tree vegetation (height > 0.3 m) tended to have higher errors when compared to ground or grass pixels. Finally, our results indicate that during the middle of the growing season, there are patterns in the error that relate to solar radiation with the

  7. Deterministic modelling of the cumulative impacts of underground structures on urban groundwater flow and the definition of a potential state of urban groundwater flow: example of Lyon, France

    Science.gov (United States)

    Attard, Guillaume; Rossier, Yvan; Winiarski, Thierry; Cuvillier, Loann; Eisenlohr, Laurent

    2016-08-01

    Underground structures have been shown to have a great influence on subsoil resources in urban aquifers. A methodology to assess the actual and the potential state of the groundwater flow in an urban area is proposed. The study develops a three-dimensional modeling approach to understand the cumulative impacts of underground infrastructures on urban groundwater flow, using a case in the city of Lyon (France). All known underground structures were integrated in the numerical model. Several simulations were run: the actual state of groundwater flow, the potential state of groundwater flow (without underground structures), an intermediate state (without impervious structures), and a transient simulation of the actual state of groundwater flow. The results show that underground structures fragment groundwater flow systems leading to a modification of the aquifer regime. For the case studied, the flow systems are shown to be stable over time with a transient simulation. Structures with drainage systems are shown to have a major impact on flow systems. The barrier effect of impervious structures was negligible because of the small hydraulic gradient of the area. The study demonstrates that the definition of a potential urban groundwater flow and the depiction of urban flow systems, which involves understanding the impact of underground structures, are important issues with respect to urban underground planning.

  8. Assessing the Potential Impacts of Four Climate Change Scenarios on the Discharge of the Simiyu River, Tanzania Using the SWAT Model

    OpenAIRE

    Lubini, Alain; Adamowski, Jan

    2013-01-01

    The Soil and Water Assessment Tool (SWAT) was used to explore the potential impact of four climate change scenarios on discharge from the Simiyu River in Tanzania, located in the Lake Victoria watershed in Africa. The SWAT model used in this study was calibrated and verified by comparing model output with historic stream flow data for 1973-1976 as well as 1970-1971. SWAT was operated at daily and monthly time steps during both calibration and verification. For the daily-time step verification...

  9. Modeling impacts of climate change on the potential distribution of the carcinogenic liver fluke, Opisthorchis viverrini, in Thailand.

    Science.gov (United States)

    Suwannatrai, A; Pratumchart, K; Suwannatrai, K; Thinkhamrop, K; Chaiyos, J; Kim, C S; Suwanweerakamtorn, R; Boonmars, T; Wongsaroj, T; Sripa, B

    2017-01-01

    Global climate change is now regarded as imposing a significant threat of enhancing transmission of parasitic diseases. Maximum entropy species distribution modeling (MaxEnt) was used to explore how projected climate change could affect the potential distribution of the carcinogenic liver fluke, Opisthorchis viverrini, in Thailand. A range of climate variables was used: the Hadley Global Environment Model 2-Earth System (HadGEM2-ES) climate change model and also the IPCC scenarios A2a for 2050 and 2070. Occurrence data from surveys conducted in 2009 and 2014 were obtained from the Department of Disease Control, Ministry of Public Health, Thailand. The MaxEnt model performed better than random for O. viverrini with training AUC values greater than 0.8 under current and future climatic conditions. The current distribution of O. viverrini is significantly affected by precipitation and minimum temperature. According to current conditions, parts of Thailand climatically suitable for O. viverrini are mostly in the northeast and north, but the parasite is largely absent from southern Thailand. Under future climate change scenarios, the distribution of O. viverrini in 2050 should be significantly affected by precipitation, maximum temperature, and mean temperature of the wettest quarter, whereas in 2070, significant factors are likely to be precipitation during the coldest quarter, maximum, and minimum temperatures. Maps of predicted future distribution revealed a drastic decrease in presence of O. viverrini in the northeast region. The information gained from this study should be a useful reference for implementing long-term prevention and control strategies for O. viverrini in Thailand.

  10. The potential impact of the North American Free Trade Agreement on American dental licensure: a European community model.

    Science.gov (United States)

    Paul, D P

    2000-01-01

    Appropriate licensure is a significant barrier to entry to the practice of dentistry. The history of dental licensure in the United States is briefly examined, and current dental licensure requirements in the United States and Mexico are noted. The impact that establishment of the European Community had on dental licensure in Europe is examined, noting that changes were the result of political, rather than professional, input. Requirements of NAFTA are examined to see how they will impact current American dental licensure requirements. Some migration of dental professionals between the United States and Mexico is expected as a result of NAFTA.

  11. The potential impact of RV144-like vaccines in rural South Africa: a study using the STDSIM microsimulation model.

    NARCIS (Netherlands)

    Hontelez, J.A.; Nagelkerke, N.; Barnighausen, T.; Bakker, R.; Tanser, F.; Newell, M.L.; Lurie, M.N.; Baltussen, R.M.P.M.; Vlas, S.J. de

    2011-01-01

    BACKGROUND: The only successful HIV vaccine trial to date is the RV144 trial of the ALVAC/AIDSVAX vaccine in Thailand, which showed an overall incidence reduction of 31%. Most cases were prevented in the first year, suggesting a rapidly waning efficacy. Here, we predict the population level impact

  12. Modeling Potential Impacts of Climate Change on Streamflow Using Projections of the 5th Assessment Report for the Bernam River Basin, Malaysia

    Directory of Open Access Journals (Sweden)

    Nkululeko Simeon Dlamini

    2017-03-01

    Full Text Available Potential impacts of climate change on the streamflow of the Bernam River Basin in Malaysia are assessed using ten Global Climate Models (GCMs under three Representative Concentration Pathways (RCP4.5, RCP6.0 and RCP8.5. A graphical user interface was developed that integrates all of the common procedures of assessing climate change impacts, to generate high resolution climate variables (e.g., rainfall, temperature, etc. at the local scale from large-scale climate models. These are linked in one executable module to generate future climate sequences that can be used as inputs to various models, including hydrological and crop models. The generated outputs were used as inputs to the SWAT hydrological model to simulate the hydrological processes. The evaluation results indicated that the model performed well for the watershed with a monthly R2, Nash–Sutcliffe Efficiency (NSE and Percent Bias (PBIAS values of 0.67, 0.62 and −9.4 and 0.62, 0.61 and −4.2 for the calibration and validation periods, respectively. The multi-model projections show an increase in future temperature (tmax and tmin in all respective scenarios, up to an average of 2.5 °C for under the worst-case scenario (RC8.5. Rainfall is also predicted to change with clear variations between the dry and wet season. Streamflow projections also followed rainfall pattern to a great extent with a distinct change between the dry and wet season possibly due to the increase in evapotranspiration in the watershed. In principle, the interface can be customized for the application to other watersheds by incorporating GCMs’ baseline data and their corresponding future data for those particular stations in the new watershed. Methodological limitations of the study are also discussed.

  13. Is Environmental Impact Assessment fulfilling its potential?

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2014-01-01

    fuel with CO2-neutral energy sources. A variety of these projects are subject to environmental impact assessment (EIA), which raises the following questions: What role does an impact assessment play? When is the project environmentally friendly? How are climate change-related impacts assessed......One of the topics receiving much attention in recent years is climate change and the potential of its integration in impact assessment, both in terms of achieving mitigation and adaptation. Renewable energy projects are part of the efforts to mitigate climate change, replacing the use of fossil...... adaptation is absent. Also, the results show an emphasis on positive impacts in the reports, and in a few cases discussions of enhancements. Identification and assessment of negative climate change impacts are less apparent. This leads to a discussion of the results in the light of the purpose of EIA....

  14. Interactive modeling of storm impact

    Science.gov (United States)

    van Rooijen, A.; Baart, F.; Roelvink, J. A.; Donchyts, G.; Scheel, F.; de Boer, W.

    2014-12-01

    In the past decades the impact of storms on the coastal zone has increasingly drawn the attention of policy makers and coastal planners, engineers and researchers. The mean reason for this interest is the high density of the world's population living near the ocean, in combination with climate change. Due to sea level rise and extremer weather conditions, many of the world's coastlines are becoming more vulnerable to the potential of flooding. Currently it is common practice to predict storm impact using physics-based numerical models. The numerical model utilizes several inputs (e.g. bathymetry, waves, surge) to calculate the impact on the coastline. Traditionally, the numerical modeller takes the following three steps: schematization/model setup, running and post-processing. This process generally has a total feedback time in the order of hours to days, and is suitable for so-called confirmatory modelling.However, often models are applied as an exploratory tool, in which the effect of e.g. different hydraulic conditions, or measures is investigated. The above described traditional work flow is not the most efficient method for exploratory modelling. Interactive modelling lets users adjust a simulation while running. For models typically used for storm impact studies (e.g. XBeach, Delft3D, D-Flow FM), the user can for instance change the storm surge level, wave conditions, or add a measure such as a nourishment or a seawall. The model will take the adjustments into account immediately, and will directly compute the effect. Using this method, tools can be developed in which stakeholders (e.g. coastal planners, policy makers) are in control and together evaluate ideas by interacting with the model. Here we will show initial results for interactive modelling with a storm impact model.

  15. OCEANFILMS-2: Representing coadsorption of saccharides in marine films and potential impacts on modeled marine aerosol chemistry

    Science.gov (United States)

    Burrows, Susannah M.; Gobrogge, Eric; Fu, Li; Link, Katie; Elliott, Scott M.; Wang, Hongfei; Walker, Rob

    2016-08-01

    Here we show that the addition of chemical interactions between soluble monosaccharides and an insoluble lipid surfactant monolayer improves agreement of modeled sea spray chemistry with observed marine aerosol chemistry. In particular, the alkane:hydroxyl mass ratio in modeled sea spray organic matter is reduced from a median of 2.73 to a range of 0.41-0.69, reducing the discrepancy with previous Fourier transform infrared spectroscopy (FTIR) observations of clean marine aerosol (ratio: 0.24-0.38). The overall organic fraction of submicron sea spray also increases, allowing organic mass fractions in the range 0.5-0.7 for submicron sea spray particles over highly active phytoplankton blooms. Sum frequency generation experiments support the modeling approach by demonstrating that soluble monosaccharides can strongly adsorb to a lipid monolayer likely via Coulomb interactions under appropriate conditions. These laboratory findings motivate further research to determine the relevance of coadsorption mechanisms for real-world, sea spray aerosol production.

  16. OCEANFILMS-2: Representing coadsorption of saccharides in marine films and potential impacts on modeled marine aerosol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, Susannah M. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Gobrogge, Eric [Department of Chemistry and Biochemistry, Montana State University, Bozeman Montana USA; Fu, Li [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Link, Katie [Department of Chemistry and Biochemistry, Montana State University, Bozeman Montana USA; Elliott, Scott M. [Climate, Ocean, and Sea Ice Modelling Group, Los Alamos National Laboratory, Los Alamos New Mexico USA; Wang, Hongfei [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Walker, Rob [Department of Chemistry and Biochemistry, Montana State University, Bozeman Montana USA

    2016-08-10

    Here we show that the addition of chemical interactions of soluble polysaccharides with a surfactant monolayer improves agreement of modeled sea spray chemistry with observed marine aerosol chemistry. In particular, the fraction of hydroxyl functional groups in modeled sea spray organic matter is increased, improving agreement with FTIR observations of marine aerosol composition. The overall organic fraction of submicron sea spray also increases, allowing organic mass fractions in the range 0.5 – 0.7 for submicron sea spray particles over highly active phytoplankton blooms. We show results from Sum Frequency Generation (SFG) experiments that support the modeling approach, by demonstrating that soluble polysaccharides can strongly adsorb to a lipid monolayer via columbic interactions under appropriate conditions.

  17. Verification of hydrological processes using the ACRU agro-hydrological modelling system for simulating potential climate change impacts in an alpine watershed in Alberta, Canada

    Science.gov (United States)

    Nemeth, M. W.; Kienzle, S. W.; Byrne, J. M.

    2009-12-01

    important to determine if outputs from the model are consistent with the behaviour of the hydrological system, and are based on comprehensive statistical analyses. Verification was done to generate confidence in the various scenarios of hydrological impacts within the UNSR watershed. After the model has been determined to be within physically meaningful ranges, different climate change scenarios will be applied to baseline data and integrated into the model to simulate the impacts of expected environmental changes. An ensemble of GCMs will be used to simulate the potential impacts of expected environmental changes, such as a decreased snowpack due to warming winter temperatures. References: Schulze, R.E.; Lorentz, S.; Kienzle, S.W.; Perks, L. 2004: Modelling the impacts of land-use and climate change on hydrological responses in the mixed underdeveloped / developed Mgeni catchment, South Africa. In: Kabat, P. et al. (Eds.): Vegetation, Water, Humans and the Climate A New Perspective on an Interactive System. BAHC-IGBP Publication, Springer, 17pp, with 14 Figures and 2 tables

  18. Global warming potential impact of bioenergy systems

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, L.; Wenzel, H.

    environmental consequences related to land use changes. In this study the global warming potential impact associated with six alternative bioenergy systems based on willow and Miscanthus was assessed by means of life-cycle assessment. The results showed that bioenergy production may generate higher global...... warming impacts than the reference fossil fuel system, when the impacts from indirect land use changes are accounted for. In a life-cycle perspective, only highly-efficient co-firing with fossil fuel achieved a (modest) GHG emission reduction....

  19. Global warming potential impact of bioenergy systems

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, L.; Wenzel, H.

    environmental consequences related to land use changes. In this study the global warming potential impact associated with six alternative bioenergy systems based on willow and Miscanthus was assessed by means of life-cycle assessment. The results showed that bioenergy production may generate higher global...... warming impacts than the reference fossil fuel system, when the impacts from indirect land use changes are accounted for. In a life-cycle perspective, only highly-efficient co-firing with fossil fuel achieved a (modest) GHG emission reduction....

  20. Potential impact of Paracentrotus lividus extract on diabetic rat models induced by high fat diet/streptozotocin

    Directory of Open Access Journals (Sweden)

    Amel M. Soliman

    2016-10-01

    Full Text Available Antioxidant therapy has been thought to be effectual for the prevention and treatment of various diseases including diabetes. Therefore, the present study was designed to investigate the potency of Paracentrotus lividus extract (PLE for alleviating the complications that resulted after induction of the diabetic rat models (T1DM and T2DM using high fat diet (HFD/streptozotocin (STZ. Thirty six male Wistar albino rats were assigned into normal control, T1DM and T2DM untreated, and PLE treated diabetic rat groups. Induction of T1DM was performed by streptozotocin injection (60 mg/kg of dissolved in sodium citrate buffer, 0.1 mol/L, i.p. T2DM induction through 4 weeks of high fat diet (HFD intervention was followed by a single low dosage of STZ (30 mg/kg dissolved in 0.1 mol/L citrate buffer at pH 4.5, i.p. Both diabetic rat models showed a significant increase in serum; levels of fasting glucose, total protein, bilirubin, activities of arginase, transaminases (AST and ALT, alkaline phosphatase (ALP, γ glutamyl transferase (GGT, lipid profile parameters, and liver malondialdehyde (MDA. However, T1DM and T2DM rats have decreased levels of serum insulin, and liver glucose 6 phosphate dehydrogenase (G6PD, glutathione reduced (GSH, nitric oxide (NO, and antioxidant enzymes. Furthermore, the present study showed the hypoglycemic, hypolipidemic, and antioxidant potency of the PLE as confirmed by its ability for ameliorating most of the alterations caused in the studied parameters of diabetic rats. In conclusion, PLE may be useful as therapy against oxidative stress and liver damage in both types of diabetes mellitus and is therefore recommended for further studies.

  1. Modeling the cadmium balance in Australian agricultural systems in view of potential impacts on food and water quality

    Energy Technology Data Exchange (ETDEWEB)

    Vries, W. de, E-mail: wim.devries@wur.nl [Alterra-Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen (Netherlands); Environmental Systems Analysis Group, Wageningen University, PO Box 47, 6700 AA Wageningen (Netherlands); McLaughlin, M.J. [CSIRO Sustainable Agriculture Flagship, CSIRO Land and Water, PMB 2, Glen Osmond, South Australia 5064 (Australia); University of Adelaide, PMB 1, Glen Osmond, South Australia 5064 (Australia)

    2013-09-01

    The historical build up and future cadmium (Cd) concentrations in top soils and in crops of four Australian agricultural systems are predicted with a mass balance model, focusing on the period 1900–2100. The systems include a rotation of dryland cereals, a rotation of sugarcane and peanuts/soybean, intensive dairy production and intensive horticulture. The input of Cd to soil is calculated from fertilizer application and atmospheric deposition and also examines options including biosolid and animal manure application in the sugarcane rotation and dryland cereal production systems. Cadmium output from the soil is calculated from leaching to deeper horizons and removal with the harvested crop or with livestock products. Parameter values for all Cd fluxes were based on a number of measurements on Australian soil–plant systems. In the period 1900–2000, soil Cd concentrations were predicted to increase on average between 0.21 mg kg{sup −1} in dryland cereals, 0.42 mg kg{sup −1} in intensive agriculture and 0.68 mg kg{sup −1} in dairy production, which are within the range of measured increases in soils in these systems. Predicted soil concentrations exceed critical soil Cd concentrations, based on food quality criteria for Cd in crops during the simulation period in clay-rich soils under dairy production and intensive horticulture. Predicted dissolved Cd concentrations in soil pore water exceed a ground water quality criterion of 2 μg l{sup −1} in light textured soils, except for the sugarcane rotation due to large water leaching fluxes. Results suggest that the present fertilizer Cd inputs in Australia are in excess of the long-term critical loads in heavy-textured soils for dryland cereals and that all other systems are at low risk. Calculated critical Cd/P ratios in P fertilizers vary from < 50 to > 1000 mg Cd kg P{sup −1} for the different soil, crop and environmental conditions applied. - Highlights: • Cadmium concentrations in soils and plants

  2. The potential impact of pre-exposure prophylaxis for HIV prevention among men who have sex with men and transwomen in Lima, Peru: a mathematical modelling study.

    Science.gov (United States)

    Gomez, Gabriela B; Borquez, Annick; Caceres, Carlos F; Segura, Eddy R; Grant, Robert M; Garnett, Geoff P; Hallett, Timothy B

    2012-01-01

    HIV pre-exposure prophylaxis (PrEP), the use of antiretroviral drugs by uninfected individuals to prevent HIV infection, has demonstrated effectiveness in preventing acquisition in a high-risk population of men who have sex with men (MSM). Consequently, there is a need to understand if and how PrEP can be used cost-effectively to prevent HIV infection in such populations. We developed a mathematical model representing the HIV epidemic among MSM and transwomen (male-to-female transgender individuals) in Lima, Peru, as a test case. PrEP effectiveness in the model is assumed to result from the combination of a "conditional efficacy" parameter and an adherence parameter. Annual operating costs from a health provider perspective were based on the US Centers for Disease Control and Prevention interim guidelines for PrEP use. The model was used to investigate the population-level impact, cost, and cost-effectiveness of PrEP under a range of implementation scenarios. The epidemiological impact of PrEP is largely driven by programme characteristics. For a modest PrEP coverage of 5%, over 8% of infections could be averted in a programme prioritising those at higher risk and attaining the adherence levels of the Pre-Exposure Prophylaxis Initiative study. Across all scenarios, the highest estimated cost per disability-adjusted life year averted (uniform strategy for a coverage level of 20%, US$1,036-US$4,254) is below the World Health Organization recommended threshold for cost-effective interventions, while only certain optimistic scenarios (low coverage of 5% and some or high prioritisation) are likely to be cost-effective using the World Bank threshold. The impact of PrEP is reduced if those on PrEP decrease condom use, but only extreme behaviour changes among non-adherers (over 80% reduction in condom use) and a low PrEP conditional efficacy (40%) would adversely impact the epidemic. However, PrEP will not arrest HIV transmission in isolation because of its incomplete

  3. The potential impact of pre-exposure prophylaxis for HIV prevention among men who have sex with men and transwomen in Lima, Peru: a mathematical modelling study.

    Directory of Open Access Journals (Sweden)

    Gabriela B Gomez

    Full Text Available HIV pre-exposure prophylaxis (PrEP, the use of antiretroviral drugs by uninfected individuals to prevent HIV infection, has demonstrated effectiveness in preventing acquisition in a high-risk population of men who have sex with men (MSM. Consequently, there is a need to understand if and how PrEP can be used cost-effectively to prevent HIV infection in such populations.We developed a mathematical model representing the HIV epidemic among MSM and transwomen (male-to-female transgender individuals in Lima, Peru, as a test case. PrEP effectiveness in the model is assumed to result from the combination of a "conditional efficacy" parameter and an adherence parameter. Annual operating costs from a health provider perspective were based on the US Centers for Disease Control and Prevention interim guidelines for PrEP use. The model was used to investigate the population-level impact, cost, and cost-effectiveness of PrEP under a range of implementation scenarios. The epidemiological impact of PrEP is largely driven by programme characteristics. For a modest PrEP coverage of 5%, over 8% of infections could be averted in a programme prioritising those at higher risk and attaining the adherence levels of the Pre-Exposure Prophylaxis Initiative study. Across all scenarios, the highest estimated cost per disability-adjusted life year averted (uniform strategy for a coverage level of 20%, US$1,036-US$4,254 is below the World Health Organization recommended threshold for cost-effective interventions, while only certain optimistic scenarios (low coverage of 5% and some or high prioritisation are likely to be cost-effective using the World Bank threshold. The impact of PrEP is reduced if those on PrEP decrease condom use, but only extreme behaviour changes among non-adherers (over 80% reduction in condom use and a low PrEP conditional efficacy (40% would adversely impact the epidemic. However, PrEP will not arrest HIV transmission in isolation because of its

  4. The Potential Impact of Pre-Exposure Prophylaxis for HIV Prevention among Men Who Have Sex with Men and Transwomen in Lima, Peru: A Mathematical Modelling Study

    Science.gov (United States)

    Caceres, Carlos F.; Segura, Eddy R.; Grant, Robert M.; Garnett, Geoff P.; Hallett, Timothy B.

    2012-01-01

    Background HIV pre-exposure prophylaxis (PrEP), the use of antiretroviral drugs by uninfected individuals to prevent HIV infection, has demonstrated effectiveness in preventing acquisition in a high-risk population of men who have sex with men (MSM). Consequently, there is a need to understand if and how PrEP can be used cost-effectively to prevent HIV infection in such populations. Methods and Findings We developed a mathematical model representing the HIV epidemic among MSM and transwomen (male-to-female transgender individuals) in Lima, Peru, as a test case. PrEP effectiveness in the model is assumed to result from the combination of a “conditional efficacy” parameter and an adherence parameter. Annual operating costs from a health provider perspective were based on the US Centers for Disease Control and Prevention interim guidelines for PrEP use. The model was used to investigate the population-level impact, cost, and cost-effectiveness of PrEP under a range of implementation scenarios. The epidemiological impact of PrEP is largely driven by programme characteristics. For a modest PrEP coverage of 5%, over 8% of infections could be averted in a programme prioritising those at higher risk and attaining the adherence levels of the Pre-Exposure Prophylaxis Initiative study. Across all scenarios, the highest estimated cost per disability-adjusted life year averted (uniform strategy for a coverage level of 20%, US$1,036–US$4,254) is below the World Health Organization recommended threshold for cost-effective interventions, while only certain optimistic scenarios (low coverage of 5% and some or high prioritisation) are likely to be cost-effective using the World Bank threshold. The impact of PrEP is reduced if those on PrEP decrease condom use, but only extreme behaviour changes among non-adherers (over 80% reduction in condom use) and a low PrEP conditional efficacy (40%) would adversely impact the epidemic. However, PrEP will not arrest HIV transmission in

  5. Integrating subsistence practice and species distribution modeling: assessing invasive elodea’s potential impact on Native Alaskan subsistence of Chinook salmon and whitefish

    Science.gov (United States)

    Luizza, Matthew; Evangelista, Paul; Jarnevich, Catherine S.; West, Amanda; Stewart, Heather

    2016-01-01

    Alaska has one of the most rapidly changing climates on earth and is experiencing an accelerated rate of human disturbance, including resource extraction and transportation infrastructure development. Combined, these factors increase the state’s vulnerability to biological invasion, which can have acute negative impacts on ecological integrity and subsistence practices. Of growing concern is the spread of Alaska’s first documented freshwater aquatic invasive plant Elodea spp. (elodea). In this study, we modeled the suitable habitat of elodea using global and state-specific species occurrence records and environmental variables, in concert with an ensemble of model algorithms. Furthermore, we sought to incorporate local subsistence concerns by using Native Alaskan knowledge and available statewide subsistence harvest data to assess the potential threat posed by elodea to Chinook salmon (Oncorhynchus tshawytscha) and whitefish (Coregonus nelsonii) subsistence. State models were applied to future climate (2040–2059) using five general circulation models best suited for Alaska. Model evaluations indicated that our results had moderate to strong predictability, with area under the receiver-operating characteristic curve values above 0.80 and classification accuracies ranging from 66 to 89 %. State models provided a more robust assessment of elodea habitat suitability. These ensembles revealed different levels of management concern statewide, based on the interaction of fish subsistence patterns, known spawning and rearing sites, and elodea habitat suitability, thus highlighting regions with additional need for targeted monitoring. Our results suggest that this approach can hold great utility for invasion risk assessments and better facilitate the inclusion of local stakeholder concerns in conservation planning and management.

  6. Integrating subsistence practice and species distribution modeling: assessing invasive elodea's potential impact on Native Alaskan subsistence of Chinook salmon and whitefish

    Science.gov (United States)

    Luizza, Matthew W.; Evangelista, Paul H.; Jarnevich, Catherine S.; West, Amanda; Stewart, Heather

    2016-07-01

    Alaska has one of the most rapidly changing climates on earth and is experiencing an accelerated rate of human disturbance, including resource extraction and transportation infrastructure development. Combined, these factors increase the state's vulnerability to biological invasion, which can have acute negative impacts on ecological integrity and subsistence practices. Of growing concern is the spread of Alaska's first documented freshwater aquatic invasive plant Elodea spp. (elodea). In this study, we modeled the suitable habitat of elodea using global and state-specific species occurrence records and environmental variables, in concert with an ensemble of model algorithms. Furthermore, we sought to incorporate local subsistence concerns by using Native Alaskan knowledge and available statewide subsistence harvest data to assess the potential threat posed by elodea to Chinook salmon ( Oncorhynchus tshawytscha) and whitefish ( Coregonus nelsonii) subsistence. State models were applied to future climate (2040-2059) using five general circulation models best suited for Alaska. Model evaluations indicated that our results had moderate to strong predictability, with area under the receiver-operating characteristic curve values above 0.80 and classification accuracies ranging from 66 to 89 %. State models provided a more robust assessment of elodea habitat suitability. These ensembles revealed different levels of management concern statewide, based on the interaction of fish subsistence patterns, known spawning and rearing sites, and elodea habitat suitability, thus highlighting regions with additional need for targeted monitoring. Our results suggest that this approach can hold great utility for invasion risk assessments and better facilitate the inclusion of local stakeholder concerns in conservation planning and management.

  7. Quantitative Assessment of the Potential of Afforestation for Carbon Dioxide Removal: Evaluating carbon sequestration and biogeophysical impacts in a dynamic global vegetation model

    Science.gov (United States)

    Littleton, E. W.

    2015-12-01

    This study presents a new method for representing permanent afforestation in Earth System models. Afforestation has attracted interest as an option to help to slow or reverse the growth of atmospheric carbon dioxide during the next century. However, its potential is poorly constrained with regard to land availability, rates of tree growth and carbon accumulation, and potential side effects. This study aims to provide quantitative assessment of the carbon removal potential and side effects of 21st century afforestation using a dynamic global vegetation model, in contrast to the majority of previous estimates which have used bookkeeping methods. The land surface model JULES was used to simulate needleleaf afforestation on abandoned agricultural land during the 21st century under two future pathways (RCP4.5 and RCP8.5). These results are compared to a control scenario in which natural succession is allowed to act on the same area of land. This study finds considerable spatial variation in the final carbon sequestration potential of afforestation sites. In addition to dieback and marginal growth in many regions, many sites showed minimal additionality of forest areas compared to natural succession. The most suitable sites were in Eastern Europe, central China and central North America. There was no major difference in the general spatial pattern of suitability between RCP4.5 and RCP8.5 by 2100. Overall, this study produced a significantly smaller estimate of the CDR potential of permanent afforestation than previous studies have. The additional carbon stored in suitable sites by 2100 was only 19 Pg C (RCP4.5) and 2.1 Pg C (RCP8.5), a mean of 68 tC/ha. This research also explored the biogeophysical impacts of afforestation on surface energy balance and hydrological cycles. The decrease in albedo caused by afforestation significantly offset the radiative forcing benefits of the carbon removal, although this effect was very sensitive to input assumptions. Flooding results

  8. Is Environmental Impact Assessment fulfilling its potential?

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2014-01-01

    One of the topics receiving much attention in recent years is climate change and the potential of its integration in impact assessment, both in terms of achieving mitigation and adaptation. Renewable energy projects are part of the efforts to mitigate climate change, replacing the use of fossil...... in projects with inherent positive effects on climate change? This paper reviews practice, and takes up these questions based on a document study of 19 EIA reports of renewable energy projects in Denmark. The results show that climate change mitigation is included in 18 of the EIA reports reviewed, while...... fuel with CO2-neutral energy sources. A variety of these projects are subject to environmental impact assessment (EIA), which raises the following questions: What role does an impact assessment play? When is the project environmentally friendly? How are climate change-related impacts assessed...

  9. IMPACT fragmentation model developments

    Science.gov (United States)

    Sorge, Marlon E.; Mains, Deanna L.

    2016-09-01

    The IMPACT fragmentation model has been used by The Aerospace Corporation for more than 25 years to analyze orbital altitude explosions and hypervelocity collisions. The model is semi-empirical, combining mass, energy and momentum conservation laws with empirically derived relationships for fragment characteristics such as number, mass, area-to-mass ratio, and spreading velocity as well as event energy distribution. Model results are used for several types of analysis including assessment of short-term risks to satellites from orbital altitude fragmentations, prediction of the long-term evolution of the orbital debris environment and forensic assessments of breakup events. A new version of IMPACT, version 6, has been completed and incorporates a number of advancements enabled by a multi-year long effort to characterize more than 11,000 debris fragments from more than three dozen historical on-orbit breakup events. These events involved a wide range of causes, energies, and fragmenting objects. Special focus was placed on the explosion model, as the majority of events examined were explosions. Revisions were made to the mass distribution used for explosion events, increasing the number of smaller fragments generated. The algorithm for modeling upper stage large fragment generation was updated. A momentum conserving asymmetric spreading velocity distribution algorithm was implemented to better represent sub-catastrophic events. An approach was developed for modeling sub-catastrophic explosions, those where the majority of the parent object remains intact, based on estimated event energy. Finally, significant modifications were made to the area-to-mass ratio distribution to incorporate the tendencies of different materials to fragment into different shapes. This ability enabled better matches between the observed area-to-mass ratios and those generated by the model. It also opened up additional possibilities for post-event analysis of breakups. The paper will discuss

  10. Genetic background impacts developmental potential of enteric neural crest-derived progenitors in the Sox10Dom model of Hirschsprung disease.

    Science.gov (United States)

    Walters, Lauren C; Cantrell, V Ashley; Weller, Kevin P; Mosher, Jack T; Southard-Smith, E Michelle

    2010-11-15

    Abnormalities in the development of enteric neural crest-derived progenitors (ENPs) that generate the enteric nervous system (ENS) can lead to aganglionosis in a variable portion of the distal gastrointestinal tract. Cumulative evidence suggests that variation of aganglionosis is due to gene interactions that modulate the ability of ENPs to populate the intestine; however, the developmental processes underlying this effect are unknown. We hypothesized that differences in enteric ganglion deficits could be attributable to the effects of genetic background on early developmental processes, including migration, proliferation, or lineage divergence. Developmental processes were investigated in congenic Sox10(Dom) mice, an established Hirschsprung disease (HSCR) model, on distinct inbred backgrounds, C57BL/6J (B6) and C3HeB/FeJ (C3Fe). Immuno-staining on whole-mount fetal gut tissue and dissociated cell suspensions was used to assess migration and proliferation. Flow cytometry utilizing the cell surface markers p75 and HNK-1 was used to isolate live ENPs for analysis of developmental potential. Frequency of ENPs was reduced in Sox10(Dom) embryos relative to wild-type embryos, but was unaffected by genetic background. Both migration and developmental potential of ENPs in Sox10(Dom) embryos were altered by inbred strain background with the most highly significant differences seen for developmental potential between strains and genotypes. In vivo imaging of fetal ENPs and postnatal ganglia demonstrates that altered lineage divergence impacts ganglia in the proximal intestine. Our analysis demonstrates that genetic background alters early ENS development and suggests that abnormalities in lineage diversification can shift the proportions of ENP populations and thus may contribute to ENS deficiencies in vivo.

  11. Potential Crash Location (PCL) Model

    Science.gov (United States)

    2014-02-05

    LCA ) model provides a method for calculating how large the actual lethal area at the site of impact would be. The LCA model is described in a...helicopter failures. The crash location calculations are just one portion of the TLS tool, the other portion is LCA . Although the LCA is not

  12. The Collective Impact Model and Its Potential for Health Promotion: Overview and Case Study of a Healthy Retail Initiative in San Francisco

    Science.gov (United States)

    Flood, Johnna; Minkler, Meredith; Lavery, Susana Hennessey; Estrada, Jessica; Falbe, Jennifer

    2015-01-01

    As resources for health promotion become more constricted, it is increasingly important to collaborate across sectors, including the private sector. Although many excellent models for cross-sector collaboration have shown promise in the health field, collective impact (CI), an emerging model for creating larger scale change, has yet to receive…

  13. The impact of potential political security level on international tourism

    Science.gov (United States)

    Young-Rae Kim; Chang Huh; Seung Hyun Kim

    2002-01-01

    The purpose of this study was to investigate the impact of potential political security in an effort to fill in two foregoing research gaps in international tourism. To investigate the relationship between political security and international tourism, a simple regression model was employed. Secondary data were collected from a variety of sources, such as international...

  14. Carbon Capture and Sequestration. Potential Environmental Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, P.; Santillo, D. [Greenpeace Research Laboratories, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS (United Kingdom)

    2003-02-01

    Over the last few years, understanding of the profound implications of anthropogenically driven climate change has grown. In turn, this has fuelled research into options to mitigate likely impacts. Approaches involving the capture of carbon dioxide and its storage in geological formations, or in marine waters, have generated a raft of proposed solutions. The scale of some of these proposals is such that they will exert impacts of global significance in their own right. Proposals fall into two broad categories: (1) storage of liquid CO2 or products of reacted CO2 into intermediate/deep oceanic waters. and (2) storage of liquid CO2 into sub-seabed or terrestrial geological formations. For the most part, while the technical feasibility of these schemata has been widely explored, the same is not true of their ecological implications. In the case of deep/intermediate oceanic waters, poor baseline understanding of the associated ecosystems is a considerable impediment to any reliable predictive assessment of likely impacts of carbon dioxide storage in these systems. Disruption of marine microbiological processes and degradation of benthic ecosystems, including those with high levels of endemicity, have been identified as potentially serious impacts. Similarly, the physiology, ecology and likely responses of micro-organisms present in targeted geological formations require evaluation prior to any consideration of the use of such formations for storage of CO2. In addition, the impacts of any leakage to surface need also to be considered. Accordingly this paper explores current uncertainties and detailed informational needs related to ocean and geological storage of fossil fuel-derived CO2. Particular emphasis is placed upon the ecological impacts of these proposals in relation to existing and emergent understanding of deep water/soil ecosystems and the indeterminacies attached to this understanding.

  15. Climate change: potential impact on plant diseases.

    Science.gov (United States)

    Chakraborty, S; Tiedemann, A V; Teng, P S

    2000-06-01

    Global climate has changed since pre-industrial times. Atmospheric CO(2), a major greenhouse gas, has increased by nearly 30% and temperature has risen by 0.3 to 0.6 degrees C. The intergovernmental panel on climate change predicts that with the current emission scenario, global mean temperature would rise between 0.9 and 3.5 degrees C by the year 2100. There are, however, many uncertainties that influence these predictions. Despite the significance of weather on plant diseases, comprehensive analysis of how climate change will influence plant diseases that impact primary production in agricultural systems is presently unavailable. Evaluation of the limited literature in this area suggests that the most likely impact of climate change will be felt in three areas: in losses from plant diseases, in the efficacy of disease management strategies and in the geographical distribution of plant diseases. Climate change could have positive, negative or no impact on individual plant diseases. More research is needed to obtain base-line information on different disease systems. Most plant disease models use different climatic variables and operate at a different spatial and temporal scale than do the global climate models. Improvements in methodology are necessary to realistically assess disease impacts at a global scale.

  16. Modeling dynamics of {sup 137}Cs in forest surface environments: Application to a contaminated forest site near Fukushima and assessment of potential impacts of soil organic matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Masakazu, E-mail: ohta.masakazu@jaea.go.jp; Nagai, Haruyasu; Koarashi, Jun

    2016-05-01

    A process-based model for {sup 137}Cs transfer in forest surface environments was developed to assess the dynamic behavior of Fukushima-derived {sup 137}Cs in a Japanese forest. The model simulation successfully reproduced the observed data from 3 year migration of {sup 137}Cs in the organic and mineral soil layers at a contaminated forest near Fukushima. The migration of {sup 137}Cs from the organic layer to the mineral soil was explained by the direct deposition pattern on the forest floor and the turnover of litter materials in the organic layer under certain ecological conditions. Long-term predictions indicated that more than 90% of the deposited {sup 137}Cs would remain within the top 5 cm of the soil for up to 30 years after the accident, suggesting that the forest acts as an effective long-term reservoir of {sup 137}Cs with limited transfer via the groundwater pathway. The model was also used to explore the potential impacts of soil organic matter (SOM) interactions on the mobility and bioavailability of {sup 137}Cs in the soil–plant system. The simulation results for hypothetical organic soils with modified parameters of {sup 137}Cs turnover revealed that the SOM-induced reduction of {sup 137}Cs adsorption elevates the fraction of dissolved {sup 137}Cs in the soil solution, thereby increasing the soil-to-plant transfer of {sup 137}Cs without substantially altering the fractional distribution of {sup 137}Cs in the soil. Slower fixation of {sup 137}Cs on the flayed edge site of clay minerals and enhanced mobilization of the clay-fixed {sup 137}Cs in organic-rich soils also appeared to elevate the soil-to-plant transfer of {sup 137}Cs by increasing the fraction of the soil-adsorbed (exchangeable) {sup 137}Cs. A substantial proportion (approximate 30%–60%) of {sup 137}Cs in these organic-rich soils was transferred to layers deeper than 5 cm decades later. These results suggested that SOM influences the behavior of {sup 137}Cs in forests over a prolonged

  17. Coffee: biochemistry and potential impact on health.

    Science.gov (United States)

    Ludwig, Iziar A; Clifford, Michael N; Lean, Michael E J; Ashihara, Hiroshi; Crozier, Alan

    2014-08-01

    This review provides details on the phytochemicals in green coffee beans and the changes that occur during roasting. Key compounds in the coffee beverage, produced from the ground, roasted beans, are volatile constituents responsible for the unique aroma, the alkaloids caffeine and trigonelline, chlorogenic acids, the diterpenes cafestol and kahweol, and melanoidins, which are Maillard reaction products. The fate of these compounds in the body following consumption of coffee is discussed along with evidence of the mechanisms by which they may impact on health. Finally, epidemiological findings linking coffee consumption to potential health benefits including prevention of several chronic and degenerative diseases, such as cancer, cardiovascular disorders, diabetes, and Parkinson's disease, are evaluated.

  18. The potential impact of green agendas on historic river landscapes: Numerical modelling of multiple weir removal in the Derwent Valley Mills world heritage site, UK

    Science.gov (United States)

    Howard, A. J.; Coulthard, T. J.; Knight, D.

    2017-09-01

    The exploitation of river systems for power and navigation has commonly been achieved through the installation of a variety of in-channel obstacles of which weirs in Britain are amongst the most common. In the UK, the historic value of many of these features is recognised by planning designations and protection more commonly associated with historic buildings and other major monuments. Their construction, particularly in the north and west of Britain, has often been associated with industries such as textiles, chemicals, and mining, which have polluted waterways with heavy metals and other contaminants. The construction of weirs altered local channel gradients resulting in sedimentation upstream with the potential as well for elevated levels of contamination in sediments deposited there. For centuries these weirs have remained largely undisturbed, but as a result of the growth in hydropower and the drive to improve water quality under the European Union's Water Framework Directive, these structures are under increasing pressure to be modified or removed altogether. At present, weir modifications appear to be considered largely on an individual basis, with little focus on the wider impacts this might have on valley floor environments. Using a numerical modelling approach, this paper simulates the removal of major weirs along a 24-km stretch of the river Derwent, Derbyshire, UK, designated as a UNESCO World Heritage Site. The results suggest that although removal would not result in significant changes to the valley morphology, localised erosion would occur upstream of structures as the river readjusts its base level to new boundary conditions. Modelling indicates that sediment would also be evacuated away from the study area. In the context of the Derwent valley, this raises the potential for the remobilisation of contaminants (legacy sediments) within the wider floodplain system, which could have detrimental, long-term health and environmental implications for the

  19. Potential health impact of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    In response to public health concerns about wind turbines, a study was conducted to review the scientific evidence on the potential health effects of wind turbines. Several research questions were examined, including scientific evidence on the potential health impacts of wind turbines; the relationship between wind turbine noise and health; the relationship between low frequency sound, infrasound and health; assessment of exposure to wind turbines; wind turbine health and safety hazards and Ontario wind turbine setbacks; community consultation prior to wind farm construction and data gaps and research needs. The study showed that although some people living near wind turbines reported symptoms such as dizziness, headaches, and sleep disturbance, the scientific evidence available to date does not demonstrate a direct causal link between wind turbine noise and adverse health effects. The sound level from wind turbines at common residential setbacks is not sufficient to cause hearing impairment or other direct health effects, although some people may find it annoying. 41 refs., 1 appendix.

  20. Modeling dynamics of (137)Cs in forest surface environments: Application to a contaminated forest site near Fukushima and assessment of potential impacts of soil organic matter interactions.

    Science.gov (United States)

    Ota, Masakazu; Nagai, Haruyasu; Koarashi, Jun

    2016-05-01

    A process-based model for (137)Cs transfer in forest surface environments was developed to assess the dynamic behavior of Fukushima-derived (137)Cs in a Japanese forest. The model simulation successfully reproduced the observed data from 3year migration of (137)Cs in the organic and mineral soil layers at a contaminated forest near Fukushima. The migration of (137)Cs from the organic layer to the mineral soil was explained by the direct deposition pattern on the forest floor and the turnover of litter materials in the organic layer under certain ecological conditions. Long-term predictions indicated that more than 90% of the deposited (137)Cs would remain within the top 5cm of the soil for up to 30years after the accident, suggesting that the forest acts as an effective long-term reservoir of (137)Cs with limited transfer via the groundwater pathway. The model was also used to explore the potential impacts of soil organic matter (SOM) interactions on the mobility and bioavailability of (137)Cs in the soil-plant system. The simulation results for hypothetical organic soils with modified parameters of (137)Cs turnover revealed that the SOM-induced reduction of (137)Cs adsorption elevates the fraction of dissolved (137)Cs in the soil solution, thereby increasing the soil-to-plant transfer of (137)Cs without substantially altering the fractional distribution of (137)Cs in the soil. Slower fixation of (137)Cs on the flayed edge site of clay minerals and enhanced mobilization of the clay-fixed (137)Cs in organic-rich soils also appeared to elevate the soil-to-plant transfer of (137)Cs by increasing the fraction of the soil-adsorbed (exchangeable) (137)Cs. A substantial proportion (approximate 30%-60%) of (137)Cs in these organic-rich soils was transferred to layers deeper than 5cm decades later. These results suggested that SOM influences the behavior of (137)Cs in forests over a prolonged period through alterations of adsorption and fixation in the soil.

  1. Modeling impacts of alternative practices on net global warming potential and greenhouse gas intensity from rice-wheat annual rotation in China.

    Directory of Open Access Journals (Sweden)

    Jinyang Wang

    Full Text Available BACKGROUND: Evaluating the net exchange of greenhouse gas (GHG emissions in conjunction with soil carbon sequestration may give a comprehensive insight on the role of agricultural production in global warming. MATERIALS AND METHODS: Measured data of methane (CH(4 and nitrous oxide (N(2O were utilized to test the applicability of the Denitrification and Decomposition (DNDC model to a winter wheat - single rice rotation system in southern China. Six alternative scenarios were simulated against the baseline scenario to evaluate their long-term (45-year impacts on net global warming potential (GWP and greenhouse gas intensity (GHGI. PRINCIPAL RESULTS: The simulated cumulative CH(4 emissions fell within the statistical deviation ranges of the field data, with the exception of N(2O emissions during rice-growing season and both gases from the control treatment. Sensitivity tests showed that both CH(4 and N(2O emissions were significantly affected by changes in both environmental factors and management practices. Compared with the baseline scenario, the long-term simulation had the following results: (1 high straw return and manure amendment scenarios greatly increased CH(4 emissions, while other scenarios had similar CH(4 emissions, (2 high inorganic N fertilizer increased N(2O emissions while manure amendment and reduced inorganic N fertilizer scenarios decreased N(2O emissions, (3 the mean annual soil organic carbon sequestration rates (SOCSR under manure amendment, high straw return, and no-tillage scenarios averaged 0.20 t C ha(-1 yr(-1, being greater than other scenarios, and (4 the reduced inorganic N fertilizer scenario produced the least N loss from the system, while all the scenarios produced comparable grain yields. CONCLUSIONS: In terms of net GWP and GHGI for the comprehensive assessment of climate change and crop production, reduced inorganic N fertilizer scenario followed by no-tillage scenario would be advocated for this specified

  2. Social Impact, a Theoretical Model

    Directory of Open Access Journals (Sweden)

    Jenny Onyx

    2014-01-01

    Full Text Available This paper constructs a theoretical model of social impact as it applies to civil society organisations. It does so by drawing on the recent literature on the topic as well as recently completed empirical studies. First, the relationship between impact and evaluation is examined. This is followed by an exploration of the capitals, notably social, human, and cultural capital and their interrelationships, as a theoretical base for the explication of social impact. A formal model of social impact is then identified together with a set of basic principles that may be said to define social impact. Finally the implications of the model are discussed for social policy and organisational management.

  3. Potential impact of vaccination against Neisseria meningitidis on Neisseria gonorrhoeae in the United States: results from a decision-analysis model.

    Science.gov (United States)

    Régnier, Stéphane A; Huels, Jasper

    2014-01-01

    Components in 4CMenB vaccine against Neisseria meningitidis serogroup B have shown to potentially cross-react with Neisseria gonorrhoeae. We modeled the theoretical impact of a US 4CMenB vaccination program on gonorrhea outcomes. A decision-analysis model was populated using published healthcare utilization and cost data. A two-dose adolescent vaccination campaign was assumed, with protective immunity starting at age 15 years and a base-case efficacy against gonorrhea of 20%. The 20%-efficacy level is an assumption since no clinical data have yet quantified the efficacy of 4CMenB against Neisseria gonorrhoea. Key outcome measures were reductions in gonorrhea and HIV infections, reduction in quality-adjusted life-years (QALYs) lost, and the economically justifiable price assuming a willingness-to-pay threshold of $75,000 per QALY gained. Adolescent vaccination with 4CMenB would prevent 83,167 (95% credible interval [CrI], 44,600-134,600) gonorrhea infections and decrease the number of HIV infections by 55 (95% CrI, 2-129) per vaccinated birth cohort in the USA. Excluding vaccination costs, direct medical costs for gonorrhea would reduce by $28.7 million (95% CrI, $6.8-$70.0 million), and income and productivity losses would reduce by $40.0 million (95% CrI, $8.2-$91.7 million). Approximately 83% of the reduction in lost productivity is generated by avoiding HIV infections. At a cost of $75,000 per QALY gained, and incremental to the vaccine's effect on meningococcal disease, a price of $26.10 (95% CrI, $9.10-$57.20) per dose, incremental to the price of the meningococcal vaccine, would be justified from the societal perspective. At this price, the net cost per infection averted would be $1,677 (95% CrI, $404-$2,564). Even if the cross-immunity of 4CMenB vaccine and gonorrhea is only 20%, the reduction in gonorrhea infections and associated costs would be substantial.

  4. Developing empirical monthly groundwater recharge equations based on modeling and remote sensing data - Modeling future groundwater recharge to predict potential climate change impacts

    Science.gov (United States)

    Gemitzi, Alexandra; Ajami, Hoori; Richnow, Hans-Hermann

    2017-03-01

    Groundwater recharge is one of main components of the water budget that is difficult to quantify due to complexity of recharge processes and limited observations. In the present work a simple regression equation for monthly groundwater recharge estimation is developed by relating simulated recharge from a calibrated Soil and Water Assessment tool (SWAT) model to effective precipitation. Monthly groundwater recharge and actual evapotranspiration (AET) were computed by applying a calibrated (SWAT) model for a ten year period (2005-2015) in Vosvozis river basin in NE Greece. SWAT actual evapotranspiration (AET) results were compared to remotely sensed AET values from the MODerate Resolution Imaging Spectroradiometer (MODIS), indicating the integrity of the modeling process. Water isotopes of 2H and 18O, originally presented herein, were used to infer recharge resources in the basin and provided additional evidence of the applicability of the developed formula. Results showed that the developed recharge estimation method can be effectively applied using MODIS evapotranspiration data, without having to adhere to numerical modeling which is many times constrained by the lack of available data especially in poorly gauged basins. Future trends of groundwater recharge up to 2100 using an ensemble of five downscaled climate change projections indicated that annual recharge will increase up to the middle of the present century and gradually decrease thereafter. However, the predicted magnitude is highly variable depending on the Global Climate Model (GCM) used. While winter recharge will likely increase in the future, summer recharge is expected to decrease as a result of temperature rise in the future.

  5. Potential impact of fireworks on respiratory health

    Directory of Open Access Journals (Sweden)

    Caroline Gouder

    2014-01-01

    Full Text Available The world-wide use of fireworks with their consequent detrimental effect on the air quality is widely recognized with elevated ambient air levels of particulate matter and its several metallic components and gases identified in several studies carried out during such events. Exposed individuals may be at risk following inhalation of such produced pollutants. This review focuses on the impact of fireworks on air quality and the potential effect of fireworks on the respiratory system of healthy individuals as well as those suffering from underlying respiratory diseases, particularly asthma and chronic obstructive pulmonary disease (COPD. This applies not only to spectators including children but also to pyrotechnicians themselves. An extensive Medline search revealed that a strong evidence of the impact of fireworks on respiratory health is lacking in susceptible as well as healthy individuals with no formal studies on COPD or asthma, other than a few case reports in the latter. The implementation of global strategies to control the use of fireworks and hence improve air quality could possibly reduce their likely detrimental effect on human respiratory health in exposed individuals, but clearly a more targeted research is needed.

  6. Program impact pathway analysis of a social franchise model shows potential to improve infant and young child feeding practices in Vietnam.

    Science.gov (United States)

    Nguyen, Phuong H; Menon, Purnima; Keithly, Sarah C; Kim, Sunny S; Hajeebhoy, Nemat; Tran, Lan M; Ruel, Marie T; Rawat, Rahul

    2014-10-01

    By mapping the mechanisms through which interventions are expected to achieve impact, program impact pathway (PIP) analysis lays out the theoretical causal links between program activities, outcomes, and impacts. This study examines the pathways through which the Alive & Thrive (A&T) social franchise model is intended to improve infant and young child feeding (IYCF) practices in Vietnam. Mixed methods were used, including qualitative interviews with franchise management board members (n = 12), surveys with health providers (n = 120), counseling observations (n = 160), and household surveys (n = 2045). Six PIP components were assessed: 1) franchise management, 2) training and IYCF knowledge of health providers, 3) service delivery, 4) program exposure and utilization, 5) maternal behavioral determinants (knowledge, beliefs, and intentions) toward optimal IYCF practices, and 6) IYCF practices. Data were collected from A&T-intensive areas (A&T-I; mass media + social franchise) and A&T-nonintensive areas (A&T-NI; mass media only) by using a cluster-randomized controlled trial design. Data from 2013 were compared with baseline where similar measures were available. Results indicate that mechanisms are in place for effective management of the franchise system, despite challenges to routine monitoring. A&T training was associated with increased capacity of providers, resulting in higher-quality IYCF counseling (greater technical knowledge and communication skills during counseling) in A&T-I areas. Franchise utilization increased from 10% in 2012 to 45% in 2013 but fell below the expected frequency of 9-15 contacts per mother-child dyad. Improvements in breastfeeding knowledge, beliefs, intentions, and practices were greater among mothers in A&T-I areas than among those in A&T-NI areas. In conclusion, there are many positive changes along the impact pathway of the franchise services, but challenges in utilization and demand creation should be addressed to achieve the full

  7. The potential impact of hydrogen energy use on the atmosphere

    Science.gov (United States)

    van Ruijven, B. J.; Lamarque, J. F.; van Vuuren, D. P.; Kram, T.; Eerens, H.

    2009-04-01

    Energy models show very different trajectories for future energy systems (partly as function of future climate policy). One possible option is a transition towards a hydrogen-based energy system. The potential impact of such hydrogen economy on atmospheric emissions is highly uncertain. On the one hand, application of hydrogen in clean fuel cells reduces emissions of local air pollutants, like SOx and NOx. On the other hand, emissions of hydrogen from system leakages are expected to change the atmospheric concentrations and behaviour (see also Price et al., 2007; Sanderson et al., 2003; Schultz et al., 2003; Tromp et al., 2003). The uncertainty arises from several sources: the expected use of hydrogen, the intensity of leakages and emissions, and the atmospheric chemical behaviour of hydrogen. Existing studies to the potential impacts of a hydrogen economy on the atmosphere mostly use hydrogen emission scenarios that are based on simple assumptions. This research combines two different modelling efforts to explore the range of impacts of hydrogen on atmospheric chemistry. First, the potential role of hydrogen in the global energy system and the related emissions of hydrogen and other air pollutants are derived from the global energy system simulation model TIMER (van Vuuren, 2007). A set of dedicated scenarios on hydrogen technology development explores the most pessimistic and optimistic cases for hydrogen deployment (van Ruijven et al., 2008; van Ruijven et al., 2007). These scenarios are combined with different assumptions on hydrogen emission factors. Second, the emissions from the TIMER model are linked to the NCAR atmospheric model (Lamarque et al., 2005; Lamarque et al., 2008), in order to determine the impacts on atmospheric chemistry. By combining an energy system model and an atmospheric model, we are able to consistently explore the boundaries of both hydrogen use, emissions and impacts on atmospheric chemistry. References: Lamarque, J.-F., Kiehl, J. T

  8. Potential Environmental Impacts of Oil Spills in Greenland

    DEFF Research Database (Denmark)

    This report analyses information status and research needs in relation to potential environmental impacts of oil spills (offshore and onshore) in Greenland. The report assesses potential effects and potential mitigation and monitoring measures. Information gaps are identified and a number...

  9. Potential Environmental Impacts of Oil Spills in Greenland

    DEFF Research Database (Denmark)

    This report analyses information status and research needs in relation to potential environmental impacts of oil spills (offshore and onshore) in Greenland. The report assesses potential effects and potential mitigation and monitoring measures. Information gaps are identified and a number...

  10. Potential Impacts of Accelerated Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Leung, L. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vail, L. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-31

    This research project is part of the U.S. Nuclear Regulatory Commission’s (NRC’s) Probabilistic Flood Hazard Assessment (PFHA) Research plan in support of developing a risk-informed licensing framework for flood hazards and design standards at proposed new facilities and significance determination tools for evaluating potential deficiencies related to flood protection at operating facilities. The PFHA plan aims to build upon recent advances in deterministic, probabilistic, and statistical modeling of extreme precipitation events to develop regulatory tools and guidance for NRC staff with regard to PFHA for nuclear facilities. The tools and guidance developed under the PFHA plan will support and enhance NRC’s capacity to perform thorough and efficient reviews of license applications and license amendment requests. They will also support risk-informed significance determination of inspection findings, unusual events, and other oversight activities.

  11. Potential impact of pre-exposure prophylaxis for female sex workers and men who have sex with men in Bangalore, India: a mathematical modelling study

    Directory of Open Access Journals (Sweden)

    Kate M Mitchell

    2016-09-01

    Full Text Available Introduction: In Bangalore, new HIV infections of female sex workers and men who have sex with men continue to occur, despite high condom use. Pre-exposure prophylaxis (PrEP has high anti-HIV efficacy for men who have sex with men. PrEP demonstration projects are underway amongst Indian female sex workers. We estimated the impact and efficiency of prioritizing PrEP to female sex workers and/or men who have sex with men in Bangalore. Methods: A mathematical model of HIV transmission and treatment for female sex workers, clients, men who have sex with men and low-risk groups was parameterized and fitted to Bangalore data. The proportion of transmission attributable (population attributable fraction to commercial sex and sex between men was calculated. PrEP impact (infections averted, life-years gained and efficiency (life-years gained/infections averted per 100 person-years on PrEP were estimated for different levels of PrEP adherence, coverage and prioritization strategies (female sex workers, high-risk men who have sex with men, both female sex workers and high-risk men who have sex with men, or female sex workers with lower condom use, under current conditions and in a scenario with lower baseline condom use amongst key populations. Results: Population attributable fractions for commercial sex and sex between men have declined over time, and they are predicted to account for 19% of all new infections between 2016 and 2025. PrEP could prevent a substantial proportion of infections amongst female sex workers and men who have sex with men in this setting (23%/27% over 5/10 years, with 60% coverage and 50% adherence, which could avert 2.9%/4.3% of infections over 5/10 years in the whole Bangalore population. Impact and efficiency in the whole population was greater if female sex workers were prioritized. Efficiency increased, but impact decreased, if only female sex workers with lower condom use were given PrEP. Greater impact and efficiency was

  12. Modeling pellet impact drilling process

    OpenAIRE

    Kovalev, Artem Vladimirovich; Ryabchikov, Sergey Yakovlevich; Isaev, Evgeniy Dmitrievich; Ulyanova, Oksana Sergeevna

    2016-01-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling t...

  13. Modelling the seasonality of Lyme disease risk and the potential impacts of a warming climate within the heterogeneous landscapes of Scotland.

    Science.gov (United States)

    Li, Sen; Gilbert, Lucy; Harrison, Paula A; Rounsevell, Mark D A

    2016-03-01

    Lyme disease is the most prevalent vector-borne disease in the temperate Northern Hemisphere. The abundance of infected nymphal ticks is commonly used as a Lyme disease risk indicator. Temperature can influence the dynamics of disease by shaping the activity and development of ticks and, hence, altering the contact pattern and pathogen transmission between ticks and their host animals. A mechanistic, agent-based model was developed to study the temperature-driven seasonality of Ixodes ricinus ticks and transmission of Borrelia burgdorferi sensu lato across mainland Scotland. Based on 12-year averaged temperature surfaces, our model predicted that Lyme disease risk currently peaks in autumn, approximately six weeks after the temperature peak. The risk was predicted to decrease with increasing altitude. Increases in temperature were predicted to prolong the duration of the tick questing season and expand the risk area to higher altitudinal and latitudinal regions. These predicted impacts on tick population ecology may be expected to lead to greater tick-host contacts under climate warming and, hence, greater risks of pathogen transmission. The model is useful in improving understanding of the spatial determinants and system mechanisms of Lyme disease pathogen transmission and its sensitivity to temperature changes.

  14. The potential impact of a 20% tax on sugar-sweetened beverages on obesity in South African adults: a mathematical model.

    Directory of Open Access Journals (Sweden)

    Mercy Manyema

    Full Text Available BACKGROUND/OBJECTIVES: The prevalence of obesity in South Africa has risen sharply, as has the consumption of sugar-sweetened beverages (SSBs. Research shows that consumption of SSBs leads to weight gain in both adults and children, and reducing SSBs will significantly impact the prevalence of obesity and its related diseases. We estimated the effect of a 20% tax on SSBs on the prevalence of and obesity among adults in South Africa. METHODS: A mathematical simulation model was constructed to estimate the effect of a 20% SSB tax on the prevalence of obesity. We used consumption data from the 2012 SA National Health and Nutrition Examination Survey and a previous meta-analysis of studies on own- and cross-price elasticities of SSBs to estimate the shift in daily energy consumption expected of increased prices of SSBs, and energy balance equations to estimate shifts in body mass index. The population distribution of BMI by age and sex was modelled by fitting measured data from the SA National Income Dynamics Survey 2012 to the lognormal distribution and shifting the mean values. Uncertainty was assessed with Monte Carlo simulations. RESULTS: A 20% tax is predicted to reduce energy intake by about 36 kJ per day (95% CI: 9-68 kJ. Obesity is projected to reduce by 3.8% (95% CI: 0.6%-7.1% in men and 2.4% (95% CI: 0.4%-4.4% in women. The number of obese adults would decrease by over 220 000 (95% CI: 24 197-411 759. CONCLUSIONS: Taxing SSBs could impact the burden of obesity in South Africa particularly in young adults, as one component of a multi-faceted effort to prevent obesity.

  15. Impacts of Model Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sivaraman, Deepak [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bartlett, Rosemarie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) periodically evaluates national and state-level impacts associated with energy codes in residential and commercial buildings. Pacific Northwest National Laboratory (PNNL), funded by DOE, conducted an assessment of the prospective impacts of national model building energy codes from 2010 through 2040. A previous PNNL study evaluated the impact of the Building Energy Codes Program; this study looked more broadly at overall code impacts. This report describes the methodology used for the assessment and presents the impacts in terms of energy savings, consumer cost savings, and reduced CO2 emissions at the state level and at aggregated levels. This analysis does not represent all potential savings from energy codes in the U.S. because it excludes several states which have codes which are fundamentally different from the national model energy codes or which do not have state-wide codes. Energy codes follow a three-phase cycle that starts with the development of a new model code, proceeds with the adoption of the new code by states and local jurisdictions, and finishes when buildings comply with the code. The development of new model code editions creates the potential for increased energy savings. After a new model code is adopted, potential savings are realized in the field when new buildings (or additions and alterations) are constructed to comply with the new code. Delayed adoption of a model code and incomplete compliance with the code’s requirements erode potential savings. The contributions of all three phases are crucial to the overall impact of codes, and are considered in this assessment.

  16. Abolition of set-aside schemes, associated impacts on habitat structure and modelling of potential effects of cross-farm regulation

    DEFF Research Database (Denmark)

    Levin, G.; Jepsen, Martin Rudbeck

    2010-01-01

    In intensively farmed regions, habitat fragmentation represents a major pressure on biodiversity. Depending on its spatial setting, set-aside land can increase size and connectivity of habitats and thus counteract fragmentation. In 2008, the EU-wide set-aside obligation was suspended and a large...... proportion of set-aside land was re-cultivated. With Denmark as case we apply an indicator to measure the effect of set-aside land on spatial structure of semi-natural habitats in term of habitat size and connectivity. Furthermore, we model effects of a hypothetical spatial regulation, where set-aside land...... with the greatest benefit for habitat structure is retained as uncultivated, while set-aside land with the least effect is re-cultivated. The model is applied to individual farms and to farm agglomerations of increasing sizes, enabling us to explore potential effects of cross-farm regulation. The novelty of our...

  17. Modelling the impact of temperature-induced life history plasticity and mate limitation on the epidemic potential of a marine ectoparasite.

    Directory of Open Access Journals (Sweden)

    Maya L Groner

    Full Text Available Temperature is hypothesized to contribute to increased pathogenicity and virulence of many marine diseases. The sea louse (Lepeophtheirus salmonis is an ectoparasite of salmonids that exhibits strong life-history plasticity in response to temperature; however, the effect of temperature on the epidemiology of this parasite has not been rigorously examined. We used matrix population modelling to examine the influence of temperature on demographic parameters of sea lice parasitizing farmed salmon. Demographically-stochastic population projection matrices were created using parameters from the existing literature on vital rates of sea lice at different fixed temperatures and yearly temperature profiles. In addition, we quantified the effectiveness of a single stage-specific control applied at different times during a year with seasonal temperature changes. We found that the epidemic potential of sea lice increased with temperature due to a decrease in generation time and an increase in the net reproductive rate. In addition, mate limitation constrained population growth more at low temperatures than at high temperatures. Our model predicts that control measures targeting preadults and chalimus are most effective regardless of the temperature. The predictions from this model suggest that temperature can dramatically change vital rates of sea lice and can increase population growth. The results of this study suggest that sea surface temperatures should be considered when choosing salmon farm sites and designing management plans to control sea louse infestations. More broadly, this study demonstrates the utility of matrix population modelling for epidemiological studies.

  18. A Probabilistic Asteroid Impact Risk Model

    Science.gov (United States)

    Mathias, Donovan L.; Wheeler, Lorien F.; Dotson, Jessie L.

    2016-01-01

    Asteroid threat assessment requires the quantification of both the impact likelihood and resulting consequence across the range of possible events. This paper presents a probabilistic asteroid impact risk (PAIR) assessment model developed for this purpose. The model incorporates published impact frequency rates with state-of-the-art consequence assessment tools, applied within a Monte Carlo framework that generates sets of impact scenarios from uncertain parameter distributions. Explicit treatment of atmospheric entry is included to produce energy deposition rates that account for the effects of thermal ablation and object fragmentation. These energy deposition rates are used to model the resulting ground damage, and affected populations are computed for the sampled impact locations. The results for each scenario are aggregated into a distribution of potential outcomes that reflect the range of uncertain impact parameters, population densities, and strike probabilities. As an illustration of the utility of the PAIR model, the results are used to address the question of what minimum size asteroid constitutes a threat to the population. To answer this question, complete distributions of results are combined with a hypothetical risk tolerance posture to provide the minimum size, given sets of initial assumptions. Model outputs demonstrate how such questions can be answered and provide a means for interpreting the effect that input assumptions and uncertainty can have on final risk-based decisions. Model results can be used to prioritize investments to gain knowledge in critical areas or, conversely, to identify areas where additional data has little effect on the metrics of interest.

  19. Virtual impact: visualizing the potential effects of cosmic impact in human history

    Energy Technology Data Exchange (ETDEWEB)

    Masse, W Bruce [Los Alamos National Laboratory; Janecky, David R [Los Alamos National Laboratory; Forte, Maurizio [UC MERCED; Barrientos, Gustavo [UNIV OF LA PLATA, ARG.

    2009-01-01

    Current models indicate that catastrophic impacts by asteroids and comets capable of killing more than one quarter of Earth's human population have occurred on average once every million years; smaller impacts, such the 1908 Tunguska impact that leveled more than 2,000 square km of Siberian forest, occur every 200-300 years. Therefore, cosmic impact likely significantly affected hominine evolution and conceivably played a role in Holocene period human culture history. Regrettably, few archaeologists are trained to appreciate the nature and potential effects of cosmic impact. We have developed a conceptual model for an extensible set of educational and research tools based on virtual reality collaborative environments to engage archaeologists and the general public on the topic of the role of cosmic impact in human history. Our initial focus is on two documented asteroid impacts in Argentina during the period of 4000 to 1000 B.C. Campo del Cicio resulted in an energy release of around 2-3 megatons (100-150 times the Hiroshima atomic weapon), and left several craters and a strewn field covering 493 km{sup 2} in northeastern Argentina. Rio Cuarto was likely more than 1000 megatons and may have devastated an area greater than 50,000 km{sup 2} in central Argentina. We are focusing on reconstructions of these events and their potential effects on contemporary hunter and gatherers. Our vinual reality tools also introduce interactive variables (e.g., impactor physical properties, climate, vegetation, topography, and social complexity) to allow researchers and students to better investigate and evaluate the factors that significantly influence cosmic impact effects.

  20. Methane emission from sub-sea permafrost in the East Siberian Arctic shelf: model-based evaluation of potential impact on global climate

    Science.gov (United States)

    Anisimov, O. A.; Lavrov, S. A.; Borzenkova, I. I.

    2011-12-01

    Several recent publications suggest that the observed high concentration of methane over the East Siberian Shelf (ESS) may be attributed to thawing and increased gas permeability (through taliks) of the sub-sea permafrost. Methane is released from unstable gas hydrates and propagates through newly formed taliks in the bottom sediments to the water and further to the atmosphere. Under sustained warming in the following decades it may have potentially dramatic effect on global climate. In this study we examine this hypothesis using comprehensive modelling approach. Direct observations indicate that since the mid-1980s bottom waters over the ESS warmed by ca. 2.1°C. We used the model to examine whether such changes may have caused substantial degradation of methane bearing sub-sea permafrost and CH4 supersaturation of the ESS sea waters. The model is based on the heat transfer equation and explicitly accounts for the effect of salt diffusion in the bottom sediments by coupling the thermal and mass fluxes. We forced the model by the prescribed seasonal bottom water temperature and salinity to calculate changes in the thermal state of permafrost after the inundation of the ESS, and to predict the changes in the following 1000 years. We used a climate scenario suggesting that at the time of inundation (ca 8 Ky BP) the top sediment layer warmed by ca. 12 °C from -13.5 °C (mean annual air temperature) to -1.5 °C (bottom water temperature). Afterwards temperature remained unchanged until 1985. Since then in accord with modern observations we imposed 0.09°C/year trend until 2100, and prescribed temperature to constant value of 11.5 °C afterwards. The rate of temperature change in the 21st century in this highly schematic scenario by far exceeds all IPCC projections. We did it intentionally to explore the most extreme pathway for potential sub-see permafrost degradation underneath the ESS. Model results indicated ca 1 m deepening of the upper sub-sea permafrost boundary

  1. Impact of Thermostats on Folding and Aggregation Properties of Peptides Using the Optimized Potential for Efficient Structure Prediction Coarse-Grained Model.

    Science.gov (United States)

    Spill, Yannick G; Pasquali, Samuela; Derreumaux, Philippe

    2011-05-10

    The simulation of amyloid fibril formation is impossible if one takes into account all chemical details of the amino acids and their detailed interactions with the solvent. We investigate the folding and aggregation of two model peptides using the optimized potential for efficient structure prediction (OPEP) coarse-grained model and replica exchange molecular dynamics (REMD) simulations coupled with either the Langevin or the Berendsen thermostat. For both the monomer of blocked penta-alanine and the trimer of the 25-35 fragment of the Alzheimer's amyloid β protein, we find little variations in the equilibrium structures and heat capacity curves using the two thermostats. Despite this high similarity, we detect significant differences in the populations of the dominant conformations at low temperatures, whereas the configurational distributions remain the same in proximity of the melting temperature. Aβ25-35 trimers at 300 K have an averaged β-sheet content of 12% and are primarily characterized by fully disordered peptides or a small curved two-stranded β-sheet stabilized by a disordered peptide. In addition, OPEP molecular dynamics simulations of Aβ25-35 hexamers at 300 K with a small curved six-stranded antiparallel β-sheet do not show any extension of the β-sheet content. These data support the idea that the mechanism of Aβ25-35 amyloid formation does not result from a high fraction of extended β-sheet-rich trimers and hexamers.

  2. BPMN Impact on Process Modeling

    OpenAIRE

    Polak, Przemyslaw

    2013-01-01

    Recent years have seen huge rise in popularity of BPMN in the area of business process modeling, especially among business analysts. This notation has characteristics that distinguish it significantly from the previously popular process modeling notations, such as EPC. The article contains the analysis of some important characteristics of BPMN and provides author’s conclusions on the impact that the popularity and specificity of BPMN can have on the practice of process modeling. Author's obse...

  3. Potential Impact of Forest Bioenergy on Environment in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Forest bioenergy is an alternative to fossil energy.Although forest bioenergy is of great value to ease energy supply,there is still a strong call for the research of what impact forest bioenergy plantation will exert on environment if under large scale development.By discussing the resource potential and development status of forest bioenergy,the paper attempts to explore the potential impact of forest bioenergy on environment and give some recommendations to mitigate and even avoid negative impact.

  4. Potential impact of carbonaceous aerosol on the upper troposphere and lower stratosphere (UTLS) and precipitation during Asian summer monsoon in a global model simulation

    KAUST Repository

    Fadnavis, Suvarna

    2017-09-28

    Recent satellite observations show efficient vertical transport of Asian pollutants from the surface to the upper-level anticyclone by deep monsoon convection. In this paper, we examine the transport of carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), into the monsoon anticyclone using of ECHAM6-HAM, a global aerosol climate model. Further, we investigate impacts of enhanced (doubled) carbonaceous aerosol emissions on the upper troposphere and lower stratosphere (UTLS), underneath monsoon circulation and precipitation from sensitivity simulations. The model simulation shows that boundary layer aerosols are transported into the monsoon anticyclone by the strong monsoon convection from the Bay of Bengal, southern slopes of the Himalayas and the South China Sea. Doubling of emissions of both BC and OC aerosols over Southeast Asia (10° S–50° N, 65–155° E) shows that lofted aerosols produce significant warming (0.6–1 K) over the Tibetan Plateau (TP) near 400–200 hPa and instability in the middle/upper troposphere. These aerosols enhance radiative heating rates (0.02–0.03 K day−1) near the tropopause. The enhanced carbonaceous aerosols alter aerosol radiative forcing (RF) at the surface by −4.74 ± 1.42 W m−2, at the top of the atmosphere (TOA) by +0.37 ± 0.26 W m−2 and in the atmosphere by +5.11 ± 0.83 W m−2 over the TP and Indo-Gangetic Plain region (15–35° N, 80–110° E). Atmospheric warming increases vertical velocities and thereby cloud ice in the upper troposphere. Aerosol induced anomalous warming over the TP facilitates the relative strengthening of the monsoon Hadley circulation and increases moisture inflow by strengthening the cross-equatorial monsoon jet. This increases precipitation amounts over India (1–4 mm day−1) and eastern China (0.2–2 mm day−1). These results are significant at the 99 % confidence level.

  5. User behaviour impact on energy savings potential

    DEFF Research Database (Denmark)

    Rose, Jørgen

    2014-01-01

    corresponding to different levels of energy consumption. The purpose of the analysis is to identify the importance of each of the four primary user-related parameters in terms of their relative and combined impact on the overall energy needs before/after upgrading; 1) Indoor temperature, 2) Internal heat gain......, 3) Domestic hot water consumption and 4) Air change rate. Based on the analysis, a methodology is established that can be used to make more realistic and accurate predictions of expected energy savings associated with energy upgrading taking into account user behaviour....

  6. Climate-change impact potentials as an alternative to global warming potentials

    Science.gov (United States)

    Kirschbaum, Miko U. F.

    2014-03-01

    For policy applications, such as for the Kyoto Protocol, the climate-change contributions of different greenhouse gases are usually quantified through their global warming potentials. They are calculated based on the cumulative radiative forcing resulting from a pulse emission of a gas over a specified time period. However, these calculations are not explicitly linked to an assessment of ultimate climate-change impacts. A new metric, the climate-change impact potential (CCIP), is presented here that is based on explicitly defining the climate-change perturbations that lead to three different kinds of climate-change impacts. These kinds of impacts are: (1) those related directly to temperature increases; (2) those related to the rate of warming; and (3) those related to cumulative warming. From those definitions, a quantitative assessment of the importance of pulse emissions of each gas is developed, with each kind of impact assigned equal weight for an overall impact assessment. Total impacts are calculated under the RCP6 concentration pathway as a base case. The relevant climate-change impact potentials are then calculated as the marginal increase of those impacts over 100 years through the emission of an additional unit of each gas in 2010. These calculations are demonstrated for CO2, methane and nitrous oxide. Compared with global warming potentials, climate-change impact potentials would increase the importance of pulse emissions of long-lived nitrous oxide and reduce the importance of short-lived methane.

  7. Current California Drought: Impact on Citrus Trees and Potential Mitigation

    Science.gov (United States)

    California is in another cycle of extended drought. The article reviews and discusses likely impact of the current drought on citrus growers and potential mitigation techniques. Citrus physiological responses to water stress is briefly reviewed. The direct impact of drought on citrus is reduced frui...

  8. Burgundy regional climate change and its potential impact on grapevines

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yiwen [University of Burgundy, Center for Climate Research, UMR 5210 CNRS, Dijon (France); G.C. Rieber Climate Institute at the Nansen Environment and Remote Sensing Center, Bergen (Norway); Castel, Thierry [University of Burgundy, Center for Climate Research, UMR 5210 CNRS, Dijon (France); AgroSup, Department of Agriculture and Environment, Dijon (France); Richard, Yves; Cuccia, Cedric [University of Burgundy, Center for Climate Research, UMR 5210 CNRS, Dijon (France); Bois, Benjamin [University of Burgundy, Center for Climate Research, UMR 5210 CNRS, Dijon (France); IUVV, University of Burgundy, Dijon (France)

    2012-10-15

    ARPEGE general circulation model simulations were dynamically downscaled by The Weather Research and Forecasting Model (WRF) for the study of climate change and its impact on grapevine growth in Burgundy region in France by the mid twenty-first century. Two time periods were selected: 1970-1979 and 2031-2040. The WRF model driven by ERA-INTERIM reanalysis data was validated against in situ surface temperature observations. The daily maximum and minimum surface temperature (T{sub max} and T{sub min}) were simulated by the WRF model at 8 x 8 km horizontal resolution. The averaged daily T{sub max} for each month during 1970-1979 have good agreement with observations, the averaged daily T{sub min} have a warm bias about 1-2 K. The daily T{sub max} and T{sub min} for each month (domain averaged) during 2031-2040 show a general increase. The largest increment ({proportional_to}3 K) was found in summer. The smallest increments (<1 K) were found in spring and fall. The spatial distribution of temperature increment shows a strong meridional gradient, high in south in summer, reversing in winter. The resulting potential warming rate in summer is equivalent to 4.7 K/century under the IPCC A2 emission scenario. The dynamically downscaled T{sub max} and T{sub min} were used to simulate the grape (Pinot noir grape variety) flowering and veraison dates. For 2031-2040, the projected dates are 8 and 12 days earlier than those during 1970-1979, respectively. The simulated hot days increase more than 50% in the two principal grapevine regions. They show strong impact on Pinot noir development. (orig.)

  9. The potential radiological impact from a Brazilian phosphate facility.

    Science.gov (United States)

    Glória dos Reis, Rócio; da Costa Lauria, Dejanira

    2014-10-01

    In the semiarid region of Brazil, a facility for the production of phosphoric acid for fertilizer is in the last stages of the planning phase. The raw feedstock of Santa Quiteria has a very high level of uranium associated with the phosphate in form of apatite. The reaction by which phosphoric acid is produced generates phosphogypsum (PG) as a by-product. The ratio of phosphogypsum to phosphoric acid is approximately 5 to 1. After all of the phosphate has been extracted and processed, it is expected that some 37 million tons of phosphogypsum will be produced, containing 13 Bq/g of (226)Ra and 11 Bq/g of (210)Pb. To assess the potential impact of this PG stack on the surrounding inhabitants, a generic impact assessment was performed using a modeling approach. We estimated the amount and shape of the residue stack and used computational codes for assessing the radiological impact in a prospective risk assessment. A hypothetical farmer scenario was used to calculate two potential doses, one near the site boundary and another directly over the stack piles after the project is shut down. Using a conservative approach, the potential public dose was estimated to be 2.8 mSv/y. This study identified the rainfall erosion index, dissolution rate of PG, radionuclide distribution coefficients and fish consumption rate as parameters where improved information could enhance the quality of the dose assessment. The disposal and shape of the stack is of major concern, since the PG erosion might be the main pathway for the environmental contamination; therefore, studies should be carried out to determine a suitable shape and disposal of the stack. Furthermore, containment barriers should be evaluated for their potential to reduce or avoid environmental contamination by runoff. In addition, the onsite public dose underscores the importance of a planning for remediation of the area after the plant is shut down to assure that neither the public nor the environmental health will be

  10. Bioluminescence Potential Modeling and Forecasting

    Science.gov (United States)

    2013-05-22

    bioluminescence in the wakes of ships, breaking waves, around the bodies of rapidly moving fish and mammals , and from simple agitation of the water with one’s hand...history of brilliant displays of bioluminescence in the wakes of ships, breaking waves, around the bodies of rapidly moving fish and mammals , and from...during the earlier stages of upwelling development. Later, the observed deep offshore BL potential maximum disappeared and became a shallower and much

  11. Impact of ε-polylysine and pectin on the potential gastrointestinal fate of emulsified lipids: In vitro mouth, stomach and small intestine model.

    Science.gov (United States)

    Lopez-Pena, Cynthia Lyliam; Zheng, Bingjing; Sela, David A; Decker, Eric Andrew; Xiao, Hang; McClements, David Julian

    2016-02-01

    ε-Polylysine (ε-PL) is a broad-spectrum antimicrobial biopolymer, suitable for use in foods; however, some studies suggest that it may also inhibit lipid digestion. We therefore examined the effect of polylysine on the digestion of corn oil-in-water emulsions, using a simulated gastrointestinal tract (GIT) that included oral, gastric, and intestinal phases. Both mucin and polylysine had pronounced influences on the particle size, charge, and aggregation state throughout the GIT. However, surprisingly, we found that ε-polylysine did not have a significant impact on lipid digestion, either in the presence or absence of anionic mucin. However, it did form strong electrostatic complexes with mixed micelles, which could decrease the transport and absorption of lipids in the small intestine. These results have important implications for the incorporation of polylysine into food systems, particularly those containing lipophilic nutrients.

  12. Potential impacts of electric vehicles on air quality in Taiwan.

    Science.gov (United States)

    Li, Nan; Chen, Jen-Ping; Tsai, I-Chun; He, Qingyang; Chi, Szu-Yu; Lin, Yi-Chiu; Fu, Tzung-May

    2016-10-01

    The prospective impacts of electric vehicle (EV) penetration on the air quality in Taiwan were evaluated using an air quality model with the assumption of an ambitious replacement of current light-duty vehicles under different power generation scenarios. With full EV penetration (i.e., the replacement of all light-duty vehicles), CO, VOCs, NOx and PM2.5 emissions in Taiwan from a fleet of 20.6 million vehicles would be reduced by 1500, 165, 33.9 and 7.2Ggyr(-1), respectively, while electric sector NOx and SO2 emissions would be increased by up to 20.3 and 12.9Ggyr(-1), respectively, if the electricity to power EVs were provided by thermal power plants. The net impacts of these emission changes would be to reduce the annual mean surface concentrations of CO, VOCs, NOx and PM2.5 by about 260, 11.3, 3.3ppb and 2.1μgm(-3), respectively, but to increase SO2 by 0.1ppb. Larger reductions tend to occur at time and place of higher ambient concentrations and during high pollution events. Greater benefits would clearly be attained if clean energy sources were fully encouraged. EV penetration would also reduce the mean peak-time surface O3 concentrations by up to 7ppb across Taiwan with the exception of the center of metropolitan Taipei where the concentration increased by <2ppb. Furthermore, full EV penetration would reduce annual days of O3 pollution episodes by ~40% and PM2.5 pollution episodes by 6-10%. Our findings offer important insights into the air quality impacts of EV and can provide useful information for potential mitigation actions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Using an Integrated Surface Water - Groundwater Flow Model for Evaluating the Hydrologic Impacts of Historic and Potential Future Dry Periods on Simulated Water Budgets in the Santa Rosa Plain Watershed, Northern California, USA

    Science.gov (United States)

    Hevesi, J. A.; Woolfenden, L. R.; Nishikawa, T.

    2014-12-01

    Communities in the Santa Rosa Plain watershed (SRPW), Sonoma County, CA, USA are experiencing increasing demand for limited water resources. Streamflow in the SRPW is runoff dominated; however, groundwater also is an important resource in the basin. The watershed has an area of 262 mi2 that includes natural, agricultural, and urban land uses. To evaluate the hydrologic system, an integrated hydrologic model was developed using the U.S. Geological Survey coupled groundwater and surface-water flow model, GSFLOW. The model uses a daily time step and a grid-based discretization of the SRPW consisting of 16,741 10-acre cells for 8 model layers to simulate all water budget components of the surface and subsurface hydrologic system. Simulation results indicate significant impacts on streamflow and recharge in response to the below average precipitation during the dry periods. The recharge and streamflow distributions simulated for historic dry periods were compared to future dry periods projected from 4 GCM realizations (two different GCMs and two different CO2 forcing scenarios) for the 21st century, with the dry periods defined as 3 consecutive years of below average precipitation. For many of the projected dry periods, the decreases in recharge and streamflow were greater than for the historic dry periods due to a combination of lower precipitation and increases in simulated evapotranspiration for the warmer 21st century projected by the GCM realizations. The greatest impact on streamflow for both historic and projected future dry periods is the diminished baseflow from late spring to early fall, with an increase in the percentage of intermittent and dry stream reaches. The results indicate that the coupled model is a useful tool for water managers to better understand the potential effects of future dry periods on spatially and temporally distributed streamflow and recharge, as well as other components of the water budget.

  14. Analysis of Settlement Expansion and Urban Growth Modelling Using Geoinformation for Assessing Potential Impacts of Urbanization on Climate in Abuja City, Nigeria

    Directory of Open Access Journals (Sweden)

    Mahmoud Ibrahim Mahmoud

    2016-03-01

    Full Text Available This study analyzed the spatiotemporal pattern of settlement expansion in Abuja, Nigeria, one of West Africa’s fastest developing cities, using geoinformation and ancillary datasets. Three epochs of Land-use Land-cover (LULC maps for 1986, 2001 and 2014 were derived from Landsat images using support vector machines (SVM. Accuracy assessment (AA of the LULC maps based on the pixel count resulted in overall accuracy of 82%, 92% and 92%, while the AA derived from the error adjusted area (EAA method stood at 69%, 91% and 91% for 1986, 2001 and 2014, respectively. Two major techniques for detecting changes in the LULC epochs involved the use of binary maps as well as a post-classification comparison approach. Quantitative spatiotemporal analysis was conducted to detect LULC changes with specific focus on the settlement development pattern of Abuja, the federal capital city (FCC of Nigeria. Logical transitions to the urban category were modelled for predicting future scenarios for the year 2050 using the embedded land change modeler (LCM in the IDRISI package. Based on the EAA, the result showed that urban areas increased by more than 11% between 1986 and 2001. In contrast, this value rose to 17% between 2001 and 2014. The LCM model projected LULC changes that showed a growing trend in settlement expansion, which might take over allotted spaces for green areas and agricultural land if stringent development policies and enforcement measures are not implemented. In conclusion, integrating geospatial technologies with ancillary datasets offered improved understanding of how urbanization processes such as increased imperviousness of such a magnitude could influence the urban microclimate through the alteration of natural land surface temperature. Urban expansion could also lead to increased surface runoff as well as changes in drainage geography leading to urban floods.

  15. Phytoavailability of cadmium (Cd) to Pak choi (Brassica chinensis L.) grown in Chinese soils: a model to evaluate the impact of soil Cd pollution on potential dietary toxicity.

    Science.gov (United States)

    Rafiq, Muhammad Tariq; Aziz, Rukhsanda; Yang, Xiaoe; Xiao, Wendan; Stoffella, Peter J; Saghir, Aamir; Azam, Muhammad; Li, Tingqiang

    2014-01-01

    Food chain contamination by soil cadmium (Cd) through vegetable consumption poses a threat to human health. Therefore, an understanding is needed on the relationship between the phytoavailability of Cd in soils and its uptake in edible tissues of vegetables. The purpose of this study was to establish soil Cd thresholds of representative Chinese soils based on dietary toxicity to humans and develop a model to evaluate the phytoavailability of Cd to Pak choi (Brassica chinensis L.) based on soil properties. Mehlich-3 extractable Cd thresholds were more suitable for Stagnic Anthrosols, Calcareous, Ustic Cambosols, Typic Haplustalfs, Udic Ferrisols and Periudic Argosols with values of 0.30, 0.25, 0.18, 0.16, 0.15 and 0.03 mg kg-1, respectively, while total Cd is adequate threshold for Mollisols with a value of 0.86 mg kg-1. A stepwise regression model indicated that Cd phytoavailability to Pak choi was significantly influenced by soil pH, organic matter, total Zinc and Cd concentrations in soil. Therefore, since Cd accumulation in Pak choi varied with soil characteristics, they should be considered while assessing the environmental quality of soils to ensure the hygienically safe food production.

  16. China Refrigerator Information Label: Specification Development and Potential Impact

    Energy Technology Data Exchange (ETDEWEB)

    Fridley, David; Fridley, David; Zheng, Nina; Zhou, Nan; Aden, Nathaniel; Lin, Jiang; Jianhong, Cheng; Sakamoto, Tomoyuki

    2008-02-01

    requirements to achieve grade 1 on the label are now virtually as stringent as those for US Energy Star-qualified or EU A-grade refrigerators. When the energy information label went into effect in March 2005, refrigerator manufacturers were required to display their declared level of efficiency on the label and report it to the China Energy Label Center (CELC), a newly established unit of CNIS responsible for label program management. Because of the visible nature of the label, it was found, through a METI/IEEJ-supported study, that MEPS non-compliance dropped from 4% to zero after the label became mandatory, and that the percentage of higher-grade refrigerators increased. This suggests that the label itself does have potential for shifting the market to higher-efficiency models (Lin 2007). One challenge, however, of assessing this potential impact is the lack of a comprehensive baseline of market efficiency and a program to evaluate the market impact on a yearly basis. As a result, the impact evaluation in this study draws upon the market transformation experience of the related EU energy information label, for which quantitative assessments of its market impact exist. By assuming a parallel process unfolding in China, it is possible to look at the potential impact of the label to 2020. The results of the analysis demonstrates that a robust market transformation program in China focused on the energy information label could save substantial amounts of electricity by 2020, totaling 16.4 TWh annually by that year, compared to a case in which the efficiency distribution of refrigerators was frozen at the 2007 level. Remarkably, the impact of a successful market transformation program with the label would essentially flatten the consumption of electricity for refrigerator use throughout most of the next decade, despite the expectations of continued growth in total stock by nearly 190 million units. At the end of this period, total consumption begins to rise again, as the least

  17. Model Potentials for a C60 Shell

    CERN Document Server

    Manson, S T; Msezane, A Z

    2016-01-01

    The spatial distribution of electric charges forming a square well potential has been analyzed. It is shown that this potential is created by two concentric spheres with a double layer of charges. A C60 shell potential has been calculated under the assumption that it is formed by the averaged charge density of a neutral atom. It is further demonstrated that the phenomenological potentials simulating the C60 shell potential belong to a family of potentials with a non-flat bottom. Two possible types of C60 model potentials are proposed and their parameters have been calculated. AMS (MOS) Subject Classification. 62P35, 81V55

  18. Historically Large Geomagnetic Storms and Potential Electric Power Grid Impacts

    Science.gov (United States)

    Kappenman, J. G.

    2004-05-01

    While recent work has been done to examine the possible Dst Intensity of historically large geomagnetic storms, the impacts caused to modern day electric power grids from these storms occurs due to rapid rate-of-change of regional geomagnetic fields which in most cases are driven by large ionospheric electrojet current intensifications. These temporally and spatially dynamic disturbance morphologies are not well-characterized by Dst or other broad geomagnetic storm indices. For estimates of storm intensity that correctly scale the threat potential to electric power grids, it is necessary to describe the rate-of-change of geomagnetic field. The rate-of-change of the geomagnetic field (dB/dt usually measured in nT/min) creates at ground level a geoelectric field that causes the flow of geomagnetically-induced currents (GIC) through ground connection points in electric power grids. Therefore in general, the larger the dB/dt, the larger the resulting geo-electric field and GIC in exposed power grid infrastructures and the greater the operational impact these induced currents will have on the power grid. Both extensive modeling analysis and recent operational experience suggests that power grids are becoming more vulnerable to geomagnetic storms as they grow in size and complexity. Also, large power grid blackouts have occurred at relatively low geomagnetic storm intensities. For example, the regional disturbance intensity that triggered the Hydro Quebec collapse during the March 13, 1989 Superstorm only reached an intensity of 479 nT/min. Large numbers of power system impacts in the United States were also observed for intensities that ranged from 300 to 600 nT/min during this storm. Yet both recent and historical data indicate that storms with disturbance levels that range from 2000 nT/min to as much ~5000 nT/min may be possible over extensive regions at latitudes of concern for large continental power grids across North America and Europe. Large GIC have also been

  19. Smooth models for the Coulomb potential

    CERN Document Server

    González-Espinoza, Cristina E; Karwowski, Jacek; Savin, Andreas

    2016-01-01

    Smooth model potentials with parameters selected to reproduce the spectrum of one-electron atoms are used to approximate the singular Coulomb potential. Even when the potentials do not mimic the Coulomb singularity, much of the spectrum is reproduced within the chemical accuracy. For the Hydrogen atom, the smooth approximations to the Coulomb potential are more accurate for higher angular momentum states. The transferability of the model potentials from an attractive interaction (Hydrogen atom) to a repulsive one (Harmonium and the uniform electron gas) is discussed.

  20. Potential Impacts of Climate Change on Hydrological Extremes Across Europe

    Science.gov (United States)

    Donnelly, C.; Dahné, J.; Andersson, J.; Arheimer, B.

    2012-04-01

    Regional scale predictions of floods and droughts are particularly useful for demonstrating to the general public the potential impacts of climate change, for example for the European continent. The E-HYPE pan-European application of the HYPE model was used to simulate hydrological data at a median subbasin resolution of 215 km2 for all of Europe. This data was then used to calculate, at this resolution, a number of drought and flood indices for today's climate and for a small ensemble of bias-corrected regional climate change projections. Indices calculated include the 1 in 10 and 1 in 50 year flood levels, mean annual high water discharge, mean annual low water discharge, number of days per year with hydrological drought and agricultural drought and the intensity of days with agricultural drought. Maps showing the relative changes in these variables for various time periods in the future were then made from the results. These maps may then be used to indicate 'hot-spots' for where hydrological extremes are important today and for where large changes in flood and drought levels or frequency may be expected for a future climate. The E-HYPE model, used to make these predictions, has been evaluated using a large data set of discharge observations (over 800) at independent sites across Europe. The model uses readily available pan-European input data sets and a single parameter set across the entire continent. This homogenous treatment of the model domain means that results from all over Europe are easily comparable. Validation is made to ensure the model simulates discharge volumes and daily variation at each station, but novel for this study is that a validation of the model's ability to capture the drought and flood indices was also made. Although E-HYPE is a large domain model, the high subbasin resolution means that these results are available at high-resolution across Europe. Nevertheless, prediction uncertainty increases with decreasing catchment scale, so this

  1. A Potential Model for Cylindrical Pores

    Institute of Scientific and Technical Information of China (English)

    张现仁; 汪文川

    2001-01-01

    An analytical potential for cylindrical pores has been derived by introducing a variational method into the integration for the calculation of the interaction energy between the wall molecules and a test molecule, all of which are represented by Lennard-Jones potential. The model proposed gives good fit to the results from the cylindrical surface model and the pseudoatom model. To test the potential proposed rigorously, we have carried out grand canonical ensemble Monte Carlo(GCMC) simulation of nitrogen in the MCM-41 pore at 77 K, and compared the simulated adsorption isotherm with the experimental data reported in the literature. The simulated isotherm from our model is in almost qualitative agreement with experiment. Consequently, the model proposed provides an explicit and accurate description of cylindrical pores represented by the Lennard-Jones potential. Moreover, the model can be easily applied to a variety of cylindrical pores, ranging from cylindrical surface to finite thickness walls, in both theoretical studies and computer simulations.

  2. Evaluating Damage Potential in Security Risk Scoring Models

    Directory of Open Access Journals (Sweden)

    Eli Weintraub

    2016-05-01

    Full Text Available A Continuous Monitoring System (CMS model is presented, having new improved capabilities. The system is based on the actual real-time configuration of the system. Existing risk scoring models assume damage potential is estimated by systems' owner, thus rejecting the information relying in the technological configuration. The assumption underlying this research is based on users' ability to estimate business impacts relating to systems' external interfaces which they use regularly in their business activities, but are unable to assess business impacts relating to internal technological components. According to the proposed model systems' damage potential is calculated using technical information on systems' components using a directed graph. The graph is incorporated into the Common Vulnerability Scoring Systems' (CVSS algorithm to produce risk scoring measures. Framework presentation includes system design, damage potential scoring algorithm design and an illustration of scoring computations.

  3. Potential Health Impacts of Bauxite Mining in Kuantan

    OpenAIRE

    Abdullah, Noor Hisham; Mohamed, Norlen; Sulaiman, Lokman Hakim; Zakaria, Thahirahtul Asma; Rahim, Daud Abdul

    2016-01-01

    Bauxite mining is not known to most Malaysian except recently due to environmental pollution issues in Kuantan, Pahang. Potential impacts are expected to go beyond physical environment and physical illness if the situation is not controlled. Loss of economic potentials, and the presence of unpleasant red dust causing mental distress, anger and community outrage. More studies are needed to associate it with chronic physical illness. While evidences are vital for action, merely waiting for a di...

  4. Potential impacts of nanotechnology on energy transmission applications and needs.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Environmental Science Division

    2007-11-30

    The application of nanotechnologies to energy transmission has the potential to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of-way (ROW) development and use. For example, some nanotechnology applications may produce materials (e.g., cables) that are much stronger per unit volume than existing materials, enabling reduced footprints for construction and maintenance of electricity transmission lines. Other applications, such as more efficient lighting, lighter-weight materials for vehicle construction, and smaller batteries having greater storage capacities may reduce the need for long-distance transport of energy, and possibly reduce the need for extensive future ROW development and many attendant environmental impacts. This report introduces the field of nanotechnology, describes some of the ways in which processes and products developed with or incorporating nanomaterials differ from traditional processes and products, and identifies some examples of how nanotechnology may be used to reduce potential ROW impacts. Potential environmental, safety, and health impacts are also discussed.

  5. Potential Economic Impacts from Offshore Wind in the Mid-Atlantic Region (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, D.; Tegen, S.; Flores, F.; Zammit, D.; Kraemer, M.; Miles, J.

    2014-01-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by the National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts for the Mid-Atlantic region.

  6. Potential Economic Impacts from Offshore Wind in the Great Lakes Region (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S.; Keyser, D.

    2014-01-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by DOE's National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts identified by the study for the Great Lakes region.

  7. Potential Economic Impacts from Offshore Wind in the Gulf of Mexico Region (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    Flores, F.; Keyser, D.; Tegen, S.

    2014-01-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by the National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts for the Gulf of Mexico region.

  8. Potential impact of enhanced practice efficiency on endoscopy waiting times.

    LENUS (Irish Health Repository)

    Harewood, G C

    2009-06-01

    With the growing demand on endoscopy services, optimising practice efficiency has assumed increasing importance. Prior research has identified practice changes, which increase the efficiency in endoscopy. In this study, the potential impact of these practice changes on the current and projected future endoscopy waiting times at our institution was assessed.

  9. Short Note Potential impacts of climate change on African agriculture

    African Journals Online (AJOL)

    Short Note Potential impacts of climate change on African agriculture. ... and animals live, such as food production, availability and use of water and health risks. ... It seems obvious that any significant change in climate on a global scale would ...

  10. Potential impacts of climatic change upon geographical distributions of birds

    DEFF Research Database (Denmark)

    Huntley, Brian; Collingham, Yvonne C.; Green, Rhys E.

    2006-01-01

    sites, and also potentially increases the distances they must migrate seasonally. Without implementation of new conservation measures, these impacts will be severe and are likely to be exacerbated by land-use change and associated habitat fragmentation. Unless strenuous efforts are made to address...

  11. The Equal Rights Amendment: Its Potential Impact on Family Life

    Science.gov (United States)

    Myricks, Noel

    1977-01-01

    The potential impact of the proposed Equal Rights Amendment (ERA) can be measured in areas such as alimony, child support, child custody, property ownership, divorce and rights of consortium. Statutes which use sex as the sole criterion would be unconstitutional. (Author)

  12. Projected Statewide Impact of "Opportunity Culture" School Models

    Science.gov (United States)

    Holly, Christen; Dean, Stephanie; Hassel, Emily Ayscue; Hassel, Bryan C.

    2014-01-01

    This brief estimates the impact of a statewide implementation of Opportunity Culture models, using North Carolina as an example. Impacts estimated include student learning outcomes, gross state product, teacher pay, and other career characteristics, and state income tax revenue. Estimates indicate the potential for a statewide transition to…

  13. Potential Impacts of Climate Change in the Great Lakes Region

    Science.gov (United States)

    Winkler, J. A.

    2011-12-01

    Climate change is projected to have substantial impacts in the Great Lakes region of the United States. One intent of this presentation is to introduce the Great Lakes Integrated Sciences and Assessments Center (GLISA), a recently-funded NOAA RISA center. The goals and unique organizational structure of GLISA will be described along with core activities that support impact and assessment studies in the region. Additionally, observed trends in temperature, precipitation including lake effect snowfall, and lake temperatures and ice cover will be summarized for the Great Lakes region, and vulnerabilities to, and potential impacts of, climate change will be surveyed for critical natural and human systems. These include forest ecosystems, water resources, traditional and specialized agriculture, and tourism/recreation. Impacts and vulnerabilities unique to the Great Lakes region are emphasized.

  14. The Potential Socio-economic Impacts of Gas Hydrate Exploitation

    Science.gov (United States)

    Riley, David; Schaafsma, Marije; Marin-Moreno, Héctor; Minshull, Tim A.

    2017-04-01

    Gas hydrate has garnered significant interest as a possible clean fossil fuel resource, especially in countries with limited energy supplies. Whilst the sector is still in its infancy, there has been escalating development towards commercial production. To the best of our knowledge it appears that, despite its potential, existing analyses of the social and economic impacts of hydrate exploitation have been very limited. Before any viable commercial production commences, the potential impacts across society must be considered. It is likely that such impact assessments will become a legislative requirement for hydrate exploitation, similar to their requirement in conventional oil and gas projects. Social impact analysis should guide hydrate development to have the highest possible net benefits to the human and natural environment. Without active commercial hydrate operations, potential socio-economic impacts can only be inferred from other fossil fuel resource focused communities, including those directly or indirectly affected by the oil and gas industry either in the vicinity of the well or further afield. This review attempts to highlight potential impacts by synthesising current literature, focusing on social impacts at the extraction stage of operation, over time. Using a DPSIR (Driving forces; Pressures; States; Impacts; Responses) framework, we focus on impacts upon: health and wellbeing, land use and access, services and infrastructure, population, employment opportunities, income and lifestyles. Human populations directly or indirectly related with fossil fuel extraction activities often show boom and bust dynamics, and so any impacts may be finite or change temporally. Therefore potential impacts have to be reassessed throughout the lifetime of the exploitation. Our review shows there are a wide range of possible positive and negative socio-economic impacts from hydrate development. Exploitation can bring jobs and infrastructure to remote areas, although

  15. Collection of Condensate Water: Global Potential and Water Quality Impacts

    KAUST Repository

    Loveless, Kolin Joseph

    2012-12-28

    Water is a valuable resource throughout the world, especially in hot, dry climates and regions experiencing significant population growth. Supplies of fresh water are complicated by the economic and political conditions in many of these regions. Technologies that can supply fresh water at a reduced cost are therefore becoming increasingly important and the impact of such technologies can be substantial. This paper considers the collection of condensate water from large air conditioning units as a possible method to alleviate water scarcity issues. Using the results of a climate model that tested data collected from 2000 to 2010, we have identified areas in the world with the greatest collection potential. We gave special consideration to areas with known water scarcities, including the coastal regions of the Arabian Peninsula, Sub-Saharan Africa and South Asia. We found that the quality of the collected water is an important criterion in determining the potential uses for this water. Condensate water samples were collected from a few locations in Saudi Arabia and detailed characterizations were conducted to determine the quality of this water. We found that the quality of condensate water collected from various locations and types of air conditioners was very high with conductivities reaching as low as 18 μS/cm and turbidities of 0. 041 NTU. The quality of the collected condensate was close to that of distilled water and, with low-cost polishing treatments, such as ion exchange resins and electrochemical processes, the condensate quality could easily reach that of potable water. © 2012 Springer Science+Business Media Dordrecht.

  16. Baby Skyrme models without a potential term

    CERN Document Server

    Ashcroft, Jennifer; Krusch, Steffen

    2015-01-01

    We develop a one-parameter family of static baby Skyrme models that do not require a potential term to admit topological solitons. This is a novel property as all currently known baby Skyrme models must contain a potential term in order to have stable soliton solutions, though the Skyrme model does not require this. Our new models satisfy an energy bound that is linear in terms of the topological charge and can be saturated in an extreme limit. They also satisfy a virial theorem that is shared by the Skyrme model. We calculate the solitons of our new models numerically and observe that their form depends significantly on the choice of parameter. In one extreme, we find compactons whilst at the other there is a scale invariant model in which solitons can be obtained exactly as solutions to a Bogomolny equation. We provide an initial investigation into these solitons and compare them with the baby Skyrmions of other models.

  17. Potential Models for Radiative Rare B Decays

    CERN Document Server

    Ahmad, S

    2002-01-01

    We compute the branching ratios for the radiative rare decays of B into K-Meson states and compare them to the experimentally determined branching ratio for inclusive decay b -> s gamma using non relativistic quark model, and form factor definitions consistent with HQET covariant trace formalism. Such calculations necessarily involve a potential model. In order to test the sensitivity of calculations to potential models we have used three different potentials, namely linear potential, screening confining potential and heavy quark potential as it stands in QCD.We find the branching ratios relative to the inclusive b ->s gamma decay to be (16.07\\pm 5.2)% for B -> K^* (892)gamma and (7.25\\pm 3.2)% for B -> K_2^* (1430)gamma for linear potential. In the case of the screening confining potential these values are (19.75\\pm 5.3)% and (4.74\\pm 1.2)% while those for the heavy quark potential are (11.18\\pm 4.6)% and (5.09\\pm 2.7)% respectively. All these values are consistent with the corresponding present CLEO experim...

  18. The Folding Deuteron Optical Model Potentials

    CERN Document Server

    Li, Xiaohua; Cai, Chonghai

    2008-01-01

    For 52 target nuclei with deuteron as projectile, we calculate the reaction cross sections and elastic scattering angular distributions, as well as the $\\chi^2$ values for 11 kinds of deuteron optical model potentials: our global deuteron optical potentials and 10 folding optical potentials calculated with 2 phenomenological global nucleon optical potentials given by Koning \\textit{et al}(KD) and by Varner\\textit{et al}(CH89), and 8 microscopic nucleon optical potentials with the generalized Skyrme force parameters(GS1-6) and modified Skyrme force parameters(SKa, SKb). We find that for constructing the folding deuteron optical potential, both SKa and SKb are the best Skyrme force parameters of the microscopic nucleon optical potential proposed by Q. Shen \\textit{et al}.

  19. Mineral potential mapping with mathematical geological models

    NARCIS (Netherlands)

    Porwal, A.K.

    2006-01-01

    Mathematical geological models are being increasingly used by natural resources delineation and planning agencies for mapping areas of mineral potential in order to optimize land use in accordance with socio-economic needs of the society. However, a key problem in spatial-mathematical-model-based mi

  20. Mineral potential mapping with mathematical geological models

    NARCIS (Netherlands)

    Porwal, A.K.

    2006-01-01

    Mathematical geological models are being increasingly used by natural resources delineation and planning agencies for mapping areas of mineral potential in order to optimize land use in accordance with socio-economic needs of the society. However, a key problem in spatial-mathematical-model-based

  1. Potential impact of high temperature superconductors on MAGLEV transportation

    Science.gov (United States)

    Hull, J. R.

    1992-02-01

    This report describes the potential impact that high-temperature superconductors (HTS's) may have on transportation by magnetically levitated vehicles. It is not intended as a planning document, but rather as an overview of potential HTS applications to magnetic-levitation (maglev) transportation. The present maglev program in the United States is summarized, and the present status of development of HTS's is described. Areas identified for possible impact on maglev technology are: (1) liquid-nitrogen-cooled levitation magnets; (2) magnetic-field shielding of the passenger compartment; (3) superconducting magnetic energy storage for wayside power; (4) superconducting bearings for flywheel energy storage for wayside power; (5) downleads to continuously powered liquid-helium-cooled levitation magnets; and (6) liquid-hydrogen-cooled levitation magnets and linear motor propulsion windings. Major technical issues that remain to be resolved for the use of HTS's in maglev applications include thermal magnetic stability, mechanical properties, and critical current density at liquid-nitrogen temperatures.

  2. Potential impact of high temperature superconductors on maglev transportation

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J.R.

    1992-02-01

    This report describes the potential impact that high-temperature superconductors (HTSs) may have on transportation by magnetically levitated vehicles. It is not intended as a planning document, but rather as an overview of potential HTS applications to magnetic-levitation (maglev) transportation. The present maglev program in the United States is summarized, and the present status of development of HTSs is described. Areas identified for possible impact on maglev technology are (1) liquid-nitrogen-cooled levitation magnets, (2) magnetic-field shielding of the passenger compartment, (3) superconducting magnetic energy storage for wayside power, (4) superconducting bearings for flywheel energy storage for wayside power, (5) downleads to continuously powered liquid-helium-cooled levitation magnets, and (6) liquid-hydrogen-cooled levitation magnets and linear motor propulsion windings. Major technical issues that remain to be resolved for the use of HTSs in maglev applications include thermal magnetic stability, mechanical properties, and critical current density at liquid-nitrogen temperatures.

  3. Elucidating the Potential Biological Impact of Cellulose Nanocrystals

    Directory of Open Access Journals (Sweden)

    Sandra Camarero-Espinosa

    2016-07-01

    Full Text Available Cellulose nanocrystals exhibit an interesting combination of mechanical properties and physical characteristics, which make them potentially useful for a wide range of consumer applications. However, as the usage of these bio-based nanofibers increases, a greater understanding of human exposure addressing their potential health issues should be gained. The aim of this perspective is to highlight how knowledge obtained from studying the biological impact of other nanomaterials can provide a basis for future research strategies to deduce the possible human health risks posed by cellulose nanocrystals.

  4. Business model elements impacting cloud computing adoption

    DEFF Research Database (Denmark)

    Bogataj, Kristina; Pucihar, Andreja; Sudzina, Frantisek

    The paper presents a proposed research framework for identification of business model elements impacting Cloud Computing Adoption. We provide a definition of main Cloud Computing characteristics, discuss previous findings on factors impacting Cloud Computing Adoption, and investigate technology...... adoption theories, such as Diffusion of Innovations, Technology Acceptance Model, Unified Theory of Acceptance and Use of Technology. Further on, at research model for identification of Cloud Computing Adoption factors from a business model perspective is presented. The following business model building...

  5. Business model elements impacting cloud computing adoption

    DEFF Research Database (Denmark)

    Bogataj, Kristina; Pucihar, Andreja; Sudzina, Frantisek

    adoption theories, such as Diffusion of Innovations, Technology Acceptance Model, Unified Theory of Acceptance and Use of Technology. Further on, at research model for identification of Cloud Computing Adoption factors from a business model perspective is presented. The following business model building......The paper presents a proposed research framework for identification of business model elements impacting Cloud Computing Adoption. We provide a definition of main Cloud Computing characteristics, discuss previous findings on factors impacting Cloud Computing Adoption, and investigate technology...

  6. The National Nanotechnology Initiative: Potential Impact on DoD

    Science.gov (United States)

    2016-07-13

    number. 1. REPORT DATE 19 MAR 2007 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE The National Nanotechnology Initiative...THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 The National Nanotechnology Initiative: Potential Impact on...that may be technologically exploitable. Why is nanotechnology the current rage? First, beginning in 1980, the discovery and development of

  7. Impact of vegetation variability on potential predictability and skill of EC-Earth simulations

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Martina; Hurk, Bart van den; Haarsma, Reindert; Hazeleger, Wilco [Royal Netherlands Meteorological Institute (KNMI), De Bilt (Netherlands)

    2012-12-15

    Climate models often use a simplified and static representation of vegetation characteristics to determine fluxes of energy, momentum and water vapour between surface and lower atmosphere. In order to analyse the impact of short term variability in vegetation phenology, we use remotely-sensed leaf area index and albedo products to examine the role of vegetation in the coupled land-atmosphere system. Perfect model experiments are carried out to determine the impact of realistic temporal variability of vegetation on potential predictability of evaporation and temperature, as well as model skill of EC-Earth simulations. The length of the simulation period is hereby limited by the availability of satellite products to 2000-2010. While a realistic representation of vegetation positively influences the simulation of evaporation and its potential predictability, a positive impact on 2 m temperature is of smaller magnitude, regionally confined and more pronounced in climatically extreme years. (orig.)

  8. Potential for impact glass to preserve microbial metabolism

    Science.gov (United States)

    Sapers, Haley M.; Banerjee, Neil R.; Osinski, Gordon R.

    2015-11-01

    Here we provide the first high-resolution geochemical evidence for microbial metabolism to be preserved in impact-generated materials. This study is unique as not only do we merge complimentary analytical techniques such as high-resolution spectromicroscopy to assess the biogenicity of tubules in impact glasses, but we compare these results to those from co-occurring abiotic quench crystallites as an intrinsic negative control. Scanning transmission X-ray microscopy (STXM) near edge X-ray absorption fine structure spectroscopy (NEXAFS) at the Fe L3- and C K-edges revealed iron speciation patterns and organic C associated with tubular features in the impact glass. The high spatial resolution of STXM combined with NEXAFS allowed organic carbon to be localized to the tubule features. The fine energy resolution of NEXAFS allowed for unique populations of organic carbon to be spectrally differentiated between the tubule features and the matrix. The distinct and systematic variation in iron redox states observed is consistent with microbially mediated dissimilatory iron reduction. The Ries tubules comprise the first trace fossil preserved in a substrate unique to the impact process, thus illustrating the potential for microbial metabolism to be preserved in impact materials.

  9. Potential impact of seawater uranium extraction on marine life

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jiyeon; Jeters, Robert T.; Kuo, Li-Jung; Strivens, Jonathan E.; Gill, Gary A.; Schlafer, Nicholas J.; Bonheyo, George T.

    2016-02-18

    A variety of adsorbent materials have been developed to extract uranium from seawater as an alternative traditional terrestrial mining. A large-scale deployment of these adsorbents would be necessary to recover useful quantities of uranium and this raises a number of concerns regarding potential impacts on the surrounding marine environment. Two concerns are whether or not the adsorbent materials are toxic and any potentially harmful effects that may result from depleting uranium or vanadium (also highly concentrated by the adsorbents) from the local environment. To test the potential toxicity of the adsorbent with or without bound metals, Microtox assays were used to test both direct contact toxicity and the toxicity of any leachate in the seawater. The Microtox assay was chosen because it the detection of non-specific mechanisms of toxicity. Toxicity was not observed with leachates from any of 68 adsorbent materials that were tested, but direct contact with some adsorbents at very high adsorbent con-centrations exhibited toxicity. These concentrations are, however, very unlikely to be seen in the actual marine deployment. Adsor-bents that accumulated uranium and trace metals were also tested for toxicity, and no toxic effect was observed. Biofouling on the adsorbents and in columns or flumes containing the adsorbents also indicates that the adsorbents are not toxic and that there may not be an obvious deleterious effect resulting from removing uranium and vanadium from seawater. An extensive literature search was also performed to examine the potential impact of uranium and vanadium extraction from seawater on marine life using the Pacific Northwest National Laboratory’s (PNNL’s) document analysis tool, IN-SPIRE™. Although other potential environmental effects must also be considered, results from both the Microtox assay and the literature search provide preliminary evidence that uranium extraction from seawater could be performed with minimal impact on

  10. Preferred drug lists: Potential impact on healthcare economics

    Directory of Open Access Journals (Sweden)

    Kimberly Ovsag

    2008-04-01

    Full Text Available Kimberly Ovsag, Sabrina Hydery, Shaker A MousaPharmaceutical Research Institute at Albany College of Pharmacy, Albany, New York, USAObjectives: To analyze the implementation of Medicaid preferred drug lists (PDLs in a number of states and determine its impact on quality of care and cost relative to other segments of healthcare.Methods: We reviewed research and case studies found by searching library databases, primarily MEDLINE and EBSCOHost, and searching pertinent journals. Keywords initially included “drug lists,” “prior authorization,” “prior approval,” and “Medicaid.” We added terms such as “influence use of other healthcare services,” “quality of care,” and “overall economic impact.” We mainly used primary sources.Results: Based on our literature review, we determined that there are a number of issues regarding Medicaid PDLs that need to be addressed. Some issues include: (a the potential for PDLs to influence the utilization of other healthcare services, (b criteria used by Medicaid for determining acceptance of drugs onto a PDL, (c the effect of PDL implementation on compliance to new regimens, (d the potential effects of restricting medication availability on quality of care, (e administrative costs associated with PDLs, and (f satisfaction rates among patients and medical providers. This review highlighted expected short-term cost savings with limited degree of compromised quality of PDL implementation, but raised the concern about the potential long-term decline in quality of care and overall economic impact.Conclusions: The number of concerns raised indicates that further studies are warranted regarding both short-term cost benefits as well as potential long-term effects of Medicaid PDL implementation. Objective analysis of these effects is necessary to ensure cost-effectiveness and quality of care.Keywords: preferred drug lists, medicaid, healthcare costs, managed care

  11. Impact modeling with Smooth Particle Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Stellingwerf, R.F.; Wingate, C.A.

    1993-07-01

    Smooth Particle Hydrodynamics (SPH) can be used to model hypervelocity impact phenomena via the addition of a strength of materials treatment. SPH is the only technique that can model such problems efficiently due to the combination of 3-dimensional geometry, large translations of material, large deformations, and large void fractions for most problems of interest. This makes SPH an ideal candidate for modeling of asteroid impact, spacecraft shield modeling, and planetary accretion. In this paper we describe the derivation of the strength equations in SPH, show several basic code tests, and present several impact test cases with experimental comparisons.

  12. Modeling Rotating Turbulent Flows with the Body Force Potential Model.

    Science.gov (United States)

    Bhattacharya, Amitabh; Perot, Blair

    2000-11-01

    Like a Reynolds Stress Transport equation model, the turbulent potential model has an explicit Coriolis acceleration term that appears in the model that accounts for rotation effects. In this work the additional secondary effects that system rotation has on the dissipation rate, return-to-isotropy, and fast pressure strain terms are also included in the model. The resulting model is tested in the context of rotating isotropic turbulence, rotating homogeneous shear flow, rotating channel flow, and swirling pipe flow. Many of the model changes are applicable to Reynolds stress transport equation models. All model modifications are frame indifferent.

  13. Analytic Models of Plausible Gravitational Lens Potentials

    Energy Technology Data Exchange (ETDEWEB)

    Baltz, Edward A.; Marshall, Phil; Oguri, Masamune

    2007-05-04

    Gravitational lenses on galaxy scales are plausibly modeled as having ellipsoidal symmetry and a universal dark matter density profile, with a Sersic profile to describe the distribution of baryonic matter. Predicting all lensing effects requires knowledge of the total lens potential: in this work we give analytic forms for that of the above hybrid model. Emphasizing that complex lens potentials can be constructed from simpler components in linear combination, we provide a recipe for attaining elliptical symmetry in either projected mass or lens potential.We also provide analytic formulae for the lens potentials of Sersic profiles for integer and half-integer index. We then present formulae describing the gravitational lensing effects due to smoothly-truncated universal density profiles in cold dark matter model. For our isolated haloes the density profile falls off as radius to the minus fifth or seventh power beyond the tidal radius, functional forms that allow all orders of lens potential derivatives to be calculated analytically, while ensuring a non-divergent total mass. We show how the observables predicted by this profile differ from that of the original infinite-mass NFW profile. Expressions for the gravitational flexion are highlighted. We show how decreasing the tidal radius allows stripped haloes to be modeled, providing a framework for a fuller investigation of dark matter substructure in galaxies and clusters. Finally we remark on the need for finite mass halo profiles when doing cosmological ray-tracing simulations, and the need for readily-calculable higher order derivatives of the lens potential when studying catastrophes in strong lenses.

  14. Potential impact of superconductivity on power quality enhancment

    Science.gov (United States)

    McConnell, B. W.

    1992-02-01

    Electric power quality problems are estimated to cost U.S. industry 26 billion dollars per year in lost production. This paper provides a summary of the problem's magnitude, an overview of the underlying causes, discusses the present methods used by industry to reduce the problem's impact and the associated cost, and examines the potential for superconducting technology to effect alternative solutions. The present market for uninterruptible power supplies (UPS) and power conditioners is also discussed and the benefits of applying high temperature superconductors (HTS) are summarized.

  15. JEDI: Jobs and Economic Development Impact Model

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-13

    The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local (usually state) level. First developed by NREL's researchers to model wind energy jobs and impacts, JEDI has been expanded to also estimate the economic impacts of biofuels, coal, conventional hydro, concentrating solar power, geothermal, marine and hydrokinetic power, natural gas, photovoltaics, and transmission lines. This fact sheet focuses on JEDI for wind energy projects and is revised with 2017 figures.

  16. Potential Health Impacts of Bauxite Mining in Kuantan.

    Science.gov (United States)

    Abdullah, Noor Hisham; Mohamed, Norlen; Sulaiman, Lokman Hakim; Zakaria, Thahirahtul Asma; Rahim, Daud Abdul

    2016-05-01

    Bauxite mining is not known to most Malaysian except recently due to environmental pollution issues in Kuantan, Pahang. Potential impacts are expected to go beyond physical environment and physical illness if the situation is not controlled. Loss of economic potentials, and the presence of unpleasant red dust causing mental distress, anger and community outrage. More studies are needed to associate it with chronic physical illness. While evidences are vital for action, merely waiting for a disease to occur is a sign of failure in prevention. All responsible agencies should focus on a wider aspect of health determinants rather than merely on the occurrence of diseases to act and the need to emphasize on sustainable mining to ensure health of people is not compromised.

  17. Spermbots: potential impact for drug delivery and assisted reproductive technologies.

    Science.gov (United States)

    Magdanz, Veronika; Schmidt, Oliver G

    2014-08-01

    Micromotors and nanomotors are an emerging research field that aims at achieving locomotion on the microscale for a variety of applications such as drug delivery, single cell manipulation, microsensors and lab-on-a-chip devices, just to point out a few. The enthusiastic development of hybrid micromotors harnessing biological power sources for physiologically compatible nano/microdevices has recently brought a lot of attention to the international research community that is looking for a solution for the actuation and locomotion on the microscale. This article describes the potential of sperm-driven micro-bio-robots in the biomedical field such as drug delivery or single cell manipulation. Herein, a specific potential of the sperm-driven micro-bio-robot is described that might have impact on the development of assisted reproductive technologies.

  18. Transient accelerating scalar models with exponential potentials

    Institute of Scientific and Technical Information of China (English)

    Wen-Ping Cui; Yang Zhang; Zheng-Wen Fu

    2013-01-01

    We study a known class of scalar dark energy models in which the potential has an exponential term and the current accelerating era is transient.We find that,although a decelerating era will return in the future,when extrapolating the model back to earlier stages (z(≥) 4),scalar dark energy becomes dominant over matter.So these models do not have the desired tracking behavior,and the predicted transient period of acceleration cannot be adopted into the standard scenario of the Big Bang cosmology.When couplings between the scalar field and matter are introduced,the models still have the same problem; only the time when deceleration returns will be varied.To achieve re-deceleration,one has to turn to alternative models that are consistent with the standard Big Bang scenario.

  19. The Potential Impacts of Hydraulic Fracturing on Agriculture

    Directory of Open Access Journals (Sweden)

    Beng Ong

    2014-10-01

    Full Text Available Hydraulic fracturing (or “fracking” is a method of extracting oil and natural gas trapped in deep rock layers underground by pumping water, sand, and other chemicals/additives at high pressures into a well drilled vertically, and then horizontally into the rocks.Advocates of fracking in U.S. have skillfully positioned domestic natural gas as a sensible alternative energy to the country’s goals of reducing carbon emissions and dependence on foreign oil, while simultaneously creating jobs locally. Opponents to fracking, however, alleged that the process pollutes the air, contaminates the soil and water, particularly in farming/rural communities. Due to page limitson this paper, we discussed only the potential impacts of hydraulic fracturing on water, and consequently, agriculture. Any impact on agriculture extends beyond the perimeter of a farm or plot of rural land where fracking operations occur. Fruits, vegetables, dairy, and meats from an impacted farming region may be shipped to other parts of the country, or even internationally. Fracking challenges stakeholders to confront the trade-offs between economic development and public health/safety; thus multiple viewpoints and issues were raised.Keywords: Hydraulic Fracking; Environmental Sustainability; Water Contamination; Agriculture vs. Energy; Shale Gas.

  20. Rising soil temperature in China and its potential ecological impact

    Science.gov (United States)

    Zhang, Hui; Wang, Enli; Zhou, Daowei; Luo, Zhongkui; Zhang, Zhengxiang

    2016-01-01

    Global warming influences a series of ecological processes and ecosystems’ stability. Although comprehensive studies have been done to investigate responses of various ecosystem processes to rising air temperatures, less is known about changes in soil temperatures and their impact on below-ground processes, particularly in deep layers. Herein, we used 50 y of temperature data (1962–2011) from 360 sites in China to assess spatio-temporal changes in soil temperatures from the surface to a depth of 3.20 m. We determined, apparently for the first time, that soil surface temperature increased 31% more than air temperature, potentially leading to more carbon release to the atmosphere than predicted. Annual mean surface temperature increased by 2.07–4.04 and 0.66–2.21 °C in northern and southern China, respectively, with the greatest in winter. Warming occurred as deep as 3.20 m. The soil temperature rise was predicted to have increased soil respiration by up to 28%, reinforcing climate warming and extending the potential growing season by up to 20 d across China. However, use of only air temperature to estimate soil temperature changes would underestimate those impacts. In conclusion, these results highlighted the importance of soil warming and of using soil temperature to assess and predict soil processes. PMID:27765953

  1. Rising soil temperature in China and its potential ecological impact

    Science.gov (United States)

    Zhang, Hui; Wang, Enli; Zhou, Daowei; Luo, Zhongkui; Zhang, Zhengxiang

    2016-10-01

    Global warming influences a series of ecological processes and ecosystems’ stability. Although comprehensive studies have been done to investigate responses of various ecosystem processes to rising air temperatures, less is known about changes in soil temperatures and their impact on below-ground processes, particularly in deep layers. Herein, we used 50 y of temperature data (1962–2011) from 360 sites in China to assess spatio-temporal changes in soil temperatures from the surface to a depth of 3.20 m. We determined, apparently for the first time, that soil surface temperature increased 31% more than air temperature, potentially leading to more carbon release to the atmosphere than predicted. Annual mean surface temperature increased by 2.07–4.04 and 0.66–2.21 °C in northern and southern China, respectively, with the greatest in winter. Warming occurred as deep as 3.20 m. The soil temperature rise was predicted to have increased soil respiration by up to 28%, reinforcing climate warming and extending the potential growing season by up to 20 d across China. However, use of only air temperature to estimate soil temperature changes would underestimate those impacts. In conclusion, these results highlighted the importance of soil warming and of using soil temperature to assess and predict soil processes.

  2. On the hydrologic adjustment of climate-model projections: The potential pitfall of potential evapotranspiration

    Science.gov (United States)

    Milly, P.C.D.; Dunne, K.A.

    2011-01-01

    Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median 211%) caused by the hydrologic model's apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen-Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors' findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climatechange impacts on water. Copyright ?? 2011, Paper 15-001; 35,952 words, 3 Figures, 0 Animations, 1 Tables.

  3. Potential Impacts of Offshore Wind Farms on North Sea Stratification.

    Science.gov (United States)

    Carpenter, Jeffrey R; Merckelbach, Lucas; Callies, Ulrich; Clark, Suzanna; Gaslikova, Lidia; Baschek, Burkard

    2016-01-01

    Advances in offshore wind farm (OWF) technology have recently led to their construction in coastal waters that are deep enough to be seasonally stratified. As tidal currents move past the OWF foundation structures they generate a turbulent wake that will contribute to a mixing of the stratified water column. In this study we show that the mixing generated in this way may have a significant impact on the large-scale stratification of the German Bight region of the North Sea. This region is chosen as the focus of this study since the planning of OWFs is particularly widespread. Using a combination of idealised modelling and in situ measurements, we provide order-of-magnitude estimates of two important time scales that are key to understanding the impacts of OWFs: (i) a mixing time scale, describing how long a complete mixing of the stratification takes, and (ii) an advective time scale, quantifying for how long a water parcel is expected to undergo enhanced wind farm mixing. The results are especially sensitive to both the drag coefficient and type of foundation structure, as well as the evolution of the pycnocline under enhanced mixing conditions-both of which are not well known. With these limitations in mind, the results show that OWFs could impact the large-scale stratification, but only when they occupy extensive shelf regions. They are expected to have very little impact on large-scale stratification at the current capacity in the North Sea, but the impact could be significant in future large-scale development scenarios.

  4. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    Science.gov (United States)

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  5. POTENTIAL IMPACTS OF CLIMATIC VARIABILITY ON INDIAN HIMALAYAN REGION

    Directory of Open Access Journals (Sweden)

    Kavita Tariyal

    2014-12-01

    Full Text Available The Himalayan region represents enormous variability of climates, hydrological and ecological systems, plus a diversity of cultures and communities. It is an essentiality to the ecological security of the Indian landmass, through providing forest cover, feeding recurrent rivers that are the source of potable water, irrigation, and hydropower, conserving biodiversity, providing a rich foundation for high value agriculture, and spectacular landscapes for sustainable tourism. Increasing concentration of greenhouse gases in the troposphere and the consequential global warming is posing a great environmental threat to water and food security at universal level. Change in climate may affect exposures to air pollutants by affecting weather, anthropogenic emissions, and by changing the distribution and types of airborne allergens. This potential variability in climate will have a serious impact on several ecosystem services, such as cleaning water and removing carbon from the atmosphere. Various services of ecosystems viz. land and water resources, agriculture, biodiversity will experience a wide range of stresses together with pests and pathogens, invasive species, atmospheric pollution, acute events, wildfires and floods. Direct stresses posed due to climate change may get intensified through high temperatures, reduced water availability, and altered frequency of extreme events and severe storms. Climate change will potentially make a threat on the availability of, and access to, water resources. The Himalayan ecosystem is vulnerable to the impacts and consequences of a changes on account of natural causes, b climate change resulting from human-induced emissions and c developmental paradigms of the modern society. Adaptation factors in the element of ‘sustainability’ into development initiatives and provides for additional measures and resources to safeguard environmental gains against climate impacts.

  6. Mapping oil and gas development potential in the US Intermountain West and estimating impacts to species.

    Directory of Open Access Journals (Sweden)

    Holly E Copeland

    Full Text Available BACKGROUND: Many studies have quantified the indirect effect of hydrocarbon-based economies on climate change and biodiversity, concluding that a significant proportion of species will be threatened with extinction. However, few studies have measured the direct effect of new energy production infrastructure on species persistence. METHODOLOGY/PRINCIPAL FINDINGS: We propose a systematic way to forecast patterns of future energy development and calculate impacts to species using spatially-explicit predictive modeling techniques to estimate oil and gas potential and create development build-out scenarios by seeding the landscape with oil and gas wells based on underlying potential. We illustrate our approach for the greater sage-grouse (Centrocercus urophasianus in the western US and translate the build-out scenarios into estimated impacts on sage-grouse. We project that future oil and gas development will cause a 7-19 percent decline from 2007 sage-grouse lek population counts and impact 3.7 million ha of sagebrush shrublands and 1.1 million ha of grasslands in the study area. CONCLUSIONS/SIGNIFICANCE: Maps of where oil and gas development is anticipated in the US Intermountain West can be used by decision-makers intent on minimizing impacts to sage-grouse. This analysis also provides a general framework for using predictive models and build-out scenarios to anticipate impacts to species. These predictive models and build-out scenarios allow tradeoffs to be considered between species conservation and energy development prior to implementation.

  7. Modeling auditory evoked potentials to complex stimuli

    DEFF Research Database (Denmark)

    Rønne, Filip Munch

    The auditory evoked potential (AEP) is an electrical signal that can be recorded from electrodes attached to the scalp of a human subject when a sound is presented. The signal is considered to reflect neural activity in response to the acoustic stimulation and is a well established clinical...... clinically and in research towards using realistic and complex stimuli, such as speech, to electrophysiologically assess the human hearing. However, to interpret the AEP generation to complex sounds, the potential patterns in response to simple stimuli needs to be understood. Therefore, the model was used...... to simulate auditory brainstem responses (ABRs) evoked by classic stimuli like clicks, tone bursts and chirps. The ABRs to these simple stimuli were compared to literature data and the model was shown to predict the frequency dependence of tone-burst ABR wave-V latency and the level-dependence of ABR wave...

  8. Identifying potential environmental impacts of waste handling strategies in textile industry.

    Science.gov (United States)

    Yacout, Dalia M M; Hassouna, M S

    2016-08-01

    Waste management is a successful instrument to minimize generated waste and improve environmental conditions. In spite of the large share of developing countries in the textile industry, limited information is available concerning the waste management strategies implemented for textiles on those countries and their environmental impacts. In the current study, two waste management approaches for hazardous solid waste treatment of acrylic fibers (landfill and incineration) were investigated. The main research questions were: What are the different impacts of each waste management strategy? Which waste management strategy is more ecofriendly? Life cycle assessment was employed in order to model the environmental impacts of each waste streaming approach separately then compare them together. Results revealed that incineration was the more ecofriendly approach. Highest impacts of both approaches were on ecotoxicity and carcinogenic potentials due to release of metals from pigment wastes. Landfill had an impact of 46.8 % on human health as compared to 28 % by incineration. Incineration impact on ecosystem quality was higher than landfill impact (68.4 and 51.3 %, respectively). As for resources category, incineration had a higher impact than landfill (3.5 and 2.0 %, respectively). Those impacts could be mitigated if state-of-the-art landfill or incinerator were used and could be reduced by applying waste to energy approaches for both management systems In conclusion, shifting waste treatment from landfill to incineration would decrease the overall environmental impacts and allow energy recovery. The potential of waste to energy approach by incineration with heat recovery could be considered in further studies. Future research is needed in order to assess the implementation of waste management systems and the preferable waste management strategies in the textile industry on developing countries.

  9. Potential radiological impact of a conceptual Hanford Nuclear Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, J. K.

    1978-10-01

    The potential radiological impact of the siting of 20 light-water reactors and associated nuclear fuel cycle facilities on the Hanford reservation was evaluated by calculating the potential radiation doses received by individuals and populations in the vicinity of the reservation. The largest contributor to the potential radiation doses, to both the individual and the 50-mile population, were the effluents from the conceptual 1500 MT/yr fuel reprocessing plant. The effluents from the 20 reactors combined was the second largest contributor. The radiation dose contributions from the 300 MT/yr mixed oxide fuel fabrication plant were insignificant. The highest organ dose from all facilities combined was 24 mrem/yr to the child thyroid; followed by 8 mrem/yr to the adult thyroid. The 50-year collective dose commitment to the population within 50 miles was about 50 man-rem for most organs of reference, while the estimate for bone was 70 man-rem. With the exception of /sup 85/Kr, the release rates of radionuclides were within the EPA guidelines. Removal of about 90% of the 4 x 10/sup 5/ Ci/yr per gigawatt-year of electricity of /sup 85/Kr from the fuel reprocessing plant gaseous effluents would be required for compliance with the EPA guidelines.

  10. CO2 Sequestration in Unmineable Coal Seams: Potential Environmental Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Hedges, S.W.; Soong, Yee; McCarthy Jones, J.R.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; Pique, P.J.; Brown, T.D

    2005-09-01

    An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production using a CO2 injection process (CO2-ECBM). Two coals have been used in this study, the medium volatile bituminous Upper Freeport coal (APCS 1) of the Argonne Premium Coal Samples series, and an as-mined Pittsburgh #8 coal, which is a high volatile bituminous coal. Coal samples were reacted with either synthetic produced water or field collected produced water and gaseous carbon dioxide at 40 οC and 50 bar to evaluate the potential for mobilizing toxic metals during CO2-ECBM/sequestration. Microscopic and x-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction, and chemical analysis of the produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilizing toxic trace elements from coalbeds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

  11. Potential Economic Impacts from Offshore Wind in the Southeast Region (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-07-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by the National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts identified by the study for the Southeast (defined here as Georgia, South Carolina, North Carolina, and Virginia).

  12. Global Potential for Hydro-generated Electricity and Climate Change Impact

    Science.gov (United States)

    Zhou, Y.; Hejazi, M. I.; Leon, C.; Calvin, K. V.; Thomson, A. M.; Li, H. Y.

    2014-12-01

    Hydropower is a dominant renewable energy source at the global level, accounting for more than 15% of the world's total power supply. It is also very vulnerable to climate change. Improved understanding of climate change impact on hydropower can help develop adaptation measures to increase the resilience of energy system. In this study, we developed a comprehensive estimate of global hydropower potential using runoff and stream flow data derived from a global hydrologic model with a river routing sub-model, along with turbine technology performance, cost assumptions, and environmental consideration (Figure 1). We find that hydropower has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by regions. Resources in a number of countries exceed by multiple folds the total current demand for electricity, e.g., Russia and Indonesia. A sensitivity analysis indicates that hydropower potential can be highly sensitive to a number of parameters including designed flow for capacity, cost and financing, turbine efficiency, and stream flow. The climate change impact on hydropower potential was evaluated by using runoff outputs from 4 climate models (HadCM3, PCM, CGCM2, and CSIRO2). It was found that the climate change on hydropower shows large variation not only by regions, but also climate models, and this demonstrates the importance of incorporating climate change into infrastructure-planning at the regional level though the existing uncertainties.

  13. Impact Flash Physics: Modeling and Comparisons With Experimental Results

    Science.gov (United States)

    Rainey, E.; Stickle, A. M.; Ernst, C. M.; Schultz, P. H.; Mehta, N. L.; Brown, R. C.; Swaminathan, P. K.; Michaelis, C. H.; Erlandson, R. E.

    2015-12-01

    Hypervelocity impacts frequently generate an observable "flash" of light with two components: a short-duration spike due to emissions from vaporized material, and a long-duration peak due to thermal emissions from expanding hot debris. The intensity and duration of these peaks depend on the impact velocity, angle, and the target and projectile mass and composition. Thus remote sensing measurements of planetary impact flashes have the potential to constrain the properties of impacting meteors and improve our understanding of impact flux and cratering processes. Interpreting impact flash measurements requires a thorough understanding of how flash characteristics correlate with impact conditions. Because planetary-scale impacts cannot be replicated in the laboratory, numerical simulations are needed to provide this insight for the solar system. Computational hydrocodes can produce detailed simulations of the impact process, but they lack the radiation physics required to model the optical flash. The Johns Hopkins University Applied Physics Laboratory (APL) developed a model to calculate the optical signature from the hot debris cloud produced by an impact. While the phenomenology of the optical signature is understood, the details required to accurately model it are complicated by uncertainties in material and optical properties and the simplifications required to numerically model radiation from large-scale impacts. Comparisons with laboratory impact experiments allow us to validate our approach and to draw insight regarding processes that occur at all scales in impact events, such as melt generation. We used Sandia National Lab's CTH shock physics hydrocode along with the optical signature model developed at APL to compare with a series of laboratory experiments conducted at the NASA Ames Vertical Gun Range. The experiments used Pyrex projectiles to impact pumice powder targets with velocities ranging from 1 to 6 km/s at angles of 30 and 90 degrees with respect to

  14. Radiological scenario modeling using the Hotspot code and potential financial impact of treatment of radiation induced cancer to the public; Modelagem de cenario radiologico utilizando o codigo Hotspot e potenciais impactos financeiros para tratamento de cancer radioinduzido ao publico

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Gabriel Fidalgo Queiroz da; Andrade, Edson Ramos de; Rebello, Wilson Freitas; Araujo, Olga Maria Oliveira de, E-mail: profgabriel.fisica@gmail.com, E-mail: fisica.dna@gmail.com, E-mail: rebello@ime.eb.br, E-mail: olgafisica2013@hotmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear

    2015-07-01

    The work aims to develop a methodology that is able to estimate the financial impact in a radiological emergency events, considering the radiation induced cancer, particularly leukemia. Considering a RDD - Radiological Dispersive Device, consisting of explosives and cesium-137 as radioactive material, a scenario building on the Rio de Janeiro was modeled. The convergence of a risk modeling platform (HotSpot 3.0), the analysis of excess relative risks for humans (BEIR V-Biological Effects of Ionizing Radiation V), considering scenarios composed of contaminated areas, are secondary goals.

  15. Potential impacts of land-use on climate variability and extremes

    Science.gov (United States)

    Zhang, Huqiang; Li, Yaohui; Gao, Xuejie

    2009-09-01

    This study aims at exploring potential impacts of land-use vegetation change (LUC) on regional climate variability and extremes. Results from a pair of Australian Bureau of Meteorology Research Centre (BMRC) climate model 54-yr (1949-2002) integrations have been analysed. In the model experiments, two vegetation datasets are used, with one representing current vegetation coverage in China and the other approximating its potential coverage without human intervention. The model results show potential impacts of LUC on climate variability and extremes. There are statistically significant changes of surface interannual climate variability simulated by the model. Using different vegetation datasets, significant changes in correlation coefficients between tropical Pacific Niño3.4 SST and precipitation and surface temperature over East Asia are identified, which indicate that changes in vegetation coverage may alter ENSO impacts on regional climate variability. Because of the lack of slowly varying surface processes when forests are removed and less rainfall is received following LUC, the ENSO signal simulated by the model becomes stronger. Results furthermore show that land-use could modulate characteristics of decadal variations in this region. When using current vegetation coverage, the model gives better simulation of observed climate variations in the region than the case using potential vegetation coverage. In addition, results suggest that land-use could be a potential factor contributing to the prolonged drought in central-west China. Changes in local climate extremes, including precipitation and surface temperature maxima and minima, are also identified. Overall, this study has illustrated the importance of further investigation of such important issues in future land-use studies.

  16. Evaluation of Potential Impacts of Microbial Activity on Drift Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Y. Wang

    2004-11-18

    ''Evaluation of Potential Impacts of Microbial Activity on Drift Chemistry'' focuses on the potential for microbial communities that could be active in repository emplacement drifts to influence the in-drift bulk chemical environment. This report feeds analyses to support the inclusion or exclusion of features, events, and processes (FEPs) in the total system performance assessment (TSPA) for the license application (LA), but this work is not expected to generate direct feeds to the TSPA-LA. The purpose was specified by, and the evaluation was performed and is documented in accordance with, ''Technical Work Plan For: Near-Field Environment and Transport In-Drift Geochemistry Analyses'' (BSC 2004 [DIRS 172402], Section 2.1). This report addresses all of the FEPs assigned by the technical work plan (TWP), including the development of exclusion arguments for FEPs that are not carried forward to the TSPA-LA. Except for an editorial correction noted in Section 6.2, there were no other deviations from the TWP. This report documents the completion of all assigned tasks, as follows (BSC 2004 DIRS 172402, Section 1.2.1): (1) Perform analyses to evaluate the potential for microbial activity in the waste emplacement drift under the constraints of anticipated physical and chemical conditions. (2) Evaluate uncertainties associated with these analyses. (3) Determine whether the potential for microbes warrants a feed to TSPA-LA to account for predicted effects on repository performance. (4) Provide information to address the ''Yucca Mountain Review Plan, Final Report'' (NUREG-1804) (NRC 2003 [DIRS 163274]) and Key Technical Issues and agreements, as appropriate. (5) Develop information for inclusion or exclusion of FEPs.

  17. The potential lifespan impact of gingivitis and periodontitis in children.

    Science.gov (United States)

    Bimstein, Enrique; Huja, Pinar Emecen; Ebersole, Jeffrey L

    2013-01-01

    The prevalence of gingivitis in children can be similar to or greater than dental caries, but has received much less attention in understanding the long-term impact on overall health. Oral health providers must take into consideration that the clinical presentation of the gingivitis progression/severity in the primary dentition is only evident when the magnitude of the inflammatory cell infiltrate approximates the gingival surface reflected by inflamed tissues. Moreover despite its relatively benign clinical appearance, the establishment of chronic inflammation of the periodontal tissues in childhood may have the potential for local tissue destruction leading to periodontitis, and/or create an "at-risk" environment in the tissues that could adversely affect the health of these tissues across the lifespan. The present manuscript presents some fundamental information regarding the characteristics of chronic inflammation in gingival tissues of children and adolescents and speculates about the lifetime impact of gingival and periodontal infections in childhood on future oral and systemic health in the adult.

  18. Using PHP/MySQL to Manage Potential Mass Impacts

    Science.gov (United States)

    Hager, Benjamin I.

    2010-01-01

    This paper presents a new application using commercially available software to manage mass properties for spaceflight vehicles. PHP/MySQL(PHP: Hypertext Preprocessor and My Structured Query Language) are a web scripting language and a database language commonly used in concert with each other. They open up new opportunities to develop cutting edge mass properties tools, and in particular, tools for the management of potential mass impacts (threats and opportunities). The paper begins by providing an overview of the functions and capabilities of PHP/MySQL. The focus of this paper is on how PHP/MySQL are being used to develop an advanced "web accessible" database system for identifying and managing mass impacts on NASA's Ares I Upper Stage program, managed by the Marshall Space Flight Center. To fully describe this application, examples of the data, search functions, and views are provided to promote, not only the function, but the security, ease of use, simplicity, and eye-appeal of this new application. This paper concludes with an overview of the other potential mass properties applications and tools that could be developed using PHP/MySQL. The premise behind this paper is that PHP/MySQL are software tools that are easy to use and readily available for the development of cutting edge mass properties applications. These tools are capable of providing "real-time" searching and status of an active database, automated report generation, and other capabilities to streamline and enhance mass properties management application. By using PHP/MySQL, proven existing methods for managing mass properties can be adapted to present-day information technology to accelerate mass properties data gathering, analysis, and reporting, allowing mass property management to keep pace with today's fast-pace design and development processes.

  19. Pile Driving at the New Bridge at Tappan Zee: Potential Environmental Impacts.

    Science.gov (United States)

    Popper, Arthur N; Moese, Mark; Rollino, John; Krebs, Justin; Racca, Roberto; Martin, Bruce; Zeddies, David; MacGillivray, Alexander; Jacobs, Fred

    2016-01-01

    A new bridge will be constructed to replace the aging Tappan Zee Bridge over the Hudson River in New York. Construction will potentially result in hydroacoustic impacts to the local fish fauna. As a consequence, a substantial environmental impact analysis had to be conducted to obtain construction permits. This paper describes the process of environmental analysis and some of the results of the studies that led up to the final permitting. The process included modeling of pile-driving acoustics, analysis of river ambient noise, analysis of test piling, and observations on fish behavior during these tests.

  20. Global warming and ocean stratification: A potential result of large extraterrestrial impacts

    Science.gov (United States)

    Joshi, Manoj; von Glasow, Roland; Smith, Robin S.; Paxton, Charles G. M.; Maycock, Amanda C.; Lunt, Daniel J.; Loptson, Claire; Markwick, Paul

    2017-04-01

    The prevailing paradigm for the climatic effects of large asteroid or comet impacts is a reduction in sunlight and significant short-term cooling caused by atmospheric aerosol loading. Here we show, using global climate model experiments, that the large increases in stratospheric water vapor that can occur upon impact with the ocean cause radiative forcings of over +20 W m-2 in the case of 10 km sized bolides. The result of such a positive forcing is rapid climatic warming, increased upper ocean stratification, and potentially disruption of upper ocean ecosystems. Since two thirds of the world's surface is ocean, we suggest that some bolide impacts may actually warm climate overall. For impacts producing both stratospheric water vapor and aerosol loading, radiative forcing by water vapor can reduce or even cancel out aerosol-induced cooling, potentially causing 1-2 decades of increased temperatures in both the upper ocean and on the land surface. Such a response, which depends on the ratio of aerosol to water vapor radiative forcing, is distinct from many previous scenarios for the climatic effects of large bolide impacts, which mostly account for cooling from aerosol loading. Finally, we discuss how water vapor forcing from bolide impacts may have contributed to two well-known phenomena: extinction across the Cretaceous/Paleogene boundary and the deglaciation of the Neoproterozoic snowball Earth.

  1. 77 FR 31353 - An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, AK

    Science.gov (United States)

    2012-05-25

    ... AGENCY An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, AK AGENCY... of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska'' (EPA-910-R-12-004a-d). The... draft ``An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska'' is...

  2. 75 FR 54852 - National Defense Stockpile Market Impact Committee Request for Public Comments on the Potential...

    Science.gov (United States)

    2010-09-09

    ... Comments on the Potential Market Impact of Proposed Stockpile Disposals for Fiscal Year 2012 AGENCY: Bureau... Commerce and State, is seeking public comments on the potential market impact of the proposed disposal... potential market impact of the sale of these materials. Public comments are an important element of...

  3. Modelling Options for Policy Impact Analysis on African Dairy Farms

    Directory of Open Access Journals (Sweden)

    Oghaiki Asaah NDAMBI

    2008-01-01

    Full Text Available Studies on the priorities for agricultural research in Eastern and CentralAfrica concluded that milk is the most important commodity for research anddevelopment in the region, based on its potential contribution to the agriculturalGDP. It has been presumed that, the right policies, marketing systems and technicalsupport must be sought for dairy development in Africa. In order to determine theright development pattern, appropriate analytical tools must be applied. The TIPICAL(Technology Impact Policy Impact model was used to analyse the impact ofdifferent policies on two typical dairy farming systems in Uganda, which accountfor more than 70% of milk produced in the country. Seven influential policy areaswere also identified: provision of veterinary services, consumption promotion,marketing promotion, input provision, credit access improvement, milk qualityimprovement and genetic improvement. In general, the policy impacts are very littleon farms with local cows but can be magnified up to threefold, if the farms havegraded cows. Policies which improve farmers’ accessibility to markets have thegreatest impacts. The results obtained from this model were compared to thoseusing the EXTRAPOLATE model. This comparison shows that both models couldcomplement each other in analysing policy impacts on African dairy farms.However, differences in results from the models indicate that more focus should bemade on farmers’ willingness to adopt new technology.

  4. Electrostatic potential map modelling with COSY Infinity

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, J.A., E-mail: maloneyja@triumf.ca; Baartman, R.; Planche, T.; Saminathan, S.

    2016-06-01

    COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY’s existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.

  5. Electrostatic potential map modelling with COSY Infinity

    Science.gov (United States)

    Maloney, J. A.; Baartman, R.; Planche, T.; Saminathan, S.

    2016-06-01

    COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY's existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.

  6. Potential for Application of a Probabilistic Catastrophe Risk Modelling Framework to Poverty Outcomes

    OpenAIRE

    2016-01-01

    This paper analyzes the potential to combine catastrophe risk modelling (CAT risk modeling) with economic analysis of vulnerability to poverty using the example of drought hazard impacts on the welfare of rural households in Ethiopia. The aim is to determine the potential for applying a derived set of damage (vulnerability) functions based on realized shocks and household expenditure/consu...

  7. Switchgrass-Based Bioethanol Productivity and Potential Environmental Impact from Marginal Lands in China

    Directory of Open Access Journals (Sweden)

    Xun Zhang

    2017-02-01

    Full Text Available Switchgrass displays an excellent potential to serve as a non-food bioenergy feedstock for bioethanol production in China due to its high potential yield on marginal lands. However, few studies have been conducted on the spatial distribution of switchgrass-based bioethanol production potential in China. This study created a land surface process model (Environmental Policy Integrated Climate GIS (Geographic Information System-based (GEPIC model coupled with a life cycle analysis (LCA to explore the spatial distribution of potential bioethanol production and present a comprehensive analysis of energy efficiency and environmental impacts throughout its whole life cycle. It provides a new approach to study the bioethanol productivity and potential environmental impact from marginal lands based on the high spatial resolution GIS data, and this applies not only to China, but also to other regions and to other types of energy plant. The results indicate that approximately 59 million ha of marginal land in China are suitable for planting switchgrass, and 22 million tons of ethanol can be produced from this land. Additionally, a potential net energy gain (NEG of 1.75 x 106 million MJ will be achieved if all of the marginal land can be used in China, and Yunnan Province offers the most significant one that accounts for 35% of the total. Finally, this study obtained that the total environmental effect index of switchgrass-based bioethanol is the equivalent of a population of approximately 20,300, and a reduction in the global warming potential (GWP is the most significant environmental impact.

  8. Potential electricity impacts of a 1978 California drought

    Energy Technology Data Exchange (ETDEWEB)

    Siri, W.E.; Sathaye, J.; Sextro, R.; Blumstein, C.; Ruderman, H.; Ritschard, R.; McMahon, J.; Kirshner, D.; Brandi, R.; Watkins, R.; Chan, P.; Kay, J.; Tsao, K.; Kelleher, L.

    1978-01-01

    California has endured severe droughts both in 1976 and 1977. As a consequence, surface-water supplies during 1977 decreased to levels not experienced in the recent history of California. Hydroelectric supplies, which rely on surface runoff, also decreased to record lows raising questions regarding the adequacy of electricity supplies to meet summer peaks during 1977 and 1978. Through 1977 electricity supplies, aided by conservation of electricity by consumers, power pooling, and other measures were adequate to meet demand. However, supplies were more expensive due to increased reliance on thermal generation to compensate for hydroelectric losses. The continuance of the drought for another year is analyzed in this study. To analyze the impact of supply options on reliability and electricity prices, two separate models were modified and implemented. These models along with the overall methodology, although implemented primarily with data for 1978, would be generally applicable for analyzing the adequacy of electricity supply during any year. In this analysis, electricity demand and supply during 1977 are reviewed before analyzing the prospective situation during 1978. Hydroelectric supplies for 1978 are assumed at the level anticipated by the electric utility companies. These supply estimates are based on the 1977 levels of runoff. The hydroelectricity thus generated would be slightly lower than that estimated for 1977. Also on the supply side, because of the uncertainty associated with the introduction of the Diablo Canyon 1 nuclear power plant, the supply options with and without Diablo Canyon Unit 1 are analyzed. The major findings of the study are discussed.

  9. Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A; Letschert, Virginie E.; de la Rue du Can, Stephane; Egan, Christine

    2009-05-29

    This paper presents an analysis of the potential impacts of an international initiative designed to support and promote the development and implementation of appliances standards and labelling programs throughout the world. As part of previous research efforts, LBNL developed the Bottom Up Energy Analysis System (BUENAS), an analysis framework that estimates impact potentials of energy efficiency policies on a global scale. In this paper, we apply this framework to an initiative that would result in the successful implementation of programs focused on high priority regions and product types, thus evaluating the potential impacts of such an initiative in terms of electricity savings and carbon mitigation in 2030. In order to model the likely parameters of such a program, we limit impacts to a five year period starting in 2009, but assume that the first 5 years of a program will result in implementation of 'best practice' minimum efficiency performance standards by 2014. The 'high priority' regions considered are: Brazil, China, the European Union,India, Mexico and the United States. The products considered are: refrigerators, air conditioners, lighting (both fluorescent and incandescent), standby power (for consumer electronics) and televisions in the residential sector, and air conditioning and lighting in commercial buildings. In 2020, these regions and enduses account for about 37percent of global residential electricity and 29percent of electricity in commercial buildings. We find that 850Mt of CO2 could be saved in buildings by 2030 compared to the baseline forecast.

  10. Impact of potential electric vehicle market penetration on air quality

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, III, M. J.

    1979-01-01

    Emissions to the air due to electric vehicles will result from several processes during the production, operation, and recycling and disposal of the vehicles. Some of these processes are significantly different than those for conventional vehicles. Mining and manufacturing impacts are different and larger than those for CVs due mainly to battery production and materials preparation. Battery charging will cause the greatest air pollution during the life cycle of the vehicle. Increases in SOx emissions from electric utilities in regions where coal is the major source of electricity could be significant. The CO, HC, and NOx emissions that would be produced at ground level for CVs are eliminated with EV use, however. Other battery charging emissions take place at the battery. Toxic and potentially explosive gases are emitted during charging of current technology batteries. Particulate re-entrainment by urban vehicles will not be discussed for EVs, as this phenomenon is not yet well understood in general, and because EVs are likely to be no different than CVs in this regard, but particulate emissions from tire wear are included. Emissions from recycling of the electrical component materials are likely to be recycled. Little is known about localized emissions due to vehicle accidents with battery rupture and fires.

  11. A search for Potential Impact Sites in Southern Argentina

    Science.gov (United States)

    Rocca, M. C. L.

    The Southern part of Argentina is composed of five Provinces; Tierra del Fuego, Santa Cruz, Chubut, Rio Negro and Neuquen. A search for potential impact sites was performed by the author through the examination of 76 color LANDSAT satellite images ( 1:250,000 - resolution = 250 meters ) at the Instituto Geografico Militar ( IGM ) of Buenos Aires city. When a potential candidate was found a more detailed study of the site was done. If available the radar X-SAR satellite images of the Deutsche Forschungsanstalt fur Luft-und Raumfahrt, (DLR), Berlin, Germany , were also examined. The final step was to perform a review of the available published geologic information of each site at the Servicio Geologico y Minero Argentino ( SEGEMAR ), ( =Geological Survey of Argentina ), in Buenos Aires. The resulting catalogue contains information about sites where possible simple crater or complex impact structures could be present. Each case demands future detailed and `in situ' research by an impact cratering specialist. --Tierra del Fuego: TF1 ) Ushuaia 5569-II, No 218. Cerro Taarsh, Estancia San Justo. Possible complex structure. Semi-circular area of concentric low ridges. Estimated diameter : 12 km. Probably very eroded. --Santa Cruz: SC1 ) Gobernador Gregores 4969-I, No 127. Estancia La Aragonesa Possible eroded complex structure. Circular area of low ridges, estimated diameter: 10 km.. Bull's eye like morphology. SC2 ) Gobernador Gregores 4969-I, No 127. Gran Altiplanicie Central. Possible simple crater in basalts. Diameter: 1 km.. SC3 ) Tres Lagos 4972-IV, No 106. Meseta del Bagual Chico. Possible perfectly circular simple crater in basalts. Diameter: 1.0 km.. SC4 )Paso Rio Bote 5172-II, No 20. Rio Pelque, Ruta Provincial No 5. A circular bowl-shaped structure is present on fluvial deposits of pleistocenic age. Diameter: 3.5 km.. SC5 ) Caleta Olivia 4769-II, No 28. North of Cerro Doce Grande. Possible complex structure of concentric circular rings of ridges. SC6 ) Caleta

  12. Potential impact of U.S. biofuels on regional climate

    Science.gov (United States)

    Georgescu, M.; Lobell, D. B.; Field, C. B.

    2009-11-01

    Recent work has shown that current bio-energy policy directives may have harmful, indirect consequences, affecting both food security and the global climate system. An additional unintended but direct effect of large-scale biofuel production is the impact on local and regional climate resulting from changes in the energy and moisture balance of the surface upon conversion to biofuel crops. Using the latest version of the WRF modeling system we conducted twenty-four, midsummer, continental-wide, sensitivity experiments by imposing realistic biophysical parameter limits appropriate for bio-energy crops in the Corn Belt of the United States. In the absence of strain/crop-specific parameterizations, a primary goal of this work was to isolate the maximum regional climate impact, for a trio of individual July months, due to land-use change resulting from bio-energy crops and to identify the relative importance of each biophysical parameter in terms of its individual effect. Maximum, local changes in 2 m temperature of the order of 1°C occur for the full breadth of albedo (ALB), minimum canopy resistance (RCMIN), and rooting depth (ROOT) specifications, while the regionally (105°W-75°W and 35°N-50°N) and monthly averaged response of 2 m temperature was most pronounced for the ALB and RCMIN experiments, exceeding 0.2°C. The full range of albedo variability associated with biofuel crops may be sufficient to drive regional changes in summertime rainfall. Individual parameter effects on 2 m temperature are additive, highlight the cooling contribution of higher leaf area index (LAI) and ROOT for perennial grasses (e.g., Miscanthus) versus annual crops (e.g., maize), and underscore the necessity of improving location- and vegetation-specific representation of RCMIN and ALB.

  13. Projected impacts of climate change on hydropower potential in China

    Science.gov (United States)

    Liu, Xingcai; Tang, Qiuhong; Voisin, Nathalie; Cui, Huijuan

    2016-08-01

    Hydropower is an important renewable energy source in China, but it is sensitive to climate change, because the changing climate may alter hydrological conditions (e.g., river flow and reservoir storage). Future changes and associated uncertainties in China's gross hydropower potential (GHP) and developed hydropower potential (DHP) are projected using simulations from eight global hydrological models (GHMs), including a large-scale reservoir regulation model, forced by five general circulation models (GCMs) with climate data under two representative concentration pathways (RCP2.6 and RCP8.5). Results show that the estimation of the present GHP of China is comparable to other studies; overall, the annual GHP is projected to change by -1.7 to 2 % in the near future (2020-2050) and increase by 3 to 6 % in the late 21st century (2070-2099). The annual DHP is projected to change by -2.2 to -5.4 % (0.7-1.7 % of the total installed hydropower capacity (IHC)) and -1.3 to -4 % (0.4-1.3 % of total IHC) for 2020-2050 and 2070-2099, respectively. Regional variations emerge: GHP will increase in northern China but decrease in southern China - mostly in south central China and eastern China - where numerous reservoirs and large IHCs currently are located. The area with the highest GHP in southwest China will have more GHP, while DHP will reduce in the regions with high IHC (e.g., Sichuan and Hubei) in the future. The largest decrease in DHP (in %) will occur in autumn or winter, when streamflow is relatively low and water use is competitive. Large ranges in hydropower estimates across GHMs and GCMs highlight the necessity of using multimodel assessments under climate change conditions. This study prompts the consideration of climate change in planning for hydropower development and operations in China, to be further combined with a socioeconomic analysis for strategic expansion.

  14. Potential Impact of Climate Change on Rained Agriculture of Ningxia

    Directory of Open Access Journals (Sweden)

    Zhenning Ma Hongxiang Chen

    2013-07-01

    Full Text Available Rain fed agriculture in Ningxia is one of the most vulnerable sector to climate change, as the available water and land resources are limited and most of the province’s land is arid. In this study, a crop simulation model (DSSAT was used to assess the impact of climate change scenario on rainfed maize and potato in the southern mountain areas in Ningxia. Analysis of observed crop data showed differences between cultivated and harvested areas for both crops in the study area with variations among years. Results from DSSAT model for years showed that it was able to capture the trend of yield over the years realistically well. The model predicted an average yield of maize of 5450 kg/ha, which was close to the average (5446kg/ha yield reported by the Department of statistics of Ningxia (DOSN and an average predicted yield of potato was 2350 kg/ha while the DOSN average was 2358 kg/ha, with higher RMSE for maize (1046kg/ha than for potato (358kg/ha. Predictions of future yield for both crops showed that the responses of maize and potato were different under different climate changes scenarios. The reduction of rainfall by 10-20% reduced the expected yield by 7-12% for maize and 9-18% for potato, respectively. The increase in rainfall by 10-20% increased the expected yield by5-9% for maize and 10-20% for potato, respectively. The increase of air temperature by 1,2,3 and 4°C resulted in deviation from expected yield by -3.3, -0.27,+6.1 and +12.5 % for maize and -18.4, -15.7, -8 and +0.4 % for potato, respectively. These results indicated that potato would be more negatively affected by the climate changes scenarios and therefore adaptation plans should prioritize the areas cultivated with this crop.

  15. Biological exposure models for oil spill impact analysis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The oil spill impact analysis (OSIA) software system has been developed to supply a tool for comprehensive, quantitative environmental impact assessments resulting from oil spills. In the system, a biological component evaluates potential effects on exposed organisms based on results from a physico-chemieal fates component, including the extent and characteristics of the surface slick, and dissolved and total concentrations of hydrocarbons in the water column. The component includes a particle-based exposure model for migratory adult fish populations, a particle-based exposure model for spawning planktonic organisms (eggs and larvae), and an exposure model for wildlife species (sea birds or marine mammals). The exposure model for migratory adult fish populations simulates the migration behaviors of fish populations migrating to or staying in their feeding areas, over-wintering areas or spawning areas, and determines the acute effects (mortality) and chronic accumulation (body burdens) from the dissolved contaminant. The exposure model for spawning planktonic organisms simulates the release of eggs and larvae, also as particles, from specific spawning areas during the spawning period, and determines their potential exposure to contaminants in the water or sediment. The exposure model for wild species calculates the exposure to surrace oil of wildlife (bird and marine mammal ) categories inhabiting the contaminated area. Compared with the earlier models in which all kinds of organisms are assumed evenly and randomly distributed, the updated biological exposure models can more realistically estimate potential effects on marine ecological system from oil spill pollution events.

  16. Linking climate suitability, spread rates and host-impact when estimating the potential costs of invasive pests.

    Directory of Open Access Journals (Sweden)

    Darren J Kriticos

    Full Text Available Biosecurity agencies need robust bioeconomic tools to help inform policy and allocate scarce management resources. They need to estimate the potential for each invasive alien species (IAS to create negative impacts, so that relative and absolute comparisons can be made. Using pine processionary moth (Thaumetopoea pityocampa sensu lato as an example, these needs were met by combining species niche modelling, dispersal modelling, host impact and economic modelling. Within its native range (the Mediterranean Basin and adjacent areas, T. pityocampa causes significant defoliation of pines and serious urticating injuries to humans. Such severe impacts overseas have fuelled concerns about its potential impacts, should it be introduced to New Zealand. A stochastic bioeconomic model was used to estimate the impact of PPM invasion in terms of pine production value lost due to a hypothetical invasion of New Zealand by T. pityocampa. The bioeconomic model combines a semi-mechanistic niche model to develop a climate-related damage function, a climate-related forest growth model, and a stochastic spread model to estimate the present value (PV of an invasion. Simulated invasions indicate that Thaumetopoea pityocampa could reduce New Zealand's merchantable and total pine stem volume production by 30%, reducing forest production by between NZ$1,550 M to NZ$2,560 M if left untreated. Where T. pityocampa is controlled using aerial application of an insecticide, projected losses in PV were reduced, but still significant (NZ$30 M to NZ$2,210 M. The PV estimates were more sensitive to the efficacy of the spray program than the potential rate of spread of the moth. Our novel bioeconomic method provides a refined means of estimating potential impacts of invasive alien species, taking into account climatic effects on asset values, the potential for pest impacts, and pest spread rates.

  17. Linking climate suitability, spread rates and host-impact when estimating the potential costs of invasive pests.

    Science.gov (United States)

    Kriticos, Darren J; Leriche, Agathe; Palmer, David J; Cook, David C; Brockerhoff, Eckehard G; Stephens, Andréa E A; Watt, Michael S

    2013-01-01

    Biosecurity agencies need robust bioeconomic tools to help inform policy and allocate scarce management resources. They need to estimate the potential for each invasive alien species (IAS) to create negative impacts, so that relative and absolute comparisons can be made. Using pine processionary moth (Thaumetopoea pityocampa sensu lato) as an example, these needs were met by combining species niche modelling, dispersal modelling, host impact and economic modelling. Within its native range (the Mediterranean Basin and adjacent areas), T. pityocampa causes significant defoliation of pines and serious urticating injuries to humans. Such severe impacts overseas have fuelled concerns about its potential impacts, should it be introduced to New Zealand. A stochastic bioeconomic model was used to estimate the impact of PPM invasion in terms of pine production value lost due to a hypothetical invasion of New Zealand by T. pityocampa. The bioeconomic model combines a semi-mechanistic niche model to develop a climate-related damage function, a climate-related forest growth model, and a stochastic spread model to estimate the present value (PV) of an invasion. Simulated invasions indicate that Thaumetopoea pityocampa could reduce New Zealand's merchantable and total pine stem volume production by 30%, reducing forest production by between NZ$1,550 M to NZ$2,560 M if left untreated. Where T. pityocampa is controlled using aerial application of an insecticide, projected losses in PV were reduced, but still significant (NZ$30 M to NZ$2,210 M). The PV estimates were more sensitive to the efficacy of the spray program than the potential rate of spread of the moth. Our novel bioeconomic method provides a refined means of estimating potential impacts of invasive alien species, taking into account climatic effects on asset values, the potential for pest impacts, and pest spread rates.

  18. Identification and Assessment of Potential Water Quality Impact Factors for Drinking-Water Reservoirs

    Directory of Open Access Journals (Sweden)

    Qing Gu

    2014-06-01

    Full Text Available Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate, were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  19. Assessment of potential impacts of climate change on agricultural development in the Lower Benue River Basin.

    Science.gov (United States)

    Abah, Roland Clement; Petja, Brilliant Mareme

    2016-12-01

    Agriculture in the Lower Benue River Basin faces several challenges which threaten the future of agricultural development. This study was an assessment of potential impacts of climate change on agricultural development in the Lower Benue River Basin. Through analysis of physical and socioeconomic parameters, the study adapted an impact assessment model to rank potential impacts on agricultural development in the study area. Rainfall intensity seemed to be increasing with a gradual reduction in the number of rainy days. The average discharge at Makurdi hydrological station was 3468.24 cubic metres per second (m(3) s(-1)), and the highest peak flow discharge was 16,400 m(3) s(-1). The daily maximum temperature and annual temperature averages for the study area are gradually rising leading to increased heat stress. Physical and chemical analyses showed that the soils are moderately fertile but require effective application of inorganic and organic fertilisers. The main occupational activities in the study area are agricultural based. The identified potential impacts of climate change on agriculture were categorised under atmospheric carbon dioxides and oxides, rainfall intensity, frequency of floods and droughts, temperature intensity and variation, heat stress, surface water trends, and soil quality and fertility. The identified potential impacts related to population dynamics on agriculture were categorised under population growth, rural-urban migration, household income and infectious diseases and HIV and AIDS. Community-level mitigation strategies were proffered. Policy makers are advised to promote irrigation farming, support farmers with farm inputs and credit facilities and establish active agricultural extension services to support the sustainable development of agriculture.

  20. Experimental comparison of models for ultrafast impact ionization is silicon

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Jepsen, Peter Uhd

    2016-01-01

    We compare experimentally the exponential and quadratic (Keldysh formula) impact ionization models using THz induced impact ionization in silicon. We demonstrate that the exponential model offers the best description of impact ionization process for ultrashort electric filed pulses.......We compare experimentally the exponential and quadratic (Keldysh formula) impact ionization models using THz induced impact ionization in silicon. We demonstrate that the exponential model offers the best description of impact ionization process for ultrashort electric filed pulses....

  1. 77 FR 47876 - Intent To Prepare Environmental Impact Statements: Potential Commercial Wind Lease Issuance and...

    Science.gov (United States)

    2012-08-10

    ... construction and operations plan (COP), BOEM intends to prepare an environmental impact statement (EIS) that... Bureau of Ocean Energy Management Intent To Prepare Environmental Impact Statements: Potential Commercial... the Atlantic OCS, by preparing an environmental assessment (EA) that analyzes the potential impacts...

  2. 78 FR 34093 - An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska

    Science.gov (United States)

    2013-06-06

    ... AGENCY An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska AGENCY... the revised draft document titled, ``An Assessment of Potential Mining Impacts on Salmon Ecosystems of... Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska'' is available primarily via the Internet on...

  3. Flood Progression Modelling and Impact Analysis

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Nickerson, B.

    People living in the lower valley of the St. John River, New Brunswick, Canada, frequently experience flooding when the river overflows its banks during spring ice melt and rain. To better prepare the population of New Brunswick for extreme flooding, we developed a new flood prediction model...... that computes floodplain polygons before the flood occurs. This allows emergency managers to access the impact of the flood before it occurs and make the early decisions for evacuation of the population and flood rescue. This research shows that the use of GIS and LiDAR technologies combined with hydrological...... modelling can significantly improve the decision making and visualization of flood impact needed for emergency planning and flood rescue. Furthermore, the 3D GIS application we developed for modelling flooded buildings and infrastructure provides a better platform for modelling and visualizing flood...

  4. Potential Climate and Ozone Impacts From Hybrid Rocket Engine Emissions

    Science.gov (United States)

    Ross, M.

    2009-12-01

    Hybrid rocket engines that use N2O as an oxidizer and a solid hydrocarbon (such as rubber) as a fuel are relatively new. Little is known about the composition of such hybrid engine emissions. General principles and visual inspection of hybrid plumes suggest significant soot and possibly NO emissions. Understanding hybrid rocket emissions is important because of the possibility that a fleet of hybrid powered suborbital rockets will be flying on the order of 1000 flights per year by 2020. The annual stratospheric emission for these rockets would be about 10 kilotons, equal to present day solid rocket motor (SRM) emissions. We present a preliminary analysis of the magnitude of (1) the radiative forcing from soot emissions and (2) the ozone depletion from soot and NO emissions associated with such a fleet of suborbital hybrid rockets. Because the details of the composition of hybrid emissions are unknown, it is not clear if the ozone depletion caused by these hybrid rockets would be more or less than the ozone depletion from SRMs. We also consider the climate implications associated with the N2O production and use requirements for hybrid rockets. Finally, we identify the most important data collection and modeling needs that are required to reliably assess the complete range of environmental impacts of a fleet of hybrid rockets.

  5. The Lund Model at Nonzero Impact Parameter

    CERN Document Server

    Janik, R A; Janik, Romuald A.; Peschanski, Robi

    2003-01-01

    We extend the formulation of the longitudinal 1+1 dimensional Lund model to nonzero impact parameter using the minimal area assumption. Complete formulae for the string breaking probability and the momenta of the produced mesons are derived using the string worldsheet Minkowskian helicoid geometry. For strings stretched into the transverse dimension, we find probability distribution with slope linear in m_T similar to the statistical models but without any thermalization assumptions.

  6. Impact of inorganic contaminants on microalgae productivity and bioremediation potential.

    Science.gov (United States)

    Torres, Eric M; Hess, Derek; McNeil, Brian T; Guy, Tessa; Quinn, Jason C

    2017-05-01

    As underdeveloped nations continue to industrialize and world population continues to increase, the need for energy, natural resources, and goods will lead to ever increasing inorganic contaminants, such as heavy metals, in various waste streams that can have damaging effects on plant life, wildlife, and human health. This work is focused on the evaluation of the potential of Nannochloropsis salina to be integrated with contaminated water sources for the concurrent production of a biofuel feedstock while providing an environmental service through bioremediation. Individual contaminants (As, Cd, Cr, Co, Cu, Pb, Ni, Hg, Se, and Zn) at various concentrations ranging from a low concentration (1X) to higher concentrations (10X, and 40X) found in contaminated systems (mine tailings, wastewater treatment plants, produced water) were introduced into growth media. Biological growth experimentation was performed in triplicate at the various contaminant concentrations and at 3 different light intensities. Results show that baseline concentrations of each contaminant slightly decreased biomass growth to between 89% and 99% of the control with the exception of Ni which dramatically reduced growth. Increased contaminant concentrations resulted in progressively lower growth rates for all contaminants tested. Lipid analysis shows most baseline contaminant concentrations slightly decrease or have minimal effects on lipid content at all light levels. Trace contaminant analysis on the biomass showed Cd, Co, Cu, Pb, and Zn were sorbed by the microalgae with minimal contaminants remaining in the growth media illustrating the effectiveness of microalgae to bioremediate these contaminants when levels are sufficiently low to not detrimentally impact productivity. The microalgae biomass was less efficient at sorption of As, Cr, Ni, and Se. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. On the influence of impact effect modelling for global asteroid impact risk distribution

    Science.gov (United States)

    Rumpf, Clemens; Lewis, Hugh G.; Atkinson, Peter M.

    2016-06-01

    The collision of an asteroid with Earth can potentially have significant consequences for the human population. The European and United States space agencies (ESA and NASA) maintain asteroid hazard lists that contain all known asteroids with a non-zero chance of colliding with the Earth in the future. Some software tools exist that are, either, capable of calculating the impact points of those asteroids, or that can estimate the impact effects of a given impact incident. However, no single tool is available that combines both aspects and enables a comprehensive risk analysis. The question is, thus, whether tools that can calculate impact location may be used to obtain a qualitative understanding of the asteroid impact risk distribution. To answer this question, two impact risk distributions that control for impact effect modelling were generated and compared. The Asteroid Risk Mitigation Optimisation and Research (ARMOR) tool, in conjunction with the freely available software OrbFit, was used to project the impact probabilities of listed asteroids with a minimum diameter of 30 m onto the surface of the Earth representing a random sample (15% of all objects) of the hazard list. The resulting 261 impact corridors were visualised on a global map. Furthermore, the impact corridors were combined with Earth population data to estimate the "simplified" risk (without impact effects) and "advanced" risk (with impact effects) associated with the direct asteroid impacts that each nation faces from present to 2100 based on this sample. The relationship between risk and population size was examined for the 40 most populous countries and it was apparent that population size is a good proxy for relative risk. The advanced and simplified risk distributions were compared and the alteration of the results based on the introduction of physical impact effects was discussed. Population remained a valid proxy for relative impact risk, but the inclusion of impact effects resulted in

  8. Projected impacts of climate change on hydropower potential in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingcai; Tang, Qiuhong; Voisin, Nathalie; Cui, Huijuan

    2016-01-01

    Hydropower is an important renewable energy source in China, but it is sensitive to climate change, because the changing climate may alter hydrological conditions (e.g., river flow and reservoir storage). Future changes and associated uncertainties in China's gross hydropower potential (GHP) and developed hydropower potential (DHP) are projected using simulations from eight global hydrological models (GHMs), including a large-scale reservoir regulation model, forced by five general circulation models (GCMs) with climate data under two representative concentration pathways (RCP2.6 and RCP8.5). Results show that the estimation of the present GHP of China is comparable to other studies; overall, the annual GHP is projected to change by −1.7 to 2 % in the near future (2020–2050) and increase by 3 to 6 % in the late 21st century (2070–2099). The annual DHP is projected to change by −2.2 to −5.4 % (0.7–1.7 % of the total installed hydropower capacity (IHC)) and −1.3 to −4 % (0.4–1.3 % of total IHC) for 2020–2050 and 2070–2099, respectively. Regional variations emerge: GHP will increase in northern China but decrease in southern China – mostly in south central China and eastern China – where numerous reservoirs and large IHCs currently are located. The area with the highest GHP in southwest China will have more GHP, while DHP will reduce in the regions with high IHC (e.g., Sichuan and Hubei) in the future. The largest decrease in DHP (in %) will occur in autumn or winter, when streamflow is relatively low and water use is competitive. Large ranges in hydropower estimates across GHMs and GCMs highlight the necessity of using multimodel assessments under climate change conditions. This study prompts the consideration of climate change in planning for hydropower development and operations in China, to be further combined with a socioeconomic analysis for strategic expansion.

  9. Impact of climate change on potential distribution of Chinese caterpillar fungus (Ophiocordyceps sinensis) in Nepal Himalaya.

    Science.gov (United States)

    Shrestha, Uttam Babu; Bawa, Kamaljit S

    2014-01-01

    Climate change has already impacted ecosystems and species and substantial impacts of climate change in the future are expected. Species distribution modeling is widely used to map the current potential distribution of species as well as to model the impact of future climate change on distribution of species. Mapping current distribution is useful for conservation planning and understanding the change in distribution impacted by climate change is important for mitigation of future biodiversity losses. However, the current distribution of Chinese caterpillar fungus, a flagship species of the Himalaya with very high economic value, is unknown. Nor do we know the potential changes in suitable habitat of Chinese caterpillar fungus caused by future climate change. We used MaxEnt modeling to predict current distribution and changes in the future distributions of Chinese caterpillar fungus in three future climate change trajectories based on representative concentration pathways (RCPs: RCP 2.6, RCP 4.5, and RCP 6.0) in three different time periods (2030, 2050, and 2070) using species occurrence points, bioclimatic variables, and altitude. About 6.02% (8,989 km2) area of the Nepal Himalaya is suitable for Chinese caterpillar fungus habitat. Our model showed that across all future climate change trajectories over three different time periods, the area of predicted suitable habitat of Chinese caterpillar fungus would expand, with 0.11-4.87% expansion over current suitable habitat. Depending upon the representative concentration pathways, we observed both increase and decrease in average elevation of the suitable habitat range of the species.

  10. Impact of climate change on potential distribution of Chinese caterpillar fungus (Ophiocordyceps sinensis in Nepal Himalaya.

    Directory of Open Access Journals (Sweden)

    Uttam Babu Shrestha

    Full Text Available Climate change has already impacted ecosystems and species and substantial impacts of climate change in the future are expected. Species distribution modeling is widely used to map the current potential distribution of species as well as to model the impact of future climate change on distribution of species. Mapping current distribution is useful for conservation planning and understanding the change in distribution impacted by climate change is important for mitigation of future biodiversity losses. However, the current distribution of Chinese caterpillar fungus, a flagship species of the Himalaya with very high economic value, is unknown. Nor do we know the potential changes in suitable habitat of Chinese caterpillar fungus caused by future climate change. We used MaxEnt modeling to predict current distribution and changes in the future distributions of Chinese caterpillar fungus in three future climate change trajectories based on representative concentration pathways (RCPs: RCP 2.6, RCP 4.5, and RCP 6.0 in three different time periods (2030, 2050, and 2070 using species occurrence points, bioclimatic variables, and altitude. About 6.02% (8,989 km2 area of the Nepal Himalaya is suitable for Chinese caterpillar fungus habitat. Our model showed that across all future climate change trajectories over three different time periods, the area of predicted suitable habitat of Chinese caterpillar fungus would expand, with 0.11-4.87% expansion over current suitable habitat. Depending upon the representative concentration pathways, we observed both increase and decrease in average elevation of the suitable habitat range of the species.

  11. Anticipating potential biodiversity conflicts for future biofuel crops in South Africa: incorporating spatial filters with species distribution models

    CSIR Research Space (South Africa)

    Blanchard, R

    2014-04-01

    Full Text Available distribution models, land cover, land capability and various biodiversity conservation data to identify natural areas with (i) a potentially high risk of transformation for biofuel production and (ii) potential impact to biodiversity conservation areas...

  12. Understanding the impact of technology on firms’ business models

    DEFF Research Database (Denmark)

    Cavalcante, Sergio Andre

    2013-01-01

    of a new business model for the partner companies in the consortium. Practical implications – This paper is important in that it will help companies understand technological impact from a business model perspective, thereby enabling them to manage innovation better by distinguishing between the creation......Purpose – The purpose of this paper is to identify the impact of a new global positioning technology on firms’ business models. Design/methodology/approach – The empirical setting was a consortium of Danish organizations, established to develop a positioning-based technology platform as a basis...... for innovative commercial products and/or services. Three of the consortium companies were selected for case-study research. Findings – The main findings were that companies will use the new technology to extend their existing business models, and that the technology platform potentially represents the creation...

  13. Impact of management strategies on the global warming potential at the cropping system level.

    Science.gov (United States)

    Goglio, Pietro; Grant, Brian B; Smith, Ward N; Desjardins, Raymond L; Worth, Devon E; Zentner, Robert; Malhi, Sukhdev S

    2014-08-15

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha(-1) decreased on average the emissions of N2O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO2 emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact.

  14. Estimating potential impacts of a change in river quality on the ...

    African Journals Online (AJOL)

    Estimating potential impacts of a change in river quality on the tourism value of Kruger ... Development and resource allocation decision processes are increasingly ... to incorporate environmental values into environmental impact assessment ...

  15. Flood Impact Modelling and Natural Flood Management

    Science.gov (United States)

    Owen, Gareth; Quinn, Paul; ODonnell, Greg

    2016-04-01

    Local implementation of Natural Flood Management methods are now being proposed in many flood schemes. In principal it offers a cost effective solution to a number of catchment based problem as NFM tackles both flood risk and WFD issues. However within larger catchments there is the issue of which subcatchments to target first and how much NFM to implement. If each catchment has its own configuration of subcatchment and rivers how can the issues of flood synchronisation and strategic investment be addressed? In this study we will show two key aspects to resolving these issues. Firstly, a multi-scale network water level recorder is placed throughout the system to capture the flow concentration and travel time operating in the catchment being studied. The second is a Flood Impact Model (FIM), which is a subcatchment based model that can generate runoff in any location using any hydrological model. The key aspect to the model is that it has a function to represent the impact of NFM in any subcatchment and the ability to route that flood wave to the outfall. This function allows a realistic representation of the synchronisation issues for that catchment. By running the model in interactive mode the user can define an appropriate scheme that minimises or removes the risk of synchornisation and gives confidence that the NFM investment is having a good level of impact downstream in large flood events.

  16. Clearance rates of jellyfish and their potential predation impact on zooplankton and fish larvae in a neritic ecosystem (Limfjorden, Denmark)

    DEFF Research Database (Denmark)

    Hansson, L. J.; Moeslund, O.; Kiørboe, Thomas

    2005-01-01

    comparatively low. These data were used to assess the impact of jellyfish predation upon zooplankton and fish larvae in Limfjorden, Denmark. Repeated sampling of zooplankton, fish larvae and medusae was undertaken during the first half of 2003. Nine taxa of hydromedusae and 4 taxa of scyphomedusae were...... identified. Abundance estimates were combined with estimated clearance rates of individual medusae to calculate potential jellyfish-induced mortality on prey in Limfjorden. Copepoda was used as a model prey group to estimate the collective predation impact by all medusae. Medusa species with unknown...... clearance potential were given assumed clearance rate values, but the collective predation potential by these species was evaluated to be small. Hydromedusae dominated numerically and had their highest potential clearance impact in spring, but overall jellyfish clearance potential on copepods was low during...

  17. Frictional Impact Modeling of a Cereal Thresher

    Directory of Open Access Journals (Sweden)

    Christian O. Osueke

    2011-01-01

    Full Text Available Problem statement: There is no point producing cereal threshing models that cannot replicate its performance on the field. The frictional impact that occurs between the crop surface and threshing cylinder has been often neglected by most researchers in cereal threshing. Approach: Study proffers a solution to this issue by developing a model for threshing which in-cooperate friction. This was done by analyzing the crop/threshing cylinder behavior, hence establishing mathematical sub-models to characterize the performance of this model. Results: The model was further packaged with computer aided software based on visual basic programming language and finally applied. Conclusion: Upon application, it was discovered that at a moisture content of 15% v = 9 m sec-1, Q = 0.18 kg sec-1 the model yielded performance characteristics as Eff = 88.22%, TNL = 11.78% and CAPTH = 211.52 kg h-1.

  18. Assessment of Flooded Areas Projections and Floods Potential Impacts Applying Remote Sensing Imagery and Demographic Data

    Science.gov (United States)

    Rodriguez, D. A.; Carriello, F.; Fernandes, P. J. F.; Garofolo Lopes, L.; Siqueira Júnior, J. L.

    2016-06-01

    Assessing vulnerability and potential impacts associated with extreme discharges requires an accurate topographic description in order to estimate the extension of flooded areas. However, in most populated regions, topographic data obtained by in-situ measurements is not available. In this case, digital elevation models derived from remote sensing date are usually applied. Moreover, this digital elevation models have intrinsic errors that introduce bigger uncertainty in results than the associated to hydrological projections. On the other hand, estimations of flooded areas through remote sensing images provide accurate information, which could be used for the construction of river level-flooded area relationships regarding vulnerability assessment. In this work, this approach is applied for the city of Porto Velho in the Brazilian Amazonia to assess potential vulnerability to floods associated with climate change projections. The approach is validated using census data, provided by the Brazilian Institute of Geography and Statistics, and information about socio-economical injuries associated to historical floods, provided by the Brazilian Civil Defence. Hydrological projections under climate change are carried out using several downscaling of climate projections as inputs in a hydrological model. Results show more accurate estimation of flood impacts than the obtained using digital elevation models derivate from remote sensing data. This reduces uncertainties in the assessment of vulnerability to floods associated with climate change in the region.

  19. Assessing downstream flood impacts due to a potential GLOF from Imja Tsho in Nepal

    Science.gov (United States)

    Somos-Valenzuela, M. A.; McKinney, D. C.; Byers, A. C.; Rounce, D. R.; Portocarrero, C.; Lamsal, D.

    2015-03-01

    Glacial-dominated areas pose unique challenges to downstream communities in adapting to recent and continuing global climate change, including increased threats of glacial lake outburst floods (GLOFs) that can increase risk due to flooding of downstream communities and cause substantial impacts on regional social, environmental and economic systems. The Imja glacial lake (or Imja Tsho) in Nepal, which has the potential to generate a GLOF, was studied using a two-dimensional debris-flow inundation model in order to evaluate the effectiveness of proposed measures to reduce possible flooding impacts to downstream communities by lowering the lake level. The results indicate that only minor flood impact reduction is achieved in the downstream community of Dingboche with modest (~3 m) lake lowering. Lowering the lake by 10 m shows a significant reduction in inundated area. However, lowering the lake by 20 m almost eliminates all flood impact at Dingboche. Further downstream at Phakding, the impact of the GLOF is significant and similar reductions in inundation are likely as a result of lake lowering.

  20. Assessing downstream flood impacts due to a potential GLOF from Imja Lake in Nepal

    Directory of Open Access Journals (Sweden)

    M. A. Somos-Valenzuela

    2014-11-01

    Full Text Available Glacial-dominated areas pose unique challenges to downstream communities in adapting to recent and continuing global climate change, including increased threats of glacial lake outburst floods (GLOFs that can increase risk due to flooding of downstream communities and cause substantial impacts on regional social, environmental and economic systems. The Imja glacial lake in Nepal, with potential to generate a GLOF, was studied using a two-dimensional debris flow inundation model in order to evaluate the effectiveness of proposed measures to reduce possible flooding impacts to downstream communities by lowering the lake level. The results indicate that only minor flood impact reduction is achieved in the downstream community of Dingboche with modest (~3 m lake lowering. Lowering the lake by 10 m shows a significant reduction in inundated area. However, lowering the lake by 20 m almost eliminates all flood impact at Dingboche. Further downstream at Phakding, the impact of the GLOF is significant and similar reductions in inundation are likely as a result of lake lowering.

  1. Temperature Impacts the Development and Survival of Common Cutworm (Spodoptera litura: Simulation and Visualization of Potential Population Growth in India under Warmer Temperatures through Life Cycle Modelling and Spatial Mapping.

    Directory of Open Access Journals (Sweden)

    Babasaheb B Fand

    Full Text Available The common cutworm, Spodoptera litura, has become a major pest of soybean (Glycine max throughout its Indian range. With a changing climate, there is the potential for this insect to become an increasingly severe pest in certain regions due to increased habitat suitability. To examine this possibility, we developed temperature-based phenology model for S. litura, by constructing thermal reaction norms for cohorts of single life stages, at both constant and fluctuating temperatures within the ecologically relevant range (15-38°C for its development. Life table parameters were estimated stochastically using cohort updating and rate summation approach. The model was implemented in the geographic information system to examine the potential future pest status of S. litura using temperature change projections from SRES A1B climate change scenario for the year 2050. The changes were visualized by means of three spatial indices demonstrating the risks for establishment, number of generations per year and pest abundance according to the temperature conditions. The results revealed that the development rate as a function of temperature increased linearly for all the immature stages of S. litura until approximately 34-36°C, after which it became non-linear. The extreme temperature of 38°C was found lethal to larval and pupal stages of S. litura wherein no development to the next stage occurred. Females could lay no eggs at the extreme low (15°C and high (> 35°C test temperatures, demonstrating the importance of optimum temperature in determining the suitability of climate for the mating and reproduction in S. litura. The risk mapping predicts that due to temperature increase under future climate change, much of the soybean areas in Indian states like Madhya Pradesh, Maharashtra and Rajasthan, will become suitable for S. litura establishment and increased pest activity, indicating the expansion of the suitable and favourable areas over time. This has

  2. Assessing potential impacts associated with contamination events in water distribution systems : a sensitivity analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M. J.; Janke, R.; Taxon, T. N. (Decision and Information Sciences); ( EVS); (EPA)

    2010-11-01

    An understanding of the nature of the adverse effects that could be associated with contamination events in water distribution systems is necessary for carrying out vulnerability analyses and designing contamination warning systems. This study examines the adverse effects of contamination events using models for 12 actual water systems that serve populations ranging from about 104 to over 106 persons. The measure of adverse effects that we use is the number of people who are exposed to a contaminant above some dose level due to ingestion of contaminated tap water. For this study the number of such people defines the impact associated with an event. We consider a wide range of dose levels in order to accommodate a wide range of potential contaminants. For a particular contaminant, dose level can be related to a health effects level. For example, a dose level could correspond to the median lethal dose, i.e., the dose that would be fatal to 50% of the exposed population. Highly toxic contaminants may be associated with a particular response at a very low dose level, whereas contaminants with low toxicity may only be associated with the same response at a much higher dose level. This report focuses on the sensitivity of impacts to five factors that either define the nature of a contamination event or involve assumptions that are used in assessing exposure to the contaminant: (1) duration of contaminant injection, (2) time of contaminant injection, (3) quantity or mass of contaminant injected, (4) population distribution in the water distribution system, and (5) the ingestion pattern of the potentially exposed population. For each of these factors, the sensitivities of impacts to injection location and contaminant toxicity are also examined. For all the factors considered, sensitivity tends to increase with dose level (i.e., decreasing toxicity) of the contaminant, with considerable inter-network variability. With the exception of the population distribution (factor 4

  3. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste.

    Science.gov (United States)

    Kang, Daniel Hsing Po; Chen, Mengjun; Ogunseitan, Oladele A

    2013-05-21

    Rechargeable lithium-ion (Li-ion) and lithium-polymer (Li-poly) batteries have recently become dominant in consumer electronic products because of advantages associated with energy density and product longevity. However, the small size of these batteries, the high rate of disposal of consumer products in which they are used, and the lack of uniform regulatory policy on their disposal means that lithium batteries may contribute substantially to environmental pollution and adverse human health impacts due to potentially toxic materials. In this research, we used standardized leaching tests, life-cycle impact assessment (LCIA), and hazard assessment models to evaluate hazardous waste classification, resource depletion potential, and toxicity potentials of lithium batteries used in cellphones. Our results demonstrate that according to U.S. federal regulations, defunct Li-ion batteries are classified hazardous due to their lead (Pb) content (average 6.29 mg/L; σ = 11.1; limit 5). However, according to California regulations, all lithium batteries tested are classified hazardous due to excessive levels of cobalt (average 163,544 mg/kg; σ = 62,897; limit 8000), copper (average 98,694 mg/kg; σ = 28,734; limit 2500), and nickel (average 9525 mg/kg; σ = 11,438; limit 2000). In some of the Li-ion batteries, the leached concentrations of chromium, lead, and thallium exceeded the California regulation limits. The environmental impact associated with resource depletion and human toxicity is mainly associated with cobalt, copper, nickel, thallium, and silver, whereas the ecotoxicity potential is primarily associated with cobalt, copper, nickel, thallium, and silver. However, the relative contribution of aluminum and lithium to human toxicity and ecotoxicity could not be estimated due to insufficient toxicity data in the models. These findings support the need for stronger government policy at the local, national, and international levels to encourage recovery, recycling, and

  4. Mitigating impact of thermal and rectified radio-frequency sheath potentials on edge localized modes

    Energy Technology Data Exchange (ETDEWEB)

    Gui, B. [Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Lawerence Livermore National Lab, Livermore, California 94550 (United States); Xu, X. Q. [Lawerence Livermore National Lab, Livermore, California 94550 (United States); Myra, J. R.; D' Ippolito, D. A. [Lodestar Research Corporation, Boulder, Colorado 80301 (United States)

    2014-11-15

    The mitigating impact of thermal and rectified radio frequency (RF) sheath potentials on the peeling-ballooning modes is studied non-linearly by employing a two-fluid three-field simulation model based on the BOUT++ framework. Additional shear flow and the Kelvin-Helmholtz effect due to the thermal and rectified RF sheath potential are induced. It is found that the shear flow increases the growth rate while the K-H effect decreases the growth rate slightly when there is a density gradient, but the energy loss of these cases is suppressed in the nonlinear phase. The stronger external electrostatic field due to the sheaths has a more significant effect on the energy loss suppression. From this study, it is found the growth rate in the linear phase mainly determines the onset of edge-localized modes, while the mode spectrum width in the nonlinear phase has an important impact on the turbulent transport. The wider mode spectrum leads to weaker turbulent transport and results in a smaller energy loss. Due to the thermal sheath and rectified RF sheath potential in the scrape-off-layer, the modified shear flow tears apart the peeling-ballooning filament and makes the mode spectrum wider, resulting in less energy loss. The perturbed electric potential and the parallel current near the sheath region is also suppressed locally due to the sheath boundary condition.

  5. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada

    Science.gov (United States)

    Wotton, B. M.; Flannigan, M. D.; Marshall, G. A.

    2017-09-01

    Much research has been carried out on the potential impacts of climate change on forest fire activity in the boreal forest. Indeed, there is a general consensus that, while change will vary regionally across the vast extent of the boreal, in general the fire environment will become more conducive to fire. Land management agencies must consider ways to adapt to these new conditions. This paper examines the impact of that changed fire environment on overall wildfire suppression capability. We use multiple General Circulation Models and carbon emission pathways to generate future fire environment scenarios for Canada’s forested region. We then use these scenarios with the Canadian Forest Fire Behaviour Prediction System and spatial coverages of the current forest fuel composition across the landscape to examine potential variation in key fire behaviour outputs that influence whether fire management resources can effectively suppress fire. Specifically, we evaluate how the potential for crown fire occurrence and active growth of fires changes with the changing climate. We also examine future fire behaviour through the lens of operational fire intensity thresholds used to guide decisions about resources effectiveness. Results indicate that the proportion of days in fire seasons with the potential for unmanageable fire will increase across Canada’s forest, more than doubling in some regions in northern and eastern boreal forest.

  6. Complexification of three potential models – II

    Indian Academy of Sciences (India)

    Sanjib Meyur; S Dednath

    2009-10-01

    A new kind of $\\mathcal{PT}$ and non-$\\mathcal{PT}$-symmetric complex potentials are constructed from a group theoretical viewpoint of the sl(2, ) potential algebras. The real eigenvalues and the corresponding regular eigenfunctions are also obtained. The results are compared with the ones obtained before.

  7. Alternative future analysis for assessing the potential impact of climate change on urban landscape dynamics.

    Science.gov (United States)

    He, Chunyang; Zhao, Yuanyuan; Huang, Qingxu; Zhang, Qiaofeng; Zhang, Da

    2015-11-01

    Assessing the impact of climate change on urban landscape dynamics (ULD) is the foundation for adapting to climate change and maintaining urban landscape sustainability. This paper demonstrates an alternative future analysis by coupling a system dynamics (SD) and a cellular automata (CA) model. The potential impact of different climate change scenarios on ULD from 2009 to 2030 was simulated and evaluated in the Beijing-Tianjin-Tangshan megalopolis cluster area (BTT-MCA). The results suggested that the integrated model, which combines the advantages of the SD and CA model, has the strengths of spatial quantification and flexibility. Meanwhile, the results showed that the influence of climate change would become more severe over time. In 2030, the potential urban area affected by climate change will be 343.60-1260.66 km(2) (5.55 -20.37 % of the total urban area, projected by the no-climate-change-effect scenario). Therefore, the effects of climate change should not be neglected when designing and managing urban landscape.

  8. Impact of numerical models on fragmentation processes

    Science.gov (United States)

    Renouf, Mathieu; Gezahengn, Belien; Abbas, Micheline; Bourgeois, Florent

    2013-06-01

    Simulated fragmentation process in granular assemblies is a challenging problem which date back the beginning of the 90'. If first approaches have focus on the fragmentation on a single particle, with the development of robust, fast numerical method is is possible today to simulated such process in a large collection of particles. But the question of the fragmentation problem is still open: should the fragmentation be done dynamically (one particle becoming two fragments) and according which criterion or should the fragment paths be defined initially and which is the impact of the discretization and the model of fragments? The present contribution proposes to investigate the second aspect i.e. the impact of fragment modeling on the fragmentation processes. First to perform such an analysis, the geometry of fragments (disks/sphere or polygon/polyhedra), their behavior (rigid/deformable) and the law governing their interactions are investigated. Then such model will be used in a grinding application where the evolution of fragments and impact on the behavior of the whole packing are investigate.

  9. Potential impact of climate change on air pollution-related human health effects.

    Science.gov (United States)

    Tagaris, Efthimios; Liao, Kuo-Jen; Delucia, Anthony J; Deck, Leland; Amar, Praveen; Russell, Armistead G

    2009-07-01

    The potential health impact of ambient ozone and PM2.5 concentrations modulated by climate change over the United States is investigated using combined atmospheric and health modeling. Regional air quality modeling for 2001 and 2050 was conducted using CMAQ Modeling System with meteorology from the GISS Global Climate Model, downscaled regionally using MM5,keeping boundary conditions of air pollutants, emission sources, population, activity levels, and pollution controls constant. BenMap was employed to estimate the air pollution health outcomes at the county, state, and national level for 2050 caused by the effect of meteorology on future ozone and PM2.5 concentrations. The changes in calculated annual mean PM2.5 concentrations show a relatively modest change with positive and negative responses (increasing PM2.5 levels across the northeastern U.S.) although average ozone levels slightly decrease across the northern sections of the U.S., and increase across the southern tier. Results suggest that climate change driven air quality-related health effects will be adversely affected in more then 2/3 of the continental U.S. Changes in health effects induced by PM2.5 dominate compared to those caused by ozone. PM2.5-induced premature mortality is about 15 times higher then that due to ozone. Nationally the analysis suggests approximately 4000 additional annual premature deaths due to climate change impacts on PM2.5 vs 300 due to climate change-induced ozone changes. However, the impacts vary spatially. Increased premature mortality due to elevated ozone concentrations will be offset by lower mortality from reductions in PM2.5 in 11 states. Uncertainties related to different emissions projections used to simulate future climate, and the uncertainties forecasting the meteorology, are large although there are potentially important unaddressed uncertainties (e.g., downscaling, speciation, interaction, exposure, and concentration-response function of the human health studies).

  10. Modelling hypervelocity impacts into aluminum structures based on LDEF data

    Science.gov (United States)

    Coombs, C. R.; Atkinson, D. R.; Watts, A. J.; Wagner, J. R.; Allbrooks, M. K.; Hennessy, C. J.

    1993-01-01

    Realizing and understanding the effects of the near-Earth space environment on a spacecraft during its mission lifetime is becoming more important with the regeneration of America's space program. Included among these potential effects are the following: erosion and surface degradation due to atomic oxygen impingement; ultraviolet exposure embrittlement; and delamination, pitting, cratering, and ring formation due to micrometeoroid and debris impacts. These effects may occur synergistically and may alter the spacecraft materials enough to modify the resultant crater, star crack, and/or perforation. This study concentrates on modelling the effects of micrometeoroid and debris hypervelocity impacts into aluminum materials (6061-T6). Space debris exists in all sizes, and has the possibility of growing into a potentially catastrophic problem, particularly since self-collisions between particles can rapidly escalate the number of small impactors. We have examined the morphologies of the Long Duration Exposure Facility (LDEF) impact craters and the relationship between the observed impact damage on LDEF versus the existing models for both the natural (micrometeoroid) and manmade (debris) environments in order to better define these environments.

  11. Biomechanical approaches to understanding the potentially injurious demands of gymnastic-style impact landings

    Directory of Open Access Journals (Sweden)

    Gittoes Marianne JR

    2012-01-01

    Full Text Available Abstract Gymnasts are exposed to a high incidence of impact landings due to the execution of repeated dismount performances. Biomechanical research can help inform recent discussions surrounding a proposed rule change in potentially injurious gymnastic dismounting. The review examines existing understanding of the mechanisms influencing the impact loads incurred in gymnastic-style landings achieved using biomechanical approaches. Laboratory-based and theoretical modelling research of inherent and regulatory mechanisms is appraised. The integration of the existing insights into injury prevention interventions studies is further considered in the appraisals. While laboratory-based studies have traditionally been favoured, the difficulty in controlling and isolating mechanisms of interest has partially restricted the understanding gained. An increase in the use of theoretical approaches has been evident over the past two decades, which has successfully enhanced insight into less readily modified mechanisms. For example, the important contribution of mass compositions and 'tuned' mass coupling responses to impact loading has been evidenced. While theoretical studies have advanced knowledge in impact landing mechanics, restrictions in the availability of laboratory-based input data have suppressed the benefits gained. The advantages of integrating laboratory-based and theoretical approaches in furthering scientific understanding of loading mechanisms have been recognised in the literature. Since a multi-mechanism contribution to impact loading has been evident, a deviation away from studies examining isolated mechanisms may be supported for the future. A further scientific understanding of the use of regulatory mechanisms in alleviating a performer's inherent injury predisposition may subsequently be gained and used to inform potential rule changes in gymnastics. While the use of controlled studies for providing scientific evidence for the

  12. Potential impacts on groundwater resources of deep CO2 storage: natural analogues for assessing potential chemical effects

    Science.gov (United States)

    Lions, J.; Gale, I.; May, F.; Nygaard, E.; Ruetters, H.; Beaubien, S.; Sohrabi, M.; Hatzignatiou, D. G.; CO2GeoNet Members involved in the present study Team

    2011-12-01

    Carbon dioxide Capture and Storage (CCS) is considered as one of the promising options for reducing atmospheric emissions of CO2 related to human activities. One of the main concerns associated with the geological storage of CO2 is that the CO2 may leak from the intended storage formation, migrate to the near-surface environment and, eventually, escape from the ground. This is a concern because such leakage may affect aquifers overlying the storage site and containing freshwater that may be used for drinking, industry and agriculture. The IEA Greenhouse Gas R&D Programme (IEAGHG) recently commissioned the CO2GeoNet Association to undertake a review of published and unpublished literature on this topic with the aim of summarizing 'state of the art' knowledge and identifying knowledge gaps and research priorities in this field. Work carried out by various CO2GeoNet members was also used in this study. This study identifies possible areas of conflict by combining available datasets to map the global and regional superposition of deep saline formations (DSF) suitable for CO2 storage and overlying fresh groundwater resources. A scenario classification is developed for the various geological settings where conflict could occur. The study proposes two approaches to address the potential impact mechanisms of CO2 storage projects on the hydrodynamics and chemistry of shallow groundwater. The first classifies and synthesizes changes of water quality observed in natural/industrial analogues and in laboratory experiments. The second reviews hydrodynamic and geochemical models, including coupled multiphase flow and reactive transport. Various models are discussed in terms of their advantages and limitations, with conclusions on possible impacts on groundwater resources. Possible mitigation options to stop or control CO2 leakage are assessed. The effect of CO2 pressure in the host DSF and the potential effects on shallow aquifers are also examined. The study provides a review of

  13. Modelling climate impacts on the aviation sector

    Science.gov (United States)

    Williams, Paul

    2017-04-01

    The climate is changing, not just where we live at ground level, but also where we fly at 35,000 feet. We have long known that air travel contributes to climate change through its emissions. However, we have only recently become aware that climate change could have significant consequences for air travel. This presentation will give an overview of the possible impacts of climate change on the aviation sector. The presentation will describe how the impacts are modelled and how their social and economic costs are estimated. The impacts are discussed in the International Civil Aviation Organization's (ICAO's) latest Environmental Report (Puempel and Williams 2016). Some of the possible impacts are as follows. Rising sea levels and storm surges threaten coastal airports, such as La Guardia in New York, which was flooded by the remnants of Hurricane Sandy in 2012. Warmer air at ground level reduces the lift force and makes it more difficult for planes to take-off (Coffel and Horton 2015). More extreme weather may cause flight disruptions and delays. Clear-air turbulence is expected to become up to 40% stronger and twice as common (Williams and Joshi 2013). Transatlantic flights may collectively be airborne for an extra 2,000 hours each year because of changes to the jet stream, burning an extra 7.2 million gallons of jet fuel at a cost of US 22 million, and emitting an extra 70 million kg of carbon dioxide (Williams 2016). These modelled impacts provide further evidence of the two-way interaction between aviation and climate change. References Coffel E and Horton R (2015) Climate change and the impact of extreme temperatures on aviation. Weather, Climate, and Society, 7, 94-102. http://dx.doi.org/10.1175/WCAS-D-14-00026.1 Puempel H and Williams PD (2016) The impacts of climate change on aviation: Scientific challenges and adaptation pathways. ICAO Environmental Report 2016: On Board A Sustainable Future, pp 205-207. http

  14. The EPA's Study on the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    Science.gov (United States)

    Burden, Susan

    2013-03-01

    Natural gas plays a key role in our nation's clean energy future. The United States has vast reserves of natural gas that are commercially viable as a result of advances in horizontal drilling and hydraulic fracturing technologies, which enable greater access to gas in rock formations deep underground. These advances have spurred a significant increase in the production of both natural gas and oil across the country. However, as the use of hydraulic fracturing has increased, so have concerns about its potential human health and environmental impacts, especially for drinking water. In response to public concern, the US Congress requested that the US Environmental Protection Agency (EPA) conduct scientific research to examine the relationship between hydraulic fracturing and drinking water resources. In 2011, the EPA began research to assess the potential impacts of hydraulic fracturing on drinking water resources, if any, and to identify the driving factors that may affect the severity and frequency of such impacts. The study is organized around the five stages of the hydraulic fracturing water cycle, from water acquisition through the mixing of chemicals and the injection of fracturing fluid to post-fracturing treatment and/or disposal of wastewater. EPA scientists are using a transdisciplinary research approach involving laboratory studies, computer modeling, toxicity assessments, and case studies to answer research questions associated with each stage of the water cycle. This talk will provide an overview of the EPA's study, including a description of the hydraulic fracturing water cycle and a summary of the ongoing research projects.

  15. Assessment of the potential impact of Nuclear Power Plant accidents on aviation

    Science.gov (United States)

    Wotawa, Gerhard; Arnold, Delia; Maurer, Christian

    2014-05-01

    The nuclear accidents in Chernobyl in 1986 and in Fukushima in 2011 demonstrated the urgent need to provide adequate guidance for land-based, marine and airborne transport. Quick assessments of potential impacts are essential to avoid unnecessary traffic disruptions while guaranteeing appropriate safety levels for staff in the transport industry as well as travellers. Such estimates are to be provided under difficult circumstances, mostly due to the lack of reliable initial information on the severity of the accident and the exact source term of radionuclides. Regarding aviation, there are three equally relevant aspects to look at, namely aircraft in cruising altitude (about 40000 ft), aircraft approaching an airport, and finally the airports as such as critical infrastructure, including airport operations and ground transport. Based on the accident scenarios encountered in the Chernobyl and Fukushima cases, exemplary case studies shall be provided to assess the potential impacts of such events on aviation. The study is based on the Atmospheric Transport and Dispersion Model (ATDM) FLEXPART and a simplified scheme to calculate effective dose rates based on a few key radionuclides (Cs-137, I-131 and Xe-133). Besides the impact assessment, possible new products provided by WMO Regional Specialized Meteorological Centres in the event of an accident shall be discussed as well.

  16. Future climate variability impacts on potential erosion and soil organic carbon in European croplands

    Directory of Open Access Journals (Sweden)

    M. van der Velde

    2014-01-01

    Full Text Available We investigate the impact of future climate variability on the potential vulnerability of soils to erosion and the consequences for soil organic carbon (SOC in European croplands. Soil erosion is an important carbon flux not characterized in Earth System Models. We use a~European implementation of EPIC, driven by reference climate data (CNTRL, and climate data with reduced variability (REDVAR. Whether erosion regimes will change across European cropland depends on the spatial conjunction of expected changes in climate variability and physiographic conditions conducive to erosion. We isolated the effect of erosion by performing simulations with and without erosion. Median CNTRL and REDVAR erosion rates equalled 14.4 and 9.1 ton ha−1, and 19.1 and 9.7, for 1981–2010 and 2071–2100, respectively. The total amount of carbon lost from European cropland due to erosion was estimated at 769 Tg C for 1981–2010 (from a total storage of 6197 Tg C without erosion under CNTRL climate. Climate trend impacts reduce the European cropland SOC stock by 578 Tg C without – and by 683 Tg C with erosion, from 1981 to 2100. Climate variability compounds these impacts and decreases the stock by an estimated 170 Tg without erosion and by 314 Tg C with erosion, by the end of the century. Future climate variability and erosion will thus compound impacts on SOC stocks arising from gradual climate change alone.

  17. 78 FR 25266 - An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska

    Science.gov (United States)

    2013-04-30

    ... AGENCY An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska AGENCY... Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska'' (EPA-910-R-12-004Ba-c... on Salmon Ecosystems of Bristol Bay, Alaska'' is available primarily via the Internet on the EPA...

  18. The potential impacts of climate change on hydropower: An ...

    African Journals Online (AJOL)

    Osborne

    Climate change has the potential to affect hydropower generation by either increasing or reducing .... electricity requirements from the two micro hydroelectric ..... strategies: a case study of the Mulanje Mountain Forest Reserve and.

  19. Investigation of potential water quality and quantity impacts ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... From South African and international experience, it is known that coal mining has a pronounced ... New data regarding water quality and acid-base potential for the different geological areas ...

  20. An Overview of Algae Biofuel Production and Potential Environmental Impact

    Science.gov (United States)

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  1. An Overview of Algae Biofuel Production and Potential Environmental Impact

    Science.gov (United States)

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  2. Potential impact of climate and socioeconomic changes on future agricultural land use in West Africa

    Science.gov (United States)

    Farzan Ahmed, Kazi; Wang, Guiling; You, Liangzhi; Yu, Miao

    2016-02-01

    Agriculture is a key component of anthropogenic land use and land cover changes that influence regional climate. Meanwhile, in addition to socioeconomic drivers, climate is another important factor shaping agricultural land use. In this study, we compare the contributions of climate change and socioeconomic development to potential future changes of agricultural land use in West Africa using a prototype land use projection (LandPro) algorithm. The algorithm is based on a balance between food supply and demand, and accounts for the impact of socioeconomic drivers on the demand side and the impact of climate-induced crop yield changes on the supply side. The impact of human decision-making on land use is explicitly considered through multiple "what-if" scenarios. In the application to West Africa, future crop yield changes were simulated by a process-based crop model driven with future climate projections from a regional climate model, and future changes of food demand is projected using a model for policy analysis of agricultural commodities and trade. Without agricultural intensification, the climate-induced decrease in crop yield together with future increases in food demand is found to cause a significant increase in cropland areas at the expense of forest and grassland by the mid-century. The increase in agricultural land use is primarily climate-driven in the western part of West Africa and socioeconomically driven in the eastern part. Analysis of results from multiple scenarios of crop area allocation suggests that human adaptation characterized by science-informed decision-making can potentially minimize future land use changes in many parts of the region.

  3. A new interaction potential for swarming models

    CERN Document Server

    Carrillo, J A; Panferov, V

    2012-01-01

    We consider a self-propelled particle system which has been used to describe certain types of collective motion of animals, such as fish schools and bird flocks. Interactions between particles are specified by means of a pairwise potential, repulsive at short ranges and attractive at longer ranges. The exponentially decaying Morse potential is a typical choice, and is known to reproduce certain types of collective motion observed in nature, particularly aligned flocks and rotating mills. We introduce a class of interaction potentials, that we call Quasi-Morse, for which flock and rotating mills states are also observed numerically, however in that case the corresponding macroscopic equations allow for explicit solutions in terms of special functions, with coefficients that can be obtained numerically without solving the particle evolution. We compare thus obtained solutions with long-time dynamics of the particle systems and find a close agreement for several types of flock and mill solutions.

  4. A new interaction potential for swarming models

    Science.gov (United States)

    Carrillo, J. A.; Martin, S.; Panferov, V.

    2013-10-01

    We consider a self-propelled particle system which has been used to describe certain types of collective motion of animals, such as fish schools and bird flocks. Interactions between particles are specified by means of a pairwise potential, repulsive at short ranges and attractive at longer ranges. The exponentially decaying Morse potential is a typical choice, and is known to reproduce certain types of collective motion observed in nature, particularly aligned flocks and rotating mills. We introduce a class of interaction potentials, that we call Quasi-Morse, for which flock and rotating mills states are also observed numerically, however in that case the corresponding macroscopic equations allow for explicit solutions in terms of special functions, with coefficients that can be obtained numerically without solving the particle evolution. We compare the obtained solutions with long-time dynamics of the particle systems and find a close agreement for several types of flock and mill solutions.

  5. An Economic Analysis of Potential Impacts of Climate Change in Egypt

    OpenAIRE

    Onyeji, S.C.; Fischer, G.

    1993-01-01

    Projections of climate impacts on crop yields simulated for different GCM scenarios are used, in a recursively dynamic general equilibrium framework, to account for potential economy-wide impacts of climate change in Egypt. Comparing these impact projections to those obtained under a reference, business-as-usual, scenario assuming some moderate changes in the political, economic or technological sphere, indicates that global warming has potentially negative effects. The analysis is based on ...

  6. Assessment of urgent impacts of greenhouse gas emissions—the climate tipping potential (CTP)

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky; Nielsen, Per H.

    2014-01-01

    The impact of anthropogenic greenhouse gas (GHG) emissions on climate change receives much focus today. This impact is however often considered only in terms of global warming potential (GWP), which does not take into account the need for staying below climatic target levels, in order to avoid...... passing critical climate tipping points. Some suggestions to include a target level in climate change impact assessment have been made, but with the consequence of disregarding impacts beyond that target level. The aim of this paper is to introduce the climate tipping impact category, which represents...... the climate tipping potential (CTP) of GHG emissions relative to a climatic target level. The climate tipping impact category should be seen as complementary to the global warming impact category.The CTP of a GHG emission is expressed as the emission’s impact divided by the ‘capacity’ of the atmosphere...

  7. A generalized model for stability of trees under impact conditions

    Science.gov (United States)

    Dattola, Giuseppe; Crosta, Giovanni; Castellanza, Riccardo; di Prisco, Claudio; Canepa, Davide

    2016-04-01

    Stability of trees to external actions involve the combined effects of stem and tree root systems. A block impacting on the stem or an applied force pulling the stem can cause a tree instability involving stem bending or failure and tree root rotation. So different contributions are involved in the stability of the system. The rockfalls are common natural phenomena that can be unpredictable in terms of frequency and magnitude characteristics, and this makes difficult the estimate of potential hazard and risk for human lives and activities. In mountain areas a natural form of protection from rockfalls is provided by forest growing. The difficulties in the assessment of the real capability of this natural barrier by means of models is an open problem. Nevertheless, a large amount of experimental data are now available which provides support for the development of advanced theoretical framework and corresponding models. The aim of this contribution consists in presenting a model developed to predict the behavior of trees during a block impact. This model describes the tree stem by means of a linear elastic beam system consisting of two beams connected in series and with an equivalent geometry. The tree root system is described via an equivalent foundation, whose behavior is modelled through an elasto-plastic macro-element model. In order to calibrate the model parameters, simulations reproducing a series of winching tests, are performed. These numerical simulations confirm the capability of the model to predict the mechanical behavior of the stem-root system in terms of displacement vs force curves. Finally, numerical simulations of the impact of a boulder with a tree stem are carried out. These simulations, done under dynamic regime and with the model parameters obtained from the previous set of simulations, confirm the capability of the model to reproduce the effects on the stem-roots system generated by impulsive loads.

  8. The Potential Impact of Banking Crises on Public Finances: An Assessment of Selected EU Countries Using SYMBOL

    OpenAIRE

    CAMPOLONGO Francesca; MARCHESI Massimo; DE LISA Riccardo

    2011-01-01

    This paper presents an application of the SYMBOL model, recently developed by the European Commission, in assessing the potential impact of banks’ crisis on public finance in four EU Member States. Results show that two Member States have a relatively high probability of being in the situation where government finances have to cover losses generated in the banking system

  9. Mitigation potential and global health impacts from emissions pricing of food commodities

    Science.gov (United States)

    Springmann, Marco; Mason-D'Croz, Daniel; Robinson, Sherman; Wiebe, Keith; Godfray, H. Charles J.; Rayner, Mike; Scarborough, Peter

    2017-01-01

    The projected rise in food-related greenhouse gas emissions could seriously impede efforts to limit global warming to acceptable levels. Despite that, food production and consumption have long been excluded from climate policies, in part due to concerns about the potential impact on food security. Using a coupled agriculture and health modelling framework, we show that the global climate change mitigation potential of emissions pricing of food commodities could be substantial, and that levying greenhouse gas taxes on food commodities could, if appropriately designed, be a health-promoting climate policy in high-income countries, as well as in most low- and middle-income countries. Sparing food groups known to be beneficial for health from taxation, selectively compensating for income losses associated with tax-related price increases, and using a portion of tax revenues for health promotion are potential policy options that could help avert most of the negative health impacts experienced by vulnerable groups, whilst still promoting changes towards diets which are more environmentally sustainable.

  10. Energy dissipation by submarine obstacles during landslide impact on reservoir - potentially avoiding catastrophic dam collapse

    Science.gov (United States)

    Kafle, Jeevan; Kattel, Parameshwari; Mergili, Martin; Fischer, Jan-Thomas; Tuladhar, Bhadra Man; Pudasaini, Shiva P.

    2017-04-01

    Dense geophysical mass flows such as landslides, debris flows and debris avalanches may generate super tsunami waves as they impact water bodies such as the sea, hydraulic reservoirs or mountain lakes. Here, we apply a comprehensive and general two-phase, physical-mathematical mass flow model (Pudasaini, 2012) that consists of non-linear and hyperbolic-parabolic partial differential equations for mass and momentum balances, and present novel, high-resolution simulation results for two-phase flows, as a mixture of solid grains and viscous fluid, impacting fluid reservoirs with obstacles. The simulations demonstrate that due to the presence of different obstacles in the water body, the intense flow-obstacle-interaction dramatically reduces the flow momentum resulting in the rapid energy dissipation around the obstacles. With the increase of obstacle height overtopping decreases but, the deflection and capturing (holding) of solid mass increases. In addition, the submarine solid mass is captured by the multiple obstacles and the moving mass decreases both in amount and speed as each obstacle causes the flow to deflect into two streams and also captures a portion of it. This results in distinct tsunami and submarine flow dynamics with multiple surface water and submarine debris waves. This novel approach can be implemented in open source GIS modelling framework r.avaflow, and be applied in hazard mitigation, prevention and relevant engineering or environmental tasks. This might be in particular for process chains, such as debris impacts in lakes and subsequent overtopping. So, as the complex flow-obstacle-interactions strongly and simultaneously dissipate huge energy at impact such installations potentially avoid great threat against the integrity of the dam. References: Pudasaini, S. P. (2012): A general two-phase debris flow model. J. Geophys. Res. 117, F03010, doi: 10.1029/ 2011JF002186.

  11. Reviewing Bayesian Networks potentials for climate change impacts assessment and management: A multi-risk perspective.

    Science.gov (United States)

    Sperotto, Anna; Molina, José-Luis; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio

    2017-11-01

    The evaluation and management of climate change impacts on natural and human systems required the adoption of a multi-risk perspective in which the effect of multiple stressors, processes and interconnections are simultaneously modelled. Despite Bayesian Networks (BNs) are popular integrated modelling tools to deal with uncertain and complex domains, their application in the context of climate change still represent a limited explored field. The paper, drawing on the review of existing applications in the field of environmental management, discusses the potential and limitation of applying BNs to improve current climate change risk assessment procedures. Main potentials include the advantage to consider multiple stressors and endpoints in the same framework, their flexibility in dealing and communicate with the uncertainty of climate projections and the opportunity to perform scenario analysis. Some limitations (i.e. representation of temporal and spatial dynamics, quantitative validation), however, should be overcome to boost BNs use in climate change impacts assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A new model to simulate impact breakup

    Science.gov (United States)

    Cordelli, Alessandro; Farinella, Paolo

    1997-12-01

    We have developed a preliminary version of a new type of code to simulate the outcomes of impacts between solid bodies, which we plan to further refine for application to both asteroid science and space debris studies. In the current code, colliding objects are modeled as two-dimensional arrays of finite elements, which can interact with each other in both an elastic and a shock-wave regime. The finite elements are hard spheres with a given value for mass and radius. When two of them come into contact the laws of inelastic scattering are applied, thus giving rise to the propagation of shock waves. Moreover each spherical element interacts elastically with its nearest neighbours. The interaction force corresponds to that of a spring having an equilibrium length equal to the lattice spacing, and results into the propagation of elastic waves in the lattice. Dissipation effects are modeled by means of a dissipative force term proportional to the relative velocity, with a given characteristic time of decay. The possible occurrence of fractures in the material is modeled by assuming that when the distance of two neighbouring elements exceeds a threshold value, the binding force between them disappears for ever. This model requires finding a plausible correspondence between the input parameters appearing in the equations of motion, and the physical properties of real solid materials. Some of the required links are quite obvious (e.g., the relationship between mass of the elements and elastic constant on one side, and material density and sound velocity on the other side), some others a priori are unclear, and additional hypotheses on them must be made (e.g., on the restitution coefficient of inelastic scattering). Despite the preliminary character of the model, we have obtained some interesting results, which appear to mimic in a realistic way the outcomes of actual impacts. For instance, we have observed the formation of craters and fractures, and (for high impact

  13. Modeling the onset of photosynthesis after the Chicxulub asteroid impact

    CERN Document Server

    Perez, Noel; Martin, Osmel; Rojas, Reinaldo

    2012-01-01

    We do a preliminary modelling of the photosynthetic rates of phytoplankton at the very beginning of the Paleogene, just after the impact of the Chicxulub asteroid, which decisively contributed to the last known mass extinction of the Phanerozoic eon. We assume the worst possible scenario from the photobiological point of view: an already clear atmosphere with no ozone, as the timescale for soot and dust settling (years) is smaller than that of the full ozone regeneration (decades). Even in these conditions we show that most phytoplankton species would have had reasonable potential for photosynthesis in all the three main optical ocean water types. This modelling could help explain why the recovery of phytoplankton was relatively rapid after the huge environmental stress of that asteroid impact. In a more general scope, it also reminds us of the great resilience of the unicellular biosphere against huge environmental perturbations.

  14. Modeling the Clarification Potential of Instructions

    DEFF Research Database (Denmark)

    Benotti, Luciana; Blackburn, Patrick Rowan

    2017-01-01

    We hypothesize that conversational implicatures are a rich source of clarification requests, and in this paper we do two things. First, we motivate the hypothesis in theoretical, practical and empirical terms and formulate it as a concrete Clarification Potential Principle: implicatures may become...

  15. Glueball Masses in Relativistic Potential Model

    CERN Document Server

    Shpenik, A; Kis, J; Fekete, Yu

    2000-01-01

    The problem of glueball mass spectra using the relativistic Dirac equation is studied. Also the Breit-Fermi approach used to obtaining hyperfine splitting in glueballs. Our approach is based on the assumption, that the nature and the forces between two gluons are the short-range. We were to calculate the glueball masses with used screened potential.

  16. Carcar Chicharon: A Potential for Tourism Impact Studies

    Directory of Open Access Journals (Sweden)

    Ian Christian P. Cosido

    2016-05-01

    Full Text Available This study determines the economic potential of chicharon business in Carcar City, Cebu, Philippines. It answers these objectives to: (1 check its profile with reference to: capitalization, volume of products, types of products, marketing, profit and number of workers; (2 ascertain its problems; (3 assess its economic potential to different stakeholders, namely: business owners, workers, vendors, and the community; and (4 evaluate its effects to the other sectors of the city.This study used an ethnographic design with naturalistic observation, interviews of key informants, field notes, and supported with secondary data. KIs were interviewed through interview guides, during their most convenient time. To observe ethics, names of KIs and other stakeholders were held confidentially. The findings were validated through expert triangulation. The chicharon business contributed to Carcar’s small scale industry. Despite various challenges faced; it continued to grow, contributing to the socio-economic development. Its potential cascaded to other economic sectors, especially for the city’s viability as a tourism hub. For further investigation, these are hereby recommended: culture and heritage advocates may continue to find ways to preserve the city’s centuries old delicacy; adoption of new technologies to make the products competitive in local and global markets; and follow up studies to sustain the business’ economic potentiality. Government agencies may continue its present programs to sustain the business; strong financial assistance; improved environmental sanitations; programs and trainings, efficient machinery to help the business prosper and make Carcar a potential tourist destination.

  17. The potential of electromobility in Austria: An analysis based on hybrid choice models

    OpenAIRE

    Francisco J. Bahamonde-Birke; Hanappi, Tibor

    2015-01-01

    This paper analyses the impact of the introduction of electromobility in Austria, focusing specifically on the potential demand for electric vehicles in the automotive market. We estimate discrete choice behavioral mixture models considering latent variables; these allows us to deal with this potential demand as well as to analyze the effect of different attributes of the alternatives over the potential market penetration. We find out that some usual assumptions regarding electromobilityalso ...

  18. Genetically-Improved Tilapia Strains in Africa: Potential Benefits and Negative Impacts

    Directory of Open Access Journals (Sweden)

    Yaw B. Ansah

    2014-06-01

    Full Text Available Two genetically improved tilapia strains (GIFT and Akosombo have been created with Oreochromis niloticus (Nile tilapia, which is native to Africa. In particular, GIFT has been shown to be significantly superior to local African tilapia strains in terms of growth rate. While development economists see the potential for food security and poverty reduction in Africa from culture of these new strains of tilapia, conservationists are wary of potential ecological and genetic impacts on receiving ecosystems and native stocks of tilapia. This study reviews the history of the GIFT technology, and identifies potential environmental and genetic risks of improved and farmed strains and tilapia in general. We also estimate the potential economic gains from the introduction of genetically improved strains in Africa, using Ghana as a case country. Employing a combination of the Economic-Surplus model and Monte Carlo simulation, we found the mean net present value (NPV of the introduction of the GIFT strain in Ghana to be approximately 1% of the country’s gross domestic product. Sensitivity analysis indicated that the difference in growth or yield between the GIFT and locally-available strains has the largest effect on mean NPV. We conclude that improvements in management practices and infrastructure could increase the yield and profitability of the local strains even if genetically-improved strains are not introduced. These improvements also will ensure the realization of the full potential of introduced strains.

  19. Impact of Climate Warming on Passive Night Cooling Potential

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Gyalistras, D.; Manz, H.;

    2008-01-01

    Night-time ventilation is often seen as a promising passive cooling concept. However, as it requires a sufficiently high temperature difference between ambient air and the building structure, this technique is highly sensitive to changes in climatic conditions. In order to quantify the impact...... temperature (Tmin). CCP was computed for present conditions (1961-90) using measured Tmin data from the European Climate Assessment (ECA) database. Possible time-dependent changes in CCP were assessed for 1990-2100, with particular emphasis on the Intergovernmental Panel on Climate Change (IPCC) 'A2' and 'B2...

  20. Potential impacts of black carbon on the marine microbial community

    NARCIS (Netherlands)

    Malits, A.; Cattaneo, R.; Sintes, E.; Gasol, J.M.; Herndl, G.J.; Weinbauer, M.G.

    2015-01-01

    Black carbon (BC) is the carbonaceous residue of the incomplete combustion of fossil fuels and biomass and encompasses a range of chemically heterogeneous substances from partly charred plant material to highly condensed soot aerosols. We addressed the potential role of BC aerosol deposition on mari

  1. Atmospheric ethanol in London and the potential impacts of future fuel formulations.

    Science.gov (United States)

    Dunmore, Rachel E; Whalley, Lisa K; Sherwen, Tomás; Evans, Mathew J; Heard, Dwayne E; Hopkins, James R; Lee, James D; Lewis, Alastair C; Lidster, Richard T; Rickard, Andrew R; Hamilton, Jacqueline F

    2016-07-18

    There is growing global consumption of non-fossil fuels such as ethanol made from renewable biomass. Previous studies have shown that one of the main air quality disadvantages of using ethanol blended fuels is a significant increase in the production of acetaldehyde, an unregulated and toxic pollutant. Most studies on the impacts of ethanol blended gasoline have been carried out in the US and Brazil, with much less focus on the UK and Europe. We report time resolved measurements of ethanol in London during the winter and summer of 2012. In both seasons the mean mixing ratio of ethanol was around 5 ppb, with maximum values over 30 ppb, making ethanol currently the most abundant VOC in London air. We identify a road transport related source, with 'rush-hour' peaks observed. Ethanol is strongly correlated with other road transport-related emissions, such as small aromatics and light alkanes, and has no relationship to summer biogenic emissions. To determine the impact of road transport-related ethanol emission on secondary species (i.e. acetaldehyde and ozone), we use both a chemically detailed box model (incorporating the Master Chemical Mechanism, MCM) and a global and nested regional scale chemical transport model (GEOS-Chem), on various processing time scales. Using the MCM model, only 16% of the modelled acetaldehyde was formed from ethanol oxidation. However, the model significantly underpredicts the total levels of acetaldehyde, indicating a missing primary emission source, that appears to be traffic-related. Further support for a primary emission source comes from the regional scale model simulations, where the observed concentrations of ethanol and acetaldehyde can only be reconciled with the inclusion of large primary emissions. Although only constrained by one set of observations, the regional modelling suggests a European ethanol source similar in magnitude to that of ethane (∼60 Gg per year) and greater than that of acetaldehyde (∼10 Gg per year). The

  2. Occupational stress perception and its potential impact on work ability.

    Science.gov (United States)

    Yong, Mei; Nasterlack, Michael; Pluto, Rolf-Peter; Lang, Stefan; Oberlinner, Christoph

    2013-01-01

    To examine perceived stress across employees with different occupational status, to investigate the impact of stress on work ability and to derive conclusions regarding health promotion activities. A comprehensive survey combining questionnaire and medical examination was offered in one division in BASF Ludwigshafen. Among 867 voluntary participants, 653 returned complete questionnaires. The questions were directed at perception of safety at the workplace, self-rated health status, frequency of stress symptoms, unrealistic job demands, time pressure and maladjustment of work life balance. The outcome of interest was self-estimated health measured by the Work Ability Index (WAI). Occupational stressors were perceived differently across occupational status groups. Frontline operators had more health concerns due to workplace conditions, while professional and managerial staff reported higher frequencies of perceived tension, time pressure, and maladjustment of work life balance. After adjustment for occupational status, demographic and lifestyle factors, perceived stress was associated with a modest to strong decline in WAI scores. While perceived occupational stress had an apparent impact on WAI, and WAI has been demonstrated to be predictive of early retirement, more intensive and employee group-specific stress management interventions are being implemented beyond traditional strategies of routine occupational medical surveillance.

  3. Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis.

    Science.gov (United States)

    Ihlow, Flora; Courant, Julien; Secondi, Jean; Herrel, Anthony; Rebelo, Rui; Measey, G John; Lillo, Francesco; De Villiers, F André; Vogt, Solveig; De Busschere, Charlotte; Backeljau, Thierry; Rödder, Dennis

    2016-01-01

    By altering or eliminating delicate ecological relationships, non-indigenous species are considered a major threat to biodiversity, as well as a driver of environmental change. Global climate change affects ecosystems and ecological communities, leading to changes in the phenology, geographic ranges, or population abundance of several species. Thus, predicting the impacts of global climate change on the current and future distribution of invasive species is an important subject in macroecological studies. The African clawed frog (Xenopus laevis), native to South Africa, possesses a strong invasion potential and populations have become established in numerous countries across four continents. The global invasion potential of X. laevis was assessed using correlative species distribution models (SDMs). SDMs were computed based on a comprehensive set of occurrence records covering South Africa, North America, South America and Europe and a set of nine environmental predictors. Models were built using both a maximum entropy model and an ensemble approach integrating eight algorithms. The future occurrence probabilities for X. laevis were subsequently computed using bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differences between the statistical approaches, both SDMs predict the future potential distribution of X. laevis, on a global scale, to decrease across all climate change scenarios. On a continental scale, both SDMs predict decreasing potential distributions in the species' native range in South Africa, as well as in the invaded areas in North and South America, and in Australia where the species has not been introduced. In contrast, both SDMs predict the potential range size to expand in Europe. Our results suggest that all probability classes will be equally affected by climate change. New regional conditions may promote new invasions or the spread of established invasive populations, especially in France and Great Britain.

  4. Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis.

    Directory of Open Access Journals (Sweden)

    Flora Ihlow

    Full Text Available By altering or eliminating delicate ecological relationships, non-indigenous species are considered a major threat to biodiversity, as well as a driver of environmental change. Global climate change affects ecosystems and ecological communities, leading to changes in the phenology, geographic ranges, or population abundance of several species. Thus, predicting the impacts of global climate change on the current and future distribution of invasive species is an important subject in macroecological studies. The African clawed frog (Xenopus laevis, native to South Africa, possesses a strong invasion potential and populations have become established in numerous countries across four continents. The global invasion potential of X. laevis was assessed using correlative species distribution models (SDMs. SDMs were computed based on a comprehensive set of occurrence records covering South Africa, North America, South America and Europe and a set of nine environmental predictors. Models were built using both a maximum entropy model and an ensemble approach integrating eight algorithms. The future occurrence probabilities for X. laevis were subsequently computed using bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differences between the statistical approaches, both SDMs predict the future potential distribution of X. laevis, on a global scale, to decrease across all climate change scenarios. On a continental scale, both SDMs predict decreasing potential distributions in the species' native range in South Africa, as well as in the invaded areas in North and South America, and in Australia where the species has not been introduced. In contrast, both SDMs predict the potential range size to expand in Europe. Our results suggest that all probability classes will be equally affected by climate change. New regional conditions may promote new invasions or the spread of established invasive populations, especially in France

  5. Physical Modelling of Mine Blast Impact on Armoured Vehicles

    Science.gov (United States)

    Bochorishvili, Nika; Chikhradze, Nikoloz; Mataradze, Edgar; Akhvlediani, Irakli

    2016-10-01

    Studies related to the impact of a mine blast on armoured vehicles focus on aspects such as i) dynamic loads acting on the armoured vehicle at the moment of mine blast; ii) armoured vehicle response under the impact of a dynamic load; iii) dynamic loads acting on the crew and the assessment of potential human traumas. The paper presents similarity criteria for physical modelling of the mine blast under the armoured vehicle and the results of modelling of dynamic behaviour of vehicles. Similarity criteria, established as a result of the analysis of the governing parameters and similarity theory, are adequate to the processes of blast impact on the vehicle. Modelling experiments were conducted in the underground experimental base of the Mining Institute especially designed for the study of explosion processes. Physical modelling can be used for preliminary studies with the purpose of the evaluation of the protective level of armoured vehicles as well as for pre-testing experiments in accordance with STANAG 4569 requirements.

  6. Modeled impact of anthropogenic land cover change on climate

    Science.gov (United States)

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.

    2007-01-01

    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  7. Impacts of marine renewable energy scheme operation on the eutrophication potential of the Severn Estuary, UK

    Science.gov (United States)

    Kadiri, Margaret; Kay, David; Ahmadian, Reza; Bockelmann-Evans, Bettina; Falconer, Roger; Bray, Michaela

    2013-04-01

    In recent years there has being growing global interest in the generation of electricity from renewable resources. Amongst these, marine energy resource is now being considered to form a significant part of the energy mix, with plans for the implementation of several marine renewable energy schemes such as barrages and tidal stream turbines around the UK in the near future. Although marine energy presents a great potential for future electricity generation, there are major concerns over its potential impacts, particularly barrages, on the hydro-environment. Previous studies have shown that a barrage could significantly alter the hydrodynamic regime and tidal flow characteristics of an estuary, with changes to sediment transport (Kadiri et al., 2012). However, changes to nutrients have been overlooked to date. Hence, considerable uncertainty remains as to how a barrage would affect the trophic status of an estuary. This is particularly important because eutrophication can lead to algal toxin production and increased mortality of aquatic invertebrates and fish populations. Therefore, this study examines the impacts of the two different modes of operation of a barrage (i.e. ebb generation and flood-ebb generation) on the eutrophication potential of the Severn Estuary using a simplified model developed by the UK's Comprehensive Studies Task Team (CSTT). The model uses a set of equations and site-specific input data to predict equilibrium dissolved nutrient concentrations, phytoplankton biomass, light-controlled phytoplankton growth rate and primary production which are compared against CSTT set standards for assessing the eutrophic status of estuaries and coastal waters. The estuary volume and tidal flushing time under the two operating modes were estimated using a hydrodynamic model and field surveys were conducted to obtain dissolved nitrate and phosphate concentrations which served as input data. The predicted equilibrium dissolved nitrate and phosphate

  8. Evaluating the Pedagogical Potential of Hybrid Models

    Science.gov (United States)

    Levin, Tzur; Levin, Ilya

    2013-01-01

    The paper examines how the use of hybrid models--that consist of the interacting continuous and discrete processes--may assist in teaching system thinking. We report an experiment in which undergraduate students were asked to choose between a hybrid and a continuous solution for a number of control problems. A correlation has been found between…

  9. Potential of mathematical modeling in fruit quality

    African Journals Online (AJOL)

    ONOS

    2010-01-18

    Jan 18, 2010 ... estimate seasonal changes in quality traits as fruit size, dry matter, water content and the concentration of sugars and ... The global goodness-of-fit of a model is computed by averaging the ... into account climate variables such as radiation, salinity, .... and on exponential light extinction (Beer-Lambert Law).

  10. Extreme temperature days and potential impacts in Southern Europe

    Directory of Open Access Journals (Sweden)

    A. Cardil

    2014-06-01

    Full Text Available Extreme temperature events have consequences for human health and mortality, forest disturbance patterns, agricultural productivity, and the economic repercussions of these consequences combined. To gain insight into whether extreme temperature events are changing in light of global climate dynamics, the annual numbers of high temperature days (those with temperatures higher than 20, 22.5 and 25 °C at 850 hPa were analyzed across Southern Europe from years 1978–2012. A significant increase in the frequency of these days was found in many areas over the time period analyzed, and patterns in the spatial distribution of these changes were identified. We discuss the potential consequences of the increases in high temperature days with regards to forest fire risk, human health, agriculture, energy demands, and some potential economic repercussions.

  11. The potential impact of microgravity science and technology on education

    Science.gov (United States)

    Wargo, M. J.

    1992-01-01

    The development of educational support materials by NASA's Microgravity Science and Applications Division is discussed in the light of two programs. Descriptions of the inception and application possibilities are given for the Microgravity-Science Teacher's Guide and the program of Undergraduate Research Opportunities in Microgravity Science and Technology. The guide is intended to introduce students to the principles and research efforts related to microgravity, and the undergraduate program is intended to reinforce interest in the space program. The use of computers and electronic communications is shown to be an important catalyst for the educational efforts. It is suggested that student and teacher access to these programs be enhanced so that they can have a broader impact on the educational development of space-related knowledge.

  12. Future Fuel Scenarios and Their Potential Impact to Aviation

    Science.gov (United States)

    Hendricks, Robert C.; Daggett, David L.; Anast, Peter; Lowery, Nathan

    2011-01-01

    In recent years fuel prices have been growing at a rapid pace. Current conservative projections predict that this is only a function of the natural volatility of oil prices, similar to the oil price spikes experienced in the 1970s. However, there is growing concern among analysts that the current price increases may not only be permanent, but that prices may continue to increase into the future before settling down at a much higher level than today. At high enough fuel prices, the aircraft industry would become very sensitive to fuel price. In this paper, the likelihood of fuel price increase is considered in three different price increase scenarios: "low," "medium," and "high." The impact of these scenarios on the aviation industry and alternatives are also addressed.

  13. LNG : its potential impact on North American markets

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, B. [Benjamin Schlesinger and Associates Inc., Bethesda, MD (United States)

    2003-07-01

    Liquefied natural gas (LNG) is expected to play a greater role in North American gas supplies and markets due to the decrease in conventional natural gas production in North America accompanied by an increase in demand for energy. It is expected that the overall share of the LNG gas market will rise from about 1.4 per cent in 2002 to more than 5 per cent by 2020, and potentially up to 15 per cent by that year. The construction of at least 15 new LNG receiving terminals has been proposed for location in the U.S., Canada, and Mexico. In addition, El Paso has proposed a novel offshore LNG receiving concept involving offshore gas pipelines and on-board-ship regasification. As trading of LNG increases in the Atlantic, markets in eastern United States and Canada will benefit from improved gas supplies, but pricing patterns are expected to change. Basis differentials along the Atlantic coastline will probably diminish, potentially reducing the value of Sable Island gas and the pipeline system that runs north to south along the eastern coast of North America. It was noted that Middle Eastern suppliers of LNG will play an important potential role in North American markets. 19 figs.

  14. Potential impact of sea level rise on French islands worldwide

    Directory of Open Access Journals (Sweden)

    Celine Bellard

    2013-11-01

    Full Text Available Although sea level rise is one of the most certain consequences of global warming, yet it remains one of the least studied. Several studies strongly suggested that sea level rise will accelerate in the future with a potentially rise from 0.5 to 2 m at the end of the century. However, currently island conservation programs do not take into account the potential effects of sea level rise. Therefore, we investigated the potential consequences of sea level rise for 1,269 French islands worldwide, by assessing the total number of island that will be totally submerged for three different scenarios (1, 2 and 3 m. Under the worst scenario, up to 12% of all islands could be entirely submerged. Two regions displayed the most significant loss of island: New Caledonia and French Polynesia. Focusing on New Caledonia, we highlighted that endemic plant species that are already classified as critically endangered by the IUCN will be the most vulnerable to sea level rise. Losses of insular habitats will thus be important in the next decades for the French islands. Given that French islands covers all latitudes in the Pacific, Indian and Atlantic oceans and in the Mediterranean, our results suggested that the implications for the 180 000 islands around the world should be considerable. Therefore, decision makers are required to define island conservation priorities that will suffer of the future sea level rise.

  15. Impact of chloride on denitrification potential in roadside wetlands.

    Science.gov (United States)

    Lancaster, Nakita A; Bushey, Joseph T; Tobias, Craig R; Song, Bongkeun; Vadas, Timothy M

    2016-05-01

    Developed landscapes are exposed to changes in hydrology and water chemistry that limit their ability to mitigate detrimental impacts to coastal water bodies, particularly those that result from stormwater runoff. The elevated level of impervious cover increases not only runoff but also contaminant loading of nutrients, metals, and road salt used for deicing to water bodies. Here we investigate the impact that road salt has on denitrification in roadside environments. Sediments were collected from a series of forested and roadside wetlands and acclimated with a range of Cl(-) concentrations from 0 to 5000 mg L(-1) for 96 h. Denitrification rates were measured by the isotope pairing technique using (15)N-NO3(-), while denitrifying community structures were compared using terminal restriction fragment length polymorphism (T-RFLP) of nitrous oxide reductase genes (nosZ). Chloride significantly (p wetlands at a Cl(-) dosage of 2500 or 5000 mg L(-1), but the decrease in denitrification rates was less and not significant for the roadside wetlands historically exposed to elevated concentrations of Cl(-). The difference could not be attributed to other significant changes in conditions, such as DOC concentrations, N species concentrations, or pH levels. Denitrifying communities, as measured by T-RFs of the nosZ gene, in the roadside wetlands with elevated concentration of Cl(-) were distinctly different and more diverse compared to forested wetlands, and also different in roadside wetlands after 96 h exposures to Cl(-). The shifts in denitrifying communities seem to minimize the decrease in denitrification rates in the wetlands previously exposed to Cl. As development results in more Cl(-) use and exposure to a broad range of natural or manmade wetland structures, an understanding of the seasonal effect of Cl on denitrification processes in these systems would aid in design or mitigation of the effects on N removal rates.

  16. Transmission dynamics of the four dengue serotypes in southern Vietnam and the potential impact of vaccination.

    Directory of Open Access Journals (Sweden)

    Laurent Coudeville

    Full Text Available BACKGROUND: With approximately 2.5 billion people at risk, dengue is a major international public health concern. Dengue vaccines currently in development should help reduce the burden associated with this disease but the most efficient way of using future dengue vaccines remains to be defined. Mathematical models of transmission can provide insight into the expected impact of different vaccination strategies at a population level and contribute to this definition. METHODS AND FINDINGS: We developed and analyzed an age-structured, host-vector and serotype-specific compartmental model, including seasonality. We first used this transmission model to identify the immunological interactions between serotypes that affect the risks and consequences of secondary infections (cross-protection, increased susceptibility, increased severity, and increased infectiousness and reproduce the observed epidemiology of dengue. For populating this model, we used routine surveillance data from Southern Vietnam and the results of a prospective cohort study conducted in the same area. The model provided a good fit to the observed data for age, severity of cases, serotype distribution, and dynamics over time, using two scenarios of immunological interaction : short term cross-protection alone (6-17 months or a combination of short term cross-protection with cross-enhancement (increased susceptibility, severity and infectiousness in the case of secondary infections. Finally, we explored the potential impact of vaccination for these two scenarios. Both highlighted that vaccination can substantially decrease dengue burden by reducing the magnitude and frequency of outbreaks. CONCLUSION: Our model suggests that seasonality and short term cross-protection are key factors for explaining dengue dynamics in Southern Vietnam. Vaccination was predicted to significantly reduce the disease burden, even in the situation where immunological cross-enhancement affects the risks and

  17. Impact of management strategies on the global warming potential at the cropping system level

    Energy Technology Data Exchange (ETDEWEB)

    Goglio, Pietro; Grant, Brian B.; Smith, Ward N. [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Desjardins, Raymond L., E-mail: ray.desjardins@agr.gc.ca [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Worth, Devon E. [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Zentner, Robert [Swift Current Research Station, Swift Current, Saskatchewan S0E 1A0 (Canada); Malhi, Sukhdev S. [Melfort Research Farm, PO Box 1240, Melfort, Saskatchewan S0E 1A0 (Canada)

    2014-08-15

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha{sup −1} decreased on average the emissions of N{sub 2}O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO{sub 2} emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. - Highlights: • LCA was combined with DNDC model to estimate the GWP of a cropping system. • N{sub 2}O, NO and NH{sub 3} flux increased by 39% under the higher fertilizer rate. • A change from 75 to 50 kg N ha{sup −1} reduced the GWP per ha and GJ basis by 18%. • N{sub 2}O emissions contributed 67% to the overall GWP of the cropping system. • Small changes in N fertilizer can have a substantial environmental impact.

  18. Assessment of future impacts of potential climate change scenarios on aquifer recharge in continental Spain

    Science.gov (United States)

    Pulido-Velazquez, David; Collados-Lara, Antonio-Juan; Alcalá, Francisco J.

    2017-04-01

    This research proposes and applies a method to assess potential impacts of future climatic scenarios on aquifer rainfall recharge in wide and varied regions. The continental Spain territory was selected to show the application. The method requires to generate future series of climatic variables (precipitation, temperature) in the system to simulate them within a previously calibrated hydrological model for the historical data. In a previous work, Alcalá and Custodio (2014) used the atmospheric chloride mass balance (CMB) method for the spatial evaluation of average aquifer recharge by rainfall over the whole of continental Spain, by assuming long-term steady conditions of the balance variables. The distributed average CMB variables necessary to calculate recharge were estimated from available variable-length data series of variable quality and spatial coverage. The CMB variables were regionalized by ordinary kriging at the same 4976 nodes of a 10 km x 10 km grid. Two main sources of uncertainty affecting recharge estimates (given by the coefficient of variation, CV), induced by the inherent natural variability of the variables and from mapping were segregated. Based on these stationary results we define a simple empirical rainfall-recharge model. We consider that spatiotemporal variability of rainfall and temperature are the most important climatic feature and variables influencing potential aquifer recharge in natural regime. Changes in these variables can be important in the assessment of future potential impacts of climatic scenarios over spatiotemporal renewable groundwater resource. For instance, if temperature increases, actual evapotranspitration (EA) will increases reducing the available water for others groundwater balance components, including the recharge. For this reason, instead of defining an infiltration rate coefficient that relates precipitation (P) and recharge we propose to define a transformation function that allows estimating the spatial

  19. Regional Climate Change Scenarios for Mexico and Potential Impacts on Rainfed Maize Agriculture.

    Science.gov (United States)

    Conde, C.; Estrada, F.; Martínez, B.; Sánchez, O.; Monterroso, A.; Rosales, G.; Gay, C.

    2010-03-01

    Regional climate change scenarios that were used to assess the potential impacts on different sectors in Mexico are presented, with an application of those scenarios for the agricultural sector. The results of that research were delivered to the Mexican government for the development of the Mexican Fourth National Communication, which will be presented to the United Nations Framework Convention on Climate Change (UNFCCC). To generate regional climate change scenarios the models and criteria suggested by the Intergovernmental Panel on Climate Change (IPCC) in its Fourth Assessment Report (4AR) were applied. Those criteria are: Consistency with global projections, Physical plausibility, Applicability in impact assessments, Representative of the potential range of changes in the future, Accessibility for the users of impacts assessments. The regional scenarios that were generated focus mainly on the applicability and accessibility criteria. A kick-off meeting was held at the beginning of the research work for the Fourth National Communication, to ensure that those criteria were fulfilled. Specifically, a set of climate change scenarios was generated using the outputs for temperature and precipitation of three General Circulation Models (GCMs): ECHAM5, HADGEM1 y GFDL CM2.0, for the horizons 2030 and 2050, and for the emission scenarios A1B, A2, B2 y B1. Those scenarios can be found in our web page in a low spatial resolution (2.5 º x 2.5º), and with high resolution (5’ x 5’). To assess the potential impacts on rainfed maize agriculture, the changes of the suitability of different regions in the country were evaluated, considering maize temperature and precipitation requirements at its different stages of development. Four categories of suitability (high, moderated, marginal, and no suitable) were characterized for current and future climatic conditions. Using the A2 and B2 emission scenarios, the three GCMs and the horizon 2050, results showed that around 67% of

  20. Potential health impacts of burning coal beds and waste banks

    Science.gov (United States)

    Finkelman, R.B.

    2004-01-01

    Uncontrolled release of pollutants from burning coal beds and waste banks presents potential environmental and human health hazards. On a global scale, the emissions of large volumes of greenhouse gases from burning coal beds may contribute to climate change that alters ecosystems and patterns of disease occurrence. On regional and local scales, the emissions from burning coal beds and waste banks of acidic gases, particulates, organic compounds, and trace elements can contribute to a range of respiratory and other human health problems. Although there are few published reports of health problems caused by these emissions, the potential for problems can be significant. In India, large numbers of people have been displaced from their homes because of health problems caused by emissions from burning coal beds. Volatile elements such as arsenic, fluorine, mercury, and selenium are commonly enriched in coal deposits. Burning coal beds can volatilize these elements, which then can be inhaled, or adsorbed on crops and foods, taken up by livestock or bioaccumulated in birds and fish. Some of these elements can condense on dust particles that can be inhaled or ingested. In addition, selenium, arsenic, lead, tin, bismuth, fluorine, and other elements condense where the hot gaseous emissions come in contact with ambient air, forming mats of concentrated efflorescent minerals on the surface of the ground. These mats can be leached by rainwater and washed into local water bodies providing other potential routes of exposure. Although there are little data linking burning coal beds and waste banks to known health problems, a possibly analogous situation exists in rural China where mineralized coal burned in a residential environment has caused widespread and severe health problems such as fluorosis and arseniasis. ?? 2004 Elsevier B.V. All rights reserved.

  1. Potential health impacts of burning coal beds and waste banks

    Energy Technology Data Exchange (ETDEWEB)

    Finkelman, Robert B. [U.S. Geological Survey, Mail Stop 956 National Center, 12201 Sunrise Valley Drive, Reston, VA 20192 (United States)

    2004-07-12

    Uncontrolled release of pollutants from burning coal beds and waste banks presents potential environmental and human health hazards. On a global scale, the emissions of large volumes of greenhouse gases from burning coal beds may contribute to climate change that alters ecosystems and patterns of disease occurrence. On regional and local scales, the emissions from burning coal beds and waste banks of acidic gases, particulates, organic compounds, and trace elements can contribute to a range of respiratory and other human health problems. Although there are few published reports of health problems caused by these emissions, the potential for problems can be significant. In India, large numbers of people have been displaced from their homes because of health problems caused by emissions from burning coal beds. Volatile elements such as arsenic, fluorine, mercury, and selenium are commonly enriched in coal deposits. Burning coal beds can volatilize these elements, which then can be inhaled, or adsorbed on crops and foods, taken up by livestock or bioaccumulated in birds and fish. Some of these elements can condense on dust particles that can be inhaled or ingested. In addition, selenium, arsenic, lead, tin, bismuth, fluorine, and other elements condense where the hot gaseous emissions come in contact with ambient air, forming mats of concentrated efflorescent minerals on the surface of the ground. These mats can be leached by rainwater and washed into local water bodies providing other potential routes of exposure. Although there are little data linking burning coal beds and waste banks to known health problems, a possibly analogous situation exists in rural China where mineralized coal burned in a residential environment has caused widespread and severe health problems such as fluorosis and arseniasis.

  2. Potential Impacts of Food Production on Freshwater Availability Considering Water Sources

    Directory of Open Access Journals (Sweden)

    Shinjiro Yano

    2016-04-01

    Full Text Available We quantify the potential impacts of global food production on freshwater availability (water scarcity footprint; WSF by applying the water unavailability factor (fwua as a characterization factor and a global water resource model based on life cycle impact assessment (LCIA. Each water source, including rainfall, surface water, and groundwater, has a distinct fwua that is estimated based on the renewability rate of each geographical water cycle. The aggregated consumptive water use level for food production (water footprint inventory; WI was found to be 4344 km3/year, and the calculated global total WSF was 18,031 km3 H2Oeq/year, when considering the difference in water sources. According to the fwua concept, which is based on the land area required to obtain a unit volume of water from each source, the calculated annual impact can also be represented as 98.5 × 106 km2. This value implies that current agricultural activities requires a land area that is over six times larger than global total cropland. We also present the net import of the WI and WSF, highlighting the importance of quantitative assessments for utilizing global water resources to achieve sustainable water use globally.

  3. Environmental assessment of potential produced water impacts and developments in oil spill countermeasures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. [Department of Fisheries and Oceans, Mont-Joli, PQ (Canada). Maurice Lamontagne Inst.

    2000-07-01

    The long-term ecosystem effects of produced water from oil exploration platforms is discussed, citing evidence from the North Sea which shows that long-term ecosystem effects may be induced even by low level exposures. The North Sea evidence is supplemented by results of more recent studies at the Cohasset site which demonstrated that produced water discharges will induce flocculation processes that mediate the concentration and transport of contaminants to the benthic environment and the sea-surface microlayer. In response to the danger to the fisheries inherent in these studies, Fisheries and Oceans Canada is mounting a study of produced water impacts in Atlantic Canada. The program will address the chemical characteristics of the produced water, the significance of the flocculation processes in the transport of contaminants, the potential impact of produced water on resident biota, methods to identify and trace the impact zone of discharges and the application of numerical models to predict the fate and effects of wastes from offshore hydrocarbon platforms. Fisheries and Oceans Canada is also engaged in research to develop and validate in-situ bioremediation techniques to counter oil spills. Treatment strategies to date involved bioaugmentation such as seeding oil-degrading bacteria, and biostimulation, involving the addition of nutrients or growth enhancing substances to stimulate the growth of indigenous oil degraders. Future research will concentrate on identifying the benefits and limitations of bioremediation relative to existing technologies, and providing guidance for application. 1 fig.

  4. The potential impact of the next influenza pandemic on a national primary care medical workforce

    Directory of Open Access Journals (Sweden)

    Crampton Peter

    2005-08-01

    Full Text Available Abstract Background Another influenza pandemic is all but inevitable. We estimated its potential impact on the primary care medical workforce in New Zealand, so that planning could mitigate the disruption from the pandemic and similar challenges. Methods The model in the "FluAid" software (Centers for Disease Control and Prevention, CDC, Atlanta was applied to the New Zealand primary care medical workforce (i.e., general practitioners. Results At its peak (week 4 the pandemic would lead to 1.2% to 2.7% loss of medical work time, using conservative baseline assumptions. Most workdays (88% would be lost due to illness, followed by hospitalisation (8%, and then premature death (4%. Inputs for a "more severe" scenario included greater health effects and time spent caring for sick relatives. For this scenario, 9% of medical workdays would be lost in the peak week, and 3% over a more compressed six-week period of the first pandemic wave. As with the base case, most (64% of lost workdays would be due to illness, followed by caring for others (31%, hospitalisation (4%, and then premature death (1%. Conclusion Preparedness planning for future influenza pandemics must consider the impact on this medical workforce and incorporate strategies to minimise this impact, including infection control measures, well-designed protocols, and improved health sector surge capacity.

  5. Coffee melanoidins: structures, mechanisms of formation and potential health impacts.

    Science.gov (United States)

    Moreira, Ana S P; Nunes, Fernando M; Domingues, M Rosário; Coimbra, Manuel A

    2012-09-01

    During the roasting process, coffee bean components undergo structural changes leading to the formation of melanoidins, which are defined as high molecular weight nitrogenous and brown-colored compounds. As coffee brew is one of the main sources of melanoidins in the human diet, their health implications are of great interest. In fact, several biological activities, such as antioxidant, antimicrobial, anticariogenic, anti-inflammatory, antihypertensive, and antiglycative activities, have been attributed to coffee melanoidins. To understand the potential of coffee melanoidin health benefits, it is essential to know their chemical structures. The studies undertaken to date dealing with the structural characterization of coffee melanoidins have shown that polysaccharides, proteins, and chlorogenic acids are involved in coffee melanoidin formation. However, exact structures of coffee melanoidins and mechanisms involved in their formation are far to be elucidated. This paper systematizes the available information and provides a critical overview of the knowledge obtained so far about the structure of coffee melanoidins, mechanisms of their formation, and their potential health implications.

  6. Alternative Fuels and Their Potential Impact on Aviation

    Science.gov (United States)

    Daggett, D.; Hendricks, R.; Walther, R.

    2006-01-01

    With a growing gap between the growth rate of petroleum production and demand, and with mounting environmental needs, the aircraft industry is investigating issues related to fuel availability, candidates for alternative fuels, and improved aircraft fuel efficiency. Bio-derived fuels, methanol, ethanol, liquid natural gas, liquid hydrogen, and synthetic fuels are considered in this study for their potential to replace or supplement conventional jet fuels. Most of these fuels present the airplane designers with safety, logistical, and performance challenges. Synthetic fuel made from coal, natural gas, or other hydrocarbon feedstock shows significant promise as a fuel that could be easily integrated into present and future aircraft with little or no modification to current aircraft designs. Alternatives, such as biofuel, and in the longer term hydrogen, have good potential but presently appear to be better suited for use in ground transportation. With the increased use of these fuels, a greater portion of a barrel of crude oil can be used for producing jet fuel because aircraft are not as fuel-flexible as ground vehicles.

  7. Investigating impacts of positional error on potential health care accessibility.

    Science.gov (United States)

    Bell, Scott; Wilson, Kathi; Shah, Tayyab Ikram; Gersher, Sarina; Elliott, Tina

    2012-04-01

    Accessibility to health services at the local or community level is an effective approach to measuring health care delivery in various constituencies in Canada and the United States. GIS and spatial methods play an important role in measuring potential access to health services. The Three-Step Floating Catchment Area (3SFCA) method is a GIS based procedure developed to calculate potential (spatial) accessibility as a ratio of primary health care (PHC) providers to the surrounding population in urban settings. This method uses PHC provider locations in textual/address format supplied by local, regional, or national health authorities. An automated geocoding procedure is normally used to convert such addresses to a pair of geographic coordinates. The accuracy of geocoding depends on the type of reference data and the amount of value-added effort applied. This research investigates the success and accuracy of six geocoding methods as well as how geocoding error affects the 3SFCA method. ArcGIS software is used for geocoding and spatial accessibility estimation. Results will focus on two implications of geocoding: (1) the success and accuracy of different automated and value-added geocoding; and (2) the implications of these geocoding methods for GIS-based methods that generalise results based on location data.

  8. Endotoxin Binding by Sevelamer: Potential Impact on Nutritional Status

    Directory of Open Access Journals (Sweden)

    Natsuki Kubotera

    2013-01-01

    Full Text Available Patients on hemodialysis (HD have a high burden of chronic inflammation induced associated with multiple comorbidities including poor nutritional status. Endotoxin (ET is a Gram-negative bacterial cell wall component and a potent stimulus for innate immune system activation leading to the transcription of proinflammatory cytokines (e.g., IL-1, IL-6, and TNFα that adversely affect protein metabolism and nutrition. Several cross-sectional observational studies have found that elevated serum ET concentrations in hemodialysis patients are associated with lower serum albumin, higher proinflammatory cytokine, and C-reactive protein concentrations. Possible sources of ET in the systemic circulation are bacterial translocation from the gastrointestinal tract and iron supplementation, potentially leading to intestinal bacterial overgrowth. Sevelamer is a nonabsorbable hydrogel approved for use as a phosphate binder in HD patients. Reductions in serum ET concentrations in hemodialysis patients have been observed with sevelamer therapy in observational studies and the few published interventional studies. Reduction of ET concentrations was associated with concomitant reductions in TNFα, IL-6, and CRP and improvement in serum albumin in the majority of these small studies. Additional studies are needed to evaluate the potential effects of sevelamer treatment on nutritional status in chronic kidney disease (CKD patients with elevated ET.

  9. THE POTENTIAL IMPACT OF TEHNOLOGICAL DEVELOPMENT ON FUTURE JOBS

    Directory of Open Access Journals (Sweden)

    ŞTEFAN COSMIN-ALEXANDRU

    2015-12-01

    Full Text Available Technological developments in the last decades have reached unbelievable levels, what was once the domain of science fiction movies is now a reality, and this developments have left few areas of human life unchanged. In this paper we aim to explore the changes that technology brought to the way people work and, especially to the way people will work. While we acknowledge that any prediction about the future is almost always proved wrong from the get go, we think that the importance of the subject warrants the risk. The paper draws its routes from some of the most influential theories about how technology will impact the way people work and is main objective is to spark a conversation about the merits of lack thereof that they contain. It is by no means an extensive work, but rather the beginning of a research focus that will, hopefully bring new insights in the above mentioned field. For the sake of convenience we have grouped the predictions in three categories: “Business as usual”, “Lateral developments” and “All bets are off” based on how profound the change would be. Each of this levels offers different benefits, as well as different challenges, our hope is that throw a process of thorough consideration solutions can be generated to maximize the former while minimizing the latter.

  10. Indirect Global Warming Potentials of Halons Using Atmospheric Models

    Science.gov (United States)

    Youn, D.; Patten, K. O.; Wuebbles, D. J.

    2007-05-01

    Emission of bromochlorofluorocarbons, or Halons, results in stratospheric ozone depletion. This leads to cooling of the climate system in the opposite direction to direct warming contribution of the Halons as greenhouse gases. This cooling is a key indirect effect of Halons on radiative forcing or climate. The Global Warming Potential (GWP) is a relative index used to compare the climate impact of an emitted greenhouse gas, relative to an equal amount of carbon dioxide. Until now, indirect GWPs have been calculated based on the concept of Equivalent Effective Stratospheric Chlorine (EESC), which oversimplifies the complex processes in the atmosphere. As a step towards obtaining indirect GWPs through a more robust approach, 2-D and 3-D global chemical transport models (CTM) were used as the computational tool to derive more realistic ozone changes caused by pulse perturbation of Halons at the surface. Indirect GWPs of Halon-1211 and -1301 for a 100-year time horizon were explicitly calculated based on the University of Illinois at Urbana-Champaign (UIUC) 2-D global CTM and radiative transport model (RTM) and the 3-D CTM, MOZART-3.1. The 2-D and 3-D model simulations show acceptable temporal variations in the atmosphere as well as derived lifetimes and direct GWP values of the Halons. The 2-D model-based indirect GWPs for a 100-year horizon are -16,294 for Halon-1211 and -33,648 for Halon-1301. 3-D indirect GWP for Halon-1211 is -18,216. The indirect GWPs for Halon-1211 presented here are much smaller than previous published results using the previous simplified appraoch.

  11. Enterprise marketing potential modeling taking into account optimizing and dynamic essence of the potential

    Directory of Open Access Journals (Sweden)

    Potrashkova Lyudmyla Vladimirovna

    2014-12-01

    Full Text Available The aim of the article. The aim of the research is to develop models system concerning b2b-enterprise marketing potential result-based estimation, which will consider enterprise potential optimizing essence, its hierarchic structure (i.e. strategic, tactic and operative potential levels and marketing resources dynamics. The results of the analysis. The simulation and optimization models system of the b2b-enterprise marketing potential estimation is suggested. The suggested models system is based on the following theoretical grounds: 1 enterprise marketing potential is interpreted as enterprise ability to satisfy consumers’ needs and to get maximum economic benefits from it; 2 the result-based estimation of the enterprise marketing potential is set of the best results (profit from sales, which sales and marketing enterprise subsystem may achieve in the prognosticative period in the view of environmental conditions variants. The suggested system unites models to estimate three managerial levels of the marketing potential (operative, tactic and strategic, which are different from each other by: the set of the given managerial decisions; the set of the changeable managerial decisions; descriptions of the environment parameters; specification of the resources featured describing. Model of each marketing potential level has the following constituents: - objective function, which is the sum of profit from production realization during the whole prognosticative period; - model of the constrained optimization, oriented to define maximum possible profit value from production realization in each elementary period with given marketing resources features values, environmental parameters and marketing complex parameters; - model of the enterprise marketing resources dynamics. Developed models system belongs to the simulation class, because search of the optimal decisions there is conducted with method concerning controllable parameters alternative variants

  12. APPROXIMATING INNOVATION POTENTIAL WITH NEUROFUZZY ROBUST MODEL

    Directory of Open Access Journals (Sweden)

    Kasa, Richard

    2015-01-01

    Full Text Available In a remarkably short time, economic globalisation has changed the world’s economic order, bringing new challenges and opportunities to SMEs. These processes pushed the need to measure innovation capability, which has become a crucial issue for today’s economic and political decision makers. Companies cannot compete in this new environment unless they become more innovative and respond more effectively to consumers’ needs and preferences – as mentioned in the EU’s innovation strategy. Decision makers cannot make accurate and efficient decisions without knowing the capability for innovation of companies in a sector or a region. This need is forcing economists to develop an integrated, unified and complete method of measuring, approximating and even forecasting the innovation performance not only on a macro but also a micro level. In this recent article a critical analysis of the literature on innovation potential approximation and prediction is given, showing their weaknesses and a possible alternative that eliminates the limitations and disadvantages of classical measuring and predictive methods.

  13. Impact of wetlands mapping on parameterization of hydrologic simulation models

    Science.gov (United States)

    Viger, R.

    2015-12-01

    Wetlands and other surface depressions can impact hydrologic response within the landscape in a number of ways, such as intercepting runoff and near-surface flows or changing the potential for evaporation and seepage into the soil. The role of these features is increasingly being integrated into hydrological simulation models, such as the USGS Precipitation-Runoff Modeling System (PRMS) and the Soil Water Assessment Tool (SWAT), and applied to landscapes where wetlands are dominating features. Because the extent of these features varies widely through time, many modeling applications rely on delineations of the maximum possible extent to define total capacity of a model's spatial response unit. This poster presents an evaluation of several wetland map delineations for the Pipestem River basin in the North Dakota Prairie-pothole region. The featured data sets include the US Fish and Wildlife Service National Wetlands Inventory (NWI), surface water bodies extracted from the US Geological Survey National Hydrography Dataset (NHD), and elevation depressions extracted from 1 meter LiDAR data for the area. In addition to characterizing differences in the quality of these datasets, the poster will assess the impact of these differences when parameters are derived from them for the spatial response units of the PRMS model.

  14. Mathematical modeling of steel fiber concrete under dynamic impact

    Science.gov (United States)

    Belov, N. N.; Yugov, N. T.; Kopanitsa, D. G.; Kopanitsa, G. D.; Yugov, A. A.; Shashkov, V. V.

    2015-01-01

    This paper introduces a continuum mechanics mathematical model that describes the processes of deformation and destruction of steel-fiber-concrete under a shock wave impact. A computer modeling method was applied to study the processes of shock wave impact of a steel cylindrical rod and concrete and steel fiber concrete plates. The impact speeds were within 100-500 m/s.

  15. Modeling climate change impacts on water trading.

    Science.gov (United States)

    Luo, Bin; Maqsood, Imran; Gong, Yazhen

    2010-04-01

    This paper presents a new method of evaluating the impacts of climate change on the long-term performance of water trading programs, through designing an indicator to measure the mean of periodic water volume that can be released by trading through a water-use system. The indicator is computed with a stochastic optimization model which can reflect the random uncertainty of water availability. The developed method was demonstrated in the Swift Current Creek watershed of Prairie Canada under two future scenarios simulated by a Canadian Regional Climate Model, in which total water availabilities under future scenarios were estimated using a monthly water balance model. Frequency analysis was performed to obtain the best probability distributions for both observed and simulated water quantity data. Results from the case study indicate that the performance of a trading system is highly scenario-dependent in future climate, with trading effectiveness highly optimistic or undesirable under different future scenarios. Trading effectiveness also largely depends on trading costs, with high costs resulting in failure of the trading program.

  16. Potential health impacts of consuming desalinated bottled water.

    Science.gov (United States)

    Rowell, Candace; Kuiper, Nora; Shomar, Basem

    2015-06-01

    This study compared physicochemical properties, anion and carbon content and major and trace elements in desalinated and non-desalinated bottled water available in Qatar, and assessed the potential health risks associated with prolonged consumption of desalinated water. Results indicate that Qatar's population is not at elevated risk of dietary exposure to As (mean = 666 ng/L), Ba (48.0 μg/L), Be (9.27 ng/L), Cd (20.1 ng/L), Cr (874 ng/L), Pb (258 ng/L), Sb (475 ng/L) and U (533 ng/L) from consumption of both desalinated and non-desalinated bottled water types available in the country. Consumers who primarily consume desalinated water brands further minimize risk of exposure to heavy metals as levels were significantly lower than in non-desalinated bottled water. Desalinated bottled water was not a significant contributor to recommended daily intakes for Ca, Mg and F(-) for adults and children and may increase risk of deficiencies. Desalinated bottled water accounted for only 3% of the Institute of Medicine (IOM) adequate intake (AI) for Ca, 5-6% of the recommended daily allowance for Mg and 4% of the AI for F among adults. For children desalinated water contributed 2-3% of the IOM AICa, 3-10% of the RDA(Mg) and 3-9% of the AIF.

  17. EPA Releases Draft Assessment on the Potential Impacts to Drinking Water Resources from Hydraulic Fracturing Activities

    Science.gov (United States)

    WASHINGTON-The Environmental Protection Agency (EPA) is releasing a draft assessment today on the potential impacts of hydraulic fracturing activities on drinking water resources in the United States. The assessment, done at the request of Congress, shows

  18. Shades of green : spatial and temporal variability of potentials, costs and environmental impacts of bioenergy production

    NARCIS (Netherlands)

    van der Hilst, F.

    2012-01-01

    Bioenergy is expected to play an important role in future energy supply. However, increased implementation of large scale bioenergy production could have significant adverse effects. Strong improvement in spatially explicit potential and impact analyses are required to allow for effective

  19. Alligator River National Wildlife Refuge : Potential impacts from Dare County Landfills

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Surface runoff or leachate from two landfills (East Lake Landfill and the Dare County Construction and Demolition Debris Landfill) have the potential to impact fish...

  20. NUMERICAL MODELS AS ENABLING TOOLS FOR TIDAL-STREAM ENERGY EXTRACTION AND ENVIRONMENTAL IMPACT ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Wang, Taiping

    2016-06-24

    This paper presents a modeling study conducted to evaluate tidal-stream energy extraction and its associated potential environmental impacts using a three-dimensional unstructured-grid coastal ocean model, which was coupled with a water-quality model and a tidal-turbine module.

  1. Developments since 2005 in understanding potential environmental impacts of CO2 leakage from geological storage

    NARCIS (Netherlands)

    Jones, D.G.; Beaubien, S.E.; Blackford, J.C.; Foekema, E.M.; Lions, J.; Vittor, de C.; West, J.M.; Widdicombe, S.; Hauton, C.; Queiros, A.M.

    2015-01-01

    This paper reviews research into the potential environmental impacts of leakage from geological storage of CO2 since the publication of the IPCC Special Report on Carbon Dioxide Capture and Storage in 2005. Possible impacts are considered on onshore (including drinking water aquifers) and offshore e

  2. The potential impacts of sodium management on Frit Development for Coupled Operations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, F. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peeler, D. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-06-10

    In this report, Section 2.0 provides a description of sodium management and its impact on the glass waste form, Section 3.0 provides background information on phase separation, Section 4.0 provides the impact of sodium management on SB9 frit development efforts and the results of a limited scoping study investigating phase separation in potential DWPF frits, and Section 5.0 discusses potential technical issues associated with using a phase separated frit for DWPF operations.

  3. Potential Economic Impacts of the Vietnam-Korea Free Trade Agreement on Vietnam

    Directory of Open Access Journals (Sweden)

    Thanh Hoan Phan

    2016-03-01

    Full Text Available This paper provides an assessment of the potential economic impacts of the Vietnam-Korea free trade agreement on Vietnam, by using general equilibrium modeling. The results show that Vietnam-Korea FTA will increase aggregate welfare for both countries in the long run. The most important gains accrue from better allocation of resources consequent to trade liberalization. All the sectoral differences and changes are consistent with the trade profiles of the two countries, and the long-run results are more pronounced than those of the short-run. In comparison with other ASEAN countries, the CGE analysis suggests that Vietnam's agriculture exports to Korea would especially rise in the long run. However, there will be strong competition in this sector among ASEAN members. Thus, an earlier conclusion of a comprehensive FTA with Korea is expected to be a good strategy for Vietnam, so as to avoid the direct competition with ASEAN members in the future.

  4. Environmental Degradation: A Review on the Potential Impact of River Morphology

    Directory of Open Access Journals (Sweden)

    Awang Ali Awang Nasrizal

    2017-01-01

    Full Text Available River morphology involves the lateral migration of matters deposited by flowing water in the river channel across its floodplain. This is driven by the erosion along the river banks and point bar deposition over time. This paper presents a review on river morphology studies and its potential impact to the society. The reviewed studies include mathematical models and computer simulation such as FLUVIAL-11 and RVR Meander Package that are significant to illustrate a continuous research development on channel adjustment. The findings also shows that a lot more area can still be explored to aid the fundamental of understanding river morphology and that East Malaysia will provide a good platform for the researchers to investigate the lateral migration of a river due to its diversity environment.

  5. A case study of potential human health impacts from petroleum coke transfer facilities.

    Science.gov (United States)

    Dourson, Michael L; Chinkin, Lyle R; MacIntosh, David L; Finn, Jennifer A; Brown, Kathleen W; Reid, Stephen B; Martinez, Jeanelle M

    2016-11-01

    Petroleum coke or "petcoke" is a solid material created during petroleum refinement and is distributed via transfer facilities that may be located in densely populated areas. The health impacts from petcoke exposure to residents living in proximity to such facilities were evaluated for a petcoke transfer facilities located in Chicago, Illinois. Site-specific, margin of safety (MOS) and margin of exposure (MOE) analyses were conducted using estimated airborne and dermal exposures. The exposure assessment was based on a combined measurement and modeling program that included multiyear on-site air monitoring, air dispersion modeling, and analyses of soil and surfaces in residential areas adjacent to two petcoke transfer facilities located in industrial areas. Airborne particulate matter less than 10 microns (PM10) were used as a marker for petcoke. Based on daily fence line monitoring, the average daily PM10 concentration at the KCBX Terminals measured on-site was 32 μg/m(3), with 89% of 24-hr average PM10 concentrations below 50 μg/m(3) and 99% below 100 μg/m(3). A dispersion model estimated that the emission sources at the KCBX Terminals produced peak PM10 levels attributed to the petcoke facility at the most highly impacted residence of 11 μg/m(3) on an annual average basis and 54 μg/m(3) on 24-hr average basis. Chemical indicators of petcoke in soil and surface samples collected from residential neighborhoods adjacent to the facilities were equivalent to levels in corresponding samples collected at reference locations elsewhere in Chicago, a finding that is consistent with limited potential for off-site exposure indicated by the fence line monitoring and air dispersion modeling. The MOE based upon dispersion model estimates ranged from 800 to 900 for potential inhalation, the primary route of concern for particulate matter. This indicates a low likelihood of adverse health effects in the surrounding community. Implications: Handling of petroleum coke at

  6. Potential environmental impacts of offshore UK geological CO2 storage

    Science.gov (United States)

    Carruthers, Kit; Wilkinson, Mark; Butler, Ian B.

    2016-04-01

    Geological carbon dioxide storage in the United Kingdom (UK) will almost certainly be entirely offshore, with storage for over 100 years' worth of UK CO2 output from industry and power generation in offshore depleted hydrocarbon fields and sandstone formations. Storage capacity can be limited by the increase in formation water pressure upon CO2 injection, therefore removal and disposal of formation waters ('produced waters') can control formation water pressures, and increase CO2 storage capacity. Formation waters could also be produced during CO2-Enhanced Oil Recovery (CO2-EOR). The precedent from current UK North Sea hydrocarbon extraction is to 'overboard' produced waters into the ocean, under current regulations. However, laboratory and field scale studies, with an emphasis on the effects on onshore shallow potable groundwaters, have shown that CO2 dissolution in formation waters during injection and storage acidifies the waters and promotes mobilisation from the reservoir sandstones of major and trace elements into solution, including heavy metals. Eight of these elements are specifically identified in the UK as potentially hazardous to the marine environment (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn). A comparison was made between the concentrations of these eight trace elements in the results of laboratory batch leaching experiments of reservoir rock in CO2-rich saline solutions and overboarded waters from current offshore UK hydrocarbon production. This showed that, taking the North Sea as a whole, the experimental results fall within the range of concentrations of current oil and gas activities. However, on a field-by-field basis, concentrations may be enhanced with CO2 storage, such that they are higher than waters normally produced from a particular field. Lead, nickel and zinc showed the greatest concentration increases in the experiments with the addition of CO2, with the other five elements of interest not showing any strong trends with respect to enhanced CO2

  7. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses.

    Science.gov (United States)

    Roux, Simon; Brum, Jennifer R; Dutilh, Bas E; Sunagawa, Shinichi; Duhaime, Melissa B; Loy, Alexander; Poulos, Bonnie T; Solonenko, Natalie; Lara, Elena; Poulain, Julie; Pesant, Stéphane; Kandels-Lewis, Stefanie; Dimier, Céline; Picheral, Marc; Searson, Sarah; Cruaud, Corinne; Alberti, Adriana; Duarte, Carlos M; Gasol, Josep M; Vaqué, Dolors; Bork, Peer; Acinas, Silvia G; Wincker, Patrick; Sullivan, Matthew B

    2016-09-29

    Ocean microbes drive biogeochemical cycling on a global scale. However, this cycling is constrained by viruses that affect community composition, metabolic activity, and evolutionary trajectories. Owing to challenges with the sampling and cultivation of viruses, genome-level viral diversity remains poorly described and grossly understudied, with less than 1% of observed surface-ocean viruses known. Here we assemble complete genomes and large genomic fragments from both surface- and deep-ocean viruses sampled during the Tara Oceans and Malaspina research expeditions, and analyse the resulting 'global ocean virome' dataset to present a global map of abundant, double-stranded DNA viruses complete with genomic and ecological contexts. A total of 15,222 epipelagic and mesopelagic viral populations were identified, comprising 867 viral clusters (defined as approximately genus-level groups). This roughly triples the number of known ocean viral populations and doubles the number of candidate bacterial and archaeal virus genera, providing a near-complete sampling of epipelagic communities at both the population and viral-cluster level. We found that 38 of the 867 viral clusters were locally or globally abundant, together accounting for nearly half of the viral populations in any global ocean virome sample. While two-thirds of these clusters represent newly described viruses lacking any cultivated representative, most could be computationally linked to dominant, ecologically relevant microbial hosts. Moreover, we identified 243 viral-encoded auxiliary metabolic genes, of which only 95 were previously known. Deeper analyses of four of these auxiliary metabolic genes (dsrC, soxYZ, P-II (also known as glnB) and amoC) revealed that abundant viruses may directly manipulate sulfur and nitrogen cycling throughout the epipelagic ocean. This viral catalog and functional analyses provide a necessary foundation for the meaningful integration of viruses into ecosystem models where they

  8. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses

    KAUST Repository

    Roux, Simon

    2016-09-20

    Ocean microbes drive biogeochemical cycling on a global scale. However, this cycling is constrained by viruses that affect community composition, metabolic activity, and evolutionary trajectories. Owing to challenges with the sampling and cultivation of viruses, genome-level viral diversity remains poorly described and grossly understudied, with less than 1% of observed surface-ocean viruses known. Here we assemble complete genomes and large genomic fragments from both surface-and deep-ocean viruses sampled during the Tara Oceans and Malaspina research expeditions, and analyse the resulting â global ocean virome\\' dataset to present a global map of abundant, double-stranded DNA viruses complete with genomic and ecological contexts. A total of 15,222 epipelagic and mesopelagic viral populations were identified, comprising 867 viral clusters (defined as approximately genus-level groups). This roughly triples the number of known ocean viral populations and doubles the number of candidate bacterial and archaeal virus genera, providing a near-complete sampling of epipelagic communities at both the population and viral-cluster level. We found that 38 of the 867 viral clusters were locally or globally abundant, together accounting for nearly half of the viral populations in any global ocean virome sample. While two-thirds of these clusters represent newly described viruses lacking any cultivated representative, most could be computationally linked to dominant, ecologically relevant microbial hosts. Moreover, we identified 243 viral-encoded auxiliary metabolic genes, of which only 95 were previously known. Deeper analyses of four of these auxiliary metabolic genes (dsrC, soxYZ, P-II (also known as glnB) and amoC) revealed that abundant viruses may directly manipulate sulfur and nitrogen cycling throughout the epipelagic ocean. This viral catalog and functional analyses provide a necessary foundation for the meaningful integration of viruses into ecosystem models where

  9. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses

    Science.gov (United States)

    2016-09-01

    Ocean microbes drive biogeochemical cycling on a global scale. However, this cycling is constrained by viruses that affect community composition, metabolic activity, and evolutionary trajectories. Owing to challenges with the sampling and cultivation of viruses, genome-level viral diversity remains poorly described and grossly understudied, with less than 1% of observed surface-ocean viruses known. Here we assemble complete genomes and large genomic fragments from both surface- and deep-ocean viruses sampled during the Tara Oceans and Malaspina research expeditions, and analyse the resulting ‘global ocean virome’ dataset to present a global map of abundant, double-stranded DNA viruses complete with genomic and ecological contexts. A total of 15,222 epipelagic and mesopelagic viral populations were identified, comprising 867 viral clusters (defined as approximately genus-level groups). This roughly triples the number of known ocean viral populations and doubles the number of candidate bacterial and archaeal virus genera, providing a near-complete sampling of epipelagic communities at both the population and viral-cluster level. We found that 38 of the 867 viral clusters were locally or globally abundant, together accounting for nearly half of the viral populations in any global ocean virome sample. While two-thirds of these clusters represent newly described viruses lacking any cultivated representative, most could be computationally linked to dominant, ecologically relevant microbial hosts. Moreover, we identified 243 viral-encoded auxiliary metabolic genes, of which only 95 were previously known. Deeper analyses of four of these auxiliary metabolic genes (dsrC, soxYZ, P-II (also known as glnB) and amoC) revealed that abundant viruses may directly manipulate sulfur and nitrogen cycling throughout the epipelagic ocean. This viral catalog and functional analyses provide a necessary foundation for the meaningful integration of viruses into ecosystem models where

  10. Potential component Allee effects and their impact on wetland management in the conservation of endangered anurans.

    Directory of Open Access Journals (Sweden)

    Michele A Gaston

    Full Text Available Effective management of wetland quantity and quality is crucial for effective conservation of declining amphibian populations. In particular, frogs and toads that employ aggregative breeding strategies may suffer negative population impacts in response to changes in availability of aquatic breeding habitat, including overabundance of suitable habitat, if density of conspecifics attending aggregations is positively correlated with reproductive success. Here we document such a positive relationship, potentially the first example of a component Allee effect in an anuran, in the critically endangered Houston toad (Bufo houstonensis. We assessed the relationship between mean yearly chorus size and reproductive success of males at the pond level using an information theoretic model selection approach and a two-sample t-test. The chosen model contained the single variable of mean yearly chorus size to predict probability of reproduction, as selected using the Akaike Information Criterion corrected for small sample size and Akaike weight. Mean chorus sizes were significantly higher among ponds exhibiting evidence of reproduction than in those that showed no evidence of reproduction. Our results suggest that chorusing alone is a poor proxy for inference of population stability and highlight a need for reassessment of widely-used amphibian monitoring protocols. Further, amphibian conservation efforts should account for potential Allee effects in order to optimize benefits and avoid underestimating critical population thresholds, particularly in species exhibiting rapid population declines.

  11. Development of a practical modeling framework for estimating the impact of wind technology on bird populations

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, M.L. [California State Univ., Sacramento, CA (United States); Pollock, K.H. [North Carolina State Univ., Raleigh, NC (United States)

    1997-11-01

    One of the most pressing environmental concerns related to wind project development is the potential for avian fatalities caused by the turbines. The goal of this project is to develop a useful, practical modeling framework for evaluating potential wind power plant impacts that can be generalized to most bird species. This modeling framework could be used to get a preliminary understanding of the likelihood of significant impacts to birds, in a cost-effective way. The authors accomplish this by (1) reviewing the major factors that can influence the persistence of a wild population; (2) briefly reviewing various models that can aid in estimating population status and trend, including methods of evaluating model structure and performance; (3) reviewing survivorship and population projections; and (4) developing a framework for using models to evaluate the potential impacts of wind development on birds.

  12. Development of a practical modeling framework for estimating the impact of wind technology on bird populations

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, M.L. [California State Univ., Sacramento, CA (United States); Pollock, K.H. [North Carolina State Univ., Raleigh, NC (United States)

    1997-11-01

    One of the most pressing environmental concerns related to wind project development is the potential for avian fatalities caused by the turbines. The goal of this project is to develop a useful, practical modeling framework for evaluating potential wind power plant impacts that can be generalized to most bird species. This modeling framework could be used to get a preliminary understanding of the likelihood of significant impacts to birds, in a cost-effective way. The authors accomplish this by (1) reviewing the major factors that can influence the persistence of a wild population; (2) briefly reviewing various models that can aid in estimating population status and trend, including methods of evaluating model structure and performance; (3) reviewing survivorship and population projections; and (4) developing a framework for using models to evaluate the potential impacts of wind development on birds.

  13. Model-based evaluation of scientific impact indicators

    Science.gov (United States)

    Medo, Matúš; Cimini, Giulio

    2016-09-01

    Using bibliometric data artificially generated through a model of citation dynamics calibrated on empirical data, we compare several indicators for the scientific impact of individual researchers. The use of such a controlled setup has the advantage of avoiding the biases present in real databases, and it allows us to assess which aspects of the model dynamics and which traits of individual researchers a particular indicator actually reflects. We find that the simple average citation count of the authored papers performs well in capturing the intrinsic scientific ability of researchers, regardless of the length of their career. On the other hand, when productivity complements ability in the evaluation process, the notorious h and g indices reveal their potential, yet their normalized variants do not always yield a fair comparison between researchers at different career stages. Notably, the use of logarithmic units for citation counts allows us to build simple indicators with performance equal to that of h and g . Our analysis may provide useful hints for a proper use of bibliometric indicators. Additionally, our framework can be extended by including other aspects of the scientific production process and citation dynamics, with the potential to become a standard tool for the assessment of impact metrics.

  14. Hybrid LCA model for assessing the embodied environmental impacts of buildings in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Minho, E-mail: minmin40@hanmail.net [Asset Management Division, Mate Plus Co., Ltd., 9th Fl., Financial News Bldg. 24-5 Yeouido-dong, Yeongdeungpo-gu, Seoul, 150-877 (Korea, Republic of); Hong, Taehoon, E-mail: hong7@yonsei.ac.kr [Department of Architectural Engineering, Yonsei University, Seoul, 120-749 (Korea, Republic of); Ji, Changyoon, E-mail: chnagyoon@yonsei.ac.kr [Department of Architectural Engineering, Yonsei University, Seoul, 120-749 (Korea, Republic of)

    2015-01-15

    The assessment of the embodied environmental impacts of buildings can help decision-makers plan environment-friendly buildings and reduce environmental impacts. For a more comprehensive assessment of the embodied environmental impacts of buildings, a hybrid life cycle assessment model was developed in this study. The developed model can assess the embodied environmental impacts (global warming, ozone layer depletion, acidification, eutrophication, photochemical ozone creation, abiotic depletion, and human toxicity) generated directly and indirectly in the material manufacturing, transportation, and construction phases. To demonstrate the application and validity of the developed model, the environmental impacts of an elementary school building were assessed using the developed model and compared with the results of a previous model used in a case study. The embodied environmental impacts from the previous model were lower than those from the developed model by 4.6–25.2%. Particularly, human toxicity potential (13 kg C{sub 6}H{sub 6} eq.) calculated by the previous model was much lower (1965 kg C{sub 6}H{sub 6} eq.) than what was calculated by the developed model. The results indicated that the developed model can quantify the embodied environmental impacts of buildings more comprehensively, and can be used by decision-makers as a tool for selecting environment-friendly buildings. - Highlights: • The model was developed to assess the embodied environmental impacts of buildings. • The model evaluates GWP, ODP, AP, EP, POCP, ADP, and HTP as environmental impacts. • The model presents more comprehensive results than the previous model by 4.6–100%. • The model can present the HTP of buildings, which the previous models cannot do. • Decision-makers can use the model for selecting environment-friendly buildings.

  15. Exploring the potential impacts of tourism development on social and ecological change in the Solomon Islands.

    Science.gov (United States)

    Diedrich, Amy; Aswani, Shankar

    2016-11-01

    Pacific Island communities may be vulnerable to negative impacts of economic development, which is often considered a strategy for reducing vulnerability to environmental change. Studies that evaluate potential impacts of economic development in isolated communities may be inaccurate to only focus on asking people to anticipate impacts of phenomena they have had minimal exposure to. We used an open-ended approach to evaluate how communities in the Solomon Islands perceived change, and used this information to anticipate potential impacts of the government's plans to develop tourism. Our results showed mostly negative expectations of change, particularly socio-cultural, which was perceived as being driven by diminishing social capital, foreign influence, and economic development. Despite minimal exposure, locals supported tourism and had more positive expectations of change associated with this activity. Our findings emphasize the need for locally appropriate planning to ensure intended positive impacts of tourism and other forms of economic development.

  16. Rodent models in Down syndrome research: impact and future opportunities.

    Science.gov (United States)

    Herault, Yann; Delabar, Jean M; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Yu, Eugene; Brault, Veronique

    2017-10-01

    Down syndrome is caused by trisomy of chromosome 21. To date, a multiplicity of mouse models with Down-syndrome-related features has been developed to understand this complex human chromosomal disorder. These mouse models have been important for determining genotype-phenotype relationships and identification of dosage-sensitive genes involved in the pathophysiology of the condition, and in exploring the impact of the additional chromosome on the whole genome. Mouse models of Down syndrome have also been used to test therapeutic strategies. Here, we provide an overview of research in the last 15 years dedicated to the development and application of rodent models for Down syndrome. We also speculate on possible and probable future directions of research in this fast-moving field. As our understanding of the syndrome improves and genome engineering technologies evolve, it is necessary to coordinate efforts to make all Down syndrome models available to the community, to test therapeutics in models that replicate the whole trisomy and design new animal models to promote further discovery of potential therapeutic targets. © 2017. Published by The Company of Biologists Ltd.

  17. Flooding and subsidence in the Thames Gateway: impact on insurance loss potential

    Science.gov (United States)

    Royse, Katherine; Horn, Diane; Eldridge, Jillian; Barker, Karen

    2010-05-01

    In the UK, household buildings insurance generally covers loss and damage to the insured property from a range of natural and human perils, including windstorm, flood, subsidence, theft, accidental fire and winter freeze. Consequently, insurers require a reasoned view on the likely scale of losses that they may face to assist in strategic planning, reinsurance structuring, regulatory returns and general risk management. The UK summer 2007 flood events not only provided a clear indication of the scale of potential losses that the industry could face from an individual event, with £3 billion in claims, but also identified a need for insurers and reinsurers to better understand how events may correlate in time and space, and how to most effectively use the computational models of extreme events that are commonly applied to reflect these correlations. In addition to the potential for temporal clustering of events such as windstorms and floods, there is a possibility that seemingly uncorrelated natural perils, such as floods and subsidence, may impact an insurer's portfolio. Where aggregations of large numbers of new properties are planned, such as in the Thames Gateway, consideration of the potential future risk of aggregate losses due to the combination of perils such as subsidence and flood is increasingly important within the insurance company's strategic risk management process. Whilst perils such as subsidence and flooding are generally considered independent within risk modelling, the potential for one event to influence the magnitude and likelihood of the other should be taken into account when determining risk level. In addition, the impact of correlated, but distinctive, loss causing events on particular property types may be significant, particularly if a specific property is designed to protect against one peril but is potentially susceptible to another. We suggest that flood events can lead to increased subsidence risk due to the weight of additional water

  18. Potential Impact of Graphic Health Warnings on Cigarette Packages in Reducing Cigarette Demand and Smoking-Related Deaths in Vietnam.

    Science.gov (United States)

    Minh, Hoang Van; Chung, Le Hong; Giang, Kim Bao; Duc, Duong Minh; Hinh, Nguyen Duc; Mai, Vu Quynh; Cuong, Nguyen Manh; Manh, Pham Duc; Duc, Ha Anh; Yang, Jui-Chen

    2016-01-01

    Two years after implementation of the graphic health warning intervention in Vietnam, it is very important to evaluate the intervention's potential impact. The objective of this paper was to predict effects of graphic health warnings on cigarette packages, particularly in reducing cigarette demand and smoking-associated deaths in Vietnam. In this study, a discrete choice experiment (DCE) method was used to evaluate the potential impact of graphic tobacco health warnings on smoking demand. To predict the impact of GHWs on reducing premature deaths associated with smoking, we constructed different static models. We adapted the method developed by University of Toronto, Canada and found that GHWs had statistically significant impact on reducing cigarette demand (up to 10.1% through images of lung damage), resulting in an overall decrease of smoking prevalence in Vietnam. We also found that between 428,417- 646,098 premature deaths would be prevented as a result of the GHW intervention. The potential impact of the GHW labels on reducing premature smoking-associated deaths in Vietnam were shown to be stronger among lower socio-economic groups.

  19. Potts Flux Tube Model at Nonzero Chemical Potential

    CERN Document Server

    Condella, J; Condella, Jac; Tar, Carleton De

    2000-01-01

    We model the deconfinement phase transition in quantum chromodynamics at nonzero baryon number density and large quark mass by extending the flux tube model (three-state, three-dimensional Potts model) to nonzero chemical potential. In a direct numerical simulation we confirm mean-field-theory predictions that the deconfinement transition does not occur in a baryon-rich environment.

  20. EcoMark: Evaluating Models of Vehicular Environmental Impact

    DEFF Research Database (Denmark)

    Guo, Chenjuan; Ma, Mike; Yang, Bin

    2012-01-01

    the vehicle travels in. We develop an evaluation framework, called EcoMark, for such environmental impact models. In addition, we survey all eleven state-of-the-art impact models known to us. To gain insight into the capabilities of the models and to understand the effectiveness of the EcoMark, we apply...

  1. Index of Alien Impact: A method for evaluating potential ecological impact of alien plant species

    Science.gov (United States)

    Alien plant species are stressors to ecosystems and indicators of reduced ecosystem integrity. The magnitude of the stress reflects not only the quantity of aliens present, but also the quality of their interactions with native ecosystems. We develop an Index of Alien Impact (IAI...

  2. Index of Alien Impact: A method for evaluating potential ecological impact of alien plant species

    Science.gov (United States)

    Alien plant species are stressors to ecosystems and indicators of reduced ecosystem integrity. The magnitude of the stress reflects not only the quantity of aliens present, but also the quality of their interactions with native ecosystems. We develop an Index of Alien Impact (IAI...

  3. Health impact modelling of active travel visions for England and Wales using an Integrated Transport and Health Impact Modelling Tool (ITHIM.

    Directory of Open Access Journals (Sweden)

    James Woodcock

    Full Text Available BACKGROUND: Achieving health benefits while reducing greenhouse gas emissions from transport offers a potential policy win-win; the magnitude of potential benefits, however, is likely to vary. This study uses an Integrated Transport and Health Impact Modelling tool (ITHIM to evaluate the health and environmental impacts of high walking and cycling transport scenarios for English and Welsh urban areas outside London. METHODS: Three scenarios with increased walking and cycling and lower car use were generated based upon the Visions 2030 Walking and Cycling project. Changes to carbon dioxide emissions were estimated by environmental modelling. Health impact assessment modelling was used to estimate changes in Disability Adjusted Life Years (DALYs resulting from changes in exposure to air pollution, road traffic injury risk, and physical activity. We compare the findings of the model with results generated using the World Health Organization's Health Economic Assessment of Transport (HEAT tools. RESULTS: This study found considerable reductions in disease burden under all three scenarios, with the largest health benefits attributed to reductions in ischemic heart disease. The pathways that produced the largest benefits were, in order, physical activity, road traffic injuries, and air pollution. The choice of dose response relationship for physical activity had a large impact on the size of the benefits. Modelling the impact on all-cause mortality rather than through individual diseases suggested larger benefits. Using the best available evidence we found fewer road traffic injuries for all scenarios compared with baseline but alternative assumptions suggested potential increases. CONCLUSIONS: Methods to estimate the health impacts from transport related physical activity and injury risk are in their infancy; this study has demonstrated an integration of transport and health impact modelling approaches. The findings add to the case for a move from

  4. A dimensionless model of impact piezoelectric energy harvesting with dissipation

    Science.gov (United States)

    Fu, Xinlei; Liao, Wei-Hsin

    2016-04-01

    Impact excitation is common in the environment. Impact piezoelectric energy harvesting could realize frequency up-conversion. However, the dissipation mechanism in impact piezoelectric energy harvesting has not been investigated so far. There is no comprehensive model to be able to analyze the impact piezoelectric energy harvesting thoroughly. This paper is aimed to develop a generalized model that considers dissipation mechanism of impact piezoelectric energy harvesting. In this electromechanical model, Hertzian contact theory and impact dissipation mechanism are identified as constitutive mechanisms. The impact force is compared and the energy distribution is analyzed so that input energy corresponds to impact dissipated energy, structural damping dissipated energy and harvested electrical energy. We then nondimensionalize the developed model and define five dimensionless parameters with attributed physical meanings, including dimensionless parameters of impact dissipation, mass ratio, structural damping, electromechanical coupling, and electrical load. We conclude it is more accurate to consider impact dissipation mechanism to predict impact force and harvested energy. The guideline for improving harvested energy based on parametric studies of dimensionless model is to increase mass ratio, to minimize structural damping, to maximize electromechanical coupling, to use optimal load resistance for impedance matching, and to choose proper impact velocity .

  5. Heavy quark potential from deformed AdS5 models

    Science.gov (United States)

    Zhang, Zi-qiang; Hou, De-fu; Chen, Gang

    2017-04-01

    In this paper, we investigate the heavy quark potential in some holographic QCD models. The calculation relies on a modified renormalization scheme mentioned in a previous work of Albacete et al. After studying the heavy quark potential in Pirner-Galow model and Andreev-Zakharov model, we extend the discussion to a general deformed AdS5 case. It is shown that the obtained potential is negative definite for all quark-antiquark separations, differs from that using the usual renormalization scheme.

  6. Global blackout following the K/T Chicxulub impact: Results of impact and atmospheric modeling

    Science.gov (United States)

    Pope, K. O.; Ocampo, A. C.; Baines, K. H.; Ivanov, B. A.

    1993-01-01

    Several recent studies have suggested that shock decomposition of anhydrite (CaSO4) target rocks during the K/T Chicxulub impact would have ejected tremendous amounts of sulfur gas into the stratosphere. One of the many potential biospheric effects of this sulfur gas is the generation of a sulfuric acid (H2SO4) aerosol layer capable of causing darkness and severe disruption of photosynthesis for periods of years. In this paper we report the preliminary results of our modeling of shock pressures within the anhydrites and of light attenuation by the H2SO4 aerosol cloud. These models indicate that earlier studies over-estimated the amount of sulfur gas produced, but that more than enough was produced to extend global blackout conditions 4-6 times longer than the approximately 3 month predictions for silicate dust alone.

  7. Fostering EFL learners’ autonomy in light of portfolio assessment: Exploring the potential impact of gender

    Directory of Open Access Journals (Sweden)

    Mahmood Hashemian

    2013-07-01

    Full Text Available The purpose of this study was to investigate the impact of portfolio assessment as a process-oriented mechanism on the autonomy of Iranian advanced EFL learners. A particular concern was to examine the potential effect of gender on portfolio assessment by taking the learners’ writing ability into account. The participants were 80 male and female advanced EFL learners to whom the Learner Autonomy Questionnaire (Kashefian, 2002 was administered to check their homogeneity prior to the study in terms of autonomy; a truncated form of a TOEFL test was also given to the participants to assess their language proficiency. The participants were then randomly divided into 4 groups: 2 experimental groups (20 females in class A and 20 males in class B and 2 control groups (20 females in class C and 20 males in class D. The portfolio assessment was integrated into the experimental groups to explore whether and to what extent their autonomy might enhance and also to investigate the possible effect of gender on portfolio assessment in writing ability. The portfolio assessment was based on the classroom portfolio model adopted from Hamp-Lyons and Condon (2000, consisting of 3 procedures: collection, selection, and reflection. In contrast, the control groups received the traditional assessment of writing. The data were analyzed using 2 independent samples t tests, mean, and the effect size. The results showed that the portfolio procedures considerably improved the autonomy of the participants. Also, gender had no impact on portfolio assessment.

  8. Australia's savanna herbivores: bioclimatic distributions and an assessment of the potential impact of regional climate change.

    Science.gov (United States)

    Ritchie, Euan G; Bolitho, Elizabeth E

    2008-01-01

    The future impacts of climate change are predicted to significantly affect the survival of many species. Recent studies indicate that even species that are relatively mobile and/or have large geographic ranges may be at risk of range contractions or extinction. An ecologically and evolutionary significant group of mammals that has been largely overlooked in this research is Australia's large marsupial herbivores, the macropodids (kangaroos). The aims of our investigation were to define and compare the climatic conditions that influence the current distributions of four sympatric large macropodids in northern Australia (Macropus antilopinus, Macropus robustus, Macropus giganteus, and Macropus rufus) and to predict the potential future impact of climate change on these species. Our results suggest that contemporary distributions of these large macropodids are associated with well-defined climatic gradients (tropical and temperate conditions) and that climatic seasonality is also important. Bioclimatic modeling predicted an average reduction in northern Australian macropodid distributions of 48% +/- 16.4% in response to increases of 2.0 degrees C. At this temperature, the distribution of M. antilopinus was reduced by 89% +/-0.4%. We predict that increases of 6.0 degrees C may cause severe range reductions for all four macropodids (96% +/-2.1%) in northern Australia, and this range reduction may result in the extinction of M. antilopinus.

  9. Model-based evaluation of scientific impact indicators

    CERN Document Server

    Medo, Matus

    2016-01-01

    Using bibliometric data artificially generated through a model of citation dynamics calibrated on empirical data, we compare several indicators for the scientific impact of individual researchers. The use of such a controlled setup has the advantage of avoiding the biases present in real databases, and allows us to assess which aspects of the model dynamics and which traits of individual researchers a particular indicator actually reflects. We find that the simple citation average performs well in capturing the intrinsic scientific ability of researchers, whatever the length of their career. On the other hand, when productivity complements ability in the evaluation process, the notorious $h$ and $g$ indices reveal their potential, yet their normalized variants do not always yield a fair comparison between researchers at different career stages. Notably, the use of logarithmic units for citation counts allows us to build simple indicators with performance equal to that of $h$ and $g$. Our analysis may provide ...

  10. Impact parameter dependent potentials and average transverse momentum in inclusive DIS

    Science.gov (United States)

    Alhalholy, Tareq; Burkardt, Matthias

    2016-06-01

    We exploit a connection between the Coulomb/Eikonal phase and the charge distribution in the transverse plane for a transversely polarized nucleon. The known deformation of the charge density in impact parameter space translates into an asymmetry in the Coulomb/Eikonal phase (or the impact parameter electromagnetic potential). The asymmetry in the transverse potential implies an azimuthal asymmetry in the scattering cross section of the scattered electrons in inclusive DIS. We use the transverse potential to calculate the average transverse momentum of the scattered electrons. The sign of the calculated average transverse momentum for a neutron target is consistent with recent Jefferson Lab data.

  11. Climate-change impacts on water resources and hydropower potential in the Upper Colorado River Basin

    Directory of Open Access Journals (Sweden)

    M. Kopytkovskiy

    2015-03-01

    New hydrological insights for the region: Precipitation projections from climate models vary up to 16%; flow projections revealed greater differences, up to 50%. The climate models projected increase in temperature at low elevations with extreme seasonality at high elevations, although summer temperatures increased at all elevations. The models projected a 60% decline in precipitation at lower elevations and a 74% increase at high elevations, although precipitation declined during the summer months at all elevations. Using the A2 scenario an overall decrease in annual flow was predicted, attributed to a reduction in precipitation and increasing temperature trends; however, this was not consistent during the winter months, which showed an increase in precipitation at high elevations and a modest temperature increase during the winter and resulted in an increase in stream flow. The responses to climate change on reservoir levels varied basin-wide due to variability in precipitation, evapotranspiration, and stream flow. Simulations indicated that water levels in Blue Mesa Reservoir (the largest reservoir in the UCRB would decline by more than 70% with increasing annual temperatures. Reservoirs with smaller surface areas to the volume ratio were not significantly impacted by evapotranspiration. Our results indicate that hydropower management strategies in the UCRB must adapt to potential climate change, but the required adaptations are dependent on several factors including reservoir size and location.

  12. New Discrete Element Models for Three-Dimensional Impact Problems

    Institute of Scientific and Technical Information of China (English)

    SHAN Li; CHENG Ming; LIU Kai-xin; LIU Wei-Fu; CHEN Shi-Yang

    2009-01-01

    Two 3-D numerical models of the discrete element method(DEM)for impact problems are proposed.The models can calculate not only the impact problems of continuum and non-continuum,but also the transient process from continuum to non-continuum.The stress wave propagation in a concrete block and a dynamic splitting process of a marble disc under impact loading are numerically simulated with the proposed models.By comparing the numerical results with the corresponding results obtained by the finite element method(FEM)and the experiments,it is proved that the models are reliable for three-dimensional impact problems.

  13. Modeling Potential Surface and Shallow Groundwater Storage Provided by Beaver Ponds Across Watersheds

    Science.gov (United States)

    Hafen, K.; Wheaton, J. M.; Macfarlane, W.

    2016-12-01

    Damming of streams by North American Beaver (Castor canadensis) has been shown to provide a host of potentially desirable hydraulic and hydrologic impacts. Notably, increases in surface water storage and groundwater storage may alter the timing and delivery of water around individual dams and dam complexes. Anecdotal evidence suggests these changes may be important for increasing and maintaining baseflow and even helping some intermittent streams flow perennially. In the arid west, these impacts could be particularly salient in the face of climate change. However, few studies have examined the hydrologic impacts of beaver dams at scales large enough to provide insight for water management, in part because understanding or modeling these impacts at large spatial scales has been precluded by uncertainty concerning the number of beaver dams a drainage network can support. Using the recently developed Beaver Restoration Assessment Tool (BRAT) to identify possible densities and spatial configurations of beaver dams, we developed a model that predicts the area and volume of surface water storage associated with dams of various sizes, and applied this model at different dam densities across multiple watersheds (HUC12) in northern Utah. We then used model results as inputs to the MODFLOW groundwater model to identify the subsequent changes to shallow groundwater storage. The spatially explicit water storage estimates produced by our approach will be useful in evaluating potential beaver restoration and conservation, and will also provide necessary information for developing hydrologic models to specifically identify the effects beaver dams may have on water delivery and timing.

  14. Alternative perspectives on impact: the potential of ALMs and altmetrics to inform funders about research impact.

    Directory of Open Access Journals (Sweden)

    Adam Dinsmore

    2014-11-01

    Full Text Available More evidence of the meaning and validity of ALMs and altmetrics, coupled with greater consistency and transparency in their presentation, would enable research funders to explore their potential value and identify appropriate use cases.

  15. Alternative perspectives on impact: the potential of ALMs and altmetrics to inform funders about research impact.

    Science.gov (United States)

    Dinsmore, Adam; Allen, Liz; Dolby, Kevin

    2014-11-01

    More evidence of the meaning and validity of ALMs and altmetrics, coupled with greater consistency and transparency in their presentation, would enable research funders to explore their potential value and identify appropriate use cases.

  16. Modelling future impacts of air pollution using the multi-scale UK Integrated Assessment Model (UKIAM).

    Science.gov (United States)

    Oxley, Tim; Dore, Anthony J; ApSimon, Helen; Hall, Jane; Kryza, Maciej

    2013-11-01

    Integrated assessment modelling has evolved to support policy development in relation to air pollutants and greenhouse gases by providing integrated simulation tools able to produce quick and realistic representations of emission scenarios and their environmental impacts without the need to re-run complex atmospheric dispersion models. The UK Integrated Assessment Model (UKIAM) has been developed to investigate strategies for reducing UK emissions by bringing together information on projected UK emissions of SO2, NOx, NH3, PM10 and PM2.5, atmospheric dispersion, criteria for protection of ecosystems, urban air quality and human health, and data on potential abatement measures to reduce emissions, which may subsequently be linked to associated analyses of costs and benefits. We describe the multi-scale model structure ranging from continental to roadside, UK emission sources, atmospheric dispersion of emissions, implementation of abatement measures, integration with European-scale modelling, and environmental impacts. The model generates outputs from a national perspective which are used to evaluate alternative strategies in relation to emissions, deposition patterns, air quality metrics and ecosystem critical load exceedance. We present a selection of scenarios in relation to the 2020 Business-As-Usual projections and identify potential further reductions beyond those currently being planned.

  17. Potential future impact of a partially effective HIV vaccine in a southern African setting.

    Directory of Open Access Journals (Sweden)

    Andrew N Phillips

    Full Text Available It is important for public health and within the HIV vaccine development field to understand the potential population level impact of an HIV vaccine of partial efficacy--both in preventing infection and in reducing viral load in vaccinated individuals who become infected--in the context of a realistic future implementation scenario in resource limited settings.An individual level model of HIV transmission, progression and the effect of antiretroviral therapy was used to predict the outcome to 2060 of introduction in 2025 of a partially effective vaccine with various combinations of efficacy characteristics, in the context of continued ART roll-out in southern Africa.In the context of our base case epidemic (in 2015 HIV prevalence 28% and incidence 1.7 per 100 person years, a vaccine with only 30% preventative efficacy could make a substantial difference in the rate with which HIV incidence declines; the impact on incidence in relative terms is projected to increase over time, with a projected 67% lower HIV incidence in 2060 compared with no vaccine introduction. The projected mean decline in the general adult population death rate 2040-2060 is 11%. A vaccine with no prevention efficacy but which reduces viral load by 1 log is predicted to result in a modest (14% reduction in HIV incidence and an 8% reduction in death rate in the general adult population (mean 2040-2060. These effects were broadly similar in multivariable uncertainty analysis.Introduction of a partially effective preventive HIV vaccine would make a substantial long-term impact on HIV epidemics in southern Africa, in addition to the effects of ART. Development of an HIV vaccine, even of relatively low apparent efficacy at the individual level, remains a critical global public health goal.

  18. Potential future impact of a partially effective HIV vaccine in a southern African setting.

    Science.gov (United States)

    Phillips, Andrew N; Cambiano, Valentina; Nakagawa, Fumiyo; Ford, Deborah; Lundgren, Jens D; Roset-Bahmanyar, Edith; Roman, François; Van Effelterre, Thierry

    2014-01-01

    It is important for public health and within the HIV vaccine development field to understand the potential population level impact of an HIV vaccine of partial efficacy--both in preventing infection and in reducing viral load in vaccinated individuals who become infected--in the context of a realistic future implementation scenario in resource limited settings. An individual level model of HIV transmission, progression and the effect of antiretroviral therapy was used to predict the outcome to 2060 of introduction in 2025 of a partially effective vaccine with various combinations of efficacy characteristics, in the context of continued ART roll-out in southern Africa. In the context of our base case epidemic (in 2015 HIV prevalence 28% and incidence 1.7 per 100 person years), a vaccine with only 30% preventative efficacy could make a substantial difference in the rate with which HIV incidence declines; the impact on incidence in relative terms is projected to increase over time, with a projected 67% lower HIV incidence in 2060 compared with no vaccine introduction. The projected mean decline in the general adult population death rate 2040-2060 is 11%. A vaccine with no prevention efficacy but which reduces viral load by 1 log is predicted to result in a modest (14%) reduction in HIV incidence and an 8% reduction in death rate in the general adult population (mean 2040-2060). These effects were broadly similar in multivariable uncertainty analysis. Introduction of a partially effective preventive HIV vaccine would make a substantial long-term impact on HIV epidemics in southern Africa, in addition to the effects of ART. Development of an HIV vaccine, even of relatively low apparent efficacy at the individual level, remains a critical global public health goal.

  19. Jobs and Economic Development Impact (JEDI) Model: Offshore Wind User Reference Guide

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.; Goldberg, M.; Keyser, D.

    2013-06-01

    The Offshore Wind Jobs and Economic Development Impact (JEDI) model, developed by NREL and MRG & Associates, is a spreadsheet based input-output tool. JEDI is meant to be a user friendly and transparent tool to estimate potential economic impacts supported by the development and operation of offshore wind projects. This guide describes how to use the model as well as technical information such as methodology, limitations, and data sources.

  20. Oxidative potential and inflammatory impacts of source apportioned ambient air pollution in Beijing.

    Science.gov (United States)

    Liu, Qingyang; Baumgartner, Jill; Zhang, Yuanxun; Liu, Yanju; Sun, Yongjun; Zhang, Meigen

    2014-11-01

    Air pollution exposure is associated with a range of adverse health impacts. Knowledge of the chemical components and sources of air pollution most responsible for these health effects could lead to an improved understanding of the mechanisms of such effects and more targeted risk reduction strategies. We measured daily ambient fine particulate matter (Beijing, and assessed the contribution of its chemical components to the oxidative potential of ambient air pollution using the dithiothreitol (DTT) assay. The composition data were applied to a multivariate source apportionment model to determine the PM contributions of six sources or factors: a zinc factor, an aluminum factor, a lead point factor, a secondary source (e.g., SO4(2-), NO3(2-)), an iron source, and a soil dust source. Finally, we assessed the relationship between reactive oxygen species (ROS) activity-related PM sources and inflammatory responses in human bronchial epithelial cells. In peri-urban Beijing, the soil dust source accounted for the largest fraction (47%) of measured ROS variability. In central Beijing, a secondary source explained the greatest fraction (29%) of measured ROS variability. The ROS activities of PM collected in central Beijing were exponentially associated with in vivo inflammatory responses in epithelial cells (R2=0.65-0.89). We also observed a high correlation between three ROS-related PM sources (a lead point factor, a zinc factor, and a secondary source) and expression of an inflammatory marker (r=0.45-0.80). Our results suggest large differences in the contribution of different PM sources to ROS variability at the central versus peri-urban study sites in Beijing and that secondary sources may play an important role in PM2.5-related oxidative potential and inflammatory health impacts.

  1. Impacts devalue the potential of large-scale terrestrial CO2 removal through biomass plantations

    Science.gov (United States)

    Boysen, L. R.; Lucht, W.; Gerten, D.; Heck, V.

    2016-09-01

    Large-scale biomass plantations (BPs) are often considered a feasible and safe climate engineering proposal for extracting carbon from the atmosphere and, thereby, reducing global mean temperatures. However, the capacity of such terrestrial carbon dioxide removal (tCDR) strategies and their larger Earth system impacts remain to be comprehensively studied—even more so under higher carbon emissions and progressing climate change. Here, we use a spatially explicit process-based biosphere model to systematically quantify the potentials and trade-offs of a range of BP scenarios dedicated to tCDR, representing different assumptions about which areas are convertible. Based on a moderate CO2 concentration pathway resulting in a global mean warming of 2.5 °C above preindustrial level by the end of this century—similar to the Representative Concentration Pathway (RCP) 4.5—we assume tCDR to be implemented when a warming of 1.5 °C is reached in year 2038. Our results show that BPs can slow down the progression of increasing cumulative carbon in the atmosphere only sufficiently if emissions are reduced simultaneously like in the underlying RCP4.5 trajectory. The potential of tCDR to balance additional, unabated emissions leading towards a business-as-usual pathway alike RCP8.5 is therefore very limited. Furthermore, in the required large-scale applications, these plantations would induce significant trade-offs with food production and biodiversity and exert impacts on forest extent, biogeochemical cycles and biogeophysical properties.

  2. On the potential of a singlet scalar enhanced Standard Model

    CERN Document Server

    Ghosh, Swagata; Ray, Shamayita

    2015-01-01

    We investigate the parameter space of the Standard Model enhanced by a gauge singlet real scalar $S$. Taking into account all the theoretical and experimental constraints, we show the allowed parameter space for two different types of such singlet-enhanced Standard Model. For the first case, the scalar potential has an explicit $Z_2$-symmetry, and may lead to a dark matter candidate under certain conditions. For the second case, the scalar potential does not respect any $Z_2$. This is again divided into two subcategories: one where the Standard Model vacuum is stable, and one where it is unstable and can decay into a deeper minimum. We show how the parameters in the scalar potential control the range of validity of all these models. Finally, we show the effect of one-loop correction on the positions and depths of the minima of the potential.

  3. A Functional Inspection Model for the Immeasurable Potential Failure State

    Institute of Scientific and Technical Information of China (English)

    ZHU Wen-ge; LI Shi-qi; ZHAO Di

    2008-01-01

    Functional inspection is a type of preventive maintenance of Reliability Centered Maintenance (RCM). We, in this paper, establish a functional inspection model(FIM)--the cost model and the availability model for the immeasurable potential failure state based on the delay time concept. This model can be used to determine the appropriate Functional Inspection Interval(FII) to achieve the goal of specific cost and availability and to assist in maintenance decision making.

  4. The model of evaluation of innovative potential of enterprise

    Directory of Open Access Journals (Sweden)

    Ганна Ігорівна Заднєпровська

    2015-06-01

    Full Text Available The basic components of the enterprise’s innovative potential evaluation process are investigated. It is offered the conceptual model of evaluation of the innovative potential that includes: subjects, objects, purpose, provision of information, principles, methods, criteria, indicators. It is noted that the innovative capacity characterizes the transition from the current to the strategic level of innovation potential and, thus, characterizes the composition of objects from position of user

  5. The modelling and assessment of whale-watching impacts

    Science.gov (United States)

    New, Leslie; Hall, Ailsa J.; Harcourt, Robert; Kaufman, Greg; Parsons, E.C.M.; Pearson, Heidi C.; Cosentino, A. Mel; Schick, Robert S

    2015-01-01

    In recent years there has been significant interest in modelling cumulative effects and the population consequences of individual changes in cetacean behaviour and physiology due to disturbance. One potential source of disturbance that has garnered particular interest is whale-watching. Though perceived as ‘green’ or eco-friendly tourism, there is evidence that whale-watching can result in statistically significant and biologically meaningful changes in cetacean behaviour, raising the question whether whale-watching is in fact a long term sustainable activity. However, an assessment of the impacts of whale-watching on cetaceans requires an understanding of the potential behavioural and physiological effects, data to effectively address the question and suitable modelling techniques. Here, we review the current state of knowledge on the viability of long-term whale-watching, as well as logistical limitations and potential opportunities. We conclude that an integrated, coordinated approach will be needed to further understanding of the possible effects of whale-watching on cetaceans.

  6. Confining diffuse potential versus square-well-potential in modeling A@C60 atoms

    CERN Document Server

    Dolmatov, V K; Oglesby, J C

    2011-01-01

    It is shown that discontinuity, inherit to a square-well potential which is often used for mimicking the C60 cage potential, results neither in qualitative nor, what is even more important, quantitative artifacts in problems of endohedral A@C60 atoms, such as their photoionization. Moreover, it is demonstrated that, upon mimicking a square-well potential by a potential with diffuse boarders, calculated photoionization spectra are largely insensitive to the degree {\\eta} of diffuseness of the potential boarders, in a reasonably broad range of {\\eta}'s. The proof is based on results of comparison between calculated data for H@C60 and Xe@C60 photoionization cross sections and photoelectron angular asymmetries obtained by modeling the C$_{60}$ cage by confining square-well and diffuse potentials. Thus, it matters little which of these potentials to use in A@C60 problems. The diffuse potential is modeled by a combination of two Woods-Saxon potentials. Calculated data for the photoionization of Xe@C60 are separatel...

  7. Extended Quark Potential Model From Random Phase Approximation

    Institute of Scientific and Technical Information of China (English)

    DENGWei-Zhen; CHENXiao-Lin; 等

    2002-01-01

    The quark potential model is extended to include the sea quark excitation using the random phase approximation.The effective quark interaction preserves the important QCD properties-chiral symmetry and confinement simultaneously.A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson and the other mesons made up of valence qq quark pair such as the ρ meson can also be described in this extended quark potential model.

  8. Crossing symmetric potential model of pion-nucleon scattering

    CERN Document Server

    Blankleider, B; Skawronski, T

    2010-01-01

    A crossing symmetric $\\pi N$ scattering amplitude is constructed through a complete attachment of two external pions to the dressed nucleon propagator of an underlying $\\pi N$ potential model. Our formulation automatically provides expressions also for the crossing symmetric and gauge invariant pion photoproduction and Compton scattering amplitudes. We show that our amplitudes are unitary if they coincide on-shell with the amplitudes obtained by attaching one pion to the dressed $\\pi NN$ vertex of the same potential model.

  9. Nucleon Spin Content in a Relativistic Quark Potential Model Approach

    Institute of Scientific and Technical Information of China (English)

    DONG YuBing; FENG QingGuo

    2002-01-01

    Based on a relativistic quark model approach with an effective potential U(r) = (ac/2)(1 + γ0)r2, the spin content of the nucleon is investigated. Pseudo-scalar interaction between quarks and Goldstone bosons is employed to calculate the couplings between the Goldstone bosons and the nucleon. Different approaches to deal with the center of mass correction in the relativistic quark potential model approach are discussed.

  10. Potential impacts of ocean acidification on the Puget Sound food web (NCEI Accession 0134852)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ecosystem impacts of ocean acidification (OA) were explored by imposing scenarios designed to mimic OA on a food web model of Puget Sound, a large estuary in the...

  11. Avian collision risk models for wind energy impact assessments

    Energy Technology Data Exchange (ETDEWEB)

    Masden, E.A., E-mail: elizabeth.masden@uhi.ac.uk [Environmental Research Institute, North Highland College-UHI, University of the Highlands and Islands, Ormlie Road, Thurso, Caithness KW14 7EE (United Kingdom); Cook, A.S.C.P. [British Trust for Ornithology, The Nunnery, Thetford IP24 2PU (United Kingdom)

    2016-01-15

    With the increasing global development of wind energy, collision risk models (CRMs) are routinely used to assess the potential impacts of wind turbines on birds. We reviewed and compared the avian collision risk models currently available in the scientific literature, exploring aspects such as the calculation of a collision probability, inclusion of stationary components e.g. the tower, angle of approach and uncertainty. 10 models were cited in the literature and of these, all included a probability of collision of a single bird colliding with a wind turbine during passage through the rotor swept area, and the majority included a measure of the number of birds at risk. 7 out of the 10 models calculated the probability of birds colliding, whilst the remainder used a constant. We identified four approaches to calculate the probability of collision and these were used by others. 6 of the 10 models were deterministic and included the most frequently used models in the UK, with only 4 including variation or uncertainty in some way, the most recent using Bayesian methods. Despite their appeal, CRMs have their limitations and can be ‘data hungry’ as well as assuming much about bird movement and behaviour. As data become available, these assumptions should be tested to ensure that CRMs are functioning to adequately answer the questions posed by the wind energy sector. - Highlights: • We highlighted ten models available to assess avian collision risk. • Only 4 of the models included variability or uncertainty. • Collision risk models have limitations and can be ‘data hungry’. • It is vital that the most appropriate model is used for a given task.

  12. The microbial nitrogen cycling potential is impacted by polyaromatic hydrocarbon pollution of marine sediments.

    Science.gov (United States)

    Scott, Nicole M; Hess, Matthias; Bouskill, Nick J; Mason, Olivia U; Jansson, Janet K; Gilbert, Jack A

    2014-01-01

    During hydrocarbon exposure, the composition and functional dynamics of marine microbial communities are altered, favoring bacteria that can utilize this rich carbon source. Initial exposure of high levels of hydrocarbons in aerobic surface sediments can enrich growth of heterotrophic microorganisms having hydrocarbon degradation capacity. As a result, there can be a localized reduction in oxygen potential within the surface layer of marine sediments causing anaerobic zones. We hypothesized that increasing exposure to elevated hydrocarbon concentrations would positively correlate with an increase in denitrification processes and the net accumulation of dinitrogen. This hypothesis was tested by comparing the relative abundance of genes associated with nitrogen metabolism and nitrogen cycling identified in 6 metagenomes from sediments contaminated by polyaromatic hydrocarbons from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico, and 3 metagenomes from sediments associated with natural oil seeps in the Santa Barbara Channel. An additional 8 metagenomes from uncontaminated sediments from the Gulf of Mexico were analyzed for comparison. We predicted relative changes in metabolite turnover as a function of the differential microbial gene abundances, which showed predicted accumulation of metabolites associated with denitrification processes, including anammox, in the contaminated samples compared to uncontaminated sediments, with the magnitude of this change being positively correlated to the hydrocarbon concentration and exposure duration. These data highlight the potential impact of hydrocarbon inputs on N cycling processes in marine sediments and provide information relevant for system scale models of nitrogen metabolism in affected ecosystems.

  13. The dual roles of rural midwives: the potential for role conflict and impact on retention.

    Science.gov (United States)

    Yates, Karen; Usher, Kim; Kelly, Jenny

    2011-01-01

    Nurses and midwives continue to make up the largest proportion of the health workforce. As a result, shortages of nurses and midwives have a significant impact on the delivery of effective health care. Shortages of nurses and midwives are known to be more pronounced in rural and remote areas where recruitment and retention remain problematic. However, rural nurses are often required to be multi-skilled, which has led to expectations that nurses who are also midwives, are required to work across areas of the hospital to help to address shortages. For midwives this issue is even more problematic as they may actually end up spending a very small percentage of their working day involved in the delivery of maternity care. This workforce strategy has the potential to seriously erode the skills of the midwives. Situations such as this are implicated in attrition of midwives because of the role stress that results when they are required to work in models of care where they experience the constant pull to work between departments and across roles. This paper addresses the requirement for midwives in some rural facilities to work across roles of general nurse and midwife and outlines the issues that arise as a result. In particular, the paper links the concepts of Role Theory to the requirement for midwives to work in dual roles and the potential for role stress to develop.

  14. The microbial nitrogen cycling potential in marine sediments is impacted by polyaromatic hydrocarbon pollution

    Directory of Open Access Journals (Sweden)

    Nicole M Scott

    2014-03-01

    Full Text Available During petroleum hydrocarbon exposure the composition and functional dynamics of marine microbial communities are altered, favoring bacteria that can utilize this rich carbon source. Initial exposure of high levels of hydrocarbons in aerobic surface sediments can enrich growth of heterotrophic microorganisms having hydrocarbon degradation capacity. As a result, there can be a localized reduction in oxygen potential, if the sediments are aerobic, within the surface layer of marine sediments resulting in anaerobic zones. We hypothesized that increasing exposure to elevated hydrocarbon concentrations would positively correlate with an increase in denitrification processes and the net accumulation of dinitrogen. This hypothesis was tested by comparing the relative abundance of genes associated with nitrogen metabolism and nitrogen cycling identified in 6 metagenomes from sediments contaminated by polyaromatic hydrocarbons from the Deepwater Horizon oil spill in the Gulf of Mexico, and 3 metagenomes from sediments associated with natural oil seeps in the Santa Barbara Channel. An additional 8 metagenomes from uncontaminated sediments from the Gulf of Mexico were analyzed for comparison. We predicted relative changes in metabolite turnover as a function of the differential microbial gene abundances, which showed predicted accumulation of metabolites associated with denitrification processes, including anammox, in the contaminated samples compared to uncontaminated sediments, with the magnitude of this change being positively correlated to the hydrocarbon concentration and exposure duration. These data highlight the potential impact of hydrocarbon inputs on N cycling processes in marine sediments and provide information relevant for system scale models of nitrogen metabolism in affected ecosystems.

  15. Iodine-129: a review of its potential impact on the environment

    Energy Technology Data Exchange (ETDEWEB)

    Poston, J.W.

    1978-05-01

    Attention has been drawn to /sup 129/I, a radionuclide with a long half-life and the potential for long-term accumulation in the environment as a result of low-level, chronic releases from nuclear facilities such as nuclear fuel reprocessing plants. The metabolic and physiologic data on iodine, as well as the currently accepted metabolic models, are summarized. In addition, projections of iodine-129 production and release, as well as estimates of the potential hazards derived by various authors, are presented and discussed. The implications of these considerations on the deep geologic disposal of /sup 129/I are reviewed and summarized. At this time there are limited data available to assess in detail the impact of releases of /sup 129/I to the environment from a geologic waste repository. Since this isotope is essentially stable (has a low specific activity because of its long radioactive half-life) it has been generally regarded as not contributing significantly to the total population dose commitment. Therefore, the presence of this isotope in a waste repository should not significantly affect repository design and operation. However, additional research in several areas such as the movement of /sup 129/I from a repository to the surface by ground water and the influence on uptake fraction of the incorporation of /sup 129/I in foodstuffs would be useful to more accurately quantify environmental effects.

  16. Examination of a Theoretical Model of Streaming Potential Coupling Coefficient

    Directory of Open Access Journals (Sweden)

    D. T. Luong

    2014-01-01

    Full Text Available Seismoelectric effects and streaming potentials play an important role in geophysical applications. The key parameter for those phenomena is the streaming potential coupling coefficient, which is, for example, dependent on the zeta potential of the interface of the porous rocks. Comparison of an existing theoretical model to experimental data sets from available published data for streaming potentials has been performed. However, the existing experimental data sets are based on samples with dissimilar fluid conductivity, pH of pore fluid, temperature, and sample compositions. All those dissimilarities may cause the observed deviations. To critically assess the models, we have carried out streaming potential measurement as a function of electrolyte concentration and temperature for a set of well-defined consolidated samples. The results show that the existing theoretical model is not in good agreement with the experimental observations when varying the electrolyte concentration, especially at low electrolyte concentration. However, if we use a modified model in which the zeta potential is considered to be constant over the electrolyte concentration, the model fits the experimental data well in a whole range of concentration. Also, for temperature dependence, the comparison shows that the theoretical model is not fully adequate to describe the experimental data but does describe correctly the increasing trend of the coupling coefficient as function of temperature.

  17. Forest Management Shifts in the Western US and Potential Impacts on the Carbon Balance

    Science.gov (United States)

    Law, B. E.; Jones, M. O.; Yang, Z.; Berner, L. T.

    2015-12-01

    Forest harvest regimes are changing as land managers cope with fires, drought, and insect damage. Thinning on public lands, typically focused on removal of small trees that could act as fuel ladders, is increasing to reduce risk of crown fires and reduce competition for water in crowded stands. On private lands, drought and wildfires could lead to further shortening of harvest cycles (e.g. from 80 to 45 years) or thinning. To examine the effects of potential changes in management regimes vs climate on carbon processes in forests of Oregon, California and Washington, we used data from ancillary plots, inventories, and satellites to parameterize and test the CLM4.5 model. We first examined contemporary biomass loss over the western US to determine the baseline conditions prior to implementing harvest scenarios. Annual biomass mortality from fires and insects increased significantly (1996-2011), and mortality from insects was about twice that of fires. California, Oregon and Idaho were most impacted by fire-related biomass mortality, whereas Colorado, Montana and Washington were most impacted by insects. Harvest scenarios implemented in CLM4.5 include two thinning scenarios to reduce crown fire risk and drought stress, and a salvage scenario to remove trees remaining after recent beetle or fire related mortality; taking into account our previous work showing 70 - 85 % of salvaged biomass is removed and the remainder is left on-site. We simulated the effect of treatments on current and future net ecosystem carbon balance. Challenges of regional modeling of management effects on carbon and other important considerations are addressed.

  18. Impact of improved snowmelt modelling in a monthly hydrological model.

    Science.gov (United States)

    Folton, Nathalie; Garcia, Florine

    2016-04-01

    The quantification and the management of water resources at the regional scale require hydrological models that are both easy to implement and efficient. To be reliable and robust, these models must be calibrated and validated on a large number of catchments that are representative of various hydro-meteorological conditions, physiographic contexts, and specific hydrological behavior (e.g. mountainous catchments). The GRLoiEau monthly model, with its simple structure and its two free parameters, answer our need of such a simple model. It required the development of a snow routine to model catchments with temporarily snow-covered areas. The snow routine developed here does not claim to represent physical snowmelt processes but rather to simulate them globally on the catchment. The snowmelt equation is based on the degree-day method which is widely used by the hydrological community, in particular in engineering studies (Etchevers 2000). A potential snowmelt (Schaefli et al. 2005) was computed, and the parameters of the snow routine were regionalized for each mountain area. The GRLoiEau parsimonious structure requires meteorological data. They come from the distributed mesoscale atmospheric analysis system SAFRAN, which provides estimations of daily solid and liquid precipitations and temperatures on a regular square grid at the spatial resolution of 8*8 km², throughout France. Potential evapotranspiration was estimated using the formula by Oudin et al. (2005). The aim of this study is to improve the quality of monthly simulations for ungauged basins, in particular for all types of mountain catchments, without increasing the number of free parameters of the model. By using daily SAFRAN data, the production store and snowmelt can be run at a daily time scale. The question then arises whether simulating the monthly flows using a production function at a finer time step would improve the results. And by using the SAFRAN distributed climate series, a distributed approach

  19. Modelling climate change impacts on mycotoxin contamination

    NARCIS (Netherlands)

    Fels, van der Ine; Liu, C.; Battilani, P.

    2016-01-01

    Projected climate change effects will influence primary agricultural systems and thus food security, directly via impacts on yields, and indirectly via impacts on its safety, with mycotoxins considered as crucial hazards. Mycotoxins are produced by a wide variety of fungal species, each having their

  20. Modelling climate change impacts on mycotoxin contamination

    NARCIS (Netherlands)

    Fels, van der Ine; Liu, C.; Battilani, P.

    2016-01-01

    Projected climate change effects will influence primary agricultural systems and thus food security, directly via impacts on yields, and indirectly via impacts on its safety, with mycotoxins considered as crucial hazards. Mycotoxins are produced by a wide variety of fungal species, each having their

  1. Quadratic adaptive algorithm for solving cardiac action potential models.

    Science.gov (United States)

    Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing

    2016-10-01

    An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. Copyright © 2016 Elsevier Ltd. All rights

  2. The impact of extreme environmental factors on the mineralization potential of the soil

    Science.gov (United States)

    Zinyakova, Natalia; Semenov, Vyacheslav

    2016-04-01

    Warming, drying, wetting are the prevalent disturbing natural impacts that affect the upper layers of uncultivated and arable soils. The effect of drying-wetting cycles act as a physiological stress for the soil microbial community and cause changes in its structure, the partial death or lysis of the microbial biomass. The mobilization of the SOM and the stabilization of the potentially mineralizable components lead to change of mineralization potential in the soil. To test the effects of different moisture regime on plant growth and soil biological properties, plot experiment with the gray forest soil including trials with plants (corn) and bare fallow was performed. Different regimes of soil moisture (conditionally optimal, relatively deficient soil moisture and repeated cycles of drying-wetting) were created. Control of soil moisture was taken every two or three days. Gas sampling was carried out using closed chambers. Soil samples were collected at the end of the pot experiment. The potentially mineralizable content of soil organic carbon (SOC) was measured by biokinetic method based on (1) aerobic incubation of soil samples under constant temperature and moisture conditions during 158 days, (2) quantitation of C-CO2, and (3) fitting of C-CO2 cumulative curve by a model of first-order kinetic. Total soil organic carbon was measured by Tyrin's wet chemical oxidation method. Permanent deficient moisture in the soil favored the preservation of potentially mineralizable SOC. Two repeated cycles of drying-wetting did not reduce the potentially mineralizable carbon content in comparison with control under optimal soil moisture during 90 days of experiment. The emission loss of C-CO2 from the soil with plants was 1.4-1.7 times higher than the decrease of potentially mineralizable SOC due to the contribution of root respiration. On the contrary, the decrease of potentially mineralized SOC in the soil without plants was 1.1-1.2 times larger than C-CO2 emissions from the

  3. Regional crop modelling in Europe: The impact of climate conditions and farm characteristics on maize yields

    NARCIS (Netherlands)

    Reidsma, P.; Ewert, F.; Boogaard, H.; Diepen, van K.

    2009-01-01

    Impacts of climate variability and climate change on regional crop yields are commonly assessed using process-based crop models. These models, however, simulate potential and water limited yields, which do not always relate to observed yields. The latter are largely influenced by crop management, wh

  4. The Impact of Modeling Assumptions in Galactic Chemical Evolution Models

    CERN Document Server

    Côté, Benoit; Ritter, Christian; Herwig, Falk; Venn, Kim A

    2016-01-01

    We use the OMEGA galactic chemical evolution code to investigate how the assumptions used for the treatment of galactic inflows and outflows impact numerical predictions. The goal is to determine how our capacity to reproduce the chemical evolution trends of a galaxy is affected by the choice of implementation used to include those physical processes. In pursuit of this goal, we experiment with three different prescriptions for galactic inflows and outflows and use OMEGA within a Markov Chain Monte Carlo code to recover the set of input parameters that best reproduces the chemical evolution of nine elements in the dwarf spheroidal galaxy Sculptor. Despite their different degrees of intended physical realism, we found that all three prescriptions can reproduce in an almost identical way the stellar abundance trends observed in Sculptor. While the three models have the same capacity to fit the data, the best values recovered for the parameters controlling the number of Type Ia supernovae and the strength of gal...

  5. New pesticides regulation: potential economic impacts of the withdrawal of Pendimethalin in horticultural crops

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-German, S.; Bardaji, I.; Garrido, A.

    2014-06-01

    The Thematic Strategy on the Sustainable Use of Pesticides moves forward towards the sustainability of agriculture fostering the use of Integrated Pest Management (IPM) practices in the European Union (EU). EC Regulation 1107/2009 was adopted in this framework leading to the eventual drop in the Vademecum of authorized substances of some important pesticides which are presently used in EU agriculture. Herbicide Pendimethalin will have to renew its registration in 2016 under the new regulation and there is a high probability that it will be removed. In this study we analyze the potential impact of the prohibition of Pendimethalin in two export driven horticultural crops grown in Southeastern Spain lettuce and celery to provide an illustration of possible consequences of the loss of certain active substances due to the new regulation. To do so, gross margin stochastic models are developed and used to generate Monte-Carlo simulations to look at farms’ economic results and their production risks. Econometric models are used to examine consumers’ and producers’ surplus in export markets of lettuce and celery. The results show that the Pendimethalin ban might modify the economic risk profile that the farm faces, affecting the crops’ profitability in the short-term. These changes would pass on to markets through shifts in supply and price and finally to European consumers, who would be the major losers. (Author)

  6. New pesticides regulation: potential economic impacts of the withdrawal of Pendimethalin in horticultural crops

    Directory of Open Access Journals (Sweden)

    Sol Garcia-German

    2014-02-01

    Full Text Available The Thematic Strategy on the Sustainable Use of Pesticides moves forward towards the sustainability of agriculture fostering the use of Integrated Pest Management (IPM practices in the European Union (EU. EC Regulation 1107/2009 was adopted in this framework leading to the eventual drop in the Vademecum of authorized substances of some important pesticides which are presently used in EU agriculture. Herbicide Pendimethalin will have to renew its registration in 2016 under the new regulation and there is a high probability that it will be removed. In this study we analyze the potential impact of the prohibition of Pendimethalin in two export driven horticultural crops grown in Southeastern Spain - lettuce and celery - to provide an illustration of possible consequences of the loss of certain active substances due to the new regulation. To do so, gross margin stochastic models are developed and used to generate Monte-Carlo simulations to look at farms’ economic results and their production risks. Econometric models are used to examine consumers’ and producers’ surplus in export markets of lettuce and celery. The results show that the Pendimethalin ban might modify the economic risk profile that the farm faces, affecting the crops’ profitability in the short-term. These changes would pass on to markets through shifts in supply and price and finally to European consumers, who would be the major losers.

  7. International Jobs and Economic Development Impacts (I-JEDI) Model

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    International Jobs and Economic Development Impacts (I-JEDI) is a freely available economic model that estimates gross economic impacts from wind, solar, biomass, and geothermal energy projects. Building on a similar model for the United States, I-JEDI was developed by the National Renewable Energy Laboratory under the U.S. government's Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program to support partner countries in assessing economic impacts of LEDS actions in the energy sector.

  8. Fine Tuning in Quintessence Models with Exponential Potentials

    CERN Document Server

    Rosenfeld, R; Jr., Urbano Lopes Franca; Rosenfeld, Rogerio

    2002-01-01

    We show that there still are reasonable regions of the parameter space of the simple exponential potential model for quintessence that are allowed by observational constraints. We find that the level of fine tuning that is required in this model is not too stringent.

  9. Numerical Modeling of Shatter Cones Development in Impact Craters

    Science.gov (United States)

    Baratoux, D.; Melosh, H. J.

    2003-03-01

    We present a new model for the formation of shatter cones in impact craters. Our model has been tested by means of numerical simulations. Our results are consistent with the observations of shatter cones in natural impact craters and explosions experiments.

  10. MODEL FOR REVELATION OF UNFRIENDLY INFORMATION IMPACTS IN MASS-MEDIA WHICH ARE DIRECTED ON CHANGE OF PUBLIC OPINION

    OpenAIRE

    Victor BOCHARNIKOV; Sergey SVESHNIKOV; Voznyak, Stepan; Yuzefovich, Vladimir

    2010-01-01

    In this article we proposes the mathematical model for revelation of deliberate unfriendly information impacts which are fulfilled by means of specially prepared information messages (news, reviews and others) in mass-media. The model calculates the quantitative measure for fact determination of purposeful information impact and evaluation of potential damage to interests of state (party, corporation) from impact fulfilment. The model use the following data: intensity and direction of informa...

  11. Open Source Software for Mapping Human Impacts on Marine Ecosystems with an Additive Model

    Directory of Open Access Journals (Sweden)

    Andy Stock

    2016-06-01

    Full Text Available This paper describes an easy-to-use open source software tool implementing a commonly used additive model (Halpern et al., 'Science', 2008 for mapping human impacts on marine ecosystems. The tool has been used to map the potential for cumulative human impacts in Arctic marine waters and can support future human impact mapping projects by 1 making the model easier to use; 2 making updates of model results straightforward when better input data become available; 3 storing input data and information about processing steps in a defined format and thus facilitating data sharing and reproduction of modeling results; 4 supporting basic visualization of model inputs and outputs without the need for advanced technical skills. The tool, called EcoImpactMapper, was implemented in Java and is thus platform-independent. A tutorial, example data, the tool and the source code are available online.

  12. Review and assessments of potential environmental, health and safety impacts of MHD technology. Final draft

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The purpose of this document is to develop an environmental, health and safety (EH and S) assessment and begin a site - specific assessment of these and socio - economic impacts for the magnetohydrodynamics program of the United States Department of Energy. This assessment includes detailed scientific and technical information on the specific EH and S issues mentioned in the MHD Environmental Development Plan. A review of current literature on impact-related subjects is also included. This document addresses the coal-fired, open-cycle MHD technology and reviews and assesses potential EH and S impacts resulting from operation of commercially-installed technology.

  13. A National Assessment of the Potential Impacts of Hydraulic Fracturing Activities on Drinking Water Resources

    Science.gov (United States)

    Ridley, C.; Burden, S.; Fleming, M. M.; Knightes, C. D.; Koplos, J.; LeDuc, S. D.; Ring, S.; Stanek, J.; Tuccillo, M. E.; Weaver, J.; Frithsen, J.

    2015-12-01

    The U.S. Environmental Protection Agency recently released a draft assessment of the potential impacts of hydraulic fracturing on drinking water resources. As part of the draft assessment, we reviewed, analyzed, and synthesized information from over 950 sources and concluded that there are above and below ground mechanisms by which hydraulic fracturing activities have the potential to impact drinking water resources. These mechanisms include: Water withdrawals in times of, or in areas with, low water availability; Spills of hydraulic fracturing fluids and produced water; Fracturing directly into underground drinking water resources; Below ground migration of liquids and gases; and Inadequate treatment and discharge of wastewater. Of the potential mechanisms identified in this report, we found specific instances where one or more mechanisms led to impacts on drinking water resources, including contamination of drinking water wells. The number of identified cases, however, was small compared to the number of hydraulically fractured wells. This finding could reflect a rarity of effects on drinking water resources, but may also be due to other limiting factors. These factors include: insufficient pre- and post-fracturing data on the quality of drinking water resources; the paucity of long-term systematic studies; the presence of other sources of contamination precluding a definitive link between hydraulic fracturing activities and an impact; and the inaccessibility of some information on hydraulic fracturing activities and potential impacts. Disclaimer: The views expressed are those of the authors and do not necessarily reflect the views or polices of the EPA.

  14. Optimal schooling formations using a potential flow model

    Science.gov (United States)

    Tchieu, Andrew; Gazzola, Mattia; de Brauer, Alexia; Koumoutsakos, Petros

    2012-11-01

    A self-propelled, two-dimensional, potential flow model for agent-based swimmers is used to examine how fluid coupling affects schooling formation. The potential flow model accounts for fluid-mediated interactions between swimmers. The model is extended to include individual agent actions by means of modifying the circulation of each swimmer. A reinforcement algorithm is applied to allow the swimmers to learn how to school in specified lattice formations. Lastly, schooling lattice configurations are optimized by combining reinforcement learning and evolutionary optimization to minimize total control effort and energy expenditure.

  15. Geochemical control processes and potential sediment toxicity in a mine-impacted lake.

    Science.gov (United States)

    Adeleke, Solomon Babatunde; Svensson, Bo H; Yekta, Sepehr Shakeri; Adeleye, Michael Mayowa

    2016-03-01

    Geochemical parameters and major ion concentrations from sediments of a freshwater lake in the town of Åtvidaberg, southeastern, Sweden, were used to identify the geochemical processes that control the water chemistry. The lake sediments are anoxic, characterized by reduced sulfur and sulfidic minerals. The hypothesis tested is that in sulfidic-anaerobic contaminated sediments, the presence of redox potential changes creates a favorable condition for sulfide oxidation, resulting in the release of potentially toxic metals. The acid volatile sulfide (AVS) contents ranged from 5.5 μmol/g to 16 μmol/g of dry sediment. Comparison of total mine tailing metals (∑mine tailing metals) with simultaneously extracted metals (SEM) in sediments indicates that up to 20% of the ∑mine tailing metals are bound to the solid phase as AVS. Consequently, the AVS and SEM analysis classified all sediment samples as potentially toxic in terms of heavy metal concentrations (i.e., SEM to AVS ratio distribution > 1). Evaluation of hydrogeochemical data suggests that calcite dissolution, iron (III) oxyhydroxysulfate mineral jarosite (H-jarosite) precipitation, hematite precipitation, and siderite precipitation are the most prevailing geochemical processes that control the geochemical interactions between the water column and sediment in a mine-impacted lake. The geochemical processes were verified and quantified using a chemical equilibrium modeling program, Visual MINTEQ, Ver 3.1, beta. The identified geochemical processes create an environment in which the characteristics of sulfate-rich waters and acidic-iron produce the geochemical conditions for acid mine drainage and mobilization of toxic metals.

  16. Novel mixture model for the representation of potential energy surfaces

    Science.gov (United States)

    Pham, Tien Lam; Kino, Hiori; Terakura, Kiyoyuki; Miyake, Takashi; Dam, Hieu Chi

    2016-10-01

    We demonstrate that knowledge of chemical physics on a materials system can be automatically extracted from first-principles calculations using a data mining technique; this information can then be utilized to construct a simple empirical atomic potential model. By using unsupervised learning of the generative Gaussian mixture model, physically meaningful patterns of atomic local chemical environments can be detected automatically. Based on the obtained information regarding these atomic patterns, we propose a chemical-structure-dependent linear mixture model for estimating the atomic potential energy. Our experiments show that the proposed mixture model significantly improves the accuracy of the prediction of the potential energy surface for complex systems that possess a large diversity in their local structures.

  17. Potential Impact of Diet on Treatment Effect from Anti-TNF Drugs in Inflammatory Bowel Disease

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Hansen, Axel Kornerup; Heitmann, Berit Lilienthal

    2017-01-01

    We wanted to investigate the current knowledge on the impact of diet on anti-TNF response in inflammatory bowel diseases (IBD), to identify dietary factors that warrant further investigations in relation to anti-TNF treatment response, and, finally, to discuss potential strategies......% CI: 1.73-4.31, p TNF treatment response for clinical use is scarce. Here we propose a mechanism by which Western style diet high in meat and low in fibre may promote colonic...... inflammation and potentially impact treatment response to anti-TNF drugs. Further studies using hypothesis-driven and data-driven strategies in prospective observational, animal and interventional studies are warranted....

  18. The Impact of Modeling Assumptions in Galactic Chemical Evolution Models

    Science.gov (United States)

    Côté, Benoit; O'Shea, Brian W.; Ritter, Christian; Herwig, Falk; Venn, Kim A.

    2017-02-01

    We use the OMEGA galactic chemical evolution code to investigate how the assumptions used for the treatment of galactic inflows and outflows impact numerical predictions. The goal is to determine how our capacity to reproduce the chemical evolution trends of a galaxy is affected by the choice of implementation used to include those physical processes. In pursuit of this goal, we experiment with three different prescriptions for galactic inflows and outflows and use OMEGA within a Markov Chain Monte Carlo code to recover the set of input parameters that best reproduces the chemical evolution of nine elements in the dwarf spheroidal galaxy Sculptor. This provides a consistent framework for comparing the best-fit solutions generated by our different models. Despite their different degrees of intended physical realism, we found that all three prescriptions can reproduce in an almost identical way the stellar abundance trends observed in Sculptor. This result supports the similar conclusions originally claimed by Romano & Starkenburg for Sculptor. While the three models have the same capacity to fit the data, the best values recovered for the parameters controlling the number of SNe Ia and the strength of galactic outflows, are substantially different and in fact mutually exclusive from one model to another. For the purpose of understanding how a galaxy evolves, we conclude that only reproducing the evolution of a limited number of elements is insufficient and can lead to misleading conclusions. More elements or additional constraints such as the Galaxy’s star-formation efficiency and the gas fraction are needed in order to break the degeneracy between the different modeling assumptions. Our results show that the successes and failures of chemical evolution models are predominantly driven by the input stellar yields, rather than by the complexity of the Galaxy model itself. Simple models such as OMEGA are therefore sufficient to test and validate stellar yields. OMEGA

  19. Influence of Non-Potential Coronal Magnetic Topology on Solar-Wind Models

    CERN Document Server

    Edwards, S J; Bocquet, F -X; Mackay, D H

    2015-01-01

    By comparing a magneto-frictional model of the low coronal magnetic field to a potential-field source-surface model, we investigate the possible impact of non-potential magnetic structure on empirical solar-wind models. These empirical models (such as Wang-Sheeley-Arge) estimate the distribution of solar-wind speed solely from the magnetic-field structure in the low corona. Our models are computed in a domain between the solar surface and 2.5 solar radii, and are extended to 0.1 AU using a Schatten current-sheet model. The non-potential field has a more complex magnetic skeleton and quasi-separatrix structures than the potential field, leading to different sub-structure in the solar-wind speed proxies. It contains twisted magnetic structures that can perturb the separatrix surfaces traced down from the base of the heliospheric current sheet. A significant difference between the models is the greater amount of open magnetic flux in the non-potential model. Using existing empirical formulae this leads to higher...

  20. Evaluating dynamic building materials: The potential impact of climatically responsive building enclosures

    Science.gov (United States)

    Kienzl, Nico H.

    Despite the great interest and investment in new material technologies and advanced simulation tools, predictions for the potential impact of dynamic envelope systems so far have been based on simulations of the overall building. However, overall building simulations provide limited insights into the behavior of the building envelope since results of these types of simulations are affected by many factors that are independent of or indirectly influenced by the building envelope. Therefore, it is difficult to isolate the impact of the building envelope on building energy consumption independent of building-specific factors such as building geometry, construction, environmental systems, and building use. In order to understand and quantify the dynamic nature of environmentally responsive envelope systems, designers and engineers necessitate a new method that enables the direct evaluation of only the envelope. This method needs to be able to predict the heat transfer through dynamic building envelopes under variable environmental conditions. Ultimately, this new method should help identify the applicability of new technologies early in the design process when detailed information on a building's design or operation are not yet available. This thesis establishes a new method and a validated reference case for the evaluation of climatically responsive building envelopes with dynamic material properties. The method isolates the performance of the building envelope in a building energy simulation model through transformation of a validated BESTEST model. It allows for parametric evaluation of the thermal performance of dynamic building envelopes under a wide range of environmental boundary conditions in comparison to existing reference technologies. This method can serve as a starting point for the critical evaluation of the impact that dynamic envelope systems have on the heat balance of buildings. The method was applied to the evaluation of electrochromic glazing to

  1. Numerical Modeling for Impact-resistant Pipes Buried at Shallow Depth

    Science.gov (United States)

    Wang, Ching-Jong; Hsu, Jung-Fu

    2010-05-01

    The plastic pipes buried at shallow depth are popular for underground telecommunication lines. To assess their impact-worthiness under loads from heavy traffics, the study establishes a numerical model to correlate with field data. Field impact tests were carried out where a 50-kg mass free-falling at 2.2 m height was dropped onto the soil backfill directly above a buried pipe. A contact-impact model incorporating finite elements of disjoined material regions is developed to simulate the phenomena of mass-soil-pipe interaction and soil dent. Plastic soil deformations are accounted for. Also implemented is a new erosion scheme for dealing with numerical instability caused by crumpled elements during heavy impact. Reasonable agreements can be observed between the analyzed and measured soil dent. This model is versatile in making design evaluations for buried pipes to withstand impact loads. It has potential applications to cemented soil fills and blast loads.

  2. Identifying best existing practice for characterization modeling in life cycle impact assessment

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Goedkoop, Mark; Guinée, Jeroen

    2013-01-01

    Purpose: Life cycle impact assessment (LCIA) is a field of active development. The last decade has seen prolific publication of new impact assessment methods covering many different impact categories and providing characterization factors that often deviate from each other for the same substance...... continents and still support aggregation of impact scores over the whole life cycle. For the impact categories human toxicity and ecotoxicity, we are now able to recommend a model, but the number of chemical substances in common use is so high that there is a need to address the substance data shortage...... was performed for the Joint Research Centre of the European Commission (JRC). Methods Existing LCIA methods were collected and their individual characterization models identified at both midpoint and endpoint levels and supplemented with other environmental models of potential use for LCIA. No new developments...

  3. Detecting potential impacts of deep subsurface CO2 injection on shallow drinking water

    Science.gov (United States)

    Smyth, R. C.; Yang, C.; Romanak, K.; Mickler, P. J.; Lu, J.; Hovorka, S. D.

    2012-12-01

    Presented here are results from one aspect of collective research conducted at Gulf Coast Carbon Center, BEG, Jackson School at UT Austin. The biggest hurdle to public acceptance of CCS is to show that drinking water resources will not be impacted. Since late 1990s our group has been supported by US DOE NETL and private industry to research how best to detect potential impacts to shallow (0 to ~0.25 km) subsurface drinking water from deep (~1 to 3.5 km) injection of CO2. Work has and continues to include (1) field sampling and testing, (2) laboratory batch experiments, (3) geochemical modeling. The objective has been to identify the most sensitive geochemical indicators using data from research-level investigations, which can be economically applied on an industrial-scale. The worst-case scenario would be introduction of CO2 directly into drinking water from a leaking wellbore at a brownfield site. This is unlikely for a properly screened and/or maintained site, but needs to be considered. Our results show aquifer matrix (carbonate vs. clastic) to be critical to interpretation of pH and carbonate (DIC, Alkalinity, and δ13C of DIC) parameters because of the influence of water-rock reaction (buffering vs. non-buffering) on aqueous geochemistry. Field groundwater sampling sites to date are Cranfield, MS and SACROC, TX CO2-EOR oilfields. Two major aquifer types are represented, one dominated by silicate (Cranfield) and the other by carbonate (SACROC) water-rock reactions. We tested sensitivity of geochemical indicators (pH, DIC, Alkalinity, and δ13C of DIC) by modeling the effects of increasing pCO2 on aqueous geochemistry, and laboratory batch experiments, both with partial pressure of CO2 gas (pCO2) at 1x105 Pa (1 atm). Aquifer matrix and groundwater data provided constraints for the geochemical models. We used results from modeling and batch experiments to rank geochemical parameter sensitivity to increased pCO2 into weakly, mildly and strongly sensitive

  4. Impact of the Parameter Identification of Plastic Potentials on the Finite Element Simulation of Sheet Metal Forming

    Science.gov (United States)

    Rabahallah, M.; Bouvier, S.; Balan, T.; Bacroix, B.; Teodosiu, C.

    2007-04-01

    In this work, an implicit, backward Euler time integration scheme is developed for an anisotropic, elastic-plastic model based on strain-rate potentials. The constitutive algorithm includes a sub-stepping procedure to deal with the strong nonlinearity of the plastic potentials when applied to FCC materials. The algorithm is implemented in the static implicit version of the Abaqus finite element code. Several recent plastic potentials have been implemented in this framework. The most accurate potentials require the identification of about twenty material parameters. Both mechanical tests and micromechanical simulations have been used for their identification, for a number of BCC and FCC materials. The impact of the identification procedure on the prediction of ears in cup drawing is investigated.

  5. A computer simulation of a potential derived from the gay-berne potential for lattice model

    Directory of Open Access Journals (Sweden)

    Habtamu Zewdie

    2000-06-01

    Full Text Available The lattice model of elongated molecules interacting via a potential derived from the Gay-Berne pair potential is proposed. We made a systematic study of the effect of varying the molecular elongation and intermolecular vector orientation dependence of the pair potential on the thermodynamic as well as the structural properties of liquid crystals. A Monte Carlo simulations of molecules placed at the site of a simple cubic lattice and interacting via the modified Gay-Berne potential with its nearest neighbours is performed. The internal energy, heat capacity, angular pair correlation function and scalar order parameter are obtained. The results are compared against predictions of molecular field theory, experimental results and that of other related simulations wherever possible. It is shown that for more elongated molecules the nematic-isotropic transition becomes stronger first order transition. For a given molecular elongation as the intermolecular vector orientation dependence becomes larger the nematic-isotropic transition becomes a stronger first order transition as measured by the rate of change of the order parameter and the divergence of the heat capacity. Scaling the potential well seems to have dramatic change on the effect of the potential well anisotropy on trends of nematic-isotropic transition temperature and divergence of the heat capacity. It is shown that the behaviour of many nematics can be described by proposed model with the elongation ratio of molecules and potential well anisotropy ranging from 3 to 5.

  6. Evaluation of the Potential Environmental Impacts from Large-Scale Use and Production of Hydrogen in Energy and Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wuebbles, D.J.; Dubey, M.K., Edmonds, J.; Layzell, D.; Olsen, S.; Rahn, T.; Rocket, A.; Wang, D.; Jia, W.

    2010-06-01

    The purpose of this project is to systematically identify and examine possible near and long-term ecological and environmental effects from the production of hydrogen from various energy sources based on the DOE hydrogen production strategy and the use of that hydrogen in transportation applications. This project uses state-of-the-art numerical modeling tools of the environment and energy system emissions in combination with relevant new and prior measurements and other analyses to assess the understanding of the potential ecological and environmental impacts from hydrogen market penetration. H2 technology options and market penetration scenarios will be evaluated using energy-technology-economics models as well as atmospheric trace gas projections based on the IPCC SRES scenarios including the decline in halocarbons due to the Montreal Protocol. Specifically we investigate the impact of hydrogen releases on the oxidative capacity of the atmosphere, the long-term stability of the ozone layer due to changes in hydrogen emissions, the impact of hydrogen emissions and resulting concentrations on climate, the impact on microbial ecosystems involved in hydrogen uptake, and criteria pollutants emitted from distributed and centralized hydrogen production pathways and their impacts on human health, air quality, ecosystems, and structures under different penetration scenarios

  7. Comparing the effects of climate and impact model uncertainty on climate impacts estimates for grain maize

    Science.gov (United States)

    Holzkämper, Annelie; Honti, Mark; Fuhrer, Jürg

    2015-04-01

    Crop models are commonly applied to estimate impacts of projected climate change and to anticipate suitable adaptation measures. Thereby, uncertainties from global climate models, regional climate models, and impacts models cascade down to impact estimates. It is essential to quantify and understand uncertainties in impact assessments in order to provide informed guidance for decision making in adaptation planning. A question that has hardly been investigated in this context is how sensitive climate impact estimates are to the choice of the impact model approach. In a case study for Switzerland we compare results of three different crop modelling approaches to assess the relevance of impact model choice in relation to other uncertainty sources. The three approaches include an expert-based, a statistical and a process-based model. With each approach impact model parameter uncertainty and climate model uncertainty (originating from climate model chain and downscaling approach) are accounted for. ANOVA-based uncertainty partitioning is performed to quantify the relative importance of different uncertainty sources. Results suggest that uncertainty in estimated yield changes originating from the choice of the crop modelling approach can be greater than uncertainty from climate model chains. The uncertainty originating from crop model parameterization is small in comparison. While estimates of yield changes are highly uncertain, the directions of estimated changes in climatic limitations are largely consistent. This leads us to the conclusion that by focusing on estimated changes in climate limitations, more meaningful information can be provided to support decision making in adaptation planning - especially in cases where yield changes are highly uncertain.

  8. Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans.

    Science.gov (United States)

    Papadaki, Christina; Soulis, Konstantinos; Muñoz-Mas, Rafael; Martinez-Capel, Francisco; Zogaris, Stamatis; Ntoanidis, Lazaros; Dimitriou, Elias

    2016-01-01

    The climate change in the Mediterranean area is expected to have significant impacts on the aquatic ecosystems and particular in the mountain rivers and streams that often host important species such as the Salmo farioides, Karaman 1938. These impacts will most possibly affect the habitat availability for various aquatic species resulting to an essential alteration of the water requirements, either for dams or other water abstractions, in order to maintain the essential levels of ecological flow for the rivers. The main scope of this study was to assess potential climate change impacts on the hydrological patterns and typical biota for a south-western Balkan mountain river, the Acheloos. The altered flow regimes under different emission scenarios of the Intergovernmental Panel on Climate Change (IPCC) were estimated using a hydrological model and based on regional climate simulations over the study area. The Indicators of Hydrologic Alteration (IHA) methodology was then used to assess the potential streamflow alterations in the studied river due to predicted climate change conditions. A fish habitat simulation method integrating univariate habitat suitability curves and hydraulic modeling techniques were used to assess the impacts on the relationships between the aquatic biota and hydrological status utilizing a sentinel species, the West Balkan trout. The most prominent effects of the climate change scenarios depict severe flow reductions that are likely to occur especially during the summer flows, changing the duration and depressing the magnitude of the natural low flow conditions. Weighted Usable Area-flow curves indicated the limitation of suitable habitat for the native trout. Finally, this preliminary application highlighted the potential of science-based hydrological and habitat simulation approaches that are relevant to both biological quality elements (fish) and current EU Water policy to serve as efficient tools for the estimation of possible climate

  9. Potential climatic impacts and reliability of very large-scale wind farms

    Directory of Open Access Journals (Sweden)

    C. Wang

    2009-09-01

    Full Text Available Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG emission technologies such as wind energy. The widespread availability of wind power has fueled legitimate interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1°C over land installations. In contrast, surface cooling exceeding 1°C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure

  10. Potential climatic impacts and reliability of very large-scale wind farms

    Directory of Open Access Journals (Sweden)

    C. Wang

    2010-02-01

    Full Text Available Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG emission technologies such as wind energy. The widespread availability of wind power has fueled substantial interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1 °C over land installations. In contrast, surface cooling exceeding 1 °C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure

  11. Potential climatic impacts and reliability of very large-scale wind farms

    Science.gov (United States)

    Wang, C.; Prinn, R. G.

    2009-09-01

    Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has fueled legitimate interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1°C over land installations. In contrast, surface cooling exceeding 1°C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure reliability, including

  12. Regional characterization of freshwater Use in LCA: modeling direct impacts on human health.

    Science.gov (United States)

    Boulay, Anne-Marie; Bulle, Cécile; Bayart, Jean-Baptiste; Deschênes, Louise; Margni, Manuele

    2011-10-15

    Life cycle assessment (LCA) is a methodology that quantifies potential environmental impacts for comparative purposes in a decision-making context. While potential environmental impacts from pollutant emissions into water are characterized in LCA, impacts from water unavailability are not yet fully quantified. Water use can make the resource unavailable to other users by displacement or quality degradation. A reduction in water availability to human users can potentially affect human health. If financial resources are available, there can be adaptations that may, in turn, shift the environmental burdens to other life cycle stages and impact categories. This paper proposes a model to evaluate these potential impacts in an LCA context. It considers the water that is withdrawn and released, its quality and scarcity in order to evaluate the loss of functionality associated with water uses. Regionalized results are presented for impacts on human health for two modeling approaches regarding affected users, including or not domestic uses, and expressed in disability-adjusted life years (DALY). A consumption and quality based scarcity indicator is also proposed as a midpoint. An illustrative example is presented for the production of corrugated board with different effluents, demonstrating the importance of considering quality, process effluents and the difference between the modeling approaches.

  13. Modeling transient streaming potentials in falling-head permeameter tests.

    Science.gov (United States)

    Malama, Bwalya; Revil, André

    2014-01-01

    We present transient streaming potential data collected during falling-head permeameter tests performed on samples of two sands with different physical and chemical properties. The objective of the work is to estimate hydraulic conductivity (K) and the electrokinetic coupling coefficient (Cl ) of the sand samples. A semi-empirical model based on the falling-head permeameter flow model and electrokinetic coupling is used to analyze the streaming potential data and to estimate K and Cl . The values of K estimated from head data are used to validate the streaming potential method. Estimates of K from streaming potential data closely match those obtained from the associated head data, with less than 10% deviation. The electrokinetic coupling coefficient was estimated from streaming potential vs. (1) time and (2) head data for both sands. The results indicate that, within limits of experimental error, the values of Cl estimated by the two methods are essentially the same. The results of this work demonstrate that a temporal record of the streaming potential response in falling-head permeameter tests can be used to estimate both K and Cl . They further indicate the potential for using transient streaming potential data as a proxy for hydraulic head in hydrogeology applications.

  14. The Impact of a Potential Shale Gas Development in Germany and the United Kingdom on Pollutant and Greenhouse Gas Emissions

    Science.gov (United States)

    Weger, L.; Cremonese, L.; Bartels, M. P.; Butler, T. M.

    2016-12-01

    Several European countries with domestic shale gas reserves are considering extracting this natural gas resource to complement their energy transition agenda. Natural gas, which produces lower CO2 emissions upon combustion compared to coal or oil, has the potential to serve as a bridge in the transition from fossil fuels to renewables. However, the generation of shale gas leads to emissions of CH4 and pollutants such as PM, NOx and VOCs, which in turn impact climate as well as local and regional air quality. In this study, we explore the impact of a potential shale gas development in Europe, specifically in Germany and the United Kingdom, on emissions of greenhouse gases and pollutants. In order to investigate the effect on emissions, we first estimate a range of wells drilled per year and production volume for the two countries under examination based on available geological information and on regional infrastructural and economic limitations. Subsequently we assign activity data and emissions factors to the well development, gas production and processing stages of shale gas generation to enable emissions quantification. We then define emissions scenarios to explore different storylines of potential shale gas development, including low emissions (high level of regulation), high emissions (low level of regulation) and middle emissions scenarios, which influence fleet make-up, emission factor and activity data choices for emissions quantification. The aim of this work is to highlight important variables and their ranges, to promote discussion and communication of potential impacts, and to construct possible visions for a future shale gas development in the two study countries. In a follow-up study, the impact of pollutant emissions from these scenarios on air quality will be explored using the Weather Research and Forecasting model with chemistry (WRF-Chem) model.

  15. Potential environmental impacts associated with large-scale herbicide-tolerant GM oilseed rape crops

    Directory of Open Access Journals (Sweden)

    Fellous Marc

    2004-07-01

    characteristics of the herbicide and its current and future use; accounts for herbicide-tolerant varieties belonging to other species, liable to be farmed in French agriculture in the short term; targets, if applicable, the selection of crop/herbicide combinations according to the constraints associated with French agriculture; coordinates the evaluations conducted on herbicide-tolerant crops and those conducted on herbicides; implements a biovigilance system and its associated resources whenever herbicide-tolerant crop farming is envisaged. Our report highlights the need for the management of any herbicide-tolerant GM oilseed rape crops. Such a management plan must account for the diverse cropping situations, including crop rotations and farming practices. Management should be based on the prior evaluation of situations encountered, the development of measures commensurate with the risks, and a validation of their efficacy through biovigilance. The Biomolecular Engineering Commission considers that the indirect environmental and agronomic impacts associated with current management practices employed for herbicide-tolerant oilseed rape crops can only be determined, in addition to the knowledge acquired, by continuing ongoing experimental studies initiated. Mathematical and computer models – by formalizing complex scenarios that incorporate the functioning of different oilseed rape populations (farmed, spontaneous, volunteer plants under specific farming practices – enables the simulation of potential impacts and the identification of suitable management measures. Nevertheless, at the present time, the introduction of more extensive farming than that currently practised, or managed progressive introduction, would make it possible to progress in the study of impacts and develop and validate management procedures enabling the limitation of adverse impacts. In the specific case of imports, the Biomolecular Engineering Commission considers that herbicidetolerant GM oilseed rape

  16. Evaluation of a laboratory model of human head impact biomechanics.

    Science.gov (United States)

    Hernandez, Fidel; Shull, Peter B; Camarillo, David B

    2015-09-18

    This work describes methodology for evaluating laboratory models of head impact biomechanics. Using this methodology, we investigated: how closely does twin-wire drop testing model head rotation in American football impacts? Head rotation is believed to cause mild traumatic brain injury (mTBI) but helmet safety standards only model head translations believed to cause severe TBI. It is unknown whether laboratory head impact models in safety standards, like twin-wire drop testing, reproduce six degree-of-freedom (6DOF) head impact biomechanics that may cause mTBI. We compared 6DOF measurements of 421 American football head impacts to twin-wire drop tests at impact sites and velocities weighted to represent typical field exposure. The highest rotational velocities produced by drop testing were the 74th percentile of non-injury field impacts. For a given translational acceleration level, drop testing underestimated field rotational acceleration by 46% and rotational velocity by 72%. Primary rotational acceleration frequencies were much larger in drop tests (~100 Hz) than field impacts (~10 Hz). Drop testing was physically unable to produce acceleration directions common in field impacts. Initial conditions of a single field impact were highly resolved in stereo high-speed video and reconstructed in a drop test. Reconstruction results reflected aggregate trends of lower amplitude rotational velocity and higher frequency rotational acceleration in drop testing, apparently due to twin-wire constraints and the absence of a neck. These results suggest twin-wire drop testing is limited in modeling head rotation during impact, and motivate continued evaluation of head impact models to ensure helmets are tested under conditions that may cause mTBI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The potential economic impact of constructing and operating solar power generation facilities in Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Schwer, R. K. [Univ. of Nevada, Las Vegas, NV (United States); Riddel, M. [Univ. of Nevada, Las Vegas, NV (United States)

    2004-02-01

    Nevada has a vast potential for electricity generation using solar power. An examination of the stock of renewable resources in Nevada proves that the state has the potential to be a leader in renewable-electric generation--one of the best in the world. This study provides estimates on the economic impact in terms of employment, personal income, and gross state product (GSP) of developing a portion of Nevada's solar energy generation resources.

  18. Potential impact of a transatlantic trade and Investment partnership on the global forest sector

    Science.gov (United States)

    Joseph Buongiorno; Paul Rougieux; Ahmed Barkaoui; Shushuai Zhu; Patrice Harou

    2014-01-01

    The effects of a transatlantic trade agreement on the global forest sector were assessed with the Global Forest Products Model, conditional on previous macroeconomic impacts predicted with a general equilibrium model. Comprehensive tariff elimination per se had little effect on the forest sector. However, with deeper reforms and integration consumption would increase...

  19. Potential Impact of South Asian Anthropogenic Aerosols on Northern Hemisphere Climate

    Science.gov (United States)

    Bollasina, M. A.; Ming, Y.; Ramaswamy, V.

    2014-12-01

    South Asia has one of the world's highest aerosol loading due to the dramatic increase of anthropogenic emissions from the 1950s associated with rapid urbanization and population growth. The possible large-scale impact of the late 20th century increase of South Asian aerosol emissions on climate away from the source regions was studied by means of historical ensemble experiments with a state-of-the-art coupled climate model with fully interactive aerosols and a representation of both direct and indirect aerosol effects. The key characteristics of the northern hemisphere responses are examined separately for winter and summer, and show that regional aerosols induce significant planetary-scale teleconnection patterns. In both seasons, the large-scale aerosol imprint originates from substantial changes in the regional precipitation distribution. During the winter, in response to anomalous surface cooling in the northern Indian Ocean, aerosols cause a westward shift of convection over the eastern Indian Ocean and compensating subsidence to the west and over the Maritime continent. During the summer, aerosols are collocated with rainfall, and cause a widespread drying over South Asia mostly by indirect effects. In both cases, the impact of the regional diabatic heating anomaly propagates remotely by exciting a northern hemisphere wave-train which, enhanced by regional feedbacks, leads to remarkable changes in near-surface climate, including circulation and temperature, over Eurasia, the northern Pacific and North America. Depending on the region, the induced anomalies may have opposite signs between the two seasons, and may thus contribute to reinforcing or dampening those due greenhouse gases. These results underscore the potential influence of Asian aerosols on global climate, which is a compelling problem as regional aerosol loading will continue to be large in the coming decades.

  20. Potential impacts of climate change on biogeochemical functioning of Cerrado ecosystems.

    Science.gov (United States)

    Bustamante, M M C; Nardoto, G B; Pinto, A S; Resende, J C F; Takahashi, F S C; Vieira, L C G

    2012-08-01

    The Cerrado Domain comprises one of the most diverse savannas in the world and is undergoing a rapid loss of habitats due to changes in fire regimes and intense conversion of native areas to agriculture. We reviewed data on the biogeochemical functioning of Cerrado ecosystems and evaluated the potential impacts of regional climate changes. Variation in temperature extremes and in total amount of rainfall and altitude throughout the Cerrado determines marked differences in the composition of species. Cerrado ecosystems are controlled by interactions between water and nutrient availability. In general, nutrient cycles (N, P and base cations) are very conservative, while litter, microbial and plant biomass are important stocks. In terms of C cycling, root systems and especially the soil organic matter are the most important stocks. Typical cerrado ecosystems function as C sinks on an annual basis, although they work as source of C to the atmosphere close to the end of the dry season. Fire is an important factor altering stocks and fluxes of C and nutrients. Predicted changes in temperature, amount and distribution of precipitation vary according to Cerrado sub-regions with more marked changes in the northeastern part of the domain. Higher temperatures, decreases in rainfall with increase in length of the dry season could shift net ecosystem exchanges from C sink to source of C and might intensify burning, reducing nutrient stocks. Interactions between the heterogeneity in the composition and abundance of biological communities throughout the Cerrado Domain and current and future changes in land use make it difficult to project the impacts of future climate scenarios at different temporal and spatial scales and new modeling approaches are needed.

  1. Potential impacts of climate change on biogeochemical functioning of Cerrado ecosystems

    Directory of Open Access Journals (Sweden)

    MMC Bustamante

    Full Text Available The Cerrado Domain comprises one of the most diverse savannas in the world and is undergoing a rapid loss of habitats due to changes in fire regimes and intense conversion of native areas to agriculture. We reviewed data on the biogeochemical functioning of Cerrado ecosystems and evaluated the potential impacts of regional climate changes. Variation in temperature extremes and in total amount of rainfall and altitude throughout the Cerrado determines marked differences in the composition of species. Cerrado ecosystems are controlled by interactions between water and nutrient availability. In general, nutrient cycles (N, P and base cations are very conservative, while litter, microbial and plant biomass are important stocks. In terms of C cycling, root systems and especially the soil organic matter are the most important stocks. Typical cerrado ecosystems function as C sinks on an annual basis, although they work as source of C to the atmosphere close to the end of the dry season. Fire is an important factor altering stocks and fluxes of C and nutrients. Predicted changes in temperature, amount and distribution of precipitation vary according to Cerrado sub-regions with more marked changes in the northeastern part of the domain. Higher temperatures, decreases in rainfall with increase in length of the dry season could shift net ecosystem exchanges from C sink to source of C and might intensify burning, reducing nutrient stocks. Interactions between the heterogeneity in the composition and abundance of biological communities throughout the Cerrado Domain and current and future changes in land use make it difficult to project the impacts of future climate scenarios at different temporal and spatial scales and new modeling approaches are needed.

  2. Potential Impact of Climate Change on Area Affected by Waterlogging and Saline Groundwater and Ecohydrology Management in Northeast Thailand

    Directory of Open Access Journals (Sweden)

    Phayom Saraphirom

    2013-01-01

    Full Text Available Modeling approach was employed to predict potential impact of climate change on waterlogging and salinity distribution with the ecohydrology options for land management under the projected climate conditions in Huai Khamriam subwatershed in the northeastern region, Thailand. The prediction was simulated using the variable density groundwater model SEAWAT supported with recharge estimation model HELP3 under the projected weather data from PRECIS RCM scenario A2. As the result of the higher precipitation simulated by PRECIS RCM scenario A2, the predicted groundwater recharge was likely to be higher in the middle of this century onward. The areas affected by shallow saline groundwater were found to increase with the climate change scenario as well as for the base case. Based on scenario simulation, climate change did not have substantial impact on salinity distribution, but it was significant impact to the expansion of waterlogging areas. Management option using ecohydrology simulation approach was performed to reduce the recharge water to groundwater system, which consequently minimizes the impact of the higher precipitation in the future. The results indicated that establishment of the fast growing tree integrated with the shallow groundwater interception in the recharge areas could reduce the expansion of waterlogging and salinised areas under the climate change condition.

  3. Numerical impact simulation of gradually increased kinetic energy transfer has the potential to break up folded protein structures resulting in cytotoxic brain tissue edema.

    Science.gov (United States)

    von Holst, Hans; Li, Xiaogai

    2013-07-01

    Although the consequences of traumatic brain injury (TBI) and its treatment have been improved, there is still a substantial lack of understanding the mechanisms. Numerical simulation of the impact can throw further lights on site and mechanism of action. A finite element model of the human head and brain tissue was used to simulate TBI. The consequences of gradually increased kinetic energy transfer was analyzed by evaluating the impact intracranial pressure (ICP), strain level, and their potential influences on binding forces in folded protein structures. The gradually increased kinetic energy was found to have the potential to break apart bonds of Van der Waals in all impacts and hydrogen bonds at simulated impacts from 6 m/s and higher, thereby superseding the energy in folded protein structures. Further, impacts below 6 m/s showed none or very slight increase in impact ICP and strain levels, whereas impacts of 6 m/s or higher showed a gradual increase of the impact ICP and strain levels reaching over 1000 KPa and over 30%, respectively. The present simulation study shows that the free kinetic energy transfer, impact ICP, and strain levels all have the potential to initiate cytotoxic brain tissue edema by unfolding protein structures. The definition of mild, moderate, and severe TBI should thus be looked upon as the same condition and separated only by a gradual severity of impact.

  4. The parabolic Anderson model random walk in random potential

    CERN Document Server

    König, Wolfgang

    2016-01-01

    This is a comprehensive survey on the research on the parabolic Anderson model – the heat equation with random potential or the random walk in random potential – of the years 1990 – 2015. The investigation of this model requires a combination of tools from probability (large deviations, extreme-value theory, e.g.) and analysis (spectral theory for the Laplace operator with potential, variational analysis, e.g.). We explain the background, the applications, the questions and the connections with other models and formulate the most relevant results on the long-time behavior of the solution, like quenched and annealed asymptotics for the total mass, intermittency, confinement and concentration properties and mass flow. Furthermore, we explain the most successful proof methods and give a list of open research problems. Proofs are not detailed, but concisely outlined and commented; the formulations of some theorems are slightly simplified for better comprehension.

  5. Compactification of gauge models and the effective potential

    Energy Technology Data Exchange (ETDEWEB)

    Shtykov, N.N. (Leningrad State University, Leningrad (SU))

    1989-07-01

    The one-loop potential for bosons and massive fermions in an Abelian model is obtained on the {ital M}{sup 2}{times}{ital S1}{times}{ital S1} manifold. Stability of the total potential against arbitrary homogeneous deformations of {ital S}{sup 1}{times}{ital S1} is studied. It is shown that attraction or repulsion depends on the relations connecting the radii of the spheres, the fermion masses, and the coupling constant.

  6. The potential impacts of climate variability and change on health impacts of extreme weather events in the United States.

    Science.gov (United States)

    Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D

    2001-05-01

    Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation.

  7. The bi-potential method applied to the modeling of dynamic problems with friction

    Science.gov (United States)

    Feng, Z.-Q.; Joli, P.; Cros, J.-M.; Magnain, B.

    2005-10-01

    The bi-potential method has been successfully applied to the modeling of frictional contact problems in static cases. This paper presents an extension of this method for dynamic analysis of impact problems with deformable bodies. A first order algorithm is applied to the numerical integration of the time-discretized equation of motion. Using the Object-Oriented Programming (OOP) techniques in C++ and OpenGL graphical support, a finite element code including pre/postprocessor FER/Impact is developed. The numerical results show that, at the present stage of development, this approach is robust and efficient in terms of numerical stability and precision compared with the penalty method.

  8. Variation trends of meteorological variables and their impacts on potential evaporation in Hailar region

    Directory of Open Access Journals (Sweden)

    Jin-liang REN

    2012-06-01

    Full Text Available Evaporation, which is an important factor in the water balance at the basin scale, is a critical variable in the determination of local available water resources. Since the potential evaporation is mainly influenced by meteorological variables, it is necessary to investigate the extent to which different meteorological variables affect the potential evaporation. The aim of this study was to explore the variation trends of different meteorological variables, and their impacts on the potential evaporation. This study selected the Hailar Meteorological Station of the Hailar region, which is situated in a cold, semi-arid, and sub-humid region, as a case study site. Based on observed daily meteorological data from 1951 to 2009, the potential evaporation was calculated with the Penman formula, and the variations of meteorological variables were investigated with the nonparametric Mann-Kendall test. The correlation between the potential evaporation and each meteorological variable at annual and seasonal scales was also analyzed. The results show that the annual and seasonal potential evaporation and air temperature present increasing trends, whereas the wind speed, sunshine duration, and relative humidity present decreasing trends. Among the meteorological variables, the air temperature and relative humidity are the key factors that affect potential evaporation at different time scales, and the impacts of other meteorological variables on the potential evaporation are not significant and vary with time scales.

  9. Evaluation of six potential evapotranspiration models for estimating crop potential and actual evapotranspiration in arid regions

    Science.gov (United States)

    Li, Sien; Kang, Shaozhong; Zhang, Lu; Zhang, Jianhua; Du, Taisheng; Tong, Ling; Ding, Risheng

    2016-12-01

    Using potential evapotranspiration (PET) to estimate crop actual evapotranspiration (AET) is a critical approach in hydrological models. However, which PET model performs best and can be used to predict crop AET over the entire growth season in arid regions still remains unclear. The six frequently-used PET models, i.e. Blaney-Criddle (BC), Hargreaves (HA), Priestley-Taylor (PT), Dalton (DA), Penman (PE) and Shuttleworth (SW) models were considered and evaluated in the study. Five-year eddy covariance data over the maize field and vineyard in arid northwest China were used to examine the accuracy of PET models in estimating daily crop AET. Results indicate that the PE, SW and PT models underestimated daily ET by less than 6% with RMSE lower than 35 W m-2 during the four years, while the BC, HA and DA models under-predicted daily ET approximately by 10% with RMSE higher than 40 W m-2. Compared to BC, HA and DA models, PE, SW and PT models were more reliable and accurate for estimating crop PET and AET in arid regions. Thus the PE, SW and PT models were recommended for predicting crop evapotranspiration in hydrological models in arid regions.

  10. Bringing Science and Pragmatism together - a Tiered Approach for Modelling Toxicological Impacts in LCA

    DEFF Research Database (Denmark)

    Guinée, J; De Koning, A; Pennington, David W.

    2004-01-01

    to illustrate how the OMNIITOX IS can assist an LCA practitioner in finding or deriving characterisation factors for use in life cycle impact assessment of toxic releases. Conclusions and Outlook. Data availability and quality are crucial issues when calculating characterisation factors for the toxicity impact......Goal, Scope and Background. The EU 5th framework project OMNIITOX will develop models calculating characterisation factors for assessing the potential toxic impacts of chemicals within the framework of LCA. These models will become accessible through a web-based information system. The key......, there is insufficient knowledge and/or resources to have high data availability as well as high data quality and high model quality at the same time. Results. The OMNIITOX project is developing two inter-related models in order to be able to provide LCA impact assessment characterisation factors for toxic releases...

  11. Fisher information and quantum potential well model for finance

    Energy Technology Data Exchange (ETDEWEB)

    Nastasiuk, V.A., E-mail: nasa@i.ua

    2015-09-25

    The probability distribution function (PDF) for prices on financial markets is derived by extremization of Fisher information. It is shown how on that basis the quantum-like description for financial markets arises and different financial market models are mapped by quantum mechanical ones. - Highlights: • The financial Schrödinger equation is derived using the principle of minimum Fisher information. • Statistical models for price variation are mapped by the quantum models of coupled particle. • The model of quantum particle in parabolic potential well corresponds to Efficient market.

  12. The Potential Impact of Not Being Able to Create Parallel Tests on Expected Classification Accuracy

    Science.gov (United States)

    Wyse, Adam E.

    2011-01-01

    In many practical testing situations, alternate test forms from the same testing program are not strictly parallel to each other and instead the test forms exhibit small psychometric differences. This article investigates the potential practical impact that these small psychometric differences can have on expected classification accuracy. Ten…

  13. The Impact of Biopsy on Human Embryo Developmental Potential during Preimplantation Genetic Diagnosis

    Directory of Open Access Journals (Sweden)

    Danilo Cimadomo

    2016-01-01

    Full Text Available Preimplantation Genetic Diagnosis and Screening (PGD/PGS for monogenic diseases and/or numerical/structural chromosomal abnormalities is a tool for embryo testing aimed at identifying nonaffected and/or euploid embryos in a cohort produced during an IVF cycle. A critical aspect of this technology is the potential detrimental effect that the biopsy itself can have upon the embryo. Different embryo biopsy strategies have been proposed. Cleavage stage blastomere biopsy still represents the most commonly used method in Europe nowadays, although this approach has been shown to have a negative impact on embryo viability and implantation potential. Polar body biopsy has been proposed as an alternative to embryo biopsy especially for aneuploidy testing. However, to date no sufficiently powered study has clarified the impact of this procedure on embryo reproductive competence. Blastocyst stage biopsy represents nowadays the safest approach not to impact embryo implantation potential. For this reason, as well as for the evidences of a higher consistency of the molecular analysis when performed on trophectoderm cells, blastocyst biopsy implementation is gradually increasing worldwide. The aim of this review is to present the evidences published to date on the impact of the biopsy at different stages of preimplantation development upon human embryos reproductive potential.

  14. Shades of green : spatial and temporal variability of potentials, costs and environmental impacts of bioenergy production

    NARCIS (Netherlands)

    van der Hilst, F.

    2012-01-01

    Bioenergy is expected to play an important role in future energy supply. However, increased implementation of large scale bioenergy production could have significant adverse effects. Strong improvement in spatially explicit potential and impact analyses are required to allow for effective certificat

  15. The Impact of Biopsy on Human Embryo Developmental Potential during Preimplantation Genetic Diagnosis

    Science.gov (United States)

    Cimadomo, Danilo; Capalbo, Antonio; Ubaldi, Filippo Maria; Scarica, Catello; Palagiano, Antonio; Canipari, Rita; Rienzi, Laura

    2016-01-01

    Preimplantation Genetic Diagnosis and Screening (PGD/PGS) for monogenic diseases and/or numerical/structural chromosomal abnormalities is a tool for embryo testing aimed at identifying nonaffected and/or euploid embryos in a cohort produced during an IVF cycle. A critical aspect of this technology is the potential detrimental effect that the biopsy itself can have upon the embryo. Different embryo biopsy strategies have been proposed. Cleavage stage blastomere biopsy still represents the most commonly used method in Europe nowadays, although this approach has been shown to have a negative impact on embryo viability and implantation potential. Polar body biopsy has been proposed as an alternative to embryo biopsy especially for aneuploidy testing. However, to date no sufficiently powered study has clarified the impact of this procedure on embryo reproductive competence. Blastocyst stage biopsy represents nowadays the safest approach not to impact embryo implantation potential. For this reason, as well as for the evidences of a higher consistency of the molecular analysis when performed on trophectoderm cells, blastocyst biopsy implementation is gradually increasing worldwide. The aim of this review is to present the evidences published to date on the impact of the biopsy at different stages of preimplantation development upon human embryos reproductive potential. PMID:26942198

  16. Fostering EFL Learners' Autonomy in Light of Portfolio Assessment: Exploring the Potential Impact of Gender

    Science.gov (United States)

    Hashemian, Mahmood; Fadaei, Batool

    2013-01-01

    The purpose of this study was to investigate the impact of portfolio assessment as a process-oriented mechanism on the autonomy of Iranian advanced EFL learners. A particular concern was to examine the potential effect of gender on portfolio assessment by taking the learners' writing ability into account. The participants were 80 male and female…

  17. Shared Solar. Current Landscape, Market Potential, and the Impact of Federal Securities Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brockway, Anna M. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Ulrich, Elaine [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-04-01

    This report provides a high-level overview of the current U.S. shared solar landscape and the impact that a given shared solar program’s structure has on requiring federal securities oversight, as well as an estimate of market potential for U.S. shared solar deployment.

  18. Shared Solar. Current Landscape, Market Potential, and the Impact of Federal Securities Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brockway, Anna M. [U.S. Department of Energy, Washington, DC (United States); Ulrich, Elaine [U.S. Department of Energy, Washington, DC (United States); Margolis, Robert [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-04-07

    This report provides a high-level overview of the current U.S. shared solar landscape, the impact that a given shared solar program’s structure has on requiring federal securities oversight, as well as an estimate of market potential for U.S. shared solar deployment.

  19. Media Impact on Fright Reactions and Belief in UFOs: The Potential Role of Mental Imagery.

    Science.gov (United States)

    Sparks, Glenn G.; And Others

    1995-01-01

    Explores the potential role of mental imagery for media effects in emotional responses to frightening mass media, and in the effects of the media on beliefs in UFOs. Finds that individual differences in vividness of mental imagery may play a crucial role in moderating both types of media impact. (SR)

  20. The Potential Impact of Undiagnosed Vision Impairment on Reading Development in the Early Years of School

    Science.gov (United States)

    Thurston, Allen

    2014-01-01

    This article presents a critical review of the literature surrounding the potential impact of undiagnosed and untreated vision impairment on reading development in the early years of primary school. Despite pre-school screening programmes, it is still possible for children to enter school with undiagnosed, uncorrected vision impairments. This can…

  1. Constructing A Small Strain Potential for Multi-Scale Modeling

    CERN Document Server

    Mallik, A; Cheng, H P; Dufty, J W; Mallik, Aditi; Runge, Keith; Cheng, Hai-Ping; Dufty, James W.; Mallik, Aditi; Runge, Keith; Cheng, Hai-Ping; Dufty, James W.

    2005-01-01

    For problems relating to fracture, a consistent embedding of a quantum (QM) domain in its classical (CM) environment requires that the classical system should yield the same structure and elastic properties as the QM domain for states near equilibrium. It is proposed that an appropriate classical potential can be constructed using ab initio data on the equilibrium and weakly strained configurations calculated from the quantum description, rather than the more usual approach of fitting to a wide range of empirical data. The scheme is illustrated in detail for a model system, silica nanorod that has the proper stiochiometric ratio of Si:O as observed in real silica. The potential is chosen to be pairwise additive, with the same pair potential functional form as familiar phenomenological TTAM potential. Here, the parameters are determined using a genetic algorithm with force data obtained directly from a quantum calculation. The resulting potential gives excellent agreement with properties of the reference quant...

  2. Impact of climate change on crop yield and role of model for achieving food security.

    Science.gov (United States)

    Kumar, Manoj

    2016-08-01

    In recent times, several studies around the globe indicate that climatic changes are likely to impact the food production and poses serious challenge to food security. In the face of climate change, agricultural systems need to adapt measures for not only increasing food supply catering to the growing population worldwide with changing dietary patterns but also to negate the negative environmental impacts on the earth. Crop simulation models are the primary tools available to assess the potential consequences of climate change on crop production and informative adaptive strategies in agriculture risk management. In consideration with the important issue, this is an attempt to provide a review on the relationship between climate change impacts and crop production. It also emphasizes the role of crop simulation models in achieving food security. Significant progress has been made in understanding the potential consequences of environment-related temperature and precipitation effect on agricultural production during the last half century. Increased CO2 fertilization has enhanced the potential impacts of climate change, but its feasibility is still in doubt and debates among researchers. To assess the potential consequences of climate change on agriculture, different crop simulation models have been developed, to provide informative strategies to avoid risks and understand the physical and biological processes. Furthermore, they can help in crop improvement programmes by identifying appropriate future crop management practises and recognizing the traits having the greatest impact on yield. Nonetheless, climate change assessment through model is subjected to a range of uncertainties. The prediction uncertainty can be reduced by using multimodel, incorporating crop modelling with plant physiology, biochemistry and gene-based modelling. For devloping new model, there is a need to generate and compile high-quality field data for model testing. Therefore, assessment of

  3. A New Method for Characterizing Single Parametric Model Potential

    Institute of Scientific and Technical Information of China (English)

    P.S. Vyas; P.N. Gajjar; B.Y. Thakore; A.R. Jani

    2008-01-01

    A novel approach of characterizing single parametric model potential is proposed by equating total pair wise force to zero.Our well-established single parametric model potential is characterized using the proposed idea and compared the obtained parameter with parameters computed by previously used approaches.Thus characterized pseudopotential is then tested to compute total energy of alkali metals.The results establish the reliability of proposed idea of making total pair wise force to zero in determining the parameter of the pseudopotential.

  4. Clinical impact of FDG PET-CT in patients with potentially operable metastatic colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, R.H. [Department of Radiology, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield (United Kingdom); Chowdhury, F.U. [Departments of Radiology and Nuclear Medicine, St James' s University Hospital, Leeds (United Kingdom); Lodge, J.P.A. [HPB and Transplant Unit, St James' s University Hospital, Leeds (United Kingdom); Scarsbrook, A.F., E-mail: andrew.scarsbrook@leedsth.nhs.uk [Departments of Radiology and Nuclear Medicine, St James' s University Hospital, Leeds (United Kingdom)

    2011-12-15

    Aim: To assess the clinical impact of 2-[{sup 18}F]-fluoro-2-deoxy-D-glucose (FDG) positron-emission tomography-computed tomography (PET-CT) in patients with potentially resectable metastatic colorectal cancer. Materials and methods: One hundred and two patients with potentially resectable metastatic colorectal cancer underwent FDG PET-CT in addition to conventional imaging over an 18-month period. The findings were compared to conventional imaging, with histological or clinico-radiological validation. The impact on subsequent management was evaluated using information from clinico-radiological databases. Results: Of 102 patients (mean age 67 years, range 27-85 years), 94 had liver, five had isolated lung, and three had limited peritoneal metastases. In 31 patients (30%) PET-CT had a major impact on subsequent management, by correctly clarifying indeterminate lesions on conventional imaging as inoperable metastatic disease in 16 patients, detecting previously unsuspected metastatic disease in nine patients, identifying occult second primary tumours in three patients, and correctly down-staging three patients. PET-CT had a minor impact in 12 patients (12%), no impact in 49 cases (48%), and a potentially negative impact in 10 cases (10%). Following PET-CT, 36 (35%) patients were no longer considered for surgery. Of those remaining operative 45 of 66 (68%) underwent potentially curative metastatic surgery. In this cohort PET-CT saved 16 futile laparotomies. Conclusion: FDG PET-CT has a valuable role in selected patients with metastatic colorectal cancer by improving staging accuracy and characterizing indeterminate lesions and helps triage patients to the appropriate treatment.

  5. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts

    DEFF Research Database (Denmark)

    Frank, Dorothea; Reichstein, Markus; Bahn, Michael;

    2015-01-01

    Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate...... pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote...... extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective...

  6. National Built Environment Health Impact Assessment Model ...

    Science.gov (United States)

    Behavioral (activity, diet, social interaction) and exposure (air pollution, traffic injury, and noise) related health impacts of land use and transportation investment decisions are becoming better understood and quantified. Research has shown relationships between density, mix, street connectivity, access to parks, shops, transit, presence of sidewalks and bikeways, and healthy food with physical activity, obesity, cardiovascular disease, type II diabetes, and some mental health outcomes. This session demonstrates successful integration of health impact assessment into multiple scenario planning tool platforms. Detailed evidence on chronic disease and related costs associated with contrasting land use and transportation investments are built into a general-purpose module that can be accessed by multiple platforms. Funders, researchers, and end users of the tool will present a detailed description of the key elements of the approach, how it has been applied, and how will evolve. A critical focus will be placed on equity and social justice inherent within the assessment of health disparities that will be featured in the session. Health impacts of community design have significant cost benefit implications. Recent research is now extending relationships between community design features and chronic disease to health care costs. This session will demonstrate the recent application of this evidence on health impacts to the newly adopted Los Angeles Regional Transpo

  7. The impact of treatment couch modelling on RapidArc

    Energy Technology Data Exchange (ETDEWEB)

    Vanetti, Eugenio; Nicolini, Giorgia; Clivio, Alessandro; Fogliata, Antonella; Cozzi, Luca [Medical Physics Unit, Oncology Institute of Southern Switzerland, Bellinzona (Switzerland)], E-mail: lucozzi@iosi.ch

    2009-05-07

    A planning and dosimetric study was carried out on a cohort of six CT datasets from patients treated for prostate cancer to assess the impact of couch modelling on the accuracy of dose calculation for the volumetric modulated arc technique RapidArc. For each patient, RapidArc plans were optimized using the couch while final dose calculation was performed with different conditions (thin, medium, thick and no couch). Analysis was performed in terms of dose volume histograms, dose difference histograms and 3D-{gamma} tests. Pre-treatment verification measurements were performed using the PTW-729 array in conjunction with the Octavius phantom (PTW, Freiburg); similarly, HU characterization of couch was performed with the same phantom and ion chamber measurements comparing calculations and experimental data. A set of Hounsfield Units (HU) valid for low and high energy and the entire couch length was found as internal structure HU = -960, surface shell HU = -700. Analysis of dose plans showed that differences larger than 1.5 Gy for a 70 Gy prescription might be observed on significant fractions of PTVs. Smaller differences are visible in the medium low-dose regions. Pre-treatment verification on composite delivery confirmed these observations and, at the same time, showed good accuracy of dose calculations in the presence of couch modelling compared to delivery in the same conditions (GAI ranging from 95% to 100%). Results confirmed the reliability of the geometrical model build in the planning system Eclipse, and (i) there is no measurable effect if the wrong segment of the couch is used in the calculations; (ii) there are significant discrepancies of potential clinical impact at the level of the target volumes if calculations are performed without couch and delivery is performed with couch, and (iii) the effect is particularly relevant at low energy (6 MV in this case) that is the configuration clinically used by most of the centres adopting technologies based on

  8. The impact of treatment couch modelling on RapidArc.

    Science.gov (United States)

    Vanetti, Eugenio; Nicolini, Giorgia; Clivio, Alessandro; Fogliata, Antonella; Cozzi, Luca

    2009-05-07

    A planning and dosimetric study was carried out on a cohort of six CT datasets from patients treated for prostate cancer to assess the impact of couch modelling on the accuracy of dose calculation for the volumetric modulated arc technique RapidArc. For each patient, RapidArc plans were optimized using the couch while final dose calculation was performed with different conditions (thin, medium, thick and no couch). Analysis was performed in terms of dose volume histograms, dose difference histograms and 3D-gamma tests. Pre-treatment verification measurements were performed using the PTW-729 array in conjunction with the Octavius phantom (PTW, Freiburg); similarly, HU characterization of couch was performed with the same phantom and ion chamber measurements comparing calculations and experimental data. A set of Hounsfield Units (HU) valid for low and high energy and the entire couch length was found as internal structure HU = -960, surface shell HU = -700. Analysis of dose plans showed that differences larger than 1.5 Gy for a 70 Gy prescription might be observed on significant fractions of PTVs. Smaller differences are visible in the medium low-dose regions. Pre-treatment verification on composite delivery confirmed these observations and, at the same time, showed good accuracy of dose calculations in the presence of couch modelling compared to delivery in the same conditions (GAI ranging from 95% to 100%). Results confirmed the reliability of the geometrical model build in the planning system Eclipse, and (i) there is no measurable effect if the wrong segment of the couch is used in the calculations; (ii) there are significant discrepancies of potential clinical impact at the level of the target volumes if calculations are performed without couch and delivery is performed with couch, and (iii) the effect is particularly relevant at low energy (6 MV in this case) that is the configuration clinically used by most of the centres adopting technologies based on

  9. Assessing dengue vaccination impact: Model challenges and future directions.

    Science.gov (United States)

    Recker, Mario; Vannice, Kirsten; Hombach, Joachim; Jit, Mark; Simmons, Cameron P

    2016-08-31

    In response to the sharp rise in the global burden caused by dengue virus (DENV) over the last few decades, the WHO has set out three specific key objectives in its disease control strategy: (i) to estimate the true burden of dengue by 2015; (ii) a reduction in dengue mortality by at least 50% by 2020 (used as a baseline); and (iii) a reduction in dengue morbidity by at least 25% by 2020. Although various elements will all play crucial parts in achieving this goal, from diagnosis and case management to integrated surveillance and outbreak response, sustainable vector control, vaccine implementation and finally operational and implementation research, it seems clear that new tools (e.g. a safe and effective vaccine and/or effective vector control) are key to success. The first dengue vaccine was licensed in December 2015, Dengvaxia® (CYD-TDV) developed by Sanofi Pasteur. The WHO has provided guidance on the use of CYD-TDV in endemic countries, for which there are a variety of considerations beyond the risk-benefit evaluation done by regulatory authorities, including public health impact and cost-effectiveness. Population-level vaccine impact and economic and financial aspects are two issues that can potentially be considered by means of mathematical modelling, especially for new products for which empirical data are still lacking. In December 2014 a meeting was convened by the WHO in order to revisit the current status of dengue transmission models and their utility for public health decision-making. Here, we report on the main points of discussion and the conclusions of this meeting, as well as next steps for maximising the use of mathematical models for vaccine decision-making. Copyright © 2016.

  10. Sodium intake status in United States and potential reduction modeling: an NHANES 2007–2010 analysis

    OpenAIRE

    Agarwal, Sanjiv; Fulgoni, Victor L.; Spence, Lisa; Samuel, Priscilla

    2015-01-01

    Abstract Limiting dietary sodium intake has been a consistent dietary recommendation. Using NHANES 2007–2010 data, we estimated current sodium intake and modeled the potential impact of a new sodium reduction technology on sodium intake. NHANES 2007–2010 data were used to assess current sodium intake. The National Cancer Institute method was used for usual intake determination. Suggested sodium reductions using SODA‐LO ® Salt Microspheres ranged from 20% to 30% in 953 foods and usual intakes ...

  11. Potential impacts of global warming on water resources in southern California.

    Science.gov (United States)

    Beuhler, M

    2003-01-01

    Global warming will have a significant impact on water resources within the 20 to 90-year planning period of many water projects. Arid and semi-arid regions such as Southern California are especially vulnerable to anticipated negative impacts of global warming on water resources. Long-range water facility planning must consider global climate change in the recommended mix of new facilities needed to meet future water requirements. The generally accepted impacts of global warming include temperature, rising sea levels, more frequent and severe floods and droughts, and a shift from snowfall to rain. Precipitation changes are more difficult to predict. For Southern California, these impacts will be especially severe on surface water supplies. Additionally, rising sea levels will exacerbate salt-water intrusion into freshwater and impact the quality of surface water supplies. Integrated water resources planning is emerging as a tool to develop water supplies and demand management strategies that are less vulnerable to the impacts of global warming. These tools include water conservation, conjunctive use of surface and groundwater and desalination of brackish water and possibly seawater. Additionally, planning for future water needs should include explicit consideration of the potential range of global warming impacts through techniques such as scenario planning.

  12. Potential and limitations of 1D modelling of urban flooding

    Science.gov (United States)

    Mark, Ole; Weesakul, Sutat; Apirumanekul, Chusit; Aroonnet, Surajate Boonya; Djordjević, Slobodan

    2004-12-01

    Urban flooding is an inevitable problem for many cities around the world. In the present paper, modelling approaches and principles for analyses of urban flooding are outlined. The paper shows how urban flooding can be simulated by one-dimensional hydrodynamic modelling incorporating the interaction between (i) the buried pipe system, (ii) the streets (with open channel flow) and (iii) the areas flooded with stagnant water. The modelling approach is generic in the sense that it handles both urban flooding with and without flood water entry into houses. In order to visualize flood extent and impact, the modelling results are presented in the form of flood inundation maps produced in GIS. In this paper, only flooding from local rainfall is considered together with the impact in terms of flood extent, flood depth and flood duration. Finally, the paper discusses the data requirement for verification of urban flood models together with an outline of a simple cost function for estimation of the cost of the flood damages.

  13. Teratogenic Potential of Antiepileptic Drugs in the Zebrafish Model

    Directory of Open Access Journals (Sweden)

    Sung Hak Lee

    2013-01-01

    Full Text Available The zebrafish model is an attractive candidate for screening of developmental toxicity during early drug development. Antiepileptic drugs (AEDs arouse concern for the risk of teratogenicity, but the data are limited. In this study, we evaluated the teratogenic potential of seven AEDs (carbamazepine (CBZ, ethosuximide (ETX, valproic acid (VPN, lamotrigine (LMT, lacosamide (LCM, levetiracetam (LVT, and topiramate (TPM in the zebrafish model. Zebrafish embryos were exposed to AEDs from initiation of gastrula (5.25 hours post-fertilization (hpf to termination of hatching (72 hpf which mimic the mammalian teratogenic experimental design. The lethality and teratogenic index (TI of AEDs were determined and the TI values of each drug were compared with the US FDA human pregnancy categories. Zebrafish model was useful screening model for teratogenic potential of antiepilepsy drugs and was in concordance with in vivo mammalian data and human clinical data.

  14. Shale gas, wind and water: assessing the potential cumulative impacts of energy development on ecosystem services within the Marcellus play.

    Science.gov (United States)

    Evans, Jeffrey S; Kiesecker, Joseph M

    2014-01-01

    Global demand for energy has increased by more than 50 percent in the last half-century, and a similar increase is projected by 2030. This demand will increasingly be met with alternative and unconventional energy sources. Development of these resources causes disturbances that strongly impact terrestrial and freshwater ecosystems. The Marcellus Shale gas play covers more than 160,934 km(2) in an area that provides drinking water for over 22 million people in several of the largest metropolitan areas in the United States (e.g. New York City, Washington DC, Philadelphia & Pittsburgh). Here we created probability surfaces representing development potential of wind and shale gas for portions of six states in the Central Appalachians. We used these predictions and published projections to model future energy build-out scenarios to quantify future potential impacts on surface drinking water. Our analysis predicts up to 106,004 new wells and 10,798 new wind turbines resulting up to 535,023 ha of impervious surface (3% of the study area) and upwards of 447,134 ha of impacted forest (2% of the study area). In light of this new energy future, mitigating the impacts of energy development will be one of the major challenges in the coming decades.

  15. Potential health impacts from range fires at Aberdeen Proving Ground, Maryland.

    Energy Technology Data Exchange (ETDEWEB)

    Willians, G.P.; Hermes, A.M.; Policastro, A.J.; Hartmann, H.M.; Tomasko, D.

    1998-03-01

    This study uses atmospheric dispersion computer models to evaluate the potential for human health impacts from exposure to contaminants that could be dispersed by fires on the testing ranges at Aberdeen Proving Ground, Maryland. It was designed as a screening study and does not estimate actual human health risks. Considered are five contaminants possibly present in the soil and vegetation from past human activities at APG--lead, arsenic, trichloroethylene (TCE), depleted uranium (DU), and dichlorodiphenyltrichloroethane (DDT); and two chemical warfare agents that could be released from unexploded ordnance rounds heated in a range fire--mustard and phosgene. For comparison, dispersion of two naturally occurring compounds that could be released by burning of uncontaminated vegetation--vinyl acetate and 2-furaldehyde--is also examined. Data from previous studies on soil contamination at APG are used in conjunction with conservative estimates about plant uptake of contaminants, atmospheric conditions, and size and frequency of range fires at APG to estimate dispersion and possible human exposure. The results are compared with US Environmental Protection Agency action levels. The comparisons indicate that for all of the anthropogenic contaminants except arsenic and mustard, exposure levels would be at least an order of magnitude lower than the corresponding action levels. Because of the compoundingly conservative nature of the assumptions made, they conclude that the potential for significant human health risks from range fires is low. The authors recommend that future efforts be directed at fire management and control, rather than at conducting additional studies to more accurately estimate actual human health risk from range fires.

  16. Model for estimation of enterprise management system potential: description and study

    Directory of Open Access Journals (Sweden)

    N.G. Kalyuzhna

    2016-06-01

    function of its constituent units’ potential, it is proposed to use the Mamdani type fuzzy inference, which is one of the most common fuzzy logic methodologies. The Mamdani type fuzzy inference for enterprise management system potential allows us to establish a quantitative relationship between the potential of the management system and its constituent units, providing an opportunity to assess the state of a certain company management system potential and identify areas of development. The analysis response surface models with different combinations of values of input parameters (i.e., potential for the units of the enterprise management system shows that the total potential system with a wide range of potential values for the units sets to about 0,5. To ensure a higher level of potential need to provide the three potentials (the structural and functional potential, the informative and technical potential, the management personnel potential not less than 0,8. However, it is shown that the potential of preparing, adoption and implementation of management decisions negligible impacts on overall management system potential. This finding further confirms the thesis about the combined nature of the potential of preparing, adoption and implementation of management decisions and its dependence on the optimum combination of objective and subjective components of management processes in the enterprise. Conclusions and direction of further researches. The mathematical model witch is developed allows determine the enterprise management system potential basing on quantitative evaluation of the potentials of its units, such as the structural and functional potential; the information and technical potential; the management personnel potential; the potential of preparing, adoption and implementation of management decisions. The directions of development of enterprise management system potential can be defined according to results of its estimating.

  17. Potential resource and toxicity impacts from metals in waste electronic devices.

    Science.gov (United States)

    Woo, Seung H; Lee, Dae Sung; Lim, Seong-Rin

    2016-04-01

    As a result of the continuous release of new electronic devices, existing electronic devices are quickly made obsolete and rapidly become electronic waste (e-waste). Because e-waste contains a variety of metals, information about those metals with the potential for substantial environmental impact should be provided to manufacturers, recyclers, and disposers to proactively reduce this impact. This study assesses the resource and toxicity (i.e., cancer, noncancer, and ecotoxicity) potentials of various heavy metals commonly found in e-waste from laptop computers, liquid-crystal display (LCD) monitors, LCD TVs, plasma TVs, color cathode ray tube (CRT) TVs, and cell phones and then evaluates such potentials using life cycle impact-based methods. Resource potentials derive primarily from Cu, Sb, Ag, and Pb. Toxicity potentials derive primarily from Pb, Ni, and Hg for cancer toxicity; from Pb, Hg, Zn, and As for noncancer toxicity; and from Cu, Pb, Hg, and Zn for ecotoxicity. Therefore, managing these heavy metals should be a high priority in the design, recycling, and disposal stages of electronic devices.

  18. Extended Quark Potential Model from Random Phase Approximation

    Institute of Scientific and Technical Information of China (English)

    DENG Wei-Zhen; CHEN Xiao-Lin; LU Da-Hai; YANG Li-Ming

    2002-01-01

    The quark potential model is extended to include the sea quark excitation using the random phase approx-imation. The effective quark interaction preserves the important QCD properties - chiral symmetry and confinementsimultaneously. A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson andthe other mesons made up of valence qq quark pair such as the ρ meson can also be described in this extended quarkpotential model.

  19. Modeling and Evaluating Emotions Impact on Cognition

    Science.gov (United States)

    2013-07-01

    International Conference on Automatic Face and Gesture Recognition . Shanghai, China, April 2013 • Wenji Mao and Jonathan Gratch. Modeling Social...Modeling, Lorentz Center, Leiden. August 2011 • Keynote speaker, IEEE International Conference on Automatic Face and Gesture Recognition , Santa

  20. Non-native freshwater fishes in the Iberian Southeast: black list and potential impacts

    Directory of Open Access Journals (Sweden)

    Fátima Amat-Trigo

    2015-10-01

    At least, sixteen species had been introduced the Southeast Iberian by the beginning of the 20th century, but the rate of introduction is highly elevated in the last two decades, with the majority of introductions since 2000. Most studies reviewed reported only potential impacts. Failed introductions are poorly documented and existing information is scattered in regional publications, reports and other grey literature. Due to the interbasin water transfers (Tajo-Segura channel, the number of translocated species is high, however, information about these fishes is not regarded by researchers and their potential impacts are neglected. We established a black list with sixteen cited species and nineteen potential invasive species. Additionally, research needs and management priority measures are evaluated.

  1. The potential cost from passengers and how it impacts railway maintenance and renewal decisions

    DEFF Research Database (Denmark)

    Li, Rui; Landex, Alex; Nielsen, Otto Anker

    To plan Maintenance and Renewals (M&R) for the heavy railway lines, scheduling work possession time and deciding the closure of railway line are quite challenging for Infrastructure Manager (IM) at tactical planning level. As usual, the direct costs such as the materials costs, man power price...... and machinery costs are the important factors for IM to evaluate all the alternative schedules. At the same time, the potential cost from passengers is also crucial to minimize the impacts to the society. A phase-based planning toolkit is developed to help IM to plan and compare project proposals from a wider...... cost scope, integrating the passenger loss and direct costs into the comparison at planning stage. Passenger loss is estimated basing on the potential delay time values. The case study shows the potential cost from passengers is one of the key factors impacting the rank of M&R options. It even...

  2. The Potential Impacts on Aquatic Ecosystems from the Release of Trace Elements in Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.

    2000-03-14

    Geothermal energy will likely constitute an increasing percentage of our nation's future energy ''mix,'' both for electrical and nonelectrical uses. Associated with the exploitation of geothermal resources is the handling and disposal of fluids which contain a wide variety of potentially toxic trace elements. We present analyses of 14 trace elements found in hydrothermal fluids from various geothermal reservoirs in the western United States. The concentrations of these elements vary over orders of magnitude between reservoirs. Potential impacts are conservatively assessed on the basis of (1) toxicity to freshwater biota, and (2) bioaccumulation in food fish to the point where consumption might be hazardous to human health. Trace element concentrations generally range from benign levels to levels which might prove toxic to freshwater biota and contaminate food fisheries. We stress the need for site-specific analyses and careful handling of geothermal fluids in order to minimize potential impacts.

  3. East Asian SO2 pollution plume over Europe – Part 2: Evolution and potential impact

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2009-07-01

    Full Text Available We report on the first observation-based case study of an aged East Asian anthropogenic SO2 pollution plume over Europe. Our airborne measurements in that plume detected highly elevated SO2 mole fractions (up to 900 pmol/mol between about 5000 and 7000 m altitude. Here, we focus on investigations of the origin, dispersion, evolution, conversion, and potential impact of the observed excess SO2. In particular, we investigate SO2 conversion to gas-phase sulfuric acid and sulfuric acid aerosols. Our FLEXPART and LAGRANTO model simulations, along with additional trace gas measurements, suggest that the plume originated from East Asian fossil fuel combustion sources and, 8–7 days prior to its arrival over Europe, ascended over the coast region of central East Asia to 9000 m altitude, probably in a cyclonic system with an associated warm conveyor belt. During this initial plume ascent a substantial fraction of the initially available SO2 must have escaped from removal by cloud processes. Hereafter, while mostly descending slowly, the plume experienced advection across the North Pacific, North America and the North Atlantic. During its upper troposphere travel, clouds were absent in and above the plume and OH-induced gas-phase conversion of SO2 to gas-phase sulfuric acid (GSA was operative, followed by GSA nucleation and condensation leading to sulfuric acid aerosol formation and growth. Our AEROFOR model simulations indicate that numerous large sulfuric acid aerosol particles were formed, which at least tempora-rily, caused substantial horizontal visibility degradation, and which have the potential to act as water vapor condensation nuclei in liquid water cloud formation, already at water vapor supersaturations as low as about 0.1%. Our AEROFOR model simulations also indicate that those fossil fuel combustion generated soot particles, which have survived cloud induced removal during the initial plume ascent, have experienced extensive H2SO4/H2O

  4. Modelling land use change and environmental impact

    NARCIS (Netherlands)

    Veldkamp, A.; Verburg, P.H.

    2004-01-01

    Land use change models are tools for understanding and explaining the causes and consequences of land use dynamics. Recently, new models, combining knowledge and tools from biophysical and socio-economic sciences, have become available. This has resulted in spatially explicit models focussed on patt

  5. Simple inflationary quintessential model. II. Power law potentials

    Science.gov (United States)

    de Haro, Jaume; Amorós, Jaume; Pan, Supriya

    2016-09-01

    The present work is a sequel of our previous work [Phys. Rev. D 93, 084018 (2016)] which depicted a simple version of an inflationary quintessential model whose inflationary stage was described by a Higgs-type potential and the quintessential phase was responsible due to an exponential potential. Additionally, the model predicted a nonsingular universe in past which was geodesically past incomplete. Further, it was also found that the model is in agreement with the Planck 2013 data when running is allowed. But, this model provides a theoretical value of the running which is far smaller than the central value of the best fit in ns , r , αs≡d ns/d l n k parameter space where ns, r , αs respectively denote the spectral index, tensor-to-scalar ratio and the running of the spectral index associated with any inflationary model, and consequently to analyze the viability of the model one has to focus in the two-dimensional marginalized confidence level in the allowed domain of the plane (ns,r ) without taking into account the running. Unfortunately, such analysis shows that this model does not pass this test. However, in this sequel we propose a family of models runs by a single parameter α ∈[0 ,1 ] which proposes another "inflationary quintessential model" where the inflation and the quintessence regimes are respectively described by a power law potential and a cosmological constant. The model is also nonsingular although geodesically past incomplete as in the cited model. Moreover, the present one is found to be more simple compared to the previous model and it is in excellent agreement with the observational data. In fact, we note that, unlike the previous model, a large number of the models of this family with α ∈[0 ,1/2 ) match with both Planck 2013 and Planck 2015 data without allowing the running. Thus, the properties in the current family of models compared to its past companion justify its need for a better cosmological model with the successive

  6. Zebrafish (Danio rerio): A Potential Model for Toxinological Studies.

    Science.gov (United States)

    Vargas, Rafael Antonio; Sarmiento, Karen; Vásquez, Isabel Cristina

    2015-10-01

    Zebrafish are an emerging basic biomedical research model that has multiple advantages compared with other research models. Given that biotoxins, such as toxins, poisons, and venoms, represent health hazards to animals and humans, a low-cost biological model that is highly sensitive to biotoxins is useful to understand the damage caused by such agents and to develop biological tests to prevent and reduce the risk of poisoning in potential cases of bioterrorism or food contamination. In this article, a narrative review of the general aspects of zebrafish as a model in basic biomedical research and various studies in the field of toxinology that have used zebrafish as a biological model are presented. This information will provide useful material to beginner students and researchers who are interested in developing toxinological studies with the zebrafish model.

  7. Mapping soil erosion hotspots and assessing the potential impacts of land management practices in the highlands of Ethiopia

    Science.gov (United States)

    Tamene, Lulseged; Adimassu, Zenebe; Ellison, James; Yaekob, Tesfaye; Woldearegay, Kifle; Mekonnen, Kindu; Thorne, Peter; Le, Quang Bao

    2017-09-01

    An enormous effort is underway in Ethiopia to address soil erosion and restore overall land productivity. Modelling and participatory approaches can be used to delineate erosion hotspots, plan site- and context-specific interventions and assess their impacts. In this study, we employed a modelling interface developed based on the Revised Universal Soil Loss Equation adjusted by the sediment delivery ratio to map the spatial distribution of net soil loss and identify priority areas of intervention. Using the modelling interface, we also simulated the potential impacts of different soil and water conservation measures in reducing net soil loss. Model predictions showed that net soil loss in the study area ranges between 0.4 and 88 t ha- 1 yr- 1 with an average of 12 t ha- 1 yr- 1. The dominant soil erosion hotspots were associated with steep slopes, gullies, communal grazing and cultivated areas. The average soil loss observed in this study is higher than the tolerable soil loss rate estimated for the highland of Ethiopia. The scenario analysis results showed that targeting hotspot areas where soil loss exceeds 10 t ha- 1 yr- 1 could reduce net soil loss to the tolerable limit (erosion problem and the potential of management interventions. Future work should include cost-benefit and tradeoff analyses of the various management options for achieving a given level of erosion reduction.

  8. Action potential initiation in the hodgkin-huxley model.

    Directory of Open Access Journals (Sweden)

    Lucy J Colwell

    2009-01-01

    Full Text Available A recent paper of B. Naundorf et al. described an intriguing negative correlation between variability of the onset potential at which an action potential occurs (the onset span and the rapidity of action potential initiation (the onset rapidity. This correlation was demonstrated in numerical simulations of the Hodgkin-Huxley model. Due to this antagonism, it is argued that Hodgkin-Huxley-type models are unable to explain action potential initiation observed in cortical neurons in vivo or in vitro. Here we apply a method from theoretical physics to derive an analytical characterization of this problem. We analytically compute the probability distribution of onset potentials and analytically derive the inverse relationship between onset span and onset rapidity. We find that the relationship between onset span and onset rapidity depends on the level of synaptic background activity. Hence we are able to elucidate the regions of parameter space for which the Hodgkin-Huxley model is able to accurately describe the behavior of this system.

  9. Evaluation of potential crushed-salt constitutive models

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, G.D.; Loken, M.C.; Sambeek, L.L. Van; Chen, R.; Pfeifle, T.W.; Nieland, J.D. [RE/SPEC Inc., Rapid City, SD (United States); Hansen, F.D. [Sandia National Labs., Albuquerque, NM (United States). Repository Isolation Systems Dept.

    1995-12-01

    Constitutive models describing the deformation of crushed salt are presented in this report. Ten constitutive models with potential to describe the phenomenological and micromechanical processes for crushed salt were selected from a literature search. Three of these ten constitutive models, termed Sjaardema-Krieg, Zeuch, and Spiers models, were adopted as candidate constitutive models. The candidate constitutive models were generalized in a consistent manner to three-dimensional states of stress and modified to include the effects of temperature, grain size, and moisture content. A database including hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt was used to determine material parameters for the candidate constitutive models. Nonlinear least-squares model fitting to data from the hydrostatic consolidation tests, the shear consolidation tests, and a combination of the shear and hydrostatic tests produces three sets of material parameter values for the candidate models. The change in material parameter values from test group to test group indicates the empirical nature of the models. To evaluate the predictive capability of the candidate models, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the models to predict the test data, the Spiers model appeared to perform slightly better than the other two candidate models. The work reported here is a first-of-its kind evaluation of constitutive models for reconsolidation of crushed salt. Questions remain to be answered. Deficiencies in models and databases are identified and recommendations for future work are made. 85 refs.

  10. Potential impact of the May Southern Hemisphere annular mode on the Indian summer monsoon rainfall

    Science.gov (United States)

    Dou, Juan; Wu, Zhiwei; Zhou, Yefan

    2016-10-01

    El Niño-Southern Oscillation (ENSO) is probably a most important external forcing to Indian summer monsoon (ISM) rainfall (ISMR), yet the observed ENSO-ISMR relationship has become weak in recent years. It's essential to explore other predominant modes of variability which can contribute to the ISMR. As the leading mode of the variability in Southern Hemisphere (SH) extratropical atmospheric circulation, the SH annular mode (SAM) has potential influence both on the northern and southern hemispheric climate. The present study investigates the relationship between the SAM and ISMR. It is found that the May SAM exhibits a significant positive correlation with the monsoon precipitation over the Indian sub-continent and the adjacent areas in June-July (JJ). Observational and numerical evidences indicate that the May SAM anomaly can trigger a South Indian Ocean dipole (SIOD) sea surface temperature anomaly (SSTA) through air-sea interactions. The SIOD SSTA persisting into the following months of JJ excites abnormal meridional circulation and modulates the low-level cross-equatorial flow. Accordingly, the ascending (or descending) motion and water vapor transportation are enhanced (or suppressed), which favors more (or less) precipitation over the Indian sub-continent and the adjacent areas. In fact, the SIOD SSTA plays an "ocean bridge" role to "prolong" the influence of the May SAM to the subsequent season and in turn impacts on the ISMR. Moreover, an empirical model is established to forecast the JJ ISMR strength based on the ENSO, Indian Ocean Dipole and May SAM. The hindcast is carried out for the period 1979-2014, and performs better than the multimodel ensemble mean (MME) obtained from the Development of a European MME system for seasonal to interannual prediction (DEMETER) project. Since all these predictors can be monitored in real time before the early boreal summer, the empirical model might provide a practical real-time forecast tool for predicting ISMR

  11. Potential impact of the May Southern Hemisphere annular mode on the Indian summer monsoon rainfall

    Science.gov (United States)

    Dou, Juan; Wu, Zhiwei; Zhou, Yefan

    2017-08-01

    El Niño-Southern Oscillation (ENSO) is probably a most important external forcing to Indian summer monsoon (ISM) rainfall (ISMR), yet the observed ENSO-ISMR relationship has become weak in recent years. It's essential to explore other predominant modes of variability which can contribute to the ISMR. As the leading mode of the variability in Southern Hemisphere (SH) extratropical atmospheric circulation, the SH annular mode (SAM) has potential influence both on the northern and southern hemispheric climate. The present study investigates the relationship between the SAM and ISMR. It is found that the May SAM exhibits a significant positive correlation with the monsoon precipitation over the Indian sub-continent and the adjacent areas in June-July (JJ). Observational and numerical evidences indicate that the May SAM anomaly can trigger a South Indian Ocean dipole (SIOD) sea surface temperature anomaly (SSTA) through air-sea interactions. The SIOD SSTA persisting into the following months of JJ excites abnormal meridional circulation and modulates the low-level cross-equatorial flow. Accordingly, the ascending (or descending) motion and water vapor transportation are enhanced (or suppressed), which favors more (or less) precipitation over the Indian sub-continent and the adjacent areas. In fact, the SIOD SSTA plays an "ocean bridge" role to "prolong" the influence of the May SAM to the subsequent season and in turn impacts on the ISMR. Moreover, an empirical model is established to forecast the JJ ISMR strength based on the ENSO, Indian Ocean Dipole and May SAM. The hindcast is carried out for the period 1979-2014, and performs better than the multimodel ensemble mean (MME) obtained from the Development of a European MME system for seasonal to interannual prediction (DEMETER) project. Since all these predictors can be monitored in real time before the early boreal summer, the empirical model might provide a practical real-time forecast tool for predicting ISMR

  12. Equivalent Kelvin Impact Model for Seismic Pounding Analysis of Bridges

    Institute of Scientific and Technical Information of China (English)

    DING Yang; YUE Fuqing; LI Zhongxian

    2006-01-01

    Based on Hertz contact theory,a method to determine the parameters of Kelvin impact model for seismic pounding analysis of bridges is proposed.The impact stiffness of Kelvin model is determined by the ratio of maximum impact force to maximum contact deformation,which is calculated based on Hertz contact theory with considering the vibration effect.The restitution coefficient which has great influence on the damping coefficient of Kelvin impact model is investigated by numerical analysis.Numerical results indicate that the impact stiffness of Kelvin impact model increases with the increment of the Hertz contact stiffness,approaching velocity or the length ratio of short to long girders.Vibration effect has remarkable influence on the impact stiffness and cannot be neglected.The restitution coefficient decreases when approaching velocity increases or the length ratio of short girder to long girder decreasing.The practical ranges of impact stiffness and restitution coefficient are obtained as 3 × 108-6 × 108 N/m and 0.6-0.95 respectively.

  13. On matrix model partition functions for QCD with chemical potential

    CERN Document Server

    Akemann, G; Vernizzi, G

    2004-01-01

    Partition functions of two different matrix models for QCD with chemical potential are computed for an arbitrary number of quark and complex conjugate anti-quark flavors. In the large-N limit of weak nonhermiticity complete agreement is found between the two models. This supports the universality of such fermionic partition functions, that is of products of characteristic polynomials in the complex plane. In the strong nonhermiticity limit agreement is found for an equal number of quark and conjugate flavours. For a general flavor content the equality of partition functions holds only for small chemical potential. The chiral phase transition is analyzed for an arbitrary number of quarks, where the free energy presents a discontinuity of first order at a critical chemical potential. In the case of nondegenerate flavors there is first order phase transition for each separate mass scale.

  14. Effective constraint potential in lattice Weinberg - Salam model

    CERN Document Server

    Polikarpov, M I

    2011-01-01

    We investigate lattice Weinberg - Salam model without fermions for the value of the Weinberg angle $\\theta_W \\sim 30^o$, and bare fine structure constant around $\\alpha \\sim 1/150$. We consider the value of the scalar self coupling corresponding to bare Higgs mass around 150 GeV. The effective constraint potential for the zero momentum scalar field is used in order to investigate phenomena existing in the vicinity of the phase transition between the physical Higgs phase and the unphysical symmetric phase of the lattice model. This is the region of the phase diagram, where the continuum physics is to be approached. We compare the above mentioned effective potential (calculated in selected gauges) with the effective potential for the value of the scalar field at a fixed space - time point. We also calculate the renormalized fine structure constant using the correlator of Polyakov lines and compare it with the one - loop perturbative estimate.

  15. A New Vision Of Management: Full Potential Management Model

    Directory of Open Access Journals (Sweden)

    Yuka Fujimoto

    2010-11-01

    Full Text Available This paper establishes the Full Potential Management (FPM Model based upon the social model of disabilities coupled with principles of diversity management and disability-oriented human resource management. Despite the fact that the concept of management was once envisioned as having ‘value to society’ by improving the quality of life through efficient practices (Rimler, 1976, management literature has narrowly defined management as a means to gain increased productivity and achieve organizational goals, thus overlooking the social formation and implementation design for a better life (Diener & Seligman, 2004; Small, 2004; Whitley 1989. Based upon the diversity literature, we propose that social-oriented diversity management principles and practices are the key to transforming management concepts from achieving organizational potential to achieving social aims that maximize the potential and quality of life of each person.

  16. Enhanced science-stakeholder communication to improve ecosystem model performances for climate change impact assessments

    DEFF Research Database (Denmark)

    Jonsson, Anna Maria; Anderbrant, Olle; Holmer, Jennie;

    2015-01-01

    In recent years, climate impact assessments of relevance to the agricultural and forestry sectors have received considerable attention. Current ecosystem models commonly capture the effect of a warmer climate on biomass production, but they rarely sufficiently capture potential losses caused...... a discussion among the science–stakeholder communities on how to quantify the potential for climate change adaptation by improving the realism in the models....... by pests, pathogens and extreme weather events. In addition, alternative management regimes may not be integrated in the models. A way to improve the quality of climate impact assessments is to increase the science–stakeholder collaboration, and in a two-way dialog link empirical experience and impact...

  17. Potential Environmental Impacts of Hydrogen-based Transportation and Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Grieb, Thomas M; Mills, W B; Jacobson, Mark Z; Summers, Karen V; Crossan, A Brook

    2010-12-31

    Hydrogen (H2) offers advantages as an energy carrier: minimal discharge of pollutants, production from multiple sources, increased thermodynamic efficiencies compared to fossil fuels, and reduced dependence on foreign oil. However, potential impacts from the H2 generation processes, transport and distribution of H2, and releases of H2 into the atmosphere have been proposed. The goal of this project was to analyze the effects of emissions of hydrogen, the six criteria pollutants and greenhouse gases on climate, human health, materials and structures. This project was part of a larger effort by DOE to assess the life-cycle costs and benefits and environmental impacts to inform decisions regarding future hydrogen research. Technical Approach: A modeling approach was developed and used to evaluate the potential environmental effects associated with the conversion of the on-road vehicle fleet from fossil-fuel vehicles to hydrogen fuel cell vehicles. GATOR-GCMOM was the primary tool used to predict atmospheric concentrations of gases and aerosols for selected scenarios. This model accounts for all feedbacks among major atmospheric processes based on first principles. The future scenarios and the emission rates selected for this analysis of hydrogen environmental effects are based on the scenarios developed by IPCC. The scenarios selected for the model simulations are a 2000 and 2050 A1B base cases, and a 2050 A1B case with hydrogen fuel cell vehicles (HFCVs). The hydrogen fuel cell scenario assumed conversion of 90% of fossil-fuel on-road vehicles (FFOV) in developed countries and 45% of FFOVs vehicles in other countries to HFCVs, with the H2 produced by steam-reforming of natural gas (SHFCVs). Simulations were conducted to examine the effect of converting the world's FFOVs to HFCVs, where the H2 is produced by wind-powered electrolysis (WHFCVs). In all scenarios a 3% leakage of H2 consumed was assumed. Two new models were developed that provide the ability to

  18. Preliminary Assessment of Potential Impacts to Dungeness Crabs from Disposal of Dredged Materials from the Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Walter H.; Miller, Martin C.; Williams, Greg D.; Kohn, Nancy P.; Skalski, John R.

    2006-02-01

    Dredging of the Columbia River navigation channel has raised concerns about dredging-related impacts on Dungeness crabs (Cancer magister). The overall objectives of this effort are to synthesize what is known about disposal effects on Dungeness crabs (Phase 1) and to offer approaches to quantify the effects, including approaches to gain a population-level perspective on any effects found in subsequent studies (Phase 2). This report documents Phase 1, which included (1) development of a conceptual model to integrate knowledge about crab biology and the physical processes occurring during disposal, (2) application of physics-based numerical modeling of the disposal event to understand the physical forces and processes to which a crab might be exposed during disposal, (3) conduct of a vulnerability analysis to identify the potential mechanisms by which crabs may be injured, and (4) recommendations of topics and approaches for future studies to assess the potential population-level effects of disposal on Dungeness crabs. The conceptual model first recognizes that disposal of dredged materials is a physically dynamic process with three aspects: (1) convective descent and bottom encounter, (2) dynamic collapse and spreading, and (3) mounding. Numerical modeling was used to assess the magnitude of the potentially relevant forces and extent of mounding in single disposal events. The modeling outcomes show that predicted impact pressure, shear stress, and mound depth are greatly reduced by discharge in deep water, and somewhat reduced at longer discharge duration. The analysis of numerical modeling results and vulnerabilities indicate that the vulnerability of crabs to compression forces under any of the disposal scenarios is low. For the deep-water disposal scenarios, the maximum forces and mounding do not appear to be sufficiently high enough to warrant concern for surge currents or burial at the depths involved (over 230 ft). For the shallow-water (45 to 65 ft), short

  19. Impact analytical models for earthquake-induced pounding simulation

    Institute of Scientific and Technical Information of China (English)

    Kun YE; Li LI

    2009-01-01

    Structural pounding under earthquake has been recently extensively investigated using various impact analytical models. In this paper, a brief review on the commonly used impact analytical models is conducted.Based on this review, the formula used to determine the damping constant related to the impact spring stiffness,coefficient of restitution, and relative approaching velocity in the Hertz model with nonlinear damping is found to be incorrect. To correct this error, a more accurate approximating formula for the damping constant is theoretically derived 5~nd numerically verified. At the same time, a modified Kelvin impact model, which can reasonably account for the physical nature of pounding and conveniently implemented in the earthquake-induced pounding simulation of structural engineering is proposed.

  20. Three-loop Standard Model effective potential at leading order in strong and top Yukawa couplings

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Stephen P. [Santa Barbara, KITP

    2014-01-08

    I find the three-loop contribution to the effective potential for the Standard Model Higgs field, in the approximation that the strong and top Yukawa couplings are large compared to all other couplings, using dimensional regularization with modified minimal subtraction. Checks follow from gauge invariance and renormalization group invariance. I also briefly comment on the special problems posed by Goldstone boson contributions to the effective potential, and on the numerical impact of the result on the relations between the Higgs vacuum expectation value, mass, and self-interaction coupling.

  1. A constructive model potential method for atomic interactions

    Science.gov (United States)

    Bottcher, C.; Dalgarno, A.

    1974-01-01

    A model potential method is presented that can be applied to many electron single centre and two centre systems. The development leads to a Hamiltonian with terms arising from core polarization that depend parametrically upon the positions of the valence electrons. Some of the terms have been introduced empirically in previous studies. Their significance is clarified by an analysis of a similar model in classical electrostatics. The explicit forms of the expectation values of operators at large separations of two atoms given by the model potential method are shown to be equivalent to the exact forms when the assumption is made that the energy level differences of one atom are negligible compared to those of the other.

  2. Nonlocal Nambu-Jona-Lasinio model and chiral chemical potential

    CERN Document Server

    Frasca, Marco

    2016-01-01

    We derive the critical temperature in a nonlocal Nambu-Jona-Lasinio model with the presence of a chiral chemical potential. The model we consider uses a form factor derived from recent studies of the gluon propagator in Yang-Mills theory and has the property to fit in excellent way the form factor arising from the instanton liquid picture for the vacuum of the theory. Nambu-Jona-Lasinio model is derived form quantum chromodynamics providing all the constants of the theory without any need for fits. We show that the critical temperature in this case always exists and increases as the square of the chiral chemical potential. The expression we obtain for the critical temperature depends on the mass gap that naturally arises from Yang-Mills theory at low-energy as also confirmed by lattice computations.

  3. Transmission Line Jobs and Economic Development Impact (JEDI) Model User Reference Guide

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, M.; Keyser, D.

    2013-10-01

    The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are freely available, user-friendly tools that estimate the potential economic impacts of constructing and operating power generation projects for a range of conventional and renewable energy technologies. The Transmission Line JEDI model can be used to field questions about the economic impacts of transmission lines in a given state, region, or local community. This Transmission Line JEDI User Reference Guide was developed to provide basic instruction on operating the model and understanding the results. This guide also provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data contained in the model.

  4. Potential of 3D City Models to assess flood vulnerability

    Science.gov (United States)

    Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi

    2016-04-01

    Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of

  5. Potential approaches to the management of third-party impacts from groundwater transfers

    Science.gov (United States)

    Skurray, James H.; Pannell, David J.

    2012-08-01

    Groundwater extraction can have varied and diffuse effects. Negative external effects may include costs imposed on other groundwater users and on surrounding ecosystems. Environmental damages are commonly not reflected in market transactions. Groundwater transfers have the potential to cause spatial redistribution, concentration, and qualitative transformation of the impacts from pumping. An economically and environmentally sound groundwater transfer scheme would ensure that marginal costs from trades do not exceed marginal benefits, accounting for all third-party impacts, including those of a non-monetary nature as well as delayed effects. This paper proposes a menu of possible management strategies that would help preclude unacceptable impacts by restricting transfers with certain attributes, ideally ensuring that permitted transfers are at least welfare-neutral. Management tools would require that transfers limit or reduce environmental impacts, and provide for the compensation of financial impacts. Three management tools are described. While these tools can limit impacts from a given level of extraction, they cannot substitute for sustainable overall withdrawal limits. Careful implementation of transfer limits and exchange rates, and the strategic use of management area boundaries, may enable a transfer system to restrict negative externalities mainly to monetary costs. Provision for compensation of these costs could be built into the system.

  6. Selection of climate change scenario data for impact modelling

    DEFF Research Database (Denmark)

    Sloth Madsen, M; Fox Maule, C; MacKellar, N

    2012-01-01

    Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study...... illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make...... the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented...

  7. Modeling the Environmental Impact of Air Traffic Operations

    Science.gov (United States)

    Chen, Neil

    2011-01-01

    There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.

  8. Large meteorite impacts: The K/T model

    Science.gov (United States)

    Bohor, B. F.

    1992-01-01

    The Cretaceous/Tertiary (K/T) boundary event represents probably the largest meteorite impact known on Earth. It is the only impact event conclusively linked to a worldwide mass extinction, a reflection of its gigantic scale and global influence. Until recently, the impact crater was not definitively located and only the distal ejecta of this impact was available for study. However, detailed investigations of this ejecta's mineralogy, geochemistry, microstratigraphy, and textures have allowed its modes of ejection and dispersal to be modeled without benefit of a source crater of known size and location.

  9. Modeling Terrain Impact on Mobile Ad Hoc Networks (MANET) Connectivity

    Science.gov (United States)

    2014-05-01

    Modeling Terrain Impact on Mobile Ad Hoc Networks ( MANET ) Connectivity Lance Joneckis Corinne Kramer David Sparrow David Tate I N S T I T U T E F...SUBTITLE Modeling Terrain Impact on Mobile Ad Hoc Networks ( MANET ) Connectivity 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...1882 ljonecki@ida.org Abstract—Terrain affects connectivity in mobile ad hoc net- works ( MANET ). Both average pairwise link closure and the rate

  10. The potential impacts of biomass feedstock production on water resource availability.

    Science.gov (United States)

    Stone, K C; Hunt, P G; Cantrell, K B; Ro, K S

    2010-03-01

    Biofuels are a major topic of global interest and technology development. Whereas bioenergy crop production is highly dependent on water, bioenergy development requires effective allocation and management of water. The objectives of this investigation were to assess the bioenergy production relative to the impacts on water resource related factors: (1) climate and weather impact on water supplies for biomass production; (2) water use for major bioenergy crop production; and (3) potential alternatives to improve water supplies for bioenergy. Shifts to alternative bioenergy crops with greater water demand may produce unintended consequences for both water resources and energy feedstocks. Sugarcane and corn require 458 and 2036 m(3) water/m(3) ethanol produced, respectively. The water requirements for corn grain production to meet the US-DOE Billion-Ton Vision may increase approximately 6-fold from 8.6 to 50.1 km(3). Furthermore, climate change is impacting water resources throughout the world. In the western US, runoff from snowmelt is occurring earlier altering the timing of water availability. Weather extremes, both drought and flooding, have occurred more frequently over the last 30 years than the previous 100 years. All of these weather events impact bioenergy crop production. These events may be partially mitigated by alternative water management systems that offer potential for more effective water use and conservation. A few potential alternatives include controlled drainage and new next-generation livestock waste treatment systems. Controlled drainage can increase water available to plants and simultaneously improve water quality. New livestock waste treatments systems offer the potential to utilize treated wastewater to produce bioenergy crops. New technologies for cellulosic biomass conversion via thermochemical conversion offer the potential for using more diverse feedstocks with dramatically reduced water requirements. The development of bioenergy

  11. Mathematical human modelling for impact loading

    NARCIS (Netherlands)

    Happee, R.; Hoof, J.F.A.M. van; Lange, R. de

    2001-01-01

    Mathematical modeling of the human body is widely used for automotive crash-safety research and design. Simulations have contributed to a reduction of injury numbers by optimization of vehicle structures and restraint systems. Currently, such simulations are largely performed using occupant models b

  12. Mathematical human modelling for impact loading

    NARCIS (Netherlands)

    Happee, R.; Hoof, J.F.A.M. van; Lange, R. de

    2001-01-01

    Mathematical modeling of the human body is widely used for automotive crash-safety research and design. Simulations have contributed to a reduction of injury numbers by optimization of vehicle structures and restraint systems. Currently, such simulations are largely performed using occupant models

  13. Mathematical human body modelling for impact loading

    NARCIS (Netherlands)

    Happee, R.; Morsink, P.L.J.; Wismans, J.S.H.M.

    1999-01-01

    Mathematical modelling of the human body is widely used for automotive crash safety research and design. Simulations have contributed to a reduction of injury numbers by optimisation of vehicle structures and restraint systems. Currently such simulations are largely performed using occupant models

  14. Mathematical human body modelling for impact loading

    NARCIS (Netherlands)

    Happee, R.; Morsink, P.L.J.; Wismans, J.S.H.M.

    1999-01-01

    Mathematical modelling of the human body is widely used for automotive crash safety research and design. Simulations have contributed to a reduction of injury numbers by optimisation of vehicle structures and restraint systems. Currently such simulations are largely performed using occupant models b

  15. Translating Climate-Change Probabilities into Impact Risks - Overcoming the Impact- Model Bottleneck

    Science.gov (United States)

    Dettinger, M.

    2008-12-01

    Projections of climate change in response to increasing greenhouse-gas concentrations are uncertain and likely to remain so for the foreseeable future. As more projections become available for analysts, we are increasingly able to characterize the probabilities of obtaining various levels of climate change in current projections. However, the probabilities of most interest in impact assessments are not the probabilities of climate changes, but rather the probabilities (or risks) of various levels and kinds of climate-change impact. These risks can be difficult to estimate even if the climate-change probabilities are well known. The difficulty arises because, frequently, impact models and assessments are computationally demanding or time consuming of hands-on, human expert analyses, so that severe limits are placed on the numbers of climate- change scenarios from which detailed impacts can be assessed. Estimation of risks of various impacts is generally difficult with the few resulting examples. However, real-world examples from the water-resources sector will be used to show that, by applying several different "derived distributions" approaches for estimating the risks of various impacts from known climate-change probabilities to just a few impact-model simulations, risks can be estimated along with indications of how accurate are the impact-risk estimates. The prospects for a priori selection of a few climate-change scenarios (from a larger ensemble of available projections) that will allow the best, most economical estimates of impact risks will be explored with a simple but real-world example.

  16. Economic Impacts of Potential Foot and Mouth Disease Agro-terrorism in the United States: A Computable General Equilibrium Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oladosu, Gbadebo A [ORNL; Rose, Adam [University of Southern California, Los Angeles; Bumsoo, Lee [University of Illinois

    2013-01-01

    The foot and mouth disease (FMD) virus has high agro-terrorism potential because it is contagious, can be easily transmitted via inanimate objects and can be spread by wind. An outbreak of FMD in developed countries results in massive slaughtering of animals (for disease control) and disruptions in meat supply chains and trade, with potentially large economic losses. Although the United States has been FMD-free since 1929, the potential of FMD as a deliberate terrorist weapon calls for estimates of the physical and economic damage that could result from an outbreak. This paper estimates the economic impacts of three alternative scenarios of potential FMD attacks using a computable general equilibrium (CGE) model of the US economy. The three scenarios range from a small outbreak successfully contained within a state to a large multi-state attack resulting in slaughtering of 30 percent of the national livestock. Overall, the value of total output losses in our simulations range between $37 billion (0.15% of 2006 baseline economic output) and $228 billion (0.92%). Major impacts stem from the supply constraint on livestock due to massive animal slaughtering. As expected, the economic losses are heavily concentrated in agriculture and food manufacturing sectors, with losses ranging from $23 billion to $61 billion in the two industries.

  17. IMPACT MODEL RESOLUTION ON PAINLEV(E)'S PARADOX

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhen; CHEN Bin; LIU Caishan; JIN Hai

    2004-01-01

    Painlevé's paradox is one of the basic difficulties for solving LCP of dynamic systems subjected to unilateral constraints. A bi-nonlinear parameterized impact model, consistent with dynamic principles and experimental results, is established on the localized and quasi-static impact model theory. Numerical simulations are carried out on the dynamic motion of Painleve's example. The results confirm "impact without collision" in the inconsistent states of the system. A "critical normal force" which brings an important effect on the future movement of the system in the indeterminate states is found. After the motion pattern for the impact process is obtained from numerical results,a rule of the velocity's jump that incorporates the tangential impact proc