WorldWideScience

Sample records for modelling hydrogen physisorption

  1. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B.

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  2. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  3. Physisorption of molecular hydrogen on carbon nanotube with vacant defects

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gang; Shen, Huaze; Wang, Enge; Xu, Limei, E-mail: limei.xu@pku.edu.cn [International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Tangpanitanon, Jirawat [University of Cambridge, Cambridge, Cambridgeshire CB2 1TP (United Kingdom); Wen, Bo [International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871 (China); Beijing Computational Science Research Center, Heqing Street, Haidian District, Beijing 100084 (China); Xue, Jianming [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)

    2014-05-28

    Physisorption of molecular hydrogen on single-walled carbon nanotubes (SWCNTs) is important for its engineering applications and hydrogen energy storage. Using molecular dynamics simulation, we study the physisorption of molecular hydrogen on a SWCNT with a vacant defect, focusing on the effect of the vacant defect size and external parameters such as temperature and pressure. We find that hydrogen can be physisorbed inside a SWCNT through a vacant defect when the defect size is above a threshold. By controlling the size of the defects, we are able to extract hydrogen molecules from a gas mixture and store them inside the SWCNT. We also find that external parameters, such as low temperature and high pressure, enhance the physisorption of hydrogen molecules inside the SWCNT. In addition, the storage efficiency can be improved by introducing more defects, i.e., reducing the number of carbon atoms on the SWCNT.

  4. Physisorption of molecular hydrogen on carbon nanotube with vacant defects

    Science.gov (United States)

    Sun, Gang; Tangpanitanon, Jirawat; Shen, Huaze; Wen, Bo; Xue, Jianming; Wang, Enge; Xu, Limei

    2014-05-01

    Physisorption of molecular hydrogen on single-walled carbon nanotubes (SWCNTs) is important for its engineering applications and hydrogen energy storage. Using molecular dynamics simulation, we study the physisorption of molecular hydrogen on a SWCNT with a vacant defect, focusing on the effect of the vacant defect size and external parameters such as temperature and pressure. We find that hydrogen can be physisorbed inside a SWCNT through a vacant defect when the defect size is above a threshold. By controlling the size of the defects, we are able to extract hydrogen molecules from a gas mixture and store them inside the SWCNT. We also find that external parameters, such as low temperature and high pressure, enhance the physisorption of hydrogen molecules inside the SWCNT. In addition, the storage efficiency can be improved by introducing more defects, i.e., reducing the number of carbon atoms on the SWCNT.

  5. Physisorption of molecular hydrogen on carbon nanotube with vacant defects

    International Nuclear Information System (INIS)

    Sun, Gang; Shen, Huaze; Wang, Enge; Xu, Limei; Tangpanitanon, Jirawat; Wen, Bo; Xue, Jianming

    2014-01-01

    Physisorption of molecular hydrogen on single-walled carbon nanotubes (SWCNTs) is important for its engineering applications and hydrogen energy storage. Using molecular dynamics simulation, we study the physisorption of molecular hydrogen on a SWCNT with a vacant defect, focusing on the effect of the vacant defect size and external parameters such as temperature and pressure. We find that hydrogen can be physisorbed inside a SWCNT through a vacant defect when the defect size is above a threshold. By controlling the size of the defects, we are able to extract hydrogen molecules from a gas mixture and store them inside the SWCNT. We also find that external parameters, such as low temperature and high pressure, enhance the physisorption of hydrogen molecules inside the SWCNT. In addition, the storage efficiency can be improved by introducing more defects, i.e., reducing the number of carbon atoms on the SWCNT

  6. Enhanced Hydrogen Dipole Physisorption, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Channing [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2014-01-03

    The hydrogen gas adsorption effort at Caltech was designed to probe and apply our understanding of known interactions between molecular hydrogen and adsorbent surfaces as part of a materials development effort to enable room temperature storage of hydrogen at nominal pressure. The work we have performed over the past five years has been tailored to address the outstanding issues associated with weak hydrogen sorbent interactions in order to find an adequate solution for storage tank technology.

  7. Modeling the physisorption of graphene on metals

    Science.gov (United States)

    Tao, Jianmin; Tang, Hong; Patra, Abhirup; Bhattarai, Puskar; Perdew, John P.

    2018-04-01

    Many processes of technological and fundamental importance occur on surfaces. Adsorption is one of these phenomena that has received the most attention. However, it presents a great challenge to conventional density functional theory. Starting with the Lifshitz-Zaremba-Kohn second-order perturbation theory, here we develop a long-range van der Waals (vdW) correction for physisorption of graphene on metals. The model importantly includes quadrupole-surface interaction and screening effects. The results show that, when the vdW correction is combined with the Perdew-Burke-Enzerhof functional, it yields adsorption energies in good agreement with the random-phase approximation, significantly improving upon other vdW methods. We also find that, compared with the leading-order interaction, the higher-order quadrupole-surface correction accounts for about 25 % of the total vdW correction, suggesting the importance of the higher-order term.

  8. Hydrogen Storage using Physisorption : Modified Carbon Nanofibers and Related Materials

    NARCIS (Netherlands)

    Nijkamp, Marije Gessien

    2002-01-01

    This thesis describes our research on adsorbent systems for hydrogen storage for small scale, mobile application. Hydrogen storage is a key element in the change-over from the less efficient and polluting internal combustion engine to the pollution-free operating hydrogen fuel cell. In general,

  9. Physisorption kinetics

    CERN Document Server

    Kreuzer, Hans Jürgen

    1986-01-01

    This monograph deals with the kinetics of adsorption and desorption of molecules physisorbed on solid surfaces. Although frequent and detailed reference is made to experiment, it is mainly concerned with the theory of the subject. In this, we have attempted to present a unified picture based on the master equation approach. Physisorption kinetics is by no means a closed and mature subject; rather, in writing this monograph we intended to survey a field very much in flux, to assess its achievements so far, and to give a reasonable basis from which further developments can take off. For this reason we have included many papers in the bibliography that are not referred to in the text but are of relevance to physisorption. To keep this monograph to a reasonable size, and also to allow for some unity in the presentation of the material, we had to omit a number of topics related to physisorption kinetics. We have not covered to any extent the equilibrium properties of physisorbed layers such as structures, phase tr...

  10. CALCULATION OF PHYSISORPTION ENERGIES OF

    African Journals Online (AJOL)

    but it may naturally arise through semi-quantum mechanical treatment of the admolecule - surface electrostatic interaction. For the physisorption of molecules with permanent dipole moment it is reasonable, in our opinion, to represent the admolecule by a classical dipole so as to avoid overlap of the admolecule and solid ...

  11. Neutron scattering and physisorption

    International Nuclear Information System (INIS)

    Marlow, I.; Thomas, R.K.; Trewern, T.D.

    1977-01-01

    Neutron scattering experiments on methane and ammonia adsorbed on a graphitized carbon black are described. Diffraction from adsorbed deuterated methane shows that, at a coverage of 0.7, it forms an epitaxial layer with a √3x√3 structure. Between 50 and 60 K it undergoes a phase transition from two-dimensional solid to liquid (bulk melting point=89.7 K). Similar results are obtained for deuterated methane on a sample of graphon intercalated with potassium. From the effect of adsorbed methane on the intensities of 001 peaks of both substrates the carbon atom of the methane is estimated to be 3.3+-0.2 A from the surface. Ammonia-d 3 on graphon behaves quite differently from methane. It follows a type III isotherm and at low temperatures desorbs from the surface to form bulk ammonia. This has anomalous melting properties which are shown to be related to adsorption isobars for the system. The detailed interpretation of the results emphasizes the close link between adsorption and heterogeneous nucleation. Quasielastic experiments on the ammonia-graphon system show that the adsorbed ammonia is undergoing translational diffusion on the surface which is much faster than in the bulk. This is attributed to the breaking up of the hydrogen bonded network normally present in t

  12. Hydrogen adsorption and desorption in carbon nanotube systems and its mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, M.; Takenobu, T.; Ata, M. [Materials Laboratories, SONY Corporation, Shin-Sakuragaoka 2-1-1, Hodogaya-ku, 240-0036, Yokohama (Japan); Kataura, H. [Department of Physics, Faculty of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, 192-0397, Tokyo (Japan)

    2004-04-01

    The hydrogen physisorption properties in single-walled carbon nanotube (SWNT) based materials were characterized. The SWNTs were highly purified and three useful pores for hydrogen physisorption were activated. Hydrogen was physisorbed in intra-tube pores at room temperature and the capacity was estimated to be about 0.3-0.4 wt. % at room temperature. The adsorption capacity can be explained by the Langmuir model. The intra-tube pores have large adsorption potential and this induces hydrogen physisorption at comparatively higher temperatures. This fact indicates the importance of fabricating sub-nanometer ordered pores for this phenomena. (orig.)

  13. Hydrogen storage in porous carbons: modelling and performance improvements

    International Nuclear Information System (INIS)

    Pellenq, R.J.M.; Maresca, O.; Marinelli, F.; Duclaux, L.; Azais, P.; Conard, J.

    2006-01-01

    In this work, we aim at exploring using ab initio calculations, the various ways allowing for an efficient hydrogen docking in carbon porous materials. Firstly, the influence of surface curvature on the chemisorption of atomic hydrogen is considered. Then it is shown that electro-donor elements such as lithium or potassium used as dopant of the carbon substrate induce a strong physi-sorption for H 2 , allowing its storage at ambient temperature under moderate pressure. (authors)

  14. Physisorption of SDS in a Hydrocarbon Nanoporous Polymer

    DEFF Research Database (Denmark)

    Li, Li; Wang, Yanwei; Vigild, Martin Etchells

    2010-01-01

    Surface modification of nanoporous 1,2-polybutadiene of pore diameter similar to 15 nm was accomplished by physisorption of sodium dodecyl sulfate (SDS) in water. Loading of the aqueous solution and the accompanying physisorption of SDS into the hydrophobic nanoporous films were investigated in a...

  15. Hydrogen atom model for nucleon and pion

    International Nuclear Information System (INIS)

    Baiquni, A.

    1976-01-01

    Discussion on Dion as double charge particle, covering that on semi classical model, proton Dionium model consequence, symmetry group in hydrogen, hydrogen atom dynamic group, and discussion on relativistic dynamic group, covering relativistic equation for hydrogen, operator extension of SO(4, 2), application of SO(4,2)O SO(4,2), and hydrogen complete equation, are given. (author)

  16. Thermodynamics of hydrogen adsorption in MOF-177 at low temperatures: measurements and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Eric [College of Engineering, Purdue University, West Lafayette, IN 47907 (United States); Dailly, Anne [Chemical and Environmental Sciences Laboratory, General Motors Corporation, Warren, MI 48090 (United States)], E-mail: poirierem@gmail.com, E-mail: anne.dailly@gm.com

    2009-05-20

    Hydrogen adsorption measurements and modelling for the Zn-based microporous metal-organic framework (MOF) Zn{sub 4}O(1,3,5-benzenetribenzoate){sub 2}, MOF-177, were performed over the 50-77 K and 0-40 bar ranges. The maximum excess adsorption measured under these conditions varies over about 105-70 mg g{sup -1}. An analysis of the isotherms near saturation shows that hydrogen is ultimately adsorbed in an incompressible phase whose density is comparable to that of the bulk liquid. These liquid state properties observed under supercritical conditions reveal a remarkable effect of nanoscale confinement. The entire set of adsorption isotherms can be well described using a micropore filling model. The latter is used, in particular, to determine the absolute amounts adsorbed and the adsorption enthalpy. When expressed in terms of absolute adsorption, the isotherms show considerable hydrogen storage capacities, reaching up to 125 mg g{sup -1} at 50 K and 25 bar. The adsorption enthalpies are calculated as a function of fractional filling and range from 3 to 5 kJ mol{sup -1} in magnitude, in accordance with physisorption. These results are discussed with respect to a similar analysis performed on another Zn-based MOF, Zn{sub 4}O(1,4-benzenedicarboxylate){sub 3}, IRMOF-1, presented recently. It is found that both materials adsorb hydrogen by similar mechanisms.

  17. Thermodynamics of hydrogen adsorption in MOF-177 at low temperatures: measurements and modelling

    International Nuclear Information System (INIS)

    Poirier, Eric; Dailly, Anne

    2009-01-01

    Hydrogen adsorption measurements and modelling for the Zn-based microporous metal-organic framework (MOF) Zn 4 O(1,3,5-benzenetribenzoate) 2 , MOF-177, were performed over the 50-77 K and 0-40 bar ranges. The maximum excess adsorption measured under these conditions varies over about 105-70 mg g -1 . An analysis of the isotherms near saturation shows that hydrogen is ultimately adsorbed in an incompressible phase whose density is comparable to that of the bulk liquid. These liquid state properties observed under supercritical conditions reveal a remarkable effect of nanoscale confinement. The entire set of adsorption isotherms can be well described using a micropore filling model. The latter is used, in particular, to determine the absolute amounts adsorbed and the adsorption enthalpy. When expressed in terms of absolute adsorption, the isotherms show considerable hydrogen storage capacities, reaching up to 125 mg g -1 at 50 K and 25 bar. The adsorption enthalpies are calculated as a function of fractional filling and range from 3 to 5 kJ mol -1 in magnitude, in accordance with physisorption. These results are discussed with respect to a similar analysis performed on another Zn-based MOF, Zn 4 O(1,4-benzenedicarboxylate) 3 , IRMOF-1, presented recently. It is found that both materials adsorb hydrogen by similar mechanisms.

  18. Finding furfural hydrogenation catalysts via predictive modelling

    NARCIS (Netherlands)

    Strassberger, Z.; Mooijman, M.; Ruijter, E.; Alberts, A.H.; Maldonado, A.G.; Orru, R.V.A.; Rothenberg, G.

    2010-01-01

    We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes

  19. Modeling of hydrogen desorption from tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Guterl, J., E-mail: jguterl@ucsd.edu [University of California, San Diego, La Jolla, CA 92093 (United States); Smirnov, R.D. [University of California, San Diego, La Jolla, CA 92093 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA 92093 (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation); Uberuaga, B.; Voter, A.F.; Perez, D. [Los Alamos National Laboratory, Los Alamos, NM 8754 (United States)

    2015-08-15

    Hydrogen retention in metallic plasma-facing components is among key-issues for future fusion devices. For tungsten, which has been chosen as divertor material in ITER, hydrogen desorption parameters experimentally measured for fusion-related conditions show large discrepancies. In this paper, we therefore investigate hydrogen recombination and desorption on tungsten surfaces using molecular dynamics simulations and accelerated molecular dynamics simulations to analyze adsorption states, diffusion, hydrogen recombination into molecules, and clustering of hydrogen on tungsten surfaces. The quality of tungsten hydrogen interatomic potential is discussed in the light of MD simulations results, showing that three body interactions in current interatomic potential do not allow to reproduce hydrogen molecular recombination and desorption. Effects of surface hydrogen clustering on hydrogen desorption are analyzed by introducing a kinetic model describing the competition between surface diffusion, clustering and recombination. Different desorption regimes are identified and reproduce some aspects of desorption regimes experimentally observed.

  20. Modeling leaks from liquid hydrogen storage systems.

    Energy Technology Data Exchange (ETDEWEB)

    Winters, William Stanley, Jr.

    2009-01-01

    This report documents a series of models for describing intended and unintended discharges from liquid hydrogen storage systems. Typically these systems store hydrogen in the saturated state at approximately five to ten atmospheres. Some of models discussed here are equilibrium-based models that make use of the NIST thermodynamic models to specify the states of multiphase hydrogen and air-hydrogen mixtures. Two types of discharges are considered: slow leaks where hydrogen enters the ambient at atmospheric pressure and fast leaks where the hydrogen flow is usually choked and expands into the ambient through an underexpanded jet. In order to avoid the complexities of supersonic flow, a single Mach disk model is proposed for fast leaks that are choked. The velocity and state of hydrogen downstream of the Mach disk leads to a more tractable subsonic boundary condition. However, the hydrogen temperature exiting all leaks (fast or slow, from saturated liquid or saturated vapor) is approximately 20.4 K. At these temperatures, any entrained air would likely condense or even freeze leading to an air-hydrogen mixture that cannot be characterized by the REFPROP subroutines. For this reason a plug flow entrainment model is proposed to treat a short zone of initial entrainment and heating. The model predicts the quantity of entrained air required to bring the air-hydrogen mixture to a temperature of approximately 65 K at one atmosphere. At this temperature the mixture can be treated as a mixture of ideal gases and is much more amenable to modeling with Gaussian entrainment models and CFD codes. A Gaussian entrainment model is formulated to predict the trajectory and properties of a cold hydrogen jet leaking into ambient air. The model shows that similarity between two jets depends on the densimetric Froude number, density ratio and initial hydrogen concentration.

  1. Model of diffusers / permeators for hydrogen processing

    International Nuclear Information System (INIS)

    Jacobs, W. D.; Hang, T.

    2008-01-01

    Palladium-silver (Pd-Ag) diffusers are mainstays of hydrogen processing. Diffusers separate hydrogen from inert species such as nitrogen, argon or helium. The tubing becomes permeable to hydrogen when heated to more than 250 C and a differential pressure is created across the membrane. The hydrogen diffuses better at higher temperatures. Experimental or experiential results have been the basis for determining or predicting a diffuser's performance. However, the process can be mathematically modeled, and comparison to experimental or other operating data can be utilized to improve the fit of the model. A reliable model-based diffuser system design is the goal which will have impacts on tritium and hydrogen processing. A computer model has been developed to solve the differential equations for diffusion given the operating boundary conditions. The model was compared to operating data for a low pressure diffuser system. The modeling approach and the results are presented in this paper. (authors)

  2. Direct observation and modelling of ordered hydrogen adsorption and catalyzed ortho-para conversion on ETS-10 titanosilicate material.

    Science.gov (United States)

    Ricchiardi, Gabriele; Vitillo, Jenny G; Cocina, Donato; Gribov, Evgueni N; Zecchina, Adriano

    2007-06-07

    Hydrogen physisorption on porous high surface materials is investigated for the purpose of hydrogen storage and hydrogen separation, because of its simplicity and intrinsic reversibility. For these purposes, the understanding of the binding of dihydrogen to materials, of the structure of the adsorbed phase and of the ortho-para conversion during thermal and pressure cycles are crucial for the development of new hydrogen adsorbents. We report the direct observation by IR spectroscopic methods of structured hydrogen adsorption on a porous titanosilicate (ETS-10), with resolution of the kinetics of the ortho-para transition, and an interpretation of the structure of the adsorbed phase based on classical atomistic simulations. Distinct infrared signals of o- and p-H2 in different adsorbed states are measured, and the conversion of o- to p-H2 is monitored over a timescale of hours, indicating the presence of a catalyzed reaction. Hydrogen adsorption occurs in three different regimes characterized by well separated IR manifestations: at low pressures ordered 1:1 adducts with Na and K ions exposed in the channels of the material are formed, which gradually convert into ordered 2:1 adducts. Further addition of H2 occurs only through the formation of a disordered condensed phase. The binding enthalpy of the Na+-H2 1:1 adduct is of -8.7+/-0.1 kJ mol(-1), as measured spectroscopically. Modeling of the weak interaction of H2 with the materials requires an accurate force field with a precise description of both dispersion and electrostatics. A novel three body force field for molecular hydrogen is presented, based on the fitting of an accurate PES for the H2-H2 interaction to the experimental dipole polarizability and quadrupole moment. Molecular mechanics simulations of hydrogen adsorption at different coverages confirm the three regimes of adsorption and the structure of the adsorbed phase.

  3. A molecular dynamics study of Lennard-Jones physisorption on W(100)

    International Nuclear Information System (INIS)

    Broughton, J.Q.

    1980-01-01

    The physisorption of Xe on W(100) was modeled by Lennard-Jones pair-wise interaction potentials and the dynamics of coverages ranging from one to four adlayers obtained by molecular dynamics simulation. At 115 K, the first two layers were well-ordered and each adsorbed with c(2 x 2) symmetry. Further adsorption produced a surface similar to that of a distorted Xe(100) face. In accord with the work of Broughton and Woodcock, the top layers of the three- and four-adlayer coverages were rough and had liquid-like diffusion coefficients. The potential energies of all layers other than the first were similar, thus corroborating one of the postulates of BET theory. Generally, the effect of adsorbing a layer was to reduce the entropy of all those beneath. (orig.)

  4. Finding Furfural Hydrogenation Catalysts via Predictive Modelling

    OpenAIRE

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-01-01

    Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre t...

  5. Modeling of hydrogen interactions with beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

    1998-01-01

    In this paper, improved mathematical models are developed for hydrogen interactions with beryllium. This includes the saturation effect observed for high-flux implantation of ions from plasmas and retention of tritium produced from neutronic transmutations in beryllium. Use of the models developed is justified by showing how they can replicated experimental data using the TMAP4 tritium transport code. (author)

  6. Hydrogen recycle modeling in transport codes

    International Nuclear Information System (INIS)

    Howe, H.C.

    1979-01-01

    The hydrogen recycling models now used in Tokamak transport codes are reviewed and the method by which realistic recycling models are being added is discussed. Present models use arbitrary recycle coefficients and therefore do not model the actual recycling processes at the wall. A model for the hydrogen concentration in the wall serves two purposes: (1) it allows a better understanding of the density behavior in present gas puff, pellet, and neutral beam heating experiments; and (2) it allows one to extrapolate to long pulse devices such as EBT, ISX-C and reactors where the walls are observed or expected to saturate. Several wall models are presently being studied for inclusion in transport codes

  7. MODELING STYRENE HYDROGENATION KINETICS USING PALLADIUM CATALYSTS

    Directory of Open Access Journals (Sweden)

    G. T. Justino

    Full Text Available Abstract The high octane number of pyrolysis gasoline (PYGAS explains its insertion in the gasoline pool. However, its use is troublesome due to the presence of gum-forming chemicals which, in turn, can be removed via hydrogenation. The use of Langmuir-Hinshelwood kinetic models was evaluated for hydrogenation of styrene, a typical gum monomer, using Pd/9%Nb2O5-Al2O3 as catalyst. Kinetic models accounting for hydrogen dissociative and non-dissociative adsorption were considered. The availability of one or two kinds of catalytic sites was analyzed. Experiments were carried out in a semi-batch reactor at constant temperature and pressure in the absence of transport limitations. The conditions used in each experiment varied between 16 - 56 bar and 60 - 100 ºC for pressure and temperature, respectively. The kinetic models were evaluated using MATLAB and EMSO software. Models using adsorption of hydrogen and organic molecules on the same type of site fitted the data best.

  8. Finding Furfural Hydrogenation Catalysts via Predictive Modelling.

    Science.gov (United States)

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-09-10

    We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (k(H):k(D)=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R(2)=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model's predictions, demonstrating the validity and value of predictive modelling in catalyst optimization.

  9. Synthesis and Thermodynamic Studies of Physisorptive Energy Storage Materials

    Science.gov (United States)

    Stadie, Nicholas

    Physical adsorption of hydrogen or other chemical fuels on the surface of carbonaceous materials offers a promising avenue for energy storage applications. The addition of a well-chosen sorbent material to a compressed gas tank increases the volumetric energy density of the system while still permitting fast refueling, simplicity of design, complete reversibility, high cyclability, and low overall cost of materials. While physical adsorption is most effective at temperatures below ambient, effective storage technologies are possible at room temperature and modestly high pressure. A volumetric Sieverts apparatus was designed, constructed, and commissioned to accurately measure adsorption uptake at high pressures and an appropriate thermodynamic treatment of the experimental data is presented. In Chapter 1, the problem of energy storage is introduced in the context of hydrogen as an ideal alternative fuel for future mobile vehicle applications, and with methane in mind as a near-term solution. The theory of physical adsorption that is relevant to this work is covered in Chapter 2. In-depth studies of two classes of materials are presented in the final chapters. Chapter 3 presents a study of the dissociative "hydrogen spillover" effect in the context of its viability as a practical hydrogen storage solution at room temperature. Chapters 4-5 deal with zeolite-templated carbon, an extremely high surface-area material which shows promise for hydrogen and methane storage applications. Studies of hydrogen adsorption at high pressure (Chapter 4) and anomalous thermodynamic properties of methane adsorption (Chapter 5) on ZTCs are presented. The concluding chapter discusses the impact of and possible future directions for this work.

  10. Finding Furfural Hydrogenation Catalysts via Predictive Modelling

    Science.gov (United States)

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-01-01

    Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (kH:kD=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R2=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model’s predictions, demonstrating the validity and value of predictive modelling in catalyst optimization. PMID:23193388

  11. Modeling of hydrogenation reactor of soya oil

    International Nuclear Information System (INIS)

    Sotudeh-Gharebagh, R.; Niknam, L.; Mostoufi, N.

    2008-01-01

    In this paper, a batch hydrogenation reactor performance was modeled using a hydrodynamic and reaction sub-models. The reaction expressions were obtained from the information reported in literature. Experimental studies were conducted in order to generate the experimental data needed to validate the model. The comparison between the experimental data and model predictions seems quite satisfactory considering the hydrodynamic limitations and simplifications made on the reaction scheme. The results of this study could be considered as framework in developing new process equipment and also soya oil product design for new applications

  12. Hydrogen storage in pure and Li-doped carbon nanopores: combined effects of concavity and doping.

    Science.gov (United States)

    Cabria, I; López, M J; Alonso, J A

    2008-04-14

    Density functional calculations are reported for the adsorption of molecular hydrogen on carbon nanopores. Two models for the pores have been considered: (i) The inner walls of (7,7) carbon nanotubes and (ii) the highly curved inner surface of nanotubes capped on one end. The effect of Li doping is investigated in all cases. The hydrogen physisorption energies increase due to the concavity effect inside the clean nanotubes and on the bottom of the capped nanotubes. Li doping also enhances the physisorption energies. The sum of those two effects leads to an increase by a factor of almost 3 with respect to the physisorption in the outer wall of undoped nanotubes and in flat graphene. Application of a quantum-thermodynamical model to clean cylindrical pores of diameter 9.5 A, the diameter of the (7,7) tube, indicates that cylindrical pores of this size can store enough hydrogen to reach the volumetric and gravimetric goals of the Department of Energy at 77 K and low pressures, although not at 300 K. The results are useful to explain the experiments on porous carbons. Optimizations of the pore size, concavity, and doping appear as promising alternatives for achieving the goals at room temperature.

  13. Modelling hydrogen permeation in a hydrogen effusion probe for monitoring corrosion of carbon steels

    International Nuclear Information System (INIS)

    Santiwiparat, P.; Rirksomboon, T.; Steward, F.R.; Lister, D.H.; Cook, W.G.

    2015-01-01

    Hydrogen accumulation inside carbon steel and stainless steel devices shaped like cylindrical cups attached to a pipe containing hydrogen gas was modelled with MATLAB software. Hydrogen transfer around the bottom of the cups (edge effect) and diffusion through the cup walls (material effect) were accounted for. The variation of hydrogen pressure with time was similar for both materials, but the hydrogen plateau pressures in stainless steel cups were significantly higher than those in carbon steel cups. The geometry of the cup also affected the plateau pressure inside the cup. (author)

  14. Solar hydrogen hybrid system with carbon storage

    International Nuclear Information System (INIS)

    Zini, G.; Marazzi, R.; Pedrazzi, S.; Tartarini, P.

    2009-01-01

    A complete solar hydrogen hybrid system has been developed to convert, store and use energy from renewable energy sources. The theoretical model has been implemented in a dynamic model-based software environment and applied to real data to simulate its functioning over a one-year period. Results are used to study system design and performance. A photovoltaic sub-system directly drives a residential load and, if a surplus of energy is available, an electrolyzer to produce hydrogen which is stored in a cluster of nitrogen-cooled tanks filled with AX-21 activated carbons. When the power converted from the sun is not sufficient to cover load needs, hydrogen is desorbed from activated carbon tanks and sent to the fuel-cell sub-system so to obtain electrical energy. A set of sub-systems (bus-bar, buck- and boost-converters, inverter, control circuits), handle the electrical power according to a Programmable Logic Control unit so that the load can be driven with adequate Quality of Service. Hydrogen storage is achieved through physisorption (weak van der Waals interactions) between carbon atoms and hydrogen molecules occurring at low temperature (77 K) in carbon porous solids at relatively low pressures. Storage modeling has been developed using a Langmuir-Freundlich 1st type isotherm and experimental data available in literature. Physisorption storage provides safer operations along with good gravimetric (10.8% at 6 MPa) and volumetric (32.5 g/l at 6 MPa) storage capacities at costs that can be comparable to, or smaller than, ordinary storage techniques (compression or liquefaction). Several test runs have been performed on residential user data-sets: the system is capable of providing grid independence and can be designed to yield a surplus production of hydrogen which can be used to recharge electric car batteries or fill tanks for non-stationary uses. (author)

  15. Hirshfeld atom refinement for modelling strong hydrogen bonds.

    Science.gov (United States)

    Woińska, Magdalena; Jayatilaka, Dylan; Spackman, Mark A; Edwards, Alison J; Dominiak, Paulina M; Woźniak, Krzysztof; Nishibori, Eiji; Sugimoto, Kunihisa; Grabowsky, Simon

    2014-09-01

    High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.

  16. Modeling liquid hydrogen cavitating flow with the full cavitation model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.B.; Qiu, L.M.; Qi, H.; Zhang, X.J.; Gan, Z.H. [Institute of Refrigeration and Cryogenic Engineering, Zhejiang University, Hangzhou 310027 (China)

    2008-12-15

    Cavitation is the formation of vapor bubbles within a liquid where flow dynamics cause the local static pressure to drop below the vapor pressure. This paper strives towards developing an effective computational strategy to simulate liquid hydrogen cavitation relevant to liquid rocket propulsion applications. The aims are realized by performing a steady state computational fluid dynamic (CFD) study of liquid hydrogen flow over a 2D hydrofoil and an axisymmetric ogive in Hord's reports with a so-called full cavitation model. The thermodynamic effect was demonstrated with the assumption of thermal equilibrium between the gas phase and liquid phase. Temperature-dependent fluid thermodynamic properties were specified along the saturation line from the ''Gaspak 3.2'' databank. Justifiable agreement between the computed surface pressure, temperature and experimental data of Hord was obtained. Specifically, a global sensitivity analysis is performed to examine the sensitivity of the turbulent computations to the wall grid resolution, wall treatments and changes in model parameters. A proper near-wall model and grid resolution were suggested. The full cavitation model with default model parameters provided solutions with comparable accuracy to sheet cavitation in liquid hydrogen for the two geometries. (author)

  17. Electrochemical modeling of hydrogen storage in hydride-forming electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2009-01-01

    An electrochemical kinetic model (EKM) is developed, describing the electrochemical hydrogen storage in hydride-forming materials under equilibrium conditions. This model is based on first principles of electrochemical reaction kinetics and statistical thermodynamics and describes the complex,

  18. Multiscale modelling and experimentation of hydrogen embrittlement in aerospace materials

    Science.gov (United States)

    Jothi, Sathiskumar

    Pulse plated nickel and nickel based superalloys have been used extensively in the Ariane 5 space launcher engines. Large structural Ariane 5 space launcher engine components such as combustion chambers with complex microstructures have usually been manufactured using electrodeposited nickel with advanced pulse plating techniques with smaller parts made of nickel based superalloys joined or welded to the structure to fabricate Ariane 5 space launcher engines. One of the major challenges in manufacturing these space launcher components using newly developed materials is a fundamental understanding of how different materials and microstructures react with hydrogen during welding which can lead to hydrogen induced cracking. The main objective of this research has been to examine and interpret the effects of microstructure on hydrogen diffusion and hydrogen embrittlement in (i) nickel based superalloy 718, (ii) established and (iii) newly developed grades of pulse plated nickel used in the Ariane 5 space launcher engine combustion chamber. Also, the effect of microstructures on hydrogen induced hot and cold cracking and weldability of three different grades of pulse plated nickel were investigated. Multiscale modelling and experimental methods have been used throughout. The effect of microstructure on hydrogen embrittlement was explored using an original multiscale numerical model (exploiting synthetic and real microstructures) and a wide range of material characterization techniques including scanning electron microscopy, 2D and 3D electron back scattering diffraction, in-situ and ex-situ hydrogen charged slow strain rate tests, thermal spectroscopy analysis and the Varestraint weldability test. This research shows that combined multiscale modelling and experimentation is required for a fundamental understanding of microstructural effects in hydrogen embrittlement in these materials. Methods to control the susceptibility to hydrogen induced hot and cold cracking and

  19. Modelling of discrete TDS-spectrum of hydrogen desorption

    Science.gov (United States)

    Rodchenkova, Natalia I.; Zaika, Yury V.

    2015-12-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition.

  20. Modelling of discrete TDS-spectrum of hydrogen desorption

    International Nuclear Information System (INIS)

    Rodchenkova, Natalia I; Zaika, Yury V

    2015-01-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition. (paper)

  1. Hydrogen Tunneling in Enzymes and Biomimetic Models

    Energy Technology Data Exchange (ETDEWEB)

    Layfield, Joshua P.; Hammes-Schiffer, Sharon

    2014-04-09

    Hydrogen transfer reactions play an important role throughout chemistry and biology. In general, hydrogen transfer reactions encompass proton and hydride transfer, which are associated with the transfer of a positively or negatively charged species, respectively, and proton-coupled electron transfer (PCET), which corresponds to the net transfer of one electron and one proton in the simplest case. Such PCET reactions can occur by either a sequential mechanism, in which the proton or electron transfers first, or a concerted mechanism, in which the electron and proton transfer in a single kinetic step with no stable intermediate. Furthermore, concerted PCET reactions can be subdivided into hydrogen atom transfer (HAT), which corresponds to the transfer of an electron and proton between the same donor and acceptor (i.e., the transfer of a predominantly neutral species), and electron-proton transfer (EPT), which corresponds to the transfer of an electron and proton between different donors and acceptors, possibly even in different directions. In all of these types of hydrogen transfer reactions, hydrogen tunneling could potentially play a significant role. The biomimetic portion was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  2. Hydrogen Tunneling in Enzymes and Biomimetic Models

    Energy Technology Data Exchange (ETDEWEB)

    Layfield, Joshua P.; Hammes-Schiffer, Sharon

    2013-12-20

    Hydrogen transfer reactions play an important role throughout chemistry and biology. In general, hydrogen transfer reactions encompass proton and hydride transfer, which are associated with the transfer of a positively or negatively charged species, respectively, and proton-coupled electron transfer (PCET), which corresponds to the net transfer of one electron and one proton in the simplest case. Such PCET reactions can occur by either a sequential mechanism, in which the proton or electron transfers first, or a concerted mechanism, in which the electron and proton transfer in a single kinetic step with no stable intermediate. Furthermore, concerted PCET reactions can be subdivided into hydrogen atom transfer (HAT), which corresponds to the transfer of an electron and proton between the same donor and acceptor (i.e., the transfer of a predominantly neutral species), and electron-proton transfer (EPT), which corresponds to the transfer of an electron and proton between different donors and acceptors, possibly even in different directions. In all of these types of hydrogen transfer reactions, hydrogen tunneling could potentially play a signficant role. The theoretical development portion of this Review was supported by the National Science Foundation under CHE-10-57875. The biological portion of this Review was funded by NIH Grant No. GM056207. The biomimetic portion was supported as part of the Center for Molecular Electro-catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  3. System level permeability modeling of porous hydrogen storage materials.

    Energy Technology Data Exchange (ETDEWEB)

    Kanouff, Michael P.; Dedrick, Daniel E.; Voskuilen, Tyler (Purdue University, West Lafayette, IN)

    2010-01-01

    A permeability model for hydrogen transport in a porous material is successfully applied to both laboratory-scale and vehicle-scale sodium alanate hydrogen storage systems. The use of a Knudsen number dependent relationship for permeability of the material in conjunction with a constant area fraction channeling model is shown to accurately predict hydrogen flow through the reactors. Generally applicable model parameters were obtained by numerically fitting experimental measurements from reactors of different sizes and aspect ratios. The degree of channeling was experimentally determined from the measurements and found to be 2.08% of total cross-sectional area. Use of this constant area channeling model and the Knudsen dependent Young & Todd permeability model allows for accurate prediction of the hydrogen uptake performance of full-scale sodium alanate and similar metal hydride systems.

  4. Borazine-boron nitride hybrid hydrogen storage system

    Science.gov (United States)

    Narula, Chaitanya K [Knoxville, TN; Simonson, J Michael [Knoxville, TN; Maya, Leon [Knoxville, TN; Paine, Robert T [Albuquerque, NM

    2008-04-22

    A hybrid hydrogen storage composition includes a first phase and a second phase adsorbed on the first phase, the first phase including BN for storing hydrogen by physisorption and the second phase including a borazane-borazine system for storing hydrogen in combined form as a hydride.

  5. Filtration and Hydrogen Reaction Modeling in a Depleted Uranium Bed

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kwang Jin; Kim, Yean Jin; Ahn, Do Hee; Chung, Hong Suk [UST, Daejeon (Korea, Republic of); Kang, Hee Seok [KAERI, Daejeon (Korea, Republic of); Yun, Sei Hun [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    The storage and delivery system (SDS) stores the hydrogen isotopes and delivers them to the fuel injection system. Depleted uranium (DU) was chosen as a hydrogen isotope storage material. The hydrogen isotopes stored in the SDS are in the form of DU hydride confined in the primary and secondary containment within a glove box with an argon atmosphere. In this study, we performed a modeling study of the SDS. A modeling study is practically important because an experimental study requires comparatively more money and time. We estimated the hydrogen atomic ratio in DU hydride by two empirical equations we formulated. Two empirical equations are used to determine Pressure-Composition-Temperature (PCT) curves and the hydrogen atomic ratio in DU hydride. In addition, we present the effect of pressure and temperature in the hydriding and dehydriding. A modeling study of the SDS was performed in this study. It is practically important to save more money and time. The hydrogen atomic ratio in the DU hydride was estimated using two empirical equations. The two empirical equations are modified and reformulated to determine PCT curves and the hydrogen atomic ratio in DU hydride. All parameters that are required to solve two empirical equations are obtained from the experimental data. The derived parameters are utilized for the numerical simulations. In the numerical simulations, the effects of pressure and temperature on both the hydriding and dehydriding reaction rates are confirmed.

  6. Recognizing Physisorption and Chemisorption in Carbon Nanotubes Gas Sensors by Double Exponential Fitting of the Response.

    Science.gov (United States)

    Calvi, Andrea; Ferrari, Alberto; Sbuelz, Luca; Goldoni, Andrea; Modesti, Silvio

    2016-05-19

    Multi-walled carbon nanotubes (CNTs) have been grown in situ on a SiO 2 substrate and used as gas sensors. For this purpose, the voltage response of the CNTs as a function of time has been used to detect H 2 and CO 2 at various concentrations by supplying a constant current to the system. The analysis of both adsorptions and desorptions curves has revealed two different exponential behaviours for each curve. The study of the characteristic times, obtained from the fitting of the data, has allowed us to identify separately chemisorption and physisorption processes on the CNTs.

  7. An Efficiency Model For Hydrogen Production In A Pressurized Electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Smoglie, Cecilia; Lauretta, Ricardo

    2010-09-15

    The use of Hydrogen as clean fuel at a world wide scale requires the development of simple, safe and efficient production and storage technologies. In this work, a methodology is proposed to produce Hydrogen and Oxygen in a self pressurized electrolyzer connected to separate containers that store each of these gases. A mathematical model for Hydrogen production efficiency is proposed to evaluate how such efficiency is affected by parasitic currents in the electrolytic solution. Experimental set-up and results for an electrolyzer are also presented. Comparison of empirical and analytical results shows good agreement.

  8. Modelling of hydrogen permeability of membranes for high-purity hydrogen production

    Science.gov (United States)

    Zaika, Yury V.; Rodchenkova, Natalia I.

    2017-11-01

    High-purity hydrogen is required for clean energy and a variety of chemical technology processes. Different alloys, which may be well-suited for use in gas-separation plants, were investigated by measuring specific hydrogen permeability. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones), and identify the limiting factors. This paper presents a nonlinear mathematical model taking into account the dynamics of sorption-desorption processes and reversible capture of diffusing hydrogen by inhomogeneity of the material’s structure, and also modification of the model when the transport rate is high. The results of numerical modelling allow to obtain information about output data sensitivity with respect to variations of the material’s hydrogen permeability parameters. Furthermore, it is possible to analyze the dynamics of concentrations and fluxes that cannot be measured directly. Experimental data for Ta77Nb23 and V85Ni15 alloys were used to test the model. This work is supported by the Russian Foundation for Basic Research (Project No. 15-01-00744).

  9. A novel approach of modeling continuous dark hydrogen fermentation.

    Science.gov (United States)

    Alexandropoulou, Maria; Antonopoulou, Georgia; Lyberatos, Gerasimos

    2018-02-01

    In this study a novel modeling approach for describing fermentative hydrogen production in a continuous stirred tank reactor (CSTR) was developed, using the Aquasim modeling platform. This model accounts for the key metabolic reactions taking place in a fermentative hydrogen producing reactor, using fixed stoichiometry but different reaction rates. Biomass yields are determined based on bioenergetics. The model is capable of describing very well the variation in the distribution of metabolic products for a wide range of hydraulic retention times (HRT). The modeling approach is demonstrated using the experimental data obtained from a CSTR, fed with food industry waste (FIW), operating at different HRTs. The kinetic parameters were estimated through fitting to the experimental results. Hydrogen and total biogas production rates were predicted very well by the model, validating the basic assumptions regarding the implicated stoichiometric biochemical reactions and their kinetic rates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Multiscale Modeling of Hydrogen Embrittlement for Multiphase Material

    KAUST Repository

    Al-Jabr, Khalid A.

    2014-05-01

    Hydrogen Embrittlement (HE) is a very common failure mechanism induced crack propagation in materials that are utilized in oil and gas industry structural components and equipment. Considering the prediction of HE behavior, which is suggested in this study, is one technique of monitoring HE of equipment in service. Therefore, multi-scale constitutive models that account for the failure in polycrystalline Body Centered Cubic (BCC) materials due to hydrogen embrittlement are developed. The polycrystalline material is modeled as two-phase materials consisting of a grain interior (GI) phase and a grain boundary (GB) phase. In the first part of this work, the hydrogen concentration in the GI (Cgi) and the GB (Cgb) as well as the hydrogen distribution in each phase, were calculated and modeled by using kinetic regime-A and C, respectively. In the second part of this work, this dissertation captures the adverse effects of hydrogen concentration, in each phase, in micro/meso and macro-scale models on the mechanical behavior of steel; e.g. tensile strength and critical porosity. The models predict the damage mechanisms and the reduction in the ultimate strength profile of a notched, round bar under tension for different hydrogen concentrations as observed in the experimental data available in the literature for steels. Moreover, the study outcomes are supported by the experimental data of the Fractography and HE indices investigation. In addition to the aforementioned continuum model, this work employs the Molecular Dynamics (MD) simulations to provide information regarding bond formulation and breaking. The MD analyses are conducted for both single grain and polycrystalline BCC iron with different amounts of hydrogen and different size of nano-voids. The simulations show that the hydrogen atoms could form the transmission in materials configuration from BCC to FCC (Face Centered Cubic) and HCP (Hexagonal Close Packed). They also suggest the preferred sites of hydrogen for

  11. Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an (China); Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States); Liu, Yinhe, E-mail: yinheliu@mail.xjtu.edu.cn [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an (China)

    2017-11-20

    Due to the complexity of modeling the combustion process in nuclear power plants, the global mechanisms are preferred for numerical simulation. To quickly perform the highly resolved simulations with limited processing resources of large-scale hydrogen combustion, a method based on thermal theory was developed to obtain kinetic parameters of global reaction mechanism of hydrogen–air combustion in a wide range. The calculated kinetic parameters at lower hydrogen concentration (C{sub hydrogen} < 20%) were validated against the results obtained from experimental measurements in a container and combustion test facility. In addition, the numerical data by the global mechanism (C{sub hydrogen} > 20%) were compared with the results by detailed mechanism. Good agreement between the model prediction and the experimental data was achieved, and the comparison between simulation results by the detailed mechanism and the global reaction mechanism show that the present calculated global mechanism has excellent predictable capabilities for a wide range of hydrogen–air mixtures.

  12. Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation

    International Nuclear Information System (INIS)

    Zhang, Yun; Liu, Yinhe

    2017-01-01

    Due to the complexity of modeling the combustion process in nuclear power plants, the global mechanisms are preferred for numerical simulation. To quickly perform the highly resolved simulations with limited processing resources of large-scale hydrogen combustion, a method based on thermal theory was developed to obtain kinetic parameters of global reaction mechanism of hydrogen–air combustion in a wide range. The calculated kinetic parameters at lower hydrogen concentration (C hydrogen < 20%) were validated against the results obtained from experimental measurements in a container and combustion test facility. In addition, the numerical data by the global mechanism (C hydrogen > 20%) were compared with the results by detailed mechanism. Good agreement between the model prediction and the experimental data was achieved, and the comparison between simulation results by the detailed mechanism and the global reaction mechanism show that the present calculated global mechanism has excellent predictable capabilities for a wide range of hydrogen–air mixtures.

  13. Chemi- vs physisorption in the radical functionalization of single-walled carbon nanotubes under microwaves

    Directory of Open Access Journals (Sweden)

    Victor Mamane

    2014-04-01

    Full Text Available The effect of microwaves on the functionalization of single-walled carbon nanotubes (SWNTs by the diazonium method was studied. The usage of a new approach led to the identification of the strength of the interaction (physical or chemical between the functional groups and the carbon nanotube surface. Moreover, the nature (chemical formula of the adsorbed/grafted functional groups was determined. According to thermogravimetric analysis coupled with mass spectrometry and Raman spectroscopy, the optimal functionalization level was reached after 5 min of reaction. Prolonged reaction times can lead to undesired reactions such as defunctionalization, solvent addition and polymerization of the grafted functions. The strength (chemi- vs physisorption of the bonds between the grafted functional groups and the SWNTs is discussed showing the occurrence of physical adsorption as a consequence of defunctionalization after 15 min of reaction under microwaves. Several chemical mechanisms of grafting could be identified, and it was possible to distinguish conditions leading to the desired chemical grafting from those leading to undesired reactions such as physisorption and polymerization.

  14. Analytical modelling of hydrogen transport in reactor containments

    International Nuclear Information System (INIS)

    Manno, V.P.

    1983-09-01

    A versatile computational model of hydrogen transport in nuclear plant containment buildings is developed. The background and significance of hydrogen-related nuclear safety issues are discussed. A computer program is constructed that embodies the analytical models. The thermofluid dynamic formulation spans a wide applicability range from rapid two-phase blowdown transients to slow incompressible hydrogen injection. Detailed ancillary models of molecular and turbulent diffusion, mixture transport properties, multi-phase multicomponent thermodynamics and heat sink modelling are addressed. The numerical solution of the continuum equations emphasizes both accuracy and efficiency in the employment of relatively coarse discretization and long time steps. Reducing undesirable numerical diffusion is addressed. Problem geometry options include lumped parameter zones, one dimensional meshs, two dimensional Cartesian or axisymmetric coordinate systems and three dimensional Cartesian or cylindrical regions. An efficient lumped nodal model is included for simulation of events in which spatial resolution is not significant. Several validation calculations are reported

  15. Dense hydrogen plasma: Comparison between models

    International Nuclear Information System (INIS)

    Clerouin, J.G.; Bernard, S.

    1997-01-01

    Static and dynamical properties of the dense hydrogen plasma (ρ≥2.6gcm -3 , 0.1< T<5eV) in the strongly coupled regime are compared through different numerical approaches. It is shown that simplified density-functional molecular-dynamics simulations (DFMD), without orbitals, such as Thomas-Fermi Dirac or Thomas-Fermi-Dirac-Weiszaecker simulations give similar results to more sophisticated descriptions such as Car-Parrinello (CP), tight binding, or path-integral Monte Carlo, in a wide range of temperatures. At very low temperature, screening effects predicted by DFMD are still less pronounced than CP simulations. copyright 1997 The American Physical Society

  16. Hydrogen in oxygen-free, phosphorus-doped copper - Charging techniques, hydrogen contents and modelling of hydrogen diffusion and depth profile

    Energy Technology Data Exchange (ETDEWEB)

    Martinsson, Aasa [Swerea KIMAB, Kista (Sweden); Sandstroem, Rolf [Swerea KIMAB, Kista (Sweden); Div. of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm (Sweden); Lilja, Christina [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2013-01-15

    In Sweden spent nuclear fuel is planned to be disposed of by encapsulating in cast iron inserts protected by a copper shell. The copper can be exposed to hydrogen released during corrosion processes in the inserts. If the hydrogen is taken up by the copper, it could lead to hydrogen embrittlement. Specimens from oxygen-free copper have been hydrogen charged using two different methods. The purpose was to investigate how hydrogen could be introduced into copper in a controlled way. The thermal charging method resulted in a reduction of the initial hydrogen content. After electrochemical charging of cylindrical specimens, the measured hydrogen content was 2.6 wt. ppm which should compared with 0.6 wt. ppm before charging. The retained hydrogen after two weeks was reduced by nearly 40%. Recently the paper 'Hydrogen depth profile in phosphorus-doped, oxygen-free copper after cathodic charging' (Martinsson and Sandstrom, 2012) has been published. The paper describes experimental results for bulk specimens as well as presenting a model. Almost all the hydrogen is found to be located less than 100 {mu}m from the surface. This model is used to interpret the experimental results on foils in the present report. Since the model is fully based on fundamental equations, it can be used to analyse what happens in new situations. In this report the effect of the charging intensity, the grain size, the critical nucleus size for hydrogen bubble formation as well as the charging time are analysed.

  17. Hydrogen in oxygen-free, phosphorus-doped copper-Charging techniques, hydrogen contents and modelling of hydrogen diffusion and depth profile

    International Nuclear Information System (INIS)

    Martinsson, Aasa; Sandstroem, Rolf; Lilja, Christina

    2013-01-01

    In Sweden spent nuclear fuel is planned to be disposed of by encapsulating in cast iron inserts protected by a copper shell. The copper can be exposed to hydrogen released during corrosion processes in the inserts. If the hydrogen is taken up by the copper, it could lead to hydrogen embrittlement. Specimens from oxygen-free copper have been hydrogen charged using two different methods. The purpose was to investigate how hydrogen could be introduced into copper in a controlled way. The thermal charging method resulted in a reduction of the initial hydrogen content. After electrochemical charging of cylindrical specimens, the measured hydrogen content was 2.6 wt. ppm which should compared with 0.6 wt. ppm before charging. The retained hydrogen after two weeks was reduced by nearly 40%. Recently the paper 'Hydrogen depth profile in phosphorus-doped, oxygen-free copper after cathodic charging' (Martinsson and Sandstrom, 2012) has been published. The paper describes experimental results for bulk specimens as well as presenting a model. Almost all the hydrogen is found to be located less than 100 μm from the surface. This model is used to interpret the experimental results on foils in the present report. Since the model is fully based on fundamental equations, it can be used to analyse what happens in new situations. In this report the effect of the charging intensity, the grain size, the critical nucleus size for hydrogen bubble formation as well as the charging time are analysed

  18. Hydrogen adsorption in new carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Zubizarreta, L.; Arenillas, A.; Rubiera, F.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2006-07-01

    Hydrogen physi-sorption on porous carbon materials is one among the different technologies which could be used for hydrogen storage. In addition hydrogen spillover on a carbon supports can enhance the hydrogen adsorption capacities obtained by physi-sorption. In this study two different carbon supports were synthesised: carbon gels and carbon microspheres. Carbon microspheres were doped with Ni(NO{sub 3}){sub 2} to study the hydrogen spillover on carbon support. The texture of the materials was characterised by CO{sub 2} adsorption at 0 C and their hydrogen storage capacity was evaluated at -196 and 10 C with a Micromeritics Tristar 3000, and at room temperature with a high pressure gravimetric analyser. (authors)

  19. Hydrogen adsorption in new carbon materials

    International Nuclear Information System (INIS)

    Zubizarreta, L.; Arenillas, A.; Rubiera, F.; Pis, J.J.

    2006-01-01

    Hydrogen physi-sorption on porous carbon materials is one among the different technologies which could be used for hydrogen storage. In addition hydrogen spillover on a carbon supports can enhance the hydrogen adsorption capacities obtained by physi-sorption. In this study two different carbon supports were synthesised: carbon gels and carbon microspheres. Carbon microspheres were doped with Ni(NO 3 ) 2 to study the hydrogen spillover on carbon support. The texture of the materials was characterised by CO 2 adsorption at 0 C and their hydrogen storage capacity was evaluated at -196 and 10 C with a Micromeritics Tristar 3000, and at room temperature with a high pressure gravimetric analyser. (authors)

  20. Multiscale modelling of hydrogen embrittlement in zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Majevadia, Jassel; Wenman, Mark; Balint, Daniel; Sutton, Adrian [Imperial College London (United Kingdom); Nazarov, Roman [MPIE, Dusseldorf (Germany)

    2013-07-01

    Delayed Hydride Cracking (DHC) is a commonly occurring embrittlement phenomenon in zirconium alloy fuel cladding within Pressurized Water Reactors (PWRs). DHC is caused by the accumulation of hydrogen atoms taken up by the metal, and the formation of brittle hydrides in the vicinity of crack tips. The rate of crack growth is limited by the rate of hydrogen diffusion to the crack, which can be modelled by solving a stress driven diffusion equation that incorporates the elastic interaction between defects. This of interest in the present work. The elastic interaction is calculated by combining defect forces determined through Density Functional Theory (DFT) simulations, and an exact solution for the anisotropic elastic field of an edge dislocation in Zr. making it possible to determine the interaction energy without the need to simulate directly a hydrogen atom in the presence of a crack or dislocation, which is computationally prohibitive with DFT. The result of the elastic interaction energy calculations can be utilised to determine the segregation of hydrogen to a crack tip for varying crack tip geometries, and in the presence of other crystal defects. This is done by implementing a diffusion equation for hydrogen within a discrete dislocation dynamics simulation. In the present work a model has been developed to demonstrate the effect of a single dislocation on hydrogen diffusion to create a Cottrell atmosphere.

  1. Validation of CFD models for hydrogen safety application

    International Nuclear Information System (INIS)

    Nikolaeva, Anna; Skibin, Alexander; Krutikov, Alexey; Golibrodo, Luka; Volkov, Vasiliy; Nechaev, Artem; Nadinskiy, Yuriy

    2015-01-01

    Most accidents involving hydrogen begin with its leakage and spreading in the air and spontaneous detonation, which is accompanied by fire or deflagration of hydrogen mixture with heat and /or shocks, which may cause harm to life and equipment. Outflow of hydrogen in a confined volume and its propagation in the volume is the worst option because of the impact of the insularity on the process of detonation. According to the safety requirements for handling hydrogen specialized systems (ventilation, sprinklers, burners etc.) are required for maintaining the hydrogen concentration less than the critical value, to eliminate the possibility of detonation and flame propagation. In this study, a simulation of helium propagation in a confined space with different methods of injection and ventilation of helium is presented, which is used as a safe replacement of hydrogen in experimental studies. Five experiments were simulated in the range from laminar to developed turbulent with different Froude numbers, which determine the regime of the helium outflow in the air. The processes of stratification and erosion of helium stratified layer were investigated. The study includes some results of OECD/NEA-PSI PANDA benchmark and some results of Gamelan project. An analysis of applicability of various turbulence models, which are used to close the system of equations of momentum transport, implemented in the commercial codes STAR CD, STAR CCM+, ANSYS CFX, was conducted for different mesh types (polyhedral and hexahedral). A comparison of computational studies results with experimental data showed a good agreement. In particular, for transition and turbulent regimes the error of the numerical results lies in the range from 5 to 15% for all turbulence models considered. This indicates applicability of the methods considered for some hydrogen safety problems. However, it should be noted that more validation research should be made to use CFD in Hydrogen safety applications with a wide

  2. Final Report: Metal Perhydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    H molecule contains one hydrogen atom because the valence of a Li ion is +1. One MgH2 molecule contains two hydrogen atoms because the valence of a Mg ion is +2. In metal perhydrides, a molecule could contain more hydrogen atoms than expected based on the metal valance, i.e. LiH1+n and MgH2+n (n is equal to or greater than 1). When n is sufficiently high, there will be plenty of hydrogen storage capacity to meet future requirements. The existence of hydrogen clusters, Hn+ (n = 5, 7, 9, 11, 13, 15) and transition metal ion-hydrogen clusters, M+(H2)n (n = 1-6), such as Sc(H2)n+, Co(H2)n+, etc., have assisted the development of this concept. Clusters are not stable species. However, their existence stimulates our approach on using electric charges to enhance the hydrogen adsorption in a hydrogen storage system in this study. The experimental and modeling work to verify it are reported here. Experimental work included the generation of cold hydrogen plasma through a microwave approach, synthesis of sorbent materials, design and construction of lab devices, and the determination of hydrogen adsorption capacities on various sorbent materials under various electric field potentials and various temperatures. The results consistently show that electric potential enhances the adsorption of hydrogen on sorbents. NiO, MgO, activated carbon, MOF, and MOF and platinum coated activated carbon are some of the materials studied. Enhancements up to a few hundred percents have been found. In general, the enhancement increases with the electrical potential, the pressure applied, and the temperature lowered. Theoretical modeling of the hydrogen adsorption on the sorbents under the electric potential has been investigated with the density functional theory (DFT) approach. It was found that the interaction energy between hydrogen and sorbent is increased remarkably when an electric field is applied. This increase of binding energy offers a potential solution for DOE when looking for a compromise

  3. Molecular dynamics investigation of the physisorption and interfacial characteristics of NBR chains on carbon nanotubes with different characteristics

    Directory of Open Access Journals (Sweden)

    Kun Li

    2017-07-01

    Full Text Available The present study investigates the physisorption and interfacial interactions between multiwalled carbon nanotubes (MWNTs with different characteristics, including different numbers of walls and different functional groups, and acrylonitrile-butadiene rubber (NBR polymer chains based on molecular dynamics simulations performed using modeled MWNT/NBR compound systems. The effects of the initial orientation of NBR chains and their relative distances to nanotubes, number of nanotube layers, and the surface functional groups of nanotubes on nanotube/polymer interactions are examined. Analysis is conducted according to the final configuration obtained in conjunction with the binding energy (Eb, radius of gyration (Rg and end-to-end distance (h. The results show that the final conformations of NBR chains adsorbed on MWNT surfaces is associated with the initial relative angle of the NBR chains and their distance from the nanotubes. For non-functionalized MWNTs, Eb is almost directly proportional to Rg under equivalent parameters. Moreover, it is observed that functional groups hinder the wrapping of NBR chains on the MWNT surfaces. This indicates that functional groups do not always benefit the macro-mechanical properties of the composites. Moreover, the type of the major interaction force has been dramatically changed into electrostatic force from vdW force because of functionalization.

  4. Molecular dynamics investigation of the physisorption and interfacial characteristics of NBR chains on carbon nanotubes with different characteristics

    Science.gov (United States)

    Li, Kun; Gu, Boqin

    2017-07-01

    The present study investigates the physisorption and interfacial interactions between multiwalled carbon nanotubes (MWNTs) with different characteristics, including different numbers of walls and different functional groups, and acrylonitrile-butadiene rubber (NBR) polymer chains based on molecular dynamics simulations performed using modeled MWNT/NBR compound systems. The effects of the initial orientation of NBR chains and their relative distances to nanotubes, number of nanotube layers, and the surface functional groups of nanotubes on nanotube/polymer interactions are examined. Analysis is conducted according to the final configuration obtained in conjunction with the binding energy (Eb), radius of gyration (Rg) and end-to-end distance (h). The results show that the final conformations of NBR chains adsorbed on MWNT surfaces is associated with the initial relative angle of the NBR chains and their distance from the nanotubes. For non-functionalized MWNTs, Eb is almost directly proportional to Rg under equivalent parameters. Moreover, it is observed that functional groups hinder the wrapping of NBR chains on the MWNT surfaces. This indicates that functional groups do not always benefit the macro-mechanical properties of the composites. Moreover, the type of the major interaction force has been dramatically changed into electrostatic force from vdW force because of functionalization.

  5. Modeling of hydrogen induced cold cracking in a ferritic steel

    International Nuclear Information System (INIS)

    Chen, Qianqiang

    2015-01-01

    This thesis is aimed at studying the hydrogen induced cold cracking (HICC) in the heated affected zone (HAZ) of weldments and at proposing a criterion to predict this phenomenon. HICC is attributable to three factors: i) a susceptible microstructure; ii) hydrogen concentration; and iii) a critical stress. To this end, first tensile tests on smooth specimens charged with hydrogen were performed to investigate hydrogen embrittlement of martensite. According to these results, a ductile-brittle damage model is proposed in order to establish a HICC criterion. In order to validate this criterion, we performed the modified Tekken tests. The Tekken test was chosen because one can control the welding parameters in order to induce cold cracking. The modified Tekken tests have then been modeled using a fully coupled thermo-metallo-mechanical-diffusion model using the finite element method. This model allows to compute martensite's portion, residual stress level and hydrogen concentration in the HAZ. By applying the HICC criterion to these tests, cold cracking phenomenon has been correctly predicted. (author)

  6. A model for the physical adsorption of atomic hydrogen

    NARCIS (Netherlands)

    Bruch, L.W.; Ruijgrok, Th.W.

    1979-01-01

    The formation of the holding potential of physical adsorption is studied with a model in which a hydrogen atom interacts with a perfectly imaging substrate bounded by a sharp planar surface; the exclusion of the atomic electron from the substrate is an important boundary condition in the model. The

  7. Precipitation of metal sulphides using gaseous hydrogen sulphide: mathematical modelling

    NARCIS (Netherlands)

    Al Tarazi, M.Y.M.; Heesink, Albertus B.M.; Versteeg, Geert

    2004-01-01

    A mathematical model has been developed that describes the precipitation of metal sulffides in an aqueous solution containing two different heavy metal ions. The solution is assumed to consist of a well-mixed bulk and a boundary layer that is contacted with hydrogen sulphide gas. The model makes use

  8. Precipitation of metal sulphides using gaseous hydrogen sulphide : mathematical modelling

    NARCIS (Netherlands)

    Tarazi, Mousa Al-; Heesink, A. Bert M.; Versteeg, Geert F.

    2004-01-01

    A mathematical model has been developed that describes the precipitation of metal sulphides in an aqueous solution containing two different heavy metal ions. The solution is assumed to consist of a well-mixed bulk and a boundary layer that is contacted with hydrogen sulphide gas. The model makes use

  9. Role of physisorption states in molecular scattering: a semilocal density-functional theory study on O2/Ag(111).

    Science.gov (United States)

    Goikoetxea, I; Meyer, J; Juaristi, J I; Alducin, M; Reuter, K

    2014-04-18

    We simulate the scattering of O2 from Ag(111) with classical dynamics simulations performed on a six-dimensional potential energy surface calculated within semilocal density-functional theory. The enigmatic experimental trends that originally required the conjecture of two types of repulsive walls, arising from a physisorption and chemisorption part of the interaction potential, are fully reproduced. Given the inadequate description of the physisorption properties in semilocal density-functional theory, our work casts severe doubts on the prevalent notion to use molecular scattering data as indirect evidence for the existence of such states.

  10. The electrochemistry and modelling of hydrogen storage materials

    International Nuclear Information System (INIS)

    Kalisvaart, W.P.; Vermeulen, P.; Ledovskikh, A.V.; Danilov, D.; Notten, P.H.L.

    2007-01-01

    Mg-based alloys are promising hydrogen storage materials because of the high gravimetric energy density of MgH 2 (7.6 wt.%). A major disadvantage, however, is its very slow desorption kinetics. It has been argued that, in contrast to the well-known rutile-structured Mg hydride, hydrided Mg-transition metal alloys have a much more open crystal structure facilitating faster hydrogen transport. In this paper, the electrochemical aspects of new Mg-Sc and Mg-Ti materials will be reviewed. Storage capacities as high as 6.5 wt.% hydrogen have been reached with very favourable discharge kinetics. A theoretical description of hydrogen storage materials has also been developed by our group. A new lattice gas model is presented and successfully applied to simulate the thermodynamic properties of various hydride-forming materials. The simulation results are expressed by parameters corresponding to several energy contributions, for example mutual atomic hydrogen interaction energies. A good fit of the lattice gas model to the experimental data is found in all cases

  11. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  12. A model for vented deflagration of hydrogen in a volume

    International Nuclear Information System (INIS)

    Mulpuru, S.R.; Wilkin, G.B.

    1982-02-01

    A simple model was constructed to predict the property transients resulting from the deflagration of a combustible mixture in a sphere or cylinder with venting of the gas mixture to the environment. A computer program VENT, was written to solve the model equation. The model will be particularly useful for studying hydrogen burning effects in loss-of-coolant plus losss of emergency coolant accidents in CANDU reactors

  13. A distributed dynamic model of a monolith hydrogen membrane reactor

    International Nuclear Information System (INIS)

    Michelsen, Finn Are; Wilhelmsen, Øivind; Zhao, Lei; Aasen, Knut Ingvar

    2013-01-01

    Highlights: ► We model a rigorous distributed dynamic model for a HMR unit. ► The model includes enough complexity for steady-state and dynamic analysis. ► Simulations show that the model is non-linear within the normal operating range. ► The model is useful for studying and handling disturbances such as inlet changes and membrane leakage. - Abstract: This paper describes a distributed mechanistic dynamic model of a hydrogen membrane reformer unit (HMR) used for methane steam reforming. The model is based on a square channel monolith structure concept, where air flows adjacent to a mix of natural gas and water distributed in a chess pattern of channels. Combustion of hydrogen gives energy to the endothermic steam reforming reactions. The model is used for both steady state and dynamic analyses. It therefore needs to be computationally attractive, but still include enough complexity to study the important steady state and dynamic features of the process. Steady-state analysis of the model gives optimum for the steam to carbon and steam to oxygen ratios, where the conversion of methane is 92% and the hydrogen used as energy for the endothermic reactions is 28% at the nominal optimum. The dynamic analysis shows that non-linear control schemes may be necessary for satisfactory control performance

  14. Modeling of electrochemical hydrogen storage in metal hydride electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2010-01-01

    The recently presented Electrochemical Kinetic Model (EKM), describing the electrochemical hydrogen storage in hydride-forming materials, has been extended by the description of the solid/electrolyte interface, i.e. the charge transfer kinetics and electrical double layer charging. A complete set of

  15. Modeling of electrochemical hydrogen storage in metal hydride electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2010-01-01

    The recently presented electrochemical kinetic model, describing the electrochemical hydrogen storage in hydride-forming materials, was extended by the description of the solid/electrolyte interface, i.e., the charge-transfer kinetics and electrical double-layer charging. A complete set of equations

  16. Two-phase model of hydrogen transport to optimize nanoparticle catalyst loading for hydrogen evolution reaction

    DEFF Research Database (Denmark)

    Kemppainen, Erno; Halme, Janne; Hansen, Ole

    2016-01-01

    is the evolution and transport of gaseous H2, since HER leads to the continuous formation of H2 bubbles near the electrode. We present a numerical model that includes the transport of both gaseous and dissolved H2, as well as mass exchange between them, and combine it with a kinetic model of HER at platinum (Pt......) nanoparticle electrodes. We study the effect of the diffusion layer thickness and H2 dissolution rate constant on the importance of gaseous transport, and the effect of equilibrium hydrogen coverage and Pt loading on the kinetic and mass transport overpotentials. Gaseous transport becomes significant when...

  17. Partially collisional model of the Titan hydrogen torus

    International Nuclear Information System (INIS)

    Hilton, D.A.

    1987-01-01

    A numerical model was developed for atomic hydrogen densities in the Titan hydrogen torus. The effects of occasional collisions were included in order to accurately simulate physical conditions inferred from the Voyager 1 and 2 Ultraviolet Spectrometer (UVS) results of Broadfoot et al. (1981) and Sandel et al. (1982). The model employed Lagrangian perturbation of orbital elements of hydrogen atoms launched from Titan and Monte Carlo simulation of collisions and loss mechanisms. The torus is found to be azimuthally symmetric with the density sharply peaked at Titan's orbit, and decreasing rapidly in the outward and perpendicular directions and more gradually inward from 17 to 5 R/sub s/. The energetic hydrogen atoms from Saturn's upper atmosphere, first predicted by Shemansky and Smith (1982), were also investigated. Collisions of these Saturnian atoms with the torus population do not contribute to the torus density, and will lead to a net loss of torus atoms if their launch speeds from Saturn extend above 40 km/sec. The Saturnian atoms produce a corona which was modeled using the theory of Chamberlain (1963)

  18. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  19. Hydrodynamic model of hydrogen-flame propagation in reactor vessels

    International Nuclear Information System (INIS)

    Baer, M.R.; Ratzel, A.C.

    1982-01-01

    A hydrodynamic model for hydrogen flame propagation in reactor geometries is presented. This model is consistent with the theory of slow combustion in which the gasdynamic field equations are treated in the limit of small Mach numbers. To the lowest order, pressure is spatially uniform. The flame is treated as a density and entropy discontinuity which propagates at prescribed burning velocities, corresponding to laminar or turbulent flames. Radiation cooling of the burned combustion gases and possible preheating of the unburned gases during propagation of the flame is included using a molecular gas-band thermal radiation model. Application of this model has been developed for 1-D variable area flame propagation. Multidimensional effects induced by hydrodynamics and buoyancy are introduced as a correction to the burn velocity (which reflects a modification of planar flame surface to a distorted surface) using experimentally measured pressure-rise time data for hydrogen/air deflagrations in cylindrical vessels

  20. Theoretical study of molecular hydrogen and spiltover hydrogen storage on two-dimensional covalent-organic frameworks

    International Nuclear Information System (INIS)

    Liu Xiu-Ying; He Jie; Yu Jing-Xin; Fan Zhi-Qin; Li Zheng-Xin

    2014-01-01

    Molecular hydrogen and spiltover hydrogen storages on five two-dimensional (2D) covalent-organic frameworks (COFs) (PPy-COF, TP-COF, BTP-COF, COF-18 Å, and HHTP-DPB COF) are investigated using the grand canonical Monte Carlo (GCMC) simulations and the density functional theory (DFT), respectively. The GCMC simulated results show that HHTP-DPB COF has the best performance for hydrogen storage, followed by BTP-COF, TP-COF, COF-18 Å, and PPy-COF. However, their adsorption amounts at room temperature are all too low to meet the uptake target set by US Department of Energy (US-DOE) and enable practical applications. The effects of pore size, surface area, and isosteric heat of hydrogen on adsorption amount are considered, which indicate that these three factors are all the important factors for determining the H 2 adsorption amount. The chemisorptions of spiltover hydrogen atoms on these five COFs represented by the cluster models are investigated using the DFT method. The saturation cluster models are constructed by considering all possible adsorption sites for these cluster models. The average binding energy of a hydrogen atom and the saturation hydrogen storage density are calculated. The large average binding energy indicates that the spillover process may proceed smoothly and reversibly. The saturation hydrogen storage density is much larger than the physisorption uptake of H 2 molecules at 298 K and 100 bar (1 bar = 10 5 Pa), and is close to or exceeds the 2010 US-DOE target of 6 wt% for hydrogen storage. This suggests that the hydrogen storage capacities of these COFs by spillover may be significantly enhanced. Thus 2D COFs studied in this paper are suitable hydrogen storage media by spillover

  1. Hydrogen modelling for vitrified wastes repository

    International Nuclear Information System (INIS)

    Voinis, S.; Breton, J.

    1992-01-01

    Safety assessments for High Level Wastes (HLW) have led ANDRA (Agence Nationale pour la gestion des Dechets Radioactifs) to study the occurrence of a gas production rate in a repository. This paper deals with the description of an analytical model used for the gas production rate assessment and brings us the first results. The geometry used is restrained to a single borehole associated with a drift in a crystalline formation. Different concepts were studied in this assessment. First results have been obtained. For example, in the case of a permeable plug, the saturation time of the borehole is about 300 years. 5 refs., 5 figs

  2. An effective finite element model for the prediction of hydrogen induced cracking in steel pipelines

    KAUST Repository

    Traidia, Abderrazak; Alfano, Marco; Lubineau, Gilles; Duval, Sé bastien; Sherik, Abdelmounam M.

    2012-01-01

    This paper presents a comprehensive finite element model for the numerical simulation of Hydrogen Induced Cracking (HIC) in steel pipelines exposed to sulphurous compounds, such as hydrogen sulphide (H2S). The model is able to mimic the pressure

  3. Development of hydrogen combustion analysis model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Tae Jin; Lee, K. D.; Kim, S. N. [Soongsil University, Seoul (Korea, Republic of); Hong, J. S.; Kwon, H. Y. [Seoul National Polytechnic University, Seoul (Korea, Republic of); Kim, Y. B.; Kim, J. S. [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    The objectives of this project is to construct a credible DB for component reliability by developing methodologies and computer codes for assessing component independent failure and common cause failure probability, incorporating applicability and dependency of the data. In addition to this, the ultimate goal is to systematize all the analysis procedures so as to provide plans for preventing component failures by employing flexible tools for the change of specific plant or data sources. For the first subject, we construct a DB for similarity index and dependence matrix and propose a systematic procedure for data analysis by investigating the similarity and redundancy of the generic data sources. Next, we develop a computer code for this procedure and construct reliability data base for major components. The second subject is focused on developing CCF procedure for assessing the plant specific defense ability, rather than developing another CCF model. We propose a procedure and computer code for estimating CCF event probability by incorporating plant specific defensive measure. 116 refs., 25 tabs., 24 figs. (author)

  4. DFT Study of PH3 Physisorption and Chemisorptions on Boron Nitride Nanotubes

    Science.gov (United States)

    Rakhshi, Mahdi; Mohsennia, Mohsen; Rasa, Hossein

    2018-03-01

    The adsorption of PH3 molecules on the NiB,N-doped(4,4) and (5,5) BNNTS surfaces has been investigated using density functional theory (DFT). The adsorption energies, geometric and electronic structures of the adsorbed systems were studied to judge the possible application of NiB,N-doped BNNTS in PH3 monitoring systems. Our calculated results showed that NiB,N-doped BNNTS had much higher adsorption energy and shorter binding distances than pure BNNTS owning to chemisorptions of the PH3 molecule. The obtained density of states (DOS) and frontier orbitals demonstrated that the orbital hybridization was obvious between the PH3 molecule and NiB,N-doped BNNTS. However, due to weak physisorption according to the total electron density maps, there was no evidence for hybridization between PH3 molecule and pure BNNTS. It was shown that after doping of Ni atom, the primary symmetry of BNNTS decreased which enhanced the chemical activity of BNNTS towards PH3 molecules. According to the obtained results, we highlight the high potential application of NiB,N-doped BNNTS in the design and fabrication of PH3 sensing devices.

  5. Quasi physisorptive two dimensional tungsten oxide nanosheets with extraordinary sensitivity and selectivity to NO2.

    Science.gov (United States)

    Khan, Hareem; Zavabeti, Ali; Wang, Yichao; Harrison, Christopher J; Carey, Benjamin J; Mohiuddin, Md; Chrimes, Adam F; De Castro, Isabela Alves; Zhang, Bao Yue; Sabri, Ylias M; Bhargava, Suresh K; Ou, Jian Zhen; Daeneke, Torben; Russo, Salvy P; Li, Yongxiang; Kalantar-Zadeh, Kourosh

    2017-12-14

    Attributing to their distinct thickness and surface dependent physicochemical properties, two dimensional (2D) nanostructures have become an area of increasing interest for interfacial interactions. Effectively, properties such as high surface-to-volume ratio, modulated surface activities and increased control of oxygen vacancies make these types of materials particularly suitable for gas-sensing applications. This work reports a facile wet-chemical synthesis of 2D tungsten oxide nanosheets by sonication of tungsten particles in an acidic environment and thermal annealing thereafter. The resultant product of large nanosheets with intrinsic substoichiometric properties is shown to be highly sensitive and selective to nitrogen dioxide (NO 2 ) gas, which is a major pollutant. The strong synergy between polar NO 2 molecules and tungsten oxide surface and also abundance of active surface sites on the nanosheets for molecule interactions contribute to the exceptionally sensitive and selective response. An extraordinary response factor of ∼30 is demonstrated to ultralow 40 parts per billion (ppb) NO 2 at a relatively low operating temperature of 150 °C, within the physisorption temperature band for tungsten oxide. Selectivity to NO 2 is demonstrated and the theory behind it is discussed. The structural, morphological and compositional characteristics of the synthesised and annealed materials are extensively characterised and electronic band structures are proposed. The demonstrated 2D tungsten oxide based sensing device holds the greatest promise for producing future commercial low-cost, sensitive and selective NO 2 gas sensors.

  6. Physisorption of an electron in deep surface potentials off a dielectric surface

    International Nuclear Information System (INIS)

    Heinisch, R. L.; Bronold, F. X.; Fehske, H.

    2011-01-01

    We study phonon-mediated adsorption and desorption of an electron at dielectric surfaces with deep polarization-induced surface potentials where multiphonon transitions are responsible for electron energy relaxation. Focusing on multiphonon processes due to the nonlinearity of the coupling between the external electron and the acoustic bulk phonon triggering the transitions between surface states, we calculate electron desorption times for graphite, MgO, CaO, Al 2 O 3 , and SiO 2 and electron sticking coefficients for Al 2 O 3 , CaO, and SiO 2 . To reveal the kinetic stages of electron physisorption, we moreover study the time evolution of the image-state occupancy and the energy-resolved desorption flux. Depending on the potential depth and the surface temperature, we identify two generic scenarios: (i) adsorption via trapping in shallow image states followed by relaxation to the lowest image state and desorption from that state via a cascade through the second strongly bound image state in not too deep potentials, and (ii) adsorption via trapping in shallow image states but followed by a relaxation bottleneck retarding the transition to the lowest image state and desorption from that state via a one-step process to the continuum in deep potentials.

  7. Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications

    Directory of Open Access Journals (Sweden)

    Christopher Winnefeld

    2018-01-01

    Full Text Available In the near future, the challenges to reduce the economic and social dependency on fossil fuels must be faced increasingly. A sustainable and efficient energy supply based on renewable energies enables large-scale applications of electro-fuels for, e.g., the transport sector. The high gravimetric energy density makes liquefied hydrogen a reasonable candidate for energy storage in a light-weight application, such as aviation. Current aircraft structures are designed to accommodate jet fuel and gas turbines allowing a limited retrofitting only. New designs, such as the blended-wing-body, enable a more flexible integration of new storage technologies and energy converters, e.g., cryogenic hydrogen tanks and fuel cells. Against this background, a tank-design model is formulated, which considers geometrical, mechanical and thermal aspects, as well as specific mission profiles while considering a power supply by a fuel cell. This design approach enables the determination of required tank mass and storage density, respectively. A new evaluation value is defined including the vented hydrogen mass throughout the flight enabling more transparent insights on mass shares. Subsequently, a systematic approach in tank partitioning leads to associated compromises regarding the tank weight. The analysis shows that cryogenic hydrogen tanks are highly competitive with kerosene tanks in terms of overall mass, which is further improved by the use of a fuel cell.

  8. Seasonal storage and alternative carriers: A flexible hydrogen supply chain model

    International Nuclear Information System (INIS)

    Reuß, M.; Grube, T.; Robinius, M.; Preuster, P.; Wasserscheid, P.; Stolten, D.

    2017-01-01

    Highlights: •Techno-economic model of future hydrogen supply chains. •Implementation of liquid organic hydrogen carriers into a hydrogen mobility analysis. •Consideration of large-scale seasonal storage for fluctuating renewable hydrogen production. •Implementation of different technologies for hydrogen storage and transportation. -- Abstract: A viable hydrogen infrastructure is one of the main challenges for fuel cells in mobile applications. Several studies have investigated the most cost-efficient hydrogen supply chain structure, with a focus on hydrogen transportation. However, supply chain models based on hydrogen produced by electrolysis require additional seasonal hydrogen storage capacity to close the gap between fluctuation in renewable generation from surplus electricity and fuelling station demand. To address this issue, we developed a model that draws on and extends approaches in the literature with respect to long-term storage. Thus, we analyse Liquid Organic Hydrogen Carriers (LOHC) and show their potential impact on future hydrogen mobility. We demonstrate that LOHC-based pathways are highly promising especially for smaller-scale hydrogen demand and if storage in salt caverns remains uncompetitive, but emit more greenhouse gases (GHG) than other gaseous or hydrogen ones. Liquid hydrogen as a seasonal storage medium offers no advantage compared to LOHC or cavern storage since lower electricity prices for flexible operation cannot balance the investment costs of liquefaction plants. A well-to-wheel analysis indicates that all investigated pathways have less than 30% GHG-emissions compared to conventional fossil fuel pathways within a European framework.

  9. Modelling of hydrogen deflagration in vessels using GOTHIC

    International Nuclear Information System (INIS)

    Wang, L.L.; Wong, R.C.; Fluke, R.J.

    1997-01-01

    Simulations of hydrogen deflagration tests were performed using the discrete lumpedparameter bum model of the computer code GOTHIC. The tests were performed in small and large scale spherical vessels and a cylindrical vessel. The small vessel cases included the effects of venting, and the cylindrical tests included the effects of obstacles. The simulations were performed by sub-dividing the volumes into either five or ten 'cells', and parameters such as flame speed and hydrogen concentration were varied. Measured flame speeds were used in the simulations and the results were compared to simulations using the code 'default' flame speed. The calculated pressure transients compared well with the experimental results using the measured flame speeds in the simulations of unvented cases, whereas for vented cases, the predicted peak pressures were generally less than the measurements. However, when the code default flame speed is used, the predicted peak pressures were more consistent and generally conservative when compared with the measurements. When the default flame speeds were used for vessels without obstacles, the peak pressures obtained were higher and the bum times were shorter than the experimental measurements. This was probably due to the basis for the correlations used for default flame speed in the bum model. These correlations were derived from intermediate-scale experiments for hydrogen combustion in relatively turbulent (fans on) environments. For vessels without obstacles, laminar flame speeds were more likely. Hence, the predicted peak pressures would be expected to be higher than the experimental results. In order to account for the degree of turbulence and flame acceleration caused by the presence of obstacles, higher than default flame speeds were used in the simulation of the vessel with obstacles. It was found that twice the default flame speed provided predictions of peak pressures comparable to the measurements. Based on the simulations conducted

  10. The interstellar carbonaceous aromatic matter as a trap for molecular hydrogen

    Science.gov (United States)

    Pauzat, F.; Lattelais, M.; Ellinger, Y.; Minot, C.

    2011-04-01

    We report a theoretical study of the physisorption of molecular hydrogen, H2, on a major component of the interstellar dust, namely, the polyaromatic carbonaceous grains. Going beyond the model of the polycyclic aromatic hydrocarbon freeflyers and its theoretical treatment within the super molecule approach, we consider the graphene surface in a Density Functional Theory periodic approach using plane-wave expansions. The physisorption energy of isolated H2 on that flat and rigid support is determined to be attractive by ˜0.75 kcal mol-1 and practically independent of the orientation with respect to the infinite surface. Since this energy is also not affected by the position (over a ring centre, a carbon atom or the middle of a carbon-carbon bond), we can conclude that H2 is able to move freely like a ball rolling on the graphene support. We also investigate the conditions for multiple physisorption. It leads to a monolayer of H2 molecules where the corresponding interaction energy per H2 amounts to a potential depth of ˜1 kcal mol-1, close to the available experimental estimates ranging from 1.1 to 1.2 kcal mol-1. We show that the most energetically favourable coverage, which corresponds to an arrangement of the H2 molecules, the closest possible to the dimer configuration, leads to a surface density of ˜0.8 × 1015 molecule cm-2. Finally, assuming that 15-20 per cent of the interstellar carbon is locked in aromatic systems, one obtains ˜10-5 of the interstellar hydrogen trapped as H2 on such types of surfaces.

  11. Relative efficiency of hydrogen technologies for the hydrogen economy : a fuzzy AHP/DEA hybrid model approach

    International Nuclear Information System (INIS)

    Lee, S.

    2009-01-01

    As a provider of national energy security, the Korean Institute of Energy Research is seeking to establish a long term strategic technology roadmap for a hydrogen-based economy. This paper addressed 5 criteria regarding the strategy, notably economic impact, commercial potential, inner capacity, technical spinoff, and development cost. The fuzzy AHP and DEA hybrid model were used in a two-stage multi-criteria decision making approach to evaluate the relative efficiency of hydrogen technologies for the hydrogen economy. The fuzzy analytic hierarchy process reflects the uncertainty of human thoughts with interval values instead of clear-cut numbers. It therefore allocates the relative importance of 4 criteria, notably economic impact, commercial potential, inner capacity and technical spin-off. The relative efficiency of hydrogen technologies for the hydrogen economy can be measured via data envelopment analysis. It was concluded that the scientific decision making approach can be used effectively to allocate research and development resources and activities

  12. Relative efficiency of hydrogen technologies for the hydrogen economy : a fuzzy AHP/DEA hybrid model approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of). Energy Policy Research Division; Mogi, G. [Tokyo Univ., (Japan). Dept. of Technology Management for Innovation, Graduate School of Engineering; Kim, J. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of)

    2009-07-01

    As a provider of national energy security, the Korean Institute of Energy Research is seeking to establish a long term strategic technology roadmap for a hydrogen-based economy. This paper addressed 5 criteria regarding the strategy, notably economic impact, commercial potential, inner capacity, technical spinoff, and development cost. The fuzzy AHP and DEA hybrid model were used in a two-stage multi-criteria decision making approach to evaluate the relative efficiency of hydrogen technologies for the hydrogen economy. The fuzzy analytic hierarchy process reflects the uncertainty of human thoughts with interval values instead of clear-cut numbers. It therefore allocates the relative importance of 4 criteria, notably economic impact, commercial potential, inner capacity and technical spin-off. The relative efficiency of hydrogen technologies for the hydrogen economy can be measured via data envelopment analysis. It was concluded that the scientific decision making approach can be used effectively to allocate research and development resources and activities.

  13. Modeling Hydrogen Refueling Infrastructure to Support Passenger Vehicles †

    Directory of Open Access Journals (Sweden)

    Matteo Muratori

    2018-05-01

    Full Text Available The year 2014 marked hydrogen fuel cell electric vehicles (FCEVs first becoming commercially available in California, where significant investments are being made to promote the adoption of alternative transportation fuels. A refueling infrastructure network that guarantees adequate coverage and expands in line with vehicle sales is required for FCEVs to be successfully adopted by private customers. In this paper, we provide an overview of modelling methodologies used to project hydrogen refueling infrastructure requirements to support FCEV adoption, and we describe, in detail, the National Renewable Energy Laboratory’s scenario evaluation and regionalization analysis (SERA model. As an example, we use SERA to explore two alternative scenarios of FCEV adoption: one in which FCEV deployment is limited to California and several major cities in the United States; and one in which FCEVs reach widespread adoption, becoming a major option as passenger vehicles across the entire country. Such scenarios can provide guidance and insights for efforts required to deploy the infrastructure supporting transition toward different levels of hydrogen use as a transportation fuel for passenger vehicles in the United States.

  14. Reaction-diffusion modeling of hydrogen in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Wensing, Mirko; Matveev, Dmitry; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik (Germany)

    2016-07-01

    Beryllium will be used as first-wall material for the future fusion reactor ITER as well as in the breeding blanket of DEMO. In both cases it is important to understand the mechanisms of hydrogen retention in beryllium. In earlier experiments with beryllium low-energy binding states of hydrogen were observed by thermal desorption spectroscopy (TDS) which are not yet well understood. Two candidates for these states are considered: beryllium-hydride phases within the bulk and surface effects. The retention of deuterium in beryllium is studied by a reaction rate approach using a coupled reaction diffusion system (CRDS)-model relying on ab initio data from density functional theory calculations (DFT). In this contribution we try to assess the influence of surface recombination.

  15. The Inverse Problem of Identification of Hydrogen Permeability Model

    Directory of Open Access Journals (Sweden)

    Yury V. Zaika

    2018-01-01

    Full Text Available One of the technological challenges for hydrogen materials science is the currently active search for structural materials with important applications (including the ITER project and gas-separation plants. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones. The article presents boundary value problems of hydrogen permeability and thermal desorption with dynamical boundary conditions. A numerical method is developed for TDS spectrum simulation, where only integration of a nonlinear system of low order ordinary differential equations is required. The main final output of the article is a noise-resistant algorithm for solving the inverse problem of parametric identification for the aggregated experiment where desorption and diffusion are dynamically interrelated (without the artificial division of studies into the diffusion limited regime (DLR and the surface limited regime (SLR.

  16. Hydrogen combustion modelling in large-scale geometries

    International Nuclear Information System (INIS)

    Studer, E.; Beccantini, A.; Kudriakov, S.; Velikorodny, A.

    2014-01-01

    Hydrogen risk mitigation issues based on catalytic recombiners cannot exclude flammable clouds to be formed during the course of a severe accident in a Nuclear Power Plant. Consequences of combustion processes have to be assessed based on existing knowledge and state of the art in CFD combustion modelling. The Fukushima accidents have also revealed the need for taking into account the hydrogen explosion phenomena in risk management. Thus combustion modelling in a large-scale geometry is one of the remaining severe accident safety issues. At present day there doesn't exist a combustion model which can accurately describe a combustion process inside a geometrical configuration typical of the Nuclear Power Plant (NPP) environment. Therefore the major attention in model development has to be paid on the adoption of existing approaches or creation of the new ones capable of reliably predicting the possibility of the flame acceleration in the geometries of that type. A set of experiments performed previously in RUT facility and Heiss Dampf Reactor (HDR) facility is used as a validation database for development of three-dimensional gas dynamic model for the simulation of hydrogen-air-steam combustion in large-scale geometries. The combustion regimes include slow deflagration, fast deflagration, and detonation. Modelling is based on Reactive Discrete Equation Method (RDEM) where flame is represented as an interface separating reactants and combustion products. The transport of the progress variable is governed by different flame surface wrinkling factors. The results of numerical simulation are presented together with the comparisons, critical discussions and conclusions. (authors)

  17. Hydrogen Macro System Model User Guide, Version 1.2.1

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.; Genung, K.; Hoseley, R.; Smith, A.; Yuzugullu, E.

    2009-07-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  18. Cellular automaton model for hydrogen transport dynamics through metallic surface

    International Nuclear Information System (INIS)

    Shimura, K.; Yamaguchi, K.; Terai, T.; Yamawaki, M.

    2002-01-01

    Hydrogen re-emission and re-combination at the surface of first wall materials are a crucial issue for the understanding of the fuel recycling and for the tritium inventory in plasma facing materials. It is know to be difficult to model the transient behaviour of those processes due to their complex time-transient nature. However, cellular automata (CA) are powerful tools to model such complex systems because of their nature of discreteness in both dependent and independent variables. Then the system can be represented by the fully local interactions between cells. For that reason, complex physical and chemical systems can be described by fairly simple manner. In this study, the kinetics of desorption of adsorbed hydrogen from an ideal metallic surface is modelled in CA. Thermal desorption is simulated with this model and the comparison with the theory of rate processes is performed to identify the validity of this model. The overall results show that this model is reasonable to express the desorption kinetics

  19. Modeling hydrogen storage in boron-substituted graphene decorated with potassium metal atoms

    CSIR Research Space (South Africa)

    Tokarev, A

    2015-03-01

    Full Text Available Boron-substituted graphene decorated with potassium metal atoms was considered as a novel material for hydrogen storage. Density functional theory calculations were used to model key properties of the material, such as geometry, hydrogen packing...

  20. Nonequilibrium thermodynamic models and applications to hydrogen plasma

    International Nuclear Information System (INIS)

    Cho, K.Y.

    1988-01-01

    A generalized multithermal equilibrium (GMTE) thermodynamic model is developed and presented with applications to hydrogen. A new chemical equilibrium equation for GMTE is obtained without the ensemble temperature concept, used by a previous MTE model. The effects of the GMTE model on the derivation and calculation of the thermodynamic, transport, and radiative properties are presented and significant differences from local thermal equilibrium (LTE) and two temperature model are discussed. When the electron translational temperature (T e ) is higher than the translational temperature of the heavy particles, the effects of hydrogen molecular species to the properties are significant at high T e compared with LTE results. The density variations of minor species are orders of magnitude with kinetic nonequilibrium at a constant electron temperature. A collisional-radiative model is also developed with the GMTE chemical equilibrium equation to study the effects of radiative transfer and the ambipolar diffusion on the population distribution of the excited atoms. The nonlocal radiative transfer effect is parameterized by an absorption factor, which is defined as a ratio of the absorbed intensity to the spontaneous emission coefficient

  1. Modelling of hydrogen deflagration in a vented vessel

    International Nuclear Information System (INIS)

    Wang, L.L.; Wong, R.C.

    1995-01-01

    Hydrogen Deflagration inside closed and vented 2.3 m diameter vessels were simulated by using the GOTHIC lumped-parameter computer code. Different cell arrangements were used in the modelling. Other parameters such as flame speed and hydrogen concentration were studied. It was found that the calculated peak pressures for cases using the experimental measured burn durations were close to the pressures measured from the experiments. When the default flame speed was used, higher peak pressure was predicted by GOTHIC. This could be explained by the the fact that the default flame speed used in the GOTHIC burn model was based on the results of a large scale test with moderate turbulence level. However, the overall results of the pressure transients were comparable with the experimental data. In addition, time and spatial convergencies of the model were also studied. The peak pressure estimated by modelling the sphere as five or more spherical cells was shown to converge to within +/- 3 percent. (author). 8 refs., 6 tabs., 9 figs

  2. Experimental study and modelling of iron ore reduction by hydrogen

    International Nuclear Information System (INIS)

    Wagner, D.

    2008-01-01

    In an effort to find new ways to drastically reduce the CO 2 emissions from the steel industry (ULCOS project), the reduction of iron ore by pure hydrogen in a shaft furnace was investigated. The work consisted of literature, experimental, and modelling studies. The chemical reaction and its kinetics were analysed on the basis of thermogravimetric experiments and physicochemical characterizations of partially reduced samples. A specific kinetic model was designed, which simulates the successive reactions, the different steps of mass transport, and possible iron sintering, at the particle scale. Finally, a 2-dimensional numerical model of a shaft furnace was developed. It depicts the variation of the solid and gas temperatures and compositions throughout the reactor. One original feature of the model is using the law of additive characteristic times for calculating the reaction rates. This allowed us to handle both the particle and the reactor scale, while keeping reasonable calculation time. From the simulation results, the influence of the process parameters was assessed. Optimal operating conditions were concluded, which reveal the efficiency of the hydrogen process. (author)

  3. Model study in chemisorption: atomic hydrogen on beryllium clusters

    International Nuclear Information System (INIS)

    Bauschlicher, C.W. Jr.

    1976-08-01

    The interaction between atomic hydrogen and the (0001) surface of Be metal has been studied by ab initio electronic structure theory. Self-consistent-field (SCF) calculations have been performed using minimum, optimized minimum, double zeta and mixed basis sets for clusters as large as 22 Be atoms. The binding energy and equilibrium geometry (the distance to the surface) were determined for 4 sites. Both spatially restricted (the wavefunction was constrained to transform as one of the irreducible representations of the molecular point group) and unrestricted SCF calculations were performed. Using only the optimized minimum basis set, clusters containing as many as 22 beryllium atoms have been investigated. From a variety of considerations, this cluster is seen to be nearly converged within the model used, providing the most reliable results for chemisorption. The site dependence of the frequency is shown to be a geometrical effect depending on the number and angle of the bonds. The diffusion of atomic hydrogen through a perfect beryllium crystal is predicted to be energetically unfavorable. The cohesive energy, the ionization energy and the singlet-triplet separation were computed for the clusters without hydrogen. These quantities can be seen as a measure of the total amount of edge effects. The chemisorptive properties are not related to the total amount of edge effects, but rather the edge effects felt by the adsorbate bonding berylliums. This lack of correlation with the total edge effects illustrates the local nature of the bonding, further strengthening the cluster model for chemisorption. A detailed discussion of the bonding and electronic structure is included. The remaining edge effects for the Be 22 cluster are discussed

  4. Modeling of hydrogen isotopes separation in a metal hydride bed

    International Nuclear Information System (INIS)

    Charton, S.; Corriou, J.P.; Schweich, D.

    1999-01-01

    A predictive model for hydrogen isotopes separation in a non-isothermal bed of unsupported palladium hydride particles is derived. It accounts for the non-linear adsorption-dissociation equilibrium, hydrodynamic dispersion, pressure drop, mass transfer kinetics, heat of sorption and heat losses at the bed wall. Using parameters from the literature or estimated with classical correlations, the model gives simulated curves in agreement with previously published experiments without any parameter fit. The non-isothermal behavior is shown to be responsible for drastic changes of the mass transfer rate which is controlled by diffusion in the solid-phase lattice. For a feed at 300 K and atmospheric pressure, the endothermic hydride-to-deuteride exchange is kinetically controlled, whereas the reverse exothermic exchange is nearly at equilibrium. Finally, a simple and efficient thermodynamic model for the dissociative equilibrium between a metal and a diatomic gas is proposed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. A simplified physics-based model for nickel hydrogen battery

    Science.gov (United States)

    Liu, Shengyi; Dougal, Roger A.; Weidner, John W.; Gao, Lijun

    This paper presents a simplified model of a nickel hydrogen battery based on a first approximation. The battery is assumed uniform throughout. The reversible potential is considered primarily due to one-electron transfer redox reaction of nickel hydroxide and nickel oxyhydroxide. The non-ideality due to phase reactions is characterized by the two-parameter activity coefficients. The overcharge process is characterized by the oxygen reaction. The overpotentials are lumped to a tunable resistive drop to fit particular battery designs. The model is implemented in the Virtual Test Bed environment, and the characteristics of the battery are simulated and in good agreement with the experimental data within the normal operating regime. The model can be used for battery dynamic simulation and design in a satellite power system, an example of which is given.

  6. Scattering, Adsorption, and Langmuir-Hinshelwood Desorption Models for Physisorptive and Chemisorptive Gas-Surface Systems

    Science.gov (United States)

    2013-09-01

    quantum effects by incorporating Zero- Point Energy ( ZPE ) in the initial conditions [19; 108]. Desorption calculations, in order to be incorporated...TST Transition State Theory TTPD Threshold Temperature-Programmed Desorption UHV Ultra-High Vacuum XHV Extreme-High Vacuum ZPE Zero-Point Energy 141

  7. Modeling of Syngas Reactions and Hydrogen Generation Over Sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Kamil Klier; Jeffery A. Spirko; Michael L. Neiman

    2002-09-17

    The objective of the research is to analyze pathways of reactions of hydrogen with oxides of carbon over sulfides, and to predict which characteristics of the sulfide catalyst (nature of metal, defect structure) give rise to the lowest barriers toward oxygenated hydrocarbon product. Reversal of these pathways entails the generation of hydrogen, which is also proposed for study. In this first year of study, adsorption reactions of H atoms and H{sub 2} molecules with MoS{sub 2}, both in molecular and solid form, have been modeled using high-level density functional theory. The geometries and strengths of the adsorption sites are described and the methods used in the study are described. An exposed MO{sup IV} species modeled as a bent MoS{sub 2} molecule is capable of homopolar dissociative chemisorption of H{sub 2} into a dihydride S{sub 2}MoH{sub 2}. Among the periodic edge structures of hexagonal MoS{sub 2}, the (1{bar 2}11) edge is most stable but still capable of dissociating H{sub 2}, while the basal plane (0001) is not. A challenging task of theoretically accounting for weak bonding of MoS{sub 2} sheets across the Van der Waals gap has been addressed, resulting in a weak attraction of 0.028 eV/MoS{sub 2} unit, compared to the experimental value of 0.013 eV/MoS{sub 2} unit.

  8. Modeling water and hydrogen networks with partitioning regeneration units

    Directory of Open Access Journals (Sweden)

    W.M. Shehata

    2015-03-01

    Full Text Available Strict environment regulations in chemical and refinery industries lead to minimize resource consumption by designing utility networks within industrial process plants. The present study proposed a superstructure based optimization model for the synthesis of water and hydrogen networks with partitioning regenerators without mixing the regenerated sources. This method determines the number of partitioning regenerators needed for the regeneration of the sources. The number of the regenerators is based on the number of sources required to be treated for recovery. Each source is regenerated in an individual partitioning regenerator. Multiple regeneration systems can be employed to achieve minimum flowrate and costs. The formulation is linear in the regenerator balance equations. The optimized model is applied for two systems, partitioning regeneration systems of the fixed outlet impurity concentration and partitioning regeneration systems of the fixed impurity load removal ratio (RR for water and hydrogen networks. Several case studies from the literature are solved to illustrate the ease and applicability of the proposed method.

  9. Thermodynamic modelling and kinetics of hydrogen absorption associated with phase transformations

    International Nuclear Information System (INIS)

    Gondor, G.; Lexcellent, Ch.

    2007-01-01

    The intermetallic are used for hydrogen pressure containers in order to avoid leaks in the case of an hybrid container. The hydrogen atoms are absorbed by the intermetallic which act as a hydrogen sponge. This hydrogen absorption must be modelled for the container design. The Pressure-composition isotherms describe the equilibrium. Out of this equilibrium the kinetics are controlled by different processes, without taking into account the phase transformations. The author presents a new model of the p-c isotherms with the hydrogen absorption kinetics. (A.L.B.)

  10. Hydrogen and Biofuels - A Modeling Analysis of Competing Energy Carriers for Western Europe

    Energy Technology Data Exchange (ETDEWEB)

    Guel, Timur; Kypreos, Socrates; Barreto, Leonardo

    2007-07-01

    This paper deals with the prospects of hydrogen and biofuels as energy carriers in the Western European transportation sector. The assessment is done by combining the US hydrogen analysis H2A models for the design of hydrogen production and delivery chains, and the Western European Hydrogen Markal Model EHM with a detailed representation of biofuels, and the European electricity and transportation sector. The paper derives policy recommendations to support the market penetration of hydrogen and biofuels, and investigates learning interactions between the different energy carriers. (auth)

  11. Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming

    International Nuclear Information System (INIS)

    Park, Jeongpil; Cho, Sunghyun; Kim, Tae-Ok; Shin, Dongil; Lee, Seunghwan; Moon, Dong Ju

    2014-01-01

    For improved sustainability of the biorefinery industry, biorefinery-byproduct glycerol is being investigated as an alternate source for hydrogen production. This research designs and optimizes a hydrogen-production process for small hydrogen stations using steam reforming of purified glycerol as the main reaction, replacing existing processes relying on steam methane reforming. Modeling, simulation and optimization using a commercial process simulator are performed for the proposed hydrogen production process from glycerol. The mixture of glycerol and steam are used for making syngas in the reforming process. Then hydrogen are produced from carbon monoxide and steam through the water-gas shift reaction. Finally, hydrogen is separated from carbon dioxide using PSA. This study shows higher yield than former U.S.. DOE and Linde studies. Economic evaluations are performed for optimal planning of constructing domestic hydrogen energy infrastructure based on the proposed glycerol-based hydrogen station

  12. Physisorption of helium on a TiO{sub 2}(110) surface: Periodic and finite cluster approaches

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Castells, Maria Pilar de, E-mail: Pilar.deLara.Castells@csic.es [Instituto de Fisica Fundamental (C.S.I.C.), Serrano 123, E-28006 Madrid (Spain); Aguirre, Nestor F. [Instituto de Fisica Fundamental (C.S.I.C.), Serrano 123, E-28006 Madrid (Spain); Mitrushchenkov, Alexander O. [Universite Paris-Est, Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee (France)

    2012-05-03

    Graphical abstract: The physisorption of helium on the TiO{sub 2}(110) surface is explored by using finite cluster and periodic approaches (see left panel). Once the basis set is specifically tailored to minimize the BSSE (rigth panel), DFT periodic calculations using the PBE functional (left panel) yield interaction potentials in good agreement with those obtained using post-HF methods as the LMP2 treatment (see left panel). Highlights: Black-Right-Pointing-Pointer He/TiO{sub 2}(110) is a simplest example of physisorption on transition-metal oxide surfaces. Black-Right-Pointing-Pointer Optimized basis sets that minimize the BSSE are better suited for physisorption problems. Black-Right-Pointing-Pointer FCI benchmarks on the He{sub 2} bound-state assess the Counterpoise scheme reliability. Black-Right-Pointing-Pointer Periodic DFT-PBE and post-HF results on H-saturated clusters compare satisfactorily. Black-Right-Pointing-Pointer Correlation energies by using embedded and H-saturated clusters agree well. - Abstract: As a proto-typical case of physisorption on an extended transition-metal oxide surface, the interaction of a helium atom with a TiO{sub 2}(110) - (1 Multiplication-Sign 1) surface is studied here by using finite cluster and periodic approaches and both wave-function-based (post-Hartree-Fock) quantum chemistry methods and density functional theory. Both classical and advanced finite cluster approaches, based on localized Wannier orbitals combined with one-particle embedding potentials, are applied to provide (reference) coupled-cluster and second-order Moeller-Plesset interaction energies. It is shown that, once the basis set is specifically tailored to minimize the basis set superposition error, periodic calculations using the Perdew-Burke-Ernzerhof functional yield short and medium-range interaction potentials in very reasonable agreement with those obtained using the correlated wave-function-based methods, while small long-range dispersion corrections

  13. Hydrogen production by the hyperthermophilic bacterium Thermotoga maritima Part II: modeling and experimental approaches for hydrogen production.

    Science.gov (United States)

    Auria, Richard; Boileau, Céline; Davidson, Sylvain; Casalot, Laurence; Christen, Pierre; Liebgott, Pierre Pol; Combet-Blanc, Yannick

    2016-01-01

    Thermotoga maritima is a hyperthermophilic bacterium known to produce hydrogen from a large variety of substrates. The aim of the present study is to propose a mathematical model incorporating kinetics of growth, consumption of substrates, product formations, and inhibition by hydrogen in order to predict hydrogen production depending on defined culture conditions. Our mathematical model, incorporating data concerning growth, substrates, and products, was developed to predict hydrogen production from batch fermentations of the hyperthermophilic bacterium, T. maritima . It includes the inhibition by hydrogen and the liquid-to-gas mass transfer of H 2 , CO 2 , and H 2 S. Most kinetic parameters of the model were obtained from batch experiments without any fitting. The mathematical model is adequate for glucose, yeast extract, and thiosulfate concentrations ranging from 2.5 to 20 mmol/L, 0.2-0.5 g/L, or 0.01-0.06 mmol/L, respectively, corresponding to one of these compounds being the growth-limiting factor of T. maritima . When glucose, yeast extract, and thiosulfate concentrations are all higher than these ranges, the model overestimates all the variables. In the window of the model validity, predictions of the model show that the combination of both variables (increase in limiting factor concentration and in inlet gas stream) leads up to a twofold increase of the maximum H 2 -specific productivity with the lowest inhibition. A mathematical model predicting H 2 production in T. maritima was successfully designed and confirmed in this study. However, it shows the limit of validity of such mathematical models. Their limit of applicability must take into account the range of validity in which the parameters were established.

  14. Importance of the Hydrogen Isocyanide Isomer in Modeling Hydrogen Cyanide Oxidation in Combustion

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2017-01-01

    Hydrogen isocyanide (HNC) has been proposed as an important intermediate in oxidation of hydrogen cyanide (HCN) in combustion, but details of its chemistry are still in discussion. At higher temperatures, HCN and HNC equilibrate rapidly, and being more reactive than HCN, HNC offers a fast alterna...... HNCO is the major consumption path for HCN. Under lean conditions, HNC is shown to be less important than indicated by the early work by Lin and co-workers, but it acts to accelerate HCN oxidation and promotes the formation of HNCO.......Hydrogen isocyanide (HNC) has been proposed as an important intermediate in oxidation of hydrogen cyanide (HCN) in combustion, but details of its chemistry are still in discussion. At higher temperatures, HCN and HNC equilibrate rapidly, and being more reactive than HCN, HNC offers a fast...

  15. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    Science.gov (United States)

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  16. Hydrogenic ionization model for mixtures in non-LTE plasmas

    International Nuclear Information System (INIS)

    Djaoui, A.

    1999-01-01

    The Hydrogenic Ionization Model for Mixtures (HIMM) is a non-Local Thermodynamic Equilibrium (non-LTE), time-dependent ionization model for laser-produced plasmas containing mixtures of elements (species). In this version, both collisional and radiative rates are taken into account. An ionization distribution for each species which is consistent with the ambient electron density is obtained by use of an iterative procedure in a single calculation for all species. Energy levels for each shell having a given principal quantum number and for each ion stage of each species in the mixture are calculated using screening constants. Steady-state non-LTE as well as LTE solutions are also provided. The non-LTE rate equations converge to the LTE solution at sufficiently high densities or as the radiation temperature approaches the electron temperature. The model is particularly useful at low temperatures where convergence problems are usually encountered in our previous models. We apply our model to typical situation in x-ray laser research, laser-produced plasmas and inertial confinement fusion. Our results compare well with previously published results for a selenium plasma. (author)

  17. Improved hydrogen combustion model for multi-compartment analysis

    International Nuclear Information System (INIS)

    Ogino, Masao; Hashimoto, Takashi

    2000-01-01

    NUPEC has been improving a hydrogen combustion model in MELCOR code for severe accident analysis. In the proposed combustion model, the flame velocity in a node was predicted using six different flame front shapes of fireball, prism, bubble, spherical jet, plane jet, and parallelepiped. A verification study of the proposed model was carried out using the NUPEC large-scale combustion test results following the previous work in which the GRS/Battelle multi-compartment combustion test results had been used. The selected test cases for the study were the premixed test and the scenario-oriented test which simulated the severe accident sequences of an actual plant. The improved MELCOR code replaced by the proposed model could predict sufficiently both results of the premixed test and the scenario-oriented test of NUPEC large-scale test. The improved MELCOR code was confirmed to simulate the combustion behavior in the multi-compartment containment vessel during a severe accident with acceptable degree of accuracy. Application of the new model to the LWR severe accident analysis will be continued. (author)

  18. Multiscale modelling of hydrogen behaviour on beryllium (0001 surface

    Directory of Open Access Journals (Sweden)

    Ch. Stihl

    2016-12-01

    Full Text Available Beryllium is proposed to be a neutron multiplier and plasma facing material in future fusion devices. Therefore, it is crucial to acquire an understanding of the microscopic mechanisms of tritium accumulation and release as a result of transmutation processes that Be undergoes under neutron irradiation. A multiscale simulation of ad- and desorption of hydrogen isotopes on the beryllium (0001 surface is developed. It consists of ab initio calculations of certain H adsorption configurations, a suitable cluster expansion approximating the energies of arbitrary configurations, and a kinetic Monte Carlo method for dynamic simulations of adsorption and desorption. The processes implemented in the kinetic Monte Carlo simulation are deduced from further ab initio calculations comprising both, static relaxation as well as molecular dynamics runs. The simulation is used to reproduce experimental data and the results are compared and discussed. Based on the observed results, proposals for a refined model are made.

  19. Theoretical maximal storage of hydrogen in zeolitic frameworks.

    Science.gov (United States)

    Vitillo, Jenny G; Ricchiardi, Gabriele; Spoto, Giuseppe; Zecchina, Adriano

    2005-12-07

    Physisorption and encapsulation of molecular hydrogen in tailored microporous materials are two of the options for hydrogen storage. Among these materials, zeolites have been widely investigated. In these materials, the attained storage capacities vary widely with structure and composition, leading to the expectation that materials with improved binding sites, together with lighter frameworks, may represent efficient storage materials. In this work, we address the problem of the determination of the maximum amount of molecular hydrogen which could, in principle, be stored in a given zeolitic framework, as limited by the size, structure and flexibility of its pore system. To this end, the progressive filling with H2 of 12 purely siliceous models of common zeolite frameworks has been simulated by means of classical molecular mechanics. By monitoring the variation of cell parameters upon progressive filling of the pores, conclusions are drawn regarding the maximum storage capacity of each framework and, more generally, on framework flexibility. The flexible non-pentasils RHO, FAU, KFI, LTA and CHA display the highest maximal capacities, ranging between 2.86-2.65 mass%, well below the targets set for automotive applications but still in an interesting range. The predicted maximal storage capacities correlate well with experimental results obtained at low temperature. The technique is easily extendable to any other microporous structure, and it can provide a method for the screening of hypothetical new materials for hydrogen storage applications.

  20. A tensegrity model for hydrogen bond networks in proteins

    OpenAIRE

    Bywater, Robert P.

    2017-01-01

    Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger − c...

  1. Hydrogen Sensors Boost Hybrids; Today's Models Losing Gas?

    Science.gov (United States)

    2005-01-01

    Advanced chemical sensors are used in aeronautic and space applications to provide safety monitoring, emission monitoring, and fire detection. In order to fully do their jobs, these sensors must be able to operate in a range of environments. NASA has developed sensor technologies addressing these needs with the intent of improving safety, optimizing combustion efficiencies, and controlling emissions. On the ground, the chemical sensors were developed by NASA engineers to detect potential hydrogen leaks during Space Shuttle launch operations. The Space Shuttle uses a combination of hydrogen and oxygen as fuel for its main engines. Liquid hydrogen is pumped to the external tank from a storage tank located several hundred feet away. Any hydrogen leak could potentially result in a hydrogen fire, which is invisible to the naked eye. It is important to detect the presence of a hydrogen fire in order to prevent a major accident. In the air, the same hydrogen-leak dangers are present. Stress and temperature changes can cause tiny cracks or holes to form in the tubes that line the Space Shuttle s main engine nozzle. Such defects could allow the hydrogen that is pumped through the nozzle during firing to escape. Responding to the challenges associated with pinpointing hydrogen leaks, NASA endeavored to improve propellant leak-detection capabilities during assembly, pre-launch operations, and flight. The objective was to reduce the operational cost of assembling and maintaining hydrogen delivery systems with automated detection systems. In particular, efforts have been focused on developing an automated hydrogen leak-detection system using multiple, networked hydrogen sensors that are operable in harsh conditions.

  2. Modeling the transport of hydrogen in the primary coolant of pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Subramanian, H.; Velmurugan, S.; Narasimhan, S.V.; Jain, A.K.; Dash, S.C.

    2008-01-01

    Heavy water (D 2 O) is used in primary heat transport systems of PHWRs. To suppress the radiolysis of heavy water and to control oxygen, hydrogen is added at regular intervals to the primary heat transport system. The added hydrogen finds it way to the heavy water storage tank after passing through the bleed condenser. Owing to the different temperatures and two phase region present in these systems, hydrogen gets redistributed. It is important to know the concentration of dissolved hydrogen in these regions in order to ensure a steady state dissolved hydrogen concentration in the primary system. Different power stations report variations in the frequency and quantity of hydrogen added to achieve the prescribed steady state level. This paper makes an attempt to account for the inventory of hydrogen and model its transport in PHT system. (author)

  3. Modeling of combustion products composition of hydrogen-containing fuels

    International Nuclear Information System (INIS)

    Assad, M.S.

    2010-01-01

    Due to the usage of entropy maximum principal the algorithm and the program of chemical equilibrium calculation concerning hydrogen--containing fuels are devised. The program enables to estimate the composition of combustion products generated in the conditions similar to combustion conditions in heat engines. The program also enables to reveal the way hydrogen fraction in the conditional composition of the hydrocarbon-hydrogen-air mixture influences the harmful components content. It is proven that molecular hydrogen in the mixture is conductive to the decrease of CO, CO 2 and CH x concentration. NO outlet increases due to higher combustion temperature and N, O, OH concentrations in burnt gases. (authors)

  4. The role of CFD combustion modeling in hydrogen safety management-II: Validation based on homogeneous hydrogen-air experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap, E-mail: sathiah@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Haren, Steven van, E-mail: vanharen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Komen, Ed, E-mail: komen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Roekaerts, Dirk, E-mail: d.j.e.m.roekaerts@tudelft.nl [Department of Multi-Scale Physics, Delft University of Technology, P.O. Box 5, 2600 AA Delft (Netherlands)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A CFD based method is proposed for the simulation of hydrogen deflagration. Black-Right-Pointing-Pointer A dynamic grid adaptation method is proposed to resolve turbulent flame brush thickness. Black-Right-Pointing-Pointer The predictions obtained using this method is in good agreement with the static grid method. Black-Right-Pointing-Pointer TFC model results are in good agreement with large-scale homogeneous hydrogen-air experiments. - Abstract: During a severe accident in a PWR, large quantities of hydrogen can be generated and released into the containment. The generated hydrogen, when mixed with air, can lead to hydrogen combustion. The dynamic pressure loads resulting from hydrogen combustion can be detrimental to the structural integrity of the reactor safety systems and the reactor containment. Therefore, accurate prediction of these pressure loads is an important safety issue. In a previous article, we presented a CFD based method to determine these pressure loads. This CFD method is based on the application of a turbulent flame speed closure combustion model. The validation analyses in our previous paper demonstrated that it is of utmost importance to apply successive mesh and time step refinement in order to get reliable results. In this article, we first determined to what extent the required computational effort required for our CFD approach can be reduced by the application of adaptive mesh refinement, while maintaining the accuracy requirements. Experiments performed within a small fan stirred explosion bomb were used for this purpose. It could be concluded that adaptive grid adaptation is a reliable and efficient method for usage in hydrogen deflagration analyses. For the two-dimensional validation analyses, the application of dynamic grid adaptation resulted in a reduction of the required computational effort by about one order of magnitude. In a second step, the considered CFD approach including adaptive

  5. CFD modelling of hydrogen stratification in enclosures: Model validation and application to PAR performance

    Energy Technology Data Exchange (ETDEWEB)

    Hoyes, J.R., E-mail: james.hoyes@hsl.gsi.gov.uk; Ivings, M.J.

    2016-12-15

    Highlights: • The ability of CFD to predict hydrogen stratification phenomena is investigated. • Contrary to expectation, simulations on tetrahedral meshes under-predict mixing. • Simulations on structured meshes give good agreement with experimental data. • CFD model used to investigate the effects of stratification on PAR performance. • Results show stratification can have a significant effect on PAR performance. - Abstract: Computational Fluid Dynamics (CFD) models are maturing into useful tools for supporting safety analyses. This paper investigates the capabilities of CFD models for predicting hydrogen stratification in a containment vessel using data from the NEA/OECD SETH2 MISTRA experiments. Further simulations are then carried out to illustrate the qualitative effects of hydrogen stratification on the performance of Passive Autocatalytic Recombiner (PAR) units. The MISTRA experiments have well-defined initial and boundary conditions which makes them well suited for use in a validation study. Results are presented for the sensitivity to mesh resolution and mesh type. Whilst the predictions are shown to be largely insensitive to the mesh resolution they are surprisingly sensitive to the mesh type. In particular, tetrahedral meshes are found to induce small unphysical convection currents that result in molecular diffusion and turbulent mixing being under-predicted. This behaviour is not unique to the CFD model used here (ANSYS CFX) and furthermore, it may affect simulations run on other non-aligned meshes (meshes that are not aligned perpendicular to gravity), including non-aligned structured meshes. Following existing best practice guidelines can help to identify potential unphysical predictions, but as an additional precaution consideration should be given to using gravity-aligned meshes for modelling stratified flows. CFD simulations of hydrogen recombination in the Becker Technologies THAI facility are presented with high and low PAR positions

  6. On order reduction in hydrogen isotope distillation models

    International Nuclear Information System (INIS)

    Sarigiannis, D.A.

    1994-01-01

    The design integration of the fuel processing system for the next generation fusion reactor plants (such as ITER and beyond) requires the enhancement of safety features related to the operation of the system. The current drive for inherent safety of hazardous chemical plants warrants the minimization of active toxic or radioactive inventories and the identification of process pathways with minimal risk of accidental or routine releases. New mathematical and numerical tools have been developed for the dynamic simulation and optimization of the safety characteristics related to tritium in all its forms in the fusion fuel processing system. The separation of hydrogen isotopes by cryogenic distillation is a key process therein, due to the importance of the separation performance for the quality of the fuel mixture and the on site inventory, the increased energy requirements for cryogenic operation, and the high order of mathematical complexity required for accurate models, able to predict the transient as well as the steady state behavior of the process. The modeling methodology described here is a part of a new dynamic simulation code that captures the inventory dynamics of all the species in the fusion fuel processing plant. The significant reduction of the computational effort and time required by this code will permit designers to easily explore a variety of design and technology options and assess their impact on the overall power plant safety

  7. Fine element (F.E.) modelling of hydrogen migration and blister formation in PHWR coolant channels

    International Nuclear Information System (INIS)

    Prasad, P.S.; Dutta, B.K.; Sinha, R.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1995-01-01

    The formation of a cold spot in pressure tube due to its contact with calandria tube of PHWR coolant results in the migration of Hydrogen in pressure tube towards contact zone from its surrounding material. A 3-D finite element code SPARSH is developed to model the hydrogen redistribution and consequent hydride blister formation due to thermal and Hydrogen concentration gradients. In the present paper, the details and performance of this code are presented. (author). 6 refs., 2 figs

  8. Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tao; Francois, Bruno [L2EP, Ecole Centrale de Lille, Cite Scientifique, BP48, 59651, Villeneuve d' Ascq (France)

    2009-01-15

    This paper gives a control oriented modeling of an electrolyzer, as well as the ancillary system for the hydrogen production process. A Causal Ordering Graph of all necessary equations has been used to illustrate the global scheme for an easy understanding. The model is capable of characterizing the relations among the different physical quantities and can be used to determine the control system ensuring efficient and reliable operation of the electrolyzer. The proposed control method can manage the power flow and the hydrogen flow. The simulation results have highlighted the variation domains and the relations among the different physical quantities. The model has also been experimentally tested in real time with a Hardware-In-the-Loop Simulation before being integrated in the test bench of the active wind energy conversion system. (author)

  9. Modelling high density phenomena in hydrogen fibre Z-pinches

    International Nuclear Information System (INIS)

    Chittenden, J.P.

    1990-09-01

    The application of hydrogen fibre Z-pinches to the study of the radiative collapse phenomenon is studied computationally. Two areas of difficulty, the formation of a fully ionized pinch from a cryogenic fibre and the processes leading to collapse termination, are addressed in detail. A zero-D model based on the energy equation highlights the importance of particle end losses and changes in the Coulomb logarithm upon collapse initiation and termination. A 1-D Lagrangian resistive MHD code shows the importance of the changing radial profile shapes, particularly in delaying collapse termination. A 1-D, three fluid MHD code is developed to model the ionization of the fibre by thermal conduction from a high temperature surface corona to the cold core. Rate equations for collisional ionization, 3-body recombination and equilibration are solved in tandem with fluid equations for the electrons, ions and neutrals. Continuum lowering is found to assist ionization at the corona-core interface. The high density plasma phenomena responsible for radiative collapse termination are identified as the self-trapping of radiation and free electron degeneracy. A radiation transport model and computational analogues for the effects of degeneracy upon the equation of state, transport coefficients and opacity are implemented in the 1-D, single fluid model. As opacity increases the emergent spectrum is observed to become increasingly Planckian and a fall off in radiative cooling at small radii and low frequencies occurs giving rise to collapse termination. Electron degeneracy terminates radiative collapse by supplementing the radial pressure gradient until the electromagnetic pinch force is balanced. Collapse termination is found to be a hybrid process of opacity and degeneracy effects across a wide range of line densities with opacity dominant at large line densities but with electron degeneracy becoming increasingly important at lower line densities. (author)

  10. Thermodynamic and kinetics models of hydrogen absorption bound to phase transformations

    International Nuclear Information System (INIS)

    Gondor, G.; Lexcellent, Ch.

    2007-01-01

    In order to design hydrogen gaseous pressure tanks, the absorption (desorption) of hydrogen has to be described and modelled. The equilibrium state can be described by the 'H 2 gas pressure - H 2 composition in the intermetallic compounds - isotherms' (PCI) curves. Several models of PCI curves already exist. At the beginning of the absorption, the hydrogen atoms and the intermetallic compounds form a solid solution (α phase). When the hydrogen concentration increases, a phase transformation appears changing the α solid solution into an hydride (β phase) (solid solution + H 2 ↔ hydride). When all the solid solution has been transformed into hydride, the absorbed hydrogen atoms are in β phase. A new thermodynamic model has been developed in order to take into account this transition phase. The equilibrium state is then given by a relation between the H 2 gas pressure and the H 2 concentration in the intermetallic compound for a fixed external temperature. Two kinetics models have been developed too; at first has been considered that the kinetics depend only of the entire concentration in the intermetallic compound and of the difference between the applied pressure and the equilibrium pressure. Then, has been considered that the hydrogen concentration changes in the metallic matrix. In this last case, for each hydrogenation process, the absorption velocity is calculated to determine the slowest local process which regulates the local evolution of the hydrogen concentration. These two models are based on the preceding thermodynamic model of the PCI curves. (O.M.)

  11. A tensegrity model for hydrogen bond networks in proteins

    Directory of Open Access Journals (Sweden)

    Robert P. Bywater

    2017-05-01

    Full Text Available Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger − covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance (“closure” is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins (“domains” as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating

  12. A tensegrity model for hydrogen bond networks in proteins.

    Science.gov (United States)

    Bywater, Robert P

    2017-05-01

    Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger - covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance ("closure") is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins ("domains") as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating elements in fibrous proteins.

  13. Modelling of fatigue crack propagation assisted by gaseous hydrogen in metallic materials

    International Nuclear Information System (INIS)

    Moriconi, C.

    2012-01-01

    Experimental studies in a hydrogenous environment indicate that hydrogen created by surface reactions, then drained into the plastic zone, leads to a modification of deformation and damage mechanisms at the fatigue crack tip in metals, resulting in a significant decrease of crack propagation resistance. This study aims at building a model of these complex phenomena in the framework of damage mechanics, and to confront it with the results of fatigue crack propagation tests in high pressure hydrogen on a 15-5PH martensitic stainless steel. To do so, a cohesive zone model was implemented in the finite element code ABAQUS. A specific traction-separation law was developed, which is suitable for cyclic loadings, and whose parameters depend on local hydrogen concentration. Furthermore, hydrogen diffusion in the bulk material takes into account the influence of hydrostatic stress and trapping. The mechanical behaviour of the bulk material is elastic-plastic. It is shown that the model can qualitatively predict crack propagation in hydrogen under monotonous loadings; then, the model with the developed traction-separation law is tested under fatigue loading. In particular, the simulated crack propagation curves without hydrogen are compared to the experimental crack propagation curves for the 15-5PH steel in air. Finally, simulated fatigue crack propagation rates in hydrogen are compared to experimental measurements. The model's ability to assess the respective contributions of the different damage mechanisms (HELP, HEDE) in the degradation of the crack resistance of the 15-5PH steel is discussed. (author)

  14. Semiempirical quantum model approach for hydrogen adsorption in ZrNi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin-Hao, E-mail: binhao17@gmail.com [Department of Energy Application Engineering, Far East University, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan, ROC (China); Huang, Chien-Chung [Department of Hydrogen Energy and Fuel Cells, Green Energy and Eco-Technology Center, ITRI, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan, ROC (China); Yeh, Yen-Lian; Jang, Ming-Jyi [Department of Automation and Control Engineering, Far East University, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan, ROC (China)

    2013-12-15

    Highlights: •The hydrogen diffusion behavior in solid ZrNi alloy performs clearly by MD. •Shear and Young’s modulus agree with the experiment study very well. •Current model can apply to hydrogen-tech material development. -- Abstract: Hydrogen storage is an important topic because of its relevance to the future energy economy. Hydrogen diffusivity in materials plays an important role in hydrogen technology both for hydrogen separation and hydrogen storage. To clarify the mechanism of the rate-controlling step, diffusion mechanism of hydrogen in metallic materials is studied by molecular dynamics method. This study performs semi-empirical-quantum molecular dynamic simulations in order to clarify hydrogen atom diffusion behavior in ZrNi alloys materials. We investigate the mechanical properties change associated with temperature variation for ZrNi base alloys and also consider the influence of materials micro-structure change of hydrogen diffusion. Finally, current work presents a theoretically prediction of dynamical diffusion coefficient to compare diffusion kinetics of crystalline and amorphous structure.

  15. Elementary Processes and Kinetic Modeling for Hydrogen and Helium Plasmas

    Directory of Open Access Journals (Sweden)

    Roberto Celiberto

    2017-05-01

    Full Text Available We report cross-sections and rate coefficients for excited states colliding with electrons, heavy particles and walls useful for the description of H 2 /He plasma kinetics under different conditions. In particular, the role of the rotational states in resonant vibrational excitations of the H 2 molecule by electron impact and the calculation of the related cross-sections are illustrated. The theoretical determination of the cross-section for the rovibrational energy exchange and dissociation of H 2 molecule, induced by He atom impact, by using the quasi-classical trajectory method is discussed. Recombination probabilities of H atoms on tungsten and graphite, relevant for the determination of the nascent vibrational distribution, are also presented. An example of a state-to-state plasma kinetic model for the description of shock waves operating in H 2 and He-H 2 mixtures is presented, emphasizing also the role of electronically-excited states in affecting the electron energy distribution function of free electrons. Finally, the thermodynamic properties and the electrical conductivity of non-ideal, high-density hydrogen plasma are finally discussed, in particular focusing on the pressure ionization phenomenon in high-pressure high-temperature plasmas.

  16. Hydrogen atom as test field of theoretical models

    International Nuclear Information System (INIS)

    Baiquni, A.

    1976-01-01

    Semi classical theory, covering Bohr atom theory, Bohr Sommerfeld theory, Sommerfeld relativistic theory, and quantum theory such as particle and complementarity dualism, wave mechanics, approximation method, relativistic quantum mechanics, and hydrogen atom fine structure, are discussed. (SMN)

  17. Multiscale Modeling of Hydrogen Embrittlement for Multiphase Material

    KAUST Repository

    Al-Jabr, Khalid A.

    2014-01-01

    Hydrogen Embrittlement (HE) is a very common failure mechanism induced crack propagation in materials that are utilized in oil and gas industry structural components and equipment. Considering the prediction of HE behavior, which is suggested

  18. Energetics of hydrogen bonding in proteins: a model compound study.

    OpenAIRE

    Habermann, S. M.; Murphy, K. P.

    1996-01-01

    Differences in the energetics of amide-amide and amide-hydroxyl hydrogen bonds in proteins have been explored from the effect of hydroxyl groups on the structure and dissolution energetics of a series of crystalline cyclic dipeptides. The calorimetrically determined energetics are interpreted in light of the crystal structures of the studied compounds. Our results indicate that the amide-amide and amide-hydroxyl hydrogen bonds both provide considerable enthalpic stability, but that the amide-...

  19. Hydrogen storage in engineered carbon nanospaces.

    Science.gov (United States)

    Burress, Jacob; Kraus, Michael; Beckner, Matt; Cepel, Raina; Suppes, Galen; Wexler, Carlos; Pfeifer, Peter

    2009-05-20

    It is shown how appropriately engineered nanoporous carbons provide materials for reversible hydrogen storage, based on physisorption, with exceptional storage capacities (approximately 80 g H2/kg carbon, approximately 50 g H2/liter carbon, at 50 bar and 77 K). Nanopores generate high storage capacities (a) by having high surface area to volume ratios, and (b) by hosting deep potential wells through overlapping substrate potentials from opposite pore walls, giving rise to a binding energy nearly twice the binding energy in wide pores. Experimental case studies are presented with surface areas as high as 3100 m(2) g(-1), in which 40% of all surface sites reside in pores of width approximately 0.7 nm and binding energy approximately 9 kJ mol(-1), and 60% of sites in pores of width>1.0 nm and binding energy approximately 5 kJ mol(-1). The findings, including the prevalence of just two distinct binding energies, are in excellent agreement with results from molecular dynamics simulations. It is also shown, from statistical mechanical models, that one can experimentally distinguish between the situation in which molecules do (mobile adsorption) and do not (localized adsorption) move parallel to the surface, how such lateral dynamics affects the hydrogen storage capacity, and how the two situations are controlled by the vibrational frequencies of adsorbed hydrogen molecules parallel and perpendicular to the surface: in the samples presented, adsorption is mobile at 293 K, and localized at 77 K. These findings make a strong case for it being possible to significantly increase hydrogen storage capacities in nanoporous carbons by suitable engineering of the nanopore space.

  20. A cohesive zone model to simulate the hydrogen embrittlement effect on a high-strength steel

    Directory of Open Access Journals (Sweden)

    G. Gobbi

    2016-01-01

    Full Text Available The present work aims to model the fracture mechanical behavior of a high-strength low carbon steel, AISI 4130 operating in hydrogen contaminated environment. The study deals with the development of 2D finite element cohesive zone model (CZM reproducing a toughness test. Along the symmetry plane over the crack path of a C(T specimen a zero thickness layer of cohesive elements are implemented in order to simulate the crack propagation. The main feature of this kind of model is the definition of a traction-separation law (TSL that reproduces the constitutive response of the material inside to the cohesive elements. Starting from a TSL calibrated on hydrogen non-contaminated material, the embrittlement effect is simulated by reducing the cohesive energy according to the total hydrogen content including the lattice sites (NILS and the trapped amount. In this perspective, the proposed model consists of three steps of simulations. First step evaluates the hydrostatic pressure. It drives the initial hydrogen concentration assigned in the second step, a mass diffusion analysis, defining in this way the contribution of hydrogen moving across the interstitial lattice sites. The final stress analysis, allows getting the total hydrogen content, including the trapped amount, and evaluating the new crack initiation and propagation due to the hydrogen presence. The model is implemented in both plane strain and plane stress configurations; results are compared in the discussion. From the analyses, it resulted that hydrogen is located only into lattice sites and not in traps, and that the considered steel experiences a high hydrogen susceptibility. By the proposed procedure, the developed numerical model seems a reliable and quick tool able to estimate the mechanical behavior of steels in presence of hydrogen.

  1. Development of a Deterministic Optimization Model for Design of an Integrated Utility and Hydrogen Supply Network

    International Nuclear Information System (INIS)

    Hwangbo, Soonho; Lee, In-Beum; Han, Jeehoon

    2014-01-01

    Lots of networks are constructed in a large scale industrial complex. Each network meet their demands through production or transportation of materials which are needed to companies in a network. Network directly produces materials for satisfying demands in a company or purchase form outside due to demand uncertainty, financial factor, and so on. Especially utility network and hydrogen network are typical and major networks in a large scale industrial complex. Many studies have been done mainly with focusing on minimizing the total cost or optimizing the network structure. But, few research tries to make an integrated network model by connecting utility network and hydrogen network. In this study, deterministic mixed integer linear programming model is developed for integrating utility network and hydrogen network. Steam Methane Reforming process is necessary for combining two networks. After producing hydrogen from Steam-Methane Reforming process whose raw material is steam vents from utility network, produced hydrogen go into hydrogen network and fulfill own needs. Proposed model can suggest optimized case in integrated network model, optimized blueprint, and calculate optimal total cost. The capability of the proposed model is tested by applying it to Yeosu industrial complex in Korea. Yeosu industrial complex has the one of the biggest petrochemical complex and various papers are based in data of Yeosu industrial complex. From a case study, the integrated network model suggests more optimal conclusions compared with previous results obtained by individually researching utility network and hydrogen network

  2. A model for hydrogen pickup for BWR cladding materials

    International Nuclear Information System (INIS)

    Hede, G.; Kaiser, U.

    2001-01-01

    It has been observed that rod elongation is driven by the hydrogen pickup but not by corrosion as such. Based on this a non-destructive method to determine clad hydrogen concentration has been developed. The method is based on the observation that there are three different mechanisms behind the rod growth: the effect of neutron irradiation on the Zircaloy microstructure, the volume increase of the cladding as an effect of hydride precipitation and axial pellet-cladding-mechanical-interaction (PCMI). The derived correlation is based on the experience of older cladding materials, inspected at hot-cell laboratories, that obtained high hydrogen levels (above 500 ppm) at lower burnup (assembly burnup below 50 MWd/kgU). Now this experience can be applied, by interpolation, on more modern cladding materials with a burnup beyond 50 MWd/kgU by analysis of the rod growth database of the respective cladding materials. Hence, the method enables an interpolation rather than an extrapolation of present day hydrogen pickup database, which improves the reliability and accuracy. Further, one can get a good estimate of the hydrogen pickup during an ongoing outage based on a non-destructive method. Finally, rod growth measurements are normally performed for a large population of rods, hence giving a good statistics compared to examination of a few rods at a hot cell. (author)

  3. Evaluation of a density functional with account of van der Waals forces using experimental data of H2 physisorption on Cu(111)

    DEFF Research Database (Denmark)

    Lee, Kyuho; Kelkkanen, Kari André; Berland, Kristian

    2011-01-01

    Detailed experimental data for physisorption potential-energy curves of H2 on low-indexed faces of Cu challenge theory. Recently, density-functional theory has been developed to also account for nonlocal correlation effects, including van der Waals forces. We show that one functional, denoted vd...

  4. Modelling of the hydrogen effects on the morphogenesis of hydrogenated silicon nano-structures in a plasma reactor

    International Nuclear Information System (INIS)

    Brulin, Q.

    2006-01-01

    This work pursues the goal of understanding mechanisms related to the morphogenesis of hydrogenated silicon nano-structures in a plasma reactor through modeling techniques. Current technologies are first reviewed with an aim to understand the purpose behind their development. Then follows a summary of the possible studies which are useful in this particular context. The various techniques which make it possible to simulate the trajectories of atoms by molecular dynamics are discussed. The quantum methods of calculation of the interaction potential between chemical species are then developed, reaching the conclusion that only semi-empirical quantum methods are sufficiently fast to be able to implement an algorithm of quantum molecular dynamics on a reasonable timescale. From the tools introduced, a reflection on the nature of molecular metastable energetic states is presented for the theoretical case of the self-organized growth of a linear chain of atoms. This model - which consists of propagating the growth of a chain by the successive addition of the atom which least increases the electronic energy of the chain - shows that the Fermi level is a parameter essential to self organization during growth. This model also shows that the structure formed is not necessarily a total minimum energy structure. From all these numerical tools, the molecular growth of clusters can be simulated by using parameters from magnetohydrodynamic calculation results of plasma reactor modeling (concentrations of the species, interval between chemical reactions, energy of impact of the reagents...). The formation of silicon-hydrogen clusters is thus simulated by the successive capture of silane molecules. The structures formed in simulation at the operating temperatures of the plasma reactor predict the formation of spherical clusters constituting an amorphous silicon core covered by hydrogen. These structures are thus not in a state of minimum energy, contrary to certain experimental

  5. Modeling of the hydrogen maser disk in MWC 349

    Science.gov (United States)

    Ponomarev, Victor O.; Smith, Howard A.; Strelnitski, Vladimir S.

    1994-04-01

    Maser amplification in a Keplerian circumstellar disk seen edge on-the idea put forward by Gordon (1992), Martin-Pintado, & Serabyn (1992), and Thum, Martin-Pintado, & Bachiller (1992) to explain the millimeter hydrogen recombination lines in MWC 349-is further justified and developed here. The double-peaked (vs. possible triple-peaked) form of the observed spectra is explained by the reduced emission from the inner portion of the disk, the portion responsible for the central ('zero velocity') component of a triple-peaked spectrum. Radial gradient of electron density and/or free-free absorption within the disk are identified as the probable causes of this central 'hole' in the disk and of its opacity. We calculate a set of synthetic maser spectra radiated by a homogeneous Keplerian ring seen edge-on and compare them to the H30-alpha observations of Thum et al., averaged over about 1000 days. We used a simple graphical procedure to solve an inverse problem and deduced the probable values of some basic disk and maser parameters. We find that the maser is essentially unsaturated, and that the most probable values of electron temperature. Doppler width of the microturbulence, and electron density, all averaged along the amplification path are, correspondingly, Te less than or equal to 11,000 K, Vmicro less than or equal to 14 km/s, ne approx. = (3 +/- 2) x 107/cu cm. The model shows that radiation at every frequency within the spectrum arises in a monochromatic 'hot spot.' The maximum optical depth within the 'hot spot' producing radiation at the spectral peak maximum is taumax approx. = 6 +/- 1; the effective width of the masing ring is approx. = 0.4-0.7 times its outer diameter; the size of the 'hot spot' responsible for the radiation at the spectral peak frequency is approx. = 0.2-0.3 times the distance between the two 'hot spots' corresponding to two peaks. An important derivation of our model is the dynamical mass of the central star, M* approx. = 26 solar masses

  6. Chemical treatment effect on physi-sorption properties of nano-fibres: an experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Kayiran, S.B.; Darkrim, F.L.; Gicquel, A. [Paris-Nord Univ., Laboratoire d' Ingenierie des Materiaux et des Hautes Pressions UPR 1311, 93 - Villetaneuse (France); Bernier, P. [Groupe de Dynamique des Phases Condensees, UMR5581 UMII, 34 - Montpellier (France); Gadelle, P. [Universite Joseph Fourier ENSEEG, 38 - St Martin d' Heres (France); Levesque, D. [Paris-11 Univ., Laboratoire de Physique theorique UMR 8627, 91 - Orsay (France)

    2003-09-01

    In this work, we have realized experimental studies of gas adsorption in purified and raw graphitic nano-fibres (GNFs) obtained by CVD method, at a pressure of 20 MPa and a temperature of 293 K. The structural characterizations of these adsorbents have been evaluated by X-ray diffraction, transmission electronic microscopy, specific surface area measurements at 77 K, chemical analysis and Raman spectroscopy. We have also realized Monte Carlo simulations of hydrogen adsorption in GNF model. The results of the simulations, realized in the Grand Canonical ensemble, are compared to experimental data. (authors)

  7. A Finite Element Model of a MEMS-based Surface Acoustic Wave Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    Walied A. Moussa

    2010-02-01

    Full Text Available Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT patterned on the surface. A thin palladium (Pd film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced.

  8. Numerical estimation of ultrasonic production of hydrogen: Effect of ideal and real gas based models.

    Science.gov (United States)

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-01-01

    Based on two different assumptions regarding the equation describing the state of the gases within an acoustic cavitation bubble, this paper studies the sonochemical production of hydrogen, through two numerical models treating the evolution of a chemical mechanism within a single bubble saturated with oxygen during an oscillation cycle in water. The first approach is built on an ideal gas model, while the second one is founded on Van der Waals equation, and the main objective was to analyze the effect of the considered state equation on the ultrasonic hydrogen production retrieved by simulation under various operating conditions. The obtained results show that even when the second approach gives higher values of temperature, pressure and total free radicals production, yield of hydrogen does not follow the same trend. When comparing the results released by both models regarding hydrogen production, it was noticed that the ratio of the molar amount of hydrogen is frequency and acoustic amplitude dependent. The use of Van der Waals equation leads to higher quantities of hydrogen under low acoustic amplitude and high frequencies, while employing ideal gas law based model gains the upper hand regarding hydrogen production at low frequencies and high acoustic amplitudes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A mathematical framework for modelling and evaluating natural gas pipeline networks under hydrogen injection

    Energy Technology Data Exchange (ETDEWEB)

    Tabkhi, F.; Azzaro-Pantel, C.; Pibouleau, L.; Domenech, S. [Laboratoire de Genie Chimique, UMR5503 CNRS/INP/UPS, 5 rue Paulin Talabot F-BP1301, 31106 Toulouse Cedex 1 (France)

    2008-11-15

    This article presents the framework of a mathematical formulation for modelling and evaluating natural gas pipeline networks under hydrogen injection. The model development is based on gas transport through pipelines and compressors which compensate for the pressure drops by implying mainly the mass and energy balances on the basic elements of the network. The model was initially implemented for natural gas transport and the principle of extension for hydrogen-natural gas mixtures is presented. The objective is the treatment of the classical fuel minimizing problem in compressor stations. The optimization procedure has been formulated by means of a nonlinear technique within the General Algebraic Modelling System (GAMS) environment. This work deals with the adaptation of the current transmission networks of natural gas to the transport of hydrogen-natural gas mixtures. More precisely, the quantitative amount of hydrogen that can be added to natural gas can be determined. The studied pipeline network, initially proposed in [1] is revisited here for the case of hydrogen-natural gas mixtures. Typical quantitative results are presented, showing that the addition of hydrogen to natural gas decreases significantly the transmitted power: the maximum fraction of hydrogen that can be added to natural gas is around 6 mass% for this example. (author)

  10. Life Modeling for Nickel-Hydrogen Batteries in Geosynchronous Satellite Operation

    National Research Council Canada - National Science Library

    Zimmerman, A. H; Ang, V. J

    2005-01-01

    .... The model has been used to predict how properly designed and operated nickel-hydrogen battery lifetimes should depend on the operating environments and charge control methods typically used in GEO operation...

  11. Spatio-temporal model based optimization framework to design future hydrogen infrastructure networks

    International Nuclear Information System (INIS)

    Konda, N.V.S.; Shah, N.; Brandon, N.P.

    2009-01-01

    A mixed integer programming (MIP) spatio-temporal model was used to design hydrogen infrastructure networks for the Netherlands. The detailed economic analysis was conducted using a multi-echelon model of the entire hydrogen supply chain, including feed, production, storage, and transmission-distribution systems. The study considered various near-future and commercially available technologies. A multi-period model was used to design evolutionary hydrogen supply networks in coherence with growing demand. A scenario-based analysis was conducted in order to account for uncertainties in future demand. The study showed that competitive hydrogen networks can be designed for any conceivable scenario. It was concluded that the multi-period model presented significant advantages in relation to decision-making over long time-horizons

  12. Modeling of roughness effect on hydrogen permeation in a low carbon steel

    OpenAIRE

    Carreño, J. A.; Uribe, I.; Carrillo, J. C.

    2003-01-01

    A model is presented to evaluate the effect of the roughness and the profile of concentration of hydrogen in a low carbon steel. The model takes advantage of the Fick's Second Law, to predict the transport of hydrogen in the steel. The problem is treated as a variational one and its space solution is made numerically by means of the Finite Elements Method, while the temporal equation is solved via the Finite Differences Method, in order to determine the concentration profiles of Hydrogen in t...

  13. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion

    Directory of Open Access Journals (Sweden)

    Katsuaki Tanabe

    2016-01-01

    Full Text Available We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  14. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion.

    Science.gov (United States)

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  15. 1 kWe sodium borohydride hydrogen generation system Part II: Reactor modeling

    OpenAIRE

    Zhang, Jinsong; Zheng, Yuan; Gore, Jay P; Mudawar, Issam; Fisher, Timothy

    2007-01-01

    Sodium borohydride (NaBH4) hydrogen storage systems offer many advantages for hydrogen storage applications. The physical processes inside a NaBH4 packed bed reactor involve multi-component and multi-phase flow and multi-mode heat and mass transfer. These processes are also coupled with reaction kinetics. To guide reactor design and optimization, a reactor model involving all of these processes is desired. A onedimensional numerical model in conjunction with the assumption of homogeneous cata...

  16. Modelling the influence of austenitisation temperature on hydrogen trapping in Nb containing martensitic steels

    International Nuclear Information System (INIS)

    Lang, Peter; Rath, Markus; Kozeschnik, Ernst; Rivera-Diaz-del-Castillo, Pedro E.J.

    2015-01-01

    Hydrogen trapping behaviour is investigated by means of thermokinetic simulations in a martensitic steel. The heat treatment consists of austenitisation followed by quenching and tempering. The model prescribes a minimum in hydrogen trapping at an austenitisation temperature of 1050 °C. Below this temperature, austenite grain boundaries are the prevailing trap, whereas niobium atoms in solid solution are the main traps above 1050 °C. The model describes precisely the experimental results

  17. Adaptation of Boynton's mathematical model to hydrogen isotope separation column by cryogenic distillation

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro; Naruse, Yuji

    1981-08-01

    Boynton's mathematical simulation procedure for multi-component distillation calculations has the advantage that the Jacobian matrix is calculated analytically. The purpose of the present study is to adapt this procedure to hydrogen isotope separation columns by cryogenic distillation. The Boynton's model is modified so that the model can incorporate decay heat of tritium, nonideality of the hydrogen isotope solutions, multiple feeds and multiple sidestreams. Basic equations are derived and the mathematical simulation procedure is briefly explained. (author)

  18. Modeling of hydrogen behaviour in a PWR nuclear power plant containment with the CONTAIN code

    International Nuclear Information System (INIS)

    Bobovnik, G.; Kljenak, I.

    2001-01-01

    Hydrogen behavior in the containment during a severe accident in a two-loop Westinghouse-type PWR nuclear power plant was simulated with the CONTAIN code. The accident was initiated with a cold-leg break of the reactor coolant system in a steam generator compartment. In the input model, the containment is represented with 34 cells. Beside hydrogen concentration, the containment atmosphere temperature and pressure and the carbon monoxide concentration were observed as well. Simulations were carried out for two different scenarios: with and without successful actuation of the containment spray system. The highest hydrogen concentration occurs in the containment dome and near the hydrogen release location in the early stages of the accident. Containment sprays do not have a significant effect on hydrogen stratification.(author)

  19. Hydrogen storage in carbon nanotubes.

    Science.gov (United States)

    Hirscher, M; Becher, M

    2003-01-01

    The article gives a comprehensive overview of hydrogen storage in carbon nanostructures, including experimental results and theoretical calculations. Soon after the discovery of carbon nanotubes in 1991, different research groups succeeded in filling carbon nanotubes with some elements, and, therefore, the question arose of filling carbon nanotubes with hydrogen by possibly using new effects such as nano-capillarity. Subsequently, very promising experiments claiming high hydrogen storage capacities in different carbon nanostructures initiated enormous research activity. Hydrogen storage capacities have been reported that exceed the benchmark for automotive application of 6.5 wt% set by the U.S. Department of Energy. However, the experimental data obtained with different methods for various carbon nanostructures show an extreme scatter. Classical calculations based on physisorption of hydrogen molecules could not explain the high storage capacities measured at ambient temperature, and, assuming chemisorption of hydrogen atoms, hydrogen release requires temperatures too high for technical applications. Up to now, only a few calculations and experiments indicate the possibility of an intermediate binding energy. Recently, serious doubt has arisen in relation to several key experiments, causing considerable controversy. Furthermore, high hydrogen storage capacities measured for carbon nanofibers did not survive cross-checking in different laboratories. Therefore, in light of today's knowledge, it is becoming less likely that at moderate pressures around room temperature carbon nanostructures can store the amount of hydrogen required for automotive applications.

  20. An effective finite element model for the prediction of hydrogen induced cracking in steel pipelines

    KAUST Repository

    Traidia, Abderrazak

    2012-11-01

    This paper presents a comprehensive finite element model for the numerical simulation of Hydrogen Induced Cracking (HIC) in steel pipelines exposed to sulphurous compounds, such as hydrogen sulphide (H2S). The model is able to mimic the pressure build-up mechanism related to the recombination of atomic hydrogen into hydrogen gas within the crack cavity. In addition, the strong couplings between non-Fickian hydrogen diffusion, pressure build-up and crack extension are accounted for. In order to enhance the predictive capabilities of the proposed model, problem boundary conditions are based on actual in-field operating parameters, such as pH and partial pressure of H 2S. The computational results reported herein show that, during the extension phase, the propagating crack behaves like a trap attracting more hydrogen, and that the hydrostatic stress field at the crack tip speed-up HIC related crack initiation and growth. In addition, HIC is reduced when the pH increases and the partial pressure of H2S decreases. Furthermore, the relation between the crack growth rate and (i) the initial crack radius and position, (ii) the pipe wall thickness and (iii) the fracture toughness, is also evaluated. Numerical results agree well with experimental data retrieved from the literature. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  1. Hydrogen Analysis with the Sandia ParaChoice Model.

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Rebecca Sobel [Sandia National Lab. (SNL-CA), Livermore, CA (United States); West, Todd H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-07-01

    In the coming decades, light-duty vehicle options and their supporting infrastructure must undergo significant transformations to achieve aggressive national targets for reducing petroleum consumption and lowering greenhouse gas emissions. FCEVs, battery and hybrid electric vehicles, and biofuels are among the promising advanced technology options. This project examines the market penetration of FCEVs in a range of market segments, and in different energy, technology, and policy futures. Analyses are conducted in the context of varying hydrogen production and distribution pathways, as well as public infrastructure availability, fuel (gasoline, ethanol, hydrogen) and electricity costs, vehicle costs and fuel economies to better understand under what conditions, and for which market segments, FCEVs can best compete with battery electric and other alternative fuel vehicles.

  2. Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Tomassetti, G.

    2014-01-01

    Roč. 19, č. 7 (2014), s. 2313-2333 ISSN 1531-3492 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:61388998 Keywords : metal-hydrid phase transformation * hydrogen diffusion * swelling Subject RIV: BA - General Mathematics Impact factor: 0.768, year: 2014 http://aimsciences.org/journals/pdfs.jsp?paperID=10195&mode=full

  3. The role of CFD combustion modeling in hydrogen safety management – V: Validation for slow deflagrations in homogeneous hydrogen-air experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Holler, Tadej, E-mail: tadej.holler@ijs.si [Jozef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana (Slovenia); Kljenak, Ivo [Jozef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana (Slovenia); Komen, Ed [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2016-12-15

    Highlights: • Validation of the modeling approach for hydrogen deflagration is presented. • Modeling approach is based on two combustion models implemented in ANSYS Fluent. • Experiments with various initial hydrogen concentrations were used for validation. • The effects of heat transfer mechanisms selection were also investigated. • The grid sensitivity analysis was performed as well. - Abstract: The control of hydrogen in the containment is an important safety issue following rapid oxidation of the uncovered reactor core during a severe accident in a Nuclear Power Plant (NPP), because dynamic pressure loads from eventual hydrogen combustion can be detrimental to the structural integrity of the reactor safety systems and the reactor containment. In the set of our previous papers, a CFD-based method to assess the consequence of fast combustion of uniform hydrogen-air mixtures was presented, followed by its validation for hydrogen-air mixtures with diluents and for non-uniform hydrogen-air mixtures. In the present paper, the extension of this model for the slow deflagration regime is presented and validated using the hydrogen deflagration experiments performed in the medium-scale experimental facility THAI. The proposed method is implemented in the CFD software ANSYS Fluent using user defined functions. The paper describes the combustion model and the main results of code validation. It addresses questions regarding turbulence model selection, effect of heat transfer mechanisms, and grid sensitivity, as well as provides insights into the importance of combustion model choice for the slow deflagration regime of hydrogen combustion in medium-scale and large-scale experimental vessels mimicking the NPP containment.

  4. An S-N2-model for proton transfer in hydrogen-bonded systems

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    A new mechanism of proton transfer in donor-acceptor complexes with long hydrogen bonds is suggested. The transition is regarded as totally adiabatic. Two closest water molecules that move synchronously by hindered translation to and from the reaction complex are crucial. The water molecules induce...... a shift of the proton from the donor to the acceptor with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor and acceptor. Expressions for the activation barrier and kinetic hydrogen isotope effect are derived. The general scheme is illustrated with the use...... of model molecular potentials, and with reference to the excess proton conductivity in aqueous solution....

  5. Systems analysis on the condition of market penetration for hydrogen technologies using linear programming model

    International Nuclear Information System (INIS)

    Kato, K.; Ihara, S.

    1993-01-01

    Hydrogen is expected to be an important energy carrier, especially in the frame of global warming problem solution. The purpose of this study is to examine the condition of market penetration of hydrogen technologies in reducing CO 2 emissions. A multi-time-period linear programming model (MARKAL, Market Allocation)) is used to explore technology options and cost for meeting the energy demands while reducing CO 2 emissions from energy systems. The results show that hydrogen technologies become economical when CO 2 emissions are stringently constrained. 9 figs., 2 refs

  6. Modelling of hydrogen assisted cracking of nickel-base Alloy X-750 in water

    International Nuclear Information System (INIS)

    Oka, T.; Ballinger, R.G.; Hwang, I.S.

    1992-01-01

    A closed-form, semi-empirical, electrochemical model has been developed to rationalize the intergranular corrosion fatigue behavior of alloy X-750 in aqueous electrolytes. The model is based on the assumption that, in the electrolytes investigated and for the microstructures studied, that hydrogen assisted crack growth is the dominant mechanism. Further, it is assumed that the rate of hydrogen reduction is a controlling factor in the magnitude of the environmental component of crack growth. Electrolyte conductivity, dissolution and passivation kinetics of precipitates, grain boundary coverage of precipitates are identified as important environmental and microstructural variables governing the hydrogen reduction rate at the crack tip. The model is compared with experimental data for fatigue crack growth where hydrogen is supplied by external charging and with data where galvanically-generated local hydrogen is responsible for enhanced crack growth. It is shown that predicted results characterize the observed effects of frequency, microstructure, electrolyte conductivity, and stress intensity factor. The agreement between the hydrogen reduction model and measured crack growth rate is believed to support the proposed galvanic corrosion mechanism for the intergranular cracking of alloy X-750 in low temperature water

  7. Development of a kinetic model of hydrogen absorption and desorption in magnesium and analysis of the rate-determining step

    Science.gov (United States)

    Kitagawa, Yuta; Tanabe, Katsuaki

    2018-05-01

    Mg is promising as a new light-weight and low-cost hydrogen-storage material. We construct a numerical model to represent the hydrogen dynamics on Mg, comprising dissociative adsorption, desorption, bulk diffusion, and chemical reaction. Our calculation shows a good agreement with experimental data for hydrogen absorption and desorption on Mg. Our model clarifies the evolution of the rate-determining processes as absorption and desorption proceed. Furthermore, we investigate the optimal condition and materials design for efficient hydrogen storage in Mg. By properly understanding the rate-determining processes using our model, one can determine the design principle for high-performance hydrogen-storage systems.

  8. Experimental studies and modeling of processes of hydrogen isotopes interaction with beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibaeva, I.L.; Chikhray, Y.V.; Romanenko, O.G.; Klepikov, A.Kh.; Shestakov, V.P.; Kulsartov, T.V. [Science Research Inst. of Experimental and Theoretical Physics of Kazakh State Univ., Almaty (Kazakhstan); Kenzhin, E.A.

    1998-01-01

    The objective of this work was to clarify the surface beryllium oxide influence on hydrogen-beryllium interaction characteristics. Analysis of experimental data and modeling of processes of hydrogen isotopes accumulation, diffusion and release from neutron irradiated beryllium was used to achieve this purpose as well as the investigations of the changes of beryllium surface element composition being treated by H{sup +} and Ar{sup +} plasma glowing discharge. (author)

  9. Study on the hydrogen demand in China based on system dynamics model

    International Nuclear Information System (INIS)

    Ma, Tao; Ji, Jie; Chen, Ming-qi

    2010-01-01

    Reasonable estimation of hydrogen energy and other renewable energy demand of China's medium and long-term energy is of great significance for China's medium and long-term energy plan. Therefore, based on both China's future economic development and relative economic theory and system dynamics theory, this article analyzes qualitatively the internal factors and external factors of hydrogen energy demand system, and makes the state high and low two assumptions about China's medium and long-term hydrogen demand according to the different speed of China's economic development. After the system dynamic model setting up export and operation, the output shows the data changes of the total hydrogen demand and the four kinds of hydrogen demand. According to the analysis of the output, two conclusions are concluded: The secondary industry, not the tertiary industry (mainly the transportation), should be firstly satisfied by the hydrogen R and D and support of Government policy. Change of Chinese hydrogen demand scale, on basis of its economic growth, can not be effective explained through Chinese economic growth rate, and other influencing factor and mechanism should be probed deeply. (author)

  10. Hydrogen adsorption on metal-organic frameworks (MOFs) and single-walled carbon nanotubes (SWNTs)

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, E.; Chahine, R.; Benard, P.; Lafi, L.; Dorval-Douville, G.; Chandonia, P.-A. [Univ. du Quebec a Trois-Rivieres, Inst. de recherche sur l' hydrogene, Trois-Rivieres, Quebec (Canada)]. E-mail: Lyubov.Lafi@uqtr.ca

    2006-07-01

    'Full text:' In recent years, several novel carbon-based microporous materials such as single-walled carbon nanotubes (SWNTs) and metal-organic frameworks (MOFs) have been proposed as promising adsorbents for hydrogen. Hydrogen adsorption measurements on Al-, Cr- and Zn-based metal-organic frameworks (MOFs) and single-walled carbon nanotubes (SWNTs) are presented. The measurements were performed at temperatures ranging from 77 to 300K and pressures up to 50 atm using a volumetric approach. The maximum excess adsorption at 77K ranges from 2,8 to 3,9 wt % for the MOFs and from 1,5 to 2,5 wt % for the SWNTs. These values are reached at pressures below 40 atm. At room temperature and 40 atm, modest amounts of hydrogen are adsorbed (< 0,4 wt %). A Dubinin-Astakhov (DA) approach is used to investigate the measured adsorption isotherms and retrieve energetic and structural parameters. The adsorption enthalpy averaged over filling is found to be about 2,9 kJ/mol for the MOF-5 and about 3,6 - 4,2 kJ/mol for SWNTs. The uptake of hydrogen on SWNTs and MOF-5 appears to be due to physisorption and can be described, through the DA-model, by a traditional theory of micropore filling. (author)

  11. Hydrogen Economy Model for Nearly Net-Zero Cities with Exergy Rationale and Energy-Water Nexus

    Directory of Open Access Journals (Sweden)

    Birol Kılkış

    2018-05-01

    Full Text Available The energy base of urban settlements requires greater integration of renewable energy sources. This study presents a “hydrogen city” model with two cycles at the district and building levels. The main cycle comprises of hydrogen gas production, hydrogen storage, and a hydrogen distribution network. The electrolysis of water is based on surplus power from wind turbines and third-generation solar photovoltaic thermal panels. Hydrogen is then used in central fuel cells to meet the power demand of urban infrastructure. Hydrogen-enriched biogas that is generated from city wastes supplements this approach. The second cycle is the hydrogen flow in each low-exergy building that is connected to the hydrogen distribution network to supply domestic fuel cells. Make-up water for fuel cells includes treated wastewater to complete an energy-water nexus. The analyses are supported by exergy-based evaluation metrics. The Rational Exergy Management Efficiency of the hydrogen city model can reach 0.80, which is above the value of conventional district energy systems, and represents related advantages for CO2 emission reductions. The option of incorporating low-enthalpy geothermal energy resources at about 80 °C to support the model is evaluated. The hydrogen city model is applied to a new settlement area with an expected 200,000 inhabitants to find that the proposed model can enable a nearly net-zero exergy district status. The results have implications for settlements using hydrogen energy towards meeting net-zero targets.

  12. Calculation of hydrogen outgassing rate of LHD by recombination limited model

    International Nuclear Information System (INIS)

    Akaishi, K.; Nakasuga, M.

    2002-04-01

    To simulate hydrogen outgassing in the plasma vacuum vessel of LHD, the recombination limited model is presented, where the time evolution of hydrogen concentration in the wall of the plasma vacuum vessel is described by a one-dimensional diffusion equation. The hydrogen outgassing rates when the plasma vacuum vessel is pumped down at room temperature and baked at 100 degC are calculated as a function of pumping time. The calculation shows that the hydrogen outgassing rate of the plasma vacuum vessel can be reduced at least by one order of magnitude due to pumping and baking. This prediction is consistent with the recent result of outgassing reduction observed in the pumping-down and baking of the plasma vacuum vessel in LHD. (author)

  13. Thermal mathematical modeling of a multicell common pressure vessel nickel-hydrogen battery

    Science.gov (United States)

    Kim, Junbom; Nguyen, T. V.; White, R. E.

    1992-01-01

    A two-dimensional and time-dependent thermal model of a multicell common pressure vessel (CPV) nickel-hydrogen battery was developed. A finite element solver called PDE/Protran was used to solve this model. The model was used to investigate the effects of various design parameters on the temperature profile within the cell. The results were used to help find a design that will yield an acceptable temperature gradient inside a multicell CPV nickel-hydrogen battery. Steady-state and unsteady-state cases with a constant heat generation rate and a time-dependent heat generation rate were solved.

  14. First principles nickel-cadmium and nickel hydrogen spacecraft battery models

    Energy Technology Data Exchange (ETDEWEB)

    Timmerman, P.; Ratnakumar, B.V.; Distefano, S.

    1996-02-01

    The principles of Nickel-Cadmium and Nickel-Hydrogen spacecraft battery models are discussed. The Ni-Cd battery model includes two phase positive electrode and its predictions are very close to actual data. But the Ni-H2 battery model predictions (without the two phase positive electrode) are unacceptable even though the model is operational. Both models run on UNIX and Macintosh computers.

  15. Sensitivity Analysis of Fatigue Crack Growth Model for API Steels in Gaseous Hydrogen.

    Science.gov (United States)

    Amaro, Robert L; Rustagi, Neha; Drexler, Elizabeth S; Slifka, Andrew J

    2014-01-01

    A model to predict fatigue crack growth of API pipeline steels in high pressure gaseous hydrogen has been developed and is presented elsewhere. The model currently has several parameters that must be calibrated for each pipeline steel of interest. This work provides a sensitivity analysis of the model parameters in order to provide (a) insight to the underlying mathematical and mechanistic aspects of the model, and (b) guidance for model calibration of other API steels.

  16. Study of hydrogenated silicene: The initialization model of hydrogenation on planar, low buckled and high buckled structures of silicene

    International Nuclear Information System (INIS)

    Syaputra, Marhamni; Wella, Sasfan Arman; Wungu, Triati Dewi Kencana; Purqon, Acep; Suprijadi

    2015-01-01

    We study the hydrogenation structures possessed by silicene i.e. planar (PL), low buckled (LB) and high buckled (HB). On those structures we found the hydrogenation process occurs with some particular notes. Hydrogen stable position on the silicene surface is determined by its initial configuration. We only considered the fully hydrogenated case with the formula unit (SiH) n for all of these structures. Physical and electronic structure shift after the process are compared with hydrogenated graphene. Moreover, we observed a chemical process in the presence of hydrogen on the PL structure by nudged elastic band (NEB) which illustrates how hydrogen has a significant impact to the force barrier of the PL that changing it from its original structure

  17. Mechanistic modeling of sulfur-deprived photosynthesis and hydrogen production in suspensions of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Williams, C R; Bees, M A

    2014-02-01

    The ability of unicellular green algal species such as Chlamydomonas reinhardtii to produce hydrogen gas via iron-hydrogenase is well known. However, the oxygen-sensitive hydrogenase is closely linked to the photosynthetic chain in such a way that hydrogen and oxygen production need to be separated temporally for sustained photo-production. Under illumination, sulfur-deprivation has been shown to accommodate the production of hydrogen gas by partially-deactivating O2 evolution activity, leading to anaerobiosis in a sealed culture. As these facets are coupled, and the system complex, mathematical approaches potentially are of significant value since they may reveal improved or even optimal schemes for maximizing hydrogen production. Here, a mechanistic model of the system is constructed from consideration of the essential pathways and processes. The role of sulfur in photosynthesis (via PSII) and the storage and catabolism of endogenous substrate, and thus growth and decay of culture density, are explicitly modeled in order to describe and explore the complex interactions that lead to H2 production during sulfur-deprivation. As far as possible, functional forms and parameter values are determined or estimated from experimental data. The model is compared with published experimental studies and, encouragingly, qualitative agreement for trends in hydrogen yield and initiation time are found. It is then employed to probe optimal external sulfur and illumination conditions for hydrogen production, which are found to differ depending on whether a maximum yield of gas or initial production rate is required. The model constitutes a powerful theoretical tool for investigating novel sulfur cycling regimes that may ultimately be used to improve the commercial viability of hydrogen gas production from microorganisms. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  18. Development of a hydrogen diffusion gothic model of MARK III-containment

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Zhen-Yu [National Tsing Hua Univ., Dept. of Engineering and System Science, Hsinchu, Taiwan (China); Huang, Yu-Kai; Pei, Bau-Shei [National Tsing Hua Univ., Inst. of Nuclear Engineering Science, Hsinchu, Taiwan (China); Hsu, Wen-Sheng [National Tsing Hua Univ., Nuclear Science and Technology Development Center, Hsinchu, Taiwan (China); Chen, Yen-Shu [Institute of Nuclear Energy Research, Nuclear Engineering Div., Taiyuan County, Taiwan (China)

    2015-07-15

    The accident that occurred at the Fukushima Daiichi Nuclear Power Plant is a reminder of the danger of hydrogen explosion within a reactor building. Sufficiently high hydrogen concentration may cause an explosion that could damage the structure, resulting in the release of radioisotopes into the environment. In the first part of this study, a gas diffusion experiment was performed, in which helium was used as the working fluid. An analytical model was also developed using the GOTHIC code and the model predictions of the helium distribution were found to be in good agreement with the experimentally measured data. In the second part of the study, a model of the Mark III containment of the Kuosheng Plant in Taiwan was developed, and was applied to a long-term station blackout (SBO) accident similar to that of the Fukushima plant. The hydrogen generation was calculated using the Modular Accident Analysis Program and was used as the boundary condition for the GOTHIC containment model. The simulation results revealed that the hydrogen concentration at the first floor of the wetwell in the containment reached 4 % 9.7 h after the accident. This indicated the possibility of dangerous conditions inside the containment. Although active hydrogen ignitors are already installed in the Kuosheng plant, the findings of this study indicate that it may be necessary to add passive recombiners to prolong an SBO event.

  19. Development of a hydrogen diffusion gothic model of MARK III-containment

    International Nuclear Information System (INIS)

    Hung, Zhen-Yu; Huang, Yu-Kai; Pei, Bau-Shei; Hsu, Wen-Sheng; Chen, Yen-Shu

    2015-01-01

    The accident that occurred at the Fukushima Daiichi Nuclear Power Plant is a reminder of the danger of hydrogen explosion within a reactor building. Sufficiently high hydrogen concentration may cause an explosion that could damage the structure, resulting in the release of radioisotopes into the environment. In the first part of this study, a gas diffusion experiment was performed, in which helium was used as the working fluid. An analytical model was also developed using the GOTHIC code and the model predictions of the helium distribution were found to be in good agreement with the experimentally measured data. In the second part of the study, a model of the Mark III containment of the Kuosheng Plant in Taiwan was developed, and was applied to a long-term station blackout (SBO) accident similar to that of the Fukushima plant. The hydrogen generation was calculated using the Modular Accident Analysis Program and was used as the boundary condition for the GOTHIC containment model. The simulation results revealed that the hydrogen concentration at the first floor of the wetwell in the containment reached 4 % 9.7 h after the accident. This indicated the possibility of dangerous conditions inside the containment. Although active hydrogen ignitors are already installed in the Kuosheng plant, the findings of this study indicate that it may be necessary to add passive recombiners to prolong an SBO event.

  20. Modeling of hydrogen storage in hydride-forming materials : statistical thermodynamics

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Rey, W.J.J.; Notten, P.H.L.

    2006-01-01

    A new lattice gas model has been developed, describing the hydrogen storage in hydride-forming materials. This model is based on the mean-field theory and Bragg-Williams approximation. To describe first-order phase transitions and two-phase coexistence regions, a binary alloy approach has been

  1. Modeling and experimental verification of the thermodynamic properties of hydrogen storage materials

    NARCIS (Netherlands)

    Ledovskikh, A.V.; Danilov, D.L.; Vliex, M.F.H.; Notten, P.H.L.

    2016-01-01

    A new mathematical model has been developed describing the thermodynamics of the hydrogen absorption and desorption process in Metal Hydrides via the gas phase. This model is based on first principles chemical and statistical thermodynamics and takes into account structural changes occurring inside

  2. Model for hydrogen isotope backscattering, trapping and depth profiles in C and a-Si

    International Nuclear Information System (INIS)

    Cohen, S.A.; McCracken, G.M.

    1979-03-01

    A model of low energy hydrogen trapping and backscattering in carbon and a-silicon is described. Depth profiles are calculated and numerical results presented for various incident angular and energy distributions. The calculations yield a relation between depth profiles and the incident ion energy distribution. The use of this model for tokamak plasma diagnosis is discussed

  3. Modeling of fermentative hydrogen production from sweet sorghum extract based on modified ADM1

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Gavala, Hariklia N.; Skiadas, Ioannis

    2012-01-01

    The Anaerobic digestion model 1 (ADM1) framework can be used to predict fermentative hydrogen production, since the latter is directly related to the acidogenic stage of the anaerobic digestion process. In this study, the ADM1 model framework was used to simulate and predict the process...... used for kinetic parameter validation. Since the ADM1 does not account for metabolic products such as lactic acid and ethanol that are crucial during the fermentative hydrogen production process, the structure of the model was modified to include lactate and ethanol among the metabolites and to improve...... of fermentative hydrogen production from the extractable sugars of sweet sorghum biomass. Kinetic parameters for sugars’ consumption and yield coefficients of acetic, propionic and butyric acid production were estimated using the experimental data obtained from the steady states of a CSTR. Batch experiments were...

  4. Study of degenerate parabolic system modeling the hydrogen displacement in a nuclear waste repository

    KAUST Repository

    Caro, Florian; Saad, Bilal Mohammed; Saad, Mazen Naufal B M

    2013-01-01

    Our goal is the mathematical analysis of a two phase (liquid and gas) two components (water and hydrogen) system modeling the hydrogen displacement in a storage site for radioactive waste. We suppose that the water is only in the liquid phase and is incompressible. The hydrogen in the gas phase is supposed compressible and could be dissolved into the water with the Henry law. The flow is described by the conservation of the mass of each components. The model is treated without simplified assumptions on the gas density. This model is degenerated due to vanishing terms. We establish an existence result for the nonlinear degenerate parabolic system based on new energy estimate on pressures.

  5. Study of degenerate parabolic system modeling the hydrogen displacement in a nuclear waste repository

    KAUST Repository

    Caro, Florian

    2013-09-01

    Our goal is the mathematical analysis of a two phase (liquid and gas) two components (water and hydrogen) system modeling the hydrogen displacement in a storage site for radioactive waste. We suppose that the water is only in the liquid phase and is incompressible. The hydrogen in the gas phase is supposed compressible and could be dissolved into the water with the Henry law. The flow is described by the conservation of the mass of each components. The model is treated without simplified assumptions on the gas density. This model is degenerated due to vanishing terms. We establish an existence result for the nonlinear degenerate parabolic system based on new energy estimate on pressures.

  6. Application of a CFD based containment model to different large-scale hydrogen distribution experiments

    International Nuclear Information System (INIS)

    Visser, D.C.; Siccama, N.B.; Jayaraju, S.T.; Komen, E.M.J.

    2014-01-01

    Highlights: • A CFD based model developed in ANSYS-FLUENT for simulating the distribution of hydrogen in the containment of a nuclear power plant during a severe accident is validated against four large-scale experiments. • The successive formation and mixing of a stratified gas-layer in experiments performed in the THAI and PANDA facilities are predicted well by the CFD model. • The pressure evolution and related condensation rate during different mixed convection flow conditions in the TOSQAN facility are predicted well by the CFD model. • The results give confidence in the general applicability of the CFD model and model settings. - Abstract: In the event of core degradation during a severe accident in water-cooled nuclear power plants (NPPs), large amounts of hydrogen are generated that may be released into the reactor containment. As the hydrogen mixes with the air in the containment, it can form a flammable mixture. Upon ignition it can damage relevant safety systems and put the integrity of the containment at risk. Despite the installation of mitigation measures, it has been recognized that the temporary existence of combustible or explosive gas clouds cannot be fully excluded during certain postulated accident scenarios. The distribution of hydrogen in the containment and mitigation of the risk are, therefore, important safety issues for NPPs. Complementary to lumped parameter code modelling, Computational Fluid Dynamics (CFD) modelling is needed for the detailed assessment of the hydrogen risk in the containment and for the optimal design of hydrogen mitigation systems in order to reduce this risk as far as possible. The CFD model applied by NRG makes use of the well-developed basic features of the commercial CFD package ANSYS-FLUENT. This general purpose CFD package is complemented with specific user-defined sub-models required to capture the relevant thermal-hydraulic phenomena in the containment during a severe accident as well as the effect of

  7. Application of a CFD based containment model to different large-scale hydrogen distribution experiments

    Energy Technology Data Exchange (ETDEWEB)

    Visser, D.C., E-mail: visser@nrg.eu; Siccama, N.B.; Jayaraju, S.T.; Komen, E.M.J.

    2014-10-15

    Highlights: • A CFD based model developed in ANSYS-FLUENT for simulating the distribution of hydrogen in the containment of a nuclear power plant during a severe accident is validated against four large-scale experiments. • The successive formation and mixing of a stratified gas-layer in experiments performed in the THAI and PANDA facilities are predicted well by the CFD model. • The pressure evolution and related condensation rate during different mixed convection flow conditions in the TOSQAN facility are predicted well by the CFD model. • The results give confidence in the general applicability of the CFD model and model settings. - Abstract: In the event of core degradation during a severe accident in water-cooled nuclear power plants (NPPs), large amounts of hydrogen are generated that may be released into the reactor containment. As the hydrogen mixes with the air in the containment, it can form a flammable mixture. Upon ignition it can damage relevant safety systems and put the integrity of the containment at risk. Despite the installation of mitigation measures, it has been recognized that the temporary existence of combustible or explosive gas clouds cannot be fully excluded during certain postulated accident scenarios. The distribution of hydrogen in the containment and mitigation of the risk are, therefore, important safety issues for NPPs. Complementary to lumped parameter code modelling, Computational Fluid Dynamics (CFD) modelling is needed for the detailed assessment of the hydrogen risk in the containment and for the optimal design of hydrogen mitigation systems in order to reduce this risk as far as possible. The CFD model applied by NRG makes use of the well-developed basic features of the commercial CFD package ANSYS-FLUENT. This general purpose CFD package is complemented with specific user-defined sub-models required to capture the relevant thermal-hydraulic phenomena in the containment during a severe accident as well as the effect of

  8. A kinetic model for quantitative evaluation of the effect of hydrogen and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus

    Directory of Open Access Journals (Sweden)

    Zacchi Guido

    2011-09-01

    Full Text Available Abstract Background Caldicellulosiruptor saccharolyticus has attracted increased interest as an industrial hydrogen (H2 producer. The aim of the present study was to develop a kinetic growth model for this extreme thermophile. The model is based on Monod kinetics supplemented with the inhibitory effects of H2 and osmotic pressure, as well as the liquid-to-gas mass transfer of H2. Results Mathematical expressions were developed to enable the simulation of microbial growth, substrate consumption and product formation. The model parameters were determined by fitting them to experimental data. The derived model corresponded well with experimental data from batch fermentations in which the stripping rates and substrate concentrations were varied. The model was used to simulate the inhibition of growth by H2 and solute concentrations, giving a critical dissolved H2 concentration of 2.2 mmol/L and an osmolarity of 0.27 to 29 mol/L. The inhibition by H2, being a function of the dissolved H2 concentration, was demonstrated to be mainly dependent on H2 productivity and mass transfer rate. The latter can be improved by increasing the stripping rate, thereby allowing higher H2 productivity. The experimentally determined degree of oversaturation of dissolved H2 was 12 to 34 times the equilibrium concentration and was comparable to the values given by the model. Conclusions The derived model is the first mechanistically based model for fermentative H2 production and provides useful information to improve the understanding of the growth behavior of C. saccharolyticus. The model can be used to determine optimal operating conditions for H2 production regarding the substrate concentration and the stripping rate.

  9. Modelling of the hydrogen effects on the morphogenesis of hydrogenated silicon nano-structures in a plasma reactor; Modelisation des effets de l'hydrogene sur la morphogenese des nanostructures de silicium hydrogene dans un reacteur plasma

    Energy Technology Data Exchange (ETDEWEB)

    Brulin, Q

    2006-01-15

    This work pursues the goal of understanding mechanisms related to the morphogenesis of hydrogenated silicon nano-structures in a plasma reactor through modeling techniques. Current technologies are first reviewed with an aim to understand the purpose behind their development. Then follows a summary of the possible studies which are useful in this particular context. The various techniques which make it possible to simulate the trajectories of atoms by molecular dynamics are discussed. The quantum methods of calculation of the interaction potential between chemical species are then developed, reaching the conclusion that only semi-empirical quantum methods are sufficiently fast to be able to implement an algorithm of quantum molecular dynamics on a reasonable timescale. From the tools introduced, a reflection on the nature of molecular metastable energetic states is presented for the theoretical case of the self-organized growth of a linear chain of atoms. This model - which consists of propagating the growth of a chain by the successive addition of the atom which least increases the electronic energy of the chain - shows that the Fermi level is a parameter essential to self organization during growth. This model also shows that the structure formed is not necessarily a total minimum energy structure. From all these numerical tools, the molecular growth of clusters can be simulated by using parameters from magnetohydrodynamic calculation results of plasma reactor modeling (concentrations of the species, interval between chemical reactions, energy of impact of the reagents...). The formation of silicon-hydrogen clusters is thus simulated by the successive capture of silane molecules. The structures formed in simulation at the operating temperatures of the plasma reactor predict the formation of spherical clusters constituting an amorphous silicon core covered by hydrogen. These structures are thus not in a state of minimum energy, contrary to certain experimental

  10. Nuclear Reactor/Hydrogen Process Interface Including the HyPEP Model

    International Nuclear Information System (INIS)

    Steven R. Sherman

    2007-01-01

    The Nuclear Reactor/Hydrogen Plant interface is the intermediate heat transport loop that will connect a very high temperature gas-cooled nuclear reactor (VHTR) to a thermochemical, high-temperature electrolysis, or hybrid hydrogen production plant. A prototype plant called the Next Generation Nuclear Plant (NGNP) is planned for construction and operation at the Idaho National Laboratory in the 2018-2021 timeframe, and will involve a VHTR, a high-temperature interface, and a hydrogen production plant. The interface is responsible for transporting high-temperature thermal energy from the nuclear reactor to the hydrogen production plant while protecting the nuclear plant from operational disturbances at the hydrogen plant. Development of the interface is occurring under the DOE Nuclear Hydrogen Initiative (NHI) and involves the study, design, and development of high-temperature heat exchangers, heat transport systems, materials, safety, and integrated system models. Research and development work on the system interface began in 2004 and is expected to continue at least until the start of construction of an engineering-scale demonstration plant

  11. Modeling of the thermal effects of hydrogen adsorption on activated carbon

    International Nuclear Information System (INIS)

    Richard, M.-A.; Chahine, R.

    2006-01-01

    'Full text:' Heat management is one of the most critical issues for the design of efficient adsorption-based storage of hydrogen. We present simulations of mass and energy balance for hydrogen and nitrogen adsorption on activated carbon over wide temperature and pressure ranges. First, the Dubinin-Astakhov (DA) model is adapted to model excess hydrogen and nitrogen adsorption isotherms at high pressures and supercritical temperatures assuming a constant microporous adsorption volume. The five parameter modified D-A adsorption model is shown to fit the experimental data over the temperature range (35 K-293 K) for hydrogen and (93 K-298 K) for nitrogen and pressure range (0-6 MPa) within the experimental uncertainties of the measurement system. We derive the thermodynamic properties of the adsorbed phase from this analytical expression of the measured data. The mass and energy rate balance equations in a microporous adsorbent/adsorbate system are then presented and validated with nitrogen desorption experiments. Finally, simulations of adiabatic and isothermal filling of adsorption-based hydrogen storage are presented and discussed. (author)

  12. Modelling of fast hydrogen permeability of alloys for membrane gas separation

    Science.gov (United States)

    Zaika, Yu. V.; Rodchenkova, N. I.

    2017-05-01

    The method of measuring the specific hydrogen permeability is used to study various alloys that are promising for gas separation installations. The nonlinear boundary value problem of hydrogen permeability complying with the specific features of the experiment and its modifications taking into account the high transfer rate is presented. Substantial difference from the quasi-equilibrium model (Richardson approximation in the assumption of the equilibrium Sieverts' law near the surface) has been discussed. The model is tested on published experimental data on Ta77Nb23 alloy.

  13. A trap activation model for hydrogen retention and isotope exchange in some refractory materials

    International Nuclear Information System (INIS)

    Brice, D.K.; Doyle, B.L.

    1982-01-01

    Our recently-developed Local Mixing Model (LMM) has been successful in describing and predicting the properties of hydrogen retention and isotope exchange for a variety of refractory materials. For some materials, however, the detailed predictions of the LMM are not observed. A Trap Activation Model (TAM) is proposed here to account for the observed departures from the LMM. Comparison of experimental room temperature saturation depth profiles for H + →Si with the predictions of TAM suggests that the hydrogen traps are multiple-vacancy complexes in this system. The observed profiles result from a beam-induced competition between trap creation/annihilation and H-trapping/detrapping. (orig.)

  14. Modelling of Non-Premixed Turbulent Combustion of Hydrogen using Conditional Moment Closure Method

    International Nuclear Information System (INIS)

    Noor, M M; Hairuddin, A Aziz; Wandel, Andrew P; Yusaf, T F

    2012-01-01

    Most of the electricity generation and energy for transport is still generated by the conversion of chemical to mechanical energy by burning the fuels in the combustion chamber. Regulation for pollution and the demand for more fuel economy had driven worldwide researcher to focus on combustion efficiency. In order to reduce experimental cost, accurate modelling and simulation is very critical step. Taylor series expansion was utilised to reduce the error term for the discretization. FORTRAN code was used to execute the discretized partial differential equation. Hydrogen combustion was simulated using Conditional Moment Closure (CMC) model. Combustion of hydrogen with oxygen was successfully simulated and reported in this paper.

  15. Modeling the reaction kinetics of a hydrogen generator onboard a fuel cell -- Electric hybrid motorcycle

    Science.gov (United States)

    Ganesh, Karthik

    Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts

  16. Atomistic Modelling of Materials for Clean Energy Applications : hydrogen generation, hydrogen storage, and Li-ion battery

    OpenAIRE

    Qian, Zhao

    2013-01-01

    In this thesis, a number of clean-energy materials for hydrogen generation, hydrogen storage, and Li-ion battery energy storage applications have been investigated through state-of-the-art density functional theory. As an alternative fuel, hydrogen has been regarded as one of the promising clean energies with the advantage of abundance (generated through water splitting) and pollution-free emission if used in fuel cell systems. However, some key problems such as finding efficient ways to prod...

  17. Dynamic Monte-Carlo modeling of hydrogen retention and chemical erosion from Tore Supra deposits

    International Nuclear Information System (INIS)

    Rai, A.; Schneider, R.; Warrier, M.; Roubin, P.; Martin, C.

    2009-01-01

    A multi-scale model has been developed to study the hydrogen retention [A. Rai, R. Schneider, M. Warrier, J. Nucl. Mater. 374 (2008) 304] and chemical erosion of porous graphite. To model the chemical erosion process due to thermal hydrogen ions, Kueppers cycle [J. Kueppers, Surf. Sci. Rep. 22 (1995) 249; M. Wittmann, J. Kueppers, J. Nucl. Mater. 227 (1996) 186] has been introduced. The model is applied to study hydrogen transport in deposits collected from the leading edge of neutralizers of Tore Supra. The effect of internal structure on chemical erosion is studied. The MD study [E. Salonen et al., J. Nucl. Mater. 290-293 (2001) 144] shows that the experimentally observed decrease of erosion yield at higher fluxes is due to the decrease of carbon collision cross-section at a surface due to shielding by hydrogen atom already present on the surface. Inspired by this study, a simple multi-scale model is developed to describe the flux dependence of chemical erosion. The idea is to use the local chemistry effect from the Kueppers model to calculate the hydrocarbon molecule formation process and then to find the release probability of the produced hydrocarbon based on the purely geometrical constraints. The model represents quite well the trends in experimental data.

  18. Modelling of the aerosol deposition in a hydrogen catalytic recombiner

    International Nuclear Information System (INIS)

    Vendel, J.; Studer, E.; Zavaleta, P.; Hadida, Ph.

    1997-01-01

    Catalytic recombiners are used to remove the hydrogen released in case of a severe accident in a nuclear power plant, so as to reduce the risk of deflagration or detonation. H 2 PAR experiments are carried out to precise the behaviour of recombiners in term of poisoning by aerosols. Firstly, some calculations have been done with the Trio-EF code to assess the structure of convection loops in the experimental tent. We note that when the recombiner is active, it may have a strong influence on the flow inside the tent and may even interact with an other heat source such as a furnace. In the second part, we study the deposition of aerosols on catalytic plates for a given recombiner, when it is active or passive. We list the different mechanisms and quantify them by introducing the deposition velocity. In fact, thermophoresis appears to be the main mechanism, compared to brownian diffusion or difrusiophoresis, which governs aerosols deposition. It favours deposition on > plates and acts against it for > plates. (author)

  19. Mathematical modelling and optimization of hydrogen continuous production in a fixed bed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Palazzi, E.; Perego, P.; Fabiano, B. [University of Genoa, Genova (Italy). Chemical and Process Engineering Department ' G.B. Bonino'

    2002-09-01

    The purpose of this paper is to investigate, both theoretically and experimentally, hydrogen production from agro-industrial by-products using a continuous bioreactor packed with a mixture of spongy and glass beads and inoculated with Enterobacter aerogenes. Replicated series of experimental runs were performed to study the effects of residence time on hydrogen evolution rate and to characterize the critical conditions for the wash out, as a function of the inlet glucose concentration and of the fluid superficial velocity. A further series of experimental runs was focused on the effects of both residence time and inlet glucose concentration over hydrogen productivity. A kinetic model of the process was developed and showed good agreement with experimental data, thus representing a potential tool to design a large-scale fermenter. In fact, the model was applied to the optimal design of a bioreactor suitable of feeding a phosphoric acid fuel cell of a target power. (author)

  20. Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Shah, A.A.; Al-Fetlawi, H.; Walsh, F.C.

    2010-01-01

    A model for hydrogen evolution in an all-vanadium redox flow battery is developed, coupling the dynamic conservation equations for charge, mass and momentum with a detailed description of the electrochemical reactions. Bubble formation at the negative electrode is included in the model, taking into account the attendant reduction in the liquid volume and the transfer of momentum between the gas and liquid phases, using a modified multiphase-mixture approach. Numerical simulations are compared to experimental data for different vanadium concentrations and mean linear electrolyte flow rates, demonstrating good agreement. Comparisons to simulations with negligible hydrogen evolution demonstrate the effect of gas evolution on the efficiency of the battery. The effects of reactant concentration, flow rate, applied current density and gas bubble diameter on hydrogen evolution are investigated. Significant variations in the gas volume fraction and the bubble velocity are predicted, depending on the operating conditions.

  1. Modelling of a passive autocatalytic hydrogen recombiner – a parametric study

    Directory of Open Access Journals (Sweden)

    Rożeń Antoni

    2015-03-01

    Full Text Available Operation of a passive autocatalytic hydrogen recombiner (PAR has been investigated by means of computational fluid dynamics methods (CFD. The recombiner is a self-active and self-adaptive device used to remove hydrogen from safety containments of light water nuclear reactors (LWR by means of a highly exothermic reaction with oxygen at the surface of a platinum or palladium catalyst. Different turbulence models (k-ω, k-ɛ, intermittency, RSM were applied in numerical simulations of: gas flow, heat and mass transport and chemical surface reactions occurring in PAR. Turbulence was found to improve mixing and mass transfer and increase hydrogen recombination rate for high gas flow rates. At low gas flow rates, simulation results converged to those obtained for the limiting case of laminar flow. The large eddy simulation technique (LES was used to select the best RANS (Reynolds average stress model. Comparison of simulation results obtained for two- and three-dimensional computational grids showed that heat and mass transfer occurring in PAR were virtually two-dimensional processes. The effect of hydrogen thermal diffusion was also discussed in the context of possible hydrogen ignition inside the recombiner.

  2. Nickel hydrogen and silver zinc battery cell modeling at the Aerospace Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, A.H.

    1996-02-01

    A nickel hydrogen battery cell model has been fully developed and implemented at The Aerospace Corporation. Applications of this model to industry needs for the design of better cells, power system design and charge control thermal management, and long-term performance trends will be described. Present efforts will be described that are introducing the silver and zinc electrode reactions into this model architecture, so that the model will be able to predict performance for not only silver zinc cells, but also nickel zinc, silver hydrogen, and silver cadmium cells. The silver zinc cell modeling effort is specifically designed to address the concerns that arise most often in launch vehicle applications: transient response, power-on voltage regulation, hot or cold operation, electrolyte spewing, gas venting, self-discharge, separator oxidation, and oxalate crystal growth. The specific model features that are being employed to address these issues will be described.

  3. The role of CFD combustion modelling in hydrogen safety management – VI: Validation for slow deflagration in homogeneous hydrogen-air-steam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cutrono Rakhimov, A., E-mail: cutrono@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Visser, D.C., E-mail: visser@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Holler, T., E-mail: tadej.holler@ijs.si [Jožef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana (Slovenia); Komen, E.M.J., E-mail: komen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2017-01-15

    Highlights: • Deflagration of hydrogen-air-steam homogeneous mixtures is modeled in a medium-scale containment. • Adaptive mesh refinement is applied on flame front positions. • Steam effect influence on combustion modeling capabilities is investigated. • Mean pressure rise is predicted with 18% under-prediction when steam is involved. • Peak pressure is evaluated with 5% accuracy when steam is involved. - Abstract: Large quantities of hydrogen can be generated during a severe accident in a water-cooled nuclear reactor. When released in the containment, the hydrogen can create a potential deflagration risk. The dynamic pressure loads resulting from hydrogen combustion can be detrimental to the structural integrity of the reactor. Therefore, accurate prediction of these pressure loads is an important safety issue. In previous papers, we validated a Computational Fluid Dynamics (CFD) based method to determine the pressure loads from a fast deflagration. The combustion model applied in the CFD method is based on the Turbulent Flame Speed Closure (TFC). In our last paper, we presented the extension of this combustion model, Extended Turbulent Flame Speed Closure (ETFC), and its validation against hydrogen deflagration experiments in the slow deflagration regime. During a severe accident, cooling water will enter the containment as steam. Therefore, the effect of steam on hydrogen deflagration is important to capture in a CFD model. The primary objectives of the present paper are to further validate the TFC and ETFC combustion models, and investigate their capability to predict the effect of steam. The peak pressures, the trends of the flame velocity, and the pressure rise with an increase in the initial steam dilution are captured reasonably well by both combustion models. In addition, the ETFC model appeared to be more robust to mesh resolution changes. The mean pressure rise is evaluated with 18% under-prediction and the peak pressure is evaluated with 5

  4. Dynamic optimization and robust explicit model predictive control of hydrogen storage tank

    KAUST Repository

    Panos, C.

    2010-09-01

    We present a general framework for the optimal design and control of a metal-hydride bed under hydrogen desorption operation. The framework features: (i) a detailed two-dimension dynamic process model, (ii) a design and operational dynamic optimization step, and (iii) an explicit/multi-parametric model predictive controller design step. For the controller design, a reduced order approximate model is obtained, based on which nominal and robust multi-parametric controllers are designed. © 2010 Elsevier Ltd.

  5. Dynamic optimization and robust explicit model predictive control of hydrogen storage tank

    KAUST Repository

    Panos, C.; Kouramas, K.I.; Georgiadis, M.C.; Pistikopoulos, E.N.

    2010-01-01

    We present a general framework for the optimal design and control of a metal-hydride bed under hydrogen desorption operation. The framework features: (i) a detailed two-dimension dynamic process model, (ii) a design and operational dynamic optimization step, and (iii) an explicit/multi-parametric model predictive controller design step. For the controller design, a reduced order approximate model is obtained, based on which nominal and robust multi-parametric controllers are designed. © 2010 Elsevier Ltd.

  6. Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer

    NARCIS (Netherlands)

    Sedighi, M.; Thomas, H.R.; Al Masum, S.; Vardon, P.J.; Nicholson, D.; Chen, Q.

    2014-01-01

    This paper presents an investigation of the transport and fate of hydrogen gas through compacted bentonite buffer. Various geochemical reactions that may occur in the multiphase and multicomponent system of the unsaturated bentonite buffer are considered. A reactive gas transport model, developed

  7. Ab initio calculation of the sound velocity of dense hydrogen: implications for models of Jupiter

    NARCIS (Netherlands)

    Alavi, A.; Parrinello, M.; Frenkel, D.

    1995-01-01

    First-principles molecular dynamics simulations were used to calculate the sound velocity of dense hydrogen, and the results were compared with extrapolations of experimental data that currently conflict with either astrophysical models or data obtained from recent global oscillation measurements of

  8. Sustainable hydrogen from bio-oil - Catalytic steam reforming of acetic acid as a model oxygenate

    NARCIS (Netherlands)

    Takanabe, Kazuhiro; Seshan, K.; Lefferts, Leon; Aika, Ken-ichi

    2004-01-01

    Steam reforming of acetic acid as a model oxygenate present in bio-oil over Pt/ZrO2 catalysts has been studied. Pt/ZrO2 catalysts are very active, completely converting acetic acid and give hydrogen yield close to thermodynamic equilibrium. The catalyst deactivated by formation of oligomers, which

  9. Hydrogen solubility measurements of analyzed tall oil fractions and a solubility model

    International Nuclear Information System (INIS)

    Uusi-Kyyny, Petri; Pakkanen, Minna; Linnekoski, Juha; Alopaeus, Ville

    2017-01-01

    Highlights: • Hydrogen solubility was measured in four tall oil fractions between 373 and 597 K. • Continuous flow synthetic isothermal and isobaric method was used. • A Henry’s law model was developed for the distilled tall oil fractions. • The complex composition of the samples was analyzed and is presented. - Abstract: Knowledge of hydrogen solubility in tall oil fractions is important for designing hydrotreatment processes of these complex nonedible biobased materials. Unfortunately measurements of hydrogen solubility into these fractions are missing in the literature. This work reports hydrogen solubility measured in four tall oil fractions between 373 and 597 K and at pressures from 5 to 10 MPa. Three of the fractions were distilled tall oil fractions their resin acids contents are respectively 2, 20 and 23 in mass-%. Additionally one fraction was a crude tall oil (CTO) sample containing sterols as the main neutral fraction. Measurements were performed using a continuous flow synthetic isothermal and isobaric method based on the visual observation of the bubble point. Composition of the flow was changed step-wise for the bubble point composition determination. We assume that the tall oil fractions did not react during measurements, based on the composition analysis performed before and after the measurements. Additionally the densities of the fractions were measured at atmospheric pressure from 293.15 to 323.15 K. A Henry’s law model was developed for the distilled tall oil fractions describing the solubility with an absolute average deviation of 2.1%. Inputs of the solubility model are temperature, total pressure and the density of the oil at 323.15 K. The solubility of hydrogen in the CTO sample can be described with the developed model with an absolute average deviation of 3.4%. The solubility of hydrogen increases both with increasing pressure and/or increasing temperature. The more dense fractions of the tall oil exhibit lower hydrogen

  10. Complete modeling and software implementation of a virtual solar hydrogen hybrid system

    International Nuclear Information System (INIS)

    Pedrazzi, S.; Zini, G.; Tartarini, P.

    2010-01-01

    A complete mathematical model and software implementation of a solar hydrogen hybrid system has been developed and applied to real data. The mathematical model has been derived from sub-models taken from literature with appropriate modifications and improvements. The model has been implemented as a stand-alone virtual energy system in a model-based, multi-domain software environment. A test run has then been performed on typical residential user data-sets over a year-long period. Results show that the virtual hybrid system can bring about complete grid independence; in particular, hydrogen production balance is positive (+1.25 kg) after a year's operation with a system efficiency of 7%.

  11. Modeling of hydrogen production methods: Single particle model and kinetics assessment

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.S.; Bellan, J. [California Institute of Technology, Pasadena, CA (United States)

    1996-10-01

    The investigation carried out by the Jet Propulsion Laboratory (JPL) is devoted to the modeling of biomass pyrolysis reactors producing an oil vapor (tar) which is a precursor to hydrogen. This is an informal collaboration with NREL whereby JPL uses the experimentally-generated NREL data both as initial and boundary conditions for the calculations, and as a benchmark for model validation. The goal of this investigation is to find drivers of biomass fast-pyrolysis in the low temperature regime. The rationale is that experimental observations produce sparse discrete conditions for model validation, and that numerical simulations produced with a validated model are an economic way to find control parameters and an optimal operation regime, thereby circumventing costly changes in hardware and tests. During this first year of the investigation, a detailed mathematical model has been formulated for the temporal and spatial accurate modeling of solid-fluid reactions in biomass particles. These are porous particles for which volumetric reaction rate data is known a priori and both the porosity and the permeability of the particle are large enough to allow for continuous gas phase flow. The methodology has been applied to the pyrolysis of spherically symmetric biomass particles by considering previously published kinetics schemes for both cellulose and wood. The results show that models which neglect the thermal and species boundary layers exterior to the particle will generally over predict both the pyrolysis rates and experimentally obtainable tar yields. An evaluation of the simulation results through comparisons with experimental data indicates that while the cellulose kinetics is reasonably accurate, the wood pyrolysis kinetics is not accurate; particularly at high reactor temperatures. Current effort in collaboration with NREL is aimed at finding accurate wood kinetics.

  12. Uncertainty propagation in modeling of plasma-assisted hydrogen production from biogas

    Science.gov (United States)

    Zaherisarabi, Shadi; Venkattraman, Ayyaswamy

    2016-10-01

    With the growing concern of global warming and the resulting emphasis on decreasing greenhouse gas emissions, there is an ever-increasing need to utilize energy-production strategies that can decrease the burning of fossil fuels. In this context, hydrogen remains an attractive clean-energy fuel that can be oxidized to produce water as a by-product. In spite of being an abundant species, hydrogen is seldom found in a form that is directly usable for energy-production. While steam reforming of methane is one popular technique for hydrogen production, plasma-assisted conversion of biogas (carbon dioxide + methane) to hydrogen is an attractive alternative. Apart from producing hydrogen, the other advantage of using biogas as raw material is the fact that two potent greenhouse gases are consumed. In this regard, modeling is an important tool to understand and optimize plasma-assisted conversion of biogas. The primary goal of this work is to perform a comprehensive statistical study that quantifies the influence of uncertain rate constants thereby determining the key reaction pathways. A 0-D chemical kinetics solver in the OpenFOAM suite is used to perform a series of simulations to propagate the uncertainty in rate constants and the resulting mean and standard deviation of outcomes.

  13. Validation experiments of the chimney model for the operational simulation of hydrogen recombiners

    International Nuclear Information System (INIS)

    Simon, Berno

    2013-01-01

    The calculation program REKO-DIREKT allows the simulation of the operational behavior of a hydrogen recombiner during accidents with hydrogen release. The interest is focused on the interaction between the catalyst insertion and the chimney that influences the natural ventilation and thus the throughput through the recombiner significantly. For validation experiments were performed with a small-scale recombiner model in the test facility REKO-4. The results show the correlation between the hydrogen concentration at the recombiner entrance, the temperature on catalyst sheets and the entrance velocity using different chimney heights. The entrance velocity increases with the heights of the installed chimney that influences the natural ventilation significantly. The results allow the generation of a wide data base for validation of the computer code REKO-DIREKT.

  14. Hydrogen millennium

    International Nuclear Information System (INIS)

    Bose, T.K.; Benard, P.

    2000-05-01

    The 10th Canadian Hydrogen Conference was held at the Hilton Hotel in Quebec City from May 28 to May 31, 2000. The topics discussed included current drivers for the hydrogen economy, the international response to these drivers, new initiatives, sustainable as well as biological and hydrocarbon-derived production of hydrogen, defense applications of fuel cells, hydrogen storage on metal hydrides and carbon nanostructures, stationary power and remote application, micro-fuel cells and portable applications, marketing aspects, fuel cell modeling, materials, safety, fuel cell vehicles and residential applications. (author)

  15. Modelling the Global Transportation Systems for the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Krzyzanowski, D.A.; Kypreos, S.

    2004-03-01

    A modelling analysis of the transportation system is described, focused on the market penetration of different transportation technologies (including Learning-by-Doing) until the year 2050. A general outline of the work and first preliminary results are presented. (author)

  16. Dynamical Model of Rocket Propellant Loading with Liquid Hydrogen

    Data.gov (United States)

    National Aeronautics and Space Administration — A dynamical model describing the multi-stage process of rocket propellant loading has been developed. It accounts for both the nominal and faulty regimes of...

  17. Development of a new reduced hydrogen combustion mechanism with NO_x and parametric study of hydrogen HCCI combustion using stochastic reactor model

    International Nuclear Information System (INIS)

    Maurya, Rakesh Kumar; Akhil, Nekkanti

    2017-01-01

    Highlights: • PDF based stochastic reactor model used for study of hydrogen HCCI engine. • New reduced hydrogen combustion mechanism with NOx developed (30 species and 253 reactions). • Mechanism predicts cylinder pressure and captures NO_x emission trend with sufficient accuracy. • Parametric study of hydrogen HCCI engine over wide range of speed and load conditions. • Hydrogen HCCI operating range increases with compression ratio & decreases with engine speed. - Abstract: Hydrogen is a potential alternative and renewable fuel for homogenous charge compression ignition (HCCI) engine to achieve higher efficiency and zero emissions of CO, unburned hydrocarbons as well as other greenhouse gases such as CO_2 and CH_4. In this study, a detailed hydrogen oxidation mechanism with NO_x was developed by incorporating additional species and NO_x reactions to the existing hydrogen combustion mechanism (10 species and 40 reactions). The detailed hydrogen combustion mechanism used in this study consists of 39 species and 311 reactions. A reduced mechanism consisting 30 species and 253 reactions was also developed by using directed relation graph (DRG) method from detailed mechanism. Developed mechanisms were validated with experimental data by HCCI engine simulation using stochastic reactor model. Sensitivity analysis was performed to identify the most important reactions in hydrogen combustion and NO_x formation in HCCI engine. Pathway analysis was also performed to analyze the important reaction pathways at different temperatures. Results revealed that H2 + HO2 [=] H + H2O2 and O2 + NNH [=] N2 + HO2 are the most significant reactions in the hydrogen HCCI combustion and NO_x formation respectively. Detailed parametric study of HCCI combustion was conducted using developed chemical kinetic model. Numerical simulations are performed at different engine operating condition by varying engine speed (1000–3000 rpm), intake air temperature (380–460 K), and compression

  18. Thermodynamic model for grain boundary effects on hydrogen solubility, diffusivity and permeability in poly-crystalline tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Takuji, E-mail: oda@snu.ac.kr

    2016-11-15

    Highlights: • A thermodynamic model to simulate grain boundary effects on hydrogen behaviors in poly-crystalline W was established. • With this model, the effective solubility, diffusivity and permeability of hydrogen are calculated as a function of grain size. • Grain boundary significantly change the hydrogen behaviors in poly-crystalline W up to around 1000 K. - Abstract: A thermodynamic model to evaluate effects of grain boundary (GB) on hydrogen behaviors in poly-crystalline tungsten is established. With this model, the effective solubility, diffusivity and permeability of hydrogen in tungsten equilibrated with surrounding H{sub 2} gas can be calculated as a function of grain size, temperature and H{sub 2} partial pressure. By setting 1.0 eV to the binding energy of hydrogen to GBs and 0.4 eV to the diffusion barrier of hydrogen along GBs, the model reasonably reproduces some experimental data on the effective diffusivity and permeability. Comparisons between calculation results by the model and available experimental data show that GBs significantly affect the hydrogen behaviors up to around 1000 K or higher in practical materials. Therefore, the effects of GBs need to be considered in analysis of experimental results, for which the present model can be utilized, and in prediction of tritium inventory and leakage in fusion reactors.

  19. Computational model for a high temperature electrolyzer coupled to a HTTR for efficient nuclear hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Daniel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy; Gamez, Abel; Brayner, Carlos, E-mail: danielgonro@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Garcia, Lazaro; Garcia, Carlos; Torre, Raciel de la, E-mail: lgarcia@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Sanchez, Danny [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil)

    2015-07-01

    High temperature electrolysis process coupled to a very high temperature reactor (VHTR) is one of the most promising methods for hydrogen production using a nuclear reactor as the primary heat source. However there are not references in the scientific publications of a test facility that allow to evaluate the efficiency of the process and other physical parameters that has to be taken into consideration for its accurate application in the hydrogen economy as a massive production method. For this lack of experimental facilities, mathematical models are one of the most used tools to study this process and theirs flowsheets, in which the electrolyzer is the most important component because of its complexity and importance in the process. A computational fluid dynamic (CFD) model for the evaluation and optimization of the electrolyzer of a high temperature electrolysis hydrogen production process flowsheet was developed using ANSYS FLUENT®. Electrolyzer's operational and design parameters will be optimized in order to obtain the maximum hydrogen production and the higher efficiency in the module. This optimized model of the electrolyzer will be incorporated to a chemical process simulation (CPS) code to study the overall high temperature flowsheet coupled to a high temperature accelerator driven system (ADS) that offers advantages in the transmutation of the spent fuel. (author)

  20. Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling.

    Science.gov (United States)

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H; Burghardt, Irene; Martinazzo, Rocco

    2015-09-28

    An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.

  1. Computational model for a high temperature electrolyzer coupled to a HTTR for efficient nuclear hydrogen production

    International Nuclear Information System (INIS)

    Gonzalez, Daniel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy; Gamez, Abel; Brayner, Carlos; Garcia, Lazaro; Garcia, Carlos; Torre, Raciel de la; Sanchez, Danny

    2015-01-01

    High temperature electrolysis process coupled to a very high temperature reactor (VHTR) is one of the most promising methods for hydrogen production using a nuclear reactor as the primary heat source. However there are not references in the scientific publications of a test facility that allow to evaluate the efficiency of the process and other physical parameters that has to be taken into consideration for its accurate application in the hydrogen economy as a massive production method. For this lack of experimental facilities, mathematical models are one of the most used tools to study this process and theirs flowsheets, in which the electrolyzer is the most important component because of its complexity and importance in the process. A computational fluid dynamic (CFD) model for the evaluation and optimization of the electrolyzer of a high temperature electrolysis hydrogen production process flowsheet was developed using ANSYS FLUENT®. Electrolyzer's operational and design parameters will be optimized in order to obtain the maximum hydrogen production and the higher efficiency in the module. This optimized model of the electrolyzer will be incorporated to a chemical process simulation (CPS) code to study the overall high temperature flowsheet coupled to a high temperature accelerator driven system (ADS) that offers advantages in the transmutation of the spent fuel. (author)

  2. Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bonfanti, Matteo, E-mail: matteo.bonfanti@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Jackson, Bret [Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany); Martinazzo, Rocco, E-mail: rocco.martinazzo@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Richerche, v. Golgi 19, 20133 Milano (Italy)

    2015-09-28

    An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.

  3. Use of X-ray absorption near edge structure (XANES) to identify physisorption and chemisorption of phosphate onto ferrihydrite-modified diatomite.

    Science.gov (United States)

    Xiong, Wenhui; Peng, Jian; Hu, Yongfeng

    2012-02-15

    This paper presents a novel technique integrating bulk-sensitive and surface-sensitive XANES methods to distinguish between physisorption and chemisorption for phosphate adsorption onto ferrihydrite-modified diatomite (FHMD). XANES P K-edge, L-edge, and Fe M-edge spectra were obtained for reference samples (K(2)HPO(4) and FePO(4)·2H(2)O) and test samples (phosphate adsorbed onto FHMD (FHMD-Ps) and Si-containing ferrihydrite (FHYD-Ps)). A resolvable pre-edge peak in the P K-edge spectra of FHMD-Ps and FHYD-Ps provided direct evidence for the formation of P-O-Fe(III) coordination and the occurrence of chemisorption. The resemblance between the P L-edge spectra of K(2)HPO(4) and FHMD-Ps and the marked difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O indicated the intact existence of the adsorbate and the adsorbent. The similarity between Fe M-edge spectra of FHMD and FHMD-Ps and the difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O confirmed the findings from P L-edge analyses. Therefore, chemisorption and physisorption coexisted during phosphate adsorption onto FHMD. Phosphate chemisorption occurred in the deeper zone of FHMD (from 50 nm to 5 μm); whereas physisorption occurred in the zone of FHMD shallower than 50 nm since the probing depth of XANES P K-edge method is 5 μm and that of P L-edge and Fe M-edge methods is 50 nm. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Thermal modeling of nickel-hydrogen battery cells operating under transient orbital conditions

    Science.gov (United States)

    Schrage, Dean S.

    1991-01-01

    An analytical study of the thermal operating characteristics of nickel-hydrogen battery cells is presented. Combined finite-element and finite-difference techniques are employed to arrive at a computationally efficient composite thermal model representing a series-cell arrangement operating in conjunction with a radiately coupled baseplate and coldplate thermal bus. An aggressive, low-mass design approach indicates that thermal considerations can and should direct the design of the thermal bus arrangement. Special consideration is given to the potential for mixed conductive and convective processes across the hydrogen gap. Results of a compressible flow model are presented and indicate the transfer process is suitably represented by molecular conduction. A high-fidelity thermal model of the cell stack (and related components) indicates the presence of axial and radial temperature gradients. A detailed model of the thermal bus reveals the thermal interaction of individual cells and is imperative for assessing the intercell temperature gradients.

  5. Mathematical modeling of static layer crystallization for propellant grade hydrogen peroxide

    Science.gov (United States)

    Hao, Lin; Chen, Xinghua; Sun, Yaozhou; Liu, Yangyang; Li, Shuai; Zhang, Mengqian

    2017-07-01

    Hydrogen peroxide (H2O2) is an important raw material widely used in many fields. In this work a mathematical model of heat conduction with a moving boundary was proposed to study the melt crystallization process of hydrogen peroxide which was carried out outside a cylindrical crystallizer. Considering the effects of the temperature of the cooling fluid on the thermal conductivity of crude crystal, the model is an improvement of Guardani's research and can be solved by analytic iteration method. An experiment was designed to measure the thickness of crystal layer with time under different conditions. A series of analysis, including the effects of different refrigerant temperature on crystal growth rate, the effects of different cooling rates on crystal layer growth rate, the effects of crystallization temperature on heat transfer and the model's application scope were conducted based on the comparison between experimental results and simulation results of the model.

  6. Tritium and hydrogen behaviour at Phenix power plant. Application to development and validation of KUMAR type models

    International Nuclear Information System (INIS)

    Tibi, A.; Misraki, J.; Feron, D.

    1984-04-01

    Experimentations at Phenix reactor confirmed the fitness of the KUMAR model for predicting the behaviour of hydrogen and tritium, and thus, prevision of the tritium distribution at Super Phenix reactor: calculation of the tritium content of a regenerated secondary cold trap, behaviour of hydrogen during power operation, the primary cold trap being deliberately outage, and estimation of the tritium and hydrogen sources and permeation transfer ratios [fr

  7. Advanced nanostructured materials as media for hydrogen storage

    International Nuclear Information System (INIS)

    David, E.; Niculescu, V.; Armeanu, A.; Sandru, C.; Constantinescu, M.; Sisu, C.

    2005-01-01

    Full text: In a future sustainable energy system based on renewable energy, environmentally harmless energy carriers like hydrogen, will be of crucial importance. One of the major impediments for the transition to a hydrogen based energy system is the lack of satisfactory hydrogen storage alternatives. Hydrogen storage in nanostructured materials has been proposed as a solution for adequate hydrogen storage for a number of applications, in particular for transportation. This paper is a preliminary study with the focus on possibilities for hydrogen storage in zeolites, alumina and nanostructured carbon materials. The adsorption properties of these materials were evaluated in correlation with their internal structure. From N 2 physisorption data the BET surface area (S BET ) , total pore volume (PV), micropore volume (MPV) and total surface area (S t ) were derived. H 2 physisorption measurements were performed at 77 K and a pressure value of 1 bar. From these data the adsorption capacities of sorbent materials were determined. Apparently the microporous adsorbents, e.g activated carbons, display appreciable sorption capacities. Based on their micropore volume, carbon-based sorbents have the largest adsorption capacity for H 2 , over 230 cm 3 (STP)/g, at the previous conditions. By increasing the micropore volume (∼ 1 cm 3 /g) of sorbents and optimizing the adsorption conditions it is expected to obtain an adsorption capacity of ∼ 560 cm 3 (STP)/g, close to targets set for mobile applications. (authors)

  8. Kinetic Monte-Carlo modeling of hydrogen retention and re-emission from Tore Supra deposits

    International Nuclear Information System (INIS)

    Rai, A.; Schneider, R.; Warrier, M.; Roubin, P.; Martin, C.; Richou, M.

    2009-01-01

    A multi-scale model has been developed to study the reactive-diffusive transport of hydrogen in porous graphite [A. Rai, R. Schneider, M. Warrier, J. Nucl. Mater. (submitted for publication). http://dx.doi.org/10.1016/j.jnucmat.2007.08.013.]. The deposits found on the leading edge of the neutralizer of Tore Supra are multi-scale in nature, consisting of micropores with typical size lower than 2 nm (∼11%), mesopores (∼5%) and macropores with a typical size more than 50 nm [C. Martin, M. Richou, W. Sakaily, B. Pegourie, C. Brosset, P. Roubin, J. Nucl. Mater. 363-365 (2007) 1251]. Kinetic Monte-Carlo (KMC) has been used to study the hydrogen transport at meso-scales. Recombination rate and the diffusion coefficient calculated at the meso-scale was used as an input to scale up and analyze the hydrogen transport at macro-scale. A combination of KMC and MCD (Monte-Carlo diffusion) method was used at macro-scales. Flux dependence of hydrogen recycling has been studied. The retention and re-emission analysis of the model has been extended to study the chemical erosion process based on the Kueppers-Hopf cycle [M. Wittmann, J. Kueppers, J. Nucl. Mater. 227 (1996) 186].

  9. A collisional radiative model of hydrogen plasmas developed for diagnostic purposes of negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Iordanova, Snejana, E-mail: snejana@phys.uni-sofia.bg; Paunska, Tsvetelina [Faculty of Physics, Sofia University, BG-1164 Sofia (Bulgaria)

    2016-02-15

    A collisional radiative model of low-pressure hydrogen plasmas is elaborated and applied in optical emission spectroscopy diagnostics of a single element of a matrix source of negative hydrogen ions. The model accounts for the main processes determining both the population densities of the first ten states of the hydrogen atom and the densities of the positive hydrogen ions H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +}. In the calculations, the electron density and electron temperature are varied whereas the atomic and molecular temperatures are included as experimentally obtained external parameters. The ratio of the H{sub α} to H{sub β} line intensities is calculated from the numerical results for the excited state population densities, obtained as a solution of the set of the steady-state rate balance equations. The comparison of measured and theoretically obtained ratios of line intensities yields the values of the electron density and temperature as well as of the degree of dissociation, i.e., of the parameters which have a crucial role for the volume production of the negative ions.

  10. High resolution measurements and modeling of auroral hydrogen emission line profiles

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    Full Text Available Measurements in the visible wavelength range at high spectral resolution (1.3 Å have been made at Longyearbyen, Svalbard (15.8 E,78.2 N during an interval of intense proton precipitation. The shape and Doppler shift of hydrogen Balmer beta line profiles have been compared with model line profiles, using as input ion energy spectra from almost coincident passes of the FAST and DMSP spacecraft. The comparison shows that the simulation contains the important physical processes that produce the profiles, and confirms that measured changes in the shape and peak wave-length of the hydrogen profiles are the result of changing energy input. This combination of high resolution measurements with modeling provides a method of estimating the incoming energy and changes in flux of precipitating protons over Svalbard, for given energy and pitch-angle distributions. Whereas for electron precipitation, information on the incident particles is derived from brightness and brightness ratios which require at least two spectral windows, for proton precipitation the Doppler profile of resulting hydrogen emission is directly related to the energy and energy flux of the incident energetic protons and can be used to gather information about the source region. As well as the expected Doppler shift to shorter wavelengths, the measured profiles have a significant red-shifted component, the result of upward flowing emitting hydrogen atoms.

    Key words. Ionosphere (auroral ionosphere; particle precipitation – Magnetospheric physics (auroral phenomena

  11. High resolution measurements and modeling of auroral hydrogen emission line profiles

    Directory of Open Access Journals (Sweden)

    B. S. Lanchester

    2003-07-01

    Full Text Available Measurements in the visible wavelength range at high spectral resolution (1.3 Å have been made at Longyearbyen, Svalbard (15.8 E,78.2 N during an interval of intense proton precipitation. The shape and Doppler shift of hydrogen Balmer beta line profiles have been compared with model line profiles, using as input ion energy spectra from almost coincident passes of the FAST and DMSP spacecraft. The comparison shows that the simulation contains the important physical processes that produce the profiles, and confirms that measured changes in the shape and peak wave-length of the hydrogen profiles are the result of changing energy input. This combination of high resolution measurements with modeling provides a method of estimating the incoming energy and changes in flux of precipitating protons over Svalbard, for given energy and pitch-angle distributions. Whereas for electron precipitation, information on the incident particles is derived from brightness and brightness ratios which require at least two spectral windows, for proton precipitation the Doppler profile of resulting hydrogen emission is directly related to the energy and energy flux of the incident energetic protons and can be used to gather information about the source region. As well as the expected Doppler shift to shorter wavelengths, the measured profiles have a significant red-shifted component, the result of upward flowing emitting hydrogen atoms.Key words. Ionosphere (auroral ionosphere; particle precipitation – Magnetospheric physics (auroral phenomena

  12. PERFORMANCE EVALUATION OF EMPIRICAL MODELS FOR VENTED LEAN HYDROGEN EXPLOSIONS

    OpenAIRE

    Anubhav Sinha; Vendra C. Madhav Rao; Jennifer X. Wen

    2017-01-01

    Explosion venting is a method commonly used to prevent or minimize damage to an enclosure caused by an accidental explosion. An estimate of the maximum overpressure generated though explosion is an important parameter in the design of the vents. Various engineering models (Bauwens et al., 2012, Molkov and Bragin, 2015) and European (EN 14994 ) and USA standards (NFPA 68) are available to predict such overpressure. In this study, their performance is evaluated using a number of published exper...

  13. Comparison of the modeling solutions with the hydrogen discharge data

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1992-01-01

    With the availability of experimental values for H 2 vibrational population distributions up to v=8 and measured distributions up to v=5 with simultaneous measurements of the H - concentration, it has become possible to test some features of the full-spectrum model of H - generation. The application of the code developed by Gorse et al. to these discharges by the groups at both Bari and at the Ecole Polytechnique has extended the vibrational distribution calculation to include also the H - concentration. Comparing the vibrational population calculated by these two groups at the higher levels, where the onset of H - production occurs, one finds populations for the υ=5 level that are a factor of eight to ten larger than the experimental values. Since these workers have omitted the role of the H 3 + ions known to be present in the discharge, the inclusion of the appropriate S-V process should increase the population discrepancies another factor of two or three. This excess population poses something of a dilemma: Since the Bari code simultaneously reproduces the observed H - concentration but overestimates the vibrational population by a large factor, the standard model of vibrational excitation followed by dissociative attachment is open to question. If measured rather than calculated distributions were used in the H - calculation, the calculated H - concentration would presumably be an order-of-magnitude smaller than the observed value. The measured population distributions taken against the background of the modelling solutions would seem to imply alternate sources of H - production other than dissociative attachment. To examine this problem, we have generated new modelling solutions for comparison with the data of Eenshuistra et al

  14. Effective modeling of hydrogen mixing and catalytic recombination in containment atmosphere with an Eulerian Containment Code

    International Nuclear Information System (INIS)

    Bott, E.; Frepoli, C.; Monti, R.; Notini, V.; Carcassi, M.; Fineschi, F.; Heitsch, M.

    1999-01-01

    Large amounts of hydrogen can be generated in the containment of a nuclear power plant following a postulated accident with significant fuel damage. Different strategies have been proposed and implemented to prevent violent hydrogen combustion. An attractive one aims to eliminate hydrogen without burning processes; it is based on the use of catalytic hydrogen recombiners. This paper describes a simulation methodology which is being developed by Ansaldo, to support the application of the above strategy, in the frame of two projects sponsored by the Commission of the European Communities within the IV Framework Program on Reactor Safety. Involved organizations also include the DCMN of Pisa University (Italy), Battelle Institute and GRS (Germany), Politechnical University of Madrid (Spain). The aims to make available a simulation approach, suitable for use for containment design at industrial level (i.e. with reasonable computer running time) and capable to correctly capture the relevant phenomenologies (e.g. multiflow convective flow patterns, hydrogen, air and steam distribution in the containment atmosphere as determined by containment structures and geometries as well as by heat and mass sources and sinks). Eulerian algorithms provide the capability of three dimensional modelling with a fairly accurate prediction, however lower than CFD codes with a full Navier Stokes formulation. Open linking of an Eulerian code as GOTHIC to a full Navier Stokes CFD code as CFX 4.1 allows to dynamically tune the solving strategies of the Eulerian code itself. The effort in progress is an application of this innovative methodology to detailed hydrogen recombination simulation and a validation of the approach itself by reproducing experimental data. (author)

  15. Modeling hydrogen starvation conditions in proton-exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ohs, Jan Hendrik; Sauter, Ulrich; Maass, Sebastian [Robert Bosch GmbH, Robert-Bosch-Platz 1, 70839 Gerlingen-Schillerhoehe (Germany); Stolten, Detlef [Forschungszentrum Juelich GmbH, IEF-3: Fuel Cells, 52425 Juelich (Germany)

    2011-01-01

    In this study, a steady state and isothermal 2D-PEM fuel cell model is presented. By simulation of a single cell along the channel and in through-plane direction, its behaviour under hydrogen starvation due to nitrogen dilution is analysed. Under these conditions, carbon corrosion and water electrolysis are observed on the cathode side. This phenomenon, causing severe cell degradation, is known as reverse current decay mechanism in literature. Butler-Volmer equations are used to model the electrochemical reactions. In addition, we account for permeation of gases through the membrane and for the local water content within the membrane. The results show that the membrane potential locally drops in areas starved from hydrogen. This leads to potential gradients >1.2 V between electrode and membrane on the cathode side resulting in significant carbon corrosion and electrolysis reaction rates. The model enables the analysis of sub-stoichiometric states occurring during anode gas recirculation or load transients. (author)

  16. Detailed modelling of processes inside a catalytic recombiner for hydrogen removal

    International Nuclear Information System (INIS)

    Heitsch, M.

    1999-01-01

    Under accidental conditions, considerable amounts of hydrogen may be released into the containment. Catalytic reacting surfaces in recombiners are a reliable method to recombine this hydrogen and other burnable gases like carbon monoxide from the atmosphere in a passive way. Many experiments have been carried out to study the main phenomena occurring inside recombiners, like the efficiency of hydrogen removal, the start-up conditions, poisoning, oxygen starvation, steam and water impact, and others. In addition, the global behavior of a given recombiner device in a larger environment has been investigated in order to demonstrate the effectiveness and to facilitate the derivation of simplified models for long term, severe accident analyses. These long-term severe accident models are complemented by detailed investigations to understand the interaction of chemistry and flow inside a recombiner box. This helps to provide the dependencies of non-measurable variables (e.g. the reaction rate distribution), of local surface temperatures etc. to make long-term or system models more reliable. It also offers possibilities for increasing the chemical efficiency by optimising the geometric design properly. Computational Fluid Dynamics (CFD) codes are available for use as development tools to include the specifics of catalytic surface reactors. The present paper describes the use of the code system CFX [1] for creating a recombiner model. Some model predictions are compared to existing test data. (author)

  17. Modeling and simulation of a packed bed reactor for hydrogen by methanol steam reforming

    International Nuclear Information System (INIS)

    Aboudheir, A.; Idem, R.

    2004-01-01

    'Full text:' The performance of a catalytic packed bed tubular reactor for hydrogen production depends on mass transport characteristics and temperature distribution in the reactor. To accurately predict this performance, a rigorous numerical model has been developed based on coupled mass, energy, and momentum balance equations in cylindrical coordinates. This comprehensive model takes into account the variations of the concentration and temperature in both the axial and radial directions as well as the pressure drop along the packed reactor. Also, experimental measurements for hydrogen production were collected using a manganese-promoted co-precipitated Cu-Al catalyst for methanol-steam reforming in a micro-reactor having 10 mm i.d. and 460 mm overall length. The operating temperature ranged from 443 to 523 K and the space-time ranged from 0.1 to 2.5 kg cat h/kmol CH3OH. The simulation results were found to be in close agreement with the experimental data over the various operating conditions. This confirms the validity of both the numerical model of this work and our previous published kinetics models for this reaction system. In addition, the model formulation is applicable to handle reactions, not only for the microreactor presented in this work, but also, for other laboratory size and industrial scale processes for hydrogen production by hydrocarbon reformation. (author)

  18. Discrete kink dynamics in hydrogen-bonded chains: The two-component model

    DEFF Research Database (Denmark)

    Karpan, V.M.; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2004-01-01

    We study discrete topological solitary waves (kinks and antikinks) in two nonlinear diatomic chain models that describe the collective dynamics of proton transfers in one-dimensional hydrogen-bonded networks. The essential ingredients of the models are (i) a realistic (anharmonic) ion-proton inte......We study discrete topological solitary waves (kinks and antikinks) in two nonlinear diatomic chain models that describe the collective dynamics of proton transfers in one-dimensional hydrogen-bonded networks. The essential ingredients of the models are (i) a realistic (anharmonic) ion...... chain subject to a substrate with two optical bands), both providing a bistability of the hydrogen-bonded proton. Exact two-component (kink and antikink) discrete solutions for these models are found numerically. We compare the soliton solutions and their properties in both the one- (when the heavy ions...... principal differences, like a significant difference in the stability switchings behavior for the kinks and the antikinks. Water-filled carbon nanotubes are briefly discussed as possible realistic systems, where topological discrete (anti)kink states might exist....

  19. On the temperature dependence of H-U{sub iso} in the riding hydrogen model

    Energy Technology Data Exchange (ETDEWEB)

    Lübben, Jens; Volkmann, Christian [Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, D-37077 Göttingen (Germany); Grabowsky, Simon [School of Chemistry and Biochemistry, Stirling Highway 35, WA-6009 Crawley (Australia); Edwards, Alison [Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Morgenroth, Wolfgang [Institut für Geowissenschaften, Abteilung Kristallographie, Goethe-Universität, Altenhöferallee 1, 60438 Frankfurt am Main (Germany); Fabbiani, Francesca P. A. [GZG, Abteilung Kristallographie, Georg-August Universität, Goldschmidtstrasse 1, 37077 Göttingen (Germany); Sheldrick, George M. [Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, D-37077 Göttingen (Germany); Dittrich, Birger, E-mail: birger.dittrich@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, D-37077 Göttingen (Germany)

    2014-07-01

    The temperature dependence of hydrogen U{sub iso} and parent U{sub eq} in the riding hydrogen model is investigated by neutron diffraction, aspherical-atom refinements and QM/MM and MO/MO cluster calculations. Fixed values of 1.2 or 1.5 appear to be underestimated, especially at temperatures below 100 K. The temperature dependence of H-U{sub iso} in N-acetyl-l-4-hydroxyproline monohydrate is investigated. Imposing a constant temperature-independent multiplier of 1.2 or 1.5 for the riding hydrogen model is found to be inaccurate, and severely underestimates H-U{sub iso} below 100 K. Neutron diffraction data at temperatures of 9, 150, 200 and 250 K provide benchmark results for this study. X-ray diffraction data to high resolution, collected at temperatures of 9, 30, 50, 75, 100, 150, 200 and 250 K (synchrotron and home source), reproduce neutron results only when evaluated by aspherical-atom refinement models, since these take into account bonding and lone-pair electron density; both invariom and Hirshfeld-atom refinement models enable a more precise determination of the magnitude of H-atom displacements than independent-atom model refinements. Experimental efforts are complemented by computing displacement parameters following the TLS+ONIOM approach. A satisfactory agreement between all approaches is found.

  20. On the temperature dependence of H-Uiso in the riding hydrogen model

    International Nuclear Information System (INIS)

    Lübben, Jens; Volkmann, Christian; Grabowsky, Simon; Edwards, Alison; Morgenroth, Wolfgang; Fabbiani, Francesca P. A.; Sheldrick, George M.; Dittrich, Birger

    2014-01-01

    The temperature dependence of hydrogen U iso and parent U eq in the riding hydrogen model is investigated by neutron diffraction, aspherical-atom refinements and QM/MM and MO/MO cluster calculations. Fixed values of 1.2 or 1.5 appear to be underestimated, especially at temperatures below 100 K. The temperature dependence of H-U iso in N-acetyl-l-4-hydroxyproline monohydrate is investigated. Imposing a constant temperature-independent multiplier of 1.2 or 1.5 for the riding hydrogen model is found to be inaccurate, and severely underestimates H-U iso below 100 K. Neutron diffraction data at temperatures of 9, 150, 200 and 250 K provide benchmark results for this study. X-ray diffraction data to high resolution, collected at temperatures of 9, 30, 50, 75, 100, 150, 200 and 250 K (synchrotron and home source), reproduce neutron results only when evaluated by aspherical-atom refinement models, since these take into account bonding and lone-pair electron density; both invariom and Hirshfeld-atom refinement models enable a more precise determination of the magnitude of H-atom displacements than independent-atom model refinements. Experimental efforts are complemented by computing displacement parameters following the TLS+ONIOM approach. A satisfactory agreement between all approaches is found

  1. Performance of a 10-kJ SMES model cooled by liquid hydrogen thermo-siphon flow for ASPCS study

    International Nuclear Information System (INIS)

    Makida, Y; Shintomi, T; Hamajima, T; Tsuda, M; Miyagi, D; Ota, N; Katsura, M; Ando, K; Takao, T; Tsujigami, H; Fujikawa, S; Hirose, J; Iwaki, K; Komagome, T

    2015-01-01

    We propose a new electrical power storage and stabilization system, called an Advanced Superconducting Power Conditioning System (ASPCS), which consists of superconducting magnetic energy storage (SMES) and hydrogen energy storage, converged on a liquid hydrogen station for fuel cell vehicles. A small 10- kJ SMES system, in which a BSCCO coil cooled by liquid hydrogen was installed, was developed to create an experimental model of an ASPCS. The SMES coil is conductively cooled by liquid hydrogen flow through a thermo-siphon line under a liquid hydrogen buffer tank. After fabrication of the system, cooldown tests were carried out using liquid hydrogen. The SMES coil was successfully charged up to a nominal current of 200 A. An eddy current loss, which was mainly induced in pure aluminum plates pasted onto each pancake coils for conduction cooling, was also measured. (paper)

  2. Model for H- and D- production by hydrogen backscattering

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Schneider, P.J.

    1980-01-01

    The Marlowe Monte-Carlo backscattering code has been used to calculate particle reflection coefficients and energy distributions for H, D incident upon Li, K, Ni, Cu, Mo, Ag, Cs, Hf, W, Pt, and U surfaces. The backscattered energy and angular distributions are combined with a model for formation and survival probabilities for H - , D - leaving the surface. A least-squares fit of experimental measurements of H - yields from the composite surface, Cs/Cu, has been used to obtain two semi-empirical constants, α, β which enter into the formation and survival probabilities. These probabilities are used to calculate the production probability which in turn provides an upper limit to the negative ion yield. The choice of electrode material is discussed as a function of atomic number

  3. Dynamic flowgraph modeling of process and control systems of a nuclear-based hydrogen production plant

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dabbagh, Ahmad W. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada); Lu, Lixuan [Faculty of Energy Systems and Nuclear Science, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)

    2010-09-15

    Modeling and analysis of system reliability facilitate the identification of areas of potential improvement. The Dynamic Flowgraph Methodology (DFM) is an emerging discrete modeling framework that allows for capturing time dependent behaviour, switching logic and multi-state representation of system components. The objective of this research is to demonstrate the process of dynamic flowgraph modeling of a nuclear-based hydrogen production plant with the copper-chlorine (Cu-Cl) cycle. Modeling of the thermochemical process of the Cu-Cl cycle in conjunction with a networked control system proposed for monitoring and control of the process is provided. This forms the basis for future component selection. (author)

  4. Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2006-01-01

    the olive pulp; c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane; and d) development of a mathematical model able to describe the anaerobic digestion of the olive pulp and the effluent of hydrogen producing process. Both continuous and batch experiments...

  5. A parametric investigation of hydrogen hcci combustion using a multi-zone model approach

    International Nuclear Information System (INIS)

    Komninos, N.P.; Hountalas, D.T.; Rakopoulos, C.D.

    2007-01-01

    The purpose of the present study is to examine the effect of various operating variables of a homogeneous charge compression ignition (HCCI) engine fueled with hydrogen, using a multi-zone model developed by the authors. The multi-zone model consists of zones, which are allotted spatial locations within the combustion chamber. The model takes into account heat transfer between the zones and the combustion chamber walls, providing a spatial temperature distribution during the closed part of the engine cycle, i.e. compression, combustion and expansion. Mass transfer between zones is also accounted for, based on the geometric configuration of the zones, and includes the flow of mass in and out of the crevice regions, represented by the crevice zone. Combustion is incorporated using chemical kinetics based on a chemical reaction mechanism for the oxidation of hydrogen. This chemical reaction mechanism also includes the reactions for nitrogen oxides formation. Using the multi-zone model a parametric investigation is conducted, in order to determine the effect of engine speed, equivalence ratio, compression ratio, inlet pressure and inlet temperature, on the performance, combustion characteristics and emissions of an HCCI engine fueled with hydrogen

  6. Bio hydrogen production from cassava starch by anaerobic mixed cultures: Multivariate statistical modeling

    Science.gov (United States)

    Tien, Hai Minh; Le, Kien Anh; Le, Phung Thi Kim

    2017-09-01

    Bio hydrogen is a sustainable energy resource due to its potentially higher efficiency of conversion to usable power, high energy efficiency and non-polluting nature resource. In this work, the experiments have been carried out to indicate the possibility of generating bio hydrogen as well as identifying effective factors and the optimum conditions from cassava starch. Experimental design was used to investigate the effect of operating temperature (37-43 °C), pH (6-7), and inoculums ratio (6-10 %) to the yield hydrogen production, the COD reduction and the ratio of volume of hydrogen production to COD reduction. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. The interaction effects between them seem not significant. The central composite design showed that the polynomial regression models were in good agreement with the experimental results. This result will be applied to enhance the process of cassava starch processing wastewater treatment.

  7. A lumped-parameter model for cryo-adsorber hydrogen storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Senthil Kumar, V.; Raghunathan, K. [India Science Lab, General Motors R and D, Creator Building, International Technology Park, Bangalore 560066 (India); Kumar, Sudarshan [Chemical and Environmental Sciences Lab, General Motors R and D, 30500 Mound Road, Warren, MI 48090 (United States)

    2009-07-15

    One of the primary requirements for commercialization of hydrogen fuel-cell vehicles is the on-board storage of hydrogen in sufficient quantities. On-board storage of hydrogen by adsorption on nano-porous adsorbents at around liquid nitrogen temperatures and moderate pressures is considered viable and competitive with other storage technologies: liquid hydrogen, compressed gas, and metallic or complex hydrides. The four cryo-adsorber fuel tank processes occur over different time scales: refueling over a few minutes, discharge over a few hours, dormancy over a few days, and venting over a few weeks. The slower processes i.e. discharge, dormancy and venting are expected to have negligible temperature gradients within the bed, and hence are amenable to a lumped-parameter analysis. Here we report a quasi-static lumped-parameter model for the cryo-adsorber fuel tank, and discuss the results for these slower processes. We also describe an alternative solution method for dormancy and venting based on the thermodynamic state description. (author)

  8. Theoretical model for the hydrogen-material interaction as a basis for prediction of the material mechanical properties

    International Nuclear Information System (INIS)

    Indeitsev, D.A.; Polyanskiy, V.A.; Sukhanov, A.A.; Belyaev, A.A.

    2009-01-01

    The natural law concentration of hydrogen inside the materials has a distribution over the different binding energies. This distribution is changing under the mechanical tension. The model of interaction of the small hydrogen concentration with materials provides one with an instrument for modeling the materials fatigue and destruction, as well as the prediction of material properties during exploitation. The well-known models are of the phenomenological nature. However if one takes into account the physical mechanism then one obtains an accurate model and the instrument for the reliable prediction. The two-continuum model of the solid material is a substantiation for the present study. This model describes the interaction between the low concentration of hydrogen and the material. The redistribution of the hydrogen between the different binding energy levels is taken into account, too

  9. Modeling of Spray System Operation under Hydrogen and Steam Emissions in NPP Containment during Severe Accident

    Directory of Open Access Journals (Sweden)

    Vadim E. Seleznev

    2011-01-01

    Full Text Available The paper describes one of the variants of mathematical models of a fluid dynamics process inside the containment, which occurs in the conditions of operation of spray systems in severe accidents at nuclear power plant. The source of emergency emissions in this case is the leak of the coolant or rupture at full cross-section of the main circulating pipeline in a reactor building. Leak or rupture characteristics define the localization and the temporal law of functioning of a source of emergency emission (or accrued operating of warmed up hydrogen and steam in the containment. Operation of this source at the course of analyzed accident models should be described by the assignment of the relevant Dirichlet boundary conditions. Functioning of the passive autocatalytic recombiners of hydrogen is described in the form of the complex Newton boundary conditions.

  10. Strain gradient plasticity-based modeling of hydrogen environment assisted cracking

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; Niordson, Christian Frithiof; P. Gangloff, Richard

    2016-01-01

    Finite element analysis of stress about a blunt crack tip, emphasizing finite strain and phenomenologicaland mechanism-based strain gradient plasticity (SGP) formulations, is integrated with electrochemical assessment of occluded-crack tip hydrogen (H) solubility and two H-decohesion models...... to predict hydrogen environment assisted crack growth properties. SGP elevates crack tip geometrically necessary dislocation density and flow stress, with enhancement declining with increasing alloy strength. Elevated hydrostatic stress promotes high-trapped H concentration for crack tip damage......; it is imperative to account for SGP in H cracking models. Predictions of the threshold stress intensity factor and H-diffusion limited Stage II crack growth rate agree with experimental data for a high strength austenitic Ni-Cusuperalloy (Monel®K-500) and two modern ultra-high strength martensitic steels (Aer...

  11. Modeling Hydrogen Generation Rates in the Hanford Waste Treatment and Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Camaioni, Donald M.; Bryan, Samuel A.; Hallen, Richard T.; Sherwood, David J.; Stock, Leon M.

    2004-03-29

    This presentation describes a project in which Hanford Site and Environmental Management Science Program investigators addressed issues concerning hydrogen generation rates in the Hanford waste treatment and immobilization plant. The hydrogen generation rates of radioactive wastes must be estimated to provide for safe operations. While an existing model satisfactorily predicts rates for quiescent wastes in Hanford underground storage tanks, pretreatment operations will alter the conditions and chemical composition of these wastes. Review of the treatment process flowsheet identified specific issues requiring study to ascertain whether the model would provide conservative values for waste streams in the plant. These include effects of adding hydroxide ion, alpha radiolysis, saturation with air (oxygen) from pulse-jet mixing, treatment with potassium permanganate, organic compounds from degraded ion exchange resins and addition of glass-former chemicals. The effects were systematically investigated through literature review, technical analyses and experimental work.

  12. Convergent J-matrix calculation of the Poet-Temkin model of electron-hydrogen scattering

    International Nuclear Information System (INIS)

    Konovalov, D.A.; McCarthy, I.E.

    1994-01-01

    It is shown that the Poet-Temkin model of electron-hydrogen scattering could be solved to any required accuracy using the J-matrix method. The convergence in the basis size is achieved to an accuracy of better than 2% with the inclusion of 37 basis L 2 functions. Previously observed pseudoresonances in the J-matrix calculation naturally disappear with an increase in basis size. No averaging technique is necessary to smooth the convergent J-matrix results. (Author)

  13. The hydrogen value chain: applying the automotive role model of the hydrogen economy in the aerospace sector to increase performance and reduce costs

    Science.gov (United States)

    Frischauf, Norbert; Acosta-Iborra, Beatriz; Harskamp, Frederik; Moretto, Pietro; Malkow, Thomas; Honselaar, Michel; Steen, Marc; Hovland, Scott; Hufenbach, Bernhard; Schautz, Max; Wittig, Manfred; Soucek, Alexander

    2013-07-01

    satellites. Similar trends can be expected in the future for RADAR Earth Observation satellites and space infrastructure concepts of great scale. This paper examines current activities along the hydrogen value chain, both in the terrestrial and the aerospace sector. A general assessment of the synergy potential is complemented by a thorough analysis of specific applications serving as role models like a lunar manned base or pressurised rover, an aircraft APU or a high power telecommunications satellite. Potential performance improvements and cost savings serve as key performance indicators in these comparisons and trade-offs.

  14. Hydrogen Adsorption on Nanoporous Biocarbon

    Science.gov (United States)

    Wood, M. B.; Burress, J. W.; Lapilli, C. M.; Pfeifer, P.; Shah, P. S.; Suppes, G. J.; Dillon, A. C.; Parilla, P. A.

    2007-03-01

    As a part of the Alliance for Collaborative Research in Alternative Fuel Technology (http://all-craft.missouri.edu) we study activated carbons made from corncob, optimized for storing methane and hydrogen (H2) by physisorption at low pressure. We report here: (a) storage capacities of 73-91 g H2/kg carbon at 77 K and 47 bar, validated in three different laboratories (the 2010 DOE target is 60 g H2/kg system); (b) binding energies from H2 adsorption isotherms (c) temperature-programmed desorption data; (d) degree of graphitization of the carbon surface from Raman spectra; (e) pore structure of carbon from nitrogen and methane adsorption isotherms, and small-angle x-ray scattering. The structural analysis shows that the carbon is highly microporous and that the pore space is highly correlated (micropores do not scatter independently).

  15. Modeling of biomass to hydrogen via the supercritical water pyrolysis process

    Energy Technology Data Exchange (ETDEWEB)

    Divilio, R.J. [Combustion Systems Inc., Silver Spring, MD (United States)

    1998-08-01

    A heat transfer model has been developed to predict the temperature profile inside the University of Hawaii`s Supercritical Water Reactor. A series of heat transfer tests were conducted on the University of Hawaii`s apparatus to calibrate the model. Results of the model simulations are shown for several of the heat transfer tests. Tests with corn starch and wood pastes indicated that there are substantial differences between the thermal properties of the paste compared to pure water, particularly near the pseudo critical temperature. The assumption of constant thermal diffusivity in the temperature range of 250 to 450 C gave a reasonable prediction of the reactor temperatures when paste is being fed. A literature review is presented for pyrolysis of biomass in water at elevated temperatures up to the supercritical range. Based on this review, a global reaction mechanism is proposed. Equilibrium calculations were performed on the test results from the University of Hawaii`s Supercritical Water Reactor when corn starch and corn starch and wood pastes were being fed. The calculations indicate that the data from the reactor falls both below and above the equilibrium hydrogen concentrations depending on test conditions. The data also indicates that faster heating rates may be beneficial to the hydrogen yield. Equilibrium calculations were also performed to examine the impact of wood concentration on the gas mixtures produced. This calculation showed that increasing wood concentrations favors the formation of methane at the expense of hydrogen.

  16. A mathematical model for hydrogen evolution in an electrochemical cell and experimental validation

    International Nuclear Information System (INIS)

    Mahmut D Mat; Yuksel Kaplan; Beycan Ibrahimoglu; Nejat Veziroglu; Rafig Alibeyli; Sadiq Kuliyev

    2006-01-01

    Electrochemical reaction is largely employed in various industrial areas such as hydrogen production, chlorate process, electroplating, metal purification etc. Most of these processes often take place with gas evaluation on the electrodes. Presence of gas phase in the liquid phase makes the problem two-phase flow which is much knowledge available from heat transfer and fluid mechanics studies. The motivation of this study is to investigate hydrogen release in an electrolysis processes from two-phase flow point of view and investigate effect of gas release on the electrolysis process. Hydrogen evolution, flow field and current density distribution in an electrochemical cell are investigated with a two-phase flow model. The mathematical model involves solutions of transport equations for the variables of each phase with allowance for inter phase transfer of mass and momentum. An experimental set-up is established to collect data to validate and improve the mathematical model. Void fraction is determined from measurement of resistivity changes in the system due to the presence of bubbles. A good agreement is obtained between numerical results and experimental data. (authors)

  17. Release of hydrogen sulfide under intermittent flow conditions – the potential of simulation models

    DEFF Research Database (Denmark)

    Matias, Natércia; Matos, Rita Ventura; Ferreira, Filipa

    2018-01-01

    For engineering purposes it is especially useful to be able to predict and control sewer corrosion rates and odor impacts as well as to design effective measures aiming to reduce effects related to hydrogen sulfide formation and release. Doing so, it is important to use modeling tools that are ca......For engineering purposes it is especially useful to be able to predict and control sewer corrosion rates and odor impacts as well as to design effective measures aiming to reduce effects related to hydrogen sulfide formation and release. Doing so, it is important to use modeling tools...... to evaluate the effects of transitions between pressure mains and gravity sewers in the air–liquid mass transfer of hydrogen sulfide at the Ericeira sewer system in Portugal. This network is known to have odor and corrosion problems, especially during summer. Despite the unavoidable uncertainties due...... to the unsteady flow rate and the quantification of air velocity and turbulence, the simulation results obtained with both models have been shown to adequately predict the overall behavior of the system....

  18. Three-dimensional fuel pin model validation by prediction of hydrogen distribution in cladding and comparison with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aly, A. [North Carolina State Univ., Raleigh, NC (United States); Avramova, Maria [North Carolina State Univ., Raleigh, NC (United States); Ivanov, Kostadin [Pennsylvania State Univ., University Park, PA (United States); Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Lacroix, E. [Pennsylvania State Univ., University Park, PA (United States); Manera, Annalisa [Univ. of Michigan, Ann Arbor, MI (United States); Walter, D. [Univ. of Michigan, Ann Arbor, MI (United States); Williamson, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gamble, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-10-29

    To correctly describe and predict this hydrogen distribution there is a need for multi-physics coupling to provide accurate three-dimensional azimuthal, radial, and axial temperature distributions in the cladding. Coupled high-fidelity reactor-physics codes with a sub-channel code as well as with a computational fluid dynamics (CFD) tool have been used to calculate detailed temperature distributions. These high-fidelity coupled neutronics/thermal-hydraulics code systems are coupled further with the fuel-performance BISON code with a kernel (module) for hydrogen. Both hydrogen migration and precipitation/dissolution are included in the model. Results from this multi-physics analysis is validated utilizing calculations of hydrogen distribution using models informed by data from hydrogen experiments and PIE data.

  19. Model studies of secondary hydrogenation in Fischer-Tropsch synthesis studied by cobalt catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Aaserud, Christian

    2003-07-01

    Mass transfer effects are very important in Fischer-Tropsch (FT) synthesis. In order to study the FT synthesis without the influence of any transport limitations, cobalt foils have been used as model catalysts. The effect of pretreatment (number of calcinations and different reduction times) for cobalt foil catalysts at 220 {sup o}C, 1 bar and H{sub 2}/CO = 3 has been studied in a microreactor. The foils were examined by Scanning electron microscopy (SEM). It was found that the catalytic activity of the cobalt foil increases with the number of pretreatments possibly due to an increase in the surface area of the cobalt foil. The SEM results support the assumption that the surface area of the cobalt foil increases with the number of pretreatments. The reduction time was also found to influence the catalytic activity of the cobalt foil. Highest activity was obtained using a reduction time of only five min (compared to one and thirty min). The decrease in activity after reduction for thirty min compared to five min was suggested to be due to restructuring of the surface of the cobalt foil and a reduction time of only 1 min was not enough to reduce the cobalt foil sufficiently. Time of reduction did also influence the product distribution. Increased reduction time resulted in a lower selectivity to light products and increased selectivity to heavier components. The paraffin/olefin ratio increased with increasing CO-conversion also for cobalt foils. The paraffin/olefin ratio also increased when the reduction period of the cobalt foil was increased at a given CO-conversion. Hydrogenation of propene to propane has been studied as a model reaction for secondary hydrogenation of olefins in the FT synthesis. The study has involved promoted and unpromoted cobalt FT catalysts supported on different types of supports and also unsupported cobalt. Hydrogenation of propene was carried out at 120 {sup o}C, 1.8 bar and H{sub 2}/C{sub 3}H{sub 6} 6 in a fixed bed microreactor. The rate

  20. A forced convective heat transfer model for two-phase hydrogen systems

    International Nuclear Information System (INIS)

    Pasch, J.; Anghaie, S.

    2007-01-01

    A consistent event in the use of hydrogen in nuclear thermal propulsion is film boiling, in which the wall heat is so large that liquid can not exist at the wall. Instead, vapor interfaces with the wall and liquid flows in the core of the duct. To better understand heat transfer under these conditions, a select set of hydrogen test data from these conditions are analyzed. This paper presents the results of an extensive literature search for film boiling heat transfer models. A representative cross-section of these models is then applied to the data. The heat transfer coefficient data were found difficult to predict and highly dependent upon the flow regime. Pre-critical heat flux correlations completely fail to predict the heat transfer of inverted film boiling conditions. Pool boiling models for inverted film boiling also are inappropriate. Current force convection models for inverted film boiling, while far better than the previous two classes of models, still generate large predictive errors. It is recommended that for the inverted annular film boiling flow regime the modified equilibrium bulk Dittus-Boelter model be used. For agitated inverted annular film boiling and dispersed film boiling regimes associated with positive equilibrium qualities, the Hendricks model should be used. (A.C.)

  1. Mathematical model for solar-hydrogen heated desalination plant using humidification-dehumidification process

    International Nuclear Information System (INIS)

    Yassin, Jamal S.; Eljrushi, Gibril S.

    2006-01-01

    This paper presents a mathematical model for thermal desalination plant operating with solar energy and hydrogen. This plant is composed of two main systems, the heating system and the distillation system. The distillation system is composed of multi-cells; each cell is using the humidification-dehumidification (H-D) process in the distillation unit and getting the required amount of heat from feed seawater heater. The feed seawater heater is a heat exchanger used to raise the temperature of the preheated seawater coming from the condensation chamber (Dehumidifier) of each cell to about 85 degree centigrade. The heating amount in the heat exchangers is obtained from the thermal storage tank, which gets its energy from solar thermal system and is coupled with a hydrogen-fired backup system to guaranty necessary operating conditions and permit 24 hours solar H-D desalination plant to enhance the performance of this system. The mathematical model studies the performance of the proposed desalination system using thermal solar energy and hydrogen as fuel. Other pertinent variable in the heating and distillation system are also studied. The outcomes of this study are analyzed to enhance the used solar desalination process and make commercial.(Author)

  2. A model for the stabilization of atomic hydrogen centers in borate glasses

    International Nuclear Information System (INIS)

    Pontuschka, W.M.; Isotani, S.; Furtado, W.W.; Piccini, A.; Rabbani, S.R.

    1989-04-01

    A model describing the trapping site of the interstitial atomic hydrogen (H sup(0) sub(i) in borate glasses x-irradiated at 77 K is proposed. The hydrogen atom is stabilized at the centers of oxygen polygons belonging to B-O ring structures in the glass network by van der Waals forces. The previously reported H sup(0) sub(i) isothermal decay experimental data are discussed in the light of this microscopic model. A coupled differential equation system describing the possible reactions was numerically solved by means of Runge-Kutta's method. The parameter best fit was found by trial and error. The untrapping parameter provided an activation energy of 0.7 x 10 sup(-19) J, in good agreement with the calculated results for dispersion interactions between the stabilized atomic hydrogen and the neighbouring oxygen atoms at the vertices of hexagonal and heptagonal structures. The retrapping and recombination parameters were found to be correlated to (T sup1/2) - T sup(1/2) sub(0)) where t sub(0)=179 K is a cutoff temperature for the kinetics process. (author)

  3. Boiling points of halogenated ethanes: an explanatory model implicating weak intermolecular hydrogen-halogen bonding.

    Science.gov (United States)

    Beauchamp, Guy

    2008-10-23

    This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.

  4. Simulation of the effect of hydrogen bonds on water activity of glucose and dextran using the Veytsman model.

    Science.gov (United States)

    De Vito, Francesca; Veytsman, Boris; Painter, Paul; Kokini, Jozef L

    2015-03-06

    Carbohydrates exhibit either van der Waals and ionic interactions or strong hydrogen bonding interactions. The prominence and large number of hydrogen bonds results in major contributions to phase behavior. A thermodynamic framework that accounts for hydrogen bonding interactions is therefore necessary. We have developed an extension of the thermodynamic model based on the Veytsman association theory to predict the contribution of hydrogen bonds to the behavior of glucose-water and dextran-water systems and we have calculated the free energy of mixing and its derivative leading to chemical potential and water activity. We compared our calculations with experimental data of water activity for glucose and dextran and found excellent agreement far superior to the Flory-Huggins theory. The validation of our calculations using experimental data demonstrated the validity of the Veytsman model in properly accounting for the hydrogen bonding interactions and successfully predicting water activity of glucose and dextran. Our calculations of the concentration of hydrogen bonds using the Veytsman model were instrumental in our ability to explain the difference between glucose and dextran and the role that hydrogen bonds play in contributing to these differences. The miscibility predictions showed that the Veytsman model is also able to correctly describe the phase behavior of glucose and dextran. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Measurement and modelling of hydrogen bonding in 1-alkanol plus n-alkane binary mixtures

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Jensen, Lars; Kofod, Jonas L.

    2007-01-01

    Two equations of state (simplified PC-SAFT and CPA) are used to predict the monomer fraction of 1-alkanols in binary mixtures with n-alkanes. It is found that the choice of parameters and association schemes significantly affects the ability of a model to predict hydrogen bonding in mixtures, eve...... studies, which is clarified in the present work. New hydrogen bonding data based on infrared spectroscopy are reported for seven binary mixtures of alcohols and alkanes. (C) 2007 Elsevier B.V. All rights reserved....... though pure-component liquid densities and vapour pressures are predicted equally accurately for the associating compound. As was the case in the study of pure components, there exists some confusion in the literature about the correct interpretation and comparison of experimental data and theoretical...

  6. Blister formation and hydrogen retention in aluminium and beryllium: A modeling and experimental approach

    Directory of Open Access Journals (Sweden)

    C. Quirós

    2017-08-01

    Full Text Available Experiments were performed in a low pressure-high density plasma reactor in order to study the impact of hydrogen retention in aluminium under plasma conditions. Microscopy scans of the surface were performed before and after 1h plasma exposure (fluence 6.1 ×1023ions/m2 where it is seen that blisters start to nucleate at the grain boundaries. Investigation on blister growth kinetics was performed for fluences ranging between 6 ×1023 and 3.7 ×1024ions/m2. The evolution of the characteristic size of the projected area was also analyzed. Finally, a macroscopic rate equations (MRE code was used to simulate hydrogen retention and diffusion in Al and bubble growth in the bulk was simulated using experimental results. This model was also used to simulate these phenomena in Be and compare its behavior with respect to Al.

  7. Hydrogen/Oxygen Reactions at High Pressures and Intermediate Temperatures: Flow Reactor Experiments and Kinetic Modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    A series of experimental and numerical investigations into hydrogen oxidation at high pressures and intermediate temperatures has been conducted. The experiments were carried out in a high pressure laminar flow reactor at 50 bar pressure and a temperature range of 600–900 K. The equivalence ratio......, the mechanism is used to simulate published data on ignition delay time and laminar burning velocity of hydrogen. The flow reactor results show that at reducing, stoichiometric, and oxidizing conditions, conversion starts at temperatures of 750–775 K, 800–825 K, and 800–825 K, respectively. In oxygen atmosphere......, ignition occurs at the temperature of 775–800 K. In general, the present model provides a good agreement with the measurements in the flow reactor and with recent data on laminar burning velocity and ignition delay time....

  8. Modeling, simulation, and optimization of a front-end system for acetylene hydrogenation reactors

    Directory of Open Access Journals (Sweden)

    R. Gobbo

    2004-12-01

    Full Text Available The modeling, simulation, and dynamic optimization of an industrial reaction system for acetylene hydrogenation are discussed in the present work. The process consists of three adiabatic fixed-bed reactors, in series, with interstage cooling. These reactors are located after the compression and the caustic scrubbing sections of an ethylene plant, characterizing a front-end system; in contrast to the tail-end system where the reactors are placed after the de-ethanizer unit. The acetylene conversion and selectivity profiles for the reactors are optimized, taking into account catalyst deactivation and process constraints. A dynamic optimal temperature profile that maximizes ethylene production and meets product specifications is obtained by controlling the feed and intercoolers temperatures. An industrial acetylene hydrogenation system is used to provide the necessary data to adjust kinetics and transport parameters and to validate the approach.

  9. Laboratory and modeling studies in search of the critical hydrogen concentration

    International Nuclear Information System (INIS)

    Bartels, David; Wu, Weiqiang; Kanjana, Kotchaphan; Sims, Howard; Henshaw, Jim

    2012-09-01

    The great success of hydrogen water chemistry (HWC) for primary coolant in nuclear power plants is due to the prevention of net radiolysis and to maintenance of the corrosion potential below -230 mV (SHE) where the rate of stress corrosion cracking is minimized. The critical hydrogen concentration or CHC has been defined as that concentration of excess H 2 in primary coolant water, which prevents net water radiolysis via the chain reaction OH + H 2 ↔H 2 O + H (1, -1) H + H 2 O 2 → H 2 O + OH (2) The principle oxidizing free radical (OH) is thus converted into a reducing radical (H), oxidation products are reduced back to water, and the net result is no chemical change. A set of benchmark experiments at the U2 reactor in Chalk River have been reported in an extensive AECL report, which indicate that the CHC in this reactor is ca. 25 micro-molar. Using the review of yields and reaction rates set forth in another recent AECL report, the Chalk River experiments have been modelled in work at NNL, Harwell. The model was not able to successfully reproduce the experimental CHC, or the steady-state H 2 concentrations (SSH2) in the absence of excess hydrogen. A sensitivity analysis of the entire model was carried out. Essentially three important variables have been found to dominate the result. Reaction rate (1) is overwhelmingly important in determining how much H 2 is needed to accomplish the chain back-reaction. Almost with equal importance, the back reaction (-1) needs to be considered at 300 deg. C, but there is some uncertainty of its magnitude. Finally, the relative yields of radicals and molecular products (i.e. H 2 , H 2 O 2 ) in particular H 2 :OH from the radiolysis are critical. Laboratory studies of hydrogenated water radiation chemistry have been carried out with a van de Graaff electron accelerator at Notre Dame Radiation Laboratory. Modelling of the hydrogen produced as a function of the hydrogen input, suggests that the reaction rate (-1) is ca. two

  10. In situ emulsification microextraction using a dicationic ionic liquid followed by magnetic assisted physisorption for determination of lead prior to micro-sampling flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Shokri, Masood; Beiraghi, Asadollah; Seidi, Shahram

    2015-01-01

    For the first time, a simple and efficient in situ emulsification microextraction method using a dicationic ionic liquid followed by magnetic assisted physisorption was presented to determine trace amounts of lead. In this method, 400 μL of 1.0 mol L −1 lithium bis (trifluoromethylsulfonyl) imide aqueous solution, Li[NTf 2 ], was added into the sample solution containing 100 μL of 1.0 mol L −1 1,3-(propyl-1,3-diyl) bis (3-methylimidazolium) chloride, [pbmim]Cl 2 , to form a water immiscible ionic liquid, [pbmim][NTf 2 ] 2 . This new in situ formed dicationic ionic liquid was applied as the acceptor phase to extract the lead-ammonium pyrrolidinedithiocarbamate (Pb-APDC) complexes from the sample solution. Subsequently, 30 mg of Fe 3 O 4 magnetic nanoparticles (MNPs) were added into the sample solution to collect the fine droplets of [pbmim][NTf 2 ] 2 , physisorptively. Finally, MNPs were eluted by acetonitrile, separated by an external magnetic field and the obtained eluent was subjected to micro-sampling flame atomic absorption spectrometry (FAAS) for further analysis. Comparing with other microextraction methods, no special devices and centrifugation step are required. Parameters influencing the extraction efficiency such as extraction time, pH, concentration of chelating agent, amount of MNPs and coexisting interferences were studied. Under the optimized conditions, this method showed high extraction recovery of 93% with low LOD of 0.7 μg L −1 . Good linearity was obtained in the range of 2.5–150 μg L −1 with determination coefficient (r 2 ) of 0.9921. Relative standard deviation (RSD%) for seven repeated measurements at the concentration of 10 μg L −1 was 4.1%. Finally, this method was successfully applied for determination of lead in some water and plant samples. - Highlights: • A dicationic ionic liquid was used as the extraction solvent, for the first time. • A simple and efficient in situ emulsification microextraction

  11. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    Science.gov (United States)

    Rauner, D.; Kurutz, U.; Fantz, U.

    2015-04-01

    As the negative hydrogen ion density nH- is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H- is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H- is produced in the plasma volume, laser photodetachment is applied as the standard method to measure nH-. The additional application of CRDS provides the possibility to directly obtain absolute values of nH-, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H- production and destruction processes. The modelled densities are adapted to the absolute measurements of nH- via CRDS, allowing to identify collisions of H- with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H- in the plasma volume at HOMER. Furthermore, the characteristic peak of nH- observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as ne determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.

  12. Modeling of roughness effect on hydrogen permeation in a low carbon steel

    Directory of Open Access Journals (Sweden)

    Carreño, J. A.

    2003-12-01

    Full Text Available A model is presented to evaluate the effect of the roughness and the profile of concentration of hydrogen in a low carbon steel. The model takes advantage of the Fick's Second Law, to predict the transport of hydrogen in the steel. The problem is treated as a variational one and its space solution is made numerically by means of the Finite Elements Method, while the temporal equation is solved via the Finite Differences Method, in order to determine the concentration profiles of Hydrogen in the steel and to quantify the roughness effect. Simultaneously, bipotentiostatic hydrogen permeation test were performed to evaluate the coefficient of mass transfer.

    El presente trabajo modela el efecto de la rugosidad y el perfil de concentración de hidrógeno en un acero, tomando como punto de partida la segunda ley de Fick para explicar el transporte de hidrógeno en el acero. El problema se trata como un problema variacional y su solución espacial se hace numéricamente por el Método de Elementos Finitos, mientras que la temporal por el Método de Diferencias Finitas, siendo estas las herramientas utilizadas para determinar los perfiles de concentración y cuantificar el efecto superficial presentado en este tipo de fenómeno. Además, a partir de la teoría se obtienen ecuaciones algebraicas que determinan el efecto que tiene la preparación superficial y el coeficiente de transferencia de masa con la permeación y concentración de hidrógeno en el acero.

  13. Model predictive control in light naphtha distillation column of gasoline hydrogenation process

    Directory of Open Access Journals (Sweden)

    Kornkrit Chiewchanchairat

    2015-03-01

    Full Text Available The main scope of this research is for designing and implementing of model predictive control (MPC on the light naphtha distillation column of gasoline hydrogenation process. This model is designed by using robust multivariable predictive control technology (RMPCT. The performance of MPC controller is better than PID controllers 32.1 % those are comparing by using as the same of objective function and also in the MPC controller can be used for steam optimization that is shown in this research, stream consumption is reduced 6.6 Kg/ m3 of fresh feed.

  14. Effect of Hydrogen Addition on Methane HCCI Engine Ignition Timing and Emissions Using a Multi-zone Model

    Science.gov (United States)

    Wang, Zi-han; Wang, Chun-mei; Tang, Hua-xin; Zuo, Cheng-ji; Xu, Hong-ming

    2009-06-01

    Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition timing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its application, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recirculation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.

  15. Evaluation of local stress and local hydrogen concentration at grain boundary using three-dimensional polycrystalline model

    International Nuclear Information System (INIS)

    Ebihara, Ken-ichi; Itakura, Mitsuhiro; Yamaguchi, Masatake; Kaburaki, Hideo; Suzudo, Tomoaki

    2010-01-01

    The decohesion model in which hydrogen segregating at grain boundaries reduces cohesive energy is considered to explain hydrogen embrittlement. Although there are several experimental and theoretical supports of this model, its total process is still unclear. In order to understand hydrogen embrittlement in terms of the decohesion model, therefore, it is necessary to evaluate stress and hydrogen concentration at grain boundaries under experimental conditions and to verify the grain boundary decohesion process. Under this consideration, we evaluated the stress and the hydrogen concentration at grain boundaries in the three-dimensional polycrystalline model which was generated by the random Voronoi tessellation. The crystallographic anisotropy was given to each grain. As the boundary conditions of the calculations, data extracted from the results calculated in the notched round-bar specimen model under the tensile test condition in which fracture of the steel specimen is observed was given to the polycrystalline model. As a result, it was found that the evaluated stress does not reach the fracture stress which was estimated under the condition of the evaluated hydrogen concentration by first principles calculations. Therefore, it was considered that the initiation of grain boundary fracture needs other factors except the stress concentration due to the crystallographic anisotropy. (author)

  16. Coupled cluster and density functional theory calculations of atomic hydrogen chemisorption on pyrene and coronene as model systems for graphene hydrogenation.

    Science.gov (United States)

    Wang, Ying; Qian, Hu-Jun; Morokuma, Keiji; Irle, Stephan

    2012-07-05

    Ab initio coupled cluster and density functional theory studies of atomic hydrogen addition to the central region of pyrene and coronene as molecular models for graphene hydrogenation were performed. Fully relaxed potential energy curves (PECs) were computed at the spin-unrestricted B3LYP/cc-pVDZ level of theory for the atomic hydrogen attack of a center carbon atom (site A), the midpoint of a neighboring carbon bond (site B), and the center of a central hexagon (site C). Using the B3LYP/cc-pVDZ PEC geometries, we evaluated energies at the PBE density functional, as well as ab initio restricted open-shell ROMP2, ROCCSD, and ROCCSD(T) levels of theory, employing cc-pVDZ and cc-pVTZ basis sets, and performed a G2MS extrapolation to the ROCCSD(T)/cc-pVTZ level of theory. In agreement with earlier studies, we find that only site A attack leads to chemisorption. The G2MS entrance channel barrier heights, binding energies, and PEC profiles are found to agree well with a recent ab initio multireference wave function theory study (Bonfanti et al. J. Chem. Phys.2011, 135, 164701), indicating that single-reference open-shell methods including B3LYP are sufficient for the theoretical treatment of the interaction of graphene with a single hydrogen atom.

  17. Study and modelling of an industrial plant for hydrogen production by High Temperature Steam Electrolysis

    International Nuclear Information System (INIS)

    Bertier, L.

    2012-01-01

    HTSE field (High Temperature Steam Electrolysis) is moving from the research phase to development phase. It's now necessary to prove and to possibly improve the technology competitiveness. Therefore we need a tool able to allow communication between hydrogen producers and electrolysis cell stack designers. Designers seek where their efforts have to focus, for example by searching what are the operating best conditions for HTSE (voltage, temperature). On the contrary, the producer wants to choose the most suitable stack for its needs and under the best conditions: hydrogen has to be produced at the lowest price. Two main constraints have been identified to reach this objective: the tool has to be inserted into a process simulation software and needs to be representative of the cell and stack used technology. These constraints are antagonistic. Making an object model in a process simulation usually involves a highly simplified representation of it. To meet these constraints, we have built a model chain starting from the electrode models and leading to a representative model of the HTSE technology used process. Work and added value of this thesis mainly concern a global and local energy optimization approach. Our model allows at each scale an appropriate analysis of the main phenomena occurring in each object and a quantification of the energy and economic impacts of the technology used. This approach leads to a tool able to achieve the technical and economic optimization of a HTSE production unit. (author) [fr

  18. A simplified hydrodynamic model of hydrogen flame propagation in reactor vessels

    International Nuclear Information System (INIS)

    Baer, M.; Ratzel, A.

    1983-01-01

    A hydrodynamic model for hydrogen flame propagation in reactor geometries is presented. This model is consistent with the theory of slow combustion in which the gasdynamic field equations are treated in the limit of small Mach numbers. To the lowest order, pressure is spatially uniform. The flame is treated as a density and entropy discontinuity which propagates at prescribed burning velocities, corresponding to laminar or turbulent flames. Radiation cooling of the burned combustion gases and possible preheating of the unburned gases during propagation of the flame is included using a molecular gas-band thermal radiation model. Application of this model has been developed for 1-D variable area flame propagation. Multidimensional effects induced by hydrodynamics and buoyancy are introduced as a correction to the burn velocity (which reflects a modification of planar flame surface to a distorted surface) using experimentally measured pressure-rise time data for hydrogen/air deflagrations in cylindrical vessels. This semianalytical model of flame propagation reduces to a set of ordinary differential equations which describes the temporal variations of vessel pressure, burned volume and gas entropy. The thermodynamic state of the burned gas immediately following the flame is determined using an isobaric Hugoniot relationship. At other locations the burned gas thermodynamic states are determined using a Lagrangian particle tracking method. Results of a computer code using the method are presented

  19. Use of the confinement molecular model in the study of hydrogen under pressure. Comparison with the jellium model

    International Nuclear Information System (INIS)

    Castelluccio, G; Gervasoni, J; Cruz-Jimenez, S; Abriata, J

    2005-01-01

    The aim of this work is to present and compare the results of the model of molecular hydrogen in a dense system confinement by a penetrable barrier.It is used a simple localized orbital model which is represented by a floating spherical gaussian function with two parameters and an orbital center.The energy of the ground state of the molecule and its associated pressure are obtained for different barrier heights and nuclear radius.The values are compared with those obtained using the jellium model

  20. Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames

    Science.gov (United States)

    Schlup, Jason; Blanquart, Guillaume

    2018-03-01

    The mixture-averaged thermal diffusion model originally proposed by Chapman and Cowling is validated using multiple flame configurations. Simulations using detailed hydrogen chemistry are done on one-, two-, and three-dimensional flames. The analysis spans flat and stretched, steady and unsteady, and laminar and turbulent flames. Quantitative and qualitative results using the thermal diffusion model compare very well with the more complex multicomponent diffusion model. Comparisons are made using flame speeds, surface areas, species profiles, and chemical source terms. Once validated, this model is applied to three-dimensional laminar and turbulent flames. For these cases, thermal diffusion causes an increase in the propagation speed of the flames as well as increased product chemical source terms in regions of high positive curvature. The results illustrate the necessity for including thermal diffusion, and the accuracy and computational efficiency of the mixture-averaged thermal diffusion model.

  1. Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lesch, David A; Adriaan Sachtler, J.W. J.; Low, John J; Jensen, Craig M; Ozolins, Vidvuds; Siegel, Don; Harmon, Laurel

    2011-02-14

    UOP LLC, a Honeywell Company, Ford Motor Company, and Striatus, Inc., collaborated with Professor Craig Jensen of the University of Hawaii and Professor Vidvuds Ozolins of University of California, Los Angeles on a multi-year cost-shared program to discover novel complex metal hydrides for hydrogen storage. This innovative program combined sophisticated molecular modeling with high throughput combinatorial experiments to maximize the probability of identifying commercially relevant, economical hydrogen storage materials with broad application. A set of tools was developed to pursue the medium throughput (MT) and high throughput (HT) combinatorial exploratory investigation of novel complex metal hydrides for hydrogen storage. The assay programs consisted of monitoring hydrogen evolution as a function of temperature. This project also incorporated theoretical methods to help select candidate materials families for testing. The Virtual High Throughput Screening served as a virtual laboratory, calculating structures and their properties. First Principles calculations were applied to various systems to examine hydrogen storage reaction pathways and the associated thermodynamics. The experimental program began with the validation of the MT assay tool with NaAlH4/0.02 mole Ti, the state of the art hydrogen storage system given by decomposition of sodium alanate to sodium hydride, aluminum metal, and hydrogen. Once certified, a combinatorial 21-point study of the NaAlH4 LiAlH4Mg(AlH4)2 phase diagram was investigated with the MT assay. Stability proved to be a problem as many of the materials decomposed during synthesis, altering the expected assay results. This resulted in repeating the entire experiment with a mild milling approach, which only temporarily increased capacity. NaAlH4 was the best performer in both studies and no new mixed alanates were observed, a result consistent with the VHTS. Powder XRD suggested that the reverse reaction, the regeneration of the

  2. Kinetic modelling of slurry polymerization of ethylene with a polymer supported Ziegler-Natta catalyst (hydrogen)

    Energy Technology Data Exchange (ETDEWEB)

    Shariati, A.

    1996-12-31

    The kinetics of polymerization of ethylene catalyzed by a polymer supported Ziegler-Natta catalyst were investigated in a semi-batch reactor system. The influences of six polymerization variables were investigated using a central composite design. The variables were monomer partial pressure, catalyst loading, co-catalyst loading, catalyst particle size and hydrogen to monomer ratio. The influence of temperature on rate and polymer properties were investigated. Empirical models were fitted to the experimental data to quantify the effects of the polymerization variables on the rate characteristics and polymer properties. The rate of polymerization exhibited a first order dependency with respect to monomer partial pressure, but a nonlinear relationship with respect to catalyst loading. In the absence of hydrogen, the polymerization rate showed a non-decaying profile at the centre point conditions for the other variables. Catalyst loading and catalyst particle size had a negligible effect on weight-and-number-average molecular weights, while increasing co-catalysts loading lowered the molecular weights, as did increased temperature and hydrogen concentration. refs., figs.

  3. Introduction of hydrogen in the Norwegian energy system. NorWays - Regional model analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva; Fidje, Audun; Espegren, Kari Aamodt

    2008-12-15

    The overall aim of the NorWays project has been to provide decision support for the introduction of hydrogen as an energy carrier in the Norwegian energy system. The NorWays project is a research project funded by the Research Council of Norway. An important task has been to develop alternative scenarios and identifying market segments and regions of the Norwegian energy system where hydrogen may play a significant role. The main scenarios in the project have been: Reference: Based on the assumptions of World Energy Outlook with no new transport technologies; HyWays: Basic assumptions with technology costs (H{sub 2}) based on results from the HyWays project; No tax: No taxes on transport energy ('revenue neutral'); CO{sub 2} reduction: Reduced CO{sub 2} emissions by 75% in 2050. Three regional models have been developed and used to analyse the introduction of hydrogen as energy carrier in competition with other alternatives such as natural gas, electricity, district heating and bio fuels.The focus of the analysis has been on the transportation sector. (Author)

  4. Photoproduction of hydrogen peroxide in aqueous solution from model compounds for chromophoric dissolved organic matter (CDOM)

    International Nuclear Information System (INIS)

    Clark, Catherine D.; Bruyn, Warren de; Jones, Joshua G.

    2014-01-01

    Highlights: • CDOM produces hydrogen peroxide in sunlit surface waters. • Quinone moieties have been proposed as the photo-active chromophore in CDOM. • Hydrogen peroxide is produced in irradiated aqueous quinone solutions. • Concentrations and production rates are comparable to humic and fulvic acids. • Optical properties post-irradiation were similar to CDOM. - Abstract: To explore whether quinone moieties are important in chromophoric dissolved organic matter (CDOM) photochemistry in natural waters, hydrogen peroxide (H 2 O 2 ) production and associated optical property changes were measured in aqueous solutions irradiated with a Xenon lamp for CDOM model compounds (dihydroquinone, benzoquinone, anthraquinone, napthoquinone, ubiquinone, humic acid HA, fulvic acid FA). All compounds produced H 2 O 2 with concentrations ranging from 15 to 500 μM. Production rates were higher for HA vs. FA (1.32 vs. 0.176 mM h −1 ); values ranged from 6.99 to 0.137 mM h −1 for quinones. Apparent quantum yields (Θ app ; measure of photochemical production efficiency) were higher for HA vs. FA (0.113 vs. 0.016) and ranged from 0.0018 to 0.083 for quinones. Dihydroquinone, the reduced form of benzoquinone, had a higher production rate and efficiency than its oxidized form. Post-irradiation, quinone compounds had absorption spectra similar to HA and FA and 3D-excitation–emission matrix fluorescence spectra (EEMs) with fluorescent peaks in regions associated with CDOM

  5. Energy modeling and analysis for optimal grid integration of large-scale variable renewables using hydrogen storage in Japan

    International Nuclear Information System (INIS)

    Komiyama, Ryoichi; Otsuki, Takashi; Fujii, Yasumasa

    2015-01-01

    Although the extensive introduction of VRs (variable renewables) will play an essential role to resolve energy and environmental issues in Japan after the Fukushima nuclear accident, its large-scale integration would pose a technical challenge in the grid management; as one of technical countermeasures, hydrogen storage receives much attention, as well as rechargeable battery, for controlling the intermittency of VR power output. For properly planning renewable energy policies, energy system modeling is important to quantify and qualitatively understand its potential benefits and impacts. This paper analyzes the optimal grid integration of large-scale VRs using hydrogen storage in Japan by developing a high time-resolution optimal power generation mix model. Simulation results suggest that the installation of hydrogen storage is promoted by both its cost reduction and CO 2 regulation policy. In addition, hydrogen storage turns out to be suitable for storing VR energy in a long period of time. Finally, through a sensitivity analysis of rechargeable battery cost, hydrogen storage is economically competitive with rechargeable battery; the cost of both technologies should be more elaborately recognized for formulating effective energy policies to integrate massive VRs into the country's power system in an economical manner. - Highlights: • Authors analyze hydrogen storage coupled with VRs (variable renewables). • Simulation analysis is done by developing an optimal power generation mix model. • Hydrogen storage installation is promoted by its cost decline and CO 2 regulation. • Hydrogen storage is suitable for storing VR energy in a long period of time. • Hydrogen storage is economically competitive with rechargeable battery

  6. Calculation of radiative opacity of plasma mixtures using a relativistic screened hydrogenic model

    International Nuclear Information System (INIS)

    Mendoza, M.A.; Rubiano, J.G.; Gil, J.M.; Rodríguez, R.; Florido, R.; Espinosa, G.; Martel, P.; Mínguez, E.

    2014-01-01

    We present the code ATMED based on an average atom model and conceived for fast computing the population distribution and radiative properties of hot and dense single and multicomponent plasmas under LTE conditions. A relativistic screened hydrogenic model (RSHM), built on a new set of universal constants considering j-splitting, is used to calculate the required atomic data. The opacity model includes radiative bound–bound, bound–free, free–free, and scattering processes. Bound–bound line-shape function has contributions from natural, Doppler and electron-impact broadenings. An additional dielectronic broadening to account for fluctuations in the average level populations has been included, which improves substantially the Rosseland mean opacity results. To illustrate the main features of the code and its capabilities, calculations of several fundamental quantities of one-component plasmas and mixtures are presented, and a comparison with previously published data is performed. Results are satisfactorily compared with those predicted by more elaborate codes. - Highlights: • A new opacity code, ATMED, based on the average atom approximation is presented. • Atomic data are computed by means of a relativistic screened hydrogenic model. • An effective bound level degeneracy is included for accounting pressure ionization. • A new dielectronic line broadening is included to improve the mean opacities. • ATMED has the possibility to handle with single element and multicomponent plasmas

  7. Electric arc hydrogen heaters

    International Nuclear Information System (INIS)

    Zasypin, I.M.

    2000-01-01

    The experimental data on the electric arc burning in hydrogen are presented. Empirical and semiempirical dependences for calculating the arc characteristics are derived. An engineering method of calculating plasma torches for hydrogen heating is proposed. A model of interaction of a hydrogen arc with a gas flow is outlined. The characteristics of plasma torches for heating hydrogen and hydrogen-bearing gases are described. (author)

  8. Detailed kinetic and heat transport model for the hydrolysis of lignocellulose by anhydrous hydrogen fluoride vapor

    Energy Technology Data Exchange (ETDEWEB)

    Rorrer, G.L.; Mohring, W.R.; Lamport, D.T.A.; Hawley, M.C.

    1988-01-01

    Anhydrous Hydrogen Fluoride (HF) vapor at ambient conditions efficiently and rapidly hydrolyzed lignocellulose to glucose and lignin. The unsteady-state reaction of HF vapor with a single lignocellulose chip was mathematically modeled under conditions where external and internal mass-transfer resistances were minimized. The model incorporated physical adsorption of HF vapor onto the lignocellulosic matrix and solvolysis of cellulose to glucosyl fluoride by adsorbed HF into the differential material and energy balance expressions. Model predictions for the temperature distribution and global glucose yield in the HF-reacting lignocellulose chip as a function of reaction time and HF vapor stream temperature agreed reasonably with the complimentary experimental data. The model correctly predicted that even when mass-transfer resistances for the reaction of HF vapor with a single lignocellulose chip are minimized, external and internal heat-transfer resistances are still significant.

  9. Macroscopic rate equation modeling of trapping/detrapping of hydrogen isotopes in tungsten materials

    Energy Technology Data Exchange (ETDEWEB)

    Hodille, E.A., E-mail: etienne.hodille@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Bonnin, X. [LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse (France); Bisson, R.; Angot, T. [Aix-Marseille Université, PIIM, CNRS, UMR 7345, 13397 Marseille (France); Becquart, C.S. [Université Lille I, UMET, UMR 8207, 59655 Villeneuve d’Ascq cédex France (France); Layet, J.M. [Aix-Marseille Université, PIIM, CNRS, UMR 7345, 13397 Marseille (France); Grisolia, C. [CEA, IRFM, F-13108 Saint Paul lez Durance (France)

    2015-12-15

    Relevant parameters for trapping of Hydrogen Isotopes (HIs) in polycrystalline tungsten are determined with the MHIMS code (Migration of Hydrogen Isotopes in MaterialS) which is used to reproduce Thermal Desorption Spectrometry experiments. Three types of traps are found: two intrinsic traps (detrapping energy of 0.87 eV and 1.00 eV) and one extrinsic trap created by ion irradiation (detrapping energy of 1.50 eV). Then MHIMS is used to simulate HIs retention at different fluences and different implantation temperatures. Simulation results agree well with experimental data. It is shown that at 300 K the retention is limited by diffusion in the bulk. For implantation temperatures above 500 K, the retention is limited by trap creation processes. Above 600 K, the retention drops by two orders of magnitude as compared to the retention at 300 K. With the determined detrapping energies, HIs outgassing at room temperature is predicted. After ions implantation at 300 K, 45% of the initial retention is lost to vacuum in 300 000 s while during this time the remaining trapped HIs diffuse twice as deep into the bulk. - Highlights: • Code development to solve numerically the model equations of diffusion and trapping of hydrogen in metals. • Parametrization of the model trapping parameters (detrapping energies and density): fitting of experimental TDS spectrum. • Confrontation model/experiment: evolution of retention with fluence and implantation temperature. • Investigation of period of rest between implantation and TDS on retention and depth profile.

  10. A feasible kinetic model for the hydrogen oxidation on ruthenium electrodes

    International Nuclear Information System (INIS)

    Rau, M.S.; Gennero de Chialvo, M.R.; Chialvo, A.C.

    2010-01-01

    The hydrogen oxidation reaction (hor) was studied on a polycrystalline ruthenium electrode in H 2 SO 4 solution at different rotation rates (ω). The experimental polarization curves recorded on steady state show the existence of a maximum current with a non-linear dependence of the current density on ω 1/2 . On the basis of the Tafel-Heyrovsky-Volmer kinetic mechanism, coupled with a process of inhibition of active sites by the reversible electroadsorption of hydroxyl species, it was possible to appropriately describe the origin of the maximum current. The corresponding set of kinetic parameters was also calculated from the correlation of the experimental results with the proposed kinetic model.

  11. The S-wave model for electron-hydrogen scattering revisited

    International Nuclear Information System (INIS)

    Bartschat, K.; Bray, I.

    1996-03-01

    The R-matrix with pseudo-states (RMPS) and convergent close-coupling (CCC) methods are applied to the calculation of elastic, excitation, and total as well as single-differential ionization cross sections for the simplified S-wave model of electron-hydrogen scattering. Excellent agreement is obtained for the total cross section results obtained at electron energies between 0 and 100 eV. The two calculations also agree on the single-differential ionization cross section at 54.4 eV for the triplet spin channel, while discrepancies are evident in the singlet channel which shows remarkable structure. 18 refs., 3 figs

  12. Cell size spatial convergence analysis on GOTHIC distributed parameter models for studying hydrogen mixing behaviour in CANDU containments

    International Nuclear Information System (INIS)

    Yim, K.; Wong, R.C.

    1995-01-01

    Gas mixing phenomena can be modelled using distributed parameter codes such as GOTHIC, but the selection of the optimum cell size is an important user input. The tradeoff between accuracy and practical computation times affect the choice of cell sizes, where small cells provide better accuracy at the expense of longer computing time. A study on cell size effect on hydrogen distribution is presented for the problem of hydrogen mixing behaviour in a typical CANDU reactor containment following a severe reactor accident. Optimal cell sizes were found for different room volumes, hydrogen release profiles and elevations using spatial convergence criteria. The findings of this study provide the technical basis for the cell size selection in the GOTHIC distributed parameter models used for analysing hydrogen mixing behaviour. (author). 1 ref., 1 tab., 13 figs

  13. Model of parameters controlling resistance of pipeline steels to hydrogen-induced cracking

    KAUST Repository

    Traidia, Abderrazak

    2014-01-01

    NACE MR0175/ISO 15156-2 standard provides test conditions and acceptance criteria to evaluate the resistance of carbon and low-alloy steels to hydrogen-induced cracking (HIC). The second option proposed by this standard offers a large flexibility on the choice of test parameters (pH, H2S partial pressure, and test duration), with zero tolerance to HIC initiation as an acceptance condition. The present modeling work is a contribution for a better understanding on how the test parameters and inclusion size can influence HIC initiation, and is therefore of potential interest for both steel makers and endusers. A model able to link the test operating parameters (pH, partial pressure of H2S, and temperature) to the maximum hydrogen pressure generated in the microstructural defects is proposed. The model results are then used to back calculate the minimum fracture toughness below which HIC extends. A minimum fracture toughness of 400 MPa√mm, at the segregation zone, prevents HIC occurrence and leads to successfully pass the HIC qualification test, even under extreme test conditions. The computed results show that the maximum generated pressure can reach up to 1,500 MPa. The results emphasize that the H2S partial pressure and test temperature can both have a strong influence on the final test results, whereas the influence of the pH of the test solution is less significant. © 2014, NACE International.

  14. Bank of models of hydrogen diffusion in irradiated materials for nuclear and thermonuclear installation

    International Nuclear Information System (INIS)

    Chikhraj, E.V.; Tazhibaeva, I.L.; Shestakov, V.P.; Romanenko, O.G.; Klepikov, A.Kh.

    1996-01-01

    The programs for calculation of one-dimensional hydrogen distribution in diffusion media with traps are proposed. The programs have been described by the differential equations in partial derivatives, taking into account presence of convertible chemical reaction of the first order (model by Hurst-Gauss), presence of convertible chemical reaction of the second order (model by MacNabb and Forster) or presence of two different interchanging diffusion channels with traps under boundary conditions of first, second and third kinds. Programs allows to calculate and to show dynamic distribution and its flow in diffusion media and traps along the sample (both uniform and consisting of several different layers, distinguished by media structure and phase composition) in experiment on hydrogen permeability and thermodesorption. Conditions of flow continuity takes place on the borders of section layers. Code for resolving of inversive problem - extraction of diffusion parameters from an experimental curve of a gas permeation flow for specified above tree models of diffusion is developed also. The programs a written in Pascal in variants for DOS and for Windows-95. The programs could be applied for the analysis of gas release results being obtained from the structural materials samples of nuclear-power installation. 6 refs

  15. Modeling and analysis of hydrogen detonation events in the advanced neutron source reactor containment

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Kim, S.H.; Valenti, S.; Simpson, D.B.; Sawruk, W.

    1994-01-01

    This paper describes salient aspects of the modeling, analyses, and evaluations for hydrogen detonation in selected regions of the Advanced Neutron Source (ANS) containment during hypothetical severe accident conditions. Shock wave generation and transport modeling and analyses were conducted for two stratified configurations in the dome region of the high bay. Principal tools utilized for these purposes were the CTH and CET89 computer codes. Dynamic pressure loading functions were generated for key locations and used for evaluating structural response behavior for which a finite-element model was developed using the ANSYS code. For the range of conditions analyzed in the two critical dome regions, it was revealed that the ANS containment would be able to withstand detonation loads without failure. (author)

  16. Modeling a constant power load for nickel-hydrogen battery testing using SPICE

    Science.gov (United States)

    Bearden, Douglas B.; Lollar, Louis F.; Nelms, R. M.

    1990-01-01

    The effort to design and model a constant power load for the HST (Hubble Space Telescope) nickel-hydrogen battery tests is described. The constant power load was designed for three different simulations on the batteries: life cycling, reconditioning, and capacity testing. A dc-dc boost converter was designed to act as this constant power load. A boost converter design was chosen because of the low test battery voltage (4 to 6 VDC) generated and the relatively high power requirement of 60 to 70 W. The SPICE model was shown to consistently predict variations in the actual circuit as various designs were attempted. It is concluded that the confidence established in the SPICE model of the constant power load ensures its extensive utilization in future efforts to improve performance in the actual load circuit.

  17. Modeling and analysis of hydrogen detonation events in the Advanced Neutron Source reactor containment

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Kim, S.H.; Valenti, S.N.; Simpson, D.B.; Sawruk, W.

    1994-07-01

    This paper describes salient aspects of the modeling, analyses, and evaluations for hydrogen detonation in selected regions of the Advanced Neutron Source (ANS) containment during hypothetical severe accident conditions. Shock wave generation and transport modeling and analyses were conducted for two stratified configurations in the dome region of the high bay. Principal tools utilized for these purposes were the CTH and CET89 computer codes. Dynamic pressure loading functions were generated for key locations and used for evaluating structural response behavior for which a finite-element model was developed using the ANSYS code. For the range of conditions analyzed in the two critical dome regions, it was revealed that the ANS containment would be able to withstand detonation loads without failure

  18. Hydrogen transfer experiments and modelization in clay rocks for radioactive waste deep geological repository

    International Nuclear Information System (INIS)

    Boulin, P.

    2008-10-01

    Gases will be generated by corrosion of high radioactive waste containers in deep geological repositories. A gas phase will be generated. Gas pressure will build up and penetrated the geological formation. If gases do not penetrate the geological barrier efficiently, the pressure build up may create a risk of fracturing and of creation of preferential pathways for radionuclide migration. The present work focuses on Callovo-Oxfordian argillites characterisation. An experiment, designed to measure very low permeabilities, was used with hydrogen/helium and analysed using the Dusty Gas Model. Argillites close to saturation have an accessible porosity to gas transfer that is lower than 0,1% to 1% of the porosity. Analysis of the Knudsen effect suggests that this accessible network should be made of 50 nm to 200 nm diameter pores. The permeabilities values were integrated to an ANDRA operating model. The model showed that the maximum pressure expected near the repository would be 83 bar. (author)

  19. A proposed model of factors influencing hydrogen fuel cell vehicle acceptance

    Science.gov (United States)

    Imanina, N. H. Noor; Kwe Lu, Tan; Fadhilah, A. R.

    2016-03-01

    Issues such as environmental problem and energy insecurity keep worsening as a result of energy use from household to huge industries including automotive industry. Recently, a new type of zero emission vehicle, hydrogen fuel cell vehicle (HFCV) has received attention. Although there are argues on the feasibility of hydrogen as the future fuel, there is another important issue, which is the acceptance of HFCV. The study of technology acceptance in the early stage is a vital key for a successful introduction and penetration of a technology. This paper proposes a model of factors influencing green vehicle acceptance, specifically HFCV. This model is built base on two technology acceptance theories and other empirical studies of vehicle acceptance. It aims to provide a base for finding the key factors influencing new sustainable energy fuelled vehicle, HFCV acceptance which is achieved by explaining intention to accept HFCV. Intention is influenced by attitude, subjective norm and perceived behavioural control from Theory of Planned Behaviour and personal norm from Norm Activation Theory. In the framework, attitude is influenced by perceptions of benefits and risks, and social trust. Perceived behavioural control is influenced by government interventions. Personal norm is influenced by outcome efficacy and problem awareness.

  20. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    Energy Technology Data Exchange (ETDEWEB)

    Rauner, D.; Kurutz, U.; Fantz, U. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); AG Experimentelle Plasmaphysik, Universität Augsburg, 86135 Augsburg (Germany)

    2015-04-08

    As the negative hydrogen ion density n{sub H{sup −}} is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H{sup −} is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H{sup −} is produced in the plasma volume, laser photodetachment is applied as the standard method to measure n{sub H{sup −}}. The additional application of CRDS provides the possibility to directly obtain absolute values of n{sub H{sup −}}, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H{sup −} production and destruction processes. The modelled densities are adapted to the absolute measurements of n{sub H{sup −}} via CRDS, allowing to identify collisions of H{sup −} with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H{sup −} in the plasma volume at HOMER. Furthermore, the characteristic peak of n{sub H{sup −}} observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as n{sub e} determines

  1. Metabolic Engineering and Modeling of Metabolic Pathways to Improve Hydrogen Production by Photosynthetic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Navid, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-12-19

    traits act as the biocatalysts of the process designed to both enhance the system efficiency of CO2 fixation and the net hydrogen production rate. Additionally we applied metabolic engineering approaches guided by computational modeling for the chosen model microorganisms to enable efficient hydrogen production.

  2. Self-consistent collisional-radiative model for hydrogen atoms: Atom–atom interaction and radiation transport

    International Nuclear Information System (INIS)

    Colonna, G.; Pietanza, L.D.; D’Ammando, G.

    2012-01-01

    Graphical abstract: Self-consistent coupling between radiation, state-to-state kinetics, electron kinetics and fluid dynamics. Highlight: ► A CR model of shock-wave in hydrogen plasma has been presented. ► All equations have been coupled self-consistently. ► Non-equilibrium electron and level distributions are obtained. ► The results show non-local effects and non-equilibrium radiation. - Abstract: A collisional-radiative model for hydrogen atom, coupled self-consistently with the Boltzmann equation for free electrons, has been applied to model a shock tube. The kinetic model has been completed considering atom–atom collisions and the vibrational kinetics of the ground state of hydrogen molecules. The atomic level kinetics has been also coupled with a radiative transport equation to determine the effective adsorption and emission coefficients and non-local energy transfer.

  3. Magnetic Hydrogen Atmosphere Models and the Neutron Star RX J1856.5-3754

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Wynn C.G.; /MIT, MKI /KIPAC, Menlo Park; Kaplan, David L.; /MIT, MKI; Chang, Philip; /UC, Berkeley, Astron. Dept. /UC, Santa Barbara; van Adelsberg, Matthew; /Cornell; Potekhin, Alexander Y.; /Cornell U., Astron. Dept. /Ioffe Phys. Tech. Inst.

    2006-12-08

    RX J1856.5-3754 is one of the brightest nearby isolated neutron stars, and considerable observational resources have been devoted to it. However, current models are unable to satisfactorily explain the data. We show that our latest models of a thin, magnetic, partially ionized hydrogen atmosphere on top of a condensed surface can fit the entire spectrum, from X-rays to optical, of RX J1856.5-3754, within the uncertainties. In our simplest model, the best-fit parameters are an interstellar column density N{sub H} {approx} 1 x 10{sup 20} cm{sup -2} and an emitting area with R{sup {infinity}} {approx} 17 km (assuming a distance to RX J1856.5-3754 of 140 pc), temperature T{sup {infinity}} {approx} 4.3 x 10{sup 5} K, gravitational redshift z{sub g} {approx} 0.22, atmospheric hydrogen column y{sub H} {approx} 1 g cm{sup -2}, and magnetic field B {approx} (3-4) x 10{sup 12} G; the values for the temperature and magnetic field indicate an effective average over the surface. We also calculate a more realistic model, which accounts for magnetic field and temperature variations over the neutron star surface as well as general relativistic effects, to determine pulsations; we find there exist viewing geometries that produce pulsations near the currently observed limits. The origin of the thin atmospheres required to fit the data is an important question, and we briefly discuss mechanisms for producing these atmospheres. Our model thus represents the most self-consistent picture to date for explaining all the observations of RX J1856.5-3754.

  4. Simulation of hydrogen mitigation in catalytic recombiner. Part-II: Formulation of a CFD model

    International Nuclear Information System (INIS)

    Prabhudharwadkar, Deoras M.; Iyer, Kannan N.

    2011-01-01

    Research highlights: → Hydrogen transport in containment with recombiners is a multi-scale problem. → A novel methodology worked out to lump the recombiner characteristics. → Results obtained using commercial code FLUENT are cast in the form of correlations. → Hence, coarse grids can obtain accurate distribution of H 2 in containment. → Satisfactory working of the methodology is clearly demonstrated. - Abstract: This paper aims at formulation of a model compatible with CFD code to simulate hydrogen distribution and mitigation using a Passive Catalytic Recombiner in the Nuclear power plant containments. The catalytic recombiner is much smaller in size compared to the containment compartments. In order to fully resolve the recombination processes during the containment simulations, it requires the geometric details of the recombiner to be modelled and a very fine mesh size inside the recombiner channels. This component when integrated with containment mixing calculations would result in a large number of mesh elements which may take large computational times to solve the problem. This paper describes a method to resolve this simulation difficulty. In this exercise, the catalytic recombiner alone was first modelled in detail using the best suited option to describe the reaction rate. A detailed parametric study was conducted, from which correlations for the heat of reaction (hence the rate of reaction) and the heat transfer coefficient were obtained. These correlations were then used to model the recombiner channels as single computational cells providing necessary volumetric sources/sinks to the energy and species transport equations. This avoids full resolution of these channels, thereby allowing larger mesh size in the recombiners. The above mentioned method was successfully validated using both steady state and transient test problems and the results indicate very satisfactory modelling of the component.

  5. Model development and experimental validation of capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana.

    Science.gov (United States)

    Pradhan, Nirakar; Dipasquale, Laura; d'Ippolito, Giuliana; Fontana, Angelo; Panico, Antonio; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2016-08-01

    The aim of the present study was to develop a kinetic model for a recently proposed unique and novel metabolic process called capnophilic (CO2-requiring) lactic fermentation (CLF) pathway in Thermotoga neapolitana. The model was based on Monod kinetics and the mathematical expressions were developed to enable the simulation of biomass growth, substrate consumption and product formation. The calibrated kinetic parameters such as maximum specific uptake rate (k), semi-saturation constant (kS), biomass yield coefficient (Y) and endogenous decay rate (kd) were 1.30 h(-1), 1.42 g/L, 0.1195 and 0.0205 h(-1), respectively. A high correlation (>0.98) was obtained between the experimental data and model predictions for both model validation and cross validation processes. An increase of the lactate production in the range of 40-80% was obtained through CLF pathway compared to the classic dark fermentation model. The proposed kinetic model is the first mechanistically based model for the CLF pathway. This model provides useful information to improve the knowledge about how acetate and CO2 are recycled back by Thermotoga neapolitana to produce lactate without compromising the overall hydrogen yield. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Implementation and validation of the condensation model for containment hydrogen distribution studies

    International Nuclear Information System (INIS)

    Ravva, Srinivasa Rao; Iyer, Kannan N.; Gupta, S.K.; Gaikwad, Avinash J.

    2014-01-01

    Highlights: • A condensation model based on diffusion was implemented in FLUENT. • Validation of a condensation model for the H 2 distribution studies was performed. • Multi-component diffusion is used in the present work. • Appropriate grid and turbulence model were identified. - Abstract: This paper aims at the implementation details of a condensation model in the CFD code FLUENT and its validation so that it can be used in performing the containment hydrogen distribution studies. In such studies, computational fluid dynamics simulations are necessary for obtaining accurate predictions. While steam condensation plays an important role, commercial CFD codes such as FLUENT do not have an in-built condensation model. Therefore, a condensation model was developed and implemented in the FLUENT code through user defined functions (UDFs) for the sink terms in the mass, momentum, energy and species balance equations together with associated turbulence quantities viz., kinetic energy and dissipation rate. The implemented model was validated against the ISP-47 test of TOSQAN facility using the standard wall functions and enhanced wall treatment approaches. The best suitable grid size and the turbulence model for the low density gas (He) distribution studies are brought out in this paper

  7. Ab initio calculations on hydrogen storage in porous carbons

    International Nuclear Information System (INIS)

    Maresca, O.; Marinelli, F.; Pellenq, R.J.M.; Duclaux, L.; Azais, Ph.; Conard, J.

    2005-01-01

    We have investigated through ab initio computations the possible ways to achieve efficient hydrogen storage on carbons. Firstly, we have considered how the curvature of a carbon surface could affect the chemisorption of atomic H 0 Secondly, we show that electron donor elements such as Li and K, used as dopants for the carbon substrate, strongly enhance the physi-sorption energy of H 2 , allowing in principle its storage in this type of material at room temperature under mild conditions of pressure. (authors)

  8. Physisorption and desorption of H2, HD and D2 on amorphous solid water ice. Effect on mixing isotopologue on statistical population of adsorption sites.

    Science.gov (United States)

    Amiaud, Lionel; Fillion, Jean-Hugues; Dulieu, François; Momeni, Anouchah; Lemaire, Jean-Louis

    2015-11-28

    We study the adsorption and desorption of three isotopologues of molecular hydrogen mixed on 10 ML of porous amorphous water ice (ASW) deposited at 10 K. Thermally programmed desorption (TPD) of H2, D2 and HD adsorbed at 10 K have been performed with different mixings. Various coverages of H2, HD and D2 have been explored and a model taking into account all species adsorbed on the surface is presented in detail. The model we propose allows to extract the parameters required to fully reproduce the desorption of H2, HD and D2 for various coverages and mixtures in the sub-monolayer regime. The model is based on a statistical description of the process in a grand-canonical ensemble where adsorbed molecules are described following a Fermi-Dirac distribution.

  9. Further analysis of the FRONT model in ASTEC by simulating the hydrogen deflagration experiment BMC Ix9

    International Nuclear Information System (INIS)

    Braehler, Thimo; Koch, Marco K.

    2011-01-01

    Effects of possible hydrogen deflagration like pressure built up and temperature increase can become important for the evaluation of late phases in loss of coolant accidents. In this compact the simulation of the hydrogen deflagration test BMC Ix9 with the FRONT model of the integral lumped-parameter-code ASTEC is treated. This model is available since mid of 2009, released with ASTEC V2.0. To check the validity of the model related to the applicability on different phenomena, a large number of simulations are necessary. The model was used by RUB in the frame of the 'International Standard Problem on Hydrogen Combustion (ISP-49)' and within the EC NoE SARNET2. It has been concluded that the model is able to simulate a broad range of hydrogen deflagration phenomena under different experimental conditions. Experiments analysed in the mentioned benchmarks are characterised by flame propagation in vertical direction. Moreover there were no considerations of flame propagation in multi compartment geometries. In the BMC Ix9 test horizontal hydrogen deflagration with flame propagation in 3 rooms was investigated. The FRONT model was already validated on the BMC Hx23 experiment with sufficient results. In comparison to this test the number of compartments and the initial gas composition, like hydrogen and steam concentration differs from the BMC Ix9 experiment. Previous investigations of RUB showed that the modelling of turbulence related to the transport between different compartment and the determination of this quantity has a strong influence on the simulation results. In the following the FRONT model is described briefly, the simulation results are discussed and a first recommendation for the nodalisation is given. (orig.)

  10. Rate equations modeling for hydrogen inventory studies during a real tokamak material thermal cycle

    Energy Technology Data Exchange (ETDEWEB)

    Bonnin, X., E-mail: xavier.bonnin@iter.org [LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, 99 avenue Jean-Baptiste Clément, F-93430 Villetaneuse (France); Hodille, E. [IRFM, CEA-Cadarache, F-13108 St-Paul-Lez-Durance (France); Ning, N. [LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, 99 avenue Jean-Baptiste Clément, F-93430 Villetaneuse (France); Sang, C. [School of Physics and Optoelectronics Technology, Dalian University of Technology, Dalian 116024 (China); Grisolia, Ch. [IRFM, CEA-Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-08-15

    Prediction and control of tritium inventory in plasma-facing components (PFCs) is a critical nuclear safety issue for ITER and future fusion devices. This goal can be achieved through rate equations models as presented here. We calibrate our models with thermal desorption spectrometry results to obtain a validated set of material parameters relevant to hydrogen inventory processes in bulk tungsten. The best fits are obtained with two intrinsic trap types, deep and shallow, and an extrinsic trap created by plasma irradiation and plastic deformation of the tungsten matrix associated with blister formation. We then consider a realistic cycle of plasma discharges consisting of 400 s of plasma exposure followed by a resting period of 1000 s, repeating for several hours. This cycle is then closed by a long “overnight” period, thus providing an estimate of the amount of tritium retained in the PFCs after a full day of standard operation.

  11. A model to predict the permeation of type IV hydrogen tanks

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, Julien; Perreux, Dominique; Chapelle, David; Thiebaud, Frederic [MaHyTec, Dole (France); Nardin, Philippe [Franche Comte Univ. (France)

    2010-07-01

    In the frame of the certification process of the type IV hydrogen storage tanks MaHyTec aims to manufacture, this innovative SME is developing a numerical model dedicated to the study of permeation issues. Such an approach aims at avoiding complicated, time-consuming and expensive testing. Experimental results obtained under real conditions can moreover be significantly influenced by the scattering of material properties and liner dimensions. From simple testing on small-size flat membranes, the model allows to predict the gas diffusion flow through the whole structure by means of numerous parameters. On every step, theory can be compared with the results obtained from the samples. This document presents a brief review of the mathematical theory describing gas diffusion and the different aspects of the study for better understanding the proposed approach. (orig.)

  12. On the comparison of stochastic model predictive control strategies applied to a hydrogen-based microgrid

    Science.gov (United States)

    Velarde, P.; Valverde, L.; Maestre, J. M.; Ocampo-Martinez, C.; Bordons, C.

    2017-03-01

    In this paper, a performance comparison among three well-known stochastic model predictive control approaches, namely, multi-scenario, tree-based, and chance-constrained model predictive control is presented. To this end, three predictive controllers have been designed and implemented in a real renewable-hydrogen-based microgrid. The experimental set-up includes a PEM electrolyzer, lead-acid batteries, and a PEM fuel cell as main equipment. The real experimental results show significant differences from the plant components, mainly in terms of use of energy, for each implemented technique. Effectiveness, performance, advantages, and disadvantages of these techniques are extensively discussed and analyzed to give some valid criteria when selecting an appropriate stochastic predictive controller.

  13. Hydrogen Balmer alpha intensity distributions and line profiles from multiple scattering theory using realistic geocoronal models

    Science.gov (United States)

    Anderson, D. E., Jr.; Meier, R. R.; Hodges, R. R., Jr.; Tinsley, B. A.

    1987-01-01

    The H Balmer alpha nightglow is investigated by using Monte Carlo models of asymmetric geocoronal atomic hydrogen distributions as input to a radiative transfer model of solar Lyman-beta radiation in the thermosphere and atmosphere. It is shown that it is essential to include multiple scattering of Lyman-beta radiation in the interpretation of Balmer alpha airglow data. Observations of diurnal variation in the Balmer alpha airglow showing slightly greater intensities in the morning relative to evening are consistent with theory. No evidence is found for anything other than a single sinusoidal diurnal variation of exobase density. Dramatic changes in effective temperature derived from the observed Balmer alpha line profiles are expected on the basis of changing illumination conditions in the thermosphere and exosphere as different regions of the sky are scanned.

  14. Kinetic Modeling of a Silicon Refining Process in a Moist Hydrogen Atmosphere

    Science.gov (United States)

    Chen, Zhiyuan; Morita, Kazuki

    2018-06-01

    We developed a kinetic model that considers both silicon loss and boron removal in a metallurgical grade silicon refining process. This model was based on the hypotheses of reversible reactions. The reaction rate coefficient kept the same form but error of terminal boron concentration could be introduced when relating irreversible reactions. Experimental data from published studies were used to develop a model that fit the existing data. At 1500 °C, our kinetic analysis suggested that refining silicon in a moist hydrogen atmosphere generates several primary volatile species, including SiO, SiH, HBO, and HBO2. Using the experimental data and the kinetic analysis of volatile species, we developed a model that predicts a linear relationship between the reaction rate coefficient k and both the quadratic function of p(H2O) and the square root of p(H2). Moreover, the model predicted the partial pressure values for the predominant volatile species and the prediction was confirmed by the thermodynamic calculations, indicating the reliability of the model. We believe this model provides a foundation for designing a silicon refining process with a fast boron removal rate and low silicon loss.

  15. CFD Model Of A Planar Solid Oxide Electrolysis Cell For Hydrogen Production From Nuclear Energy

    International Nuclear Information System (INIS)

    Grant L. Hawkes; James E. O'Brien; Carl M. Stoots; J. Stephen Herring

    2005-01-01

    A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell as it would exist in an electrolysis stack. Details of the model geometry are specific to a stack that was fabricated by Ceramatec2, Inc. and tested at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT2. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with experimental results obtained from an actual ten-cell stack tested at INL

  16. Experimental study and modelling of iron ore reduction by hydrogen; Etude experimentale et modelisation de la reduction du minerai de fer par l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, D

    2008-01-15

    In an effort to find new ways to drastically reduce the CO{sub 2} emissions from the steel industry (ULCOS project), the reduction of iron ore by pure hydrogen in a shaft furnace was investigated. The work consisted of literature, experimental, and modelling studies. The chemical reaction and its kinetics were analysed on the basis of thermogravimetric experiments and physicochemical characterizations of partially reduced samples. A specific kinetic model was designed, which simulates the successive reactions, the different steps of mass transport, and possible iron sintering, at the particle scale. Finally, a 2-dimensional numerical model of a shaft furnace was developed. It depicts the variation of the solid and gas temperatures and compositions throughout the reactor. One original feature of the model is using the law of additive characteristic times for calculating the reaction rates. This allowed us to handle both the particle and the reactor scale, while keeping reasonable calculation time. From the simulation results, the influence of the process parameters was assessed. Optimal operating conditions were concluded, which reveal the efficiency of the hydrogen process. (author)

  17. Cloning single wall carbon nanotubes for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Tour, James M [Rice Univ., Houston, TX (United States); Kittrell, Carter [Rice Univ., Houston, TX (United States)

    2012-08-30

    The purpose of this research is to development the technology required for producing 3-D nano-engineered frameworks for hydrogen storage based on sp2 carbon media, which will have high gravimetric and especially high volumetric uptake of hydrogen, and in an aligned fibrous array that will take advantage of the exceptionally high thermal conductivity of sp2 carbon materials to speed up the fueling process while minimizing or eliminating the need for internal cooling systems. A limitation for nearly all storage media using physisorption of the hydrogen molecule is the large amount of surface area (SA) occupied by each H2 molecule due to its large zero-point vibrational energy. This creates a conundrum that in order to maximize SA, the physisorption media is made more tenuous and the density is decreased, usually well below 1 kg/L, so that there comes a tradeoff between volumetric and gravimetric uptake. Our major goal was to develop a new type of media with high density H2 uptake, which favors volumetric storage and which, in turn, has the capability to meet the ultimate DoE H2 goals.

  18. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  19. Westinghouse-GOTHIC modeling of NUPEC's hydrogen mixing and distribution test M-4-3

    International Nuclear Information System (INIS)

    Ofstun, R.P.; Woodcock, J.; Paulsen, D.L.

    1994-01-01

    NUPEC (NUclear Power Engineering Corporation) ran a series of hydrogen mixing and distribution tests which were completed in April 1992. These tests were performed in a 1/4 linearly scaled model containment and were specifically designed to be used for computer code validation. The results of test M-4-3, along with predictions from several computer codes, were presented to the participants of ISP-35 (a blind test comparison of code calculated results with data from NUPEC test M-7-1) at a meeting in March 1993. Test M-4-3, which was similar to test M-7-1, released a mixture of steam and helium into a steam generator compartment located on the lower level of containment. The majority of codes did well at predicting the global pressure and temperature trends, however, some typical lumped parameter modeling problems were identified at that time. In particular, the models had difficulty predicting the temperature and helium concentrations in the so called 'dead ended volumes' (pressurizer compartment and in-core chase region). Modeling of the dead-ended compartments using a single lumped parameter volume did not yield the appropriate temperature and helium response within that volume. The Westinghouse-GOTHIC (WGOTHIC) computer code is capable of modeling in one, two or three dimensions (or any combination thereof). This paper describes the WGOTHIC modeling of the dead-ended compartments for NUPEC test M-4-3 and gives comparisons to the test data. 1 ref., 1 tab., 14 figs

  20. Modelling for Near-Surface Transport Dynamics of Hydrogen of Plasma Facing Materials by use of Cellular Automaton

    International Nuclear Information System (INIS)

    Shimura, K.; Terai, T.; Yamawaki, M.

    2003-01-01

    In this study, the kinetics of desorption of adsorbed hydrogen from an ideal metallic surface is modelled in Cellular Automaton (CA). The modelling is achieved by downgrading the surface to one dimension. The model consists of two parts that are surface migration and desorption. The former is attained by randomly sorting the particles at each time, the latter is realised by modelling the thermally-activated process. For the verification of this model, thermal desorption is simulated then the comparison with the chemical kinetics is carried out. Excellent agreement is observed from the result. The results show that this model is reasonable to express the recombinative desorption of two chemisorbed adatoms. Though, the application of this model is limited to the second-order reaction case. But it can be believed that the groundwork of modelling the transport dynamics of hydrogen through the surface under complex conditions is established

  1. Description and modelling of the solar-hydrogen-biogas-fuel cell system in GlashusEtt

    Science.gov (United States)

    Hedström, L.; Wallmark, C.; Alvfors, P.; Rissanen, M.; Stridh, B.; Ekman, J.

    The need to reduce pollutant emissions and utilise the world's available energy resources more efficiently has led to increased attention towards e.g. fuel cells, but also to other alternative energy solutions. In order to further understand and evaluate the prerequisites for sustainable and energy-saving systems, ABB and Fortum have equipped an environmental information centre, located in Hammarby Sjöstad, Stockholm, Sweden, with an alternative energy system. The system is being used to demonstrate and evaluate how a system based on fuel cells and solar cells can function as a complement to existing electricity and heat production. The stationary energy system is situated on the top level of a three-floor glass building and is open to the public. The alternative energy system consists of a fuel cell system, a photovoltaic (PV) cell array, an electrolyser, hydrogen storage tanks, a biogas burner, dc/ac inverters, heat exchangers and an accumulator tank. The fuel cell system includes a reformer and a polymer electrolyte fuel cell (PEFC) with a maximum rated electrical output of 4 kW el and a maximum thermal output of 6.5 kW th. The fuel cell stack can be operated with reformed biogas, or directly using hydrogen produced by the electrolyser. The cell stack in the electrolyser consists of proton exchange membrane (PEM) cells. To evaluate different automatic control strategies for the system, a simplified dynamic model has been developed in MATLAB Simulink. The model based on measurement data taken from the actual system. The evaluation is based on demand curves, investment costs, electricity prices and irradiation. Evaluation criteria included in the model are electrical and total efficiencies as well as economic parameters.

  2. [NiFe] hydrogenase structural and functional models: new bio-inspired catalysts for hydrogen evolution

    International Nuclear Information System (INIS)

    Oudart, Y.

    2006-09-01

    Hydrogenase enzymes reversibly catalyze the oxidation and production of hydrogen in a range close to the thermodynamic potential. The [NiFe] hydrogenase active site contains an iron-cyano-carbonyl moiety linked to a nickel atom which is in an all sulphur environment. Both the active site originality and the potential development of an hydrogen economy make the synthesis of functional and structural models worthy. To take up this challenge, we have synthesised mononuclear ruthenium models and more importantly, nickel-ruthenium complexes, mimicking some structural features of the [NiFe] hydrogenase active site. Ruthenium is indeed isoelectronic to iron and some of its complexes are well-known to bear hydrides. The compounds described in this study have been well characterised and their activity in proton reduction has been successfully tested. Most of them are able to catalyze this reaction though their electrocatalytic potentials remain much more negative compared to which of platinum. The studied parameters point out the importance of the complexes electron richness, especially of the nickel environment. Furthermore, the proton reduction activity is stable for several hours at good rates. The ruthenium environment seems important for this stability. Altogether, these compounds represent the very first catalytically active [NiFe] hydrogenase models. Important additional results of this study are the synergetic behaviour of the two metals in protons reduction and the evidence of a protonation step as the limiting step of the catalytic cycle. We have also shown that a basic site close to ruthenium improves the electrocatalytic potential of the complexes. (author)

  3. Permeability of two-dimensional graphene and hexagonal-boron nitride to hydrogen atom

    Science.gov (United States)

    Gupta, Varun; Kumar, Ankit; Ray, Nirat

    2018-05-01

    The permeability of atomic hydrogen in monolayer hexagonal Boron Nitride(h-BN) and graphene has been studied using first-principles density functional theory based simulations. For the specific cases of physisorption and chemisoroption, barrier heights are calculated using the nudged elastic band approach. We find that the barrier potential for physisorption through the ring is lower for graphene than h-BN. In the case of chemisorption, where the H atom passes through by making bonds with the atoms in the ring, the barrier potential for the graphene was found to be higher than that of h-BN. We conclude that the penetration of H atom with notable kinetic energy (graphene as compared to h-BN. Whereas through chemisorption, lower kinetic energy (>3eV) H-atoms have a higher chance to penetrate through h-BN than graphene.

  4. Rovibrationally Resolved Time-Dependent Collisional-Radiative Model of Molecular Hydrogen and Its Application to a Fusion Detached Plasma

    Directory of Open Access Journals (Sweden)

    Keiji Sawada

    2016-12-01

    Full Text Available A novel rovibrationally resolved collisional-radiative model of molecular hydrogen that includes 4,133 rovibrational levels for electronic states whose united atom principal quantum number is below six is developed. The rovibrational X 1 Σ g + population distribution in a SlimCS fusion demo detached divertor plasma is investigated by solving the model time dependently with an initial 300 K Boltzmann distribution. The effective reaction rate coefficients of molecular assisted recombination and of other processes in which atomic hydrogen is produced are calculated using the obtained time-dependent population distribution.

  5. Equilibrium based analytical model for estimation of pressure magnification during deflagration of hydrogen air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Karanam, Aditya; Sharma, Pavan K.; Ganju, Sunil; Singh, Ram Kumar [Bhabha Atomic Research Centre (BARC), Mumbai (India). Reactor Safety Div.

    2016-12-15

    During postulated accident sequences in nuclear reactors, hydrogen may get released from the core and form a flammable mixture in the surrounding containment structure. Ignition of such mixtures and the subsequent pressure rise are an imminent threat for safe and sustainable operation of nuclear reactors. Methods for evaluating post ignition characteristics are important for determining the design safety margins in such scenarios. This study presents two thermo-chemical models for determining the post ignition state. The first model is based on internal energy balance while the second model uses the concept of element potentials to minimize the free energy of the system with internal energy imposed as a constraint. Predictions from both the models have been compared against published data over a wide range of mixture compositions. Important differences in the regions close to flammability limits and for stoichiometric mixtures have been identified and explained. The equilibrium model has been validated for varied temperatures and pressures representative of initial conditions that may be present in the containment during accidents. Special emphasis has been given to the understanding of the role of dissociation and its effect on equilibrium pressure, temperature and species concentrations.

  6. Equilibrium based analytical model for estimation of pressure magnification during deflagration of hydrogen air mixtures

    International Nuclear Information System (INIS)

    Karanam, Aditya; Sharma, Pavan K.; Ganju, Sunil; Singh, Ram Kumar

    2016-01-01

    During postulated accident sequences in nuclear reactors, hydrogen may get released from the core and form a flammable mixture in the surrounding containment structure. Ignition of such mixtures and the subsequent pressure rise are an imminent threat for safe and sustainable operation of nuclear reactors. Methods for evaluating post ignition characteristics are important for determining the design safety margins in such scenarios. This study presents two thermo-chemical models for determining the post ignition state. The first model is based on internal energy balance while the second model uses the concept of element potentials to minimize the free energy of the system with internal energy imposed as a constraint. Predictions from both the models have been compared against published data over a wide range of mixture compositions. Important differences in the regions close to flammability limits and for stoichiometric mixtures have been identified and explained. The equilibrium model has been validated for varied temperatures and pressures representative of initial conditions that may be present in the containment during accidents. Special emphasis has been given to the understanding of the role of dissociation and its effect on equilibrium pressure, temperature and species concentrations.

  7. Development and validation of a quasi-dimensional combustion model for SI engines fuelled by HCNG with variable hydrogen fractions

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Fanhua; Wang, Yu; Wang, Mingyue; Liu, Haiquan; Wang, Junjun; Ding, Shangfen; Zhao, Shuli [State Key Laboratory of Automobile Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2008-09-15

    Spark ignition engines fuelled by hydrogen enriched compressed natural gas (HCNG) have many advantages compared to traditional gasoline, diesel and natural gas engines, especially in emission control. Experimental researches have been continuously conducted to improve HCNG engine's configuration and control strategy aimed at making full use of this new fuel. With the same target, this work presents a predictive model used to simulate the working cycle of HCNG engines which is applicable for variable hydrogen blending ratios. The fundamentals of the thermodynamic model, the turbulent flame propagation model and related equation were introduced. Considering that the most important factor influencing the applicability of the model for variable hydrogen blending ratio is the laminar flame speed, the methods of how to deal with the laminar burning velocity in the model were then described in some more detail. After the determination of model constants by calibration, simulation results were compared with experimental cylinder pressure data for various hydrogen blending ratios, spark timings and equivalence ratios. The results show that simulation and experimental results match quite well except for extremely fuel lean conditions where problems of incomplete combustion become severe. (author)

  8. Coordination number constraint models for hydrogenated amorphous Si deposited by catalytic chemical vapour deposition

    Science.gov (United States)

    Kawahara, Toshio; Tabuchi, Norikazu; Arai, Takashi; Sato, Yoshikazu; Morimoto, Jun; Matsumura, Hideki

    2005-02-01

    We measured structure factors of hydrogenated amorphous Si by x-ray diffraction and analysed the obtained structures using a reverse Monte Carlo (RMC) technique. A small shoulder in the measured structure factor S(Q) was observed on the larger Q side of the first peak. The RMC results with an unconstrained model did not clearly show the small shoulder. Adding constraints for coordination numbers 2 and 3, the small shoulder was reproduced and the agreement with the experimental data became better. The ratio of the constrained coordination numbers was consistent with the ratio of Si-H and Si-H2 bonds which was estimated by the Fourier transformed infrared spectra of the same sample. This shoulder and the oscillation of the corresponding pair distribution function g(r) at large r seem to be related to the low randomness of cat-CVD deposited a-Si:H.

  9. Coordination number constraint models for hydrogenated amorphous Si deposited by catalytic chemical vapour deposition

    International Nuclear Information System (INIS)

    Kawahara, Toshio; Tabuchi, Norikazu; Arai, Takashi; Sato, Yoshikazu; Morimoto, Jun; Matsumura, Hideki

    2005-01-01

    We measured structure factors of hydrogenated amorphous Si by x-ray diffraction and analysed the obtained structures using a reverse Monte Carlo (RMC) technique. A small shoulder in the measured structure factor S(Q) was observed on the larger Q side of the first peak. The RMC results with an unconstrained model did not clearly show the small shoulder. Adding constraints for coordination numbers 2 and 3, the small shoulder was reproduced and the agreement with the experimental data became better. The ratio of the constrained coordination numbers was consistent with the ratio of Si-H and Si-H 2 bonds which was estimated by the Fourier transformed infrared spectra of the same sample. This shoulder and the oscillation of the corresponding pair distribution function g(r) at large r seem to be related to the low randomness of cat-CVD deposited a-Si:H

  10. Particle-in-cell modeling of the nanosecond field emission driven discharge in pressurized hydrogen

    Science.gov (United States)

    Levko, Dmitry; Yatom, Shurik; Krasik, Yakov E.

    2018-02-01

    The high-voltage field-emission driven nanosecond discharge in pressurized hydrogen is studied using the one-dimensional Particle-in-Cell Monte Carlo collision model. It is obtained that the main part of the field-emitted electrons becomes runaway in the thin cathode sheath. These runaway electrons propagate the entire cathode-anode gap, creating rather dense (˜1012 cm-3) seeding plasma electrons. In addition, these electrons initiate a streamer propagating through this background plasma with a speed ˜30% of the speed of light. Such a high streamer speed allows the self-acceleration mechanism of runaway electrons present between the streamer head and the anode to be realized. As a consequence, the energy of runaway electrons exceeds the cathode-anode gap voltage. In addition, the influence of the field emission switching-off time is analyzed. It is obtained that this time significantly influences the discharge dynamics.

  11. Impurity doping effects on the orbital thermodynamic properties of hydrogenated graphene, graphane, in Harrison model

    Science.gov (United States)

    Yarmohammadi, Mohsen

    2016-12-01

    Using the Harrison model and Green's function technique, impurity doping effects on the orbital density of states (DOS), electronic heat capacity (EHC) and magnetic susceptibility (MS) of a monolayer hydrogenated graphene, chair-like graphane, are investigated. The effect of scattering between electrons and dilute charged impurities is discussed in terms of the self-consistent Born approximation. Our results show that the graphane is a semiconductor and its band gap decreases with impurity. As a remarkable point, comparatively EHC reaches almost linearly to Schottky anomaly and does not change at low temperatures in the presence of impurity. Generally, EHC and MS increases with impurity doping. Surprisingly, impurity doping only affects the salient behavior of py orbital contribution of carbon atoms due to the symmetry breaking.

  12. Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption

    Science.gov (United States)

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Bhuyan, Satyanarayan; Azrin Shah, Nabila Farhana; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%–95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors. PMID:27455263

  13. Molecular hydrogen ameliorates several characteristics of preeclampsia in the Reduced Uterine Perfusion Pressure (RUPP) rat model.

    Science.gov (United States)

    Ushida, Takafumi; Kotani, Tomomi; Tsuda, Hiroyuki; Imai, Kenji; Nakano, Tomoko; Hirako, Shima; Ito, Yumiko; Li, Hua; Mano, Yukio; Wang, Jingwen; Miki, Rika; Yamamoto, Eiko; Iwase, Akira; Bando, Yasuko K; Hirayama, Masaaki; Ohno, Kinji; Toyokuni, Shinya; Kikkawa, Fumitaka

    2016-12-01

    Oxidative stress plays an important role in the pathogenesis of preeclampsia. Recently, molecular hydrogen (H 2 ) has been shown to have therapeutic potential in various oxidative stress-related diseases. The aim of this study is to investigate the effect of H 2 on preeclampsia. We used the reduced utero-placental perfusion pressure (RUPP) rat model, which has been widely used as a model of preeclampsia. H 2 water (HW) was administered orally ad libitum in RUPP rats from gestational day (GD) 12-19, starting 2 days before RUPP procedure. On GD19, mean arterial pressure (MAP) was measured, and samples were collected. Maternal administration of HW significantly decreased MAP, and increased fetal and placental weight in RUPP rats. The increased levels of soluble fms-like tyrosine kinase-1 (sFlt-1) and diacron reactive oxygen metabolites as a biomarker of reactive oxygen species in maternal blood were decreased by HW administration. However, vascular endothelial growth factor level in maternal blood was increased by HW administration. Proteinuria, and histological findings in kidney were improved by HW administration. In addition, the effects of H 2 on placental villi were examined by using a trophoblast cell line (BeWo) and villous explants from the placental tissue of women with or without preeclampsia. H 2 significantly attenuated hydrogen peroxide-induced sFlt-1 expression, but could not reduce the expression induced by hypoxia in BeWo cells. H 2 significantly attenuated sFlt-1 expression in villous explants from women with preeclampsia, but not affected them from normotensive pregnancy. The prophylactic administration of H 2 attenuated placental ischemia-induced hypertension, angiogenic imbalance, and oxidative stress. These results support the theory that H 2 has a potential benefit in the prevention of preeclampsia. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The cathode-fall of low-pressure hydrogen discharges: Absolute spectral emission and model

    Energy Technology Data Exchange (ETDEWEB)

    Jelenkovic, B. M. [JILA, National Institute of Standards and Technology and University of Colorado Boulder, Boulder, Colorado 80309-0440 (United States); Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zenum Belgrade (Serbia); Phelps, A. V. [JILA, National Institute of Standards and Technology and University of Colorado Boulder, Boulder, Colorado 80309-0440 (United States)

    2011-10-15

    Absolute excitation probabilities from very low to moderate-current hydrogen discharges in parallel-plane geometry are measured and used to test models. Relative emission data are obtained for the H{sub {alpha}} line, the H{sub 2} (a{sup 3}{Sigma}{yields}b{sup 3}{Pi}) near-UV continuum, and the H{sub 2} (G{sup 1}{Sigma}{yields}B{sup 1}{Pi}{sub u}{sup +}) band at pressures of 0.5 and 2 Torr, a 1.05 cm gap, and voltages from 300 to 900 V. Electron behavior is traced using the first negative (A{sup 2}{Sigma}{sub g}{yields} X{sup 2}{Pi}{sub u}, {nu}'' = 0 {yields}{nu}' = 0) band of N{sub 2}{sup +} by adding 2% N{sub 2}. Relative measurements of H{sub {alpha}}, H{sub 2} near-UV, and N{sub 2} 1st negative emission are placed on a absolute scale by normalization to published measurements and Boltzmann calculations of electron excitation. Emission probabilities calculated using a multi-beam kinetics model for the electrons, H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +}, H{sup -}, H, and H{sub 2} are compared with the calibrated experiments. Fast H atoms are calculated to produce H{sub {alpha}} excitation that is comparable with that of electrons. The calculated emission intensities for H{sub {alpha}} and H{sub 2} near-UV continuum are within a factor of three of the absolute measurements for a range of 5000:1 in current and 4:1 in hydrogen pressure. Calculations at 2 Torr show that most of the space charge electric field responsible for the cathode fall is produced by H{sub 3}{sup +} ions.

  15. Analysis of the flow in stenosed carotid artery bifurcation models--hydrogen-bubble visualisation.

    Science.gov (United States)

    Palmen, D E; van de Vosse, F N; Janssen, J D; van Dongen, M E

    1994-05-01

    This paper deals with the effect of geometric changes of mild stenoses on large-scale flow disturbances in the carotid artery bifurcation. Hydrogen-bubble visualisation experiments have been performed in Plexiglas models of a non-stenosed and a 25% stenosed carotid artery bifurcation. The flow conditions approximate physiological flow. The experiments show that shortly after the onset of the diastolic phase vortex formation occurs in the plane of symmetry. This vortex formation is found in a shear layer, which is formed in the carotid sinus. The shear layer is located between a region with low shear rates at the non-divider wall and a region with high shear rates at the divider wall. In order to gain insight into the parameters that are important with respect to the stability of the shear layer, experiments have been performed in which the influence of the shape of the flow pulse, the Reynolds number (Re), the Womersley parameter (alpha) and the flow division ratio (gamma) on the flow phenomena is studied. From these experiments it appears that the flow phenomena in the carotid artery bifurcation are significantly influenced by Re, alpha the systolic acceleration (sa) and deceleration (sd) and the duration of the peak-systolic flow (Tmax). With these results a simplified flow pulse is chosen, with which the experiments in the non-stenosed and the 25% stenosed bifurcation are performed. Comparison of the hydrogen-bubble profiles in the 0 and 25% stenosed models with similar flow conditions shows that the geometric change of the 25% stenosis only slightly influences the flow phenomena. The most striking influences are found in the stability of the shear layer. Quantitative experiments by means of laser Doppler anemometry measurements and numerical computations are needed to analyse the influence of the stenosis of the flow field more accurately.

  16. [Two-dimensional model of a double-well potential: proton transfer when a hydrogen bond is deformed].

    Science.gov (United States)

    Krasilnikov, P M

    2014-01-01

    The potential energy cross-section profile along a hydrogen bond may contain two minima in certain conditions; it is so-called a double well potential. The H-bond double well potential is essential for proton transfer along this hydrogen bond. We have considered the two-dimensional model of such double well potential in harmonic approximation, and we have also investigated the proton tunneling in it. In real environments thermal motion of atoms or conformational changes may cause reorientation and relative shift of molecule fragment forming the hydrogen bond and, as a result, the hydrogen bond isdeformed. This deformation is liable to change the double well potential form and, hence, the probability of the proton tunneling is changed too. As it is shown the characteristic time of proton tunneling is essentially increased by even small relative shift of heavy atoms forming the H-bond and also rotational displacement of covalent bond generated by one of heavy atoms and the proton (hydrogen atom). However, it is also shown, at the certain geometry of the H-bond deformation the opposite effect occurred, i.e., the characteristic time is not increased and even decreased. Notice that such its behavior arises from two-dimensionality of potential wells; this and other properties of our model are discussed in detail.

  17. Thermodynamic modeling of hydrogen storage capacity in Mg-Na alloys.

    Science.gov (United States)

    Abdessameud, S; Mezbahul-Islam, M; Medraj, M

    2014-01-01

    Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems.

  18. Thermodynamic Modeling of Hydrogen Storage Capacity in Mg-Na Alloys

    Science.gov (United States)

    Abdessameud, S.; Mezbahul-Islam, M.; Medraj, M.

    2014-01-01

    Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems. PMID:25383361

  19. Two-dimensional kinetic model for the evaporation of hydrogen pellets in a tokamak

    International Nuclear Information System (INIS)

    Kuteev, B.V.; Umov, A.P.; Tsendin, L.D.

    1985-01-01

    The problem of the evaporation of a hydrogen fuel pellet in a hot plasma is solved for the case with a Maxwellian electron velocity distribution and a nonuniform evaporation over the surface of the pellet. An expression derived for the evaporation rate N describes this rate within 10% as a function of the temperature, the plasma density, and the pellet radius. The values found for N are only slightly higher than the values calculated in the model of Parks et al. [Nucl. Fusion 17, 539 (1977)], Milora and Foster [IEEE Trans. Plasma Sci. 6, 578, (1978)], and Parks and Turnbull [Phys. Fluids 21, 1735 (1978)]. The reason is a mutual cancellation of some factors ignored in that model: the electron distribution as a function of energy and angle and the nonuniformity of the evaporation. In a kinetic model, the heat flux to the pellet is carried by electrons with an initial energy (6--8)T/sub e/. This circumstance explains why the electric fields have only a weak effect on the evaporation rate near the surface. A refined model is used to calculate the evaporation rates in existing devices

  20. Modeling of the steam hydrolysis in a two-step process for hydrogen production by solar concentrated energy

    Science.gov (United States)

    Valle-Hernández, Julio; Romero-Paredes, Hernando; Pacheco-Reyes, Alejandro

    2017-06-01

    In this paper the simulation of the steam hydrolysis for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 to lower-valence cerium oxide, at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. The modeling of endothermic reduction step was presented at the Solar Paces 2015. This work shows the modeling of the exothermic step; the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For this model, three sections of the pipe where the reaction occurs were considered; the steam water inlet, the porous medium and the hydrogen outlet produced. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).

  1. Development of Efficient Flowsheet and Transient Modeling for Nuclear Heat Coupled Sulfur Iodine Cyclefor Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Shripad T. Revankar; Nicholas R. Brown; Cheikhou Kane; Seungmin Oh

    2010-05-01

    The realization of the hydrogen as an energy carrier for future power sources relies on a practical method of producing hydrogen in large scale with no emission of green house gases. Hydrogen is an energy carrier which can be produced by a thermochemical water splitting process. The Sulfur-Iodine (SI) process is an example of a water splitting method using iodine and sulfur as recycling agents.

  2. Flame acceleration of hydrogen - air - diluent mixtures at middle scale using ENACCEF: experiments and modelling

    International Nuclear Information System (INIS)

    Fabrice Malet; Nathalie Lamoureux; Nabiha Djebaili-Chaumeix; Claude-Etienne Paillard; Pierre Pailhories; Jean-Pierre L'heriteau; Bernard Chaumont; Ahmed Bentaib

    2005-01-01

    Full text of publication follows: In the case of hypothetic severe accident on light water nuclear reactor, hydrogen would be produced during reactor core degradation and released to the reactor building which could subsequently raise a combustion hazard. A local ignition of the combustible mixture would give birth initially to a slow flame which can be accelerated due to turbulence. Depending on the geometry and the premixed combustible mixture composition, the flame can accelerate and for some conditions transit to detonation or be quenched after a certain distance. The flame acceleration is responsible for the generation of high pressure loads that could damage the reactor's building. Moreover, geometrical configuration is a major factor leading to flame acceleration. Thus, recording experimental data notably on mid-size installations is required for the numeric simulations validation before modelling realistic scales. The ENACCEF vertical facility is a 6 meters high acceleration tube aimed at representing steam generator room leading to containment dome. This setup can be equipped with obstacles of different blockage ratios and shapes in order to obtain an acceleration of the flame. Depending on the geometrical characteristics of these obstacles, different regimes of the flame propagation can be achieved. The mixture composition's influence on flame velocity and acceleration has been investigated. Using a steam physical-like diluent (40% He - 60% CO 2 ), influence of dilution on flame speed and acceleration has been investigated. The flame front has also been recorded with ultra fast ombroscopy visualization, both in the tube and in dome's the entering. The flame propagation is computed using the TONUS code. Based on Euler's equation solving code using structured finite volumes, it includes the CREBCOM flames modelling and simulates the hydrogen/air turbulent flame propagation, taking into account 3D complex geometry and reactants concentration gradients. Since

  3. Theory of molecular hydrogen sorption for hydrogen storage

    Science.gov (United States)

    Zhang, Shengbai

    2011-03-01

    Molecular hydrogen (H2) sorption has the advantage of fast kinetics and high reversibility. However, the binding strength is often too weak to be operative at near room temperatures. Research into such hydrogen sorption materials has branched into the study of pure van der Waals (vdW) physisorption and that of weak chemisorption (known to exist in the so-called Kubas complexes). In either case, however, theoretical tools to describe such weak interactions are underdeveloped with error bars that often exceed the strength of the interaction itself. We have used quantum-chemistry (QC) based approaches to benchmark the various available DFT methods for four classes of weak chemisorption systems [Sun et al., Phys. Rev. B 82, 073401 (2010)]. These involve complexes containing Li, Ca, Sc, and Ti with increased strength of H2 binding from predominantly vdW to mostly Kubas-like. The study reveals that most of the DFT functionals within the generalized gradient approximation underestimate the binding energy, oppose to overestimating it. The functionals that are easy to use yet yielding results reasonably close to those of accurate QC are the PBE and PW91. I will also discuss the effort of implementing vdW interaction into the currently available density functional methods [Sun, J. Chem. Phys. 129, 154102 (2008)]. The rationale is that while the true vdW is an electron-electron correlation, a DFT plus classical dispersion approach may be too simple and unnecessary within the DFT. A local pseudopotential approach has been developed to account for the core part of the polarizability of the elements. Applications to a number of benchmark systems yield good agreement with QC calculations. The application of this method and the QC methods to vdW hydrogen binding will also be discussed. Work supported by DOE/BES and DOE/EERE Hydrogen Sorption Center of Excellence under RPI subcontracts No. J30546/J90336.

  4. Learning probabilistic models of hydrogen bond stability from molecular dynamics simulation trajectories

    KAUST Repository

    Chikalov, Igor

    2011-02-15

    Background: Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein structures. They form and break while a protein deforms, for instance during the transition from a non-functional to a functional state. The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor.Methods: This paper describes inductive learning methods to train protein-independent probabilistic models of H-bond stability from molecular dynamics (MD) simulation trajectories of various proteins. The training data contains 32 input attributes (predictors) that describe an H-bond and its local environment in a conformation c and the output attribute is the probability that the H-bond will be present in an arbitrary conformation of this protein achievable from c within a time duration ?. We model dependence of the output variable on the predictors by a regression tree.Results: Several models are built using 6 MD simulation trajectories containing over 4000 distinct H-bonds (millions of occurrences). Experimental results demonstrate that such models can predict H-bond stability quite well. They perform roughly 20% better than models based on H-bond energy alone. In addition, they can accurately identify a large fraction of the least stable H-bonds in a conformation. In most tests, about 80% of the 10% H-bonds predicted as the least stable are actually among the 10% truly least stable. The important attributes identified during the tree construction are consistent with previous findings.Conclusions: We use inductive learning methods to build protein-independent probabilistic models to study H-bond stability, and demonstrate that the models perform better than H-bond energy alone. 2011 Chikalov et al; licensee BioMed Central Ltd.

  5. Kinetic Modeling of Methionine Oxidation in Monoclonal Antibodies from Hydrogen Peroxide Spiking Studies.

    Science.gov (United States)

    Hui, Ada; Lam, Xanthe M; Kuehl, Christopher; Grauschopf, Ulla; Wang, Y John

    2015-01-01

    When isolator technology is applied to biotechnology drug product fill-finish process, hydrogen peroxide (H2O2) spiking studies for the determination of the sensitivity of protein to residual peroxide in the isolator can be useful for assessing a maximum vapor phase hydrogen peroxide (VPHP) level. When monoclonal antibody (mAb) drug products were spiked with H2O2, an increase in methionine (Met 252 and Met 428) oxidation in the Fc region of the mAbs with a decrease in H2O2 concentration was observed for various levels of spiked-in peroxide. The reaction between Fc-Met and H2O2 was stoichiometric (i.e., 1:1 molar ratio), and the reaction rate was dependent on the concentrations of mAb and H2O2. The consumption of H2O2 by Fc-Met oxidation in the mAb followed pseudo first-order kinetics, and the rate was proportional to mAb concentration. The extent of Met 428 oxidation was half of that of Met 252, supporting that Met 252 is twice as reactive as Met 428. Similar results were observed for free L-methionine when spiked with H2O2. However, mAb formulation excipients may affect the rate of H2O2 consumption. mAb formulations containing trehalose or sucrose had faster H2O2 consumption rates than formulations without the sugars, which could be the result of impurities (e.g., metal ions) present in the excipients that may act as catalysts. Based on the H2O2 spiking study results, we can predict the amount Fc-Met oxidation for a given protein concentration and H2O2 level. Our kinetic modeling of the reaction between Fc-Met oxidation and H2O2 provides an outline to design a H2O2 spiking study to support the use of VPHP isolator for antibody drug product manufacture. Isolator technology is increasing used in drug product manufacturing of biotherapeutics. In order to understand the impact of residual vapor phase hydrogen peroxide (VPHP) levels on protein product quality, hydrogen peroxide (H2O2) spiking studies may be performed to determine the sensitivity of monoclonal antibody

  6. Model Insensitive and Calibration Independent Method for Determination of the Downstream Neutral Hydrogen Density Through Ly-alpha Glow Observations

    Science.gov (United States)

    Gangopadhyay, P.; Judge, D. L.

    1996-01-01

    Our knowledge of the various heliospheric phenomena (location of the solar wind termination shock, heliopause configuration and very local interstellar medium parameters) is limited by uncertainties in the available heliospheric plasma models and by calibration uncertainties in the observing instruments. There is, thus, a strong motivation to develop model insensitive and calibration independent methods to reduce the uncertainties in the relevant heliospheric parameters. We have developed such a method to constrain the downstream neutral hydrogen density inside the heliospheric tail. In our approach we have taken advantage of the relative insensitivity of the downstream neutral hydrogen density profile to the specific plasma model adopted. We have also used the fact that the presence of an asymmetric neutral hydrogen cavity surrounding the sun, characteristic of all neutral densities models, results in a higher multiple scattering contribution to the observed glow in the downstream region than in the upstream region. This allows us to approximate the actual density profile with one which is spatially uniform for the purpose of calculating the downstream backscattered glow. Using different spatially constant density profiles, radiative transfer calculations are performed, and the radial dependence of the predicted glow is compared with the observed I/R dependence of Pioneer 10 UV data. Such a comparison bounds the large distance heliospheric neutral hydrogen density in the downstream direction to a value between 0.05 and 0.1/cc.

  7. Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom

    Science.gov (United States)

    Clark, Ted M.; Chamberlain, Julia M.

    2014-01-01

    An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…

  8. Modeling the Solid-Liquid Equilibrium in Pharmaceutical-Solvent Mixtures: Systems with Complex Hydrogen Bonding Behvaior

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Economou, Ioannis; Kontogeorgis, Georgios

    2009-01-01

    simpler molecules of similar chemical structure and/or are fitted to Hansen's partial solubility parameters. The methodology is applied to modeling the solubility of three pharmaceuticals, namely acetanilide, phenacetin, and paracetamol, using the nonrandom hydrogen bonding (NRHB) EoS. In all cases...

  9. Detailed modeling of size distribution functions and hydrogen content in combustion-formed particles

    Energy Technology Data Exchange (ETDEWEB)

    Sirignano, Mariano; D' Anna, Andrea [Dipartimento di Ingegneria Chimica, Universita di Napoli ' ' Federico II' ' , Napoli (Italy); Kent, John [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney (Australia)

    2010-06-15

    A kinetic modeling approach is proposed to delve into the nature and chemistry of combustion-produced particles. A sectional method is used for the first time on this purpose. It is based on modeling of gas-to-particle transitions by sections containing 125 lumped species with C numbers ranging from 24 to 4 x 10{sup 8} and H/C ratio ranging from 0 to 1. This allows not only the mass evolution of particles, but also their hydrogen content to be followed. The model is tested in an atmospheric pressure premixed flat flame of ethylene/oxygen with C/O = 0.8 and cold gas flow velocity of 4 cm/s. Comparison of modeled results with experimental data is satisfying in terms of species concentrations and H/C ratio of the particles. Analysis of model results in comparison with the experimental data has shown that it is possible to distinguish different precursors of particles moving from the exit of the burner into the post-oxidation region of the flame. At particle inception, i.e. just downstream from the flame front, gas-phase PAHs are responsible for particle nucleation and oligomers of aromatic hydrocarbons and small pericondensed hydrocarbons are predominantly present. Then the dehydrogenation process takes place and soot formation starts; in this zone large pericondensed and stacked structures are produced. Further up soot maturation generally linked with dehydrogenation is present, but still a few particles with higher H/C and with low coagulation efficiency are produced and remain present along the flame. The model, in accordance with experimental structural soot analysis, shows that in soot particles condensed structures typical of clusters of large pericondensed hydrocarbons are present whereas high-molecular mass condensed species mainly comprise oligomers of small aromatic compounds of clusters of small pericondensed hydrocarbons. (author)

  10. Incorporation of Hydrogen Bond Angle Dependency into the Generalized Solvation Free Energy Density Model.

    Science.gov (United States)

    Ma, Songling; Hwang, Sungbo; Lee, Sehan; Acree, William E; No, Kyoung Tai

    2018-04-23

    To describe the physically realistic solvation free energy surface of a molecule in a solvent, a generalized version of the solvation free energy density (G-SFED) calculation method has been developed. In the G-SFED model, the contribution from the hydrogen bond (HB) between a solute and a solvent to the solvation free energy was calculated as the product of the acidity of the donor and the basicity of the acceptor of an HB pair. The acidity and basicity parameters of a solute were derived using the summation of acidities and basicities of the respective acidic and basic functional groups of the solute, and that of the solvent was experimentally determined. Although the contribution of HBs to the solvation free energy could be evenly distributed to grid points on the surface of a molecule, the G-SFED model was still inadequate to describe the angle dependency of the HB of a solute with a polarizable continuum solvent. To overcome this shortcoming of the G-SFED model, the contribution of HBs was formulated using the geometric parameters of the grid points described in the HB coordinate system of the solute. We propose an HB angle dependency incorporated into the G-SFED model, i.e., the G-SFED-HB model, where the angular-dependent acidity and basicity densities are defined and parametrized with experimental data. The G-SFED-HB model was then applied to calculate the solvation free energies of organic molecules in water, various alcohols and ethers, and the log P values of diverse organic molecules, including peptides and a protein. Both the G-SFED model and the G-SFED-HB model reproduced the experimental solvation free energies with similar accuracy, whereas the distributions of the SFED on the molecular surface calculated by the G-SFED and G-SFED-HB models were quite different, especially for molecules having HB donors or acceptors. Since the angle dependency of HBs was included in the G-SFED-HB model, the SFED distribution of the G-SFED-HB model is well described

  11. Modelling energy demand for a fleet of hydrogen-electric vehicles interacting with a clean energy hub

    International Nuclear Information System (INIS)

    Syed, F.; Fowler, M.; Wan, D.; Maniyali, Y.

    2009-01-01

    This paper details the development of an energy demand model for a hydrogen-electric vehicle fleet and the modelling of the fleet interactions with a clean energy hub. The approach taken is to model the architecture and daily operation of every individual vehicle in the fleet. A generic architecture was developed based on understanding gained from existing detailed models used in vehicle powertrain design, with daily operation divided into two periods: charging and travelling. During the charging period, the vehicle charges its Electricity Storage System (ESS) and refills its Hydrogen Storage System (HSS), and during the travelling period, the vehicle depletes the ESS and HSS based on distance travelled. Daily travel distance is generated by a stochastic model and is considered an input to the fleet model. The modelling of a clean energy hub is also presented. The clean energy hub functions as an interface between electricity supply and the energy demand (i.e. hydrogen and electricity) of the vehicle fleet. Finally, a sample case is presented to demonstrate the use of the fleet model and its implications on clean energy hub sizing. (author)

  12. Hydrogen as fuel carrier in PEM fuelcell for automobile applications

    Science.gov (United States)

    Sk, Mudassir Ali; Venkateswara Rao, K.; Ramana Rao, Jagirdar V.

    2015-02-01

    The present work focuses the application of nanostructured materials for storing of hydrogen in different carbon materials by physisorption method. To market a hydrogen-fuel cell vehicle as competitively as the present internal combustion engine vehicles, there is a need for materials that can store a minimum of 6.5wt% of hydrogen. Carbon materials are being heavily investigated because of their promise to offer an economical solution to the challenge of safe storage of large hydrogen quantities. Hydrogen is important as a new source of energy for automotive applications. It is clear that the key challenge in developing this technology is hydrogen storage. Combustion of fossil fuels and their overuse is at present a serious concern as it is creates severe air pollution and global environmental problems; like global warming, acid rains, ozone depletion in stratosphere etc. This necessitated the search for possible alternative sources of energy. Though there are a number of primary energy sources available, such as thermonuclear energy, solar energy, wind energy, hydropower, geothermal energy etc, in contrast to the fossil fuels in most cases, these new primary energy sources cannot be used directly and thus they must be converted into fuels, that is to say, a new energy carrier is needed. Hydrogen fuel cells are two to three times more efficient than combustion engines. As they become more widely available, they will reduce dependence on fossil fuels. In a fuel cell, hydrogen and oxygen are combined in an electrochemical reaction that produces electricity and, as a byproduct, water.

  13. Developing a Model Using Homer for a Hybrid Hydrogen Fuel Cell System

    Directory of Open Access Journals (Sweden)

    Fera Annisa

    2013-04-01

    Full Text Available ABSTRACT. Hydrogen is widely considered be the fuel of the near future. Combined wind/PV energy hybrid systems can be used to sources energy to hydrogen production. This paper describes design, simulation and feasibility study of a hybrid energy system for a household in Malaysia. One year recorded wind speed and solar radiation are used for the design of a hybrid energy system. In 2000 was average annual wind speed in Johor Bahru is 3.76 m/s and annual average solar energy resource available is 5.08 kWh/m2/day. National Renewable Energy Laboratory’s HOMER software was used to select an optimum hybrid energy system. In the optimization process, HOMER simulates every system configuration in the search space and displays the feasible ones in a table, sorted by total net present cost (TNPC. The optimization study indicates that sensitivity analysis of the HOMER is shown in the overall winner which shows that the most least cost and optimize hybrid system is combination of 10 kW of PV array, 1 unit of wind turbine, 2 kW of fuel cell, 120 units of batteries and 6 kW converter as well as 1 kW of electrolyzer so as to generate the minimum COE, $2.423 kWh- 1. Although renewable sources (wind and PV involved in the power generation, 1 kg of hydrogen was produced in this system. Pengembangan Model Dengan Menggunakan Homer Untuk Sistem Sel Berbahan bakar Hidrogen Hibrida ABSTRAK. Hidrogen secara luas dianggap sebagai bahan bakar masa depan. Gabungan sistem hibrida energi angin/fotovoltaik dapat digunakan untuk sumber energi produksi hidrogen. Makalah ini menjelaskan desain, simulasi dan studi kelayakan dari sistem energi hibrida untuk rumah tangga di Malaysia. Satu tahun kecepatan angin tercatat dan radiasi matahari digunakan untuk desain sistem energi hibrida. Pada tahun 2000 adalah kecepatan angin rata-rata tahunan di Johor Bahru 3.76 m/det dan rata-rata sumber daya energi surya tahunan yang tersedia adalah 5.08 kWjam/m2/ hari. Software HOMER digunakan

  14. Subfilter Scale Modelling for Large Eddy Simulation of Lean Hydrogen-Enriched Turbulent Premixed Combustion

    NARCIS (Netherlands)

    Hernandez Perez, F.E.

    2011-01-01

    Hydrogen (H2) enrichment of hydrocarbon fuels in lean premixed systems is desirable since it can lead to a progressive reduction in greenhouse-gas emissions, while paving the way towards pure hydrogen combustion. In recent decades, large-eddy simulation (LES) has emerged as a promising tool to

  15. Modelling of flame propagation in the gasoline fuelled Wankel rotary engine with hydrogen additives

    Science.gov (United States)

    Fedyanov, E. A.; Zakharov, E. A.; Prikhodkov, K. V.; Levin, Y. V.

    2017-02-01

    Recently, hydrogen has been considered as an alternative fuel for a vehicles power unit. The Wankel engine is the most suitable to be adapted to hydrogen feeding. A hydrogen additive helps to decrease incompleteness of combustion in the volumes near the apex of the rotor. Results of theoretical researches of the hydrogen additives influence on the flame propagation in the combustion chamber of the Wankel rotary engine are presented. The theoretical research shows that the blend of 70% gasoline with 30% hydrogen could accomplish combustion near the T-apex in the stoichiometric mixture and in lean one. Maps of the flame front location versus the angle of rotor rotation and hydrogen fraction are obtained. Relations of a minimum required amount of hydrogen addition versus the engine speed are shown on the engine modes close to the average city driving cycle. The amount of hydrogen addition that could be injected by the nozzle with different flow sections is calculated in order to analyze the capacity of the feed system.

  16. Modeling of hydrogen passivation process of silicon for solar cells applications

    International Nuclear Information System (INIS)

    Kuznicki, Z.T.; Ciach, R.; Gorley, P.M.; Voznyy, M.V.

    2001-01-01

    In this paper, results of investigation of evolution equations' system describing hydrogen passivation of silicon are presented. Using Lie group theory the classification of invariant solutions and initial system reduction to systems of ordinary differential equations (ODEs) is carried out for admissible infinitesimal operators under constant hydrogen atoms diffusivity in the sample. Possibility of analytical solution of passivation problem is shown. Analysis of system behavior taking into account diffusion and dissociation mechanisms is performed. It is ascertained that free hydrogen atoms diffusion in the sample and 'defect-hydrogen' dissociation spoil passivation. Analytical dependences obtained make it possible to predict spatial and time defect distribution under hydrogen passivation of silicon depending on experimental conditions

  17. Thermodynamic modeling of hydrogen sulfide absorption by aqueous N-methyldiethanolamine using the Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Sadegh, Negar; Stenby, Erling Halfdan; Thomsen, Kaj

    2015-01-01

    Aqueous MDEA is the most commonly used solvent for H2S removal from natural gas. A reliable thermodynamic model is required for the proper design of natural gas sweetening processes. In this study, a rigorous thermodynamic model is developed to represent properties of the H2S-MDEA-H2O ternary...

  18. Hydrogen-rich Water Exerting a Protective Effect on Ovarian Reserve Function in a Mouse Model of Immune Premature Ovarian Failure Induced by Zona Pellucida 3

    Science.gov (United States)

    He, Xin; Wang, Shu-Yu; Yin, Cheng-Hong; Wang, Tong; Jia, Chan-Wei; Ma, Yan-Min

    2016-01-01

    Background: Premature ovarian failure (POF) is a disease that affects female fertility but has few effective treatments. Ovarian reserve function plays an important role in female fertility. Recent studies have reported that hydrogen can protect male fertility. Therefore, we explored the potential protective effect of hydrogen-rich water on ovarian reserve function through a mouse immune POF model. Methods: To set up immune POF model, fifty female BALB/c mice were randomly divided into four groups: Control (mice consumed normal water, n = 10), hydrogen (mice consumed hydrogen-rich water, n = 10), model (mice were immunized with zona pellucida glycoprotein 3 [ZP3] and consumed normal water, n = 15), and model-hydrogen (mice were immunized with ZP3 and consumed hydrogen-rich water, n = 15) groups. After 5 weeks, mice were sacrificed. Serum anti-Müllerian hormone (AMH) levels, granulosa cell (GC) apoptotic index (AI), B-cell leukemia/lymphoma 2 (Bcl-2), and BCL2-associated X protein (Bax) expression were examined. Analyses were performed using SPSS 17.0 (SPSS Inc., Chicago, IL, USA) software. Results: Immune POF model, model group exhibited markedly reduced serum AMH levels compared with those of the control group (5.41 ± 0.91 ng/ml vs. 16.23 ± 1.97 ng/ml, P = 0.033) and the hydrogen group (19.65 ± 7.82 ng/ml, P = 0.006). The model-hydrogen group displayed significantly higher AMH concentrations compared with that of the model group (15.03 ± 2.75 ng/ml vs. 5.41 ± 0.91 ng/ml, P = 0.021). The GC AI was significantly higher in the model group (21.30 ± 1.74%) than those in the control (7.06 ± 0.27%), hydrogen (5.17 ± 0.41%), and model-hydrogen groups (11.24 ± 0.58%) (all P hydrogen group compared with that of the hydrogen group (11.24 ± 0.58% vs. 5.17 ± 0.41%, P = 0.021). Compared with those of the model group, ovarian tissue Bcl-2 levels increased (2.18 ± 0.30 vs. 3.01 ± 0.33, P = 0.045) and the Bax/Bcl-2 ratio decreased in the model-hydrogen group

  19. Computational models for thermal-hydraulic assessment of TADSEA and its use for hydrogen production

    International Nuclear Information System (INIS)

    Rojas, L.; Gonzalez, D.; Garcia, C.; Gamez, A.; Garcia, L.; Lira, C. A. B. O.

    2015-01-01

    The Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) is a pebble-bed Accelerator Driven System (ADS) with a graphite-gas configuration, designed for nuclear waste transmutation and for obtaining heat at very high temperatures to produce hydrogen. In previous work, the TADSEA's nuclear core was considered as a porous medium performed with a CFD code and thermal-hydraulic studies of the nuclear core were presented. In this paper, three critical fuel elements groups were defined regarding their position inside the core. In this article, the heat transfer from the fuel to the coolant was analyzed for the three core states during normal operation. The heat transfer inside the spherical fuel elements was also studied with a realistic CFD model of the critical elements groups. During the steady state, no critical elements reached the limit temperature of this type of fuel. Also, it is presented a model built in ANSYS for the simulation and optimization of high- temperature electrolysis using the TADSEA as a heat source. A flow diagram of the electrolysis process with the high temperature electrolyzer as the main component using TADSEA as an energy source is finally proposed and discussed. (Author)

  20. Crystal Sinking Modeling for Designing Iodine Crystallizer in Thermochemical Sulfur-Iodine Hydrogen Production Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Heung [Korea National University of Transportation, Chungju (Korea, Republic of); Jeong, Seong-Uk [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Kang, Jeong Won [Korea University, Seoul (Korea, Republic of)

    2014-12-15

    SI process is a thermochemical process producing hydrogen by decomposing water while recycling sulfur and iodine. Various technologies have been developed to improve the efficiency on Section III of SI process, where iodine is separated and recycled. EED(electro-electrodialysis) could increase the efficiency of Section III without additional chemical compounds but a substantial amount of I{sub 2} from a process stream is loaded on EED. In order to reduce the load, a crystallization technology prior to EED is considered as an I{sub 2} removal process. In this work, I{sub 2} particle sinking behavior was modeled to secure basic data for designing an I{sub 2} crystallizer applied to I{sub 2}-saturated HI{sub x} solutions. The composition of HI{sub x} solution was determined by thermodynamic UVa model and correlation equations and pure properties were used to evaluate the solution properties. A multiphysics computational tool was utilized to calculate particle sinking velocity changes with respect to I{sub 2} particle radius and temperature. The terminal velocity of an I{sub 2} particle was estimated around 0.5 m/s under considered radius (1.0 to 2.5 mm) and temperature (10 to 50 .deg. C) ranges and it was analyzed that the velocity is more dependent on the solution density than the solution viscosity.

  1. Chemical Kinetics of Hydrogen Atom Abstraction from Allylic Sites by 3O2; Implications for Combustion Modeling and Simulation.

    Science.gov (United States)

    Zhou, Chong-Wen; Simmie, John M; Somers, Kieran P; Goldsmith, C Franklin; Curran, Henry J

    2017-03-09

    Hydrogen atom abstraction from allylic C-H bonds by molecular oxygen plays a very important role in determining the reactivity of fuel molecules having allylic hydrogen atoms. Rate constants for hydrogen atom abstraction by molecular oxygen from molecules with allylic sites have been calculated. A series of molecules with primary, secondary, tertiary, and super secondary allylic hydrogen atoms of alkene, furan, and alkylbenzene families are taken into consideration. Those molecules include propene, 2-butene, isobutene, 2-methylfuran, and toluene containing the primary allylic hydrogen atom; 1-butene, 1-pentene, 2-ethylfuran, ethylbenzene, and n-propylbenzene containing the secondary allylic hydrogen atom; 3-methyl-1-butene, 2-isopropylfuran, and isopropylbenzene containing tertiary allylic hydrogen atom; and 1-4-pentadiene containing super allylic secondary hydrogen atoms. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all of the reactants, transition states, products and also the hinder rotation treatments for lower frequency modes. The G4 level of theory was used to calculate the electronic single point energies for those species to determine the 0 K barriers to reaction. Conventional transition state theory with Eckart tunnelling corrections was used to calculate the rate constants. The comparison between our calculated rate constants with the available experimental results from the literature shows good agreement for the reactions of propene and isobutene with molecular oxygen. The rate constant for toluene with O 2 is about an order magnitude slower than that experimentally derived from a comprehensive model proposed by Oehlschlaeger and coauthors. The results clearly indicate the need for a more detailed investigation of the combustion kinetics of toluene oxidation and its key pyrolysis and oxidation intermediates. Despite this, our computed barriers and rate constants retain an important internal consistency. Rate constants

  2. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere VII. Further Insights into the Chromosphere and Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available In the liquid metallic hydrogen model of the Sun, the chromosphere is responsible for the capture of atomic hydrogen in the solar atmosphere and its eventual re-entry onto the photospheric surface (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Prog. Phys., 2013, v. 3, L15–L21. As for the corona, it represents a diffuse region containing both gaseous plasma and condensed matter with elevated electron affinity (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona. Prog. Phys., 2013, v. 3, L22–L25. Metallic hydrogen in the corona is thought to enable the continual harvest of electrons from the outer reaches of the Sun, thereby preserving the neutrality of the solar body. The rigid rotation of the corona is offered as the thirty-third line of evidence that the Sun is comprised of condensed matter. Within the context of the gaseous models of the Sun, a 100 km thick transition zone has been hypothesized to exist wherein temperatures increase dramatically from 104–106 K. Such extreme transitional temperatures are not reasonable given the trivial physical scale of the proposed transition zone, a region adopted to account for the ultra-violet emission lines of ions such as C IV, O IV, and Si IV. In this work, it will be argued that the transition zone does not exist. Rather, the intermediate ionization states observed in the solar atmosphere should be viewed as the result of the simultaneous transfer of protons and electrons onto condensed hydrogen structures, CHS. Line emissions from ions such as C IV, O IV, and Si IV are likely to be the result of condensation reactions, manifesting the involvement of species such as CH4, SiH4, H3O+ in the synthesis of CHS in the chromosphere. In addition, given the presence of a true solar surface at the level of the photosphere in the liquid metallic hydrogen model

  3. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    OpenAIRE

    A. Sattar; C. Arslan; C. Ji; S. Sattar; K. Yousaf; S. Hashim

    2015-01-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen productio...

  4. Interaction of Hydrogen with MOF-5.

    Science.gov (United States)

    Bordiga, Silvia; Vitillo, Jenny G; Ricchiardi, Gabriele; Regli, Laura; Cocina, Donato; Zecchina, Adriano; Arstad, Bjørnar; Bjørgen, Morten; Hafizovic, Jasmina; Lillerud, Karl Petter

    2005-10-06

    Hydrogen storage is among the most demanding challenges in the hydrogen-based energy cycle. One proposed strategy for hydrogen storage is based on physisorption on high surface area solids such as metal-organic frameworks (MOFs). Within this class of materials, MOF-5 has been the first structure studied for hydrogen storage. The IR spectroscopy of adsorbed H2 performed at 15 K and ab initio calculations show that the adsorptive properties of this material are mainly due to dispersive interactions with the internal wall structure and to weak electrostatic forces associated with O13Zn4 clusters. Calculated and measured binding enthalpies are between 2.26 and 3.5 kJ/mol, in agreement with the H2 rotational barriers reported in the literature. A minority of binding sites with higher adsorption enthalpy (7.4 kJ/mol) is also observed. These species are probably associated with OH groups on the external surfaces present as termini of the microcrystals.

  5. Hydrogen storage of catalyst-containing activated carbon fibers and effect of surface modification

    International Nuclear Information System (INIS)

    Ikpyo Hong; Seong Young Lee; Kyung Hee Lee; Sei Min Park

    2005-01-01

    Introduction: The hydrogen storage capacities of many kind of carbon nano materials have been reported with possibility and improbability. It is reported that specific surface area of carbon nano material has not a close relation to hydrogen storage capacity. This result shows that there is difference between specific surface area measured by isothermal nitrogen adsorption and direct measurement of adsorption with hydrogen and suggests that the carbon material with relatively low specific surface area can have high hydrogen storage capacity when they have effective nano pore. In this study, petroleum based isotropic pitch was hybridized with several kinds of transitional metal base organometallic compound solved with organic solvent and spun by electro-spinning method. The catalyst-dispersed ACFs were prepared and characterized and hydrogen storage capacity was measured. The effect of surface modification of ACFs by physical and chemical treatment was also investigated. Experimental: The isotropic precursor pitch prepared by nitrogen blowing from naphtha cracking bottom oil was hybridized with transitional metal based acetyl acetonates and spun by solvent electro-spinning. Tetrahydrofuran and quinoline were used as solvent with various mixing ratio. High voltage DC power generator which could adjust in the range of 0-60000 V and 2 mA maximum current was used to supply electrostatic force. At the solvent electro-spinning, solvent mixing ratio and pitch concentration, voltage and spinning distance were varied and their influences were investigated. The catalyst-dispersed electro-spun pitch fibers were thermal stabilized, carbonized and activated by conventional heat treatment for activated carbon fiber. Prepared fibers were observed by high resolution SEM and pore properties were characterized by Micromeritics ASAP2020 model physi-sorption analyzer. Hydrogen storage capacities were measured by equipment modified from Thermo Cahn TherMax 500 model high pressure

  6. Learning Probabilistic Models of Hydrogen Bond Stability from Molecular Dynamics Simulation Trajectories

    KAUST Repository

    Chikalov, Igor

    2011-04-02

    Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein structures. H-bonds involving atoms from residues that are close to each other in the main-chain sequence stabilize secondary structure elements. H-bonds between atoms from distant residues stabilize a protein’s tertiary structure. However, H-bonds greatly vary in stability. They form and break while a protein deforms. For instance, the transition of a protein from a nonfunctional to a functional state may require some H-bonds to break and others to form. The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor. Other local interactions may reinforce (or weaken) an H-bond. This paper describes inductive learning methods to train a protein-independent probabilistic model of H-bond stability from molecular dynamics (MD) simulation trajectories. The training data describes H-bond occurrences at successive times along these trajectories by the values of attributes called predictors. A trained model is constructed in the form of a regression tree in which each non-leaf node is a Boolean test (split) on a predictor. Each occurrence of an H-bond maps to a path in this tree from the root to a leaf node. Its predicted stability is associated with the leaf node. Experimental results demonstrate that such models can predict H-bond stability quite well. In particular, their performance is roughly 20% better than that of models based on H-bond energy alone. In addition, they can accurately identify a large fraction of the least stable H-bonds in a given conformation. The paper discusses several extensions that may yield further improvements.

  7. A Monte-Carlo simulation of the behaviour of electron swarms in hydrogen using an anisotropic scattering model

    International Nuclear Information System (INIS)

    Blevin, H.A.; Fletcher, J.; Hunter, S.R.

    1978-05-01

    In a recent paper, a Monte-Carlo simulation of electron swarms in hydrogen using an isotropic scattering model was reported. In this previous work discrepancies between the predicted and measured electron transport parameters were observed. In this paper a far more realistic anisotropic scattering model is used. Good agreement between predicted and experimental data is observed and the simulation code has been used to calculate various parameters which are not directly measurable

  8. Solar Hydrogen Reaching Maturity

    Directory of Open Access Journals (Sweden)

    Rongé Jan

    2015-09-01

    Full Text Available Increasingly vast research efforts are devoted to the development of materials and processes for solar hydrogen production by light-driven dissociation of water into oxygen and hydrogen. Storage of solar energy in chemical bonds resolves the issues associated with the intermittent nature of sunlight, by decoupling energy generation and consumption. This paper investigates recent advances and prospects in solar hydrogen processes that are reaching market readiness. Future energy scenarios involving solar hydrogen are proposed and a case is made for systems producing hydrogen from water vapor present in air, supported by advanced modeling.

  9. Model-independent determination of the two-photon exchange contribution to hyperfine splitting in muonic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Peset, Clara; Pineda, Antonio [Grup de Física Teòrica, Dept. Física and IFAE-BIST, Universitat Autònoma de Barcelona,E-08193 Bellaterra (Barcelona) (Spain)

    2017-04-11

    We obtain a model-independent prediction for the two-photon exchange contribution to the hyperfine splitting in muonic hydrogen. We use the relation of the Wilson coefficients of the spin-dependent dimension-six four-fermion operator of NRQED applied to the electron-proton and to the muon-proton sectors. Their difference can be reliably computed using chiral perturbation theory, whereas the Wilson coefficient of the electron-proton sector can be determined from the hyperfine splitting in hydrogen. This allows us to give a precise model-independent determination of the Wilson coefficient for the muon-proton sector, and consequently of the two-photon exchange contribution to the hyperfine splitting in muonic hydrogen, which reads δĒ{sub pμ,HF}{sup TPE}(nS)=−(1/(n{sup 3}))1.161(20) meV. Together with the associated QED analysis, we obtain a prediction for the hyperfine splitting in muonic hydrogen that reads E{sub pμ,HF}{sup th}(1S)=182.623(27) meV and E{sub pμ,HF}{sup th}(2S)=22.8123(33) meV. The error is dominated by the two-photon exchange contribution.

  10. Modeling of hydrogen stratification in a pressurized water reactor containment with the contain computer code

    International Nuclear Information System (INIS)

    Kljenak, I.; Skerlavaj, A.; Parzer, I.

    1999-01-01

    Hydrogen distribution during a severe accident in a nuclear power plant with a two-loop Westinghouse-type pressurized water reactor was simulated with the CONTAIN computer code. The accidents is initiated by a large-break loss-of-coolant accident which is nit successfully mitigated by the action of the emergency core cooling system. Cases with and without successful actuation of spray systems and fan coolers were considered. The simulations predicted hydrogen stratification within the containment main compartment with intensive hydrogen mixing in the containment dome region. Pressure and temperature responses were analyzed as well.(author)

  11. Strain gradient plasticity modeling of hydrogen diffusion to the crack tip

    DEFF Research Database (Denmark)

    Martínez Pañeda, Emilio; del Busto, S.; Niordson, Christian Frithiof

    2016-01-01

    to characterize the gradient-enhanced stress elevation and subsequent diffusion of hydrogen towards the crack tip. Results reveal that GNDs, absent in conventional plasticity predictions, play a fundamental role on hydrogen transport ahead of a crack. SGP estimations provide a good agreement with experimental......In this work hydrogen diffusion towards the fracture process zone is examined accounting for local hardening due to geometrically necessary dislocations (GNDs) by means of strain gradient plasticity (SGP). Finite element computations are performed within the finite deformation theory...

  12. Modelling and sequential simulation of multi-tubular metallic membrane and techno-economics of a hydrogen production process employing thin-layer membrane reactor

    KAUST Repository

    Shafiee, Alireza

    2016-09-24

    A theoretical model for multi-tubular palladium-based membrane is proposed in this paper and validated against experimental data for two different sized membrane modules that operate at high temperatures. The model is used in a sequential simulation format to describe and analyse pure hydrogen and hydrogen binary mixture separations, and then extended to simulate an industrial scale membrane unit. This model is used as a sub-routine within an ASPEN Plus model to simulate a membrane reactor in a steam reforming hydrogen production plant. A techno-economic analysis is then conducted using the validated model for a plant producing 300 TPD of hydrogen. The plant utilises a thin (2.5 μm) defect-free and selective layer (Pd75Ag25 alloy) membrane reactor. The economic sensitivity analysis results show usefulness in finding the optimum operating condition that achieves minimum hydrogen production cost at break-even point. A hydrogen production cost of 1.98 $/kg is estimated while the cost of the thin-layer selective membrane is found to constitute 29% of total process capital cost. These results indicate the competiveness of this thin-layer membrane process against conventional methods of hydrogen production. © 2016 Hydrogen Energy Publications LLC

  13. Modelling of Impulsional pH Variations Using ChemFET-Based Microdevices: Application to Hydrogen Peroxide Detection

    Directory of Open Access Journals (Sweden)

    Abdou Karim Diallo

    2014-02-01

    Full Text Available This work presents the modelling of impulsional pH variations in microvolume related to water-based electrolysis and hydrogen peroxide electrochemical oxidation using an Electrochemical Field Effect Transistor (ElecFET microdevice. This ElecFET device consists of a pH-Chemical FET (pH-ChemFET with an integrated microelectrode around the dielectric gate area in order to trigger electrochemical reactions. Combining oxidation/reduction reactions on the microelectrode, water self-ionization and diffusion properties of associated chemical species, the model shows that the sensor response depends on the main influential parameters such as: (i polarization parameters on the microelectrode, i.e., voltage (Vp and time (tp; (ii distance between the gate sensitive area and the microelectrode (d; and (iii hydrogen peroxide concentration ([H2O2]. The model developed can predict the ElecFET response behaviour and creates new opportunities for H2O2-based enzymatic detection of biomolecules.

  14. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.; Enderlin, C.W.; Elmore, M.R.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convective layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.

  15. A numerical model for diffusion of helium in a hydrogen plasma

    International Nuclear Information System (INIS)

    Potters, J.H.H.M.

    1983-07-01

    A quasi-cylindrical steady-state numerical model for the diffusion of helium in a hydrogen plasma is presented, adopting collisional plus either ALCATOR-INTOR- or ASDEX-like anomalous transport for the charged species. The coupled momentum and conservation equations for H + , He + and He ++ are solved to obtain radial profiles of their densities, consistent with those of the neutral species. For the neutrals, a diffusion equation is used for the transport of H, whereas He is assumed to enter the plasma with an energy equal to the temperature of the plasma immediately in front of the wall. A stable numerical scheme for the solution of the coupled ion and electron energy balances is discussed. Results are presented for the JET-tokamak, using prescribed temperature profiles. Collisional effects are shown to produce an enhancement of the alpha particle density about 10 centimetres in front of the wall, especially in combination with ALCATOR-INTOR-like scaling. The neutral helium density that accumulates in the outer plasma is too low to allow for pumping helium from a cool plasma/gas blanket

  16. Photoproduction of hydrogen peroxide in aqueous solution from model compounds for chromophoric dissolved organic matter (CDOM).

    Science.gov (United States)

    Clark, Catherine D; de Bruyn, Warren; Jones, Joshua G

    2014-02-15

    To explore whether quinone moieties are important in chromophoric dissolved organic matter (CDOM) photochemistry in natural waters, hydrogen peroxide (H2O2) production and associated optical property changes were measured in aqueous solutions irradiated with a Xenon lamp for CDOM model compounds (dihydroquinone, benzoquinone, anthraquinone, napthoquinone, ubiquinone, humic acid HA, fulvic acid FA). All compounds produced H2O2 with concentrations ranging from 15 to 500 μM. Production rates were higher for HA vs. FA (1.32 vs. 0.176 mM h(-1)); values ranged from 6.99 to 0.137 mM h(-1) for quinones. Apparent quantum yields (Θ app; measure of photochemical production efficiency) were higher for HA vs. FA (0.113 vs. 0.016) and ranged from 0.0018 to 0.083 for quinones. Dihydroquinone, the reduced form of benzoquinone, had a higher production rate and efficiency than its oxidized form. Post-irradiation, quinone compounds had absorption spectra similar to HA and FA and 3D-excitation-emission matrix fluorescence spectra (EEMs) with fluorescent peaks in regions associated with CDOM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Protective role of hydrogen sulfide against noise-induced cochlear damage: a chronic intracochlear infusion model.

    Directory of Open Access Journals (Sweden)

    Xu Li

    Full Text Available BACKGROUND: A reduction in cochlear blood flow plays an essential role in noise-induced hearing loss (NIHL. The timely regulation of cochlear perfusion determines the progression and prognosis of NIHL. Hydrogen sulfide (H(2S has attracted increasing interest as a vasodilator in cardiovascular systems. This study identified the role of H(2S in cochlear blood flow regulation and noise protection. METHODOLOGY/PRINCIPAL FINDINGS: The gene and protein expression of the H(2S synthetase cystathionine-γ-lyase (CSE in the rat cochlea was examined using immunofluorescence and real-time PCR. Cochlear CSE mRNA levels varied according to the duration of noise exposure. A chronic intracochlear infusion model was built and artificial perilymph (AP, NaHS or DL-propargylglycine (PPG were locally administered. Local sodium hydrosulfide (NaHS significantly increased cochlear perfusion post-noise exposure. Cochlear morphological damage and hearing loss were alleviated in the NaHS group as measured by conventional auditory brainstem response (ABR, cochlear scanning electron microscope (SEM and outer hair cell (OHC count. The highest percentage of OHC loss occurred in the PPG group. CONCLUSIONS/SIGNIFICANCE: Our results suggest that H(2S plays an important role in the regulation of cochlear blood flow and the protection against noise. Further studies may identify a new preventive and therapeutic perspective on NIHL and other blood supply-related inner ear diseases.

  18. Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model

    International Nuclear Information System (INIS)

    Xu Hui-Jing; Shu-Xia Zhao; Gao Fei; Zhang Yu-Ru; Li Xue-Chun; Wang You-Nian

    2015-01-01

    A new type of two-dimensional self-consistent fluid model that couples an equivalent circuit module is used to investigate the mode transition characteristics and hysteresis in hydrogen inductively coupled plasmas at different pressures, by varying the series capacitance of the matching box. The variations of the electron density, temperature, and the circuit electrical properties are presented. As cycling the matching capacitance, at high pressure both the discontinuity and hysteresis appear for the plasma parameters and the transferred impedances of both the inductive and capacitive discharge components, while at low pressure only the discontinuity is seen. The simulations predict that the sheath plays a determinative role on the presence of discontinuity and hysteresis at high pressure, by influencing the inductive coupling efficiency of applied power. Moreover, the values of the plasma transferred impedances at different pressures are compared, and the larger plasma inductance at low pressure due to less collision frequency, as analyzed, is the reason why the hysteresis is not seen at low pressure, even with a wider sheath. Besides, the behaviors of the coil voltage and current parameters during the mode transitions are investigated. They both increase (decrease) at the E to H (H to E) mode transition, indicating an improved (worsened) inductive power coupling efficiency. (paper)

  19. Hydrogen trapping in and release from tungsten: modeling and comparison with graphite with regard to its use as fusion reactor material

    International Nuclear Information System (INIS)

    Franzen, P.; Garcia-Rosales, C.; Plank, H.; Alimov, V.Kh.

    1997-01-01

    Trapping and release of deuterium implanted in tungsten is investigated by modeling the results of reemission, thermal and isothermal desorption experiments. Rate coefficients and activation energies for diffusion, trapping and detrapping are derived. Hydrogen atoms are able to diffuse deep into tungsten, establishing a solute amount of the same order of magnitude as the trapped one. This 'diffusion zone' exceeds the implantation zone by more than two orders of magnitude, even at room temperature. The solute amount of hydrogen in tungsten depends only slightly on the incident ion energy, but scales with implantation fluence. This high amount of solute hydrogen is the main difference of tungsten compared to graphite where nearly all hydrogen is trapped in the implantation zone, the solute amount being orders of magnitude lower. The resulting unlimited accumulation of hydrogen in tungsten deep in the material down to the backward surface disadvantages tungsten as fusion reactor material with regard to hydrogen recycling properties. (orig.)

  20. Modeling, Testing and Deploying a Multifunctional Radiation Shielding / Hydrogen Storage Unit, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses two vital problems for long-term space travel activities: radiation shielding and hydrogen storage for power and propulsion. While both...

  1. Modelling and sequential simulation of multi-tubular metallic membrane and techno-economics of a hydrogen production process employing thin-layer membrane reactor

    KAUST Repository

    Shafiee, Alireza; Arab, Mobin; Lai, Zhiping; Liu, Zongwen; Abbas, Ali

    2016-01-01

    reforming hydrogen production plant. A techno-economic analysis is then conducted using the validated model for a plant producing 300 TPD of hydrogen. The plant utilises a thin (2.5 μm) defect-free and selective layer (Pd75Ag25 alloy) membrane reactor

  2. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere VI. Helium in the Chromosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available Molecular hydrogen and hydrides have recently been advanced as vital agents in the generation of emission spectra in the chromosphere. This is a result of the role they play in the formation of condensed hydrogen structures (CHS within the chromosphere (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Progr. Phys., 2013, v. 3, 15–21. Next to hydrogen, helium is perhaps the most intriguing component in this region of the Sun. Much like other elements, which combine with hydrogen to produce hydrides, helium can form the well-known helium hydride molecular ion, HeH+, and the excited neutral helium hydride molecule, HeH∗. While HeH+ is hypothesized to be a key cosmologicalmolecule, its possible presence in the Sun, and that of its excited neutral counterpart, has not been considered. Still, these hydrides are likely to play a role in the synthesis of CHS, as the He I and He II emission lines strongly suggest. In this regard, the study of helium emission spectra can provide insight into the condensed nature of the Sun, especially when considering the 10830 Å line associated with the 23P→2 3S triplet state transition. This line is strong in solar prominences and can be seen clearly on the disk. The excessive population of helium triplet states cannot be adequately explained using the gaseous models, since these states should be depopulated by collisional processes. Conversely, when He-based molecules are used to build CHS in a liquid metallic hydrogen model, an ever increasing population of the 23S and 23P states might be expected. The overpopulation of these triplet states leads to the conclusion that these emission lines are unlikely to be produced through random collisional or photon excitation, as required by the gaseous models. This provides a significant hurdle for these models. Thus, the strong 23P→2 3S lines and the overpopulation of the helium triplet

  3. Theoretical modeling of infrared spectra of the hydrogen and deuterium bond in aspirin crystal

    Science.gov (United States)

    Ghalla, Houcine; Rekik, Najeh; Michta, Anna; Oujia, Brahim; Flakus, Henryk T.

    2010-01-01

    An extended quantum theoretical approach of the ν IR lineshape of cyclic dimers of weakly H-bonded species is proposed. We have extended a previous approach [M.E.-A. Benmalti, P. Blaise, H.T. Flakus, O. Henri-Rousseau, Chem. Phys. 320 (2006) 267] by accounting for the anharmonicity of the slow mode which is described by a "Morse" potential in order to reproduce the polarized infrared spectra of the hydrogen and deuterium bond in acetylsalicylic acid (aspirin) crystals. From comparison of polarized IR spectra of isotopically neat and isotopically diluted aspirin crystals it resulted that centrosymmetric aspirin dimer was the bearer of the crystal main spectral properties. In this approach, the adiabatic approximation is performed for each separate H-bond bridge of the dimer and a strong non-adiabatic correction is introduced into the model via the resonant exchange between the fast mode excited states of the two moieties. Within the strong anharmonic coupling theory, according to which the X-H→⋯Y high-frequency mode is anharmonically coupled to the H-bond bridge, this model incorporated the Davydov coupling between the excited states of the two moieties, the quantum direct and indirect dampings and the anharmonicity for the H-bond bridge. The spectral density is obtained within the linear response theory by Fourier transform of the damped autocorrelation functions. The evaluated spectra are in fairly good agreement with the experimental ones by using a minimum number of independent parameters. The effect of deuteration has been well reproduced by reducing simply the angular frequency of the fast mode and the anharmonic coupling parameter.

  4. Cytoprotective effects of hydrogen sulfide in novel rat models of non-erosive esophagitis.

    Directory of Open Access Journals (Sweden)

    Oksana Zayachkivska

    Full Text Available Non-erosive esophagitis is a chronic inflammatory condition of the esophagus and is a form of gastroesophageal reflux disease. There are limited treatment options for non-erosive esophagitis, and it often progresses to Barrett's esophagus and esophageal carcinoma. Hydrogen sulfide has been demonstrated to be a critical mediator of gastric and intestinal mucosal protection and repair. However, roles for H2S in esophageal mucosal defence, inflammation and responses to injury have not been reported. We therefore examined the effects of endogenous and exogenous H2S in rat models of non-erosive esophagitis. Mild- and moderate-severity non-erosive esophagitis was induced in rats through supplementation of drinking water with fructose, plus or minus exposure to water-immersion stress. The effects of inhibitors of H2S synthesis or of an H2S donor on severity of esophagitis was then examined, along with changes in serum levels of a pro- and an anti-inflammatory cytokine (IL-17 and IL-10, respectively. Exposure to water-immersion stress after consumption of the fructose-supplemented water for 28 days resulted in submucosal esophageal edema and neutrophil infiltration and the development of lesions in the muscular lamina and basal cell hyperplasia. Inhibition of H2S synthesis resulted in significant exacerbation of inflammation and injury. Serum levels of IL-17 were significantly elevated, while serum IL-10 levels were reduced. Treatment with an H2S donor significantly reduced the severity of esophageal injury and inflammation and normalized the serum cytokine levels. The rat models used in this study provide novel tools for studying non-erosive esophagitis with a range of severity. H2S contributes significantly to mucosal defence in the esophagus, and H2S donors may have therapeutic value in treating esophageal inflammation and injury.

  5. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  6. Some ideas about the modeling of experimental data obtained during spent fuel leaching in the presence of dissolved hydrogen

    International Nuclear Information System (INIS)

    Spahiu, K.

    2003-01-01

    Lately several experimental data have been collected or published on the dissolution of spent fuel in solutions saturated with dissolved hydrogen. In the SFS project there are also several planned experiments of this type with different solids (alpha-doped UO 2 , high burnup spent fuel or MOX) or solution compositions (distilled water, low ionic strength carbonated solutions, concentrated NaCl solutions). There have been already also different hypothesis forwarded to explain the data as well as full models proposed including the influence of the dissolved Fe(II) on the fuel dissolution. Some ideas towards the main lines of modeling spent fuel dissolution under such conditions will be presented. The hydrogen effect on spent fuel dissolution is relatively recent and experiments are still carried out to confirm or rule it out for different spent fuels and conditions. For this reason it would be too ambitious at the present level of knowledge to present a full modeling of such data. This is because a spent fuel dissolution model should be valid for predictions of geological time scales based on relatively short time experiments. This is possible only with a very good understanding of the dissolution process and of the mechanisms underlying the hydrogen effect, while a simple extrapolation of experimental data for repository time scales would not be reliable. (Author)

  7. The broad component of hydrogen emission lines in nuclei of Seyfert galaxies: Comments on a charge exchange model

    International Nuclear Information System (INIS)

    Katz, A.

    1975-01-01

    A model to account for the broad hydrogen line emission from the nuclei of Seyfert galaxies based on charge exchange and collisional processes, as proposed by Ptak and Stoner, is investigated. The model consists of a source of fast (E approx. 10 5 eV) protons streaming through a medium of quiescent gas. One of the major problems that results from such a model concerns the strong narrow hydrogen line core that would be produced, in direct conflict with the observations. The lines cannot arise from gas arranged throughout a spherical volume surrounding the source of the fast particles because the fast protons would produce far more ionizations than the possible number of recombinations. A very dense shell source of less than 1 AU in thickness and at least several tens of parsecs in radius must be invoked to reproduce the asymmetric broad profiles observed. There must be absorption throughout the center of the shell to account for the line profiles. The gas cannot be arranged in dense clumps throughout a large volume because momentum exchange of the gas with the primary particles would quickly accelerate any clumps. The energy balance and energy requirements of such a model are investigated, and it is found that an energy equal to or greater than the total luminosity of most Seyfert galaxies is required to produce the hydrogen line alone. The gas must be mostly neutral and den []e (N approx. 10 7 ) if a reasonable temperature is to be maintained

  8. Diffusion-controlled growth of hydrogen pores in aluminum-silicon castings: In situ observation and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, R.C.; Sridhar, S.; Zhang, W.; Lee, P.D.

    2000-01-24

    In situ observations were made of the nucleation and growth kinetics of hydrogen porosity during the directional solidification of aluminium-7 wt% silicon (Al7Si) with TiB{sub 2} grain refiner added, using an X-ray temperature gradient stage (XTGS). The effect of altering the solidification velocity on the growth rate and morphology of the porosity formed was characterized by tracking individual pores with digital analysis of the micro-focal video images. It was found that increasing the solidification velocity caused the pore radius to decrease and pore density to increase. Insight gained from the experimental results was used to develop a computational model of the evolution of hydrogen pores during solidification of aluminum-silicon cast alloys. The model solves for the diffusion-limited growth of the pores in spherical coordinates, using a deterministic solution of the grain nucleation and growth as a sub-model to calculate the parameters that depend upon the fraction solid. Sensitivity analysis was carried out to assess the effects of equiaxed grain density, pore density, initial hydrogen content and cooling rate. The model agrees with the experimental results within the resolution limits of the XTGS experiments performed.

  9. Symbolic Analysis of the Cycle-to-Cycle Variability of a Gasoline–Hydrogen Fueled Spark Engine Model

    Directory of Open Access Journals (Sweden)

    Israel Reyes-Ramírez

    2018-04-01

    Full Text Available An study of temporal organization of the cycle-to-cycle variability (CCV in spark ignition engines fueled with gasoline–hydrogen blends is presented. First, long time series are generated by means of a quasi-dimensional model incorporating the key chemical and physical components, leading to variability in the time evolution of energetic functions. The alterations in the combustion process, for instance the composition of reactants, may lead to quantitative changes in the time evolution of the main engine variables. It has been observed that the presence of hydrogen in the fuel mixture leads to an increased laminar flame speed, with a corresponding decrease in CCV dispersion. Here, the effects of different hydrogen concentrations in the fuel are considered. First, it is observed that return maps of heat release sequences exhibit different patterns for different hydrogen concentrations and fuel–air ratios. Second, a symbolic analysis is used to characterize time series. The symbolic method is based on the probability of occurrence of consecutive states (a word in a symbolic sequence histogram (SSH. Modified Shannon entropy is computed in order to determine the adequate word length. Results reveal the presence of non-random patterns in the sequences and soft transitions between states. Moreover, the general behavior of CCV simulations results and three types of synthetic noises: white, log-normal, and a noisy logistic map, are compared. This analysis reveals that the non-random features observed in heat release sequences are quite different from synthetic noises.

  10. Development of a tool dedicated to the evaluation of hydrogen term source for technological Wastes: assumptions, physical models, and validation

    Energy Technology Data Exchange (ETDEWEB)

    Lamouroux, C. [CEA Saclay, Nuclear Energy Division /DANS, Department of physico-chemistry, 91191 Gif sur yvette (France); Esnouf, S. [CEA Saclay, DSM/IRAMIS/SIS2M/Radiolysis Laboratory , 91191 Gif sur yvette (France); Cochin, F. [Areva NC,recycling BU, DIRP/RDP tour Areva, 92084 Paris La Defense (France)

    2013-07-01

    In radioactive waste packages hydrogen is generated, in one hand, from the radiolysis of wastes (mainly organic materials) and, in the other hand, from the radiolysis of water content in the cement matrix. In order to assess hydrogen generation 2 tools based on operational models have been developed. One is dedicated to the determination of the hydrogen source term issues from the radiolysis of the wastes: the STORAGE tool (Simulation Tool Of Emission Radiolysis Gas), the other deals with the hydrogen source term gas, produced by radiolysis of the cement matrices (the Damar tool). The approach used by the STORAGE tool for assessing the production rate of radiolysis gases is divided into five steps: 1) Specification of the data packages, in particular, inventories and radiological materials defined for a package medium; 2) Determination of radiochemical yields for the different constituents and the laws of behavior associated, this determination of radiochemical yields is made from the PRELOG database in which radiochemical yields in different irradiation conditions have been compiled; 3) Definition of hypothesis concerning the composition and the distribution of contamination inside the package to allow assessment of the power absorbed by the constituents; 4) Sum-up of all the contributions; And finally, 5) validation calculations by comparison with a reduced sampling of packages. Comparisons with measured values confirm the conservative character of the methodology and give confidence in the safety margins for safety analysis report.

  11. Modeling and simulation of graphene/palladium catalyst reformer for hydrogen generation from waste of IC engine

    Science.gov (United States)

    Rahman, A.; Aung, K. M.

    2018-01-01

    A small amount of hydrogen made by on-board reformer is added to the normal intake air and gasoline mixture in the vehicle’s engine could improves overall combustion quality by allowing nearly twice as much air for a given amount of fuel introduced into the combustion chamber. This can be justified based on the calorific value of Hydrogen (H2) 141.9 MJ/kg while the gasoline (C6.4H11.8) is 47MJ/kg. Different weight % of Pd and GO uses for the reformer model and has conducted simulation by COMSOL software. The best result found for the composition of catalyst (palladium 30% and graphene 70%). The study shows that reformer yield hydrogen 23% for the exhaust temperature of 600-900°C and 20% for 80-90°C. Pumping hydrogen may boost the fuel atomization and vaporization at engine idle condition, which could enhances the fuel combustion efficiency. Thus, this innovative technology would be able to save fuel about 12% and reduce the emission about 35%.

  12. Study and modeling of the evolution of gas-liquid partitioning of hydrogen sulfide in model solutions simulating winemaking fermentations.

    Science.gov (United States)

    Mouret, Jean-Roch; Sablayrolles, Jean-Marie; Farines, Vincent

    2015-04-01

    The knowledge of gas-liquid partitioning of aroma compounds during winemaking fermentation could allow optimization of fermentation management, maximizing concentrations of positive markers of aroma and minimizing formation of molecules, such as hydrogen sulfide (H2S), responsible for defects. In this study, the effect of the main fermentation parameters on the gas-liquid partition coefficients (Ki) of H2S was assessed. The Ki for this highly volatile sulfur compound was measured in water by an original semistatic method developed in this work for the determination of gas-liquid partitioning. This novel method was validated and then used to determine the Ki of H2S in synthetic media simulating must, fermenting musts at various steps of the fermentation process, and wine. Ki values were found to be mainly dependent on the temperature but also varied with the composition of the medium, especially with the glucose concentration. Finally, a model was developed to quantify the gas-liquid partitioning of H2S in synthetic media simulating must to wine. This model allowed a very accurate prediction of the partition coefficient of H2S: the difference between observed and predicted values never exceeded 4%.

  13. Hydrogen energy applications

    International Nuclear Information System (INIS)

    Okken, P.A.

    1992-10-01

    For the Energy and Material consumption Scenarios (EMS), by which emission reduction of CO 2 and other greenhouse gases can be calculated, calculations are executed by means of the MARKAL model (MARket ALlocation, a process-oriented dynamic linear programming model to minimize the costs of the energy system) for the Netherlands energy economy in the period 2000-2040, using a variable CO 2 emission limit. The results of these calculations are published in a separate report (ECN-C--92-066). The use of hydrogen can play an important part in the above-mentioned period. An overview of several options to produce or use hydrogen is given and added to the MARKAL model. In this report techno-economical data and estimates were compiled for several H 2 -application options, which subsequently also are added to the MARKAL model. After a brief chapter on hydrogen and the impact on the reduction of CO 2 emission attention is paid to stationary and mobile applications. The stationary options concern the mixing of natural gas with 10% hydrogen, a 100% substitution of natural gas by hydrogen, the use of a direct steam generator (combustion of hydrogen by means of pure oxygen, followed by steam injection to produce steam), and the use of fuel cells. The mobile options concern the use of hydrogen in the transportation sector. In brief, attention is paid to a hydrogen passenger car with an Otto engine, and a hydrogen passenger car with a fuel cell, a hybrid (metal)-hydride car, a hydrogen truck, a truck with a methanol fuel cell, a hydrogen bus, an inland canal boat with a hydrogen fuel cell, and finally a hydrogen airplane. 2 figs., 15 tabs., 1 app., 26 refs

  14. Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds.

    Science.gov (United States)

    Mu, Wei; Ben, Haoxi; Du, Xiaotang; Zhang, Xiaodan; Hu, Fan; Liu, Wei; Ragauskas, Arthur J; Deng, Yulin

    2014-12-01

    Aqueous phase hydrodeoxygenation of lignin pyrolysis oil and related model compounds were investigated using four noble metals supported on activated carbon. The hydrodeoxygenation of guaiacol has three major reaction pathways and the demethylation reaction, mainly catalyzed by Pd, Pt and Rh, produces catechol as the products. The presence of catechol and guaiacol in the reaction is responsible for the coke formation and the catalysts deactivation. As expected, there was a significant decrease in the specific surface area of Pd, Pt and Rh catalysts during the catalytic reaction because of the coke deposition. In contrast, no catechol was produced from guaiacol when Ru was used so a completely hydrogenation was accomplished. The lignin pyrolysis oil upgrading with Pt and Ru catalysts further validated the reaction mechanism deduced from model compounds. Fully hydrogenated bio-oil was produced with Ru catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  16. A mathematical model of the maximum power density attainable in an alkaline hydrogen/oxygen fuel cell

    Science.gov (United States)

    Kimble, Michael C.; White, Ralph E.

    1991-01-01

    A mathematical model of a hydrogen/oxygen alkaline fuel cell is presented that can be used to predict the polarization behavior under various power loads. The major limitations to achieving high power densities are indicated and methods to increase the maximum attainable power density are suggested. The alkaline fuel cell model describes the phenomena occurring in the solid, liquid, and gaseous phases of the anode, separator, and cathode regions based on porous electrode theory applied to three phases. Fundamental equations of chemical engineering that describe conservation of mass and charge, species transport, and kinetic phenomena are used to develop the model by treating all phases as a homogeneous continuum.

  17. Renewable Molecular Flasks with NADH Models: Combination of Light-Driven Proton Reduction and Biomimetic Hydrogenation of Benzoxazinones.

    Science.gov (United States)

    Zhao, Liang; Wei, Jianwei; Lu, Junhua; He, Cheng; Duan, Chunying

    2017-07-17

    Using small molecules with defined pockets to catalyze chemical transformations resulted in attractive catalytic syntheses that echo the remarkable properties of enzymes. By modulating the active site of a nicotinamide adenine dinucleotide (NADH) model in a redox-active molecular flask, we combined biomimetic hydrogenation with in situ regeneration of the active site in a one-pot transformation using light as a clean energy source. This molecular flask facilitates the encapsulation of benzoxazinones for biomimetic hydrogenation of the substrates within the inner space of the flask using the active sites of the NADH models. The redox-active metal centers provide an active hydrogen source by light-driven proton reduction outside the pocket, allowing the in situ regeneration of the NADH models under irradiation. This new synthetic platform, which offers control over the location of the redox events, provides a regenerating system that exhibits high selectivity and efficiency and is extendable to benzoxazinone and quinoxalinone systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Biological methanation of hydrogen within biogas plants: A model-based feasibility study

    International Nuclear Information System (INIS)

    Bensmann, A.; Hanke-Rauschenbach, R.; Heyer, R.; Kohrs, F.; Benndorf, D.; Reichl, U.; Sundmacher, K.

    2014-01-01

    Highlights: • Simulation study about direct methanation of hydrogen within biogas plants. • In stationary operation two limitations, namely biological and transfer limit. • Biological limit at 4m H2 3 /m CO2 3 due to stoichiometry. • Dynamic behaviour shows three qualitatively different step responses. • A simple control scheme to meet the output quality was developed. - Abstract: One option to utilize excess electric energy is its conversion to hydrogen and the subsequent methanation. An alternative to the classical chemical Sabatier process is the biological methanation (methanogenesis) within biogas plants. In conventional biogas plants methane and carbon dioxide is produced. The latter can be directly converted to methane by feeding hydrogen into the reactor, since hydrogenotrophic bacteria are present. In the present contribution, a comprehensive simulation study with respect to stationary operating conditions and disturbances is presented. It reveals two qualitative different limitations, namely a biological limit (appr. at 4m H2 3 /m CO2 3 corresponds to 4.2m H2,STP 3 /m liq 3 /d) as well as a transfer limit. A parameter region for a safe operation was defined. The temporary operation with stationary unfeasible conditions was analysed and thereby three qualitatively different disturbances can be distinguished. In one of these the operation for several days is possible. On the basis of these results, a controller was proposed and tested that meets the demands on the conversion of hydrogen and also prevents the washout of the microbial community due to hydrogen overload

  19. Dispersive kinetic model for the non-isothermal reduction of nickel oxide by hydrogen

    International Nuclear Information System (INIS)

    Adnadevic, Borivoj; Jankovic, Bojan

    2008-01-01

    The kinetics of the non-isothermal reduction process of powder nickel oxide samples using hydrogen was investigated by temperature-programmed experiments at the different constant heating rates. The new procedure for the determination of density distribution function of activation energies (ddfE a ), evaluated from the experimentally obtained non-isothermal conversion curves, was developed. The analytical relationships between the corresponding thermo-kinetic parameters for the investigated reduction process were established. From the influence of heating rate on the basic characteristics of ddfE a 's, it was concluded that the evaluated ddfE a 's are completely independent of the heating rate (v h ). It was found that the value of activation energy at the peak of the distribution curve (E a,max ), at all considered heating rates, is in good agreement with the value of E a,0 (96.6 kJ mol -1 ) calculated from the isoconversional dependence of activation energy, in the conversion range of 0.20≤α≤0.60. From the appearances of the true compensation effect, it was concluded that the factor that produces the changes of kinetic parameter values is a conversion fraction (α). Using the model prediction, the experimentally obtained conversion curves are completely described by the evaluated distribution curves (g(E a ) vhj ) at all considered heating rates. It was concluded that the assumption about the distribution of potential energies of oxygen vacancies presented in NiO samples leads to the distribution of activation energies, which determine the kinetics of non-isothermal reduction processes

  20. Development of a market penetration forecasting model for Hydrogen Fuel Cell Vehicles considering infrastructure and cost reduction effects

    International Nuclear Information System (INIS)

    Park, Sang Yong; Kim, Jong Wook; Lee, Duk Hee

    2011-01-01

    In order to cope with climate change, the development and deployment of Hydrogen Fuel Cell Vehicles (HFCVs) is becoming more important. In this study, we developed a forecasting model for HFCVs based on the generalized Bass diffusion model and a simulation model using system dynamics. Through the developed model, we could forecast that the saturation of HFCVs in Korea can be moved up 12 years compared with the US. A sensitivity analysis on external variables such as price reduction rates of HFCVs and number of hydrogen refueling stations is also conducted. The results of this study can give insights on the effects of external variables on the market penetration of HFCVs, and the developed model can also be applied to other studies in analyzing the diffusion effects of HFCVs. - Highlights: → A forecasting model for HFCVs was developed using the generalized Bass diffusion model. → A simulation model using system dynamics was also developed. → The empirical study shows that the infrastructure is an important factor to the initial purchase. → The results of this study can promote research related to the diffusion of innovation.

  1. CFD modelling of a membrane reactor for hydrogen production from ammonia

    Science.gov (United States)

    Shwe Hla, San; Dolan, Michael D.

    2018-01-01

    Despite the growing use of hydrogen (H2) as a transport fuel, one of the major barriers still remaining is efficient and inexpensive fuel distribution and storage. Current approaches, such as compression, liquefaction or metal hydride formation, incur a significant energy penalty. Ammonia (NH3) has long been considered a prospective H2 medium, exhibiting a higher volumetric H2 density than liquid H2, through liquid-phase storage at mild pressure. Decomposition of NH3 into H2 and N2 can be achieved via use of catalytic reactors and fuel-cell-grade H2 can be produced using metal membranes at H2 distribution sites.In this study, a 3-Dimensional (3D) Computational Fluid Dynamics (CFD) model has been developed to understand the performance of the H2 separation process in gas mixtures derived from an NH3-cracking reaction. The reactor consists of 19 tubular membrane tubes, each 470 mm long, inside a tubular shell with an inner diameter of 130 mm. Standard transport and energy equations governing a 3D, pressure-based, steady-state model were derived from the laws of conservation of mass, momentum and energy. The governing equations were solved using commercial CFD software ANSYS Fluent 18.0. Gas flow and mixing were modelled by the two-equation standard k-epsilon model for closure. Coupled solver was used for pressure-velocity coupling, enabling a pseudo-transient option with pseudo time steps of 0.01 s. To estimate H2 permeation through the metal membrane, a constant H2 permeability of 3.0E-07 mol.m-1 s-1 Pa-0.5 derived from series of experiments tested under a range of industrial conditions, was used. Model simulations were conducted for an adiabatic temperature of 300 °C, a feed-side pressure of 7.8 bara and a permeate side pressure of 0.1 bara. A parametric analysis was carried out to explore the effects of variation in total feed-gas flow and effects of changes in NH3-cracking efficiency on H2 production rates and H2 yields. The model estimated that 4.6-11.6 kg H2

  2. Thermodynamics of various F420 coenzyme models as sources of electrons, hydride ions, hydrogen atoms and protons in acetonitrile.

    Science.gov (United States)

    Xia, Ke; Shen, Guang-Bin; Zhu, Xiao-Qing

    2015-06-14

    32 F420 coenzyme models with alkylation of the three different N atoms (N1, N3 and N10) in the core structure (XFH(-)) were designed and synthesized and the thermodynamic driving forces (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the 32 XFH(-) releasing hydride ions, hydrogen atoms and electrons, the thermodynamic driving forces of the 32 XFH˙ releasing protons and hydrogen atoms and the thermodynamic driving forces of XF(-)˙ releasing electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The effects of the methyl group at N1, N3 and N10 and a negative charge on N1 and N10 atoms on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were examined; the results show that seating arrangements of the methyl group and the negative charge have remarkably different effects on the thermodynamic properties of the F420 coenzyme models and their related reaction intermediates. The effects of the substituents at C7 and C8 on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were also examined; the results show that the substituents at C7 and C8 have good Hammett linear free energy relationships with the six thermodynamic parameters. Meanwhile, a reasonable determination of possible reactions between members of the F420 family and NADH family in vivo was given according to a thermodynamic analysis platform constructed using the elementary step thermodynamic parameter of F420 coenzyme model 2FH(-) and NADH model MNAH releasing hydride ions in acetonitrile. The information disclosed in this work can not only fill a gap in the chemical thermodynamics of F420 coenzyme models as a class of very important organic sources of electrons, hydride ions, hydrogen atoms and protons, but also strongly promote the fast development of the chemistry and applications of F420 coenzyme.

  3. Investigation of low-latitude hydrogen emission in terms of a two-component interstellar gas model

    International Nuclear Information System (INIS)

    Baker, P.L.; Burton, W.B.

    1975-01-01

    The high-resolution 21-cm hydrogen line observations at low galactic latitude of Burton and Verschuur have been analyzed to determine the large-scale distribution of galactic hydrogen. The distribution parameters are found by model fitting. Optical depth affects have been computed using a two-component gas model. Analysis shows that a multiphase description of the medium is essential to the interpretation of low-latitude emission observations. Where possible, the number of free parameters in the gas model has been reduced. Calculations were performed for a one-component, uniform spin temperature, gas model in order to show the systematic departures between this model and the data caused by the incorrect treatment of the optical depth effect. In the two-component gas, radiative transfer is treated by a Monte Carlo calculation since the opacity of the gas arises in a randomly distributed, cold, optically thick, low velocity-dispersion, cloud medium. The emission arises in both the cloud medium and a smoothly distributed, optically thin, high velocity-dispersion, intercloud medium. The synthetic profiles computed from the two-component model reproduce both the large-scale trends of the observed emission profiles and the magnitude of the small-scale emission irregularities. The analysis permits the determination of values for []he thickness of the galactic disk between half density points, the total observed neutral hydrogen mass of the Galaxy, and the central number density of the intercloud atoms. In addition, the analysis is sensitive to the size of clouds contributing to the observations. Computations also show that synthetic emission profiles based on the two-component model display both the zero-velocity and high-velocity ridges, indicative of optical thinness on a large scale, in spite of the presence of optically thick gas

  4. Hail hydrogen

    International Nuclear Information System (INIS)

    Hairston, D.

    1996-01-01

    After years of being scorned and maligned, hydrogen is finding favor in environmental and process applications. There is enormous demand for the industrial gas from petroleum refiners, who need in creasing amounts of hydrogen to remove sulfur and other contaminants from crude oil. In pulp and paper mills, hydrogen is turning up as hydrogen peroxide, displacing bleaching agents based on chlorine. Now, new technologies for making hydrogen have the industry abuzz. With better capabilities of being generated onsite at higher purity levels, recycled and reused, hydrogen is being prepped for a range of applications, from waste reduction to purification of Nylon 6 and hydrogenation of specialty chemicals. The paper discusses the strong market demand for hydrogen, easier routes being developed for hydrogen production, and the use of hydrogen in the future

  5. Computational Laboratory Astrophysics to Enable Transport Modeling of Protons and Hydrogen in Stellar Winds, the ISM, and other Astrophysical Environments

    Science.gov (United States)

    Schultz, David

    As recognized prominently by the APRA program, interpretation of NASA astrophysical mission observations requires significant products of laboratory astrophysics, for example, spectral lines and transition probabilities, electron-, proton-, or heavy-particle collision data. Availability of these data underpin robust and validated models of astrophysical emissions and absorptions, energy, momentum, and particle transport, dynamics, and reactions. Therefore, measured or computationally derived, analyzed, and readily available laboratory astrophysics data significantly enhances the scientific return on NASA missions such as HST, Spitzer, and JWST. In the present work a comprehensive set of data will be developed for the ubiquitous proton-hydrogen and hydrogen-hydrogen collisions in astrophysical environments including ISM shocks, supernova remnants and bubbles, HI clouds, young stellar objects, and winds within stellar spheres, covering the necessary wide range of energy- and charge-changing channels, collision energies, and most relevant scattering parameters. In addition, building on preliminary work, a transport and reaction simulation will be developed incorporating the elastic and inelastic collision data collected and produced. The work will build upon significant previous efforts of the principal investigators and collaborators, will result in a comprehensive data set required for modeling these environments and interpreting NASA astrophysical mission observations, and will benefit from feedback from collaborators who are active users of the work proposed.

  6. Collision of hydrogen molecules interacting with two grapheme sheets

    Directory of Open Access Journals (Sweden)

    Malivuk-Gak Dragana

    2017-01-01

    Full Text Available It have been performed the computational experiments with two hydrogen molecules and two graphene sheets. Hydrogen - hydrogen and hydrogen - carbon interactions are described by Lennard - Jones potential. Equations of motion of the wave packet centre are solved numerically. The initial molecule velocity was determined by temperature and collisions occur in central point between two sheets. The molecules after collision stay near or get far away of graphene sheets. Then one can find what temperatures, graphene sheet sizes and their distances are favourable for hydrogen storage. It is found that quantum corrections of the molecule classical trajectories are not significant here. Those investigations of possibility of hydrogen storage by physisorption are of interest for improvement of the fuel cell systems. The main disadvantages of computational experiments are: (1 it cannot compute with very large number of C atoms, (2 it is assumed that carbon atoms are placed always in their equilibrium positions and (3 the changes of wave packet width are not considered.

  7. Modelling the average velocity of propagation of the flame front in a gasoline engine with hydrogen additives

    Science.gov (United States)

    Smolenskaya, N. M.; Smolenskii, V. V.

    2018-01-01

    The paper presents models for calculating the average velocity of propagation of the flame front, obtained from the results of experimental studies. Experimental studies were carried out on a single-cylinder gasoline engine UIT-85 with hydrogen additives up to 6% of the mass of fuel. The article shows the influence of hydrogen addition on the average velocity propagation of the flame front in the main combustion phase. The dependences of the turbulent propagation velocity of the flame front in the second combustion phase on the composition of the mixture and operating modes. The article shows the influence of the normal combustion rate on the average flame propagation velocity in the third combustion phase.

  8. The thermodynamic stability of hydrogen bonded and cation bridged complexes of humic acid models-A theoretical study

    International Nuclear Information System (INIS)

    Aquino, Adelia J.A.; Tunega, Daniel; Pasalic, Hasan; Haberhauer, Georg; Gerzabek, Martin H.; Lischka, Hans

    2008-01-01

    Hydrogen bonded and cation bridged complexation of poly(acrylic acid) oligomers, representing a model compound for humic acids, with acetic acid and the herbicide (4-chloro-2-methylphenoxy) acetic acid (MCPA) have been studied by means of density functional theory. Solvation effects were computed by means of a combination of microsolvation (explicit insertion of water molecules) and global solvation (polarizable continuum approach). The stability of hydrogen bonded complexes in solution is characterized by a strong competition between solute and solvent molecules. The cation bridged complexes of the negatively charged (deprotonated) ligands were found to be strongly favored explaining the capability of humic acids to fixate anionic species from soil solutions and the ability to form cross-linking structures within the humic acid macromolecules

  9. Numerical modeling of heat transfer during hydrogen absorption in thin double-layered annular ZrCo beds

    Directory of Open Access Journals (Sweden)

    Yehui Cui

    2018-06-01

    Full Text Available In this work a three-dimensional (3D hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized. Keywords: Hydrogen storage, ZrCo metal hydride, Heat transfer, Three-dimensional simulation

  10. Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values?

    CSIR Research Space (South Africa)

    Waterhouse, JS

    2002-07-30

    Full Text Available . Cosmo- chim. Acta 46 (1982) 955^965. [35] W.M. Buhay, T.W.D. Edwards, Climate in southwestern Ontario, Canada, between AD 1610 and 1885 inferred from oxygen and hydrogen isotopic measurements of wood cellulose from trees in di?erent hydrological set...

  11. Selective Hydrogenation of Acrolein Over Pd Model Catalysts: Temperature and Particle-Size Effects.

    Science.gov (United States)

    O'Brien, Casey P; Dostert, Karl-Heinz; Schauermann, Swetlana; Freund, Hans-Joachim

    2016-10-24

    The selectivity in the hydrogenation of acrolein over Fe 3 O 4 -supported Pd nanoparticles has been investigated as a function of nanoparticle size in the 220-270 K temperature range. While Pd(111) shows nearly 100 % selectivity towards the desired hydrogenation of the C=O bond to produce propenol, Pd nanoparticles were found to be much less selective towards this product. In situ detection of surface species by using IR-reflection absorption spectroscopy shows that the selectivity towards propenol critically depends on the formation of an oxopropyl spectator species. While an overlayer of oxopropyl species is effectively formed on Pd(111) turning the surface highly selective for propenol formation, this process is strongly hindered on Pd nanoparticles by acrolein decomposition resulting in CO formation. We show that the extent of acrolein decomposition can be tuned by varying the particle size and the reaction temperature. As a result, significant production of propenol is observed over 12 nm Pd nanoparticles at 250 K, while smaller (4 and 7 nm) nanoparticles did not produce propenol at any of the temperatures investigated. The possible origin of particle-size dependence of propenol formation is discussed. This work demonstrates that the selectivity in the hydrogenation of acrolein is controlled by the relative rates of acrolein partial hydrogenation to oxopropyl surface species and of acrolein decomposition, which has significant implications for rational catalyst design. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Empirical rate equation model and rate calculations of hydrogen generation for Hanford tank waste

    International Nuclear Information System (INIS)

    HU, T.A.

    1999-01-01

    Empirical rate equations are derived to estimate hydrogen generation based on chemical reactions, radiolysis of water and organic compounds, and corrosion processes. A comparison of the generation rates observed in the field with the rates calculated for twenty eight tanks shows agreement within a factor of two to three

  13. Incoherent neutron-scattering determination of hydrogen content : Theory and modeling

    NARCIS (Netherlands)

    Perego, R.C.; Blaauw, M.

    2005-01-01

    Hydrogen concentrations of 0 up to 350?mg/kg in a titanium alloy have been determined at National Institute of Standards and Technology (NIST) with neutron incoherent scattering (NIS) and with cold neutron prompt gamma activation analysis. The latter is a well-established technique, while the former

  14. A Barrier Options Approach to Modeling Project Failure : The Case of Hydrogen Fuel Infrastructure

    NARCIS (Netherlands)

    Engelen, P.J.; Kool, C.J.M.; Li, Y.

    2016-01-01

    Hydrogen fuel cell vehicles have the potential to contribute to a sustainable transport system with zero tailpipe emissions. This requires the construction of a network of fuel stations, a long-term, expensive and highly uncertain investment. We contribute to the literature by including a knock-out

  15. Integration of phase change materials in compressed hydrogen gas systems: Modelling and parametric analysis

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rothuizen, Erasmus; Jørgensen, Jens-Erik

    2016-01-01

    to the phase change material, mainly occurs after the fueling is completed, resulting in a hydrogen peak temperature higher than 85 C and a lower fueled mass than a gas-cooled system. Such a mass reduction accounts for 12% with respect to the case of a standard tank system fueled at 40 C. A parametric analysis...

  16. Model of parameters controlling resistance of pipeline steels to hydrogen-induced cracking

    KAUST Repository

    Traidia, Abderrazak; El-Sherik, A. M.; Duval, Sé bastien; Lubineau, Gilles; El Yagoubi, Jalal

    2014-01-01

    NACE MR0175/ISO 15156-2 standard provides test conditions and acceptance criteria to evaluate the resistance of carbon and low-alloy steels to hydrogen-induced cracking (HIC). The second option proposed by this standard offers a large flexibility

  17. First Principles Modeling of the Performance of a Hydrogen-Peroxide-Driven Chem-E-Car

    Science.gov (United States)

    Farhadi, Maryam; Azadi, Pooya; Zarinpanjeh, Nima

    2009-01-01

    In this study, performance of a hydrogen-peroxide-driven car has been simulated using basic conservation laws and a few numbers of auxiliary equations. A numerical method was implemented to solve sets of highly non-linear ordinary differential equations. Transient pressure and the corresponding traveled distance for three different car weights are…

  18. Canadian hydrogen safety program

    International Nuclear Information System (INIS)

    MacIntyre, I.; Tchouvelev, A.V.; Hay, D.R.; Wong, J.; Grant, J.; Benard, P.

    2007-01-01

    The Canadian hydrogen safety program (CHSP) is a project initiative of the Codes and Standards Working Group of the Canadian transportation fuel cell alliance (CTFCA) that represents industry, academia, government, and regulators. The Program rationale, structure and contents contribute to acceptance of the products, services and systems of the Canadian Hydrogen Industry into the Canadian hydrogen stakeholder community. It facilitates trade through fair insurance policies and rates, effective and efficient regulatory approval procedures and accommodation of the interests of the general public. The Program integrates a consistent quantitative risk assessment methodology with experimental (destructive and non-destructive) failure rates and consequence-of-release data for key hydrogen components and systems into risk assessment of commercial application scenarios. Its current and past six projects include Intelligent Virtual Hydrogen Filling Station (IVHFS), Hydrogen clearance distances, comparative quantitative risk comparison of hydrogen and compressed natural gas (CNG) refuelling options; computational fluid dynamics (CFD) modeling validation, calibration and enhancement; enhancement of frequency and probability analysis, and Consequence analysis of key component failures of hydrogen systems; and fuel cell oxidant outlet hydrogen sensor project. The Program projects are tightly linked with the content of the International Energy Agency (IEA) Task 19 Hydrogen Safety. (author)

  19. Understanding hydrogen sorption in a metal-organic framework with open-metal sites and amide functional groups

    KAUST Repository

    Pham, Tony T.

    2013-05-09

    Grand canonical Monte Carlo (GCMC) studies of the mechanism of hydrogen sorption in an rht-MOF known as Cu-TPBTM are presented. The MOF is a decorated/substituted isostructural analogue to the unembellished rht-MOF, PCN-61, that was studied previously [ Forrest, K. A.J. Phys. Chem. C 2012, 116, 15538-15549. ]. The simulations were performed using three different hydrogen potentials of increasing complexity. Simulated hydrogen sorption isotherms and calculated isosteric heat of adsorption, Qst, values were in excellent agreement with the reported experimental data for only a polarizable model in one of four experimentally observed crystal structure configurations. The study demonstrates the ability of modeling to distinguish the differential sorption of distinct strucures; one configuration is found to be dominant due to favorable interactions with substrates. In addition, it was discovered that the presence of polar amide groups had a significant effect on the electrostatics of the Cu2+ ions and directs the low-pressure physisorption of hydrogen in the MOF. This is in contrast to what was observed in PCN-61, where an exterior copper ion had a higher relative charge and was the favored loading site. This tunability of the electrostatics of the copper ions via chemical substitution on the MOF framework can be explained by the presence of the negatively charged oxygen atom of the amide group that causes the interior Cu2+ ion to exhibit a higher positive charge through an inductive effect. Further, control simulations, taking advantage of the flexibility afforded by theoretical modeling, include artificially modified charges for both Cu2+ ions chosen equal to or with a higher charge on the exterior Cu2+ ion. This choice resulted in distinctly different hydrogen sorption characteristics in Cu-TPBTM with no direct sorption on the open-metal sites. Thus, this study demonstrates both the tunable nature of MOF platforms and the possibility for rational design of sorption

  20. Hydrogen Fuelling Stations

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard

    . A system consisting of one high pressure storage tank is used to investigate the thermodynamics of fuelling a hydrogen vehicle. The results show that the decisive parameter for how the fuelling proceeds is the pressure loss in the vehicle. The single tank fuelling system is compared to a cascade fuelling......This thesis concerns hydrogen fuelling stations from an overall system perspective. The study investigates thermodynamics and energy consumption of hydrogen fuelling stations for fuelling vehicles for personal transportation. For the study a library concerning the components in a hydrogen fuelling...... station has been developed in Dymola. The models include the fuelling protocol (J2601) for hydrogen vehicles made by Society of Automotive Engineers (SAE) and the thermodynamic property library CoolProp is used for retrieving state point. The components in the hydrogen fuelling library are building up...

  1. A theoretical study of hydrogen atoms adsorption and diffusion on PuO_2 (110) surface

    International Nuclear Information System (INIS)

    Yu, H.L.; Tang, T.; Zheng, S.T.; Shi, Y.; Qiu, R.Z.; Luo, W.H.; Meng, D.Q.

    2016-01-01

    The mechanisms of adsorption and diffusion of hydrogen atoms on the PuO_2 (110) surface are investigated by density functional theory corrected for onsite Coulombic interactions (GGA + U). In order to find out the energetically more favorable adsorption site and optimum diffusion path, adsorption energy of atomic H on various sites and the diffusion energy barrier are derived and compared. Our results show that both chemisorption and physisorption exist for H atoms adsorption configurations on PuO_2 (110) surface. Two processes for H diffusion are investigated using the climbing nudged-elastic-band (cNEB) approach. We have identified two diffusion mechanisms, leading to migration of atomic H on the surface and diffusion from surface to subsurface. The energy barriers indicate that it is energetically more favorable for H atom to be on the surface. Hydrogen permeation through purity PuO_2 surface is mainly inhibited from hydrogen atom diffusion from surface to subsurface. - Highlights: • H atoms adsorption on PuO_2 (110) surface are investigated by GGA + U. • Both chemisorption and physisorption exist for H atoms adsorption configurations. • H atoms migration into PuO_2 (100) surface are inhibited with the barrier of 2.15 eV. • H atoms diffusion on PuO_2 (110) surface are difficult at room temperature.

  2. Thermal neutron scattering from a hydrogen-metal system in terms of a general multi-sublattice jump diffusion model

    International Nuclear Information System (INIS)

    Kutner, R.; Sosnowska, I.

    1977-01-01

    A Multi-Sublattice Jump Diffusion Model (MSJD) for hydrogen diffusion through interstitial-site lattices is presented. The MSJD approach may, in principle, be considered as an extension of the Rowe et al (J. Phys. Chem. Solids; 32:41 (1971)) model. Jump diffusion to any neighbours with different jump times which may be asymmetric in space is discussed. On the basis of the model a new method of calculating the diffusion tensor is advanced. The quasielastic, double differential cross section for thermal neutron scattering is obtained in terms of the MSJD model. The model can be used for systems in which interstitial jump diffusion of impurity particles occurs. In Part II the theoretical results are compared with those for quasielastic neutron scattering from the αNbHsub(x) system. (author)

  3. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  4. Hydrogen adsorption strength and sites in the metal organic framework MOF5: Comparing experiment and model calculations

    Science.gov (United States)

    Mulder, F. M.; Dingemans, T. J.; Schimmel, H. G.; Ramirez-Cuesta, A. J.; Kearley, G. J.

    2008-07-01

    Hydrogen adsorption in porous, high surface area, and stable metal organic frameworks (MOF's) appears a novel route towards hydrogen storage materials [N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe, O.M. Yaghi, Science 300 (2003) 1127; J.L.C. Rowsell, A.R. Millward, K. Sung Park, O.M. Yaghi, J. Am. Chem. Soc. 126 (2004) 5666; G. Ferey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guegan, Chem. Commun. (2003) 2976; T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, Chem. Eur. J. 10 (2004) 1373]. A prerequisite for such materials is sufficient adsorption interaction strength for hydrogen adsorbed on the adsorption sites of the material because this facilitates successful operation under moderate temperature and pressure conditions. Here we report detailed information on the geometry of the hydrogen adsorption sites, based on the analysis of inelastic neutron spectroscopy (INS). The adsorption energies for the metal organic framework MOF5 equal about 800 K for part of the different sites, which is significantly higher than for nanoporous carbon materials (˜550 K) [H.G. Schimmel, G.J. Kearley, M.G. Nijkamp, C.T. Visser, K.P. de Jong, F.M. Mulder, Chem. Eur. J. 9 (2003) 4764], and is in agreement with what is found in first principles calculations [T. Sagara, J. Klassen, E. Ganz, J. Chem. Phys. 121 (2004) 12543; F.M. Mulder, T.J. Dingemans, M. Wagemaker, G.J. Kearley, Chem. Phys. 317 (2005) 113]. Assignments of the INS spectra is realized using comparison with independently published model calculations [F.M. Mulder, T.J. Dingemans, M. Wagemaker, G.J. Kearley, Chem. Phys. 317 (2005) 113] and structural data [T. Yildirim, M.R. Hartman, Phys. Rev. Lett. 95 (2005) 215504].

  5. Heat, mass, and momentum transport model for hydrogen diffusion flames in nuclear reactor containments

    International Nuclear Information System (INIS)

    Travis, J.R.

    1985-01-01

    It is now possible to analyze the time-dependent, fully three-dimensional behavior of hydrogen diffusion flames in nuclear reactor containments. This analysis involves coupling the full Navier-Stokes equations with multi-species transport to the global chemical kinetics of hydrogen combustion. A transport equation for the subgrid scale turbulent kinetic energy density is solved to produce the time and space dependent turbulent transport coefficients. The heat transfer coefficient governing the exchange of heat between fluid computational cells adjacent to wall cells is calculated by a modified Reynolds analogy formulation. The analysis of a MARK-III containment indicates very complex flow patterns that greatly influence fluid and wall temperatures and heat fluxes. 18 refs., 24 figs

  6. HMS-burn: a model for hydrogen distribution and combustion in nuclear reactor containments

    International Nuclear Information System (INIS)

    Travis, J.R.

    1985-01-01

    It is now possible to analyze the time-dependent, fully three-dimensional behavior of hydrogen combustion in nuclear reactor containments. This analysis involves coupling the full Navier-Stokes equations with multi-species transport to the global chemical kinetics of hydrogen combustion. A transport equation for the subgrid scale turbulent kinetic energy density is solved to produce the time and space dependent turbulent transport coefficients. The heat transfer coefficient governing the exchange of heat between fluid computational cells adjacent to wall cells is calculated by a modified Reynolds analogy formulation. The analysis of a MARK-III containment indicates very complex flow patterns that greatly influence fluid and wall temperatures and heat fluxes

  7. Safety-barrier diagrams as a tool for modelling safety of hydrogen applications

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan; Markert, Frank

    2009-01-01

    Safety-barrier diagrams have proven to be a useful tool in documenting the safety measures taken to prevent incidents and accidents in process industry. Especially during the introduction of new hydrogen technologies or applications, as e.g. hydrogen refuelling stations, safety-barrier diagrams...... are considered a valuable supplement to other traditional risk analysis tools to support the communication with authorities and other stakeholders during the permitting process. Another advantage of safety-barrier diagrams is that they highlight the importance of functional and reliable safety barriers in any...... system and here is a direct focus on those barriers that need to be subject to safety management in terms of design and installation, operational use, inspection and monitoring, and maintenance. Safety-barrier diagrams support both quantitative and qualitative approaches. The paper will describe...

  8. HYDRA-3D: a model for studying hydrogen transport in containments

    International Nuclear Information System (INIS)

    Prakash, P.; Mishra, A.; Das, M.; Srinivasan, G.R.

    1994-01-01

    The development of a 3D computer code HYDRA-3D for studying hydrogen transport in containment systems is described in this paper. The time-dependent conservation equations for mixture mass, mixture momentum, mixture energy and species mass are solved using finite difference technique. Effects of molecular diffusion and turbulence have been taken into account. Sample calculations involving steam injection in a cubical compartment show reasonable trends in pressure and species concentrations throughout the computation domain. (author). 5 refs., 6 figs

  9. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    OpenAIRE

    Arslan, C.; Sattar, A.; Ji, C.; Sattar, S.; Yousaf, K.; Hashim, S.

    2015-01-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste...

  10. Modeling of a CeO2 thermochemistry reduction process for hydrogen production by solar concentrated energy

    Science.gov (United States)

    Valle-Hernández, Julio; Romero-Paredes, Hernando; Arancibia-Bulnes, Camilo A.; Villafan-Vidales, Heidi I.; Espinosa-Paredes, Gilberto

    2016-05-01

    In this paper the simulation of the thermal reduction for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. For the thermochemical process, a solar reactor prototype is proposed; consisting of a cubic receptacle made of graphite fiber thermally insulated. Inside the reactor a pyramidal arrangement with nine tungsten pipes is housed. The pyramidal arrangement is made respect to the focal point where the reflected energy is concentrated. The solar energy is concentrated through the solar furnace of high radiative flux. The endothermic step is the reduction of the cerium oxide to lower-valence cerium oxide, at very high temperature. The exothermic step is the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For the modeling, three sections of the pipe where the reaction occurs were considered; the carrier gas inlet, the porous medium and the reaction products outlet. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).

  11. Hydrogen highway

    International Nuclear Information System (INIS)

    Anon

    2008-01-01

    The USA Administration would like to consider the US power generating industry as a basis ensuring both the full-scale production of hydrogen and the widespread use of the hydrogen related technological processes into the economy [ru

  12. A dynamic model of a 100 kW micro gas turbine fuelled with natural gas and hydrogen blends and its application in a hybrid energy grid

    International Nuclear Information System (INIS)

    Di Gaeta, Alessandro; Reale, Fabrizio; Chiariello, Fabio; Massoli, Patrizio

    2017-01-01

    The paper deals with the development of a dynamic model of a commercial 100 kW Micro Gas Turbine (MGT) fuelled with mixtures of standard (i.e. natural gas or methane) and alternative fuels (i.e. hydrogen). The model consists of a first-order differential equation (ODE) describing the dominant dynamics of the MGT imposed by its own control system during production electrical power. The differential equation is coupled to a set of nonlinear maps derived numerically from a detailed 0D thermodynamic matching model of the MGT evaluated over a wide range of operating conditions (i.e. mechanical power, fraction of hydrogen and ambient temperature). The efficiency of the electrical machine with power inverter and power absorbed by auxiliary devices is also taken into account. The resulting model is experimentally validated for a sequence of power step responses of the MGT at different ambient conditions and with different fuel mixtures. The model is suited for simulation and control of hybrid energy grids (HEGs) which rely on advanced use of MGT and hydrogen as energy carrier. In this regard, the MGT model is used in the simulation of an HEG based on an appropriate mix of renewable (non-programmable) and non-renewable (programmable) energy sources with hydrogen storage and its reuse in the MGT. Here, the MGT is used as a programmable energy vector for compensating the deficits of renewable energies (such as solar and wind) with respect to user demand, while excess renewable energy is used to produce hydrogen via electrolysis of water. The simulated HEG comprises a solar PhotoVoltaic (PV) plant (300 kW), an MGT (100 kW) fuelled with natural gas and hydrogen blends, a water electrolyzer (WE) system (8 bar, 56 Nm 3 /h), a hydrogen tank (54 m 3 ), and an Energy Management Control System (EMCS). - Highlights: • A dynamic model of a commercial 100 kW MGT fuelled with natural gas and hydrogen blends is developed. • The model reproduces the electrical power generated by

  13. Numerical modeling of heat transfer during hydrogen absorption in thin double-layered annular ZrCo beds

    Science.gov (United States)

    Cui, Yehui; Zeng, Xiangguo; Kou, Huaqin; Ding, Jun; Wang, Fang

    2018-06-01

    In this work a three-dimensional (3D) hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized.

  14. Ice XVII as a Novel Material for Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Leonardo del Rosso

    2017-02-01

    Full Text Available Hydrogen storage is one of the most addressed issues in the green-economy field. The latest-discovered form of ice (XVII, obtained by application of an annealing treatment to a H 2 -filled ice sample in the C 0 -phase, could be inserted in the energy-storage context due to its surprising capacity of hydrogen physisorption, when exposed to even modest pressure (few mbars at temperature below 40 K, and desorption, when a thermal treatment is applied. In this work, we investigate quantitatively the adsorption properties of this simple material by means of spectroscopic and volumetric data, deriving its gravimetric and volumetric capacities as a function of the thermodynamic parameters, and calculating the usable capacity in isothermal conditions. The comparison of ice XVII with materials with a similar mechanism of hydrogen adsorption like metal-organic frameworks shows interesting performances of ice XVII in terms of hydrogen content, operating temperature and kinetics of adsorption-desorption. Any application of this material to realistic hydrogen tanks should take into account the thermodynamic limit of metastability of ice XVII, i.e., temperatures below about 130 K.

  15. Mathematical modeling of the coupled transport and electrochemical reactions in solid oxide steam electrolyzer for hydrogen production

    International Nuclear Information System (INIS)

    Ni, Meng; Leung, Michael K.H.; Leung, Dennis Y.C.

    2007-01-01

    A mathematical model was developed to simulate the coupled transport/electrochemical reaction phenomena in a solid oxide steam electrolyzer (SOSE) at the micro-scale level. Ohm's law, dusty gas model (DGM), Darcy's law, and the generalized Butler Volmer equation were employed to determine the transport of electronic/ionic charges and gas species as well as the electrochemical reactions. Parametric analyses were performed to investigate the effects of operating parameters and micro-structural parameters on SOSE potential. The results substantiated the fact that SOSE potential could be effectively decreased by increasing the operating temperature. In addition, higher steam molar fraction would enhance the operation of SOSE with lower potential. The effect of particle sizes on SOSE potential was studied with due consideration on the SOSE activation and concentration overpotentials. Optimal particle sizes that could minimize the SOSE potential were obtained. It was also found that decreasing electrode porosity could monotonically decrease the SOSE potential. Besides, optimal values of volumetric fraction of electronic particles were found to minimize electrode total overpotentials. In order to optimize electrode microstructure to minimize SOSE electricity consumption, the concept of 'functionally graded materials (FGM)' was introduced to lower the SOSE potential. The advanced design of particle size graded SOSE was found effective for minimizing electrical energy consumption resulting in efficient SOSE hydrogen production. The micro-scale model was capable of predicting SOSE hydrogen production performance and would be a useful tool for design optimization

  16. Hydrogen assisted diesel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lilik, Gregory K.; Boehman, Andre L. [The EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Hedan; Haworth, Daniel C. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Herreros, Jose Martin [Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla La-Mancha, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)

    2010-05-15

    Hydrogen assisted diesel combustion was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged, common rail, direct injection light-duty diesel engine, with a focus on exhaust emissions. Hydrogen was substituted for diesel fuel on an energy basis of 0%, 2.5%, 5%, 7.5%, 10% and 15% by aspiration of hydrogen into the engine's intake air. Four speed and load conditions were investigated (1800 rpm at 25% and 75% of maximum output and 3600 rpm at 25% and 75% of maximum output). A significant retarding of injection timing by the engine's electronic control unit (ECU) was observed during the increased aspiration of hydrogen. The retarding of injection timing resulted in significant NO{sub X} emission reductions, however, the same emission reductions were achieved without aspirated hydrogen by manually retarding the injection timing. Subsequently, hydrogen assisted diesel combustion was examined, with the pilot and main injection timings locked, to study the effects caused directly by hydrogen addition. Hydrogen assisted diesel combustion resulted in a modest increase of NO{sub X} emissions and a shift in NO/NO{sub 2} ratio in which NO emissions decreased and NO{sub 2} emissions increased, with NO{sub 2} becoming the dominant NO{sub X} component in some combustion modes. Computational fluid dynamics analysis (CFD) of the hydrogen assisted diesel combustion process captured this trend and reproduced the experimentally observed trends of hydrogen's effect on the composition of NO{sub X} for some operating conditions. A model that explicitly accounts for turbulence-chemistry interactions using a transported probability density function (PDF) method was better able to reproduce the experimental trends, compared to a model that ignores the influence of turbulent fluctuations on mean chemical production rates, although the importance of the fluctuations is not as strong as has been reported in some other recent modeling studies. The CFD results confirm

  17. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The chromosphere is the site of weak emission lines characterizing the flash spectrum observed for a few seconds during a total eclipse. This layer of the solar atmosphere is known to possess an opaque Hα emission and a great number of spicules, which can extend well above the photosphere. A stunning variety of hydrogen emission lines have been observed in this region. The production of these lines has provided the seventeenth line of evidence that the Sun is comprised of condensed matter (Robitaille P.M. Liquid Metallic Hydrogen II: A critical assessment of current and primordial helium levels in Sun. Progr. Phys., 2013, v. 2, 35–47. Contrary to the gaseous solar models, the simplest mechanism for the production of emission lines is the evaporation of excited atoms from condensed surfaces existing within the chromosphere, as found in spicules. This is reminiscent of the chemiluminescence which occurs during the condensation of silver clusters (Konig L., Rabin I., Schultze W., and Ertl G. Chemiluminescence in the Agglomeration of Metal Clusters. Science, v. 274, no. 5291, 1353–1355. The process associated with spicule formation is an exothermic one, requiring the transport of energy away from the site of condensation. As atoms leave localized surfaces, their electrons can occupy any energy level and, hence, a wide variety of emission lines are produced. In this regard, it is hypothesized that the presence of hydrides on the Sun can also facilitate hydrogen condensation in the chromosphere. The associated line emission from main group and transition elements constitutes the thirtieth line of evidence that the Sun is condensed matter. Condensation processes also help to explain why spicules manifest an apparently constant temperature over their entire length. Since the corona supports magnetic field lines, the random orientations associated with spicule formation suggests that the hydrogen condensates in the chromosphere are not metallic in

  18. Performance test results of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Yoshiyuki; Hayashi, Koji; Kato, Michio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2003-03-01

    Research on a hydrogen production system by steam reforming of methane, chemical reaction; CH{sub 4} + H{sub 2}O {yields} 3H{sub 2}O + CO, has been carried out to couple with the HTTR for establishment of high-temperature nuclear heat utilization technology and contribution to hydrogen energy society in future. The mock-up test facility with a full-scale reaction tube test facility, a model simulating one reaction tube of a steam reformer of the HTTR hydrogen production system in full scale, was fabricated to perform tests on controllability, hydrogen production performance etc. under the same pressure and temperature conditions as those of the HTTR hydrogen production system. The design and fabrication of the test facility started from 1997, and the all components were installed until September in 2001. In a performance test conducted from October in 2001 to February in 2002, performance of each component was examined and hydrogen of 120m{sup 3}{sub N}/h was successfully produced with high-temperature helium gas. This report describes the performance test results on components performance, hydrogen production characteristics etc., and main troubles and countermeasures. (author)

  19. Performance test results of mock-up model test facility with a full-scale reaction tube for HTTR hydrogen production system. Contract research

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Hayashi, Koji; Kato, Michio

    2003-03-01

    Research on a hydrogen production system by steam reforming of methane, chemical reaction; CH 4 + H 2 O → 3H 2 O + CO, has been carried out to couple with the HTTR for establishment of high-temperature nuclear heat utilization technology and contribution to hydrogen energy society in future. The mock-up test facility with a full-scale reaction tube test facility, a model simulating one reaction tube of a steam reformer of the HTTR hydrogen production system in full scale, was fabricated to perform tests on controllability, hydrogen production performance etc. under the same pressure and temperature conditions as those of the HTTR hydrogen production system. The design and fabrication of the test facility started from 1997, and the all components were installed until September in 2001. In a performance test conducted from October in 2001 to February in 2002, performance of each component was examined and hydrogen of 120m 3 N /h was successfully produced with high-temperature helium gas. This report describes the performance test results on components performance, hydrogen production characteristics etc., and main troubles and countermeasures. (author)

  20. Annealing Kinetic Model Using Fast and Slow Metastable Defects for Hydrogenated-Amorphous-Silicon-Based Solar Cells

    Directory of Open Access Journals (Sweden)

    Seung Yeop Myong

    2007-01-01

    Full Text Available The two-component kinetic model employing “fast” and “slow” metastable defects for the annealing behaviors in pin-type hydrogenated-amorphous-silicon- (a-Si:H- based solar cells is simulated using a normalized fill factor. Reported annealing data on pin-type a-Si:H-based solar cells are revisited and fitted using the model to confirm its validity. It is verified that the two-component model is suitable for fitting the various experimental phenomena. In addition, the activation energy for annealing of the solar cells depends on the definition of the recovery time. From the thermally activated and high electric field annealing behaviors, the plausible microscopic mechanism on the defect removal process is discussed.

  1. Theoretical model with experimental validation of a regenerative blower for hydrogen recirculation in a PEM fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Badami, M.; Mura, M. [Dipartimento di Energetica, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino (Italy)

    2010-03-15

    A theoretical model of a regenerative blower used for the hydrogen recirculation of a Proton Exchange Membrane (PEM) fuel cell (FC) for automotive applications has been implemented and validated by means of experimental data. A momentum exchange theory was used to determine the head-flow rate curves, whereas the circulatory flow rate was determined through a theory based on the consideration of the centrifugal force field in the side channel and in the impeller vane grooves. The model allows a good forecast to be made of the blower behaviour, and only needs its main geometrical characteristics and some fluid-dynamic data as input. For this reason, the model could be very interesting, especially during the first sizing and the design activity of the blower. (author)

  2. Hydrogen-migration modeling for the EPRI/HEDL standard problems

    International Nuclear Information System (INIS)

    Travis, J.R.

    1982-01-01

    A numerical technique has been developed for calculating the full three-dimensional time-dependent Navier-Stokes equations with multiple species transport. The method is a modified form of the Implicit Continuous-fluid Eulerian (ICE) technique to solve the governing equations for low Mach number flows where pressure waves and local variations in compression and expansion are not significant. Large density variations, due to thermal and species concentration gradients, are accounted for without the restrictions of the classical Boussinesq approximation. Calculations of the EPRI/HEDL standard problems verify the feasibility of using this finite-difference technique for analyzing hydrogen dispersion within LWR containments

  3. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  4. Kinetic modeling of hydrogenation and hydro-denitrogenation mechanisms on sulfurated catalysts; Etude par modelisation cinetique des mecanismes d'hydrogenation et d'hydrodesazotation sur catalyseurs sulfures

    Energy Technology Data Exchange (ETDEWEB)

    Penet, H.

    1998-10-23

    Toluene hydrogenation on a NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst was studied at 350 deg. C as a function of the partial pressures of H{sub 2}, H{sub 2}S and NH{sub 3}. This experimental study shows the following facts: the effect of the H{sub 2}S partial pressure on the hydrogenation rate is complex. The order with respect to H{sub 2}S varies between -0.05 and -0.5 as the pressure varies between 0.125 and 3 bar; in the presence of NH{sub 3}, the H{sub 2}S inhibiting effect is enhanced. Kinetic modeling was performed with the Chemkin II/Surface Chemkin II software package. On the basis of the effect of contact time and H{sub 2}S on toluene hydrogenation, the adsorption by heterolytic dissociation of H{sub 2} and H{sub 2}S was selected. H{sub 2} provides hydride species (H{sup -}) attacking the aromatic ring in a first step. Proton addition during the hydrogenation of the first double bond is the limiting step. In the presence of ammonia. the kinetic modeling shows that the catalyst surface is modified and that the displacement of the H{sub 2}S adsorption equilibrium is expected. The NH{sub 3} adsorption mode could not be clearly discriminated between a simple adsorption through coordination and an adsorption through protonation. This model was applied to the hydro-denitrogenation of 2,6-diethyl-aniline at 350 deg. C on NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst and showed that the limitation step is the hydrogenation of the aromatic ring. (author)

  5. Thermomechanical behavior modeling and experimental validation of polymer-wound composite multi-layers. Hydrogen storage application

    International Nuclear Information System (INIS)

    Gentilleau, Benoit

    2012-01-01

    The purpose of this research is to study the thermomechanical behavior of the constituent materials of a type IV hydrogen storage tank: a composite, ensuring the strength, is wound around the polyurethane liner that ensures sealing of the tank and thermal insulation; at the extremities, stainless steel parts are used to allow the process connection. In this type of tank, during filling, there is a significant increase in hydrogen temperature, resulting in a gradual heating of the structure and the presence of temperature gradients. The purpose of this study is primarily to characterize the behavior of such a structure when subjects to complex thermomechanical loading. Initially, mechanical and thermal characterization tests have been made over the service life range of temperature of the tank to obtain the necessary data for the realization of a thermomechanical numerical model. Then, a behavior law of the composite, easily transferable to a complex structure such as the whole tank and taking into account the non-linearity, the matrix damage, the progressive loss of shear modulus, and the thermo-dependence of the materials parameters, is developed. The tests on technological representative specimens have been performed to better understand the mechanisms that can appear in the tank and to validate the model. Finally, a numerical study of a tank was performed. The coupled influence of temperature and damage matrix on the behavior of this structure is analyzed. (author)

  6. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling

    Science.gov (United States)

    Rollin, Joseph A.; Martin del Campo, Julia; Myung, Suwan; Sun, Fangfang; You, Chun; Bakovic, Allison; Castro, Roberto; Chandrayan, Sanjeev K.; Wu, Chang-Hao; Adams, Michael W. W.; Senger, Ryan S.; Zhang, Y.-H. Percival

    2015-01-01

    The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2⋅L−1⋅h−1. The productivity was further enhanced to 54 mmol H2⋅L−1⋅h−1 by increasing reaction temperature, substrate, and enzyme concentrations—an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production. PMID:25848015

  7. Modeling the performance of hydrogen-oxygen unitized regenerative proton exchange membrane fuel cells for energy storage

    Science.gov (United States)

    Guarnieri, Massimo; Alotto, Piergiorgio; Moro, Federico

    2015-11-01

    Thanks to the independent sizing of power and energy, hydrogen-based energy storage is one of the very few technologies capable of providing long operational times in addition to the other advantages offered by electrochemical energy storage, for example scalability, site versatility, and mobile service. The typical design consists of an electrolyzer in charge mode and a separate fuel cell in discharge mode. Instead, a unitized regenerative fuel cell (URFC) is a single device performing both energy conversions, achieving a higher compactness and power-to-weight ratio. This paper presents a performance model of a URFC based on a proton exchange membrane (PEM) electrolyte and working on hydrogen and oxygen, which can provide high energy and power densities (>0.7 W cm-2). It provides voltage, power, and efficiency at varying load conditions as functions of the controlling physical quantities: temperature, pressure, concentration, and humidification. The model constitutes a tool for designing the interface and control sub-system as well as for exploring optimized cell/stack designs and operational conditions. To date, only a few of such analyses have been carried out and more research is needed in order to explore the true potential of URFCs.

  8. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling.

    Science.gov (United States)

    Rollin, Joseph A; Martin del Campo, Julia; Myung, Suwan; Sun, Fangfang; You, Chun; Bakovic, Allison; Castro, Roberto; Chandrayan, Sanjeev K; Wu, Chang-Hao; Adams, Michael W W; Senger, Ryan S; Zhang, Y-H Percival

    2015-04-21

    The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2⋅L(-1)⋅h(-1). The productivity was further enhanced to 54 mmol H2⋅L(-1)⋅h(-1) by increasing reaction temperature, substrate, and enzyme concentrations--an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production.

  9. A spatial model for a stream networks of Citarik River with the environmental variables: potential of hydrogen (PH) and temperature

    Science.gov (United States)

    Bachrudin, A.; Mohamed, N. B.; Supian, S.; Sukono; Hidayat, Y.

    2018-03-01

    Application of existing geostatistical theory of stream networks provides a number of interesting and challenging problems. Most of statistical tools in the traditional geostatistics have been based on a Euclidean distance such as autocovariance functions, but for stream data is not permissible since it deals with a stream distance. To overcome this autocovariance developed a model based on the distance the flow with using convolution kernel approach (moving average construction). Spatial model for a stream networks is widely used to monitor environmental on a river networks. In a case study of a river in province of West Java, the objective of this paper is to analyze a capability of a predictive on two environmental variables, potential of hydrogen (PH) and temperature using ordinary kriging. Several the empirical results show: (1) The best fit of autocovariance functions for temperature and potential hydrogen (ph) of Citarik River is linear which also yields the smallest root mean squared prediction error (RMSPE), (2) the spatial correlation values between the locations on upstream and on downstream of Citarik river exhibit decreasingly

  10. Examining hydrogen transitions.

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, S. E.; Energy Systems

    2007-03-01

    This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals of these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.

  11. Large Eddy Simulation Modeling of Flashback and Flame Stabilization in Hydrogen-Rich Gas Turbines Using a Hierarchical Validation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Noel [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    This project was a combined computational and experimental effort to improve predictive capability for boundary layer flashback of premixed swirl flames relevant to gas-turbine power plants operating with high-hydrogen-content fuels. During the course of this project, significant progress in modeling was made on four major fronts: 1) use of direct numerical simulation of turbulent flames to understand the coupling between the flame and the turbulent boundary layer; 2) improved modeling capability for flame propagation in stratified pre-mixtures; 3) improved portability of computer codes using the OpenFOAM platform to facilitate transfer to industry and other researchers; and 4) application of LES to flashback in swirl combustors, and a detailed assessment of its capabilities and limitations for predictive purposes. A major component of the project was an experimental program that focused on developing a rich experimental database of boundary layer flashback in swirl flames. Both methane and high-hydrogen fuels, including effects of elevated pressure (1 to 5 atm), were explored. For this project, a new model swirl combustor was developed. Kilohertz-rate stereoscopic PIV and chemiluminescence imaging were used to investigate the flame propagation dynamics. In addition to the planar measurements, a technique capable of detecting the instantaneous, time-resolved 3D flame front topography was developed and applied successfully to investigate the flow-flame interaction. The UT measurements and legacy data were used in a hierarchical validation approach where flows with increasingly complex physics were used for validation. First component models were validated with DNS and literature data in simplified configurations, and this was followed by validation with the UT 1-atm flashback cases, and then the UT high-pressure flashback cases. The new models and portable code represent a major improvement over what was available before this project was initiated.

  12. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  13. [NiFe] hydrogenase structural and functional models: new bio-inspired catalysts for hydrogen evolution; Modeles structuraux et fonctionnels du site actif des hydrogenases [NiFe]: de nouveaux catalyseurs bio-inspires pour la production d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Oudart, Y

    2006-09-15

    Hydrogenase enzymes reversibly catalyze the oxidation and production of hydrogen in a range close to the thermodynamic potential. The [NiFe] hydrogenase active site contains an iron-cyano-carbonyl moiety linked to a nickel atom which is in an all sulphur environment. Both the active site originality and the potential development of an hydrogen economy make the synthesis of functional and structural models worthy. To take up this challenge, we have synthesised mononuclear ruthenium models and more importantly, nickel-ruthenium complexes, mimicking some structural features of the [NiFe] hydrogenase active site. Ruthenium is indeed isoelectronic to iron and some of its complexes are well-known to bear hydrides. The compounds described in this study have been well characterised and their activity in proton reduction has been successfully tested. Most of them are able to catalyze this reaction though their electrocatalytic potentials remain much more negative compared to which of platinum. The studied parameters point out the importance of the complexes electron richness, especially of the nickel environment. Furthermore, the proton reduction activity is stable for several hours at good rates. The ruthenium environment seems important for this stability. Altogether, these compounds represent the very first catalytically active [NiFe] hydrogenase models. Important additional results of this study are the synergetic behaviour of the two metals in protons reduction and the evidence of a protonation step as the limiting step of the catalytic cycle. We have also shown that a basic site close to ruthenium improves the electrocatalytic potential of the complexes. (author)

  14. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  15. Modelling of hydrogen sulfide dispersion from the geothermal power plants of Tuscany (Italy)

    Science.gov (United States)

    Renato, Somma; Domenico, Granieri; Claudia, Troise; Carlo, Terranova; Natale Giuseppe, De; Maria, Pedone

    2017-04-01

    The hydrogen sulfide (H2S) is one of the main gaseous substances contained in deep fluids exploited by geo-thermoelectric plant. Therefore, it is a "waste" pollutant product by plants for energy production. Hydrogen sulfide is perceived by humans at very low concentrations in the air ( 0,008 ppm, World Health Organization, hereafter WHO, 2003) but it becomes odorless in higher concentrations (> 100 ppm, WHO, 2003) and, for values close to the ones lethal (> 500 ppm), produces an almost pleasant smell. The typical concentration in urban areas is <0.001ppm (<1ppb); in volcanic plumes it reaches values between 0.1 and 0.5 ppm. WHO defines the concentration and relative effects on human health. We applied the Eulerian code DISGAS (DISpersion of GAS) to investigate the dispersion of the hydrogen sulfide (H2S) from 32 geothermal power plants (out of 35 active) belonging to the geothermal districts of Larderello, Travale-Radicondoli and Monte Amiata, in Tuscany (Italy). DISGAS code has simulated scenarios consistent with the prevailing wind conditions, estimating reasonable H2S concentrations for each area, and for each active power plant. The results suggest that H2S plumes emitted from geothermal power plants are mainly concentrated around the stacks of emission (H2S concentration up to 1100 ug/m3) and rapidly dilute along the dominant local wind direction. Although estimated values of air H2S concentrations are orders of magnitude higher than in unpolluted areas, they do not indicate an immediate health risk for nearby communities, under the more frequent local atmospheric conditions. Starting from the estimated values, validated by measurements in the field, we make some considerations about the environmental impact of the H2S emission in all the geothermal areas of the Tuscany region. Furthermore, this study indicates the potential of DISGAS as a tool for an improved understanding of the atmospheric and environmental impacts of the H2S continuous degassing from

  16. Modeling 3D-CSIA data: Carbon, chlorine, and hydrogen isotope fractionation during reductive dechlorination of TCE to ethene.

    Science.gov (United States)

    Van Breukelen, Boris M; Thouement, Héloïse A A; Stack, Philip E; Vanderford, Mindy; Philp, Paul; Kuder, Tomasz

    2017-09-01

    Reactive transport modeling of multi-element, compound-specific isotope analysis (CSIA) data has great potential to quantify sequential microbial reductive dechlorination (SRD) and alternative pathways such as oxidation, in support of remediation of chlorinated solvents in groundwater. As a key step towards this goal, a model was developed that simulates simultaneous carbon, chlorine, and hydrogen isotope fractionation during SRD of trichloroethene, via cis-1,2-dichloroethene (and trans-DCE as minor pathway), and vinyl chloride to ethene, following Monod kinetics. A simple correction term for individual isotope/isotopologue rates avoided multi-element isotopologue modeling. The model was successfully validated with data from a mixed culture Dehalococcoides microcosm. Simulation of Cl-CSIA required incorporation of secondary kinetic isotope effects (SKIEs). Assuming a limited degree of intramolecular heterogeneity of δ 37 Cl in TCE decreased the magnitudes of SKIEs required at the non-reacting Cl positions, without compromising the goodness of model fit, whereas a good fit of a model involving intramolecular CCl bond competition required an unlikely degree of intramolecular heterogeneity. Simulation of H-CSIA required SKIEs in H atoms originally present in the reacting compounds, especially for TCE, together with imprints of strongly depleted δ 2 H during protonation in the products. Scenario modeling illustrates the potential of H-CSIA for source apportionment. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Contribution to the modelling of reversible electrolyser and hydrogen fuel cell for coupling to the photovoltaic generators

    International Nuclear Information System (INIS)

    Rabih, S.

    2008-10-01

    A response to concerns raised by an energy mix which mainly consists of exhaustible fossil fuels harmful to the environment is to gradually substitute them by renewable energy sources, including solar or wind power. However, these intermittent flow energies set a recovery problem. They are often the source of electricity which inherits their fluctuations, which requires a transport network and which is an energy carrier not easy to store. In this context hydrogen synthesized from this renewable electricity, storing, it is considered as a stock carrier promising for the future. Various components and electrochemical processes are associated with this perspective: electrolysers, fuel cells, associations of these two functions combined in the system or integrated into a unitised reversible component. Our work is set in this perspective. It contributed to the development of advanced models of electrochemical components of electrolyser or fuel cells type, integrating reversibility for the study of their coupling to the photovoltaic generators. The models developed following a unified energetic approach use bond graph representation. After an analysis of the energy context, a state of the art of electrochemical components coupling hydrogen and electricity is presented, particularly on electrolysers and regenerative or unitised reversible fuel cells. Then, after a reminder of the principles of the Bond Graph representation, we exploit this formalism to develop an energetic model of a reversible component 'electrolyser and / or fuel cell' representative at macroscopic level of conversion reaction and dissipation phenomena, coupled in chemical, thermodynamic, electrical, thermal and fluid fields. Tests for characterization and validation conducted on small experimental devices are then described. They can illustrate the influence of operating parameters on the performance of these components. Finally, the Bond Graph model is used to study the modularity of components

  18. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere V. On the Nature of the Corona

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The E-corona is the site of numerous emission lines associated with high ionization states (i.e. FeXIV-FeXXV. Modern gaseous models of the Sun require that these states are produced by atomic irradiation, requiring the sequential removal of electrons to infinity, without an associated electron acceptor. This can lead to computed temperatures in the corona which are unrealistic (i.e. ∼30–100 MK contrasted to solar core values of ∼16 MK. In order to understand the emission lines of the E-corona, it is vital to recognize that they are superimposed upon the K-corona, which produces a continuous spectrum, devoid of Fraunhofer lines, arising from this same region of the Sun. It has been advanced that the K-corona harbors self-luminous condensed matter (Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere II. Continuous Emission and Condensed Matter Within the Corona. Progr. Phys., 2013, v. 3, L8–L10; Robitaille P.M. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere III. Importance of Continuous Emission Spectra from Flares, Coronal Mass Ejections, Prominences, and Other Coronal Structures. Progr. Phys., 2013, v. 3, L11–L14. Condensed matter can possess elevated electron affinities which may strip nearby atoms of their electrons. Such a scenario accounts for the high ionization states observed in the corona: condensed matter acts to harness electrons, ensuring the electrical neutrality of the Sun, despite the flow of electrons and ions in the solar winds. Elevated ionization states reflect the presence of materials with high electron affinities in the corona, which is likely to be a form of metallic hydrogen, and does not translate into elevated temperatures in this region of the solar atmosphere. As a result, the many mechanisms advanced to account for coronal heating in the gaseous models of the Sun

  19. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  20. Modelling auto ignition of hydrogen in a jet ignition pre-chamber

    Energy Technology Data Exchange (ETDEWEB)

    Boretti, Alberto A. [School of Science and Engineering, University of Ballarat, PO Box 663, Ballarat, Victoria 3353 (Australia)

    2010-04-15

    Spark-less jet ignition pre-chambers are enablers of high efficiencies and load control by quantity of fuel injected when coupled with direct injection of main chamber fuel, thus permitting always lean burn bulk stratified combustion. Towards the end of the compression stroke, a small quantity of hydrogen is injected within the pre-chamber, where it mixes with the air entering from the main chamber. Combustion of the air and fuel mixture then starts within the pre-chamber because of the high temperature of the hot glow plug, and then jets of partially combusted hot gases enter the main chamber igniting there in the bulk, over multiple ignition points, lean stratified mixtures of air and fuel. The paper describes the operation of the spark-less jet ignition pre-chamber coupling CFD and CAE engine simulations to allow component selection and engine performance evaluation. (author)

  1. Natural Frequency Testing and Model Correlation of Rocket Engine Structures in Liquid Hydrogen - Phase I, Cantilever Beam

    Science.gov (United States)

    Brown, Andrew M.; DeLessio, Jennifer L.; Jacobs, Preston W.

    2018-01-01

    Many structures in the launch vehicle industry operate in liquid hydrogen (LH2), from the hydrogen fuel tanks through the ducts and valves and into the pump sides of the turbopumps. Calculating the structural dynamic response of these structures is critical for successful qualification of this hardware, but accurate knowledge of the natural frequencies is based entirely on numerical or analytical predictions of frequency reduction due to the added-fluid-mass effect because testing in LH2 has always been considered too difficult and dangerous. This fluid effect is predicted to be approximately 4-5% using analytical formulations for simple cantilever beams. As part of a comprehensive test/analysis program to more accurately assess pump inducers operating in LH2, a series of frequency tests in LH2 were performed at NASA/Marshall Space Flight Center's unique cryogenic test facility. These frequency tests are coupled with modal tests in air and water to provide critical information not only on the mass effect of LH2, but also the cryogenic temperature effect on Young's Modulus for which the data is not extensive. The authors are unaware of any other reported natural frequency testing in this media. In addition to the inducer, a simple cantilever beam was also tested in the tank to provide a more easily modeled geometry as well as one that has an analytical solution for the mass effect. This data will prove critical for accurate structural dynamic analysis of these structures, which operate in a highly-dynamic environment.

  2. Kinetic Models Study of Hydrogenation of Aromatic Hydrocarbons in Vacuum Gas Oil and Basrah Crude Oil Reaction

    Directory of Open Access Journals (Sweden)

    Muzher M. Ibraheem

    2013-05-01

    Full Text Available             The aim of this research is to study the kinetic reaction models for catalytic hydrogenation of aromatic content for Basrah crude oil (BCO and vacuum gas oil (VGO derived from Kirkuk crude oil which has the boiling point rang of (611-833K.            This work is performed using a hydrodesulphurization (HDS pilot plant unit located in AL-Basil Company. A commercial (HDS catalyst cobalt-molybdenum (Co-Mo supported in alumina (γ-Al2O3 is used in this work. The feed is supplied by North Refinery Company in Baiji. The reaction temperatures range is (600-675 K over liquid hourly space velocity (LHSV range of (0.7-2hr-1 and hydrogen pressure is 3 MPa with H2/oil ratio of 300 of Basrah Crude oil (BCO, while the corresponding conditions for vacuum gas oil (VGO are (583-643 K, (1.5-3.75 hr-1, 3.5 MPa and 250  respectively .            The results showed that the reaction kinetics is of second order for both types of feed. Activation energies are found to be 30.396, 38.479 kJ/mole for Basrah Crude Oil (BCO and Vacuum Gas Oil (VGO respectively.

  3. Improved continuum lowering calculations in screened hydrogenic model with l-splitting for high energy density systems

    Science.gov (United States)

    Ali, Amjad; Shabbir Naz, G.; Saleem Shahzad, M.; Kouser, R.; Aman-ur-Rehman; Nasim, M. H.

    2018-03-01

    The energy states of the bound electrons in high energy density systems (HEDS) are significantly affected due to the electric field of the neighboring ions. Due to this effect bound electrons require less energy to get themselves free and move into the continuum. This phenomenon of reduction in potential is termed as ionization potential depression (IPD) or the continuum lowering (CL). The foremost parameter to depict this change is the average charge state, therefore accurate modeling for CL is imperative in modeling atomic data for computation of radiative and thermodynamic properties of HEDS. In this paper, we present an improved model of CL in the screened hydrogenic model with l-splitting (SHML) proposed by G. Faussurier and C. Blancard, P. Renaudin [High Energy Density Physics 4 (2008) 114] and its effect on average charge state. We propose the level charge dependent calculation of CL potential energy and inclusion of exchange and correlation energy in SHML. By doing this, we made our model more relevant to HEDS and free from CL empirical parameter to the plasma environment. We have implemented both original and modified model of SHML in our code named OPASH and benchmark our results with experiments and other state-of-the-art simulation codes. We compared our results of average charge state for Carbon, Beryllium, Aluminum, Iron and Germanium against published literature and found a very reasonable agreement between them.

  4. 2D heat and mass transfer modeling of methane steam reforming for hydrogen production in a compact reformer

    International Nuclear Information System (INIS)

    Ni Meng

    2013-01-01

    Highlights: ► A heat and mass transfer model is developed for a compact reformer. ► Hydrogen production from methane steam reforming is simulated. ► Increasing temperature greatly increases the reaction rates at the inlet. ► Temperature in the downstream is increased at higher rate of heat supply. ► Larger permeability enhances gas flow and reaction rates in the catalyst layer. - Abstract: Compact reformers (CRs) are promising devices for efficient fuel processing. In CRs, a thin solid plate is sandwiched between two catalyst layers to enable efficient heat transfer from combustion duct to the reforming duct for fuel processing. In this study, a 2D heat and mass transfer model is developed to investigate the fundamental transport phenomenon and chemical reaction kinetics in a CR for hydrogen production by methane steam reforming (MSR). Both MSR reaction and water gas shift reaction (WGSR) are considered in the numerical model. Parametric simulations are performed to examine the effects of various structural/operating parameters, such as pore size, permeability, gas velocity, temperature, and rate of heat supply on the reformer performance. It is found that the reaction rates of MSR and WGSR are the highest at the inlet but decrease significantly along the reformer. Increasing the operating temperature raises the reaction rates at the inlet but shows very small influence in the downstream. For comparison, increasing the rate of heat supply raises the reaction rates in the downstream due to increased temperature. A high gas velocity and permeability facilitates gas transport in the porous structure thus enhances reaction rates in the downstream of the reformer.

  5. Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts.

    Science.gov (United States)

    Taylor, Martin J; Jiang, Li; Reichert, Joachim; Papageorgiou, Anthoula C; Beaumont, Simon K; Wilson, Karen; Lee, Adam F; Barth, Johannes V; Kyriakou, Georgios

    2017-04-20

    Furfural is a key bioderived platform chemical whose reactivity under hydrogen atmospheres affords diverse chemical intermediates. Here, temperature-programmed reaction spectrometry and complementary scanning tunneling microscopy (STM) are employed to investigate furfural adsorption and reactivity over a Pt(111) model catalyst. Furfural decarbonylation to furan is highly sensitive to reaction conditions, in particular, surface crowding and associated changes in the adsorption geometry: furfural adopts a planar geometry on clean Pt(111) at low coverage, tilting at higher coverage to form a densely packed furfural adlayer. This switch in adsorption geometry strongly influences product selectivity. STM reveals the formation of hydrogen-bonded networks for planar furfural, which favor decarbonylation on clean Pt(111) and hydrogenolysis in the presence of coadsorbed hydrogen. Preadsorbed hydrogen promotes furfural hydrogenation to furfuryl alcohol and its subsequent hydrogenolysis to methyl furan, while suppressing residual surface carbon. Furfural chemistry over Pt is markedly different from that over Pd, with weaker adsorption over the former affording a simpler product distribution than the latter; Pd catalyzes a wider range of chemistry, including ring-opening to form propene. Insight into the role of molecular orientation in controlling product selectivity will guide the design and operation of more selective and stable Pt catalysts for furfural hydrogenation.

  6. Study of hydrogen-molecule guests in type II clathrate hydrates using a force-matched potential model parameterised from ab initio molecular dynamics

    Science.gov (United States)

    Burnham, Christian J.; Futera, Zdenek; English, Niall J.

    2018-03-01

    The force-matching method has been applied to parameterise an empirical potential model for water-water and water-hydrogen intermolecular interactions for use in clathrate-hydrate simulations containing hydrogen guest molecules. The underlying reference simulations constituted ab initio molecular dynamics (AIMD) of clathrate hydrates with various occupations of hydrogen-molecule guests. It is shown that the resultant model is able to reproduce AIMD-derived free-energy curves for the movement of a tagged hydrogen molecule between the water cages that make up the clathrate, thus giving us confidence in the model. Furthermore, with the aid of an umbrella-sampling algorithm, we calculate barrier heights for the force-matched model, yielding the free-energy barrier for a tagged molecule to move between cages. The barrier heights are reasonably large, being on the order of 30 kJ/mol, and are consistent with our previous studies with empirical models [C. J. Burnham and N. J. English, J. Phys. Chem. C 120, 16561 (2016) and C. J. Burnham et al., Phys. Chem. Chem. Phys. 19, 717 (2017)]. Our results are in opposition to the literature, which claims that this system may have very low barrier heights. We also compare results to that using the more ad hoc empirical model of Alavi et al. [J. Chem. Phys. 123, 024507 (2005)] and find that this model does very well when judged against the force-matched and ab initio simulation data.

  7. Quantum mechanics models of the methanol dimer: OH⋯O hydrogen bonds of β-d-glucose moieties from crystallographic data.

    Science.gov (United States)

    Cintrón, Michael Santiago; Johnson, Glenn P; French, Alfred D

    2017-04-18

    The interaction of two methanol molecules, simplified models of carbohydrates and cellulose, was examined using a variety of quantum mechanics (QM) levels of theory. Energy plots for hydrogen bonding distance (H⋯O) and angle (OH⋯O) were constructed. All but two experimental structures were located in stabilized areas on the vacuum phase energy plots. Each of the 399 models was analyzed with Bader's atoms-in-molecules (AIM) theory, which showed a widespread ability by the dimer models to form OH⋯O hydrogen bonds that have bond paths and Bond Critical Points. Continuum solvation calculations suggest that a portion of the energy-stabilized structures could occur in the presence of water. A survey of the Cambridge Structural Database (CSD) for all donor-acceptor interactions in β-D-glucose moieties examined the similarities and differences among the hydroxyl groups and acetal oxygen atoms that participate in hydrogen bonds. Comparable behavior was observed for the O2H, O3H, O4H, and O6H hydroxyls, acting either as acceptors or donors. Ring O atoms showed distinct hydrogen bonding behavior that favored mid-length hydrogen bonds. Published by Elsevier Ltd.

  8. Assessment of predictive models for the failure of titanium and ferrous alloys due to hydrogen effects. Report for the period of June 16 to September 15, 1981

    International Nuclear Information System (INIS)

    Archbold, T.F.; Bower, R.B.; Polonis, D.H.

    1982-04-01

    The 1977 version of the Simpson-Puls-Dutton model appears to be the most amenable with respect to utilizing known or readily estimated quantities. The Pardee-Paton model requires extensive calculations involving estimated quantities. Recent observations by Koike and Suzuki on vanadium support the general assumption that crack growth in hydride forming metals is determined by the rate of hydride formation, and their hydrogen atmosphere-displacive transformation model is of potential interest in explaining hydrogen embrittlement in ferrous alloys as well as hydride formers. The discontinuous nature of cracking due to hydrogen embrittlement appears to depend very strongly on localized stress intensities, thereby pointing to the role of microstructure in influencing crack initiation, fracture mode and crack path. The initiation of hydrogen induced failures over relatively short periods of time can be characterized with fair reliability using measurements of the threshold stress intensity. The experimental conditions for determining K/sub Th/ and ΔK/sub Th/ are designed to ensure plane strain conditions in most cases. Plane strain test conditions may be viewed as a conservative basis for predicting delayed failure. The physical configuration of nuclear waste canisters may involve elastic/plastic conditions rather than a state of plane strain, especially with thin-walled vessels. Under these conditions, alternative predictive tests may be considered, including COD and R-curve methods. The double cantilever beam technique employed by Boyer and Spurr on titanium alloys offers advantages for examining hydrogen induced delayed failure over long periods of time. 88 references

  9. Modelling in the experimental study of the hydrogen mixing with inner atmosphere of the safety containers of nuclear power plants in post LOCA conditions

    International Nuclear Information System (INIS)

    Fineschi, F.; Lanza, S.

    1979-01-01

    In light water nuclear power plants hydrogen releases from the pressure containment system may take place following a loss-of-coolant accident. In view of preparing technical safeguards aiming at the control of the flame propagation probability and of explosions, it is important to know the space-time distribytion of hydrogen concentrations in the safety containers. It is shown that an experimental study on a scale model is praticable only in the case when full turbulence conditions occur in the container and in the model. Then general aspects of a methodology capable to verify with a reasonable confiance degree the validity of the assumptions is illustrated

  10. The introduction of hydrogen bond and hydrophobicity effects into the rotational isomeric states model for conformational analysis of unfolded peptides

    Science.gov (United States)

    Engin, Ozge; Sayar, Mehmet; Erman, Burak

    2009-03-01

    Relative contributions of local and non-local interactions to the unfolded conformations of peptides are examined by using the rotational isomeric states model which is a Markov model based on pairwise interactions of torsion angles. The isomeric states of a residue are well described by the Ramachandran map of backbone torsion angles. The statistical weight matrices for the states are determined by molecular dynamics simulations applied to monopeptides and dipeptides. Conformational properties of tripeptides formed from combinations of alanine, valine, tyrosine and tryptophan are investigated based on the Markov model. Comparison with molecular dynamics simulation results on these tripeptides identifies the sequence-distant long-range interactions that are missing in the Markov model. These are essentially the hydrogen bond and hydrophobic interactions that are obtained between the first and the third residue of a tripeptide. A systematic correction is proposed for incorporating these long-range interactions into the rotational isomeric states model. Preliminary results suggest that the Markov assumption can be improved significantly by renormalizing the statistical weight matrices to include the effects of the long-range correlations.

  11. The introduction of hydrogen bond and hydrophobicity effects into the rotational isomeric states model for conformational analysis of unfolded peptides

    International Nuclear Information System (INIS)

    Engin, Ozge; Sayar, Mehmet; Erman, Burak

    2009-01-01

    Relative contributions of local and non-local interactions to the unfolded conformations of peptides are examined by using the rotational isomeric states model which is a Markov model based on pairwise interactions of torsion angles. The isomeric states of a residue are well described by the Ramachandran map of backbone torsion angles. The statistical weight matrices for the states are determined by molecular dynamics simulations applied to monopeptides and dipeptides. Conformational properties of tripeptides formed from combinations of alanine, valine, tyrosine and tryptophan are investigated based on the Markov model. Comparison with molecular dynamics simulation results on these tripeptides identifies the sequence-distant long-range interactions that are missing in the Markov model. These are essentially the hydrogen bond and hydrophobic interactions that are obtained between the first and the third residue of a tripeptide. A systematic correction is proposed for incorporating these long-range interactions into the rotational isomeric states model. Preliminary results suggest that the Markov assumption can be improved significantly by renormalizing the statistical weight matrices to include the effects of the long-range correlations

  12. Modeling liquid-vapor equilibria with an equation of state taking into account dipolar interactions and association by hydrogen bonding

    International Nuclear Information System (INIS)

    Perfetti, E.

    2006-11-01

    Modelling fluid-rock interactions as well as mixing and unmixing phenomena in geological processes requires robust equations of state (EOS) which must be applicable to systems containing water, gases over a broad range of temperatures and pressures. Cubic equations of state based on the Van der Waals theory (e. g. Soave-Redlich-Kwong or Peng-Robinson) allow simple modelling from the critical parameters of the studied fluid components. However, the accuracy of such equations becomes poor when water is a major component of the fluid since neither association trough hydrogen bonding nor dipolar interactions are accounted for. The Helmholtz energy of a fluid may be written as the sum of different energetic contributions by factorization of partition function. The model developed in this thesis for the pure H 2 O and H 2 S considers three contributions. The first contribution represents the reference Van der Waals fluid which is modelled by the SRK cubic EOS. The second contribution accounts for association through hydrogen bonding and is modelled by a term derived from Cubic Plus Association (CPA) theory. The third contribution corresponds to the dipolar interactions and is modelled by the Mean Spherical Approximation (MSA) theory. The resulting CPAMSA equation has six adjustable parameters, which three represent physical terms whose values are close to their experimental counterpart. This equation results in a better reproduction of the thermodynamic properties of pure water than obtained using the classical CPA equation along the vapour-liquid equilibrium. In addition, extrapolation to higher temperatures and pressure is satisfactory. Similarly, taking into account dipolar interactions together with the SRK cubic equation of state for calculating molar volume of H 2 S as a function of pressure and temperature results in a significant improvement compared to the SRK equation alone. Simple mixing rules between dipolar molecules are proposed to model the H 2 O-H 2 S

  13. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  14. Application of the nuclear liquid drop model to a negative hydrogen ion in the strong electric field of a laser

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Kornyushin, Y. [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)]. E-mail: yurik@vms.huji.ac.il

    2000-09-01

    The nuclear liquid drop model is applied to describe some basic properties of a negative hydrogen ion in the strong electric field of a laser. The equilibrium ionic size, energy and polarizability of the ion are calculated. Collective modes of the dipole oscillations are considered. A barrier which arises in a strong electric field is studied. The barrier vanishes at some large value of the electric field, which is defined as a critical value. The dependence of the critical field on frequency is studied. At frequencies {omega}{>=}({omega}{sub d}/2{sup 1/2}) ({omega}{sub d} is the frequency of the dipole oscillations of the electronic cloud relative to the nucleus) the barrier remains for any field. At high frequencies a 'stripping' mechanism for instability arises. At the resonant frequency a rather low amplitude of the electric field causes the 'stripping' instability. (author)

  15. Effect of Low Co-flow Air Velocity on Hydrogen-air Non-premixed Turbulent Flame Model

    Directory of Open Access Journals (Sweden)

    Noor Mohsin Jasim

    2017-08-01

    Full Text Available The aim of this paper is to provide information concerning the effect of low co-flow velocity on the turbulent diffusion flame for a simple type of combustor, a numerical simulated cases of turbulent diffusion hydrogen-air flame are performed. The combustion model used in this investigation is based on chemical equilibrium and kinetics to simplify the complexity of the chemical mechanism. Effects of increased co-flowing air velocity on temperature, velocity components (axial and radial, and reactants have been investigated numerically and examined. Numerical results for temperature are compared with the experimental data. The comparison offers a good agreement. All numerical simulations have been performed using the Computational Fluid Dynamics (CFD commercial code FLUENT. A comparison among the various co-flow air velocities, and their effects on flame behavior and temperature fields are presented.

  16. Influence of the concentration of borohydride towards hydrogen production and escape for borohydride oxidation reaction on Pt and Au electrodes - experimental and modelling insights

    Science.gov (United States)

    Olu, Pierre-Yves; Bonnefont, Antoine; Braesch, Guillaume; Martin, Vincent; Savinova, Elena R.; Chatenet, Marian

    2018-01-01

    The Borohydride Oxidation Reaction (BOR), the anode reaction in a Direct borohydride fuel cell (DBFC), is complex and still poorly understood, which impedes the development and deployment of the DBFC technology. In particular, no practical electrocatalyst is capable to prevent gaseous hydrogen generation and escape from its anode upon operation, which lowers the fuel-efficiency of the DBFC and raises safety issues in operation. The nature of the anode electrocatalysts strongly influences the hydrogen escape characteristics of the DBFC, which demonstrates how important it is to isolate the BOR mechanism in conditions relevant to DBFC operation. In this paper, from a selected literature review and BOR experiments performed in differential electrochemical mass spectrometry (DEMS) in a wide range of NaBH4 concentration (5-500 mM), a microkinetic model of the BOR for both Pt and Au surfaces is proposed; this model takes into account the hydrogen generation and escape.

  17. The tropospheric processing of acidic gases and hydrogen sulphide in volcanic gas plumes as inferred from field and model investigations

    Directory of Open Access Journals (Sweden)

    A. Aiuppa

    2007-01-01

    Full Text Available Improving the constraints on the atmospheric fate and depletion rates of acidic compounds persistently emitted by non-erupting (quiescent volcanoes is important for quantitatively predicting the environmental impact of volcanic gas plumes. Here, we present new experimental data coupled with modelling studies to investigate the chemical processing of acidic volcanogenic species during tropospheric dispersion. Diffusive tube samplers were deployed at Mount Etna, a very active open-conduit basaltic volcano in eastern Sicily, and Vulcano Island, a closed-conduit quiescent volcano in the Aeolian Islands (northern Sicily. Sulphur dioxide (SO2, hydrogen sulphide (H2S, hydrogen chloride (HCl and hydrogen fluoride (HF concentrations in the volcanic plumes (typically several minutes to a few hours old were repeatedly determined at distances from the summit vents ranging from 0.1 to ~10 km, and under different environmental conditions. At both volcanoes, acidic gas concentrations were found to decrease exponentially with distance from the summit vents (e.g., SO2 decreases from ~10 000 μg/m3at 0.1 km from Etna's vents down to ~7 μg/m3 at ~10 km distance, reflecting the atmospheric dilution of the plume within the acid gas-free background troposphere. Conversely, SO2/HCl, SO2/HF, and SO2/H2S ratios in the plume showed no systematic changes with plume aging, and fit source compositions within analytical error. Assuming that SO2 losses by reaction are small during short-range atmospheric transport within quiescent (ash-free volcanic plumes, our observations suggest that, for these short transport distances, atmospheric reactions for H2S and halogens are also negligible. The one-dimensional model MISTRA was used to simulate quantitatively the evolution of halogen and sulphur compounds in the plume of Mt. Etna. Model predictions support the hypothesis of minor HCl chemical processing during plume transport, at least in cloud-free conditions. Larger

  18. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  19. Model for H-, D- production by hydrogen backscattering from alkali and alkali/transition-metal surfaces

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Schneider, P.J.

    1980-01-01

    A model for H - , D - production by energetic particles reflecting from metal surfaces is discussed. The model employs the energy and angular distribution data derived from the Marlowe code. The model is applied to particles incident normally upon Cs, Ni, and Cs/Ni surfaces

  20. Complete direct method for electron-hydrogen scattering: Application to the collinear and Temkin-Poet models

    International Nuclear Information System (INIS)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2004-01-01

    We present an efficient generalization of the exterior complex scaling (ECS) method to extract discrete inelastic and ionization amplitudes for electron-impact scattering of atomic hydrogen. This fully quantal method is demonstrated over a range of energies for the collinear and Temkin-Poet models and near-threshold ionization is examined in detail for singlet and triplet scattering. Our numerical calculations for total ionization cross sections near threshold strongly support the classical threshold law of Wannier [Phys. Rev. 90, 817 (1953)] (σ∝E 1.128±0.004 ) for the L=0 singlet collinear model and the semiclassical threshold law of Peterkop [J. Phys. B 16, L587 (1983)] (σ∝E 3.37±0.02 ) for the L=0 triplet collinear model, and are consistent with the semiclassical threshold law of Macek and Ihra [Phys. Rev. A 55, 2024 (1997)] (σ∝exp[(-6.87±0.01)E -1/6 ]) for the singlet Temkin-Poet model

  1. Modelling and simulation of the fuel cell energy source for the Hydro-Gen vehicle; Modelisation et simulation de la source d'energie a pile a combustible du vehicule Hydro-Gen

    Energy Technology Data Exchange (ETDEWEB)

    Schott, P.; Baurens, P. [CEA Grenoble, Dept. d' Etudes des Materiaux, DEM, 38 (France); Poirot, J.Ph. [PSA/DRIA/SEE, 78 - Velizy Villacoublay (France)

    2000-07-01

    A fuel cell generating set is a complex system in which the interactions between the different elements are chemical, hydraulic, thermal, mechanical and electric. The implementation and the optimization of such a system cannot be limited to the study of each element; the system analysis and then the modelling and the dynamical simulation are necessarily required. The bond-graphs theory is particularly well adapted to the multiplicity of the involved phenomena. In this article is presented the modelling used for the generating set of the Hydro-Gen plan. Some representative examples are given as well as the first qualitative results of the simulations. (O.M.)

  2. Design and synthesis of vanadium hydrazide gels for Kubas-type hydrogen adsorption: a new class of hydrogen storage materials.

    Science.gov (United States)

    Hoang, Tuan K A; Webb, Michael I; Mai, Hung V; Hamaed, Ahmad; Walsby, Charles J; Trudeau, Michel; Antonelli, David M

    2010-08-25

    In this paper we demonstrate that the Kubas interaction, a nondissociative form of weak hydrogen chemisorption with binding enthalpies in the ideal 20-30 kJ/mol range for room-temperature hydrogen storage, can be exploited in the design of a new class of hydrogen storage materials which avoid the shortcomings of hydrides and physisorpion materials. This was accomplished through the synthesis of novel vanadium hydrazide gels that use low-coordinate V centers as the principal Kubas H(2) binding sites with only a negligible contribution from physisorption. Materials were synthesized at vanadium-to-hydrazine ratios of 4:3, 1:1, 1:1.5, and 1:2 and characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption, elemental analysis, infrared spectroscopy, and electron paramagnetic resonance spectroscopy. The material with the highest capacity possesses an excess reversible storage of 4.04 wt % at 77 K and 85 bar, corresponding to a true volumetric adsorption of 80 kg H(2)/m(3) and an excess volumetric adsorption of 60.01 kg/m(3). These values are in the range of the ultimate U.S. Department of Energy goal for volumetric density (70 kg/m(3)) as well as the best physisorption material studied to date (49 kg H(2)/m(3) for MOF-177). This material also displays a surprisingly high volumetric density of 23.2 kg H(2)/m(3) at room temperature and 85 bar--roughly 3 times higher than that of compressed gas and approaching the DOE 2010 goal of 28 kg H(2)/m(3). These materials possess linear isotherms and enthalpies that rise on coverage and have little or no kinetic barrier to adsorption or desorption. In a practical system these materials would use pressure instead of temperature as a toggle and can thus be used in compressed gas tanks, currently employed in many hydrogen test vehicles, to dramatically increase the amount of hydrogen stored and therefore the range of any vehicle.

  3. Modeling low-temperature serpentinization reactions to estimate molecular hydrogen production with implications for potential microbial life on Saturn's moon Enceladus.

    Science.gov (United States)

    Zwicker, Jennifer; Smrzka, Daniel; Taubner, Ruth-Sophie; Bach, Wolfgang; Rittmann, Simon; Schleper, Christa; Peckmann, Jörn

    2017-04-01

    Serpentinization of ultramafic rocks attracts much interest in research on the origin of life on Earth and the search for life on extraterrestrial bodies including icy moons like Enceladus. Serpentinization on Earth occurs in peridotite-hosted systems at slow-spreading mid-ocean ridges, and produces large amounts of molecular hydrogen and methane. These reduced compounds can be utilized by diverse chemosynthetic microbial consortia as a metabolic energy source. Although many hydrothermal vents emit hot and acidic fluids today, it is more likely that life originated in the Archean at sites producing much cooler and more alkaline fluids that allowed for the synthesis and stability of essential organic molecules necessary for life. Therefore, a detailed understanding of water-rock interaction processes during low-temperature serpentinization is of crucial importance in assessing the life-sustaining potential of these environments. In the course of serpentinization, the metasomatic hydration of olivine and pyroxene produces various minerals including serpentine minerals, magnetite, brucite, and carbonates. Hydrogen production only occurs if ferrous iron within iron-bearing minerals is oxidized and incorporated as ferric iron into magnetite. The PHREEQC code was used to model the pH- and temperature-dependent dissolution of olivine and pyroxene to form serpentine, magnetite and hydrogen under pressure and temperature conditions that may exist on Saturn's icy moon Enceladus. Various model setups at 25 and 50°C were run to assess the influence of environmental parameters on hydrogen production. The results reveal that hydrogen production rates depend on the composition of the initial mineral assemblage and temperature. The current assumption is that there is a gaseous phase between Enceladus' ice sheet and subsurface ocean. To test various scenarios, model runs were conducted with and without the presence of a gas phase. The model results show that hydrogen production is

  4. Global sensitivity analysis of GEOS-Chem modeled ozone and hydrogen oxides during the INTEX campaigns

    Directory of Open Access Journals (Sweden)

    K. E. Christian

    2018-02-01

    Full Text Available Making sense of modeled atmospheric composition requires not only comparison to in situ measurements but also knowing and quantifying the sensitivity of the model to its input factors. Using a global sensitivity method involving the simultaneous perturbation of many chemical transport model input factors, we find the model uncertainty for ozone (O3, hydroxyl radical (OH, and hydroperoxyl radical (HO2 mixing ratios, and apportion this uncertainty to specific model inputs for the DC-8 flight tracks corresponding to the NASA Intercontinental Chemical Transport Experiment (INTEX campaigns of 2004 and 2006. In general, when uncertainties in modeled and measured quantities are accounted for, we find agreement between modeled and measured oxidant mixing ratios with the exception of ozone during the Houston flights of the INTEX-B campaign and HO2 for the flights over the northernmost Pacific Ocean during INTEX-B. For ozone and OH, modeled mixing ratios were most sensitive to a bevy of emissions, notably lightning NOx, various surface NOx sources, and isoprene. HO2 mixing ratios were most sensitive to CO and isoprene emissions as well as the aerosol uptake of HO2. With ozone and OH being generally overpredicted by the model, we find better agreement between modeled and measured vertical profiles when reducing NOx emissions from surface as well as lightning sources.

  5. Hydrogenation of Levulinic Acid over Nickel Catalysts Supported on Aluminum Oxide to Prepare γ-Valerolactone

    Directory of Open Access Journals (Sweden)

    Jie Fu

    2015-12-01

    Full Text Available Four types of nickel catalysts supported on aluminum oxide (Ni/Al2O3 with different nickel loadings were synthesized using the co-precipitation method and were used for the hydrogenation of levulinic acid (LA to prepare γ-valerolactone (GVL. The synthesized Ni/Al2O3 catalysts exhibited excellent catalytic activity in dioxane, and the activity of the catalysts was excellent even after being used four times in dioxane. The catalytic activity in dioxane as a solvent was found to be superior to the activity in water. Nitrogen physisorption, X-ray diffraction, and transmission electron microscopy were employed to characterize the fresh and used catalysts. The effects of the nickel loading, temperature, hydrogen pressure, and substrate/catalyst ratio on the catalytic activity were investigated.

  6. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    Science.gov (United States)

    Arslan, C.; Sattar, A.; Ji, C.; Sattar, S.; Yousaf, K.; Hashim, S.

    2015-11-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste. The maximum cumulative bio-hydrogen production of 650 mL was obtained from noodle waste under thermophilic temperature condition. Most of the production was observed during the first 48 h of incubation, which continued until 72 h of incubation. The decline in pH during this interval was 4.3 and 4.4 from a starting value of 7 under mesophilic and thermophilic conditions, respectively. Most of the glucose consumption was also observed during 72 h of incubation and the maximum consumption was observed during the first 24 h, which was the same duration where the maximum pH drop occurred. The maximum hydrogen yields of 82.47 mL VS-1, 131.38 mL COD-1, and 44.90 mL glucose-1 were obtained from thermophilic food waste, thermophilic noodle waste and mesophilic rice waste, respectively. The production of volatile fatty acids increased with an increase in time and temperature in food waste and noodle waste reactors whereas they decreased with temperature in rice waste reactors. The statistical modelling returned good results with high values of coefficient of determination (R2) for each waste type and 3-D response surface plots developed by using models developed. These plots developed a better understanding regarding the impact of temperature and incubation time on bio-hydrogen production trend, glucose consumption during incubation and volatile fatty acids production.

  7. Modeling and Simulation of the Hydrogenation of α-Methylstyrene on Catalytically Active Metal Foams as Tubular Reactor Packing

    Directory of Open Access Journals (Sweden)

    Farzad Lali

    2016-01-01

    Full Text Available This work presents a one-dimensional reactor model for a tubular reactor packed with a catalytically active foam packing with a pore density of 30 PPI in cocurrent upward flow in the example of hydrogenation reaction of α-methylstyrene to cumene. This model includes material, enthalpy, and momentum balances as well as continuity equations. The model was solved within the parameter space applied for experimental studies under assumption of a bubbly flow. The method of orthogonal collocation on finite elements was applied. For isothermal and polytropic processes and steady state conditions, axial profiles for concentration, temperature, fluid velocities, pressure, and liquid holdup were computed and the conversions for various gas and liquid flow rates were validated with experimental results. The obtained results were also compared in terms of space time yield and catalytic activity with experimental results and stirred tank and also with random packed bed reactor. The comparison shows that the application of solid foams as reactor packing is advantageous compared to the monolithic honeycombs and random packed beds.

  8. Non-impact modeling of electron broadening of hydrogen spectral lines in dense but relatively cold plasmas

    International Nuclear Information System (INIS)

    Ferri, S.; Buescher, S.; Wrubel, Th.; Kunze, H.-J.; Calisti, A.; Stamm, R.; Talin, B.

    2001-01-01

    The standard static-ion/impact-electron theory of line broadening is assessed with calculations of hydrogen lines over a broad range of plasma conditions. In most cases, discrepancies between results from theory and experiments are explained by the neglect of ion-dynamics effects. Nevertheless, recent experiments involving high density but low temperature plasmas indicate that ion-dynamics/impact-electron models may seriously overestimate the broadening for such conditions. We show that the observed discrepancies are not due to the ion modeling but due to the impact approximation of the electrons in the Original Frequency Fluctuation Model (FFM). This situation arises for plasma conditions where the interactions with the electrons are a major broadening mechanism and quasi-static, i.e. non-binary, electron effects are important. An alternative approach to a binary collision operator is therefore proposed by means of the FFM code generalized to the two components (ions and electrons) of the plasma. Accurate simulations accounting for the electron plus ion field dynamics have been used to corroborate the FFM as applied to both ion and electron perturbers, and good agreement is found with recent experiments on H α and P α for dense but relatively cold plasmas

  9. On the Scattering of the Electron off the Hydrogen Atom and the Helium Ion Below and Above the Ionization Threshold: Temkin–Poet Model

    International Nuclear Information System (INIS)

    Yarevsky, E.; Yakovlev, S. L.; Volkov, M. V.; Elander, N.

    2014-01-01

    We generalize here the splitting approach to the long range (Coulomb) interaction for the three body scattering problem. With this approach, the exterior complex rotation technique can be applied for systems with asymptotic Coulomb interaction. We illustrate the method with calculations of the electron scattering on the hydrogen atom and positive helium ion in the frame of the Temkin–Poet model. (author)

  10. On the Scattering of the Electron off the Hydrogen Atom and the Helium Ion Below and Above the Ionization Threshold: Temkin-Poet Model

    Science.gov (United States)

    Yarevsky, E.; Yakovlev, S. L.; Elander, N.; Volkov, M. V.

    2014-08-01

    We generalize here the splitting approach to the long range (Coulomb) interaction for the three body scattering problem. With this approach, the exterior complex rotation technique can be applied for systems with asymptotic Coulomb interaction. We illustrate the method with calculations of the electron scattering on the hydrogen atom and positive helium ion in the frame of the Temkin-Poet model.

  11. A three-site Langmuir adsorption model to elucidate the temperature, pressure, and support dependence of the hydrogen coverage on supported Pt particles

    NARCIS (Netherlands)

    Ji, Y.; Koot, V.; van der Eerden, A.M.J.; Weckhuysen, B.M.; Koningsberger, D.C.; Ramaker, D.E.

    2007-01-01

    The three-site adsorption model, previously developed to describe H adsorption on small Pt particles, was used to gain insight into dependence of hydrogen coverage on temperature, pressure, and support ionicity. The three sites, in order of decreasing PtH bond strength, involve H in an atop, a

  12. Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts

    OpenAIRE

    Taylor, Martin J.; Jiang, Li; Reichert, Joachim; Papageorgiou, Anthoula C.; Beaumont, Simon K.; Wilson, Karen; Lee, Adam F.; Barth, Johannes V.; Kyriakou, Georgios

    2017-01-01

    Furfural is a key bioderived platform chemical whose reactivity under hydrogen atmospheres affords diverse chemical intermediates. Here, temperature-programmed reaction spectrometry and complementary scanning tunneling microscopy (STM) are employed to investigate furfural adsorption and reactivity over a Pt(111) model catalyst. Furfural decarbonylation to furan is highly sensitive to reaction conditions, in particular, surface crowding and associated changes in the adsorption geometry: furfur...

  13. The study of a hydrological model and its parameters using data on the distribution of hydrogen isotopes

    International Nuclear Information System (INIS)

    Miyamoto, Kiriko

    1996-01-01

    This work focuses on the hydrogen isotopic study of water for the purpose of improving environmental transfer models and parameters with regard to radionuclides. Fallout tritium and the natural deuterium in environmental water were used as natural tracers to investigate the local terrestrial hydrological cycle in Rokkasho Village. From 1991, samples of groundwater, river water and lake/pond water were collected in the vill