WorldWideScience

Sample records for modelling host retinal

  1. Progressive outer retinal necrosis-like retinitis in immunocompetent hosts.

    Science.gov (United States)

    Chawla, Rohan; Tripathy, Koushik; Gogia, Varun; Venkatesh, Pradeep

    2016-08-10

    We describe two young immunocompetent women presenting with bilateral retinitis with outer retinal necrosis involving posterior pole with centrifugal spread and multifocal lesions simulating progressive outer retinal necrosis (PORN) like retinitis. Serology was negative for HIV and CD4 counts were normal; however, both women were on oral steroids at presentation for suspected autoimmune chorioretinitis. The retinitis in both eyes responded well to oral valaciclovir therapy. However, the eye with the more fulminant involvement developed retinal detachment with a loss of vision. Retinal atrophy was seen in the less involved eye with preservation of vision. Through these cases, we aim to describe a unique evolution of PORN-like retinitis in immunocompetent women, which was probably aggravated by a short-term immunosuppression secondary to oral steroids. 2016 BMJ Publishing Group Ltd.

  2. Retinal Cell Degeneration in Animal Models

    Directory of Open Access Journals (Sweden)

    Masayuki Niwa

    2016-01-01

    Full Text Available The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced, autoimmune (experimental autoimmune encephalomyelitis, mechanical stress (optic nerve crush-induced, light-induced and ischemia (transient retinal ischemia-induced. The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage.

  3. Neonatal disease environment limits the efficacy of retinal transplantation in the LCA8 mouse model

    OpenAIRE

    Cho, Seo-Hee; Song, Ji Yun; Shin, Jinyeon; Kim, Seonhee

    2016-01-01

    Background Mutations of Crb1 gene cause irreversible and incurable visual impairment in humans. This study aims to use an LCA8-like mouse model to identify host-mediated responses that might interfere with survival, retinal integration and differentiation of grafted cells during neonatal cell therapy. Methods Mixed retinal donor cells (1?~?2???104) isolated from neural retinas of neonatal eGFP transgenic mice were injected into the subretinal space of LCA8-like model neonatal mice. Markers of...

  4. The Drosophila melanogaster host model

    Science.gov (United States)

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  5. The Drosophila melanogaster host model

    Directory of Open Access Journals (Sweden)

    Christina O. Igboin

    2012-02-01

    Full Text Available The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  6. The Drosophila melanogaster host model.

    Science.gov (United States)

    Igboin, Christina O; Griffen, Ann L; Leys, Eugene J

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  7. Repetitive magnetic stimulation improves retinal function in a rat model of retinal dystrophy

    Science.gov (United States)

    Rotenstreich, Ygal; Tzameret, Adi; Levi, Nir; Kalish, Sapir; Sher, Ifat; Zangen, Avraham; Belkin, Michael

    2014-02-01

    Vision incapacitation and blindness associated with retinal dystrophies affect millions of people worldwide. Retinal degeneration is characterized by photoreceptor cell death and concomitant remodeling of remaining retinal cells. Repetitive Magnetic Stimulation (RMS) is a non-invasive technique that creates alternating magnetic fields by brief electric currents transmitted through an insulated coil. These magnetic field generate action potentials in neurons, and modulate the expression of neurotransmitter receptors, growth factors and transcription factors which mediate plasticity. This technology has been proven effective and safe in various psychiatric disorders. Here we determined the effect of RMS on retinal function in Royal College of Surgeons (RCS) rats, a model for retinal dystrophy. Four week-old RCS and control Spargue Dawley (SD) rats received sham or RMS treatment over the right eye (12 sessions on 4 weeks). RMS treatment at intensity of at 40% of the maximal output of a Rapid2 stimulator significantly increased the electroretinogram (ERG) b-wave responses by up to 6- or 10-fold in the left and right eye respectively, 3-5 weeks following end of treatment. RMS treatment at intensity of 25% of the maximal output did not significant effect b-wave responses following end of treatment with no adverse effect on ERG response or retinal structure of SD rats. Our findings suggest that RMS treatment induces delayed improvement of retinal functions and may induce plasticity in the retinal tissue. Furthermore, this non-invasive treatment may possibly be used in the future as a primary or adjuvant treatment for retinal dystrophy.

  8. Protection of visual functions by human neural progenitors in a rat model of retinal disease.

    Directory of Open Access Journals (Sweden)

    David M Gamm

    2007-03-01

    Full Text Available A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat.Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90-100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed.Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest potential mechanisms underlying their effect in

  9. Changes in Retinal Function and Cellular Remodeling Following Experimental Retinal Detachment in a Rabbit Model

    Directory of Open Access Journals (Sweden)

    Tilda Barliya

    2017-01-01

    Full Text Available Purpose. To explore functional electroretinographic (ERG changes and associated cellular remodeling following experimental retinal detachment in a rabbit model. Methods. Retinal detachment was created in ten rabbits by injecting 0.1 ml balanced salt solution under the retina. Fundus imaging was performed 0, 3, 7, 14, and 21 days postoperatively. ERGs were recorded pre- and 7 and 21 days postoperatively. Eyes were harvested on day 21 and evaluated immunohistochemically (IHC for remodeling of second- and third-order neurons. Results. Retinal reattachment occurred within two weeks following surgery. No attenuation was observed in the photopic or scotopic a- and b-waves. A secondary wavefront on the descending slope of the scotopic b-wave was the only ERG result that was attenuated in detached retinas. IHC demonstrated anatomical changes in both ON and OFF bipolar cells. Bassoon staining was observed in the remodeled dendrites. Amacrine and horizontal cells did not alter, but Muller cells were clearly reactive with marked extension. Conclusion. Retinal detachment and reattachment were associated with functional and anatomical changes. Exploring the significance of the secondary scotopic wavefront and its association with the remodeling of 2nd- and 3rd-order neurons will shade more light on functional changes and recovery of the retina.

  10. A chick model of retinal detachment: cone rich and novel.

    Directory of Open Access Journals (Sweden)

    Colleen M Cebulla

    Full Text Available Development of retinal detachment models in small animals can be difficult and expensive. Here we create and characterize a novel, cone-rich retinal detachment (RD model in the chick.Retinal detachments were created in chicks between postnatal days 7 and 21 by subretinal injections of either saline (SA or hyaluronic acid (HA. Injections were performed through a dilated pupil with observation via surgical microscope, using the fellow eye as a control. Immunohistochemical analyses were performed at days 1, 3, 7, 10 and 14 after retinal detachment to evaluate the cellular responses of photoreceptors, Müller glia, microglia and nonastrocytic inner retinal glia (NIRG. Cell proliferation was detected with bromodeoxyuridine (BrdU-incorporation and by the expression of proliferating cell nuclear antigen (PCNA. Cell death was detected with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL. As in mammalian models of RD, there is shortening of photoreceptor outer segments and mis-trafficking of photoreceptor opsins in areas of RD. Photoreceptor cell death was maximal 1 day after RD, but continued until 14 days after RD. Müller glia up-regulated glial fibriliary acidic protein (GFAP, proliferated, showed interkinetic nuclear migration, and migrated to the subretinal space in areas of detachment. Microglia became reactive; they up-regulated CD45, acquired amoeboid morphology, and migrated toward outer retina in areas of RD. Reactive NIRG cells accumulated in detached areas.Subretinal injections of SA or HA in the chick eye successfully produced retinal detachments and cellular responses similar to those seen in standard mammalian models. Given the relatively large eye size, and considering the low cost, the chick model of RD offers advantages for high-throughput studies.

  11. Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion.

    Directory of Open Access Journals (Sweden)

    Andreas Ebneter

    Full Text Available Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001 compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001. Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions.

  12. Astrocytes and Müller cells changes during retinal degeneration in a transgenic rat model of retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Laura eFernández-Sánchez

    2015-12-01

    Full Text Available Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer of P23H versus SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina.

  13. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa

    Science.gov (United States)

    Fernández-Sánchez, Laura; Lax, Pedro; Campello, Laura; Pinilla, Isabel; Cuenca, Nicolás

    2015-01-01

    Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina. PMID:26733810

  14. Modeling of corneal and retinal pharmacokinetics after periocular drug administration.

    Science.gov (United States)

    Amrite, Aniruddha C; Edelhauser, Henry F; Kompella, Uday B

    2008-01-01

    To develop pharmacokinetics models to describe the disposition of small lipophilic molecules in the cornea and retina after periocular (subconjunctival or posterior subconjunctival) administration. Compartmental pharmacokinetics analysis was performed on the corneal and retinal data obtained after periocular administration of 3 mg of celecoxib (a selective COX-2 inhibitor) to Brown Norway (BN) rats. Berkeley Madonna, a differential and difference equation-based modeling software, was used for the pharmacokinetics modeling. The data were fit to different compartment models with first-order input and disposition, and the best fit was selected on the basis of coefficient of regression and Akaike information criteria (AIC). The models were validated by using the celecoxib data from a prior study in Sprague-Dawley (SD) rats. The corneal model was also fit to the corneal data for prednisolone at a dose of 2.61 mg in albino rabbits, and the model was validated at two other doses of prednisolone (0.261 and 26.1 mg) in these rabbits. Model simulations were performed with the finalized model to understand the effect of formulation on corneal and retinal pharmacokinetics after periocular administration. Celecoxib kinetics in the BN rat cornea can be described by a two-compartment (periocular space and cornea, with a dissolution step for periocular formulation) model, with parallel elimination from the cornea and the periocular space. The inclusion of a distribution compartment or a dissolution step for celecoxib suspension did not lead to an overall improvement in the corneal data fit compared with the two-compartment model. The more important parameter for enhanced fit and explaining the apparent lack of an increase phase in the corneal levels is the inclusion of the initial leak-back of the dose from the periocular space into the precorneal area. The predicted celecoxib concentrations from this model also showed very good correlation (r = 0.99) with the observed values in

  15. Accelerated oxygen-induced retinopathy is a reliable model of ischemia-induced retinal neovascularization.

    Science.gov (United States)

    Villacampa, Pilar; Menger, Katja E; Abelleira, Laura; Ribeiro, Joana; Duran, Yanai; Smith, Alexander J; Ali, Robin R; Luhmann, Ulrich F; Bainbridge, James W B

    2017-01-01

    Retinal ischemia and pathological angiogenesis cause severe impairment of sight. Oxygen-induced retinopathy (OIR) in young mice is widely used as a model to investigate the underlying pathological mechanisms and develop therapeutic interventions. We compared directly the conventional OIR model (exposure to 75% O2 from postnatal day (P) 7 to P12) with an alternative, accelerated version (85% O2 from P8 to P11). We found that accelerated OIR induces similar pre-retinal neovascularization but greater retinal vascular regression that recovers more rapidly. The extent of retinal gliosis is similar but neuroretinal function, as measured by electroretinography, is better maintained in the accelerated model. We found no systemic or maternal morbidity in either model. Accelerated OIR offers a safe, reliable and more rapid alternative model in which pre-retinal neovascularization is similar but retinal vascular regression is greater.

  16. Gene therapy in animal models of autosomal dominant retinitis pigmentosa

    Science.gov (United States)

    Rossmiller, Brian; Mao, Haoyu

    2012-01-01

    Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success. PMID:23077406

  17. In Vivo Imaging of Retinal Hypoxia in a Model of Oxygen-Induced Retinopathy.

    Science.gov (United States)

    Uddin, Md Imam; Evans, Stephanie M; Craft, Jason R; Capozzi, Megan E; McCollum, Gary W; Yang, Rong; Marnett, Lawrence J; Uddin, Md Jashim; Jayagopal, Ashwath; Penn, John S

    2016-08-05

    Ischemia-induced hypoxia elicits retinal neovascularization and is a major component of several blinding retinopathies such as retinopathy of prematurity (ROP), diabetic retinopathy (DR) and retinal vein occlusion (RVO). Currently, noninvasive imaging techniques capable of detecting and monitoring retinal hypoxia in living systems do not exist. Such techniques would greatly clarify the role of hypoxia in experimental and human retinal neovascular pathogenesis. In this study, we developed and characterized HYPOX-4, a fluorescence-imaging probe capable of detecting retinal-hypoxia in living animals. HYPOX-4 dependent in vivo and ex vivo imaging of hypoxia was tested in a mouse model of oxygen-induced retinopathy (OIR). Predicted patterns of retinal hypoxia were imaged by HYPOX-4 dependent fluorescence activity in this animal model. In retinal cells and mouse retinal tissue, pimonidazole-adduct immunostaining confirmed the hypoxia selectivity of HYPOX-4. HYPOX-4 had no effect on retinal cell proliferation as indicated by BrdU assay and exhibited no acute toxicity in retinal tissue as indicated by TUNEL assay and electroretinography (ERG) analysis. Therefore, HYPOX-4 could potentially serve as the basis for in vivo fluorescence-based hypoxia-imaging techniques, providing a tool for investigators to understand the pathogenesis of ischemic retinopathies and for physicians to address unmet clinical needs.

  18. Suppressing thyroid hormone signaling preserves cone photoreceptors in mouse models of retinal degeneration

    OpenAIRE

    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie; Redmond, T. Michael; Baehr, Wolfgang; Ding, Xi-Qin

    2014-01-01

    Photoreceptors degenerate in a wide array of hereditary retinal diseases and age-related macular degeneration. There is currently no treatment available for retinal degenerations. While outnumbered roughly 20:1 by rods in the human retina, it is the cones that mediate color vision and visual acuity, and their survival is critical for vision. In this communication, we investigate whether thyroid hormone (TH) signaling affects cone viability in retinal degeneration mouse models. TH signaling is...

  19. Vision deficits precede structural losses in a mouse model of mitochondrial dysfunction and progressive retinal degeneration.

    Science.gov (United States)

    Laliberté, Alex M; MacPherson, Thomas C; Micks, Taft; Yan, Alex; Hill, Kathleen A

    2011-12-01

    Current animal models of retinal disease often involve the rapid development of a retinal disease phenotype; however, this is at odds with age-related diseases that take many years to manifest clinical symptoms. The present study was performed to examine an apoptosis-inducing factor (Aif)-deficient model, the harlequin carrier mouse (X(hq)X), and determine how mitochondrial dysfunction and subsequent accelerated aging affect the function and structure of the mouse retina. Vision and eye structure for cohorts of 6 X(hq)X and 6 wild type mice at 3, 11, and 15 months of age were studied using in vivo electroretinography (ERG), and optical coherence tomography (OCT). Retinal superoxide levels were determined in situ using dihydroethidium (DHE) histochemistry. Retinal cell counts were quantified post mortem using hematoxylin and eosin (H&E) staining. ERG analysis of X(hq)X retinal function indicated a reduction in b-wave amplitude significant at 3 months of age (p retina (p retina may account for the early and significant reduction in retinal function. This remodeling of retinal neurochemistry in response to stress may be a relevant mechanism in the progression of normal retinal aging and early stages of some retinal degenerative diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Primary amines protect against retinal degeneration in mouse models of retinopathies.

    Science.gov (United States)

    Maeda, Akiko; Golczak, Marcin; Chen, Yu; Okano, Kiichiro; Kohno, Hideo; Shiose, Satomi; Ishikawa, Kaede; Harte, William; Palczewska, Grazyna; Maeda, Tadao; Palczewski, Krzysztof

    2011-12-25

    Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore 11-cis-retinal and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomerized product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing Food and Drug Administration (FDA)-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by MS. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that shows features of Stargardt's disease and age-related retinal degeneration.

  1. Fundus autofluorescence findings in a mouse model of retinal detachment.

    Science.gov (United States)

    Secondi, Roberta; Kong, Jian; Blonska, Anna M; Staurenghi, Giovanni; Sparrow, Janet R

    2012-08-07

    Fundus autofluorescence (fundus AF) changes were monitored in a mouse model of retinal detachment (RD). RD was induced by transscleral injection of hyaluronic acid (Healon) or sterile balanced salt solution (BSS) into the subretinal space of 4-5-day-old albino Abca4 null mutant and Abca4 wild-type mice. Images acquired by confocal scanning laser ophthalmoscopy (Spectralis HRA) were correlated with spectral domain optical coherence tomography (SD-OCT), infrared reflectance (IR), fluorescence spectroscopy, and histologic analysis. Results. In the area of detached retina, multiple hyperreflective spots in IR images corresponded to punctate areas of intense autofluorescence visible in fundus AF mode. The puncta exhibited changes in fluorescence intensity with time. SD-OCT disclosed undulations of the neural retina and hyperreflectivity of the photoreceptor layer that likely corresponded to histologically visible photoreceptor cell rosettes. Fluorescence emission spectra generated using flat-mounted retina, and 488 and 561 nm excitation, were similar to that of RPE lipofuscin. With increased excitation wavelength, the emission maximum shifted towards longer wavelengths, a characteristic typical of fundus autofluorescence. In detached retinas, hyper-autofluorescent spots appeared to originate from photoreceptor outer segments that were arranged within retinal folds and rosettes. Consistent with this interpretation is the finding that the autofluorescence was spectroscopically similar to the bisretinoids that constitute RPE lipofuscin. Under the conditions of a RD, abnormal autofluorescence may arise from excessive production of bisretinoid by impaired photoreceptor cells.

  2. Intraocular Injection of ES Cell-Derived Neural Progenitors Improve Visual Function in Retinal Ganglion Cell-Depleted Mouse Models

    Directory of Open Access Journals (Sweden)

    Mundackal S. Divya

    2017-09-01

    Full Text Available Retinal ganglion cell (RGC transplantation is a promising strategy to restore visual function resulting from irreversible RGC degeneration occurring in glaucoma or inherited optic neuropathies. We previously demonstrated FGF2 induced differentiation of mouse embryonic stem cells (ESC to RGC lineage, capable of retinal ganglion cell layer (GCL integration upon transplantation. Here, we evaluated possible improvement of visual function by transplantation of ES cell derived neural progenitors in RGC depleted glaucoma mice models. ESC derived neural progenitors (ES-NP were transplanted into N-Methyl-D-Aspartate (NMDA injected, RGC-ablated mouse models and a pre-clinical glaucoma mouse model (DBA/2J having sustained higher intra ocular pressure (IOP. Visual acuity and functional integration was evaluated by behavioral experiments and immunohistochemistry, respectively. GFP-expressing ES-NPs transplanted in NMDA-injected RGC-depleted mice differentiated into RGC lineage and possibly integrating into GCL. An improvement in visual acuity was observed after 2 months of transplantation, when compared to the pre-transplantation values. Expression of c-Fos in the transplanted cells, upon light induction, further suggests functional integration into the host retinal circuitry. However, the transplanted cells did not send axonal projections into optic nerve. Transplantation experiments in DBA/2J mouse showed no significant improvement in visual functions, possibly due to both host and transplanted retinal cell death which could be due to an inherent high IOP. We showed that, ES NPs transplanted into the retina of RGC-ablated mouse models could survive, differentiate to RGC lineage, and possibly integrate into GCL to improve visual function. However, for the survival of transplanted cells in glaucoma, strategies to control the IOP are warranted.

  3. Bifurcation analysis of a photoreceptor interaction model for Retinitis Pigmentosa

    Science.gov (United States)

    Camacho, Erika T.; Radulescu, Anca; Wirkus, Stephen

    2016-09-01

    Retinitis Pigmentosa (RP) is the term used to describe a diverse set of degenerative eye diseases affecting the photoreceptors (rods and cones) in the retina. This work builds on an existing mathematical model of RP that focused on the interaction of the rods and cones. We non-dimensionalize the model and examine the stability of the equilibria. We then numerically investigate other stable modes that are present in the system for various parameter values and relate these modes to the original problem. Our results show that stable modes exist for a wider range of parameter values than the stability of the equilibrium solutions alone, suggesting that additional approaches to preventing cone death may exist.

  4. Elastic models: a comparative study applied to retinal images.

    Science.gov (United States)

    Karali, E; Lambropoulou, S; Koutsouris, D

    2011-01-01

    In this work various methods of parametric elastic models are compared, namely the classical snake, the gradient vector field snake (GVF snake) and the topology-adaptive snake (t-snake), as well as the method of self-affine mapping system as an alternative to elastic models. We also give a brief overview of the methods used. The self-affine mapping system is implemented using an adapting scheme and minimum distance as optimization criterion, which is more suitable for weak edges detection. All methods are applied to glaucomatic retinal images with the purpose of segmenting the optical disk. The methods are compared in terms of segmentation accuracy and speed, as these are derived from cross-correlation coefficients between real and algorithm extracted contours and segmentation time, respectively. As a result, the method of self-affine mapping system presents adequate segmentation time and segmentation accuracy, and significant independence from initialization.

  5. Retinal adaptation to changing glycemic levels in a rat model of type 2 diabetes

    DEFF Research Database (Denmark)

    Johnson, Leif E; Larsen, Michael; Perez, Maria-Thereza

    2013-01-01

    PURPOSE: Glucose concentrations are elevated in retinal cells in undiagnosed and in undertreated diabetes. Studies of diabetic patients suggest that retinal function adapts, to some extent, to this increased supply of glucose. The aim of the present study was to examine such adaptation in a model...

  6. Establishing an experimental rat model of photodynamically-induced retinal vein occlusion using erythrosin B

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2014-04-01

    Full Text Available AIM:To develop a reliable, reproducible rat model of retinal vein occlusion (RVO with a novel photosensitizer (erythrosin B and study the cellular responses in the retina.METHODS:Central and branch RVOs were created in adult male rats via photochemically-induced ischemia. Retinal changes were monitored via color fundus photography and fluorescein angiography at 1 and 3h, and 1, 4, 7, 14, and 21d after irradiation. Tissue slices were evaluated histopathologically. Retinal ganglion cell survival at different times after RVO induction was quantified by nuclear density count. Retinal thickness was also observed.RESULTS:For all rats in both the central and branch RVO groups, blood flow ceased immediately after laser irradiation and retinal edema was evident at one hour. The retinal detachment rate was 100% at 3h and developed into bullous retinal detachment within 24h. Retinal hemorrhages were not observed until 24h. Clearance of the occluded veins at 7d was observed by fluorescein angiography. Disease manifestation in the central RVO eyes was more severe than in the branch RVO group. A remarkable reduction in the ganglion cell count and retinal thickness was observed in the central RVO group by 21d, whereas moderate changes occurred in the branch RVO group.CONCLUSION: Rat RVO created by photochemically-induced ischemia using erythrosin B is a reproducible and reliable animal model for mimicking the key features of human RVO. However, considering the 100% rate of retinal detachment, this animal model is more suitable for studying RVO with chronic retinal detachment.

  7. Primary Retinal Cultures as a Tool for Modeling Diabetic Retinopathy: An Overview

    Directory of Open Access Journals (Sweden)

    Andrea Matteucci

    2015-01-01

    Full Text Available Experimental models of diabetic retinopathy (DR have had a crucial role in the comprehension of the pathophysiology of the disease and the identification of new therapeutic strategies. Most of these studies have been conducted in vivo, in animal models. However, a significant contribution has also been provided by studies on retinal cultures, especially regarding the effects of the potentially toxic components of the diabetic milieu on retinal cell homeostasis, the characterization of the mechanisms on the basis of retinal damage, and the identification of potentially protective molecules. In this review, we highlight the contribution given by primary retinal cultures to the study of DR, focusing on early neuroglial impairment. We also speculate on possible themes into which studies based on retinal cell cultures could provide deeper insight.

  8. Local signaling from a retinal prosthetic in a rodent retinitis pigmentosa model in vivo

    Science.gov (United States)

    Fransen, James W.; Pangeni, Gobinda; Pardue, Machelle T.; McCall, Maureen A.

    2014-08-01

    Objective. In clinical trials, retinitis pigmentosa patients implanted with a retinal prosthetic device show enhanced spatial vision, including the ability to read large text and navigate. New prosthetics aim to increase spatial resolution by decreasing pixel/electrode size and limiting current spread. To examine spatial resolution of a new prosthetic design, we characterized and compared two photovoltaic array (PVA) designs and their interaction with the retina after subretinal implantation in transgenic S334ter line 3 rats (Tg S334ter-3). Approach. PVAs were implanted subretinally at two stages of degeneration and assessed in vivo using extracellular recordings in the superior colliculus (SC). Several aspects of this interaction were evaluated by varying duration, irradiance and position of a near infrared laser focused on the PVA. These characteristics included: activation threshold, response linearity, SC signal topography and spatial localization. The major design difference between the two PVA designs is the inclusion of local current returns in the newer design. Main results. When tested in vivo, PVA-evoked response thresholds were independent of pixel/electrode size, but differ between the new and old PVA designs. Response thresholds were independent of implantation age and duration (⩽7.5 months). For both prosthesis designs, threshold intensities were within established safety limits. PVA-evoked responses require inner retina synaptic transmission and do not directly activate retinal ganglion cells. The new PVA design evokes local retinal activation, which is not found with the older PVA design that lacks local current returns. Significance. Our study provides in vivo evidence that prosthetics make functional contacts with the inner nuclear layer at several stages of degeneration. The new PVA design enhances local activation within the retina and SC. Together these results predict that the new design can potentially harness the inherent processing within

  9. Assessment of Safety and Functional Efficacy of Stem Cell-Based Therapeutic Approaches Using Retinal Degenerative Animal Models

    Directory of Open Access Journals (Sweden)

    Tai-Chi Lin

    2017-01-01

    Full Text Available Dysfunction and death of retinal pigment epithelium (RPE and or photoreceptors can lead to irreversible vision loss. The eye represents an ideal microenvironment for stem cell-based therapy. It is considered an “immune privileged” site, and the number of cells needed for therapy is relatively low for the area of focused vision (macula. Further, surgical placement of stem cell-derived grafts (RPE, retinal progenitors, and photoreceptor precursors into the vitreous cavity or subretinal space has been well established. For preclinical tests, assessments of stem cell-derived graft survival and functionality are conducted in animal models by various noninvasive approaches and imaging modalities. In vivo experiments conducted in animal models based on replacing photoreceptors and/or RPE cells have shown survival and functionality of the transplanted cells, rescue of the host retina, and improvement of visual function. Based on the positive results obtained from these animal experiments, human clinical trials are being initiated. Despite such progress in stem cell research, ethical, regulatory, safety, and technical difficulties still remain a challenge for the transformation of this technique into a standard clinical approach. In this review, the current status of preclinical safety and efficacy studies for retinal cell replacement therapies conducted in animal models will be discussed.

  10. Biology and therapy of inherited retinal degenerative disease: insights from mouse models

    Science.gov (United States)

    Veleri, Shobi; Lazar, Csilla H.; Chang, Bo; Sieving, Paul A.; Banin, Eyal; Swaroop, Anand

    2015-01-01

    Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases. PMID:25650393

  11. Biology and therapy of inherited retinal degenerative disease: insights from mouse models

    Directory of Open Access Journals (Sweden)

    Shobi Veleri

    2015-02-01

    Full Text Available Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases.

  12. Retinal ischemic injury rescued by sodium 4-phenylbutyrate in a rat model.

    Science.gov (United States)

    Jeng, Yung-Yue; Lin, Nien-Ting; Chang, Pen-Heng; Huang, Yuan-Ping; Pang, Victor Fei; Liu, Chen-Hsuan; Lin, Chung-Tien

    2007-03-01

    Retinal ischemia is a common cause of visual impairment for humans and animals. Herein, the neuroprotective effects of phenylbutyrate (PBA) upon retinal ischemic injury were investigated using a rat model. Retinal ganglion cells (RGCs) were retrograde labeled with the fluorescent tracer fluorogold (FG) applied to the superior collicoli of test Sprague-Dawley rats. High intraocular pressure and retinal ischemia were induced seven days subsequent to such FG labeling. A dose of either 100 or 400 mg/kg PBA was administered intraperitoneally to test rats at two time points, namely 30 min prior to the induction of retinal ischemia and 1 h subsequent to the cessation of the procedure inducing retinal ischemia. The test-rat retinas were collected seven days subsequent to the induction of retinal ischemia, and densities of surviving RGCs were estimated by counting FG-labeled RGCs within the retina. Histological analysis revealed that ischemic injury caused the loss of retinal RGCs and a net decrease in retinal thickness. For PBA-treated groups, almost 100% of the RGCs were preserved by a pre-ischemia treatment with PBA (at a dose of either 100 or 400 mg/kg), while post-ischemia treatment of RGCs with PBA did not lead to the preservation of RGCs from ischemic injury by PBA as determined by the counting of whole-mount retinas. Pre-ischemia treatment of RGCs with PBA (at a dose of either 100 or 400 mg/kg) significantly reduced the level of ischemia-associated loss of thickness of the total retina, especially the inner retina, and the inner plexiform layer of retina. Besides, PBA treatment significantly reduced the ischemia-induced loss of cells in the ganglion-cell layer of the retina. Taken together, these results suggest that PBA demonstrates a marked neuroprotective effect upon high intraocular pressure-induced retinal ischemia when the PBA is administered prior to ischemia induction.

  13. Automated drusen detection in retinal images using analytical modelling algorithms

    Directory of Open Access Journals (Sweden)

    Manivannan Ayyakkannu

    2011-07-01

    Full Text Available Abstract Background Drusen are common features in the ageing macula associated with exudative Age-Related Macular Degeneration (ARMD. They are visible in retinal images and their quantitative analysis is important in the follow up of the ARMD. However, their evaluation is fastidious and difficult to reproduce when performed manually. Methods This article proposes a methodology for Automatic Drusen Deposits Detection and quantification in Retinal Images (AD3RI by using digital image processing techniques. It includes an image pre-processing method to correct the uneven illumination and to normalize the intensity contrast with smoothing splines. The drusen detection uses a gradient based segmentation algorithm that isolates drusen and provides basic drusen characterization to the modelling stage. The detected drusen are then fitted by Modified Gaussian functions, producing a model of the image that is used to evaluate the affected area. Twenty two images were graded by eight experts, with the aid of a custom made software and compared with AD3RI. This comparison was based both on the total area and on the pixel-to-pixel analysis. The coefficient of variation, the intraclass correlation coefficient, the sensitivity, the specificity and the kappa coefficient were calculated. Results The ground truth used in this study was the experts' average grading. In order to evaluate the proposed methodology three indicators were defined: AD3RI compared to the ground truth (A2G; each expert compared to the other experts (E2E and a standard Global Threshold method compared to the ground truth (T2G. The results obtained for the three indicators, A2G, E2E and T2G, were: coefficient of variation 28.8 %, 22.5 % and 41.1 %, intraclass correlation coefficient 0.92, 0.88 and 0.67, sensitivity 0.68, 0.67 and 0.74, specificity 0.96, 0.97 and 0.94, and kappa coefficient 0.58, 0.60 and 0.49, respectively. Conclusions The gradings produced by AD3RI obtained an agreement

  14. Novel method for edge detection of retinal vessels based on the model of the retinal vascular network and mathematical morphology

    Science.gov (United States)

    Xu, Lei; Zheng, Xiaoxiang; Zhang, Hengyi; Yu, Yajun

    1998-09-01

    Accurate edge detection of retinal vessels is a prerequisite for quantitative analysis of subtle morphological changes of retinal vessels under different pathological conditions. A novel method for edge detection of retinal vessels is presented in this paper. Methods: (1) Wavelet-based image preprocessing. (2) The signed edge detection algorithm and mathematical morphological operation are applied to get the approximate regions that contain retinal vessels. (3) By convolving the preprocessed image with a LoG operator only on the detected approximate regions of retinal vessels, followed by edges refining, clear edge maps of the retinal vessels are fast obtained. Results: A detailed performance evaluation together with the existing techniques is given to demonstrate the strong features of our method. Conclusions: True edge locations of retinal vessels can be fast detected with continuous structures of retinal vessels, less non- vessel segments left and insensitivity to noise. The method is also suitable for other application fields such as road edge detection.

  15. Gene Therapy in a Large Animal Model of PDE6A-Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Freya M. Mowat

    2017-06-01

    Full Text Available Despite mutations in the rod phosphodiesterase 6-alpha (PDE6A gene being well-recognized as a cause of human retinitis pigmentosa, no definitive treatments have been developed to treat this blinding disease. We performed a trial of retinal gene augmentation in the Pde6a mutant dog using Pde6a delivery by capsid-mutant adeno-associated virus serotype 8, previously shown to have a rapid onset of transgene expression in the canine retina. Subretinal injections were performed in 10 dogs at 29–44 days of age, and electroretinography and vision testing were performed to assess functional outcome. Retinal structure was assessed using color fundus photography, spectral domain optical coherence tomography, and histology. Immunohistochemistry was performed to examine transgene expression and expression of other retinal genes. Treatment resulted in improvement in dim light vision and evidence of rod function on electroretinographic examination. Photoreceptor layer thickness in the treated area was preserved compared with the contralateral control vector treated or uninjected eye. Improved rod and cone photoreceptor survival, rhodopsin localization, cyclic GMP levels and bipolar cell dendrite distribution was observed in treated areas. Some adverse effects including foci of retinal separation, foci of retinal degeneration and rosette formation were identified in both AAV-Pde6a and control vector injected regions. This is the first description of successful gene augmentation for Pde6a retinitis pigmentosa in a large animal model. Further studies will be necessary to optimize visual outcomes and minimize complications before translation to human studies.

  16. Neuroprotective Effects of Citicoline in in Vitro Models of Retinal Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Andrea Matteucci

    2014-04-01

    Full Text Available In recent years, citicoline has been the object of remarkable interest as a possible neuroprotectant. The aim of this study was to investigate if citicoline affected cell survival in primary retinal cultures and if it exerted neuroprotective activity in conditions modeling retinal neurodegeneration. Primary retinal cultures, obtained from rat embryos, were first treated with increasing concentrations of citicoline (up to 1000 µM and analyzed in terms of apoptosis and caspase activation and characterized by immunocytochemistry to identify neuronal and glial cells. Subsequently, excitotoxic concentration of glutamate or High Glucose-containing cell culture medium (HG was administered as well-known conditions modeling neurodegeneration. Glutamate or HG treatments were performed in the presence or not of citicoline. Neuronal degeneration was evaluated in terms of apoptosis and loss of synapses. The results showed that citicoline did not cause any damage to the retinal neuroglial population up to 1000 µM. At the concentration of 100 µM, it was able to counteract neuronal cell damage both in glutamate- and HG-treated retinal cultures by decreasing proapoptotic effects and contrasting synapse loss. These data confirm that citicoline can efficiently exert a neuroprotective activity. In addition, the results suggest that primary retinal cultures, under conditions inducing neurodegeneration, may represent a useful system to investigate citicoline neuroprotective mechanisms.

  17. Host-Associated Differentiation: The Gape-and-Pinch Model

    Directory of Open Access Journals (Sweden)

    Stephen B. Heard

    2012-01-01

    Full Text Available Ecological speciation via host shifting has contributed to the astonishing diversity of phytophagous insects. The importance for host shifting of trait differences between alternative host plants is well established, but much less is known about trait variation within hosts. I outline a conceptual model, the “gape-and-pinch” (GAP model, of insect response to host-plant trait variation during host shifting and host-associated differentiation. I offer four hypotheses about insect use of plant trait variation on two alternative hosts, for insects at different stages of host-associated differentiation. Collectively, these hypotheses suggest that insect responses to plant trait variation can favour or oppose critical steps in herbivore diversification. I provide statistical tools for analysing herbivore trait-space use, demonstrate their application for four herbivores of the goldenrods Solidago altissima and S. gigantea, and discuss their broader potential to advance our understanding of diet breadth and ecological speciation in phytophagous insects.

  18. Grafted c-kit+/SSEA1- eye-wall progenitor cells delay retinal degeneration in mice by regulating neural plasticity and forming new graft-to-host synapses.

    Science.gov (United States)

    Chen, Xi; Chen, Zehua; Li, Zhengya; Zhao, Chen; Zeng, Yuxiao; Zou, Ting; Fu, Caiyun; Liu, Xiaoli; Xu, Haiwei; Yin, Zheng Qin

    2016-12-30

    capable of differentiating into functional photoreceptors that formed new synaptic connections with recipient retinas in rd1 mice. Transplantation also partially corrected the abnormalities of inner retina of rd1 mice. At 4 and 8 weeks post transplantation, the rd1 mice that received c-kit + /SSEA1 - cells showed significant increases in a-wave and b-wave amplitude and the percentage of time spent in the dark area. Grafted c-kit + /SSEA1 - cells restored the retinal function of rd1 mice via regulating neural plasticity and forming new graft-to-host synapses.

  19. A cascade model of information processing and encoding for retinal prosthesis.

    Science.gov (United States)

    Pei, Zhi-Jun; Gao, Guan-Xin; Hao, Bo; Qiao, Qing-Li; Ai, Hui-Jian

    2016-04-01

    Retinal prosthesis offers a potential treatment for individuals suffering from photoreceptor degeneration diseases. Establishing biological retinal models and simulating how the biological retina convert incoming light signal into spike trains that can be properly decoded by the brain is a key issue. Some retinal models have been presented, ranking from structural models inspired by the layered architecture to functional models originated from a set of specific physiological phenomena. However, Most of these focus on stimulus image compression, edge detection and reconstruction, but do not generate spike trains corresponding to visual image. In this study, based on state-of-the-art retinal physiological mechanism, including effective visual information extraction, static nonlinear rectification of biological systems and neurons Poisson coding, a cascade model of the retina including the out plexiform layer for information processing and the inner plexiform layer for information encoding was brought forward, which integrates both anatomic connections and functional computations of retina. Using MATLAB software, spike trains corresponding to stimulus image were numerically computed by four steps: linear spatiotemporal filtering, static nonlinear rectification, radial sampling and then Poisson spike generation. The simulated results suggested that such a cascade model could recreate visual information processing and encoding functionalities of the retina, which is helpful in developing artificial retina for the retinally blind.

  20. Lipoic Acid and Progesterone Alone or in Combination Ameliorate Retinal Degeneration in an Experimental Model of Hereditary Retinal Degeneration

    Directory of Open Access Journals (Sweden)

    Dolores T. Ramírez-Lamelas

    2018-05-01

    Full Text Available Retinitis pigmentosa (RP is a group of inherited retinopathies characterized by photoreceptors death. Our group has shown the positive progesterone (P4 actions on cell death progression in an experimental model of RP. In an effort to enhance the beneficial effects of P4, the aim of this study was to combine P4 treatment with an antioxidant [lipoic acid (LA] in the rd1 mice. rd1 and control mice were treated with 100 mg/kg body weight of P4, LA, or a combination of both on postnatal day 7 (PN7, 9, and 11, and were sacrificed at PN11. The administration of LA and/or P4 diminishes cell death in rd1 retinas. The effect obtained after the combined administration of LA and P4 is higher than the one obtained with LA or P4 alone. The three treatments decreased GFAP staining, however, in the far peripheral retina, and the two treatments that offered better results were LA and LA plus P4. LA or LA plus P4 increased retinal glutathione (GSH concentration in the rd1 mice. Although LA and P4 are able to protect photoreceptors from death in rd1 mice retinas, a better effectiveness is achieved when administering LA and P4 at the same time.

  1. Feasibility study on retinal vascular bypass surgery in isolated arterially perfused caprine eye model

    Science.gov (United States)

    Chen, Y; Wu, W; Zhang, X; Fan, W; Shen, L

    2011-01-01

    Purpose To investigate the feasibility of bypassing occluded segments of retinal venous main vessels in isolated, arterially perfused caprine eyes via the closed-sky vitrectomy approach using keratoprosthesis. Methods Isolated caprine eyes were used in this study. For each eye, the retinal vessel was perfused by Krebs solution via ophthalmic artery, and pars plana vitrectomy was performed using temporary keratoprosthesis. All retinal micro-vascular maneuvers were performed in a closed-sky eyeball. The main retinal vein was blocked by endodiathermy at the site of the vessel's first branching. Two openings, several millimeters apart, were created by vascular punctures in both the main vein and its branch vein wall straddling the induced occluded segment. Catheterization was achieved using a flexible polyimide tube, with each end inserted into the vessel wall opening. A sealed connection between the vessel and the tube was obtained by endodiathermy. Bypass of the occluded retinal vein segment was thus achieved, and the patency of this vascular bypass was confirmed by intravascular staining. Results Puncturing, catheterization, and endodiathermy were viable by closed-sky approach using keratoprosthesis. Bypassing of the occluded retinal main vein segment was accomplished with the combination of these maneuvers. Good results were obtained in 23 of 38 (60%) caprine eyes. Conclusions This study demonstrated that bypassing the occluded segment of retinal main vein can be successfully performed in a closed-sky eyeball model of isolated, arterially perfused caprine eye. This early work indicated that the more advanced retinal vascular bypass surgery in in vivo eye may be feasible in the future. PMID:21921946

  2. Honokiol inhibits pathological retinal neovascularization in oxygen-induced retinopathy mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Vavilala, Divya Teja [Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, MO (United States); O’Bryhim, Bliss E. [Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS (United States); Ponnaluri, V.K. Chaithanya [Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, MO (United States); White, R. Sid; Radel, Jeff [Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS (United States); Symons, R.C. Andrew [Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS (United States); Ophthalmology Department, Royal Melbourne Hospital, University of Melbourne, Victoria (Australia); Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Victoria (Australia); Mukherji, Mridul, E-mail: mukherjim@umkc.edu [Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, MO (United States)

    2013-09-06

    Highlights: •Aberrant activation of HIF pathway is the underlying cause of ischemic neovascularization. •Honokiol has better therapeutic index as a HIF inhibitor than digoxin and doxorubicin. •Daily IP injection of honokiol in OIR mouse model reduced retinal neovascularization. •Honokiol also prevents vaso-obliteration, the characteristic feature of the OIR model. •Honokiol enhanced physiological revascularization of the retinal vascular plexuses. -- Abstract: Aberrant activation of the hypoxia inducible factor (HIF) pathway is the underlying cause of retinal neovascularization, one of the most common causes of blindness worldwide. The HIF pathway also plays critical roles during tumor angiogenesis and cancer stem cell transformation. We have recently shown that honokiol is a potent inhibitor of the HIF pathway in a number of cancer and retinal pigment epithelial cell lines. Here we evaluate the safety and efficacy of honokiol, digoxin, and doxorubicin, three recently identified HIF inhibitors from natural sources. Our studies show that honokiol has a better safety to efficacy profile as a HIF inhibitor than digoxin and doxorubicin. Further, we show for the first time that daily intraperitoneal injection of honokiol starting at postnatal day (P) 12 in an oxygen-induced retinopathy (OIR) mouse model significantly reduced retinal neovascularization at P17. Administration of honokiol also prevents the oxygen-induced central retinal vaso-obliteration, characteristic feature of the OIR model. Additionally, honokiol enhanced physiological revascularization of the retinal vascular plexuses. Since honokiol suppresses multiple pathways activated by HIF, in addition to the VEGF signaling, it may provide advantages over current treatments utilizing specific VEGF antagonists for ocular neovascular diseases and cancers.

  3. Hypoxia-induced retinal neovascularization in zebrafish embryos: a potential model of retinopathy of prematurity.

    Science.gov (United States)

    Wu, Yu-Ching; Chang, Chao-Yuan; Kao, Alex; Hsi, Brian; Lee, Shwu-Huey; Chen, Yau-Hung; Wang, I-Jong

    2015-01-01

    Retinopathy of prematurity, formerly known as a retrolental fibroplasia, is a leading cause of infantile blindness worldwide. Retinopathy of prematurity is caused by the failure of central retinal vessels to reach the retinal periphery, creating a nonperfused peripheral retina, resulting in retinal hypoxia, neovascularization, vitreous hemorrhage, vitreoretinal fibrosis, and loss of vision. We established a potential retinopathy of prematurity model by using a green fluorescent vascular endothelium zebrafish transgenic line treated with cobalt chloride (a hypoxia-inducing agent), followed by GS4012 (a vascular endothelial growth factor inducer) at 24 hours postfertilization, and observed that the number of vascular branches and sprouts significantly increased in the central retinal vascular trunks 2-4 days after treatment. We created an angiography method by using tetramethylrhodamine dextran, which exhibited severe vascular leakage through the vessel wall into the surrounding retinal tissues. The quantification of mRNA extracted from the heads of the larvae by using real-time quantitative polymerase chain reaction revealed a twofold increase in vegfaa and vegfr2 expression compared with the control group, indicating increased vascular endothelial growth factor signaling in the hypoxic condition. In addition, we demonstrated that the hypoxic insult could be effectively rescued by several antivascular endothelial growth factor agents such as SU5416, bevacizumab, and ranibizumab. In conclusion, we provide a simple, highly reproducible, and clinically relevant retinopathy of prematurity model based on zebrafish embryos; this model may serve as a useful platform for clarifying the mechanisms of human retinopathy of prematurity and its progression.

  4. A novel method for objective vision testing in canine models of inherited retinal disease.

    Science.gov (United States)

    Gearhart, Patricia M; Gearhart, Chris C; Petersen-Jones, Simon M

    2008-08-01

    The use of canine models of retinal disease in the development of therapeutic strategies for inherited retinal disorders is a growing area of research. To evaluate accurately the success of potential vision-enhancing treatments, reliable methods for objectively assessing visual function in canine models is necessary. A simple vision-testing device was constructed that consisted of a junction box with four exit tunnels. Dogs were placed in the junction box and given one vision-based choice for exit. The first-choice tunnel and time to exit were recorded and analyzed. Two canine models of retinal disease with distinct molecular defects, a null mutation in the gene encoding the alpha subunit of rod cyclic GMP phosphodiesterase (PDE6A), and a null mutation in the gene encoding a retinal pigment epithelium-specific protein (RPE65) were tested and compared to those in unaffected dogs. With the use of bright light versus dim red light, the test differentiated between unaffected dogs and dogs affected with either mutation with a high degree of certainty. The white-light intensity series showed a significantly different performance between the unaffected and affected dogs. A significant difference in performance was detected between the dogs with each mutation. The results indicate that this novel canine vision-testing method is an accurate and sensitive means of distinguishing between unaffected dogs and dogs affected with two different forms of inherited retinal disease and should be useful as a means of assessing response to therapy in future studies.

  5. A spatial model of mosquito host-seeking behavior.

    Directory of Open Access Journals (Sweden)

    Bree Cummins

    Full Text Available Mosquito host-seeking behavior and heterogeneity in host distribution are important factors in predicting the transmission dynamics of mosquito-borne infections such as dengue fever, malaria, chikungunya, and West Nile virus. We develop and analyze a new mathematical model to describe the effect of spatial heterogeneity on the contact rate between mosquito vectors and hosts. The model includes odor plumes generated by spatially distributed hosts, wind velocity, and mosquito behavior based on both the prevailing wind and the odor plume. On a spatial scale of meters and a time scale of minutes, we compare the effectiveness of different plume-finding and plume-tracking strategies that mosquitoes could use to locate a host. The results show that two different models of chemotaxis are capable of producing comparable results given appropriate parameter choices and that host finding is optimized by a strategy of flying across the wind until the odor plume is intercepted. We also assess the impact of changing the level of host aggregation on mosquito host-finding success near the end of the host-seeking flight. When clusters of hosts are more tightly associated on smaller patches, the odor plume is narrower and the biting rate per host is decreased. For two host groups of unequal number but equal spatial density, the biting rate per host is lower in the group with more individuals, indicative of an attack abatement effect of host aggregation. We discuss how this approach could assist parameter choices in compartmental models that do not explicitly model the spatial arrangement of individuals and how the model could address larger spatial scales and other probability models for mosquito behavior, such as Lévy distributions.

  6. Continuous host-macroparasite models with application to aquaculture

    Directory of Open Access Journals (Sweden)

    Catherine Bouloux Marquet

    2004-11-01

    Full Text Available We study a continuous deterministic host-macroparasite system which involves populations of hosts, parasites, and larvae. This system leads to a countable number of partial differential equations that under certain hypotheses, is reduced to finitely many equations. Also we assume hypotheses to close the system and to define the global dynamics for the hosts. Then, we analyze the spatially homogeneous model without demography (aquaculture hypothesis, and show some preliminary results for the spatially structured model.

  7. The Ins2Akita mouse as a model of early retinal complications in diabetes.

    Science.gov (United States)

    Barber, Alistair J; Antonetti, David A; Kern, Timothy S; Reiter, Chad E N; Soans, Rohit S; Krady, J Kyle; Levison, Steven W; Gardner, Thomas W; Bronson, Sarah K

    2005-06-01

    This study tested the Ins2(Akita) mouse as an animal model of retinal complications in diabetes. The Ins2(Akita) mutation results in a single amino acid substitution in the insulin 2 gene that causes misfolding of the insulin protein. The mutation arose and is maintained on the C57BL/6J background. Male mice heterozygous for this mutation have progressive loss of beta-cell function, decreased pancreatic beta-cell density, and significant hyperglycemia, as early as 4 weeks of age. Heterozygous Ins2(Akita) mice were bred to C57BL/6J mice, and male offspring were monitored for hyperglycemia, beginning at 4.5 weeks of age. After 4 to 36 weeks of hyperglycemia, the retinas were analyzed for vascular permeability, vascular lesions, leukostasis, morphologic changes of micro- and macroglia, apoptosis, retinal degeneration, and insulin receptor kinase activity. The mean blood glucose of Ins2(Akita) mice was significantly elevated, whereas the body weight at death was reduced compared with that of control animals. Compared with sibling control mice, the Ins2(Akita) mice had increased retinal vascular permeability after 12 weeks of hyperglycemia (P microglia, but no changes in expression of Muller cell glial fibrillary acidic protein. Increased apoptosis was identified by immunoreactivity for active caspase-3 after 4 weeks of hyperglycemia (P cell bodies in the retinal ganglion cell layer (P retinal complications of diabetes.

  8. Regulation of retinal proteome by topical antiglaucomatous eye drops in an inherited glaucoma rat model.

    Directory of Open Access Journals (Sweden)

    Maurice Schallenberg

    Full Text Available Examination of the response of the retinal proteome to elevated intraocular pressure (IOP and to the pharmacological normalization of IOP is crucial, in order to develop drugs with neuroptorective potential. We used a hereditary rat model of ocular hypertension to lower IOP with travaprost and dorzolamide applied topically on the eye surface, and examine changes of the retinal proteome. Our data demonstrate that elevated IOP causes alterations in the retinal protein profile, in particular in high-mobility-group-protein B1 (HMGB1, calmodulin, heat-shock-protein (HSP 70 and carbonic anhydrase II expression. The changes of the retinal proteome by dorzolamide or travoprost are different and independent of the IOP lowering effect. This fact suggests that the eye drops exert a direct IOP-independent effect on retinal metabolism. Further investigations are required to elucidate the potential neuroprotective mechanisms signaled through changes of HMGB1, calmodulin, HSP70 and carbonic anhydrase II expression in glaucoma. The data may facilitate development of eye drops that exert neuroprotection through direct pharmacological effect.

  9. Effects of Subretinal Gene Transfer at Different Time Points in a Mouse Model of Retinal Degeneration.

    Science.gov (United States)

    Dai, Xufeng; Zhang, Hua; Han, Juanjuan; He, Ying; Zhang, Yangyang; Qi, Yan; Pang, Ji-Jing

    2016-01-01

    Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is necessary for photoreceptors to generate an important lipid component of their membranes. The absence of LPCAT1 results in early and rapid rod and cone degeneration. Retinal degeneration 11 (rd11) mice carry a mutation in the Lpcat1 gene, and are an excellent model of early-onset rapid retinal degeneration (RD). To date, no reports have documented gene therapy administration in the rd11 mouse model at different ages. In this study, the AAV8 (Y733F)-smCBA-Lpcat1 vector was subretinally injected at postnatal day (P) 10, 14, 18, or 22. Four months after injection, immunohistochemistry and analysis of retinal morphology showed that treatment at P10 rescued about 82% of the wild-type retinal thickness. However, the diffusion of the vector and the resulting rescue were limited to an area around the injection site that was only 31% of the total retinal area. Injection at P14 resulted in vector diffusion that covered approximately 84% of the retina, and we found that gene therapy was more effective against RD when exposure to light was limited before and after treatment. We observed long-term preservation of electroretinogram (ERG) responses, and preservation of retinal structure, indicating that early treatment followed by limited light exposure can improve gene therapy effectiveness for the eyes of rd11 mice. Importantly, delayed treatment still partially preserved M-cones, but not S-cones, and M-cones in the rd11 retina appeared to have a longer window of opportunity for effective preservation with gene therapy. These results provide important information regarding the effects of subretinal gene therapy in the mouse model of LPCAT1-deficiency.

  10. Mixture model-based clustering and logistic regression for automatic detection of microaneurysms in retinal images

    Science.gov (United States)

    Sánchez, Clara I.; Hornero, Roberto; Mayo, Agustín; García, María

    2009-02-01

    Diabetic Retinopathy is one of the leading causes of blindness and vision defects in developed countries. An early detection and diagnosis is crucial to avoid visual complication. Microaneurysms are the first ocular signs of the presence of this ocular disease. Their detection is of paramount importance for the development of a computer-aided diagnosis technique which permits a prompt diagnosis of the disease. However, the detection of microaneurysms in retinal images is a difficult task due to the wide variability that these images usually present in screening programs. We propose a statistical approach based on mixture model-based clustering and logistic regression which is robust to the changes in the appearance of retinal fundus images. The method is evaluated on the public database proposed by the Retinal Online Challenge in order to obtain an objective performance measure and to allow a comparative study with other proposed algorithms.

  11. An Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival

    Science.gov (United States)

    Tang, Zhongshu; Zhang, Shuihua; Lee, Chunsik; Kumar, Anil; Arjunan, Pachiappan; Li, Yang; Zhang, Fan; Li, Xuri

    2011-01-01

    Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness. The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy. Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result. PMID:21540827

  12. Models of microbiome evolution incorporating host and microbial selection.

    Science.gov (United States)

    Zeng, Qinglong; Wu, Steven; Sukumaran, Jeet; Rodrigo, Allen

    2017-09-25

    Numerous empirical studies suggest that hosts and microbes exert reciprocal selective effects on their ecological partners. Nonetheless, we still lack an explicit framework to model the dynamics of both hosts and microbes under selection. In a previous study, we developed an agent-based forward-time computational framework to simulate the neutral evolution of host-associated microbial communities in a constant-sized, unstructured population of hosts. These neutral models allowed offspring to sample microbes randomly from parents and/or from the environment. Additionally, the environmental pool of available microbes was constituted by fixed and persistent microbial OTUs and by contributions from host individuals in the preceding generation. In this paper, we extend our neutral models to allow selection to operate on both hosts and microbes. We do this by constructing a phenome for each microbial OTU consisting of a sample of traits that influence host and microbial fitnesses independently. Microbial traits can influence the fitness of hosts ("host selection") and the fitness of microbes ("trait-mediated microbial selection"). Additionally, the fitness effects of traits on microbes can be modified by their hosts ("host-mediated microbial selection"). We simulate the effects of these three types of selection, individually or in combination, on microbiome diversities and the fitnesses of hosts and microbes over several thousand generations of hosts. We show that microbiome diversity is strongly influenced by selection acting on microbes. Selection acting on hosts only influences microbiome diversity when there is near-complete direct or indirect parental contribution to the microbiomes of offspring. Unsurprisingly, microbial fitness increases under microbial selection. Interestingly, when host selection operates, host fitness only increases under two conditions: (1) when there is a strong parental contribution to microbial communities or (2) in the absence of a strong

  13. A rat retinal damage model predicts for potential clinical visual disturbances induced by Hsp90 inhibitors

    International Nuclear Information System (INIS)

    Zhou, Dan; Liu, Yuan; Ye, Josephine; Ying, Weiwen; Ogawa, Luisa Shin; Inoue, Takayo; Tatsuta, Noriaki; Wada, Yumiko; Koya, Keizo; Huang, Qin; Bates, Richard C.; Sonderfan, Andrew J.

    2013-01-01

    In human trials certain heat shock protein 90 (Hsp90) inhibitors, including 17-DMAG and NVP-AUY922, have caused visual disorders indicative of retinal dysfunction; others such as 17-AAG and ganetespib have not. To understand these safety profile differences we evaluated histopathological changes and exposure profiles of four Hsp90 inhibitors, with or without clinical reports of adverse ocular effects, using a rat retinal model. Retinal morphology, Hsp70 expression (a surrogate marker of Hsp90 inhibition), apoptotic induction and pharmacokinetic drug exposure analysis were examined in rats treated with the ansamycins 17-DMAG and 17-AAG, or with the second-generation compounds NVP-AUY922 and ganetespib. Both 17-DMAG and NVP-AUY922 induced strong yet restricted retinal Hsp70 up-regulation and promoted marked photoreceptor cell death 24 h after the final dose. In contrast, neither 17-AAG nor ganetespib elicited photoreceptor injury. When the relationship between drug distribution and photoreceptor degeneration was examined, 17-DMAG and NVP-AUY922 showed substantial retinal accumulation, with high retina/plasma (R/P) ratios and slow elimination rates, such that 51% of 17-DMAG and 65% of NVP-AUY922 present at 30 min post-injection were retained in the retina 6 h post-dose. For 17-AAG and ganetespib, retinal elimination was rapid (90% and 70% of drugs eliminated from the retina at 6 h, respectively) which correlated with lower R/P ratios. These findings indicate that prolonged inhibition of Hsp90 activity in the eye results in photoreceptor cell death. Moreover, the results suggest that the retina/plasma exposure ratio and retinal elimination rate profiles of Hsp90 inhibitors, irrespective of their chemical class, may predict for ocular toxicity potential. - Highlights: • In human trials some Hsp90 inhibitors cause visual disorders, others do not. • Prolonged inhibition of Hsp90 in the rat eye results in photoreceptor cell death. • Retina/plasma ratio and retinal

  14. Induced pluripotent stem cells (iPSC)-derived retinal cells in disease modeling and regenerative medicine.

    Science.gov (United States)

    Rathod, Reena; Surendran, Harshini; Battu, Rajani; Desai, Jogin; Pal, Rajarshi

    2018-02-12

    Retinal degenerative disorders are a leading cause of the inherited, irreversible and incurable vision loss. While various rodent model systems have provided crucial information in this direction, lack of disease-relevant tissue availability and species-specific differences have proven to be a major roadblock. Human induced pluripotent stem cells (iPSC) have opened up a whole new avenue of possibilities not just in understanding the disease mechanism but also potential therapeutic approaches towards a cure. In this review, we have summarized recent advances in the methods of deriving retinal cell types from iPSCs which can serve as a renewable source of disease-relevant cell population for basic as well as translational studies. We also provide an overview of the ongoing efforts towards developing a suitable in vitro model for modeling retinal degenerative diseases. This basic understanding in turn has contributed to advances in translational goals such as drug screening and cell-replacement therapies. Furthermore we discuss gene editing approaches for autologous repair of genetic disorders and allogeneic transplantation of stem cell-based retinal derivatives for degenerative disorders with an ultimate goal to restore vision. It is pertinent to note however, that these exciting new developments throw up several challenges that need to be overcome before their full clinical potential can be realized. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The Time Course of Deafness and Retinal Degeneration in a Kunming Mouse Model for Usher Syndrome.

    Science.gov (United States)

    Yao, Lu; Zhang, Lei; Qi, Lin-Song; Liu, Wei; An, Jing; Wang, Bin; Xue, Jun-Hui; Zhang, Zuo-Ming

    2016-01-01

    Usher syndrome is a group of autosomal recessive diseases characterized by congenital deafness and retinitis pigmentosa. In a mouse model for Usher syndrome, KMush/ush, discovered in our laboratory, we measured the phenotypes, characterized the architecture and morphology of the retina, and quantified the level of expression of pde6b and ush2a between postnatal (P) days 7, and 56. Electroretinograms and auditory brainstem response were used to measure visual and auditory phenotypes. Fundus photography and light microscopy were used to measure the architecture and morphology of the retina. Quantitative real-time PCR was used to measure the expression levels of mRNA. KMush/ush mice had low amplitudes and no obvious waveforms of Electroretinograms after P14 compared with controls. Thresholds of auditory brainstem response in our model were higher than those of controls after P14. By P21, the retinal vessels of KMush/ush mice were attenuated and their optic discs had a waxy pallor. The retinas of KMush/ush mice atrophied and the choroidal vessels were clearly visible. Notably, the architecture of each retinal layer was not different as compared with control mice at P7, while the outer nuclear layer (ONL) and other retinal layers of KMush/ush mice were attenuated significantly between P14 and P21. ONL cells were barely seen in KMush/ush mice at P56. As compared with control mice, the expression of pde6b and ush2a in KMush/ush mice declined significantly after P7. This study is a first step toward characterizing the progression of disease in our mouse model. Future studies using this model may provide insights about the etiology of the disease and the relationships between genotypes and phenotypes providing a valuable resource that could contribute to the foundation of knowledge necessary to develop therapies to prevent the retinal degeneration in patients with Usher Syndrome.

  16. The Time Course of Deafness and Retinal Degeneration in a Kunming Mouse Model for Usher Syndrome.

    Directory of Open Access Journals (Sweden)

    Lu Yao

    Full Text Available Usher syndrome is a group of autosomal recessive diseases characterized by congenital deafness and retinitis pigmentosa. In a mouse model for Usher syndrome, KMush/ush, discovered in our laboratory, we measured the phenotypes, characterized the architecture and morphology of the retina, and quantified the level of expression of pde6b and ush2a between postnatal (P days 7, and 56. Electroretinograms and auditory brainstem response were used to measure visual and auditory phenotypes. Fundus photography and light microscopy were used to measure the architecture and morphology of the retina. Quantitative real-time PCR was used to measure the expression levels of mRNA. KMush/ush mice had low amplitudes and no obvious waveforms of Electroretinograms after P14 compared with controls. Thresholds of auditory brainstem response in our model were higher than those of controls after P14. By P21, the retinal vessels of KMush/ush mice were attenuated and their optic discs had a waxy pallor. The retinas of KMush/ush mice atrophied and the choroidal vessels were clearly visible. Notably, the architecture of each retinal layer was not different as compared with control mice at P7, while the outer nuclear layer (ONL and other retinal layers of KMush/ush mice were attenuated significantly between P14 and P21. ONL cells were barely seen in KMush/ush mice at P56. As compared with control mice, the expression of pde6b and ush2a in KMush/ush mice declined significantly after P7. This study is a first step toward characterizing the progression of disease in our mouse model. Future studies using this model may provide insights about the etiology of the disease and the relationships between genotypes and phenotypes providing a valuable resource that could contribute to the foundation of knowledge necessary to develop therapies to prevent the retinal degeneration in patients with Usher Syndrome.

  17. Development and degeneration of cone bipolar cells are independent of cone photoreceptors in a mouse model of retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Miao Chen

    Full Text Available Retinal photoreceptors die during retinal synaptogenesis in a portion of retinal degeneration. Whether cone bipolar cells establish regular retinal mosaics and mature morphologies, and resist degeneration are not completely understood. To explore these issues, we backcrossed a transgenic mouse expressing enhanced green fluorescent protein (EGFP in one subset of cone bipolar cells (type 7 into rd1 mice, a classic mouse model of retinal degeneration, to examine the development and survival of cone bipolar cells in a background of retinal degeneration. Our data revealed that both the development and degeneration of cone bipolar cells are independent of the normal activity of cone photoreceptors. We found that type 7 cone bipolar cells achieved a uniform tiling of the retinal surface and developed normal dendritic and axonal arbors without the influence of cone photoreceptor innervation. On the other hand, degeneration of type 7 cone bipolar cells, contrary to our belief of central-to-peripheral progression, was spatially uniform across the retina independent of the spatiotemporal pattern of cone degeneration. The results have important implications for the design of more effective therapies to restore vision in retinal degeneration.

  18. Pharmacologic Activation of Wnt Signaling by Lithium Normalizes Retinal Vasculature in a Murine Model of Familial Exudative Vitreoretinopathy.

    Science.gov (United States)

    Wang, Zhongxiao; Liu, Chi-Hsiu; Sun, Ye; Gong, Yan; Favazza, Tara L; Morss, Peyton C; Saba, Nicholas J; Fredrick, Thomas W; He, Xi; Akula, James D; Chen, Jing

    2016-10-01

    Familial exudative vitreoretinopathy (FEVR) is characterized by delayed retinal vascular development, which promotes hypoxia-induced pathologic vessels. In severe cases FEVR may lead to retinal detachment and visual impairment. Genetic studies linked FEVR with mutations in Wnt signaling ligand or receptors, including low-density lipoprotein receptor-related protein 5 (LRP5) gene. Here, we investigated ocular pathologies in a Lrp5 knockout (Lrp5(-/-)) mouse model of FEVR and explored whether treatment with a pharmacologic Wnt activator lithium could bypass the genetic defects, thereby protecting against eye pathologies. Lrp5(-/-) mice displayed significantly delayed retinal vascular development, absence of deep layer retinal vessels, leading to increased levels of vascular endothelial growth factor and subsequent pathologic glomeruloid vessels, as well as decreased inner retinal visual function. Lithium treatment in Lrp5(-/-) mice significantly restored the delayed development of retinal vasculature and the intralaminar capillary networks, suppressed formation of pathologic glomeruloid structures, and promoted hyaloid vessel regression. Moreover, lithium treatment partially rescued inner-retinal visual function and increased retinal thickness. These protective effects of lithium were largely mediated through restoration of canonical Wnt signaling in Lrp5(-/-) retina. Lithium treatment also substantially increased vascular tubular formation in LRP5-deficient endothelial cells. These findings suggest that pharmacologic activation of Wnt signaling may help treat ocular pathologies in FEVR and potentially other defective Wnt signaling-related diseases. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Novel VCP modulators mitigate major pathologies of rd10, a mouse model of retinitis pigmentosa

    Science.gov (United States)

    Ikeda, Hanako Ohashi; Sasaoka, Norio; Koike, Masaaki; Nakano, Noriko; Muraoka, Yuki; Toda, Yoshinobu; Fuchigami, Tomohiro; Shudo, Toshiyuki; Iwata, Ayana; Hori, Seiji; Yoshimura, Nagahisa; Kakizuka, Akira

    2014-01-01

    Neuroprotection may prevent or forestall the progression of incurable eye diseases, such as retinitis pigmentosa, one of the major causes of adult blindness. Decreased cellular ATP levels may contribute to the pathology of this eye disease and other neurodegenerative diseases. Here we describe small compounds (Kyoto University Substances, KUSs) that were developed to inhibit the ATPase activity of VCP (valosin-containing protein), the most abundant soluble ATPase in the cell. Surprisingly, KUSs did not significantly impair reported cellular functions of VCP but nonetheless suppressed the VCP-dependent decrease of cellular ATP levels. Moreover, KUSs, as well as exogenous ATP or ATP-producing compounds, e.g. methylpyruvate, suppressed endoplasmic reticulum stress, and demonstrably protected various types of cultured cells from death, including several types of retinal neuronal cells. We then examined their in vivo efficacies in rd10, a mouse model of retinitis pigmentosa. KUSs prevented photoreceptor cell death and preserved visual function. These results reveal an unexpected, crucial role of ATP consumption by VCP in determining cell fate in this pathological context, and point to a promising new neuroprotective strategy for currently incurable retinitis pigmentosa. PMID:25096051

  20. Estimating retinal vascular permeability using the adiabatic approximation to the tissue homogeneity model with fluorescein videoangiography

    Science.gov (United States)

    Tichauer, Kenneth M.; Osswald, Christian R.; Dosmar, Emily; Guthrie, Micah J.; Hones, Logan; Sinha, Lagnojita; Xu, Xiaochun; Mieler, William F.; St. Lawrence, Keith; Kang-Mieler, Jennifer J.

    2015-06-01

    Clinical symptoms of diabetic retinopathy are not detectable until damage to the retina reaches an irreversible stage, at least by today's treatment standards. As a result, there is a push to develop new, "sub-clinical" methods of predicting the onset of diabetic retinopathy before the onset of irreversible damage. With diabetic retinopathy being associated with the accumulation of long-term mild damage to the retinal vasculature, retinal blood vessel permeability has been proposed as a key parameter for detecting preclinical stages of retinopathy. In this study, a kinetic modeling approach used to quantify vascular permeability in dynamic contrast-enhanced medical imaging was evaluated in noise simulations and then applied to retinal videoangiography data in a diabetic rat for the first time to determine the potential for this approach to be employed clinically as an early indicator of diabetic retinopathy. Experimental levels of noise were found to introduce errors of less than 15% in estimates of blood flow and extraction fraction (a marker of vascular permeability), and fitting of rat retinal fluorescein angiography data provided stable maps of both parameters.

  1. Echinococcus multilocularis and Its Intermediate Host: A Model of Parasite-Host Interplay

    Directory of Open Access Journals (Sweden)

    Dominique Angèle Vuitton

    2010-01-01

    Full Text Available Host-parasite interactions in the E. multilocularis-intermediate host model depend on a subtle balance between cellular immunity, which is responsible for host's resistance towards the metacestode, the larval stage of the parasite, and tolerance induction and maintenance. The pathological features of alveolar echinococcosis. the disease caused by E. multilocularis, are related both to parasitic growth and to host's immune response, leading to fibrosis and necrosis, The disease spectrum is clearly dependent on the genetic background of the host as well as on acquired disturbances of Th1-related immunity. The laminated layer of the metacestode, and especially its carbohydrate components, plays a major role in tolerance induction. Th2-type and anti-inflammatory cytokines, IL-10 and TGF-β, as well as nitric oxide, are involved in the maintenance of tolerance and partial inhibition of cytotoxic mechanisms. Results of studies in the experimental mouse model and in patients suggest that immune modulation with cytokines, such as interferon-α, or with specific antigens could be used in the future to treat patients with alveolar echinococcosis and/or to prevent this very severe parasitic disease.

  2. Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy.

    Science.gov (United States)

    Tschernutter, M; Schlichtenbrede, F C; Howe, S; Balaggan, K S; Munro, P M; Bainbridge, J W B; Thrasher, A J; Smith, A J; Ali, R R

    2005-04-01

    The Royal College of Surgeons (RCS) rat is a well-characterized model of autosomal recessive retinitis pigmentosa (RP) due to a defect in the retinal pigment epithelium (RPE). It is homozygous for a null mutation in the gene encoding , a receptor tyrosine kinase found in RPE cells, that is required for phagocytosis of shed photoreceptor outer segments. The absence of Mertk results in accumulation of outer segment debris. This subsequently leads to progressive loss of photoreceptor cells. In order to evaluate the efficacy of lentiviral-mediated gene replacement therapy in the RCS rat, we produced recombinant VSV-G pseudotyped HIV-1-based lentiviruses containing a murine Mertk cDNA driven by a spleen focus forming virus (SFFV) promoter. The vector was subretinally injected into the right eye of 10-day-old RCS rats; the left eye was left untreated as an internal control. Here, we present a detailed assessment of the duration and extent of the morphological rescue and the resulting functional benefits. We examined animals at various time points over a period of 7 months by light and electron microscopy, and electroretinography. We observed correction of the phagocytic defect, slowing of photoreceptor cell loss and preservation of retinal function for up to 7 months. This study demonstrates the potential of gene therapy approaches for the treatment of retinal degenerations caused by defects specific to the RPE and supports the use of lentiviral vectors for the treatment of such disorders.

  3. The effects of host-feeding on stability of discrete-time host-parasitoid population dynamic models.

    Science.gov (United States)

    Emerick, Brooks; Singh, Abhyudai

    2016-02-01

    Discrete-time models are the traditional approach for capturing population dynamics of a host-parasitoid system. Recent work has introduced a semi-discrete framework for obtaining model update functions that connect host-parasitoid population levels from year-to-year. In particular, this framework uses differential equations to describe the host-parasitoid interaction during the time of year when they come in contact, allowing specific behaviors to be mechanistically incorporated. We use the semi-discrete approach to study the effects of host-feeding, which occurs when a parasitoid consumes a potential host larva without ovipositing. We find that host-feeding by itself cannot stabilize the system, and both populations exhibit behavior similar to the Nicholson-Bailey model. However, when combined with stabilizing mechanisms such as density-dependent host mortality, host-feeding contracts the region of parameter space that allows for a stable host-parasitoid equilibrium. In contrast, when combined with a density-dependent parasitoid attack rate, host-feeding expands the non-zero equilibrium stability region. Our results show that host-feeding causes inefficiency in the parasitoid population, which yields a higher population of hosts per generation. This suggests that host-feeding may have limited long-term impact in terms of suppressing host levels for biological control applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A matching-allele model explains host resistance to parasites.

    Science.gov (United States)

    Luijckx, Pepijn; Fienberg, Harris; Duneau, David; Ebert, Dieter

    2013-06-17

    The maintenance of genetic variation and sex despite its costs has long puzzled biologists. A popular idea, the Red Queen Theory, is that under rapid antagonistic coevolution between hosts and their parasites, the formation of new rare host genotypes through sex can be advantageous as it creates host genotypes to which the prevailing parasite is not adapted. For host-parasite coevolution to lead to an ongoing advantage for rare genotypes, parasites should infect specific host genotypes and hosts should resist specific parasite genotypes. The most prominent genetics capturing such specificity are matching-allele models (MAMs), which have the key feature that resistance for two parasite genotypes can reverse by switching one allele at one host locus. Despite the lack of empirical support, MAMs have played a central role in the theoretical development of antagonistic coevolution, local adaptation, speciation, and sexual selection. Using genetic crosses, we show that resistance of the crustacean Daphnia magna against the parasitic bacterium Pasteuria ramosa follows a MAM. Simulation results show that the observed genetics can explain the maintenance of genetic variation and contribute to the maintenance of sex in the facultatively sexual host as predicted by the Red Queen Theory. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Effect of eye NGF administration on two animal models of retinal ganglion cells degeneration

    Directory of Open Access Journals (Sweden)

    Valeria Colafrancesco

    2011-01-01

    Full Text Available The aim of this study was to investigate the effect of nerve growth factor (NGF administration on retinal ganglion cells (RGCs in experimentally induced glaucoma (GL and diabetic retinopathy (DR. GL was induced in adult rats by injection of hypertonic saline into the episcleral vein of the eye and diabetes (DT was induced by administration of streptozoticin. Control and experimental rats were treated daily with either ocular application of NGF or vehicle solution. We found that both animal models present a progressive degeneration of RGCs and changing NGF and VEGF levels in the retina and optic nerve. We then proved that NGF eye drop administration exerts a protective effect on these models of retinal degeneration. In brief, our findings indicate that NGF can play a protective role against RGC degeneration occurring in GL and DR and suggest that ocular NGF administration might be an effective pharmacological approach.

  6. Protective effect of sulforaphane against retinal degeneration in the Pde6rd10 mouse model of retinitis pigmentosa.

    Science.gov (United States)

    Kang, Kai; Yu, Minzhong

    2017-12-01

    Retinitis pigmentosa (RP) is a group of inherited diseases characterized by the death of rod photoreceptors, followed by the death of cone photoreceptors, progressively leading to partial or complete blindness. Currently no specific treatment is available for RP patients. Sulforaphane (SFN) has been confirmed to be an effective antioxidant in the treatment of many diseases. In this study, we tested the therapeutic effects of SFN against photoreceptor degeneration in Pde6b rd10 mice. rd10 mice and C57/BL6 wild-type (WT) mice were treated with SFN and saline, respectively, from P6 to P20. Electroretinography (ERG), terminal deoxynucleotidyl transferase dUTP nick end labeling and western blot were tested, respectively, at P21 for the analysis of retinal function, retinal cell apoptosis or death and the protein express of GRP78/BiP (TUNEL) as a marker of endoplasmic reticulum (ER) stress. Compared with the saline group, the SFN-treated group showed significantly higher ERG a-wave and b-wave amplitudes, less photoreceptor death, and the downregulation of GRP78/BiP. Our data showed that SFN ameliorated the retinal degeneration of rd10 mice, which is possibly related to the downregulation of GRP78 expression.

  7. A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness

    Science.gov (United States)

    Maya-Vetencourt, José Fernando; Ghezzi, Diego; Antognazza, Maria Rosa; Colombo, Elisabetta; Mete, Maurizio; Feyen, Paul; Desii, Andrea; Buschiazzo, Ambra; di Paolo, Mattia; di Marco, Stefano; Ticconi, Flavia; Emionite, Laura; Shmal, Dmytro; Marini, Cecilia; Donelli, Ilaria; Freddi, Giuliano; Maccarone, Rita; Bisti, Silvia; Sambuceti, Gianmario; Pertile, Grazia; Lanzani, Guglielmo; Benfenati, Fabio

    2017-06-01

    The degeneration of photoreceptors in the retina is one of the major causes of adult blindness in humans. Unfortunately, no effective clinical treatments exist for the majority of retinal degenerative disorders. Here we report on the fabrication and functional validation of a fully organic prosthesis for long-term in vivo subretinal implantation in the eye of Royal College of Surgeons rats, a widely recognized model of retinitis pigmentosa. Electrophysiological and behavioural analyses reveal a prosthesis-dependent recovery of light sensitivity and visual acuity that persists up to 6-10 months after surgery. The rescue of the visual function is accompanied by an increase in the basal metabolic activity of the primary visual cortex, as demonstrated by positron emission tomography imaging. Our results highlight the possibility of developing a new generation of fully organic, highly biocompatible and functionally autonomous photovoltaic prostheses for subretinal implants to treat degenerative blindness.

  8. Optomechanical Control of Quantum Yield in Trans-Cis Ultrafast Photoisomerization of a Retinal Chromophore Model.

    Science.gov (United States)

    Valentini, Alessio; Rivero, Daniel; Zapata, Felipe; García-Iriepa, Cristina; Marazzi, Marco; Palmeiro, Raúl; Fdez Galván, Ignacio; Sampedro, Diego; Olivucci, Massimo; Frutos, Luis Manuel

    2017-03-27

    The quantum yield of a photochemical reaction is one of the most fundamental quantities in photochemistry, as it measures the efficiency of the transduction of light energy into chemical energy. Nature has evolved photoreceptors in which the reactivity of a chromophore is enhanced by its molecular environment to achieve high quantum yields. The retinal chromophore sterically constrained inside rhodopsin proteins represents an outstanding example of such a control. In a more general framework, mechanical forces acting on a molecular system can strongly modify its reactivity. Herein, we show that the exertion of tensile forces on a simplified retinal chromophore model provokes a substantial and regular increase in the trans-to-cis photoisomerization quantum yield in a counterintuitive way, as these extension forces facilitate the formation of the more compressed cis photoisomer. A rationale for the mechanochemical effect on this photoisomerization mechanism is also proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Loss of Ikbkap Causes Slow, Progressive Retinal Degeneration in a Mouse Model of Familial Dysautonomia.

    Science.gov (United States)

    Ueki, Yumi; Ramirez, Grisela; Salcedo, Ernesto; Stabio, Maureen E; Lefcort, Frances

    2016-01-01

    Familial dysautonomia (FD) is an autosomal recessive congenital neuropathy that is caused by a mutation in the gene for inhibitor of kappa B kinase complex-associated protein ( IKBKAP ). Although FD patients suffer from multiple neuropathies, a major debilitation that affects their quality of life is progressive blindness. To determine the requirement for Ikbkap in the developing and adult retina, we generated Ikbkap conditional knockout (CKO) mice using a TUBA1a promoter-Cre ( Tα1-Cre ). In the retina, Tα1-Cre expression is detected predominantly in retinal ganglion cells (RGCs). At 6 months, significant loss of RGCs had occurred in the CKO retinas, with the greatest loss in the temporal retina, which is the same spatial phenotype observed in FD, Leber hereditary optic neuropathy, and dominant optic atrophy. Interestingly, the melanopsin-positive RGCs were resistant to degeneration. By 9 months, signs of photoreceptor degeneration were observed, which later progressed to panretinal degeneration, including RGC and photoreceptor loss, optic nerve thinning, Müller glial activation, and disruption of layers. Taking these results together, we conclude that although Ikbkap is not required for normal development of RGCs, its loss causes a slow, progressive RGC degeneration most severely in the temporal retina, which is later followed by indirect photoreceptor loss and complete retinal disorganization. This mouse model of FD is not only useful for identifying the mechanisms mediating retinal degeneration, but also provides a model system in which to attempt to test therapeutics that may mitigate the loss of vision in FD patients.

  10. Optical imaging of oxidative stress in retinitis pigmentosa (RP) in rodent model

    Science.gov (United States)

    Ghanian, Zahra; Maleki, Sepideh; Gopalakrishnan, Sandeep; Sepehr, Reyhaneh; Eells, Janis T.; Ranji, Mahsa

    2013-02-01

    Oxidative stress (OS), which increases during retinal degenerative disorders, contributes to photoreceptor cell loss. The objective of this study was to investigate the changes in the metabolic state of the eye tissue in rodent models of retinitis pigmentosa by using the cryofluorescence imaging technique. The mitochondrial metabolic coenzymes NADH and FADH2 are autofluorescent and can be monitored without exogenous labels using optical techniques. The NADH redox ratio (RR), which is the ratio of the fluorescence intensity of these fluorophores (NADH/FAD), was used as a quantitative diagnostic marker. The NADH RR was examined in an established rodent model of retinitis pigmentosa (RP), the P23H rat, and compared to that of control Sprague-Dawley (SD) rats and P23H NIR treated rats. Our results demonstrated 24% decrease in the mean NADH RR of the eyes from P23H transgenic rats compared to normal rats and 20% increase in the mean NADH RR of the eyes from the P23H NIR treated rats compared to P23H non-treated rats.

  11. Optical imaging of mitochondrial redox state in rodent model of retinitis pigmentosa

    Science.gov (United States)

    Maleki, Sepideh; Gopalakrishnan, Sandeep; Ghanian, Zahra; Sepehr, Reyhaneh; Schmitt, Heather; Eells, Janis; Ranji, Mahsa

    2013-01-01

    Oxidative stress (OS) and mitochondrial dysfunction contribute to photoreceptor cell loss in retinal degenerative disorders. The metabolic state of the retina in a rodent model of retinitis pigmentosa (RP) was investigated using a cryo-fluorescence imaging technique. The mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent and can be monitored without exogenous labels using optical techniques. The cryo-fluorescence redox imaging technique provides a quantitative assessment of the metabolism. More specifically, the ratio of the fluorescence intensity of these fluorophores (NADH/FAD), the NADH redox ratio (RR), is a marker of the metabolic state of the tissue. The NADH RR and retinal function were examined in an established rodent model of RP, the P23H rat compared to that of nondystrophic Sprague-Dawley (SD) rats. The NADH RR mean values were 1.11±0.03 in the SD normal and 0.841±0.01 in the P23H retina, indicating increased OS in the P23H retina. Electroretinographic data revealed a significant reduction in photoreceptor function in P23H animals compared to SD nozrmal rats. Thus, cryo-fluorescence redox imaging was used as a quantitative marker of OS in eyes from transgenic rats and demonstrated that alterations in the oxidative state of eyes occur during the early stages of RP.

  12. Ghrelin Attenuates Retinal Neuronal Autophagy and Apoptosis in an Experimental Rat Glaucoma Model.

    Science.gov (United States)

    Zhu, Ke; Zhang, Meng-Lu; Liu, Shu-Ting; Li, Xue-Yan; Zhong, Shu-Min; Li, Fang; Xu, Ge-Zhi; Wang, Zhongfeng; Miao, Yanying

    2017-12-01

    Ghrelin, a natural ligand for the growth hormone secretagogue receptor type 1a (GHSR-1a), may protect retinal neurons against glaucomatous injury. We therefore characterized the underlying mechanism of the ghrelin/GHSR-1a-mediated neuroprotection with a rat chronic intraocular hypertension (COH) model. The rat COH model was produced by blocking episcleral veins. A combination of immunohistochemistry, Western blot, TUNEL assay, and retrograde labeling of retinal ganglion cells (RGCs) was used. Elevation of intraocular pressure induced a significant increase in ghrelin and GHSR-1a expression in retinal cells, including RGCs and Müller cells. Western blot confirmed that the protein levels of ghrelin exhibited a transient upregulation at week 2 after surgery (G2w), while the GHSR-1a protein levels were maintained at high levels from G2w to G4w. In COH retinas, the ratio of LC3-II/LC-I and beclin1, two autophagy-related proteins, were increased from G1w to G4w, and the cleavage product of caspase3, an apoptotic executioner, was detected from G2w to G4w. Intraperitoneal injection of ghrelin significantly increased the number of surviving RGCs; inhibited the changes of LC3-II/LC-I, beclin1, and the cleavage products of caspase3; and reduced the number of TUNEL-positive cells in COH retinas. Ghrelin treatment also reversed the decreased levels of p-Akt and p-mTOR, upregulated GHSR-1a protein levels, and attenuated glial fibrillary acidic protein levels in COH retinas. All these results suggest that ghrelin may provide neuroprotective effect in COH retinas through activating ghrelin/GHSR-1a system, which was mediated by inhibiting retinal autophagy, ganglion cell apoptosis, and Müller cell gliosis.

  13. Activation of muscarinic receptors protects against retinal neurons damage and optic nerve degeneration in vitro and in vivo models.

    Science.gov (United States)

    Tan, Pan-Pan; Yuan, Hai-Hong; Zhu, Xu; Cui, Yong-Yao; Li, Hui; Feng, Xue-Mei; Qiu, Yu; Chen, Hong-Zhuan; Zhou, Wei

    2014-03-01

    Muscarinic acetylcholine receptor agonist pilocarpine reduces intraocular pressure (IOP) of glaucoma mainly by stimulating ciliary muscle contraction and then increasing aqueous outflow. It is of our great interest to know whether pilocarpine has the additional properties of retinal neuroprotection independent of IOP lowering in vitro and in vivo models. In rat primary retinal cultures, cell viability was measured using an MTT assay and the trypan blue exclusion method, respectively. Retinal ganglion cells (RGCs) were identified by immunofluorescence and quantified by flow cytometry. For the in vivo study, the retinal damage after retinal ischemia/reperfusion injury in rats was evaluated by histopathological study using hematoxylin and eosin staining, transmission electron microscopy, and immunohistochemical study on cleaved caspase-3, caspase-3, and ChAT. Pretreatment of pilocarpine attenuated glutamate-induced neurotoxicity of primary retinal neurons in a dose-dependent manner. Protection of pilocarpine in both retinal neurons and RGCs was largely abolished by the nonselective muscarinic receptor antagonist atropine and the M1-selective muscarinic receptor antagonist pirenzepine. After ischemia/reperfusion injury in retina, the inner retinal degeneration occurred including ganglion cell layer thinning and neuron lost, and the optic nerve underwent vacuolar changes. These degenerative changes were significantly lessened by topical application of 2% pilocarpine. In addition, the protective effect of pilocarpine on the ischemic rat retina was favorably reflected by downregulating the expression of activated apoptosis marker cleaved caspase-3 and caspase-3 and upregulating the expression of cholinergic cell marker ChAT. Taken together, this highlights pilocarpine through the activation of muscarinic receptors appear to afford significant protection against retinal neurons damage and optic nerve degeneration at clinically relevant concentrations. These data also

  14. Platelet-derived growth factor (PDGF)-C inhibits neuroretinal apoptosis in a murine model of focal retinal degeneration.

    Science.gov (United States)

    Wang, Yujuan; Abu-Asab, Mones S; Yu, Cheng-Rong; Tang, Zhongshu; Shen, Defen; Tuo, Jingsheng; Li, Xuri; Chan, Chi-Chao

    2014-06-01

    Platelet-derived growth factor (PDGF)-C is a member of the PDGF family and is critical for neuronal survival in the central nervous system. We studied the possible survival and antiapoptotic effects of PDGF-C on focal retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) on C57BL/6N [Crb1(rd8)] (DKO rd8) background mice, a model for progressive and focal retinal degeneration. We found no difference in transcript and protein expression of PDGF-C in the retina between DKO rd8 mice and wild type (WT, C57BL/6N). Recombinant PDGF-CC protein (500 ng/eye) was injected intravitreally into the right eye of DKO rd8 mice with phosphate-buffered saline as controls into the left eye. The retinal effects of PDGF-C were assessed by fundoscopy, ocular histopathology, A2E levels, apoptotic molecule analysis, and direct flat mount retinal vascular labeling. We found that the PDGF-CC-treated eyes showed slower progression or attenuation of the focal retinal lesions, lesser photoreceptor and retinal pigment epithelial degeneration resulting in better-preserved photoreceptor structure. Lower expression of apoptotic molecules was detected in the PDGF-CC-treated eyes than in controls. In addition, no retinal neovascularization was observed after PDGF-CC treatment. Our results demonstrate that PDGF-C potently ameliorates photoreceptor degeneration via the suppression of apoptotic pathways without inducing retinal angiogenesis. The protective effects of PDGF-C suggest a novel alternative approach for potential age-related retinal degeneration treatment.

  15. A hybrid discrete-continuum mathematical model of pattern prediction in the developing retinal vasculature.

    Science.gov (United States)

    McDougall, S R; Watson, M G; Devlin, A H; Mitchell, C A; Chaplain, M A J

    2012-10-01

    Pathological angiogenesis has been extensively explored by the mathematical modelling community over the past few decades, specifically in the contexts of tumour-induced vascularisation and wound healing. However, there have been relatively few attempts to model angiogenesis associated with normal development, despite the availability of animal models with experimentally accessible and highly ordered vascular topologies: for example, growth and development of the vascular plexus layers in the murine retina. The current study aims to address this issue through the development of a hybrid discrete-continuum mathematical model of the developing retinal vasculature in neonatal mice that is closely coupled with an ongoing experimental programme. The model of the functional vasculature is informed by a range of morphological and molecular data obtained over a period of several days, from 6 days prior to birth to approximately 8 days after birth. The spatio-temporal formation of the superficial retinal vascular plexus (RVP) in wild-type mice occurs in a well-defined sequence. Prior to birth, astrocytes migrate from the optic nerve over the surface of the inner retina in response to a chemotactic gradient of PDGF-A, formed at an earlier stage by migrating retinal ganglion cells (RGCs). Astrocytes express a variety of chemotactic and haptotactic proteins, including VEGF and fibronectin (respectively), which subsequently induce endothelial cell sprouting and modulate growth of the RVP. The developing RVP is not an inert structure; however, the vascular bed adapts and remodels in response to a wide variety of metabolic and biomolecular stimuli. The main focus of this investigation is to understand how these interacting cellular, molecular, and metabolic cues regulate RVP growth and formation. In an earlier one-dimensional continuum model of astrocyte and endothelial migration, we showed that the measured frontal velocities of the two cell types could be accurately reproduced

  16. Dynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model.

    Science.gov (United States)

    Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo

    2012-11-13

    The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed.

  17. Trypsin digest protocol to analyze the retinal vasculature of a mouse model.

    Science.gov (United States)

    Chou, Jonathan C; Rollins, Stuart D; Fawzi, Amani A

    2013-06-13

    Trypsin digest is the gold standard method to analyze the retinal vasculature (1-5). It allows visualization of the entire network of complex three-dimensional retinal blood vessels and capillaries by creating a two-dimensional flat-mount of the interconnected vascular channels after digestion of the non-vascular components of the retina. This allows one to study various pathologic vascular changes, such as microaneurysms, capillary degeneration, and abnormal endothelial to pericyte ratios. However, the method is technically challenging, especially in mice, which have become the most widely available animal model to study the retina because of the ease of genetic manipulations (6,7). In the mouse eye, it is particularly difficult to completely remove the non-vascular components while maintaining the overall architecture of the retinal blood vessels. To date, there is a dearth of literature that describes the trypsin digest technique in detail in the mouse. This manuscript provides a detailed step-by-step methodology of the trypsin digest in mouse retina, while also providing tips on troubleshooting difficult steps.

  18. Bevacizumab treatment reduces retinal neovascularization in a mouse model of retinopathy of prematurity

    Institute of Scientific and Technical Information of China (English)

    Fei; Feng; Yan; Cheng; Qing-Huai; Liu

    2014-01-01

    ·AIM: To evaluate the effect of different bevacizumab concentrations on retinal neovascularization in a retinopathy of prematurity(ROP) mouse model.·METHODS: A total of 60 of C57BL/6 J mice were exposed to 75% ±2% oxygen from postnatal d7 to postnatal d12. Fifteen nonexposed mice served as negative controls(group A). On d12, 30 mice(group C)were injected with 2.5 μg intravitreal bevacizumab(IVB),30 mice(group D) were injected with 1.25 μg IVB in one eye. The contralateral eyes were injected with balanced salt solution(BSS)(control group =group B). The adenosine diphosphatase(ADPase) histochemical technique was used for retinal flat mount to assess the oxygen-induced changes of retinal vessels.Neovascularization was quantified by counting the endothelial cell proliferation on the vitreal side of the inner limiting membrane of the retina. Histological changes were examined by light microscopy. The mRNA levels of vascular endothelial growth factor(VEGF) were quantified by Real-time PCR. Western-blotting analysis was performed to examine the expression of P-VEGFR.· RESULTS: Comparing with the control group B,regular distributions and reduced tortuosity of vessels were observed in our retinal flat mounts in groups C and D. The endothelial cell count per histological section was lower in groups C(P <0.0001) and D(P <0.0001) compared with the control group B. Histological evaluation showed no retinal toxicity in any group. In all oxygen treated groups VEGF mRNA expression was significantly increased as compared to age-matched controls. No significant change in VEGF mRNA expression could be achieved in either of the treatments or the oxygen controls. The results of the Western blot were consistent with that of the Real-time PCR analysis.·CONCLUSION: An intravitreal injection of bevacizumab is able to reduce angioproliferative retinopathy in a mouse model for oxygen-induced retinopathy.

  19. Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance.

    Science.gov (United States)

    Guidoboni, Giovanna; Harris, Alon; Cassani, Simone; Arciero, Julia; Siesky, Brent; Amireskandari, Annahita; Tobe, Leslie; Egan, Patrick; Januleviciene, Ingrida; Park, Joshua

    2014-05-29

    This study investigates the relationship between intraocular pressure (IOP) and retinal hemodynamics and predicts how arterial blood pressure (BP) and blood flow autoregulation (AR) influence this relationship. A mathematical model is developed to simulate blood flow in the central retinal vessels and retinal microvasculature as current flowing through a network of resistances and capacitances. Variable resistances describe active and passive diameter changes due to AR and IOP. The model is validated by using clinically measured values of retinal blood flow and velocity. The model simulations for six theoretical patients with high, normal, and low BP (HBP-, NBP-, LBP-) and functional or absent AR (-wAR, -woAR) are compared with clinical data. The model predicts that NBPwAR and HBPwAR patients can regulate retinal blood flow (RBF) as IOP varies between 15 and 23 mm Hg and between 23 and 29 mm Hg, respectively, whereas LBPwAR patients do not adequately regulate blood flow if IOP is 15 mm Hg or higher. Hemodynamic alterations would be noticeable only if IOP changes occur outside of the regulating range, which, most importantly, depend on BP. The model predictions are consistent with clinical data for IOP reduction via surgery and medications and for cases of induced IOP elevation. The theoretical model results suggest that the ability of IOP to induce noticeable changes in retinal hemodynamics depends on the levels of BP and AR of the individual. These predictions might help to explain the inconsistencies found in the clinical literature concerning the relationship between IOP and retinal hemodynamics. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  20. Protective effects of Erigeron breviscapus Hand.- Mazz. (EBHM) extract in retinal neurodegeneration models.

    Science.gov (United States)

    Zhu, Jingyuan; Chen, Li; Qi, Yun; Feng, Jing; Zhu, Li; Bai, Yujing; Wu, Huijuan

    2018-01-01

    To investigate the neuroprotective effects of scutellarin, an active component of the multifunctional traditional Chinese herb Erigeron breviscapus (vant.) Hand.-Mazz. (EBHM), which has been used as a neuroprotective therapy for cerebrovascular diseases. We performed the experiments using in vitro and in vivo models of retinal neurodegeneration. In the in vitro experiments, we exposed BV-2 cells to low oxygen levels in an incubator for 24 and 48 h to generate hypoxia models. We then treated these cells with scutellarin at concentrations of 2, 10, and 50 µM. Cell viability was measured using an enzyme-linked immunosorbent assay (ELISA). The levels of the components of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome signaling pathway, including NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cleaved caspase-1, interleukin-18 (IL-18), and IL-1β were analyzed using western blots and ELISAs. In the in vivo study, we raised the intraocular pressure of Brown Norway rats to 60 mmHg for 30 min to generate a high intraocular pressure (HIOP) model, that is, an acute glaucoma model. The rats were then treated with scutellarin via oral gavage for 2 consecutive weeks. The relevant components of the NLRP3 inflammasome signaling pathway were analyzed with western blots and ELISAs. Retinal ganglion cells (RGCs) were retrogradely labeled using 4% Fluoro-Gold, and then the numbers of cells were calculated. Retinal microglial cells were labeled using immunofluorescence, and then the morphological changes were observed. In the in vitro cell viability experiments, 50 µM scutellarin statistically significantly enhanced the viability rate when compared to 2 µM and 10 µM scutellarin (hypoxia + 50 µM EBHM group: 94.01±2.130% and 86.02±2.520% after 24 and 48 h, respectively; hypoxia model group: 74.98±3.860% and 64.41±4.890% after 24 and 48 h, respectively; for all

  1. Protective effects of Erigeron breviscapus Hand.– Mazz. (EBHM) extract in retinal neurodegeneration models

    Science.gov (United States)

    Zhu, Jingyuan; Chen, Li; Qi, Yun; Feng, Jing; Zhu, Li; Bai, Yujing

    2018-01-01

    Purpose To investigate the neuroprotective effects of scutellarin, an active component of the multifunctional traditional Chinese herb Erigeron breviscapus (vant.) Hand.-Mazz. (EBHM), which has been used as a neuroprotective therapy for cerebrovascular diseases. We performed the experiments using in vitro and in vivo models of retinal neurodegeneration. Methods In the in vitro experiments, we exposed BV-2 cells to low oxygen levels in an incubator for 24 and 48 h to generate hypoxia models. We then treated these cells with scutellarin at concentrations of 2, 10, and 50 µM. Cell viability was measured using an enzyme-linked immunosorbent assay (ELISA). The levels of the components of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome signaling pathway, including NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cleaved caspase-1, interleukin-18 (IL-18), and IL-1β were analyzed using western blots and ELISAs. In the in vivo study, we raised the intraocular pressure of Brown Norway rats to 60 mmHg for 30 min to generate a high intraocular pressure (HIOP) model, that is, an acute glaucoma model. The rats were then treated with scutellarin via oral gavage for 2 consecutive weeks. The relevant components of the NLRP3 inflammasome signaling pathway were analyzed with western blots and ELISAs. Retinal ganglion cells (RGCs) were retrogradely labeled using 4% Fluoro-Gold, and then the numbers of cells were calculated. Retinal microglial cells were labeled using immunofluorescence, and then the morphological changes were observed. Results In the in vitro cell viability experiments, 50 µM scutellarin statistically significantly enhanced the viability rate when compared to 2 µM and 10 µM scutellarin (hypoxia + 50 µM EBHM group: 94.01±2.130% and 86.02±2.520% after 24 and 48 h, respectively; hypoxia model group: 74.98±3.860% and 64.41±4.890% after 24 and 48 h

  2. Gnotobiotic mouse model's contribution to understanding host-pathogen interactions

    Czech Academy of Sciences Publication Activity Database

    Kubelková, K.; Benuchová, M.; Kozáková, Hana; Šinkora, Marek; Kročová, Z.; Pejchal, J.; Macela, A.

    2016-01-01

    Roč. 73, č. 20 (2016), s. 3961-3969 ISSN 1420-682X R&D Projects: GA ČR GA15-02274S Institutional support: RVO:61388971 Keywords : Germ- free model * Gnotobiology * Host-pathogen interaction Subject RIV: EC - Immunology Impact factor: 5.788, year: 2016

  3. Proliferative vitreo-retinal disorders: experimental models in vivo and in vitro.

    Science.gov (United States)

    Martini, B

    1992-01-01

    The aim of the present thesis was to develop, refine, and assess experimental models for the study of proliferative vitreo-retinal disorders. An intravitreal injection of a colloidal solution of microparticles was used in the primate eye to produce pathologic changes including intraocular cell invasion, cell proliferation, neovascularization, collagen synthesis, and tractional retinal detachment. In a separate primate model for laser-induced subretinal neovascularization, the origin and the occurrence of macrophages was evaluated. Examinations were performed using ophthalmoscopy, slit-lamp microscopy, light microscopy, and transmission electron microscopy. Cell cultures were employed to study the effects of vitreous humor and macrophages on the proliferation of cultured retinal pigment epithelial (RPE) cells and cultured fibroblasts using a Coulter counter. Morphologic changes were documented by phase micrography. A quantitative estimation of the extracellular matrix deposition of fibrous proteins by macrophage-modulated RPE cells as well as by vitreous-modulated RPE cells was done using enzymatic digestion and radioactive labeling techniques. A qualitative analysis of the types of collagen that was deposited in the extracellular matrices by vitreous modulated cultures was also made using indirect immunofluorescence. Using a newly developed RPE cell specific monoclonal antibody, the avidin-biotin-peroxidase labeling technique was finally employed to test the phenotypic epitope expression of macrophage-modulated and non-modulated RPE cells. A new experimental in vivo model for pathologic changes that characterize proliferative vitreo-retinal disorders was developed in the primate eye. In the model for laser-induced subretinal neovascularization, macrophages were shown to be principally recruited from the systemic circulation. Using cell cultures, it was found that both macrophage-conditioned medium and vitreous humor, separately or combined, exert mitogenic effects

  4. A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development

    Directory of Open Access Journals (Sweden)

    Sugimoto Masahiko

    2010-07-01

    Full Text Available Abstract Background Development and maintenance of the blood-brain and blood-retinal barrier is critical for the homeostasis of brain and retinal tissue. Despite decades of research our knowledge of the formation and maintenance of the blood-brain (BBB and blood-retinal (BRB barrier is very limited. We have established an in vivo model to study the development and maintenance of these barriers by generating a transgenic zebrafish line that expresses a vitamin D-binding protein fused with enhanced green fluorescent protein (DBP-EGFP in blood plasma, as an endogenous tracer. Results The temporal establishment of the BBB and BRB was examined using this transgenic line and the results were compared with that obtained by injection of fluorescent dyes into the sinus venosus of embryos at various stages of development. We also examined the expression of claudin-5, a component of tight junctions during the first 4 days of development. We observed that the BBB of zebrafish starts to develop by 3 dpf, with expression of claudin-5 in the central arteries preceding it at 2 dpf. The hyaloid vasculature in the zebrafish retina develops a barrier function at 3 dpf, which endows the zebrafish with unique advantages for studying the BRB. Conclusion Zebrafish embryos develop BBB and BRB function simultaneously by 3 dpf, which is regulated by tight junction proteins. The Tg(l-fabp:DBP-EGFP zebrafish will have great advantages in studying development and maintenance of the blood-neural barrier, which is a new application for the widely used vertebrate model.

  5. Usher syndrome: animal models, retinal function of Usher proteins, and prospects for gene therapy

    Science.gov (United States)

    Williams, David S.

    2009-01-01

    Usher syndrome is a deafness-blindness disorder. The blindness occurs from a progressive retinal degeneration that begins after deafness and after the retina has developed. Three clinical subtypes of Usher syndrome have been identified, with mutations in any one of six different genes giving rise to type 1, in any one of three different genes to type 2, and in one identified gene causing Usher type 3. Mutant mice for most of the genes have been studied; while they have clear inner ear defects, retinal phenotypes are relatively mild and have been difficult to characterize. The retinal functions of the Usher proteins are still largely unknown. Protein binding studies have suggested many interactions among the proteins, and a model of interaction among all the proteins in the photoreceptor synapse has been proposed. However this model is not supported by localization data from some laboratories, or the indication of any synaptic phenotype in mutant mice. An earlier suggestion, based on patient pathologies, of Usher protein function in the photoreceptor cilium continues to gain support from immunolocalization and mutant mouse studies, which are consistent with Usher protein interaction in the photoreceptor ciliary/periciliary region. So far, the most characterized Usher protein is myosin VIIa. It is present in the apical RPE and photoreceptor ciliary/periciliary region, where it is required for organelle transport and clearance of opsin from the connecting cilium, respectively. Usher syndrome is amenable to gene replacement therapy, but also has some specific challenges. Progress in this treatment approach has been achieved by correction of mutant phenotypes in Myo7a-null mouse retinas, following lentiviral delivery of MYO7A. PMID:17936325

  6. Valproic acid prevents retinal degeneration in a murine model of normal tension glaucoma.

    Science.gov (United States)

    Kimura, Atsuko; Guo, Xiaoli; Noro, Takahiko; Harada, Chikako; Tanaka, Kohichi; Namekata, Kazuhiko; Harada, Takayuki

    2015-02-19

    Valproic acid (VPA) is widely used for treatment of epilepsy, mood disorders, migraines and neuropathic pain. It exerts its therapeutic benefits through modulation of multiple mechanisms including regulation of gamma-aminobutyric acid and glutamate neurotransmissions, activation of pro-survival protein kinases and inhibition of histone deacetylase. The evidence for neuroprotective properties associated with VPA is emerging. Herein, we investigated the therapeutic potential of VPA in a mouse model of normal tension glaucoma (NTG). Mice with glutamate/aspartate transporter gene deletion (GLAST KO mice) demonstrate progressive retinal ganglion cell (RGC) loss and optic nerve degeneration without elevated intraocular pressure, and exhibit glaucomatous pathology including glutamate neurotoxicity and oxidative stress in the retina. VPA (300mg/kg) or vehicle (PBS) was administered via intraperitoneal injection in GLAST KO mice daily for 2 weeks from the age of 3 weeks, which coincides with the onset of glaucomatous retinal degeneration. Following completion of the treatment period, the vehicle-treated GLAST KO mouse retina showed significant RGC death. Meanwhile, VPA treatment prevented RGC death and thinning of the inner retinal layer in GLAST KO mice. In addition, in vivo electrophysiological analyses demonstrated that visual impairment observed in vehicle-treated GLAST KO mice was ameliorated with VPA treatment, clearly establishing that VPA beneficially affects both histological and functional aspects of the glaucomatous retina. We found that VPA reduces oxidative stress induced in the GLAST KO retina and stimulates the cell survival signalling pathway associated with extracellular-signal-regulated kinases (ERK). This is the first study to report the neuroprotective effects of VPA in an animal model of NTG. Our findings raise intriguing possibilities that the widely prescribed drug VPA may be a novel candidate for treatment of glaucoma. Copyright © 2015 Elsevier

  7. Characterization of Retinal Vascular and Neural Damage in a Novel Model of Diabetic Retinopathy.

    Science.gov (United States)

    Weerasekera, Lakshini Y; Balmer, Lois A; Ram, Ramesh; Morahan, Grant

    2015-06-01

    Diabetic retinopathy (DR) is a major cause of blindness globally. Investigating the underlying mechanisms of DR would be aided by a suitable mouse model that developed key features seen in the human disease, and did so without carrying genetic modifications. This study was undertaken to produce such a model. Our panel of Collaborative Cross strains was screened for DR-like features after induction of diabetes by intravenous injection with alloxan or streptozotocin. Both flat-mounted whole-retina and histologic sections were studied for the presence of retinal lesions. Progression of DR was also studied by histologic examination of the retinal vascular and neural structure at various time points after diabetes onset. In addition, microarray investigations were conducted on retinas from control and diabetic mice. Features of DR such as degenerated pericytes, acellular capillaries, minor vascular proliferation, gliosis of Müller cells, and loss of ganglion cells were noted as early as day 7 in some mice. These lesions became more evident with time. After 21 days of diabetes, severe vascular proliferation, microaneurysms, preretinal damage, increased Müller cell gliosis, and damage to the outer retina were all obvious. Microarray studies found significant differential expression of multiple genes known to be involved in DR. The FOT_FB strain provides a useful model to investigate the pathogenesis of DR and to develop treatments for this vision-threatening disease.

  8. Modelling within-host spatiotemporal dynamics of invasive bacterial disease.

    Directory of Open Access Journals (Sweden)

    Andrew J Grant

    2008-04-01

    Full Text Available Mechanistic determinants of bacterial growth, death, and spread within mammalian hosts cannot be fully resolved studying a single bacterial population. They are also currently poorly understood. Here, we report on the application of sophisticated experimental approaches to map spatiotemporal population dynamics of bacteria during an infection. We analyzed heterogeneous traits of simultaneous infections with tagged Salmonella enterica populations (wild-type isogenic tagged strains [WITS] in wild-type and gene-targeted mice. WITS are phenotypically identical but can be distinguished and enumerated by quantitative PCR, making it possible, using probabilistic models, to estimate bacterial death rate based on the disappearance of strains through time. This multidisciplinary approach allowed us to establish the timing, relative occurrence, and immune control of key infection parameters in a true host-pathogen combination. Our analyses support a model in which shortly after infection, concomitant death and rapid bacterial replication lead to the establishment of independent bacterial subpopulations in different organs, a process controlled by host antimicrobial mechanisms. Later, decreased microbial mortality leads to an exponential increase in the number of bacteria that spread locally, with subsequent mixing of bacteria between organs via bacteraemia and further stochastic selection. This approach provides us with an unprecedented outlook on the pathogenesis of S. enterica infections, illustrating the complex spatial and stochastic effects that drive an infectious disease. The application of the novel method that we present in appropriate and diverse host-pathogen combinations, together with modelling of the data that result, will facilitate a comprehensive view of the spatial and stochastic nature of within-host dynamics.

  9. Two analytical models for evaluating performance of Gigabit Ethernet Hosts

    International Nuclear Information System (INIS)

    Salah, K.

    2006-01-01

    Two analytical models are developed to study the impact of interrupt overhead on operating system performance of network hosts when subjected to Gigabit network traffic. Under heavy network traffic, the system performance will be negatively affected due to interrupt overhead caused by incoming traffic. In particular, excessive latency and significant degradation in system throughput can be experienced. Also user application may livelock as the CPU power is mostly consumed by interrupt handling and protocol processing. In this paper we present and compare two analytical models that capture host behavior and evaluate its performance. The first model is based Markov processes and queuing theory, while the second, which is more accurate but more complex is a pure Markov process. For the most part both models give mathematically-equivalent closed-form solutions for a number of important system performance metrics. These metrics include throughput, latency and stability condition, CPU utilization of interrupt handling and protocol processing and CPU availability for user applications. The analysis yields insight into understanding and predicting the impact of system and network choices on the performance of interrupt-driven systems when subjected to light and heavy network loads. More, importantly, our analytical work can also be valuable in improving host performance. The paper gives guidelines and recommendations to address design and implementation issues. Simulation and reported experimental results show that our analytical models are valid and give a good approximation. (author)

  10. Dynamic complexities in a parasitoid-host-parasitoid ecological model

    International Nuclear Information System (INIS)

    Yu Hengguo; Zhao Min; Lv Songjuan; Zhu Lili

    2009-01-01

    Chaotic dynamics have been observed in a wide range of population models. In this study, the complex dynamics in a discrete-time ecological model of parasitoid-host-parasitoid are presented. The model shows that the superiority coefficient not only stabilizes the dynamics, but may strongly destabilize them as well. Many forms of complex dynamics were observed, including pitchfork bifurcation with quasi-periodicity, period-doubling cascade, chaotic crisis, chaotic bands with narrow or wide periodic window, intermittent chaos, and supertransient behavior. Furthermore, computation of the largest Lyapunov exponent demonstrated the chaotic dynamic behavior of the model

  11. Dynamic complexities in a parasitoid-host-parasitoid ecological model

    Energy Technology Data Exchange (ETDEWEB)

    Yu Hengguo [School of Mathematic and Information Science, Wenzhou University, Wenzhou, Zhejiang 325035 (China); Zhao Min [School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325027 (China)], E-mail: zmcn@tom.com; Lv Songjuan; Zhu Lili [School of Mathematic and Information Science, Wenzhou University, Wenzhou, Zhejiang 325035 (China)

    2009-01-15

    Chaotic dynamics have been observed in a wide range of population models. In this study, the complex dynamics in a discrete-time ecological model of parasitoid-host-parasitoid are presented. The model shows that the superiority coefficient not only stabilizes the dynamics, but may strongly destabilize them as well. Many forms of complex dynamics were observed, including pitchfork bifurcation with quasi-periodicity, period-doubling cascade, chaotic crisis, chaotic bands with narrow or wide periodic window, intermittent chaos, and supertransient behavior. Furthermore, computation of the largest Lyapunov exponent demonstrated the chaotic dynamic behavior of the model.

  12. Action spectrum for photochemical retinal pigment epithelium (RPE) disruption in an in vivo monkey model

    Science.gov (United States)

    Zhang, Jie; Sabarinathan, Ranjani; Bubel, Tracy; Williams, David R.; Hunter, Jennifer J.

    2016-03-01

    Observations of RPE disruption and autofluorescence (AF) photobleaching at light levels below the ANSI photochemical maximum permissible exposure (MPE) (Morgan et al., 2008) indicates a demand to modify future light safety standards to protect the retina from harm. To establish safe light exposures, we measured the visible light action spectrum for RPE disruption in an in vivo monkey model with fluorescence adaptive optics retinal imaging. Using this high resolution imaging modality can provide insight into the consequences of light on a cellular level and allow for longitudinal monitoring of retinal changes. The threshold retinal radiant exposures (RRE) for RPE disruption were determined for 4 wavelengths (460, 488, 544, and 594 nm). The anaesthetized macaque retina was exposed to a uniform 0.5° × 0.5° field of view (FOV). Imaging within a 2° × 2° FOV was performed before, immediately after and at 2 week intervals for 10 weeks. At each wavelength, multiple RREs were tested with 4 repetitions each to determine the threshold for RPE disruption. For qualitative analysis, RPE disruption is defined as any detectable change from the pre exposure condition in the cell mosaic in the exposed region relative to the corresponding mosaic in the immediately surrounding area. We have tested several metrics to evaluate the RPE images obtained before and after exposure. The measured action spectrum for photochemical RPE disruption has a shallower slope than the current ANSI photochemical MPE for the same conditions and suggests that longer wavelength light is more hazardous than other measurements would suggest.

  13. Non-invasive stem cell therapy in a rat model for retinal degeneration and vascular pathology.

    Directory of Open Access Journals (Sweden)

    Shaomei Wang

    Full Text Available BACKGROUND: Retinitis pigmentosa (RP is characterized by progressive night blindness, visual field loss, altered vascular permeability and loss of central vision. Currently there is no effective treatment available except gene replacement therapy has shown promise in a few patients with specific gene defects. There is an urgent need to develop therapies that offer generic neuro-and vascular-protective effects with non-invasive intervention. Here we explored the potential of systemic administration of pluripotent bone marrow-derived mesenchymal stem cells (MSCs to rescue vision and associated vascular pathology in the Royal College Surgeons (RCS rat, a well-established animal model for RP. METHODOLOGY/PRINCIPAL FINDINGS: Animals received syngeneic MSCs (1x10(6 cells by tail vein at an age before major photoreceptor loss. PRINCIPAL RESULTS: both rod and cone photoreceptors were preserved (5-6 cells thick at the time when control animal has a single layer of photoreceptors remained; Visual function was significantly preserved compared with controls as determined by visual acuity and luminance threshold recording from the superior colliculus; The number of pathological vascular complexes (abnormal vessels associated with migrating pigment epithelium cells and area of vascular leakage that would ordinarily develop were dramatically reduced; Semi-quantitative RT-PCR analysis indicated there was upregulation of growth factors and immunohistochemistry revealed that there was an increase in neurotrophic factors within eyes of animals that received MSCs. CONCLUSIONS/SIGNIFICANCE: These results underscore the potential application of MSCs in treating retinal degeneration. The advantages of this non-invasive cell-based therapy are: cells are easily isolated and can be expanded in large quantity for autologous graft; hypoimmunogenic nature as allogeneic donors; less controversial in nature than other stem cells; can be readministered with minor discomfort

  14. Combining neuroprotectants in a model of retinal degeneration: no additive benefit.

    Directory of Open Access Journals (Sweden)

    Fabiana Di Marco

    Full Text Available The central nervous system undergoing degeneration can be stabilized, and in some models can be restored to function, by neuroprotective treatments. Photobiomodulation (PBM and dietary saffron are distinctive as neuroprotectants in that they upregulate protective mechanisms, without causing measurable tissue damage. This study reports a first attempt to combine the actions of PBM and saffron. Our working hypothesis was that the actions of PBM and saffron in protecting retinal photoreceptors, in a rat light damage model, would be additive. Results confirmed the neuroprotective potential of each used separately, but gave no evidence that their effects are additive. Detailed analysis suggests that there is actually a negative interaction between PBM and saffron when given simultaneously, with a consequent reduction of the neuroprotection. Specific testing will be required to understand the mechanisms involved and to establish whether there is clinical potential in combining neuroprotectants, to improve the quality of life of people affected by retinal pathology, such as age-related macular degeneration, the major cause of blindness and visual impairment in older adults.

  15. Objective and expert-independent validation of retinal image registration algorithms by a projective imaging distortion model.

    Science.gov (United States)

    Lee, Sangyeol; Reinhardt, Joseph M; Cattin, Philippe C; Abràmoff, Michael D

    2010-08-01

    Fundus camera imaging of the retina is widely used to diagnose and manage ophthalmologic disorders including diabetic retinopathy, glaucoma, and age-related macular degeneration. Retinal images typically have a limited field of view, and multiple images can be joined together using an image registration technique to form a montage with a larger field of view. A variety of methods for retinal image registration have been proposed, but evaluating such methods objectively is difficult due to the lack of a reference standard for the true alignment of the individual images that make up the montage. A method of generating simulated retinal images by modeling the geometric distortions due to the eye geometry and the image acquisition process is described in this paper. We also present a validation process that can be used for any retinal image registration method by tracing through the distortion path and assessing the geometric misalignment in the coordinate system of the reference standard. The proposed method can be used to perform an accuracy evaluation over the whole image, so that distortion in the non-overlapping regions of the montage components can be easily assessed. We demonstrate the technique by generating test image sets with a variety of overlap conditions and compare the accuracy of several retinal image registration models. Copyright 2010 Elsevier B.V. All rights reserved.

  16. A CTRP5 gene S163R mutation knock-in mouse model for late-onset retinal degeneration.

    Science.gov (United States)

    Chavali, Venkata R M; Khan, Naheed W; Cukras, Catherine A; Bartsch, Dirk-Uwe; Jablonski, Monica M; Ayyagari, Radha

    2011-05-15

    Late-onset retinal macular degeneration (L-ORD) is an autosomal dominant inherited disorder caused by a single missense mutation (S163R) in the CTRP5/C1QTNF5 protein. Early phenotypic features of L-ORD include: dark adaptation abnormalities, nyctalopia, and drusen deposits in the peripheral macular region. Apart from posterior segment abnormalities, these patients also develop abnormally long anterior lens zonules. In the sixth decade of life the rod and cone function declines, accompanied by electroretinogram (ERG) abnormalities. Some patients also develop choroidal neovascularization and glaucoma. In order to understand the disease pathology and mechanisms involved in retinal dystrophy, we generated a knock-in (Ctrp5(+/-)) mouse model carrying the disease-associated mutation in the mouse Ctrp5/C1QTNF5 gene. These mice develop slower rod-b wave recovery consistent with early dark adaptation abnormalities, accumulation of hyperautofluorescence spots, retinal pigment epithelium abnormalities, drusen, Bruch's membrane abnormalities, loss of photoreceptors, and retinal vascular leakage. The Ctrp5(+/-) mice, which have most of the pathological features of age-related macular degeneration, are unique and may serve as a valuable model both to understand the molecular pathology of late-onset retinal degeneration and to evaluate therapies.

  17. Retinitis Pigmentosa.

    Science.gov (United States)

    Carr, Ronald E.

    1979-01-01

    The author describes the etiology of retinitis pigmentosa, a visual dysfunction which results from progressive loss of the retinal photoreceptors. Sections address signs and symptoms, ancillary findings, heredity, clinical diagnosis, therapy, and research. (SBH)

  18. Retinitis Pigmentosa

    Science.gov (United States)

    ... Linked Retinoschisis (XLRS) X-Linked Retinitis Pigmentosa (XLRP) Usher Syndrome Other Retinal Diseases Glossary News & Research News & Research ... degenerate. Forms of RP and related diseases include Usher syndrome, Leber congenital amaurosis, and Bardet-Biedl syndrome, among ...

  19. Retinal Diseases

    Science.gov (United States)

    ... Linked Retinoschisis (XLRS) X-Linked Retinitis Pigmentosa (XLRP) Usher Syndrome Other Retinal Diseases Glossary News & Research News & Research ... central portion of the retina called the macula. Usher Syndrome Usher syndrome is an inherited condition characterized by ...

  20. Acute retinal ischemia caused by controlled low ocular perfusion pressure in a porcine model. Electrophysiological and histological characterisation

    DEFF Research Database (Denmark)

    Kyhn, Maria Voss; Warfvinge, Karin; Scherfig, Erik

    2009-01-01

    The purpose of this study was to establish, and characterize a porcine model of acute, controlled retinal ischemia. The controlled retinal ischemia was produced by clamping the ocular perfusion pressure (OPP) in the left eye to 5 mm Hg for 2 h. The OPP was defined as mean arterial blood pressure...... of the amplitudes obtained in the experimental, left eye, and the control, right eye. Quantitative histology was performed to measure the survival of ganglion cells, amacrine cells and horizontal cells 2-6 weeks after the ischemic insult. An OPP of 5 mm Hg for 2h induced significant reductions in the amplitudes...... the ischemic insult. This model seems to be suitable for investigations of therapeutic initiatives in diseases involving acute retinal ischemia....

  1. Effects of Antipsychotic Drugs Haloperidol and Clozapine on Visual Responses of Retinal Ganglion Cells in a Rat Model of Retinitis Pigmentosa.

    Science.gov (United States)

    Jensen, Ralph J

    2016-12-01

    In the P23H rat model of retinitis pigmentosa, the dopamine D2 receptor antagonists sulpiride and eticlopride appear to improve visual responses of retinal ganglion cells (RGCs) by increasing light sensitivity of RGCs and transforming abnormal, long-latency ON-center RGCs into OFF-center cells. Antipsychotic drugs are believed to mediate their therapeutic benefits by blocking D2 receptors. This investigation was conducted to test whether haloperidol (a typical antipsychotic drug) and clozapine (an atypical antipsychotic drug) could similarly alter the light responses of RGCs in the P23H rat retina. Extracellular recordings were made from RGCs in isolated P23H rat retinas. Responses of RGCs to flashes of light were evaluated before and during bath application of a drug. Both haloperidol and clozapine increased light sensitivity of RGCs on average by ∼0.3 log unit. For those ON-center RGCs that exhibit an abnormally long-latency response to the onset of a small spot of light, both haloperidol and clozapine brought out a short-latency OFF response and markedly reduced the long-latency ON response. The selective serotonin 5-HT2A antagonist MDL 100907 had similar effects on RGCs. The effects of haloperidol on light responses of RGCs can be explained by its D2 receptor antagonism. The effects of clozapine on light responses of RGCs on the other hand may largely be due to its 5-HT2A receptor antagonism. Overall, the results suggest that antipsychotic drugs may be useful in improving vision in patients with retinitis pigmentosa.

  2. A machine learning approach for automated assessment of retinal vasculature in the oxygen induced retinopathy model.

    Science.gov (United States)

    Mazzaferri, Javier; Larrivée, Bruno; Cakir, Bertan; Sapieha, Przemyslaw; Costantino, Santiago

    2018-03-02

    Preclinical studies of vascular retinal diseases rely on the assessment of developmental dystrophies in the oxygen induced retinopathy rodent model. The quantification of vessel tufts and avascular regions is typically computed manually from flat mounted retinas imaged using fluorescent probes that highlight the vascular network. Such manual measurements are time-consuming and hampered by user variability and bias, thus a rapid and objective method is needed. Here, we introduce a machine learning approach to segment and characterize vascular tufts, delineate the whole vasculature network, and identify and analyze avascular regions. Our quantitative retinal vascular assessment (QuRVA) technique uses a simple machine learning method and morphological analysis to provide reliable computations of vascular density and pathological vascular tuft regions, devoid of user intervention within seconds. We demonstrate the high degree of error and variability of manual segmentations, and designed, coded, and implemented a set of algorithms to perform this task in a fully automated manner. We benchmark and validate the results of our analysis pipeline using the consensus of several manually curated segmentations using commonly used computer tools. The source code of our implementation is released under version 3 of the GNU General Public License ( https://www.mathworks.com/matlabcentral/fileexchange/65699-javimazzaf-qurva ).

  3. A partial structural and functional rescue of a retinitis pigmentosa model with compacted DNA nanoparticles.

    Directory of Open Access Journals (Sweden)

    Xue Cai

    Full Text Available Previously we have shown that compacted DNA nanoparticles can drive high levels of transgene expression after subretinal injection in the mouse eye. Here we delivered compacted DNA nanoparticles containing a therapeutic gene to the retinas of a mouse model of retinitis pigmentosa. Nanoparticles containing the wild-type retinal degeneration slow (Rds gene were injected into the subretinal space of rds(+/- mice on postnatal day 5. Gene expression was sustained for up to four months at levels up to four times higher than in controls injected with saline or naked DNA. The nanoparticles were taken up into virtually all photoreceptors and mediated significant structural and biochemical rescue of the disease without histological or functional evidence of toxicity. Electroretinogram recordings showed that nanoparticle-mediated gene transfer restored cone function to a near-normal level in contrast to transfer of naked plasmid DNA. Rod function was also improved. These findings demonstrate that compacted DNA nanoparticles represent a viable option for development of gene-based interventions for ocular diseases and obviate major barriers commonly encountered with non-viral based therapies.

  4. A Framework for Modeling Competitive and Cooperative Computation in Retinal Processing

    Science.gov (United States)

    Moreno-Díaz, Roberto; de Blasio, Gabriel; Moreno-Díaz, Arminda

    2008-07-01

    The structure of the retina suggests that it should be treated (at least from the computational point of view), as a layered computer. Different retinal cells contribute to the coding of the signals down to ganglion cells. Also, because of the nature of the specialization of some ganglion cells, the structure suggests that all these specialization processes should take place at the inner plexiform layer and they should be of a local character, prior to a global integration and frequency-spike coding by the ganglion cells. The framework we propose consists of a layered computational structure, where outer layers provide essentially with band-pass space-time filtered signals which are progressively delayed, at least for their formal treatment. Specialization is supposed to take place at the inner plexiform layer by the action of spatio-temporal microkernels (acting very locally), and having a centerperiphery space-time structure. The resulting signals are then integrated by the ganglion cells through macrokernels structures. Practically all types of specialization found in different vertebrate retinas, as well as the quasilinear behavior in some higher vertebrates, can be modeled and simulated within this framework. Finally, possible feedback from central structures is considered. Though their relevance to retinal processing is not definitive, it is included here for the sake of completeness, since it is a formal requisite for recursiveness.

  5. Study of retinal neurodegeneration and maculopathy in diabetic Meriones shawi: A particular animal model with human-like macula.

    Science.gov (United States)

    Hammoum, Imane; Benlarbi, Maha; Dellaa, Ahmed; Szabó, Klaudia; Dékány, Bulcsú; Csaba, Dávid; Almási, Zsuzsanna; Hajdú, Rozina I; Azaiz, Rached; Charfeddine, Ridha; Lukáts, Ákos; Ben Chaouacha-Chekir, Rafika

    2017-09-01

    The purpose of this work was to evaluate a potentially useful animal model, Meriones shawi (M.sh)-developing metabolic X syndrome, diabetes and possessing a visual streak similar to human macula-in the study of diabetic retinopathy and diabetic macular edema (DME). Type 2 diabetes (T2D) was induced by high fat diet administration in M.sh. Body weights, blood glucose levels were monitored throughout the study. Diabetic retinal histopathology was evaluated 3 and 7 months after diabetes induction. Retinal thickness was measured, retinal cell types were labeled by immunohistochemistry and the number of stained elements were quantified. Apoptosis was determined with TUNEL assay. T2D induced progressive changes in retinal histology. A significant decrease of retinal thickness and glial reactivity was observed without an increase in apoptosis rate. Photoreceptor outer segment degeneration was evident, with a significant decrease in the number of all cones and M-cone subtype, but-surprisingly-an increase in S-cones. Damage of the pigment epithelium was also confirmed. A decrease in the number and labeling intensity of parvalbumin- and calretinin-positive amacrine cells and a loss of ganglion cells was detected. Other cell types showed no evident alterations. No DME-like condition was noticed even after 7 months. M.sh could be a useful model to study the evolution of diabetic retinal pathology and to identify the role of hypertension and dyslipidemia in the development of the reported alterations. Longer follow up would be needed to evaluate the potential use of the visual streak in modeling human macular diseases. © 2017 Wiley Periodicals, Inc.

  6. Models hosts for the study of oral candidiasis.

    Science.gov (United States)

    Junqueira, Juliana Campos

    2012-01-01

    Oral candidiasis is an opportunistic infection caused by yeast of the Candida genus, primarily Candida albicans. It is generally associated with predisposing factors such as the use of immunosuppressive agents, antibiotics, prostheses, and xerostomia. The development of research in animal models is extremely important for understanding the nature of the fungal pathogenicity, host interactions, and treatment of oral mucosal Candida infections. Many oral candidiasis models in rats and mice have been developed with antibiotic administration, induction of xerostomia, treatment with immunosuppressive agents, or the use of germ-free animals, and all these models has both benefits and limitations. Over the past decade, invertebrate model hosts, including Galleria mellonella, Caenorhabditis elegans, and Drosophila melanogaster, have been used for the study of Candida pathogenesis. These invertebrate systems offer a number of advantages over mammalian vertebrate models, predominantly because they allow the study of strain collections without the ethical considerations associated with studies in mammals. Thus, the invertebrate models may be useful to understanding of pathogenicity of Candida isolates from the oral cavity, interactions of oral microorganisms, and study of new antifungal compounds for oral candidiasis.

  7. In vitro activation of retinal cells: estimating location of stimulated cell by using a mathematical model

    Science.gov (United States)

    Ziv, Ofer R.; Rizzo, Joseph F., III; Jensen, Ralph J.

    2005-03-01

    Activation of neurons at different depths within the retina and at various eccentricities from the stimulating electrode will presumably influence the visual percepts created by a retinal prosthesis. With an electrical prosthesis, neurons will be activated in relation to the stimulating charge that impacts their cell membranes. The common model used to predict charge density is Coulomb's law, also known as the square law. We propose a modified model that can be used to predict neuronal depth that takes into account: (1) finite dimensions related to the position and size of the stimulating and return electrodes and (2) two-dimensional displacements of neurons with respect to the electrodes, two factors that are not considered in the square law model. We tested our model by using in vitro physiological threshold data that we had obtained previously for eight OFF-center brisk-transient rabbit retinal ganglion cells. For our most spatially dense threshold data (25 µm increments up to 100 µm from the cell body), our model estimated the depth of one RGC to be 76 ± 76 µm versus 87 ± 62 µm (median: SD) for the square law model, respectively. This difference was not statistically significant. For the seven other RGCs for which we had obtained threshold data up to 800 µm from the cell body, the estimate of the RGC depth (using data obtained along the X axis) was 96 ± 74 versus 20 ± 20 µm for the square law and our modified model, respectively. Although this difference was not statistically significant (Student t-test: p = 0.12), our model provided median values much closer to the estimated depth of these RGCs (Gt25 µm). This more realistic estimate of cell depth predicted by our model is not unexpected in this latter data set because of the more spatially distributed threshold data points that were evaluated. Our model has theoretical advantages over the traditional square law model under certain conditions, especially when considering neurons that are

  8. Protective effects of triptolide on retinal ganglion cells in a rat model of chronic glaucoma

    Directory of Open Access Journals (Sweden)

    Yang F

    2015-11-01

    Full Text Available Fan Yang, Dongmei Wang, Lingling Wu, Ying Li Ophthalmology Department, Peking University Third Hospital, Beijing, People’s Republic of China Purpose: To study the effects of triptolide, a Chinese herb extract, on retinal ganglion cells (RGCs in a rat model of chronic glaucoma.Methods: Eighty Wistar rats were randomly divided into triptolide group (n=40 and normal saline (NS group (n=40. Angle photocoagulation was used to establish the model of glaucoma, with right eye as laser treated eye and left eye as control eye. Triptolide group received triptolide intraperitoneally daily, while NS group received NS. Intraocular pressure (IOP, anti-CD11b immunofluorescent stain in retina and optic nerve, RGCs count with Nissel stain and microglia count with anti-CD11b immunofluorescence stain in retina flat mounts, retinal tumor necrosis factor (TNF-α mRNA detection by reverse transcription–polymerase chain reaction, and double immunofluorescent labeling with anti-TNF-α and anti-CD11b in retinal frozen section were performed.Results: Mean IOP of the laser treated eyes significantly increased 3 weeks after photocoagulation (P<0.05, with no statistical difference between the two groups (P>0.05. RGCs survival in the laser treated eyes was significantly improved in the triptolide group than the NS group (P<0.05. Microglia count in superficial retina of the laser treated eyes was significantly less in the triptolide group (30.40±4.90 than the NS group (35.06±7.59 (P<0.05. TNF-α mRNA expression in the retina of the laser treated eyes in the triptolide group decreased by 60% compared with that in the NS group (P<0.01. The double immunofluorescent labeling showed that TNF-α was mainly distributed around the microglia.Conclusion: Triptolide improved RGCs survival in this rat model of chronic glaucoma, which did not depend on IOP decrease but might be exerted by inhibiting microglia activities and reducing TNF-α secretion. Keywords: glaucoma, triptolide

  9. RNA interference gene therapy in dominant retinitis pigmentosa and cone-rod dystrophy mouse models caused by GCAP1 mutations

    Directory of Open Access Journals (Sweden)

    Li eJiang

    2014-04-01

    Full Text Available RNA interference (RNAi knockdown is an efficacious therapeutic strategy for silencing genes causative for dominant retinal dystrophies. To test this, we used self-complementary (sc AAV2/8 vector to develop an RNAi-based therapy in two dominant retinal degeneration mouse models. The allele-specific model expresses transgenic bovine GCAP1(Y99C establishing a rapid RP-like phenotype, whereas the nonallele-specific model expresses mouse GCAP1(L151F producing a slowly progressing cone/rod dystrophy (CORD. The late onset GCAP1(L151F-CORD mimics the dystrophy observed in human GCAP1-CORD patients. Subretinal injection of scAAV2/8 carrying shRNA expression cassettes specific for bovine or mouse GCAP1 showed strong expression at one week post-injection. In both allele-specific (GCAP1(Y99C-RP and nonallele-specific (GCAP1(L151F-CORD models of dominant retinal dystrophy, RNAi-mediated gene silencing enhanced photoreceptor survival, delayed onset of degeneration and improved visual function. Such results provide a proof of concept toward effective RNAi-based gene therapy mediated by scAAV2/8 for dominant retinal disease based on GCAP1 mutation. Further, nonallele-specific RNAi knockdown of GCAP1 may prove generally applicable toward the rescue of any human GCAP1-based dominant cone-rod dystrophy.

  10. The db/db mouse: a useful model for the study of diabetic retinal neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Patricia Bogdanov

    Full Text Available BACKGROUND: To characterize the sequential events that are taking place in retinal neurodegeneration in a murine model of spontaneous type 2 diabetes (db/db mouse. METHODS: C57BLKsJ-db/db mice were used as spontaneous type 2 diabetic animal model, and C57BLKsJ-db/+ mice served as the control group. To assess the chronological sequence of the abnormalities the analysis was performed at different ages (8, 16 and 24 weeks. The retinas were evaluated in terms of morphological and functional abnormalities [electroretinography (ERG]. Histological markers of neurodegeneration (glial activation and apoptosis were evaluated by immunohistochemistry. In addition glutamate levels and glutamate/aspartate transporter (GLAST expression were assessed. Furthermore, to define gene expression changes associated with early diabetic retinopathy a transcriptome analyses was performed at 8 week. Furthermore, an additional interventional study to lower blood glucose levels was performed. RESULTS: Glial activation was higher in diabetic than in non diabetic mice in all the stages (p<0.01. In addition, a progressive loss of ganglion cells and a significant reduction of neuroretinal thickness were also observed in diabetic mice. All these histological hallmarks of neurodegeneration were less pronounced at week 8 than at week 16 and 24. Significant ERG abnormalities were present in diabetic mice at weeks 16 and 24 but not at week 8. Moreover, we observed a progressive accumulation of glutamate in diabetic mice associated with an early downregulation of GLAST. Morphological and ERG abnormalities were abrogated by lowering blood glucose levels. Finally, a dysregulation of several genes related to neurotransmission and oxidative stress such as UCP2 were found at week 8. CONCLUSIONS: Our results suggest that db/db mouse reproduce the features of the neurodegenerative process that occurs in the human diabetic eye. Therefore, it seems an appropriate model for investigating the

  11. Retinal Vasculitis

    Science.gov (United States)

    Rosenbaum, James T.; Sibley, Cailin H.; Lin, Phoebe

    2016-01-01

    Purpose of review Ophthalmologists and rheumatologists frequently miscommunicate in consulting on patients with retinal vasculitis. This report seeks to establish a common understanding of the term, retinal vasculitis, and to review recent papers on this diagnosis. Recent findings 1) The genetic basis of some rare forms of retinal vascular disease have recently been described. Identified genes include CAPN5, TREX1, and TNFAIP3; 2) Behçet’s disease is a systemic illness that is very commonly associated with occlusive retinal vasculitis; 3) retinal imaging including fluorescein angiography and other newer imaging modalities has proven crucial to the identification and characterization of retinal vasculitis and its complications; 4) although monoclonal antibodies to IL-17A or IL-1 beta failed in trials for Behçet’s disease, antibodies to TNF alpha, either infliximab or adalimumab, have demonstrated consistent benefit in managing this disease. Interferon treatment and B cell depletion therapy via rituximab may be beneficial in certain types of retinal vasculitis. Summary Retinal vasculitis is an important entity for rheumatologists to understand. Retinal vasculitis associated with Behçet’s disease responds to monoclonal antibodies that neutralize TNF, but the many other forms of non-infectious retinal vasculitis may require alternate therapeutic management. PMID:26945335

  12. Rescue of retinal function by BDNF in a mouse model of glaucoma.

    Directory of Open Access Journals (Sweden)

    Luciano Domenici

    Full Text Available Vision loss in glaucoma is caused by progressive dysfunction of retinal ganglion cells (RGCs and optic nerve atrophy. Here, we investigated the effectiveness of BDNF treatment to preserve vision in a glaucoma experimental model. As an established experimental model, we used the DBA/2J mouse, which develops chronic intraocular pressure (IOP elevation that mimics primary open-angle glaucoma (POAG. IOP was measured at different ages in DBA/2J mice. Visual function was monitored using the steady-state Pattern Electroretinogram (P-ERG and visual cortical evoked potentials (VEP. RGC alterations were assessed using Brn3 immunolabeling, and confocal microscope analysis. Human recombinant BDNF was dissolved in physiological solution (0.9% NaCl; the effects of repeated intravitreal injections and topical eye BDNF applications were independently evaluated in DBA/2J mice with ocular hypertension. BDNF level was measured in retinal homogenate by ELISA and western blot. We found a progressive decline of P-ERG and VEP responses in DBA/2J mice between 4 and 7 months of age, in relationship with the development of ocular hypertension and the reduction of Brn3 immunopositive RGCs. Conversely, repeated intravitreal injections (BDNF concentration = 2 µg/µl, volume = 1 µl, for each injection; 1 injection every four days, three injections over two weeks and topical eye application of BDNF eye-drops (12 µg/µl, 5 µl eye-drop every 48 h for two weeks were able to rescue visual responses in 7 month DBA/2J mice. In particular, BDNF topical eye treatment recovered P-ERG and VEP impairment increasing the number of Brn3 immunopositive RGCs. We showed that BDNF effects were independent of IOP reduction. Thus, topical eye treatment with BDNF represents a promisingly safe and feasible strategy to preserve visual function and diminish RGC vulnerability to ocular hypertension.

  13. Coenzyme Q10 instilled as eye drops on the cornea reaches the retina and protects retinal layers from apoptosis in a mouse model of kainate-induced retinal damage.

    Science.gov (United States)

    Lulli, Matteo; Witort, Ewa; Papucci, Laura; Torre, Eugenio; Schipani, Christian; Bergamini, Christian; Dal Monte, Massimo; Capaccioli, Sergio

    2012-12-17

    To evaluate if coenzyme Q10 (CoQ10) can protect retinal ganglion cells (RGCs) from apoptosis and, when instilled as eye drops on the cornea, if it can reach the retina and exert its antiapoptotic activity in this area in a mouse model of kainate (KA)-induced retinal damage. Rat primary or cultured RGCs were subjected to glutamate (50 μM) or chemical hypoxia (Antimycin A, 200 μM) or serum withdrawal (FBS, 0.5%) in the presence or absence of CoQ10 (10 μM). Cell viability was evaluated by light microscopy and fluorescence-activated cell sorting analyses. Apoptosis was evaluated by caspase 3/7 activity and mitochondrion depolarization tetramethylrhodamine ethyl ester analysis. CoQ10 transfer to the retina following its instillation as eye drops on the cornea was quantified by HPLC. Retinal protection by CoQ10 (10 μM) eye drops instilled on the cornea was then evaluated in a mouse model of KA-induced excitotoxic retinal cell apoptosis by cleaved caspase 3 immunohistofluorescence, caspase 3/7 activity assays, and quantification of inhibition of RGC loss. CoQ10 significantly increased viable cells by preventing RGC apoptosis. Furthermore, when topically applied as eye drops to the cornea, it reached the retina, thus substantially increasing local CoQ10 concentration and protecting retinal layers from apoptosis. The ability of CoQ10 eye drops to protect retinal cells from apoptosis in the mouse model of KA-induced retinal damage suggests that topical CoQ10 may be evaluated in designing therapies for treating apoptosis-driven retinopathies.

  14. Model Hosting for continuous updating and transparent Water Resources Management

    Science.gov (United States)

    Jódar, Jorge; Almolda, Xavier; Batlle, Francisco; Carrera, Jesús

    2013-04-01

    Numerical models have become a standard tool for water resources management. They are required for water volume bookkeeping and help in decision making. Nevertheless, numerical models are complex and they can be used only by highly qualified technicians, which are often far from the decision makers. Moreover, they need to be maintained. That is, they require updating of their state, by assimilation of measurements, natural and anthropic actions (e.g., pumping and weather data), and model parameters. Worst, their very complexity implies that are they viewed as obscure and far, which hinders transparency and governance. We propose internet model hosting as an alternative to overcome these limitations. The basic idea is to keep the model hosted in the cloud. The model is updated as new data (measurements and external forcing) becomes available, which ensures continuous maintenance, with a minimal human cost (only required to address modelling problems). Internet access facilitates model use not only by modellers, but also by people responsible for data gathering and by water managers. As a result, the model becomes an institutional tool shared by water agencies to help them not only in decision making for sustainable management of water resources, but also in generating a common discussion platform. By promoting intra-agency sharing, the model becomes the common official position of the agency, which facilitates commitment in their adopted decisions regarding water management. Moreover, by facilitating access to stakeholders and the general public, the state of the aquifer and the impacts of alternative decisions become transparent. We have developed a tool (GAC, Global Aquifer Control) to address the above requirements. The application has been developed using Cloud Computing technologies, which facilitates the above operations. That is, GAC automatically updates the numerical models with the new available measurements, and then simulates numerous management options

  15. Analysis of the rdd locus in chicken: a model for human retinitis pigmentosa.

    Science.gov (United States)

    Burt, David W; Morrice, David R; Lester, Douglas H; Robertson, Graeme W; Mohamed, Moin D; Simmons, Ian; Downey, Louise M; Thaung, Caroline; Bridges, Leslie R; Paton, Ian R; Gentle, Mike; Smith, Jacqueline; Hocking, Paul M; Inglehearn, Chris F

    2003-04-30

    To identify the locus responsible for the blind mutation rdd (retinal dysplasia and degeneration) in chickens and to further characterise the rdd phenotype. The eyes of blind and sighted birds were subjected to ophthalmic, morphometric and histopathological examination to confirm and extend published observations. Electroretinography was used to determine age of onset. Birds were crossed to create pedigrees suitable for genetic mapping. DNA samples were obtained and subjected to a linkage search. Measurement of IOP, axial length, corneal diameter, and eye weight revealed no gross morphological changes in the rdd eye. However, on ophthalmic examination, rdd homozygotes have a sluggish pupillary response, atrophic pecten, and widespread pigmentary disturbance that becomes more pronounced with age. Older birds also have posterior subcapsular cataracts. At three weeks of age, homozygotes have a flat ERG indicating severe loss of visual function. Pathological examination shows thinning of the RPE, ONL, photoreceptors and INL, and attenuation of the ganglion cell layer. From 77 classified backcross progeny, 39 birds were blind and 38 sighted. The rdd mutation was shown to be sex-linked and not autosomal as previously described. Linkage analysis mapped the rdd locus to a small region of the chicken Z chromosome with homologies to human chromosomes 5q and 9p. Ophthalmic, histopathologic, and electrophysiological observations suggest rdd is similar to human recessive retinitis pigmentosa. Linkage mapping places rdd in a region homologous to human chromosomes 9p and 5q. Candidate disease genes or loci include PDE6A, WGN1, and USH2C. This is the first use of genetic mapping in a chicken model of human disease.

  16. Endothelin B receptors contribute to retinal ganglion cell loss in a rat model of glaucoma.

    Directory of Open Access Journals (Sweden)

    Alena Z Minton

    Full Text Available Glaucoma is an optic neuropathy, commonly associated with elevated intraocular pressure (IOP characterized by optic nerve degeneration, cupping of the optic disc, and loss of retinal ganglion cells which could lead to loss of vision. Endothelin-1 (ET-1 is a 21-amino acid vasoactive peptide that plays a key role in the pathogenesis of glaucoma; however, the receptors mediating these effects have not been defined. In the current study, endothelin B (ET(B receptor expression was assessed in vivo, in the Morrison's ocular hypertension model of glaucoma in rats. Elevation of IOP in Brown Norway rats produced increased expression of ET(B receptors in the retina, mainly in retinal ganglion cells (RGCs, nerve fiber layer (NFL, and also in the inner plexiform layer (IPL and inner nuclear layer (INL. To determine the role of ET(B receptors in neurodegeneration, Wistar-Kyoto wild type (WT and ET(B receptor-deficient (KO rats were subjected to retrograde labeling with Fluoro-Gold (FG, following which IOP was elevated in one eye while the contralateral eye served as control. IOP elevation for 4 weeks in WT rats caused an appreciable loss of RGCs, which was significantly attenuated in KO rats. In addition, degenerative changes in the optic nerve were greatly reduced in KO rats compared to those in WT rats. Taken together, elevated intraocular pressure mediated increase in ET(B receptor expression and its activation may contribute to a decrease in RGC survival as seen in glaucoma. These findings raise the possibility of using endothelin receptor antagonists as neuroprotective agents for the treatment of glaucoma.

  17. Effects of nuclear factor κB expression on retinal neovascularization and apoptosis in a diabetic retinopathy rat model

    Institute of Scientific and Technical Information of China (English)

    Ning; Jiang; Xiao-Long; Chen; Hong-Wei; Yang; Yu-Ru; Ma

    2015-01-01

    AIM: To investigate the expression and role of nuclear factor κB(NF-κB) in diabetic retinopathy(DR) and its relationship with neovascularization and retinal cell apoptosis. METHODS: A total of 80 male Wistar rats were randomly assigned to control(4, 8, 12 and 16 wk, n =10 in each group) and diabetes mellitus(DM) groups(4, 8, 12 and 16wk, n =10 in each group). A diabetic rat model was established by intraperitoneal injection of streptozotocin(60 mg/kg). After 4, 8, 12 and 16 wk, rats were sacrificed.Retinal layers and retinal neovascularization growth were stained with hematoxylin-eosin and examined under light microscopy. Cell apoptosis in the retina was detected by Td T-mediated d UTP nick end labeling, and NF-κB distribution and expression in the retina was determined using immunohistochemistry. RESULTS: DM model success rate up to 100%.Diabetes model at each time point after the experimental groupcompared with the control group, the blood glucose was significantly increased, decreased body weight, each time point showed significant differences compared with the control group(P <0.01). After 12 wk other pathological changes in the retina of diabetic rats were observed; after 16 wk, neovascularization were observed. After 1mo, retinal cell apoptosis was observed.Compared with the control group, NF-κB expression in the DM group significantly increased with disease duration.CONCLUSION: With the prolonging of DM progression,the expression NF-κB increases. NF-κB may be related to retinal cell apoptosis and neovascularization.

  18. Retinal vasculitis.

    Science.gov (United States)

    Abu El-Asrar, Ahmed M; Herbort, Carl P; Tabbara, Khalid F

    2005-12-01

    Retinal vasculitis is a sight-threatening intraocular inflammation affecting the retinal vessels. It may occur as an isolated ocular condition, as a manifestation of infectious or neoplastic disorders, or in association with a systemic inflammatory disease. The search for an underlying etiology should be approached in a multidisciplinary fashion based on a thorough history, review of systems, physical examination, and laboratory evaluation. Discrimination between infectious and noninfectious etiologies of retinal vasculitis is important because their treatment is different. This review is based on recently published articles on retinal vasculitis and deals with its clinical diagnosis, its link with systemic diseases, and its laboratory investigation.

  19. Enterococcus infection biology: lessons from invertebrate host models.

    Science.gov (United States)

    Yuen, Grace J; Ausubel, Frederick M

    2014-03-01

    The enterococci are commensals of the gastrointestinal tract of many metazoans, from insects to humans. While they normally do not cause disease in the intestine, they can become pathogenic when they infect sites outside of the gut. Recently, the enterococci have become important nosocomial pathogens, with the majority of human enterococcal infections caused by two species, Enterococcus faecalis and Enterococcus faecium. Studies using invertebrate infection models have revealed insights into the biology of enterococcal infections, as well as general principles underlying host innate immune defense. This review highlights recent findings on Enterococcus infection biology from two invertebrate infection models, the greater wax moth Galleria mellonella and the free-living bacteriovorous nematode Caenorhabditis elegans.

  20. Modelling the optical response of human retinal photoreceptors to plane wave illumination with the finite integration technique

    Science.gov (United States)

    Akhlagh Moayed, Alireza; Dang, Shannon; Ramahi, Omar M.; Bizheva, Kostadinka K.

    2009-02-01

    The early stages of ocular diseases such as Diabetic Retinopathy are manifested by morphological changes in retinal tissue occurring on cellular level. Therefore, a number of ophthalmic diseases can be diagnosed at an early stage by detecting spatial and temporal variations in the scattering profile of retinal tissue. It was recently demonstrated that, OCT can be used to probe the functional response of retinal photoreceptors to external light stimulation [1]-[3]. fUHROCT measures localized differential changes in the retina reflectivity over time resulting from external light stimulation of the retina. Currently the origins of the observed reflectivity changes are not well understood. However, due to the complex nature of retinal physiology using purely experimental approaches in this case is problematic. For example fUHROCT is sensitive to small changes in the refractive index of biological tissue which as demonstrated previously, can result from a number of processes such as membrane hyperpolarization, osmotic swelling, metabolic changes, etc. In this paper, we present a computational model of interaction between photoreceptor cells and optical plane wave based on the Finite Integration Technique (FIT).

  1. The Loss of Vacuolar Protein Sorting 11 (vps11) Causes Retinal Pathogenesis in a Vertebrate Model of Syndromic Albinism

    Science.gov (United States)

    Thomas, Jennifer L.; Vihtelic, Thomas S.; denDekker, Aaron D.; Willer, Gregory; Luo, Xixia; Murphy, Taylor R.; Gregg, Ronald G.; Hyde, David R.

    2011-01-01

    Purpose. To establish the zebrafish platinum mutant as a model for studying vision defects caused by syndromic albinism diseases such as Chediak-Higashi syndrome, Griscelli syndrome, and Hermansky-Pudlak syndrome (HPS). Methods. Bulked segregant analysis and candidate gene sequencing revealed that the zebrafish platinum mutation is a single-nucleotide insertion in the vps11 (vacuolar protein sorting 11) gene. Expression of vps11 was determined by RT-PCR and in situ hybridization. Mutants were analyzed for pigmentation defects and retinal disease by histology, immunohistochemistry, and transmission electron microscopy. Results. Phenocopy and rescue experiments determined that a loss of Vps11 results in the platinum phenotype. Expression of vps11 appeared ubiquitous during zebrafish development, with stronger expression in the developing retina and retinal pigmented epithelium (RPE). Zebrafish platinum mutants exhibited reduced pigmentation in the body and RPE; however, melanophore development, migration, and dispersion occurred normally. RPE, photoreceptors, and inner retinal neurons formed normally in zebrafish platinum mutants. However, a gradual loss of RPE, an absence of mature melanosomes, and the subsequent degradation of RPE/photoreceptor interdigitation was observed. Conclusions. These data show that Vps11 is not necessary for normal retinal development or initiation of melanin biosynthesis, but is essential for melanosome maturation and healthy maintenance of the RPE and photoreceptors. PMID:21330665

  2. Orally active multi-functional antioxidants are neuroprotective in a rat model of light-induced retinal damage.

    Directory of Open Access Journals (Sweden)

    James Randazzo

    Full Text Available Progression of age-related macular degeneration has been linked to iron dysregulation and oxidative stress that induce apoptosis of neural retinal cells. Since both antioxidants and chelating agents have been reported to reduce the progression of retinal lesions associated with AMD in experimental animals, the present study evaluates the ability of multi-functional antioxidants containing functional groups that can independently chelate redox metals and quench free radicals to protect the retina against light-induced retinal degeneration, a rat model of dry atrophic AMD.Proof of concept studies were conducted to evaluate the ability of 4-(5-hydroxypyrimidin-2-yl-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 4 and 4-(5-hydroxy-4,6-dimethoxypyrimidin-2-yl-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 8 to reduce retinal damage in 2-week dark adapted Wistar rats exposed to 1000 lx of light for 3 hours. Assessment of the oxidative stress markers 4- hydroxynonenal and nitrotyrosine modified proteins and Thioredoxin by ELISA and Western blots indicated that these compounds reduced the oxidative insult caused by light exposure. The beneficial antioxidant effects of these compounds in providing significant functional and structural protection were confirmed by electroretinography and quantitative histology of the retina.The present study suggests that multi-functional compounds may be effective candidates for preventive therapy of AMD.

  3. Lentiviral expression of retinal guanylate cyclase-1 (RetGC1 restores vision in an avian model of childhood blindness.

    Directory of Open Access Journals (Sweden)

    Melissa L Williams

    2006-06-01

    Full Text Available Leber congenital amaurosis (LCA is a genetically heterogeneous group of retinal diseases that cause congenital blindness in infants and children. Mutations in the GUCY2D gene that encodes retinal guanylate cyclase-1 (retGC1 were the first to be linked to this disease group (LCA type 1 [LCA1] and account for 10%-20% of LCA cases. These mutations disrupt synthesis of cGMP in photoreceptor cells, a key second messenger required for function of these cells. The GUCY1*B chicken, which carries a null mutation in the retGC1 gene, is blind at hatching and serves as an animal model for the study of LCA1 pathology and potential treatments in humans.A lentivirus-based gene transfer vector carrying the GUCY2D gene was developed and injected into early-stage GUCY1*B embryos to determine if photoreceptor function and sight could be restored to these animals. Like human LCA1, the avian disease shows early-onset blindness, but there is a window of opportunity for intervention. In both diseases there is a period of photoreceptor cell dysfunction that precedes retinal degeneration. Of seven treated animals, six exhibited sight as evidenced by robust optokinetic and volitional visual behaviors. Electroretinographic responses, absent in untreated animals, were partially restored in treated animals. Morphological analyses indicated there was slowing of the retinal degeneration.Blindness associated with loss of function of retGC1 in the GUCY1*B avian model of LCA1 can be reversed using viral vector-mediated gene transfer. Furthermore, this reversal can be achieved by restoring function to a relatively low percentage of retinal photoreceptors. These results represent a first step toward development of gene therapies for one of the more common forms of childhood blindness.

  4. Gene Expression Contributes to the Recent Evolution of Host Resistance in a Model Host Parasite System

    Directory of Open Access Journals (Sweden)

    Brian K. Lohman

    2017-09-01

    Full Text Available Heritable population differences in immune gene expression following infection can reveal mechanisms of host immune evolution. We compared gene expression in infected and uninfected threespine stickleback (Gasterosteus aculeatus from two natural populations that differ in resistance to a native cestode parasite, Schistocephalus solidus. Genes in both the innate and adaptive immune system were differentially expressed as a function of host population, infection status, and their interaction. These genes were enriched for loci controlling immune functions known to differ between host populations or in response to infection. Coexpression network analysis identified two distinct processes contributing to resistance: parasite survival and suppression of growth. Comparing networks between populations showed resistant fish have a dynamic expression profile while susceptible fish are static. In summary, recent evolutionary divergence between two vertebrate populations has generated population-specific gene expression responses to parasite infection, affecting parasite establishment and growth.

  5. Autophagy in retinal ganglion cells in a rhesus monkey chronic hypertensive glaucoma model.

    Directory of Open Access Journals (Sweden)

    Shuifeng Deng

    Full Text Available Primary open angle glaucoma (POAG is a neurodegenerative disease characterized by physiological intraocular hypertension that causes damage to the retinal ganglion cells (RGCs. In the past, RGC damage in POAG was suggested to have been attributed to RGC apoptosis. However, in the present study, we applied a model closer to human POAG through the use of a chronic hypertensive glaucoma model in rhesus monkeys to investigate whether another mode of progressive cell death, autophagy, was activated in the glaucomatous retinas. First, in the glaucomatous retinas, the levels of LC3B-II, LC3B-II/LC3B-I and Beclin 1 increased as demonstrated by Western blot analyses, whereas early or initial autophagic vacuoles (AVi and late or degraded autophagic vacuoles (AVd accumulated in the ganglion cell layer (GCL and in the inner plexiform layer (IPL as determined by transmission electron microscopy (TEM analysis. Second, lysosome activity and autophagosome-lysosomal fusion increased in the RGCs of the glaucomatous retinas, as demonstrated by Western blotting against lysosome associated membrane protein-1 (LAMP1 and double labeling against LC3B and LAMP1. Third, apoptosis was activated in the glaucomatous eyes with increased levels of caspase-3 and cleaved caspase-3 and an increased number of TUNEL-positive RGCs. Our results suggested that autophagy was activated in RGCs in the chronic hypertensive glaucoma model of rhesus monkeys and that autophagy may have potential as a new target for intervention in glaucoma treatment.

  6. Characterization of a spontaneously generated murine retinal pigmented epithelium cell line; a model for in vitro experiments

    International Nuclear Information System (INIS)

    Ranaei Pirmardan, Ehsan; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Mowla, Seyed Javad; Ezzati, Razie; Naseri, Marzieh

    2016-01-01

    Retinal pigmented epithelium (RPE), the outermost layer of the retina, has a key role in maintaining retinal cells’ functions. Severity of the culture of RPE cells has exerted many limitations to both in vitro and in vivo studies and its therapeutic applications. Therefore, establishment of RPE cell lines with high proliferative potential can considerably improve study of RPE cell biology. Here we report generation of a spontaneously immortalized murine RPE cell line in primary mouse RPE cell culture. Founded colonized cells were picked up and expression of RPE and retinal progenitor cells’ (RPC) markers were studied using immunocytochemistry (ICC). Emerged cells cultured over 35 passages and population doubling times in different serum concentrations were calculated. We also investigated the ability of cells for becoming transfected by calcium-phosphate method and for becoming infected by adeno-associated virus serotype 2 (AAV2) using flow cytometry. Data showed that the cobblestone constituent cells expressed RPE65, cytokeratin and ZO1 and moreover several progenitor markers such as Pax6, Sox2, Nestin and Chx10. It revealed that, despite primary RPE cells, the newly emerged cells were easily transfectable and were highly infectable when compared with HEK293T cells. Our data indicated that the emerged mouse RPE cell line pretended RPC-like phenotype and also simultaneously expressed RPE markers. It would be a promising model for leading studies on RPE and RPC cells and substantially confirmed the great RPE plasticity and its invaluable potential in research studies. - Highlights: • Isolation of a spontaneously generated retinal pigmented epithelium cell line is reported. • The cells express some of the retinal progenitor cell markers in addition to the RPE markers. • The aforesaid cell line is highly transfecable and considerably infectable by AAV2. • These results confirm the great RPE plasticity and its invaluable potential in research studies.

  7. Characterization of a spontaneously generated murine retinal pigmented epithelium cell line; a model for in vitro experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ranaei Pirmardan, Ehsan [Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Soheili, Zahra-Soheila [Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of); Samiei, Shahram [Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran (Iran, Islamic Republic of); Ahmadieh, Hamid [Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mowla, Seyed Javad [Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ezzati, Razie [Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of); Naseri, Marzieh [Department of Molecular Medicine, Faculty of Advanced Technology, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-10-01

    Retinal pigmented epithelium (RPE), the outermost layer of the retina, has a key role in maintaining retinal cells’ functions. Severity of the culture of RPE cells has exerted many limitations to both in vitro and in vivo studies and its therapeutic applications. Therefore, establishment of RPE cell lines with high proliferative potential can considerably improve study of RPE cell biology. Here we report generation of a spontaneously immortalized murine RPE cell line in primary mouse RPE cell culture. Founded colonized cells were picked up and expression of RPE and retinal progenitor cells’ (RPC) markers were studied using immunocytochemistry (ICC). Emerged cells cultured over 35 passages and population doubling times in different serum concentrations were calculated. We also investigated the ability of cells for becoming transfected by calcium-phosphate method and for becoming infected by adeno-associated virus serotype 2 (AAV2) using flow cytometry. Data showed that the cobblestone constituent cells expressed RPE65, cytokeratin and ZO1 and moreover several progenitor markers such as Pax6, Sox2, Nestin and Chx10. It revealed that, despite primary RPE cells, the newly emerged cells were easily transfectable and were highly infectable when compared with HEK293T cells. Our data indicated that the emerged mouse RPE cell line pretended RPC-like phenotype and also simultaneously expressed RPE markers. It would be a promising model for leading studies on RPE and RPC cells and substantially confirmed the great RPE plasticity and its invaluable potential in research studies. - Highlights: • Isolation of a spontaneously generated retinal pigmented epithelium cell line is reported. • The cells express some of the retinal progenitor cell markers in addition to the RPE markers. • The aforesaid cell line is highly transfecable and considerably infectable by AAV2. • These results confirm the great RPE plasticity and its invaluable potential in research studies.

  8. Penetration Testing Model for Web sites Hosted in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohamad Safuan Sulaiman; Siti Nurbahyah Hamdan; Saaidi Ismail; Mohd Fauzi Haris; Norzalina Nasiruddin; Raja Murzaferi Mokhtar

    2012-01-01

    Nuclear Malaysia web sites has been very crucial in providing important and useful information and services to the clients as well as the users worldwide. Furthermore, a web site is important as it reflects the organisation image. To ensure the integrity of the content of web site, a study has been made and a penetration testing model has been implemented to test the security of several web sites hosted at Nuclear Malaysia for malicious attempts. This study will explain how the security was tested in the detailed condition and measured. The result determined the security level and the vulnerability of several web sites. This result is important for improving and hardening the security of web sites in Nuclear Malaysia. (author)

  9. Regional Retinal Ganglion Cell Axon Loss in a Murine Glaucoma Model.

    Science.gov (United States)

    Schaub, Julie A; Kimball, Elizabeth C; Steinhart, Matthew R; Nguyen, Cathy; Pease, Mary E; Oglesby, Ericka N; Jefferys, Joan L; Quigley, Harry A

    2017-05-01

    To determine if retinal ganglion cell (RGC) axon loss in experimental mouse glaucoma is uniform in the optic nerve. Experimental glaucoma was induced for 6 weeks with a microbead injection model in CD1 (n = 78) and C57BL/6 (B6, n = 68) mice. From epoxy-embedded sections of optic nerve 1 to 2 mm posterior to the globe, total nerve area and regional axon density (axons/1600 μm2) were measured in superior, inferior, nasal, and temporal zones. Control eyes of CD1 mice have higher axon density and more total RGCs than control B6 mice eyes. There were no significant differences in control regional axon density in all mice or by strain (all P > 0.2, mixed model). Exposure to elevated IOP caused loss of RGC in both strains. In CD1 mice, axon density declined without significant loss of nerve area, while B6 mice had less density loss, but greater decrease in nerve area. Axon density loss in glaucoma eyes was not significantly greater in any region in either mouse strain (both P > 0.2, mixed model). In moderately damaged CD1 glaucoma eyes, and CD1 eyes with the greatest IOP elevation exposure, density loss differed by region (P = 0.05, P = 0.03, mixed model) with the greatest loss in the temporal and superior regions, while in severely injured B6 nerves superior loss was greater than inferior loss (P = 0.01, mixed model, Bonferroni corrected). There was selectively greater loss of superior and temporal optic nerve axons of RGCs in mouse glaucoma at certain stages of damage. Differences in nerve area change suggest non-RGC responses differ between mouse strains.

  10. Optical coherence tomography noise modeling and fundamental bounds on human retinal layer segmentation accuracy (Conference Presentation)

    Science.gov (United States)

    DuBose, Theodore B.; Milanfar, Peyman; Izatt, Joseph A.; Farsiu, Sina

    2016-03-01

    The human retina is composed of several layers, visible by in vivo optical coherence tomography (OCT) imaging. To enhance diagnostics of retinal diseases, several algorithms have been developed to automatically segment one or more of the boundaries of these layers. OCT images are corrupted by noise, which is frequently the result of the detector noise and speckle, a type of coherent noise resulting from the presence of several scatterers in each voxel. However, it is unknown what the empirical distribution of noise in each layer of the retina is, and how the magnitude and distribution of the noise affects the lower bounds of segmentation accuracy. Five healthy volunteers were imaged using a spectral domain OCT probe from Bioptigen, Inc, centered at 850nm with 4.6µm full width at half maximum axial resolution. Each volume was segmented by expert manual graders into nine layers. The histograms of intensities in each layer were then fit to seven possible noise distributions from the literature on speckle and image processing. Using these empirical noise distributions and empirical estimates of the intensity of each layer, the Cramer-Rao lower bound (CRLB), a measure of the variance of an estimator, was calculated for each boundary layer. Additionally, the optimum bias of a segmentation algorithm was calculated, and a corresponding biased CRLB was calculated, which represents the improved performance an algorithm can achieve by using prior knowledge, such as the smoothness and continuity of layer boundaries. Our general mathematical model can be easily adapted for virtually any OCT modality.

  11. The retinal phenotype of Usher syndrome: pathophysiological insights from animal models.

    Science.gov (United States)

    El-Amraoui, Aziz; Petit, Christine

    2014-03-01

    The Usher syndrome (USH) is the most prevalent cause of inherited deaf-blindness. Three clinical subtypes, USH1-3, have been defined, and ten USH genes identified. The hearing impairment due to USH gene defects has been shown to result from improper organisation of the hair bundle, the sound receptive structure of sensory hair cells. In contrast, the cellular basis of the visual defect is less well understood as this phenotype is absent in almost all the USH mouse models that faithfully mimic the human hearing impairment. Structural and molecular interspecies discrepancies regarding photoreceptor calyceal processes and the association with the distribution of USH1 proteins have recently been unravelled, and have led to the conclusion that a defect in the USH1 protein complex-mediated connection between the photoreceptor outer segment and the surrounding calyceal processes (in both rods and cones), and the inner segment (in rods only), probably causes the USH1 retinal dystrophy in humans. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  12. Novel Animal Model of Crumbs-Dependent Progressive Retinal Degeneration That Targets Specific Cone Subtypes.

    Science.gov (United States)

    Fu, Jinling; Nagashima, Mikiko; Guo, Chuanyu; Raymond, Pamela A; Wei, Xiangyun

    2018-01-01

    Human Crb1 is implicated in some forms of retinal degeneration, suggesting a role in photoreceptor maintenance. Multiple Crumbs (Crb) polarity genes are expressed in vertebrate retina, although their functional roles are not well understood. To gain further insight into Crb and photoreceptor maintenance, we compared retinal cell densities between wild-type and Tg(RH2-2:Crb2b-sfEX/RH2-2:GFP)pt108b transgenic zebrafish, in which the extracellular domain of Crb2b-short form (Crb2b-sfEX) is expressed in the retina as a secreted protein, which disrupts the planar organization of RGB cones (red, green, and blue) by interfering with Crb2a/2b-based cone-cone adhesion. We used standard morphometric techniques to assess age-related changes in retinal cell densities in adult zebrafish (3 to 27 months old), and to assess effects of the Crb2b-sfEX transgene on retinal structure and photoreceptor densities. Linear cell densities were measured in all retinal layers in radial sections with JB4-Feulgen histology. Planar (surface) densities of cones were determined in retinal flat-mounts. Cell counts from wild-type and pt108b transgenic fish were compared with both a "photoreceptor maintenance index" and statistical analysis of cell counts. Age-related changes in retinal cell linear densities and cone photoreceptor planar densities in wild-type adult zebrafish provided a baseline for analysis. Expression of Crb2b-sfEX caused progressive and selective degeneration of RGB cones, but had no effect on ultraviolet-sensitive (UV) cones, and increased numbers of rod photoreceptors. These differential responses of RGB cones, UV cones, and rods to sustained exposure to Crb2b-sfEX suggest that Crb-based photoreceptor maintenance mechanisms are highly selective.

  13. Ceroid lipofuscinosis in the border collie dog: retinal lesions in an animal model of juvenile Batten disease.

    Science.gov (United States)

    Taylor, R M; Farrow, B R

    1992-02-15

    Ceroid lipofuscinosis, an inherited disorder of lipopigment accumulation, was identified in a group of Border Collie dogs. The dogs developed mental, motor, and visual signs between age 15 and 22 months and progressed rapidly to severe neurological disease. The principal signs were blindness and gait and behavioural abnormalities with progressive dementia. Lipopigment accumulation was severe in neurones and glial cells of the central nervous system and was present in some visceral cells. Inclusions with variable ultrastructure were common in all cells of the retina, but the pigment accumulation did not damage the retinal architecture. The cytoplasmic inclusions were granular, sudanophilic, eosinophilic, and autofluorescent. Ultrastructural morphology varied, but fingerprint and curvilinear patterns predominated. The retinal lesions in the Border Collies were similar to those in English Setters with ceroid lipofuscinosis, but were much less severe than in juvenile human ceroid lipofuscinosis. This disorder bears a close resemblance to ceroid lipofuscinosis in English Setters and is another useful model for Batten's disease.

  14. Development of a finite-element eye model to investigate retinal hemorrhages in shaken baby syndrome.

    Science.gov (United States)

    Nadarasa, Jeyendran; Deck, Caroline; Meyer, Frank; Bourdet, Nicolas; Raul, Jean-Sébastien; Willinger, Rémy

    2018-04-01

    Retinal hemorrhages (RH) are among injuries sustained by a large number of shaken baby syndrome victims, but also by a small proportion of road accident victims. In order to have a better understanding of the underlying of RH mechanisms, we aimed to develop a complete human eye and orbit finite element model. Five occipital head impacts, at different heights and on different surfaces, and three shaking experiments were conducted with a 6-week-old dummy (Q0 dummy). This allowed obtaining a precise description of the motion in those two specific situations, which was then used as input for the eye model simulation. Results showed that four parameters (pressure, Von Mises stress and strain, 1st principal stress) are relevant for shaking-fall comparison. Indeed, in the retina, the softest shaking leads to pressure that is 4 times higher than the most severe impact (1.43 vs. 0.34 kPa). For the Von Mises stress, strain and 1st principal stress, this ratio rises to 4.27, 6.53 and 14.74, respectively. Moreover, regions of high stress and strain in the retina and the choroid were identified and compared to what is seen on fundoscopy. The comparison between linear and rotational acceleration in fall and shaking events demonstrated the important role of the rotational acceleration in inducing such injuries. Even though the eye model was not validated, the conclusion of this study is that compared to falls, shaking an infant leads to extreme eye loading as demonstrated by the values taken by the four mentioned mechanical parameters in the retina and the choroid.

  15. Chaetomium retinitis.

    Science.gov (United States)

    Tabbara, Khalid F; Wedin, Keith; Al Haddab, Saad

    2010-01-01

    To report a case of Chaetomium atrobrunneum retinitis in a patient with Hodgkin lymphoma. We studied the ocular manifestations of an 11-year-old boy with retinitis. Biomicroscopy, ophthalmoscopy, and fundus photography were done. Magnetic resonance imaging of the brain was performed. A vitreous biopsy was subjected to viral, bacterial, and fungal cultures. Vitreous culture grew C. atrobrunneum. Magnetic resonance imaging showed multiple cerebral lesions consistent with an infectious process. The patient was given intravenous voriconazole and showed improvement of the ocular and central nervous system lesions. We report a case of central nervous system and ocular lesions by C. atrobrunneum. The retinitis was initially misdiagnosed as cytomegaloviral retinitis. Vitreous biopsy helped in the early diagnosis and prompt treatment of a life- and vision-threatening infection.

  16. Retinitis pigmentosa

    Science.gov (United States)

    ... treatments for retinitis pigmentosa, including the use of DHA, which is an omega-3 fatty acid. Other ... Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016:chap 630. ...

  17. Cytomegalovirus retinitis

    Science.gov (United States)

    ... have weakened immune systems as a result of: HIV/AIDS Bone marrow transplant Chemotherapy Drugs that suppress the immune system Organ transplant Symptoms Some people with CMV retinitis have no symptoms. ...

  18. Retinal Detachment

    Science.gov (United States)

    ... to your brain. It provides the sharp, central vision needed for reading, driving, and seeing fine detail. A retinal detachment lifts or pulls the retina from its normal position. It can occur at ...

  19. A mathematical modelling framework for linked within-host and between-host dynamics for infections with free-living pathogens in the environment.

    Science.gov (United States)

    Garira, Winston; Mathebula, Dephney; Netshikweta, Rendani

    2014-10-01

    In this study we develop a mathematical modelling framework for linking the within-host and between-host dynamics of infections with free-living pathogens in the environment. The resulting linked models are sometimes called immuno-epidemiological models. However, there is still no generalised framework for linking the within-host and between-host dynamics of infectious diseases. Furthermore, for infections with free-living pathogens in the environment, there is an additional stumbling block in that there is a gap in knowledge on how environmental factors (through water, air, soil, food, fomites, etc.) alter many aspects of such infections including susceptibility to infective dose, persistence of infection, pathogen shedding and severity of the disease. In this work, we link the two subsystems (within-host and between-host models) by identifying the within-host and between-host variables and parameters associated with the environmental dynamics of the pathogen and then design a feedback of the variables and parameters across the within-host and between-host models using human schistosomiasis as a case study. We study the mathematical properties of the linked model and show that the model is epidemiologically well-posed. Using results from the analysis of the endemic equilibrium expression, the disease reproductive number R0, and numerical simulations of the full model, we adequately account for the reciprocal influence of the linked within-host and between-host models. In particular, we illustrate that for human schistosomiasis, the outcome of infection at the individual level determines if, when and how much the individual host will further transmit the infectious agent into the environment, eventually affecting the spread of the infection in the host population. We expect the conceptual modelling framework developed here to be applicable to many infectious disease with free-living pathogens in the environment beyond the specific disease system of human

  20. Xeno-Free and Defined Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells Functionally Integrate in a Large-Eyed Preclinical Model

    Directory of Open Access Journals (Sweden)

    Alvaro Plaza Reyes

    2016-01-01

    Full Text Available Human embryonic stem cell (hESC-derived retinal pigment epithelial (RPE cells could replace lost tissue in geographic atrophy (GA but efficacy has yet to be demonstrated in a large-eyed model. Also, production of hESC-RPE has not yet been achieved in a xeno-free and defined manner, which is critical for clinical compliance and reduced immunogenicity. Here we describe an effective differentiation methodology using human laminin-521 matrix with xeno-free and defined medium. Differentiated cells exhibited characteristics of native RPE including morphology, pigmentation, marker expression, monolayer integrity, and polarization together with phagocytic activity. Furthermore, we established a large-eyed GA model that allowed in vivo imaging of hESC-RPE and host retina. Cells transplanted in suspension showed long-term integration and formed polarized monolayers exhibiting phagocytic and photoreceptor rescue capacity. We have developed a xeno-free and defined hESC-RPE differentiation method and present evidence of functional integration of clinically compliant hESC-RPE in a large-eyed disease model.

  1. Infection of non-host model plant species with the narrow-host-range Cacao swollen shoot virus.

    Science.gov (United States)

    Friscina, Arianna; Chiappetta, Laura; Jacquemond, Mireille; Tepfer, Mark

    2017-02-01

    Cacao swollen shoot virus (CSSV) is a major pathogen of cacao (Theobroma cacao) in Africa, and long-standing efforts to limit its spread by the culling of infected trees have had very limited success. CSSV is a particularly difficult virus to study, as it has a very narrow host range, limited to several tropical tree species. Furthermore, the virus is not mechanically transmissible, and its insect vector can only be used with difficulty. Thus, the only efficient means to infect cacao plants that have been experimentally described so far are by particle bombardment or the agroinoculation of cacao plants with an infectious clone. We have genetically transformed three non-host species with an infectious form of the CSSV genome: two experimental hosts widely used in plant virology (Nicotiana tabacum and N. benthamiana) and the model species Arabidopsis thaliana. In transformed plants of all three species, the CSSV genome was able to replicate, and, in tobacco, CSSV particles could be observed by immunosorbent electron microscopy, demonstrating that the complete virus cycle could be completed in a non-host plant. These results will greatly facilitate the preliminary testing of CSSV control strategies using plants that are easy to raise and to transform genetically. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  2. Analysis of the RPE sheet in the rd10 retinal degeneration model

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yi [Los Alamos National Laboratory

    2011-01-04

    The normal RPE sheet in the C57Bl/6J mouse is subclassified into two major tiling patterns: A regular generally hexagonal array covering most of the surface and a 'soft network' near the ciliary body made of irregularly shaped cells. Physics models predict these two patterns based on contractility and elasticity of the RPE cell, and strength of cellular adhesion between cells. We hypothesized and identified major changes in RPE regular hexagonal tiling pattern in rdl0 compared to C57BL/6J mice. RPE sheet damage was extensive but occurred in rd10 later than expected, after most retinal degeneration. RPE sheet changes occur in zones with a bullseye pattern. In the posterior zone around the optic nerve RPE cells take on larger irregular and varied shapes to form an intact monolayer. In mid periphery, there is a higher than normal density of cells that progress into involuted layers of RPE under the retina. The periphery remains mostly normal until late stages of degeneration. The number of neighboring cells varies widely depending on zone and progression. RPE morphology continues to deteriorate long after the photoreceptors have degenerated. The RPE cells are bystanders to the rd10 degeneration within photo receptors, and the collateral damage to the RPE sheet resembles stimulation of migration or chemotaxis. Quantitative measures of the tiling patterns and histopathology detected here, scripted in a pipeline written in Perl and Cell Profiler (an open source Matlab plugin), are directly applicable to RPE sheet images from noninvasive fundus autofluorescence (FAF), adaptive optics confocal scanning laser ophthalmoscope (AO-cSLO), and spectral domain optical coherence tomography (SD-OCT) of patients with early stage AMD or RP.

  3. Diabetes Accelerates Retinal neuronal cell Death in A Mouse Model of endogenous Hyperhomocysteinemia

    Directory of Open Access Journals (Sweden)

    Preethi S. Ganapathy

    2009-01-01

    Full Text Available Hyperhomocysteinemia has been implicated in visual dysfunction. We reported recently that mice with endogenous hyperhomocysteinemia, due to mutation of the cystathionine-β-synthase ( cbs gene, demonstrate loss of neurons in the retinal ganglion cell (RGC layer and other retinal layers as homocysteine levels increase. Some clinical studies implicate hyperhomocysteinemia in the pathogenesis of diabetic retinopathy, which is also characterized by RGC loss. The present study used cbs +/– mice to determine whether modest elevation of plasma homocysteine, in the presence of diabetes, accelerates neuronal cell loss. Diabetes (DB was induced in 3 wk old cbs +/– and wildtype mice using streptozotocin; four groups of mice were studied: DB cbs +/– non-DB cbs +/– DB cbs +/+ ; non-DB cbs +/+ . One group of diabetic cbs +/– mice was maintained on a high methionine diet (HMD, 0.5% methionine drinking water to increase plasma homocysteine slightly. Eyes were harvested at 5, 10 and 15 weeks post-onset of diabetes; retinal cryosections were examined by light microscopy and subjected to systematic morphometric analysis. Diabetic cbs +/– had significantly fewer RGCs at 5 weeks compared to age-matched, non-diabetic cbs +/– and wildtype controls (10.0 ± 0.5 versus 14.9 ± 0.5 and 15.8 ± 0.6 cells/100 μm retina length, respectively. Significant differences in retinas of DB/high homocysteine versus controls were obtained 15 wks post-onset of diabetes including fewer RGCS and decreased thickness of inner nuclear and plexiform layers. Moderate increases in plasma homocysteine coupled with diabetes cause a more dramatic alteration of retinal phenotype than elevated homocysteine or diabetes alone and suggest that diabetes accelerates the retinal neuronal death in hyperhomocysteinemic mice.

  4. Diabetes Accelerates Retinal Neuronal Cell Death In A Mouse Model of Endogenous Hyperhomocysteinemia

    Directory of Open Access Journals (Sweden)

    Preethi S. Ganapathy

    2009-07-01

    Full Text Available Hyperhomocysteinemia has been implicated in visual dysfunction. We reported recently that mice with endogenous hyperhomocysteinemia, due to mutation of the cystathionine-β-synthase (cbs gene, demonstrate loss of neurons in the retinal ganglion cell (RGC layer and other retinal layers as homocysteine levels increase. Some clinical studies implicate hyperhomocysteinemia in the pathogenesis of diabetic retinopathy, which is also characterized by RGC loss. The present study used cbs+/- mice to determine whether modest elevation of plasma homocysteine, in the presence of diabetes, accelerates neuronal cell loss. Diabetes (DB was induced in 3 wk old cbs+/- and wildtype mice using streptozotocin; four groups of mice were studied: DB cbs+/-; non-DB cbs+/-; DB cbs+/+; non-DB cbs+/+. One group of diabetic cbs+/- mice was maintained on a high methionine diet (HMD, 0.5% methionine drinking water to increase plasma homocysteine slightly. Eyes were harvested at 5, 10 and 15 weeks post-onset of diabetes; retinal cryosections were examined by light microscopy and subjected to systematic morphometric analysis. Diabetic cbs+/- had significantly fewer RGCs at 5 weeks compared to age-matched, non-diabetic cbs+/- and wildtype controls (10.0 ± 0.5 versus 14.9 ± 0.5 and 15.8 ± 0.6 cells/100 µm retina length, respectively. Significant differences in retinas of DB/high homocysteine versus controls were obtained 15 wks post-onset of diabetes including fewer RGCS and decreased thickness of inner nuclear and plexiform layers. Moderate increases in plasma homocysteine coupled with diabetes cause a more dramatic alteration of retinal phenotype than elevated homocysteine or diabetes alone and suggest that diabetes accelerates the retinal neuronal death in hyperhomocysteinemic mice.

  5. ℮-conome: an automated tissue counting platform of cone photoreceptors for rodent models of retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Clérin Emmanuelle

    2011-12-01

    Full Text Available Abstract Background Retinitis pigmentosa is characterized by the sequential loss of rod and cone photoreceptors. The preservation of cones would prevent blindness due to their essential role in human vision. Rod-derived Cone Viability Factor is a thioredoxin-like protein that is secreted by rods and is involved in cone survival. To validate the activity of Rod-derived Cone Viability Factors (RdCVFs as therapeutic agents for treating retinitis Pigmentosa, we have developed e-conome, an automated cell counting platform for retinal flat mounts of rodent models of cone degeneration. This automated quantification method allows for faster data analysis thereby accelerating translational research. Methods An inverted fluorescent microscope, motorized and coupled to a CCD camera records images of cones labeled with fluorescent peanut agglutinin lectin on flat-mounted retinas. In an average of 300 fields per retina, nine Z-planes at magnification X40 are acquired after two-stage autofocus individually for each field. The projection of the stack of 9 images is subject to a threshold, filtered to exclude aberrant images based on preset variables. The cones are identified by treating the resulting image using 13 variables empirically determined. The cone density is calculated over the 300 fields. Results The method was validated by comparison to the conventional stereological counting. The decrease in cone density in rd1 mouse was found to be equivalent to the decrease determined by stereological counting. We also studied the spatiotemporal pattern of the degeneration of cones in the rd1 mouse and show that while the reduction in cone density starts in the central part of the retina, cone degeneration progresses at the same speed over the whole retinal surface. We finally show that for mice with an inactivation of the Nucleoredoxin-like genes Nxnl1 or Nxnl2 encoding RdCVFs, the loss of cones is more pronounced in the ventral retina. Conclusion The automated

  6. ℮-conome: an automated tissue counting platform of cone photoreceptors for rodent models of retinitis pigmentosa.

    Science.gov (United States)

    Clérin, Emmanuelle; Wicker, Nicolas; Mohand-Saïd, Saddek; Poch, Olivier; Sahel, José-Alain; Léveillard, Thierry

    2011-12-20

    Retinitis pigmentosa is characterized by the sequential loss of rod and cone photoreceptors. The preservation of cones would prevent blindness due to their essential role in human vision. Rod-derived Cone Viability Factor is a thioredoxin-like protein that is secreted by rods and is involved in cone survival. To validate the activity of Rod-derived Cone Viability Factors (RdCVFs) as therapeutic agents for treating retinitis Pigmentosa, we have developed e-conome, an automated cell counting platform for retinal flat mounts of rodent models of cone degeneration. This automated quantification method allows for faster data analysis thereby accelerating translational research. An inverted fluorescent microscope, motorized and coupled to a CCD camera records images of cones labeled with fluorescent peanut agglutinin lectin on flat-mounted retinas. In an average of 300 fields per retina, nine Z-planes at magnification X40 are acquired after two-stage autofocus individually for each field. The projection of the stack of 9 images is subject to a threshold, filtered to exclude aberrant images based on preset variables. The cones are identified by treating the resulting image using 13 variables empirically determined. The cone density is calculated over the 300 fields. The method was validated by comparison to the conventional stereological counting. The decrease in cone density in rd1 mouse was found to be equivalent to the decrease determined by stereological counting. We also studied the spatiotemporal pattern of the degeneration of cones in the rd1 mouse and show that while the reduction in cone density starts in the central part of the retina, cone degeneration progresses at the same speed over the whole retinal surface. We finally show that for mice with an inactivation of the Nucleoredoxin-like genes Nxnl1 or Nxnl2 encoding RdCVFs, the loss of cones is more pronounced in the ventral retina. The automated platform ℮-conome used here for retinal disease is a tool that

  7. Probabilistic retinal vessel segmentation

    Science.gov (United States)

    Wu, Chang-Hua; Agam, Gady

    2007-03-01

    Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.

  8. Parasitoid competition and the dynamics of host-parasitoid models

    Science.gov (United States)

    Andrew D. Taylor

    1988-01-01

    Both parasitoids and predators compete intraspecifically for prey or hosts. The nature of this competition, however, is potentially much more complex and varied for parasitoids than for predators. With predators, prey are generally consumed upon capture and thus cease to be bones of contention: competition is simply for discovery (or capture) of prey. In contrast,...

  9. Multimodality optical coherence tomography and fluorescence confocal scanning laser ophthalmoscopy in a zebrafish model of retinal vascular occlusion and remodeling

    Science.gov (United States)

    Li, Xiaoyue; Spitz, Kathleen; Bozic, Ivan; Tao, Yuankai K.

    2018-02-01

    Neovascularization in diabetic retinopathy (DR) and age-related macular degeneration (AMD) result in severe vision-loss and are two of the leading causes of blindness. The structural, metabolic, and vascular changes underlying retinal neovascularization are unknown and, thus, there is an unmet need to identify mechanisms of pathogenesis and novel anti-angiogenic therapies. Zebrafish is a robust ophthalmological model because its retina has comparable structure to the human retina and its fecundity and life-cycle enable development of mutant phenotypes of human pathologies. Here, we perform multimodal imaging with OCT and fluorescence confocal scanning laser ophthalmoscopy (cSLO) to identify changes in retinal structure and function in a zebrafish model of vascular leakage. Transgenic zebrafish with EGFP tagged plasma protein were imaged longitudinally at six time points over two weeks to visualize vascular perfusion changes from diethylaminobenzaldehyde (DEAB) treatment. Complementary contrast from OCT-A perfusion maps and cSLO imaging of plasma protein EGFP shows vascular occlusions posttreatment. cSLO images confirm presence of vessels despite loss of OCT-A signal. Plasma protein EGFP contrast also shows significant changes in vessel structure as compared to baseline images. OCT structural volumes show empty vessel cross-sections confirming non-perfusion. In addition, we present algorithms for automated biometric identification of OCT datasets using OCT-A vascular patterns in the presence of significant vascular perfusion changes. These results establish a framework for large-scale in vivo assays to identify novel anti-angiogenic compounds and understand the mechanisms ofneovascularization associated with retinal ocular pathologies.

  10. Beyond Retinal Layers: A Deep Voting Model for Automated Geographic Atrophy Segmentation in SD-OCT Images.

    Science.gov (United States)

    Ji, Zexuan; Chen, Qiang; Niu, Sijie; Leng, Theodore; Rubin, Daniel L

    2018-01-01

    To automatically and accurately segment geographic atrophy (GA) in spectral-domain optical coherence tomography (SD-OCT) images by constructing a voting system with deep neural networks without the use of retinal layer segmentation. An automatic GA segmentation method for SD-OCT images based on the deep network was constructed. The structure of the deep network was composed of five layers, including one input layer, three hidden layers, and one output layer. During the training phase, the labeled A-scans with 1024 features were directly fed into the network as the input layer to obtain the deep representations. Then a soft-max classifier was trained to determine the label of each individual pixel. Finally, a voting decision strategy was used to refine the segmentation results among 10 trained models. Two image data sets with GA were used to evaluate the model. For the first dataset, our algorithm obtained a mean overlap ratio (OR) 86.94% ± 8.75%, absolute area difference (AAD) 11.49% ± 11.50%, and correlation coefficients (CC) 0.9857; for the second dataset, the mean OR, AAD, and CC of the proposed method were 81.66% ± 10.93%, 8.30% ± 9.09%, and 0.9952, respectively. The proposed algorithm was capable of improving over 5% and 10% segmentation accuracy, respectively, when compared with several state-of-the-art algorithms on two data sets. Without retinal layer segmentation, the proposed algorithm could produce higher segmentation accuracy and was more stable when compared with state-of-the-art methods that relied on retinal layer segmentation results. Our model may provide reliable GA segmentations from SD-OCT images and be useful in the clinical diagnosis of advanced nonexudative AMD. Based on the deep neural networks, this study presents an accurate GA segmentation method for SD-OCT images without using any retinal layer segmentation results, and may contribute to improved understanding of advanced nonexudative AMD.

  11. Activation of autophagy in a rat model of retinal ischemia following high intraocular pressure.

    Directory of Open Access Journals (Sweden)

    Antonio Piras

    Full Text Available Acute primary open angle glaucoma is an optic neuropathy characterized by the elevation of intraocular pressure, which causes retinal ischemia and neuronal death. Rat ischemia/reperfusion enhances endocytosis of both horseradish peroxidase (HRP or fluorescent dextran into ganglion cell layer (GCL neurons 24 h after the insult. We investigated the activation of autophagy in GCL-neurons following ischemia/reperfusion, using acid phosphatase (AP histochemistry and immunofluorescence against LC3 and LAMP1. Retinal I/R lead to the appearance of AP-positive granules and LAMP1-positive vesicles 12 and 24 h after the insult, and LC3 labelling at 24 h, and induced a consistent retinal neuron death. At 48 h the retina was negative for autophagic markers. In addition, Western Blot analysis revealed an increase of LC3 levels after damage: the increase in the conjugated, LC3-II isoform is suggestive of autophagic activity. Inhibition of autophagy by 3-methyladenine partially prevented death of neurons and reduces apoptotic markers, 24 h post-lesion. The number of neurons in the GCL decreased significantly following I/R (I/R 12.21±1.13 vs controls 19.23±1.12 cells/500 µm; this decrease was partially prevented by 3-methyladenine (17.08±1.42 cells/500 µm, which potently inhibits maturation of autophagosomes. Treatment also prevented the increase in glial fibrillary acid protein immunoreactivity elicited by I/R. Therefore, targeting autophagy could represent a novel and promising treatment for glaucoma and retinal ischemia.

  12. Effects of the neuroprotective drugs somatostatin and brimonidine on retinal cell models of diabetic retinopathy.

    Science.gov (United States)

    Beltramo, Elena; Lopatina, Tatiana; Mazzeo, Aurora; Arroba, Ana I; Valverde, Angela M; Hernández, Cristina; Simó, Rafael; Porta, Massimo

    2016-12-01

    Diabetic retinopathy is considered a microvascular disease, but recent evidence has underlined early involvement of the neuroretina with interactions between microvascular and neural alterations. Topical administration of somatostatin (SST), a neuroprotective molecule with antiangiogenic properties, prevents diabetes-induced retinal neurodegeneration in animals. The α 2 -adrenergic receptor agonist brimonidine (BRM) decreases vitreoretinal vascular endothelial growth factor and inhibits blood-retinal barrier breakdown in diabetic rats. However, SST and BRM effects on microvascular cells have not yet been studied. We investigated the behaviour of these drugs on the crosstalk between microvasculature and neuroretina. Expression of SST receptors 1-5 in human retinal pericytes (HRP) was checked. We subsequently evaluated the effects of diabetic-like conditions (high glucose and/or hypoxia) with/without SST/BRM on HRP survival. Endothelial cells (EC) and photoreceptors were maintained in the above conditions and their conditioned media (CM) used to culture HRP. Vice versa, HRP-CM was used on EC and photoreceptors. Survival parameters were assessed. HRP express the SST receptor 1 (SSTR1). Glucose fluctuations mimicking those occurring in diabetic subjects are more damaging for pericytes and photoreceptors than stable high glucose and hypoxic conditions. SST/BRM added to HRP in diabetic-like conditions decrease EC apoptosis. However, neither SST nor BRM changed the response of pericytes and neuroretina-vascular crosstalk under diabetic-like conditions. Retinal pericytes express SSTR1, indicating that they can be a target for SST. Exposure to SST/BRM had no adverse effects, direct or mediated by the neuroretina, suggesting that these molecules could be safely evaluated for the treatment of ocular diseases.

  13. Transplantation of CX3CL1-expressing mesenchymal stem cells provides neuroprotective and immunomodulatory effects in a rat model of retinal degeneration.

    Science.gov (United States)

    Huang, Libin; Xu, Wei; Xu, Guoxing

    2013-08-01

    To investigate the neuroprotective and immunomodulatory effects of mesenchymal stem cells (MSCs) engineered to secrete CX3CL1 on the light-injured retinal structure and function. Normal MSCs and CX3CL1-expressing MSCs (CX3CL1-MSCs) were transplanted into the subretinal space of light-injured rats. By ERG and TUNEL methods, their rescue effect of the host retina was compared with untreated light-injured and vehicle-injected rats. Activated microglia in the retina were stained by ED-1 antibody, and Western blot was performed to quantify cytokines secreted by the retina post-transplantation. ERG analysis showed better function in CX3CL1-MSC-injected group than other groups at 21 days after transplantation (p < 0.05). CX3CL1-MSCs inhibited apoptosis of the retinal cells and microglial activation. Neurotrophic factors expression in host retina that received CX3CL1-MSCs was stronger than in the retina that received normal MSCs. Conversely, the expression of proinflammatory factors was downregulated. CX3CL1-MSCs subretinal transplantation may enhance protective effect against light-induced retinal degeneration.

  14. Characterization of a spontaneously generated murine retinal pigmented epithelium cell line; a model for in vitro experiments.

    Science.gov (United States)

    Ranaei Pirmardan, Ehsan; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Mowla, Seyed Javad; Ezzati, Razie; Naseri, Marzieh

    2016-10-01

    Retinal pigmented epithelium (RPE), the outermost layer of the retina, has a key role in maintaining retinal cells' functions. Severity of the culture of RPE cells has exerted many limitations to both in vitro and in vivo studies and its therapeutic applications. Therefore, establishment of RPE cell lines with high proliferative potential can considerably improve study of RPE cell biology. Here we report generation of a spontaneously immortalized murine RPE cell line in primary mouse RPE cell culture. Founded colonized cells were picked up and expression of RPE and retinal progenitor cells' (RPC) markers were studied using immunocytochemistry (ICC). Emerged cells cultured over 35 passages and population doubling times in different serum concentrations were calculated. We also investigated the ability of cells for becoming transfected by calcium-phosphate method and for becoming infected by adeno-associated virus serotype 2 (AAV2) using flow cytometry. Data showed that the cobblestone constituent cells expressed RPE65, cytokeratin and ZO1 and moreover several progenitor markers such as Pax6, Sox2, Nestin and Chx10. It revealed that, despite primary RPE cells, the newly emerged cells were easily transfectable and were highly infectable when compared with HEK293T cells. Our data indicated that the emerged mouse RPE cell line pretended RPC-like phenotype and also simultaneously expressed RPE markers. It would be a promising model for leading studies on RPE and RPC cells and substantially confirmed the great RPE plasticity and its invaluable potential in research studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration.

    Science.gov (United States)

    Tzameret, Adi; Sher, Ifat; Belkin, Michael; Treves, Avraham J; Meir, Amilia; Nagler, Arnon; Levkovitch-Verbin, Hani; Rotenstreich, Ygal; Solomon, Arieh S

    2015-09-01

    Vision incapacitation and blindness associated with incurable retinal degeneration affect millions of people worldwide. In this study, 0.25×10(6) human bone marrow stem cells (hBM-MSCs) were transplanted epiretinally in the right eye of Royal College Surgeons (RCS) rats at the age of 28 days. Epiretinally transplanted cells were identified as a thin layer of cells along vitreous cavity, in close proximity to the retina or attached to the lens capsule, up to 6 weeks following transplantation. Epiretinal transplantation delayed photoreceptor degeneration and rescued retinal function up to 20 weeks following cell transplantation. Visual functions remained close to normal levels in epiretinal transplantation rats. No inflammation or any other adverse effects were observed in transplanted eyes. Our findings suggest that transplantation of hBM-MSCs as a thin epiretinal layer is effective for treatment of retinal degeneration in RCS rats, and that transplanting the cells in close proximity to the retina enhances hBM-MSC therapeutic effect compared with intravitreal injection. Copyright © 2015. Published by Elsevier B.V.

  16. Sustained Dorzolamide Release Prevents Axonal and Retinal Ganglion Cell Loss in a Rat Model of IOP-Glaucoma.

    Science.gov (United States)

    Pitha, Ian; Kimball, Elizabeth C; Oglesby, Ericka N; Pease, Mary Ellen; Fu, Jie; Schaub, Julie; Kim, Yoo-Chun; Hu, Qi; Hanes, Justin; Quigley, Harry A

    2018-04-01

    To determine if one injection of a sustained release formulation of dorzolamide in biodegradable microparticles (DPP) reduces retinal ganglion cell (RGC) loss in a rat model of glaucoma. We injected either DPP or control microparticles intravitreally in rats. Two days later, unilateral ocular hypertension was induced by translimbal, diode laser treatment by a surgeon masked to treatment group. IOP and clinical exams were performed until sacrifice 6 weeks after laser treatment. RGC loss was measured by masked observers in both optic nerve cross-sections and RGC layer counts from retinal whole mounts. Cumulative IOP exposure was significantly reduced by DPP injection (49 ± 48 mm Hg × days in treated versus 227 ± 191 mm Hg × days in control microparticle eyes; P = 0.012, t -test). While control-injected eyes increased in axial length by 2.4 ± 1.7%, DPP eyes did not significantly enlarge (0.3 ± 2.2%, difference from control, P = 0.03, t -test). RGC loss was significantly less in DPP eyes compared with control microparticle injection alone (RGC axon count reduction: 21% vs. 52%; RGC body reduction: 25% vs. 50% [beta tubulin labeling]; P = 0.02, t -test). A single injection of sustained release DPP protected against RGC loss and axial elongation in a rat model of IOP glaucoma. Sustained release IOP-lowering medications have the potential to stop glaucoma progression.

  17. Retinal Detachment

    Directory of Open Access Journals (Sweden)

    Adnan Riaz, MD

    2018-04-01

    Full Text Available History of present illness: A 58-year-old female presented to the emergency department reporting six days of progressive, atraumatic left eye vision loss. Her symptoms started with the appearance of dark spots and “spider webs,” and then progressed to darkening of vision in her left eye. She reports mild pain since yesterday. Her review of symptoms was otherwise negative. Ocular physical examination revealed normal external appearance, intact extraocular movements, and visual acuities of 20/25 OD and light/dark sensitivity OS. Fluorescein uptake was negative and slit lamp exam was unremarkable. Significant findings: Bedside ocular ultrasound revealed a serpentine, hyperechoic membrane that appeared tethered to the optic disc posteriorly with hyperechoic material underneath. These findings are consistent with retinal detachment (RD and associated retinal hemorrhage. Discussion: The retina is a layer of organized neurons that line the posterior portion of the posterior chamber of the eye. RD occurs when this layer separates from the underlying epithelium, resulting in ischemia and progressive photoreceptor degeneration, with potentially rapid and permanent vision loss if left untreated.1 Risk factors include advanced age, male sex (60%, race (Asians and Jews, and myopia and lattice degeneration.2 Bedside ultrasound (US performed by emergency physicians provides a valuable tool that has been used by ophthalmologists for decades to evaluate intraocular disease.1,3 Findings on bedside ultrasound consistent with RD include a hyperechoic membrane floating in the posterior chamber. RD usuallyremain tethered to the optic disc posteriorly and do not cross midline, a feature distinguishing them from posterior vitreous detachments. Associated retinal hemorrhage, seen as hyperechoic material under the retinal flap, can often be seen.1,2 US can also distinguish between “mac-on” and “mac-off” detachments. If the retina is still attached to the

  18. Photodegradation of retinal bisretinoids in mouse models and implications for macular degeneration.

    Science.gov (United States)

    Ueda, Keiko; Zhao, Jin; Kim, Hye Jin; Sparrow, Janet R

    2016-06-21

    Adducts of retinaldehyde (bisretinoids) form nonenzymatically in photoreceptor cells and accumulate in retinal pigment epithelial (RPE) cells as lipofuscin; these fluorophores are implicated in the pathogenesis of inherited and age-related macular degeneration (AMD). Here we demonstrate that bisretinoid photodegradation is ongoing in the eye. High-performance liquid chromatography (HPLC) analysis of eyes of dark-reared and cyclic light-reared wild-type mice, together with comparisons of pigmented versus albino mice, revealed a relationship between intraocular light and reduced levels of the bisretinoids A2E and A2-glycero-phosphoethanolamine (A2-GPE). Analysis of the bisretinoids A2E, A2-GPE, A2-dihydropyridine-phosphatidylethanolamine (A2-DHP-PE), and all-trans-retinal dimer-phosphatidylethanolamine (all-trans-retinal dimer-PE) also decreases in albino Abca4(-/-) mice reared in cyclic light compared with darkness. In albino Abca4(-/-) mice receiving a diet supplemented with the antioxidant vitamin E, higher levels of RPE bisretinoid were evidenced by HPLC analysis and quantitation of fundus autofluorescence; this effect is consistent with photooxidative processes known to precede bisretinoid degradation. Amelioration of outer nuclear layer thinning indicated that vitamin E treatment protected photoreceptor cells. Conversely, in-cage exposure to short-wavelength light resulted in reduced fundus autofluorescence, decreased HPLC-quantified A2E, outer nuclear layer thinning, and increased methylglyoxal (MG)-adducted protein. MG was also released upon bisretinoid photodegradation in cells. We suggest that the lower levels of these diretinal adducts in cyclic light-reared and albino mice reflect photodegradative loss of bisretinoid. These mechanisms may underlie associations among AMD risk, oxidative mechanisms, and lifetime light exposure.

  19. Human pericyte-endothelial cell interactions in co-culture models mimicking the diabetic retinal microvascular environment.

    Science.gov (United States)

    Tarallo, Sonia; Beltramo, Elena; Berrone, Elena; Porta, Massimo

    2012-12-01

    Pericytes regulate vascular tone, perfusion pressure and endothelial cell (EC) proliferation in capillaries. Thiamine and benfotiamine counteract high glucose-induced damage in vascular cells. We standardized two human retinal pericyte (HRP)/EC co-culture models to mimic the diabetic retinal microvascular environment. We aimed at evaluating the interactions between co-cultured HRP and EC in terms of proliferation/apoptosis and the possible protective role of thiamine and benfotiamine against high glucose-induced damage. EC and HRP were co-cultured in physiological glucose and stable or intermittent high glucose, with or without thiamine/benfotiamine. No-contact model: EC were plated on a porous membrane suspended into the medium and HRP on the bottom of the same well. Cell-to-cell contact model: EC and HRP were plated on the opposite sides of the same membrane. Proliferation (cell counts and DNA synthesis), apoptosis and tubule formation in Matrigel were assessed. In the no-contact model, stable high glucose reduced proliferation of co-cultured EC/HRP and EC alone and increased co-cultured EC/HRP apoptosis. In the contact model, both stable and intermittent high glucose reduced co-cultured EC/HRP proliferation and increased apoptosis. Stable high glucose had no effects on HRP in separate cultures. Both EC and HRP proliferated better when co-cultured. Thiamine and benfotiamine reversed high glucose-induced damage in all cases. HRP are sensitive to soluble factors released by EC when cultured in high glucose conditions, as suggested by conditioned media assays. In the Matrigel models, addition of thiamine and benfotiamine re-established the high glucose-damaged interactions between EC/HRP and stabilized microtubules.

  20. Usher syndrome: animal models, retinal function of Usher proteins, and prospects for gene therapy

    OpenAIRE

    Williams, David S.

    2007-01-01

    Usher syndrome is a deafness-blindness disorder. The blindness occurs from a progressive retinal degeneration that begins after deafness and after the retina has developed. Three clinical subtypes of Usher syndrome have been identified, with mutations in any one of six different genes giving rise to type 1, in any one of three different genes to type 2, and in one identified gene causing Usher type 3. Mutant mice for most of the genes have been studied; while they have clear inner ear defects...

  1. Retinal detachment and retinal holes in retinitis pigmentosa sine pigmento.

    Science.gov (United States)

    Csaky, K; Olk, R J; Mahl, C F; Bloom, S M

    1991-01-01

    Retinal detachment and retinal holes in two family members with retinitis pigmentosa sine pigmento are reported. We believe these are the first such cases reported in the literature. We describe the presenting symptoms and management, including cryotherapy, scleral buckling procedure, and sulfur hexafluoride injection (SF6), resulting in stable visual acuity in one case and retinal reattachment and improved visual acuity in the other case.

  2. Retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Hamel Christian

    2006-10-01

    Full Text Available Abstract Retinitis pigmentosa (RP is an inherited retinal dystrophy caused by the loss of photoreceptors and characterized by retinal pigment deposits visible on fundus examination. Prevalence of non syndromic RP is approximately 1/4,000. The most common form of RP is a rod-cone dystrophy, in which the first symptom is night blindness, followed by the progressive loss in the peripheral visual field in daylight, and eventually leading to blindness after several decades. Some extreme cases may have a rapid evolution over two decades or a slow progression that never leads to blindness. In some cases, the clinical presentation is a cone-rod dystrophy, in which the decrease in visual acuity predominates over the visual field loss. RP is usually non syndromic but there are also many syndromic forms, the most frequent being Usher syndrome. To date, 45 causative genes/loci have been identified in non syndromic RP (for the autosomal dominant, autosomal recessive, X-linked, and digenic forms. Clinical diagnosis is based on the presence of night blindness and peripheral visual field defects, lesions in the fundus, hypovolted electroretinogram traces, and progressive worsening of these signs. Molecular diagnosis can be made for some genes, but is not usually performed due to the tremendous genetic heterogeneity of the disease. Genetic counseling is always advised. Currently, there is no therapy that stops the evolution of the disease or restores the vision, so the visual prognosis is poor. The therapeutic approach is restricted to slowing down the degenerative process by sunlight protection and vitaminotherapy, treating the complications (cataract and macular edema, and helping patients to cope with the social and psychological impact of blindness. However, new therapeutic strategies are emerging from intensive research (gene therapy, neuroprotection, retinal prosthesis.

  3. Control strategies for a stochastic model of host-parasite interaction in a seasonal environment.

    Science.gov (United States)

    Gómez-Corral, A; López García, M

    2014-08-07

    We examine a nonlinear stochastic model for the parasite load of a single host over a predetermined time interval. We use nonhomogeneous Poisson processes to model the acquisition of parasites, the parasite-induced host mortality, the natural (no parasite-induced) host mortality, and the reproduction and death of parasites within the host. Algebraic results are first obtained on the age-dependent distribution of the number of parasites infesting the host at an arbitrary time t. The interest is in control strategies based on isolation of the host and the use of an anthelmintic at a certain intervention instant t0. This means that the host is free living in a seasonal environment, and it is transferred to a uninfected area at age t0. In the uninfected area, the host does not acquire new parasites, undergoes a treatment to decrease the parasite load, and its natural and parasite-induced mortality are altered. For a suitable selection of t0, we present two control criteria that appropriately balance effectiveness and cost of intervention. Our approach is based on simple probabilistic principles, and it allows us to examine seasonal fluctuations of gastrointestinal nematode burden in growing lambs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Production of iPS-Derived Human Retinal Organoids for Use in Transgene Expression Assays

    NARCIS (Netherlands)

    Quinn, Peter M; Buck, Thilo M; Ohonin, Charlotte; Mikkers, Harald M M; Wijnholds, J.

    2018-01-01

    In vitro retinal organoid modeling from human pluripotent stem cells is becoming more common place in many ophthalmic laboratories worldwide. These organoids mimic human retinogenesis through formation of organized layered retinal structures that display markers for typical retinal cell types.

  5. Edaravone suppresses retinal ganglion cell death in a mouse model of normal tension glaucoma

    Science.gov (United States)

    Akaiwa, Kei; Namekata, Kazuhiko; Azuchi, Yuriko; Guo, Xiaoli; Kimura, Atsuko; Harada, Chikako; Mitamura, Yoshinori; Harada, Takayuki

    2017-01-01

    Glaucoma, one of the leading causes of irreversible blindness, is characterized by progressive degeneration of optic nerves and retinal ganglion cells (RGCs). In the mammalian retina, excitatory amino-acid carrier 1 (EAAC1) is expressed in neural cells, including RGCs. Loss of EAAC1 leads to RGC degeneration without elevated intraocular pressure (IOP) and exhibits glaucomatous pathology including glutamate neurotoxicity and oxidative stress. In the present study, we found that edaravone, a free radical scavenger that is used for treatment of acute brain infarction and amyotrophic lateral sclerosis (ALS), reduces oxidative stress and prevents RGC death and thinning of the inner retinal layer in EAAC1-deficient (KO) mice. In addition, in vivo electrophysiological analyses demonstrated that visual impairment in EAAC1 KO mice was ameliorated with edaravone treatment, clearly establishing that edaravone beneficially affects both histological and functional aspects of the glaucomatous retina. Our findings raise intriguing possibilities for the management of glaucoma by utilizing a widely prescribed drug for the treatment of acute brain infarction and ALS, edaravone, in combination with conventional treatments to lower IOP. PMID:28703795

  6. Quantitative genetic analysis of retinal degeneration in the blind cavefish Astyanax mexicanus.

    Directory of Open Access Journals (Sweden)

    Kelly E O'Quin

    Full Text Available The retina is the light-sensitive tissue of the eye that facilitates vision. Mutations within genes affecting eye development and retinal function cause a host of degenerative visual diseases, including retinitis pigmentosa and anophthalmia/microphthalmia. The characin fish Astyanax mexicanus includes both eyed (surface fish and eyeless (cavefish morphs that initially develop eyes with normal retina; however, early in development, the eyes of cavefish degenerate. Since both surface and cave morphs are members of the same species, they serve as excellent evolutionary mutant models with which to identify genes causing retinal degeneration. In this study, we crossed the eyed and eyeless forms of A. mexicanus and quantified the thickness of individual retinal layers among 115 F(2 hybrid progeny. We used next generation sequencing (RAD-seq and microsatellite mapping to construct a dense genetic map of the Astyanax genome, scan for quantitative trait loci (QTL affecting retinal thickness, and identify candidate genes within these QTL regions. The map we constructed for Astyanax includes nearly 700 markers assembled into 25 linkage groups. Based on our scans with this map, we identified four QTL, one each associated with the thickness of the ganglion, inner nuclear, outer plexiform, and outer nuclear layers of the retina. For all but one QTL, cavefish alleles resulted in a clear reduction in the thickness of the affected layer. Comparative mapping of genetic markers within each QTL revealed that each QTL corresponds to an approximately 35 Mb region of the zebrafish genome. Within each region, we identified several candidate genes associated with the function of each affected retinal layer. Our study is the first to examine Astyanax retinal degeneration in the context of QTL mapping. The regions we identify serve as a starting point for future studies on the genetics of retinal degeneration and eye disease using the evolutionary mutant model Astyanax.

  7. Progressive retinal degeneration and glial activation in the CLN6 (nclf mouse model of neuronal ceroid lipofuscinosis: a beneficial effect of DHA and curcumin supplementation.

    Directory of Open Access Journals (Sweden)

    Myriam Mirza

    Full Text Available Neuronal ceroid lipofuscinosis (NCL is a group of neurodegenerative lysosomal storage disorders characterized by vision loss, mental and motor deficits, and spontaneous seizures. Neuropathological analyses of autopsy material from NCL patients and animal models revealed brain atrophy closely associated with glial activity. Earlier reports also noticed loss of retinal cells and reactive gliosis in some forms of NCL. To study this phenomenon in detail, we analyzed the ocular phenotype of CLN6 (nclf mice, an established mouse model for variant-late infantile NCL. Retinal morphometry, immunohistochemistry, optokinetic tracking, electroretinography, and mRNA expression were used to characterize retinal morphology and function as well as the responses of Müller cells and microglia. Our histological data showed a severe and progressive degeneration in the CLN6 (nclf retina co-inciding with reactive Müller glia. Furthermore, a prominent phenotypic transformation of ramified microglia to phagocytic, bloated, and mislocalized microglial cells was identified in CLN6 (nclf retinas. These events overlapped with a rapid loss of visual perception and retinal function. Based on the strong microglia reactivity we hypothesized that dietary supplementation with immuno-regulatory compounds, curcumin and docosahexaenoic acid (DHA, could ameliorate microgliosis and reduce retinal degeneration. Our analyses showed that treatment of three-week-old CLN6 (nclf mice with either 5% DHA or 0.6% curcumin for 30 weeks resulted in a reduced number of amoeboid reactive microglia and partially improved retinal function. DHA-treatment also improved the morphology of CLN6 (nclf retinas with a preserved thickness of the photoreceptor layer in most regions of the retina. Our results suggest that microglial reactivity closely accompanies disease progression in the CLN6 (nclf retina and both processes can be attenuated with dietary supplemented immuno-modulating compounds.

  8. A metasystem of framework model organisms to study emergence of new host-microbe adaptations.

    Science.gov (United States)

    Gopalan, Suresh; Ausubel, Frederick M

    2008-01-01

    An unintended consequence of global industrialization and associated societal rearrangements is new interactions of microbes and potential hosts (especially mammals and plants), providing an opportunity for the rapid emergence of host-microbe adaptation and eventual establishment of new microbe-related diseases. We describe a new model system comprising the model plant Arabidopsis thaliana and several microbes, each representing different modes of interaction, to study such "maladaptations". The model microbes include human and agricultural pathogens and microbes that are commonly considered innocuous. The system has a large knowledge base corresponding to each component organism and is amenable to high-throughput automation assisted perturbation screens for identifying components that modulate host-pathogen interactions. This would aid in the study of emergence and progression of host-microbe maladaptations in a controlled environment.

  9. Modeling Powassan virus infection in Peromyscus leucopus, a natural host.

    Directory of Open Access Journals (Sweden)

    Luwanika Mlera

    2017-01-01

    Full Text Available The tick-borne flavivirus, Powassan virus (POWV causes life-threatening encephalitis in humans in North America and Europe. POWV is transmitted by ixodid tick vectors that feed on small to medium-sized mammals, such as Peromyscus leucopus mice, which may serve as either reservoir, bridge or amplification hosts. Intraperitoneal and intracranial inoculation of 4-week old Peromyscus leucopus mice with 103 PFU of POWV did not result in overt clinical signs of disease. However, following intracranial inoculation, infected mice seroconverted to POWV and histopathological examinations revealed that the mice uniformly developed mild lymphocytic perivascular cuffing and microgliosis in the brain and spinal cord from 5 to 15 days post infection (dpi, suggesting an early inflammatory response. In contrast, intracranial inoculation of 4-week old C57BL/6 and BALB/c mice was lethal by 5 dpi. Intraperitoneal inoculation was lethal in BALB/c mice, but 40% (2/5 of C57BL/6 mice survived. We concluded that Peromyscus leucopus mice infected i.c. with a lethal dose of POWV support a limited infection, restricted to the central nervous system and mount an antibody response to the virus. However, they fail to develop clinical signs of disease and are able to control the infection. These results suggest the involvement of restriction factors, and the mechanism by which Peromyscus leucopus mice restrict POWV infection remains under study.

  10. Longitudinal visualization of vascular occlusion, reperfusion, and remodeling in a zebrafish model of retinal vascular leakage using OCT angiography

    Science.gov (United States)

    Spitz, Kathleen; Bozic, Ivan; Desai, Vineet; Rao, Gopikrishna M.; Pollock, Lana M.; Anand-Apte, Bela; Tao, Yuankai K.

    2017-02-01

    Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are two of the leading causes of blindness and visual impairment in the world. Neovascularization results in severe vision loss in DR and AMD and, thus, there is an unmet need to identify mechanisms of pathogenesis and novel anti-angiogenic therapies. Zebrafish is a leading model organism for studying human disease pathogenesis, and the highly conserved drug activity between zebrafish and humans and their ability to readily absorb small molecules dissolved in water has benefited pharmaceutical discovery. Here, we use optical coherence tomography (OCT) and OCT angiography (OCT-A) to perform noninvasive, in vivo retinal imaging in a zebrafish model of vascular leakage. Zebrafish were treated with diethylaminobenzaldehyde (DEAB) to induce vascular leakage and imaged with OCT and OCT-A at six time points over two weeks: baseline one day before treatment and one, three, six, eight, and ten days post treatment. Longitudinal functional imaging showed significant vascular response immediately after DEAB treatment. Observed vascular changes included partial or complete vascular occlusion immediately after treatment and reperfusion during a two-week period. Increased vascular tortuosity several days post treatment indicated remodeling, and bifurcations and collateral vessel formation were also observed. In addition, significant treatment response variabilities were observed in the contralateral eye of the same animal. Anatomical and functional normalization was observed in most animals by ten days post treatment. These preliminary results motivate potential applications of OCT-A as a tool for studying pathogenesis and therapeutic screening in zebrafish models of retinal vascular disease.

  11. Bilateral patching in retinal detachment: fluid mechanics and retinal "settling".

    Science.gov (United States)

    Foster, William J

    2011-07-20

    When a patient suffers a retinal detachment and surgery is delayed, it is known clinically that bilaterally patching the patient may allow the retina to partially reattach or "settle." Although this procedure has been performed since the 1860s, there is still debate as to how such a maneuver facilitates the reattachment of the retina. Finite element calculations using commercially available analysis software are used to elucidate the influence of reduction in eye movement caused by bilateral patching on the flow of subretinal fluid in a physical model of retinal detachment. It was found that by coupling fluid mechanics with structural mechanics, a physically consistent explanation of increased retinal detachment with eye movements can be found in the case of traction on the retinal hole. Large eye movements increase vitreous traction and detachment forces on the edge of the retinal hole, creating a subretinal vacuum and facilitating increased subretinal fluid. Alternative models, in which intraocular fluid flow is redirected into the subretinal space, are not consistent with these simulations. The results of these simulations explain the physical principles behind bilateral patching and provide insight that can be used clinically. In particular, as is known clinically, bilateral patching may facilitate a decrease in the height of a retinal detachment. The results described here provide a description of a physical mechanism underlying this technique. The findings of this study may aid in deciding whether to bilaterally patch patients and in counseling patients on pre- and postoperative care.

  12. Modelling parasite transmission in a grazing system: the importance of host behaviour and immunity.

    Directory of Open Access Journals (Sweden)

    Naomi J Fox

    Full Text Available Parasitic helminths present one of the most pervasive challenges to grazing herbivores. Many macro-parasite transmission models focus on host physiological defence strategies, omitting more complex interactions between hosts and their environments. This work represents the first model that integrates both the behavioural and physiological elements of gastro-intestinal nematode transmission dynamics in a managed grazing system. A spatially explicit, individual-based, stochastic model is developed, that incorporates both the hosts' immunological responses to parasitism, and key grazing behaviours including faecal avoidance. The results demonstrate that grazing behaviour affects both the timing and intensity of parasite outbreaks, through generating spatial heterogeneity in parasite risk and nutritional resources, and changing the timing of exposure to the parasites' free-living stages. The influence of grazing behaviour varies with the host-parasite combination, dependent on the development times of different parasite species and variations in host immune response. Our outputs include the counterintuitive finding that under certain conditions perceived parasite avoidance behaviours (faecal avoidance can increase parasite risk, for certain host-parasite combinations. Through incorporating the two-way interaction between infection dynamics and grazing behaviour, the potential benefits of parasite-induced anorexia are also demonstrated. Hosts with phenotypic plasticity in grazing behaviour, that make grazing decisions dependent on current parasite burden, can reduce infection with minimal loss of intake over the grazing season. This paper explores how both host behaviours and immunity influence macro-parasite transmission in a spatially and temporally heterogeneous environment. The magnitude and timing of parasite outbreaks is influenced by host immunity and behaviour, and the interactions between them; the incorporation of both regulatory processes

  13. A robust sub-pixel edge detection method of infrared image based on tremor-based retinal receptive field model

    Science.gov (United States)

    Gao, Kun; Yang, Hu; Chen, Xiaomei; Ni, Guoqiang

    2008-03-01

    Because of complex thermal objects in an infrared image, the prevalent image edge detection operators are often suitable for a certain scene and extract too wide edges sometimes. From a biological point of view, the image edge detection operators work reliably when assuming a convolution-based receptive field architecture. A DoG (Difference-of- Gaussians) model filter based on ON-center retinal ganglion cell receptive field architecture with artificial eye tremors introduced is proposed for the image contour detection. Aiming at the blurred edges of an infrared image, the subsequent orthogonal polynomial interpolation and sub-pixel level edge detection in rough edge pixel neighborhood is adopted to locate the foregoing rough edges in sub-pixel level. Numerical simulations show that this method can locate the target edge accurately and robustly.

  14. Spatial structures in a simple model of population dynamics for parasite-host interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dong, J. J.; Skinner, B.; Breecher, N.; Schmittmann, B.; Zia, R. K. P.

    2015-08-01

    Spatial patterning can be crucially important for understanding the behavior of interacting populations. Here we investigate a simple model of parasite and host populations in which parasites are random walkers that must come into contact with a host in order to reproduce. We focus on the spatial arrangement of parasites around a single host, and we derive using analytics and numerical simulations the necessary conditions placed on the parasite fecundity and lifetime for the populations long-term survival. We also show that the parasite population can be pushed to extinction by a large drift velocity, but, counterintuitively, a small drift velocity generally increases the parasite population.

  15. Blue-light filtering alters angiogenic signaling in human retinal pigmented epithelial cells culture model.

    Science.gov (United States)

    Vila, Natalia; Siblini, Aya; Esposito, Evangelina; Bravo-Filho, Vasco; Zoroquiain, Pablo; Aldrees, Sultan; Logan, Patrick; Arias, Lluis; Burnier, Miguel N

    2017-11-02

    Light exposure and more specifically the spectrum of blue light contribute to the oxidative stress in Age-related macular degeneration (AMD). The purpose of the study was to establish whether blue light filtering could modify proangiogenic signaling produced by retinal pigmented epithelial (RPE) cells under different conditions simulating risk factors for AMD. Three experiments were carried out in order to expose ARPE-19 cells to white light for 48 h with and without blue light-blocking filters (BLF) in different conditions. In each experiment one group was exposed to light with no BLF protection, a second group was exposed to light with BLF protection, and a control group was not exposed to light. The ARPE-19 cells used in each experiment prior to light exposure were cultured for 24 h as follows: Experiment 1) Normoxia, Experiment 2) Hypoxia, and Experiment 3) Lutein supplemented media in normoxia. The media of all groups was harvested after light exposure for sandwich ELISA-based assays to quantify 10 pro-angiogenic cytokines. A significant decrease in angiogenin secretion levels and a significant increase in bFGF were observed following light exposure, compared to dark conditions, in both normoxia and hypoxia conditions. With the addition of a blue light-blocking filter in normoxia, a significant increase in angiogenin levels was observed. Although statistical significance was not achieved, blue light filters reduce light-induced secretion of bFGF and VEGF to near normal levels. This trend is also observed when ARPE-19 cells are grown under hypoxic conditions and when pre-treated with lutein prior to exposure to experimental conditions. Following light exposure, there is a decrease in angiogenin secretion by ARPE-19 cells, which was abrogated with a blue light - blocking filter. Our findings support the position that blue light filtering affects the secretion of angiogenic factors by retinal pigmented epithelial cells under normoxic, hypoxic, and lutein

  16. Molecular model of a type III secretion system needle: Implications for host-cell sensing.

    Science.gov (United States)

    Deane, Janet E; Roversi, Pietro; Cordes, Frank S; Johnson, Steven; Kenjale, Roma; Daniell, Sarah; Booy, Frank; Picking, William D; Picking, Wendy L; Blocker, Ariel J; Lea, Susan M

    2006-08-15

    Type III secretion systems are essential virulence determinants for many Gram-negative bacterial pathogens. The type III secretion system consists of cytoplasmic, transmembrane, and extracellular domains. The extracellular domain is a hollow needle protruding above the bacterial surface and is held within a basal body that traverses both bacterial membranes. Effector proteins are translocated, via this external needle, directly into host cells, where they subvert normal cell functions to aid infection. Physical contact with host cells initiates secretion and leads to formation of a pore, thought to be contiguous with the needle channel, in the host-cell membrane. Here, we report the crystal structure of the Shigella flexneri needle subunit MxiH and a complete model for the needle assembly built into our three-dimensional EM reconstruction. The model, combined with mutagenesis data, reveals that signaling of host-cell contact is relayed through the needle via intersubunit contacts and suggests a mode of binding for a tip complex.

  17. Seven challenges in modeling pathogen dynamics within-host and across scales

    OpenAIRE

    Julia R. Gog; Lorenzo Pellis; James L.N. Wood; Angela R. McLean; Nimalan Arinaminpathy; James O. Lloyd-Smith

    2015-01-01

    © 2014 The Authors. The population dynamics of infectious disease is a mature field in terms of theory and to some extent, application. However for microparasites, the theory and application of models of the dynamics within a single infected host is still an open field. Further, connecting across the scales - from cellular to host level, to population level - has potential to vastly improve our understanding of pathogen dynamics and evolution. Here, we highlight seven challenges in the follow...

  18. Drosophila melanogaster as a High-Throughput Model for Host-Microbiota Interactions.

    Science.gov (United States)

    Trinder, Mark; Daisley, Brendan A; Dube, Josh S; Reid, Gregor

    2017-01-01

    Microbiota research often assumes that differences in abundance and identity of microorganisms have unique influences on host physiology. To test this concept mechanistically, germ-free mice are colonized with microbial communities to assess causation. Due to the cost, infrastructure challenges, and time-consuming nature of germ-free mouse models, an alternative approach is needed to investigate host-microbial interactions. Drosophila melanogaster (fruit flies) can be used as a high throughput in vivo screening model of host-microbiome interactions as they are affordable, convenient, and replicable. D. melanogaster were essential in discovering components of the innate immune response to pathogens. However, axenic D. melanogaster can easily be generated for microbiome studies without the need for ethical considerations. The simplified microbiota structure enables researchers to evaluate permutations of how each microbial species within the microbiota contribute to host phenotypes of interest. This enables the possibility of thorough strain-level analysis of host and microbial properties relevant to physiological outcomes. Moreover, a wide range of mutant D. melanogaster strains can be affordably obtained from public stock centers. Given this, D. melanogaster can be used to identify candidate mechanisms of host-microbe symbioses relevant to pathogen exclusion, innate immunity modulation, diet, xenobiotics, and probiotic/prebiotic properties in a high throughput manner. This perspective comments on the most promising areas of microbiota research that could immediately benefit from using the D. melanogaster model.

  19. Evaluating Different Virulence Traits of Klebsiella pneumoniae Using Dictyostelium discoideum and Zebrafish Larvae as Host Models

    Directory of Open Access Journals (Sweden)

    Andrés E. Marcoleta

    2018-02-01

    Full Text Available Multiresistant and invasive hypervirulent Klebsiella pneumoniae strains have become one of the most urgent bacterial pathogen threats. Recent analyses revealed a high genomic plasticity of this species, harboring a variety of mobile genetic elements associated with virulent strains, encoding proteins of unknown function whose possible role in pathogenesis have not been addressed. K. pneumoniae virulence has been studied mainly in animal models such as mice and pigs, however, practical, financial, ethical and methodological issues limit the use of mammal hosts. Consequently, the development of simple and cost-effective experimental approaches with alternative host models is needed. In this work we described the use of both, the social amoeba and professional phagocyte Dictyostelium discoideum and the fish Danio rerio (zebrafish as surrogate host models to study K. pneumoniae virulence. We compared three K. pneumoniae clinical isolates evaluating their resistance to phagocytosis, intracellular survival, lethality, intestinal colonization, and innate immune cells recruitment. Optical transparency of both host models permitted studying the infective process in vivo, following the Klebsiella-host interactions through live-cell imaging. We demonstrated that K. pneumoniae RYC492, but not the multiresistant strains 700603 and BAA-1705, is virulent to both host models and elicits a strong immune response. Moreover, this strain showed a high resistance to phagocytosis by D. discoideum, an increased ability to form biofilms and a more prominent and irregular capsule. Besides, the strain 700603 showed the unique ability to replicate inside amoeba cells. Genomic comparison of the K. pneumoniae strains showed that the RYC492 strain has a higher overall content of virulence factors although no specific genes could be linked to its phagocytosis resistance, nor to the intracellular survival observed for the 700603 strain. Our results indicate that both zebrafish

  20. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model.

    Science.gov (United States)

    Martin, Keith R G; Quigley, Harry A; Zack, Donald J; Levkovitch-Verbin, Hana; Kielczewski, Jennifer; Valenta, Danielle; Baumrind, Lisa; Pease, Mary Ellen; Klein, Ronald L; Hauswirth, William W

    2003-10-01

    To develop a modified adenoassociated viral (AAV) vector capable of efficient transfection of retinal ganglion cells (RGCs) and to test the hypothesis that use of this vector to express brain-derived neurotrophic factor (BDNF) could be protective in experimental glaucoma. Ninety-three rats received one unilateral, intravitreal injection of either normal saline (n = 30), AAV-BDNF-woodchuck hepatitis posttranscriptional regulatory element (WPRE; n = 30), or AAV-green fluorescent protein (GFP)-WPRE (n = 33). Two weeks later, experimental glaucoma was induced in the injected eye by laser application to the trabecular meshwork. Survival of RGCs was estimated by counting axons in optic nerve cross sections after 4 weeks of glaucoma. Transgene expression was assessed by immunohistochemistry, Western blot analysis, and direct visualization of GFP. The density of GFP-positive cells in retinal wholemounts was 1,828 +/- 299 cells/mm(2) (72,273 +/- 11,814 cells/retina). Exposure to elevated intraocular pressure was similar in all groups. Four weeks after initial laser treatment, axon loss was 52.3% +/- 27.1% in the saline-treated group (n = 25) and 52.3% +/- 24.2% in the AAV-GFP-WPRE group (n = 30), but only 32.3% +/- 23.0% in the AAV-BDNF-WPRE group (n = 27). Survival in AAV-BDNF-WPRE animals increased markedly and the difference was significant compared with those receiving either AAV-GFP-WPRE (P = 0.002, t-test) or saline (P = 0.006, t-test). Overexpression of the BDNF gene protects RGC as estimated by axon counts in a rat glaucoma model, further supporting the potential feasibility of neurotrophic therapy as a complement to the lowering of IOP in the treatment of glaucoma.

  1. Advances in Retinal Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Andrea S Viczian

    2013-01-01

    Full Text Available Tremendous progress has been made in recent years to generate retinal cells from pluripotent cell sources. These advances provide hope for those suffering from blindness due to lost retinal cells. Understanding the intrinsic genetic network in model organisms, like fly and frog, has led to a better understanding of the extrinsic signaling pathways necessary for retinal progenitor cell formation in mouse and human cell cultures. This review focuses on the culture methods used by different groups, which has culminated in the generation of laminated retinal tissue from both embryonic and induced pluripotent cells. The review also briefly describes advances made in transplantation studies using donor retinal progenitor and cultured retinal cells.

  2. Host pathogen relations: exploring animal models for fungal pathogens.

    Science.gov (United States)

    Harwood, Catherine G; Rao, Reeta P

    2014-06-30

    Pathogenic fungi cause superficial infections but pose a significant public health risk when infections spread to deeper tissues, such as the lung. Within the last three decades, fungi have been identified as the leading cause of nosocomial infections making them the focus of research. This review outlines the model systems such as the mouse, zebrafish larvae, flies, and nematodes, as well as ex vivo and in vitro systems available to study common fungal pathogens.

  3. Host Pathogen Relations: Exploring Animal Models for Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Catherine G. Harwood

    2014-06-01

    Full Text Available Pathogenic fungi cause superficial infections but pose a significant public health risk when infections spread to deeper tissues, such as the lung. Within the last three decades, fungi have been identified as the leading cause of nosocomial infections making them the focus of research. This review outlines the model systems such as the mouse, zebrafish larvae, flies, and nematodes, as well as ex vivo and in vitro systems available to study common fungal pathogens.

  4. Uncovering the drivers of host-associated microbiota with joint species distribution modelling.

    Science.gov (United States)

    Björk, Johannes R; Hui, Francis K C; O'Hara, Robert B; Montoya, Jose M

    2018-06-01

    In addition to the processes structuring free-living communities, host-associated microbiota are directly or indirectly shaped by the host. Therefore, microbiota data have a hierarchical structure where samples are nested under one or several variables representing host-specific factors, often spanning multiple levels of biological organization. Current statistical methods do not accommodate this hierarchical data structure and therefore cannot explicitly account for the effect of the host in structuring the microbiota. We introduce a novel extension of joint species distribution models (JSDMs) which can straightforwardly accommodate and discern between effects such as host phylogeny and traits, recorded covariates such as diet and collection site, among other ecological processes. Our proposed methodology includes powerful yet familiar outputs seen in community ecology overall, including (a) model-based ordination to visualize and quantify the main patterns in the data; (b) variance partitioning to assess how influential the included host-specific factors are in structuring the microbiota; and (c) co-occurrence networks to visualize microbe-to-microbe associations. © 2018 John Wiley & Sons Ltd.

  5. Transplantation of rat embryonic stem cell-derived retinal progenitor cells preserves the retinal structure and function in rat retinal degeneration.

    Science.gov (United States)

    Qu, Zepeng; Guan, Yuan; Cui, Lu; Song, Jian; Gu, Junjie; Zhao, Hanzhi; Xu, Lei; Lu, Lixia; Jin, Ying; Xu, Guo-Tong

    2015-11-09

    Degenerative retinal diseases like age-related macular degeneration (AMD) are the leading cause of blindness. Cell transplantation showed promising therapeutic effect for such diseases, and embryonic stem cell (ESC) is one of the sources of such donor cells. Here, we aimed to generate retinal progenitor cells (RPCs) from rat ESCs (rESCs) and to test their therapeutic effects in rat model. The rESCs (DA8-16) were cultured in N2B27 medium with 2i, and differentiated to two types of RPCs following the SFEBq method with modifications. For rESC-RPC1, the cells were switched to adherent culture at D10, while for rESC-RPC2, the suspension culture was maintained to D14. Both RPCs were harvested at D16. Primary RPCs were obtained from P1 SD rats, and some of them were labeled with EGFP by infection with lentivirus. To generate Rax::EGFP knock-in rESC lines, TALENs were engineered to facilitate homologous recombination in rESCs, which were cotransfected with the targeting vector and TALEN vectors. The differentiated cells were analyzed with live image, immunofluorescence staining, flow cytometric analysis, gene expression microarray, etc. RCS rats were used to mimic the degeneration of retina and test the therapeutic effects of subretinally transplanted donor cells. The structure and function of retina were examined. We established two protocols through which two types of rESC-derived RPCs were obtained and both contained committed retina lineage cells and some neural progenitor cells (NPCs). These rESC-derived RPCs survived in the host retinas of RCS rats and protected the retinal structure and function in early stage following the transplantation. However, the glia enriched rESC-RPC1 obtained through early and longer adherent culture only increased the b-wave amplitude at 4 weeks, while the longer suspension culture gave rise to evidently neuronal differentiation in rESC-RPC2 which significantly improved the visual function of RCS rats. We have successfully differentiated

  6. Effects of electroacupuncture on the levels of retinal gamma-aminobutyric acid and its receptors in a guinea pig model of lens-induced myopia.

    Science.gov (United States)

    Sha, F; Ye, X; Zhao, W; Xu, C-L; Wang, L; Ding, M-H; Bi, A-L; Wu, J-F; Jiang, W-J; Guo, D-D; Guo, J-G; Bi, H-S

    2015-02-26

    Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter of the retina and affects myopic development. Electroacupuncture (EA) is widely utilized to treat myopia in clinical settings. However, there are few reports on whether EA affects the level of retinal GABA during myopic development. To study this issue, in the present study, we explored the changes of retinal GABA content and the expression of its receptor subtypes, and the effects of EA stimulation on them in a guinea pig model with lens-induced myopia (LIM). Our results showed that the content of GABA and the expression of GABAA and GABAC receptors of retina were up-regulated during the development of myopia, and this up-regulation was inhibited by applying EA to Hegu (LI4) and Taiyang (EX-HN5) acupoints. Moreover, these effects of EA show a positional specificity. While applying EA at a sham acupoint, no apparent change of myopic retinal GABA and its receptor subtypes was observed. Taken together, our findings suggest that LIM is effective to up-regulate the level of retinal GABA, GABAA and GABAC receptors in guinea pigs and the effect may be inhibited by EA stimulation at LI4 and EX-HN5 acupoints. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Long-term consequences of developmental vascular defects on retinal vessel homeostasis and function in a mouse model of Norrie disease.

    Directory of Open Access Journals (Sweden)

    Susanne C Beck

    Full Text Available Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects.

  8. Long-term consequences of developmental vascular defects on retinal vessel homeostasis and function in a mouse model of Norrie disease.

    Science.gov (United States)

    Beck, Susanne C; Feng, Yuxi; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Acar, Niyazi; Shan, Shenliang; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W

    2017-01-01

    Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects.

  9. The role of whiskers in compensation of visual deficit in a mouse model of retinal degeneration.

    Science.gov (United States)

    Voller, Jaroslav; Potužáková, Barbora; Šimeček, Vojtěch; Vožeh, František

    2014-01-13

    Sensory deprivation in one modality can enhance the development of the remaining modalities via mechanisms of synaptic plasticity. Mice of the C3H strain suffer from RD1 retinal degeneration that leads to visual impairment at weaning age. We examined a role of whiskers in compensation of the visual deficit. In order to differentiate the contribution of the whiskers from other mechanisms that can take part in the compensation, we investigated the effect of both chronic and acute tactile deprivation. Three-month-old mice were used. We examined motor skills (rotarod, beam walking test), gait control (CatWalk system), spontaneous motor activity (open field) and CNS excitability to an acoustic stimulus for assessment of compensatory changes in auditory system (audiogenic epilepsy). In the sighted mice, the only effect was a decline in their rotarod test performance after acute whisker removal. In the blind animals, chronic tactile deprivation caused changes in their gait and impaired the performance in motor tests. Some other compensatory mechanisms were involved but the whiskers are essential for the compensation as it emerged from more marked change of gait and the worsening of the motor performance after the acute whisker removal. Both chronic and acute tactile deprivation induced anxiety-like behaviour. Only a combination of blindness and chronic tactile deprivation led to an increased sense of hearing. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Human cadaver retina model for retinal heating during corneal surgery with a femtosecond laser

    Science.gov (United States)

    Sun, Hui; Fan, Zhongwei; Yun, Jin; Zhao, Tianzhuo; Yan, Ying; Kurtz, Ron M.; Juhasz, Tibor

    2014-02-01

    Femtosecond lasers are widely used in everyday clinical procedures to perform minimally invasive corneal refractive surgery. The intralase femtosecond laser (AMO Corp. Santa Ana, CA) is a common example of such a laser. In the present study a numerical simulation was developed to quantify the temperature rise in the retina during femtosecond intracorneal surgery. Also, ex-vivo retinal heating due to laser irradiation was measured with an infrared thermal camera (Fluke Corp. Everett, WA) as a validation of the simulation. A computer simulation was developed using Comsol Multiphysics to calculate the temperature rise in the cadaver retina during femtosecond laser corneal surgery. The simulation showed a temperature rise of less than 0.3 degrees for realistic pulse energies for the various repetition rates. Human cadaver retinas were irradiated with a 150 kHz Intralase femtosecond laser and the temperature rise was measured withan infrared thermal camera. Thermal camera measurements are in agreement with the simulation. During routine femtosecond laser corneal surgery with normal clinical parameters, the temperature rise is well beneath the threshold for retina damage. The simulation predictions are in agreement with thermal measurements providing a level of experimental validation.

  11. Modeling retinal degeneration using patient-specific induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Zi-Bing Jin

    Full Text Available Retinitis pigmentosa (RP is the most common inherited human eye disease resulting in night blindness and visual defects. It is well known that the disease is caused by rod photoreceptor degeneration; however, it remains incurable, due to the unavailability of disease-specific human photoreceptor cells for use in mechanistic studies and drug screening. We obtained fibroblast cells from five RP patients with distinct mutations in the RP1, RP9, PRPH2 or RHO gene, and generated patient-specific induced pluripotent stem (iPS cells by ectopic expression of four key reprogramming factors. We differentiated the iPS cells into rod photoreceptor cells, which had been lost in the patients, and found that they exhibited suitable immunocytochemical features and electrophysiological properties. Interestingly, the number of the patient-derived rod cells with distinct mutations decreased in vitro; cells derived from patients with a specific mutation expressed markers for oxidation or endoplasmic reticulum stress, and exhibited different responses to vitamin E than had been observed in clinical trials. Overall, patient-derived rod cells recapitulated the disease phenotype and expressed markers of cellular stresses. Our results demonstrate that the use of patient-derived iPS cells will help to elucidate the pathogenic mechanisms caused by genetic mutations in RP.

  12. Intravitreal administration of HA-1077, a ROCK inhibitor, improves retinal function in a mouse model of huntington disease.

    Directory of Open Access Journals (Sweden)

    Mei Li

    Full Text Available Huntington disease (HD is an inherited neurodegenerative disease that affects multiple brain regions. It is caused by an expanded polyglutamine tract in huntingtin (Htt. The development of therapies for HD and other neurodegenerative diseases has been hampered by multiple factors, including the lack of clear therapeutic targets, and the cost and complexity of testing lead compounds in vivo. The R6/2 HD mouse model is widely used for pre-clinical trials because of its progressive and robust neural dysfunction, which includes retinal degeneration. Profilin-1 is a Htt binding protein that inhibits Htt aggregation. Its binding to Htt is regulated by the rho-associated kinase (ROCK, which phosphorylates profilin at Ser-137. ROCK is thus a therapeutic target in HD. The ROCK inhibitor Y-27632 reduces Htt toxicity in fly and mouse models. Here we characterized the progressive retinopathy of R6/2 mice between 6-19 weeks of age to determine an optimal treatment window. We then tested a clinically approved ROCK inhibitor, HA-1077, administered intravitreally via liposome-mediated drug delivery. HA-1077 increased photopic and flicker ERG response amplitudes in R6/2 mice, but not in wild-type littermate controls. By targeting ROCK with a new inhibitor, and testing its effects in a novel in vivo model, these results validate the in vivo efficacy of a therapeutic candidate, and establish the feasibility of using the retina as a readout for CNS function in models of neurodegenerative disease.

  13. Missed retinal breaks in rhegmatogenous retinal detachment

    Directory of Open Access Journals (Sweden)

    Brijesh Takkar

    2016-12-01

    Full Text Available AIM: To evaluate the causes and associations of missed retinal breaks (MRBs and posterior vitreous detachment (PVD in patients with rhegmatogenous retinal detachment (RRD. METHODS: Case sheets of patients undergoing vitreo retinal surgery for RRD at a tertiary eye care centre were evaluated retrospectively. Out of the 378 records screened, 253 were included for analysis of MRBs and 191 patients were included for analysis of PVD, depending on the inclusion criteria. Features of RRD and retinal breaks noted on examination were compared to the status of MRBs and PVD detected during surgery for possible associations. RESULTS: Overall, 27% patients had MRBs. Retinal holes were commonly missed in patients with lattice degeneration while missed retinal tears were associated with presence of complete PVD. Patients operated for cataract surgery were significantly associated with MRBs (P=0.033 with the odds of missing a retinal break being 1.91 as compared to patients with natural lens. Advanced proliferative vitreo retinopathy (PVR and retinal bullae were the most common reasons for missing a retinal break during examination. PVD was present in 52% of the cases and was wrongly assessed in 16%. Retinal bullae, pseudophakia/aphakia, myopia, and horse shoe retinal tears were strongly associated with presence of PVD. Traumatic RRDs were rarely associated with PVD. CONCLUSION: Pseudophakic patients, and patients with retinal bullae or advanced PVR should be carefully screened for MRBs. Though Weiss ring is a good indicator of PVD, it may still be over diagnosed in some cases. PVD is associated with retinal bullae and pseudophakia, and inversely with traumatic RRD.

  14. Delayed administration of glial cell line-derived neurotrophic factor (GDNF) protects retinal ganglion cells in a pig model of acute retinal ischemia

    DEFF Research Database (Denmark)

    Kyhn, Maria Voss; Klassen, Henry; Johansson, Ulrica Englund

    2009-01-01

    electroretinography (mfERG), quantification of NeuN positive cells and evaluation of the degree of retinal perivasculitis and inflammation 6 weeks after the insult. In the post-injection eyes (days 14, 28 and 42), the ratios of the iN1 and the iP2 amplitudes were 0.10 (95% CI: 0.05-0.15) and 0.09 (95% CI: 0.......04-0.16) in eyes treated with blank microspheres, and 0.24 (95% CI: 0.18-0.32) and 0.23 (95% CI: 0.15-0.33) in eyes treated with GDNF microspheres. These differences were statistically significant (P eyes...... injected with GDNF microspheres compared to eyes injected with blank microspheres. In eyes injected with GDNF microspheres the ganglion cell count was 9.5/field (s.e.m.: 2.1, n = 8), in eyes injected with blank microspheres it was 3.5/field (s.e.m.: 1.2, n = 7). This difference was statistically...

  15. Upregulated inflammatory associated factors and blood-retinal barrier changes in the retina of type 2 diabetes mellitus model

    Directory of Open Access Journals (Sweden)

    Rui-Jin Ran

    2016-11-01

    Full Text Available AIM: To examine the expression of high mobility group box-1 (HMGB-1 and intercellular adhesion molecule-1 (ICAM-1 in the retina and the hippocampal tissues; and further to evaluate the association of these two molecules with the alterations of blood-retinal barrier (BRB and blood-brain barrier (BBB in a rat model of type 2 diabetes. METHODS: The type-2 diabetes mellitus (DM model was established with a high-fat and high-glucose diet combined with streptozotocin (STZ. Sixteen weeks after DM induction, morphological changes of retina and hippocampus were observed with hematoxylin-eosin staining, and alternations of BRB and BBB permeability were measured using Evans blue method. Levels of HMGB-1 and ICAM-1 in retina and hippocampus were detected by Western blot. Serum HMGB-1 levels were determined by enzyme-linked immunosorbent assay (ELISA. RESULTS: A significantly higher serum fasting blood glucose level in DM rats was observed 2wk after STZ injection (P<0.01. The serum levels of fasting insulin, Insulin resistance homeostatic model assessment (IRHOMA, total cholesterol (TC, total triglycerides (TG and low density lipoprotein cholesterol (LDL-C in the DM rats significantly higher than those in the controls (all P<0.01. HMGB-1 (0.96±0.03, P<0.01 and ICAM-1 (0.76±0.12, P<0.05 levels in the retina in the DM rats were significantly higher than those in the controls. HMGB-1 (0.83±0.13, P<0.01 and ICAM-1 (1.15±0.08, P<0.01 levels in the hippocampal tissues in the DM rats were also significantly higher than those in the controls. Sixteen weeks after induction of DM, the BRB permeability to albumin-bound Evans blue dye in the DM rats was significantly higher than that in the controls (P<0.01. However, there was no difference of BBB permeability between the DM rats and controls. When compared to the controls, hematoxylin and eosin staining showed obvious irregularities in the DM rats. CONCLUSION: BRB permeability increases significantly

  16. Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models.

    Science.gov (United States)

    Moore, Sean M; Borer, Elizabeth T; Hosseini, Parviez R

    2010-01-06

    Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To examine the indirect effect of predators on vectored-pathogen dynamics, we developed a theoretical model that integrates predator-prey and host-pathogen theory. We used this model to determine whether predation can prevent pathogen persistence or alter the stability of host-pathogen dynamics. We found that, in the absence of predation, pathogen prevalence in the host increases with vector fecundity, whereas predation on the vector causes pathogen prevalence to decline, or even become extinct, with increasing vector fecundity. We also found that predation on a vector may drastically slow the initial spread of a pathogen. The predator can increase host abundance indirectly by reducing or eliminating infection in the host population. These results highlight the importance of studying interactions that, within the greater community, may alter our predictions when studying disease dynamics. From an applied perspective, these results also suggest situations where an introduced predator or the natural enemies of a vector may slow the rate of spread of an emerging vector-borne pathogen.

  17. Sediment-hosted gold deposits of the world: database and grade and tonnage models

    Science.gov (United States)

    Berger, Vladimir I.; Mosier, Dan L.; Bliss, James D.; Moring, Barry C.

    2014-01-01

    All sediment-hosted gold deposits (as a single population) share one characteristic—they all have disseminated micron-sized invisible gold in sedimentary rocks. Sediment-hosted gold deposits are recognized in the Great Basin province of the western United States and in China along with a few recognized deposits in Indonesia, Iran, and Malaysia. Three new grade and tonnage models for sediment-hosted gold deposits are presented in this paper: (1) a general sediment-hosted gold type model, (2) a Carlin subtype model, and (3) a Chinese subtype model. These models are based on grade and tonnage data from a database compilation of 118 sediment-hosted gold deposits including a total of 123 global deposits. The new general grade and tonnage model for sediment-hosted gold deposits (n=118) has a median tonnage of 5.7 million metric tonnes (Mt) and a gold grade of 2.9 grams per tonne (g/t). This new grade and tonnage model is remarkable in that the estimated parameters of the resulting grade and tonnage distributions are comparable to the previous model of Mosier and others (1992). A notable change is in the reporting of silver in more than 10 percent of deposits; moreover, the previous model had not considered deposits in China. From this general grade and tonnage model, two significantly different subtypes of sediment-hosted gold deposits are differentiated: Carlin and Chinese. The Carlin subtype includes 88 deposits in the western United States, Indonesia, Iran, and Malaysia, with median tonnage and grade of 7.1 Mt and 2.0 g/t Au, respectively. The silver grade is 0.78 g/t Ag for the 10th percentile of deposits. The Chinese subtype represents 30 deposits in China, with a median tonnage of 3.9 Mt and medium grade of 4.6 g/t Au. Important differences are recognized in the mineralogy and alteration of the two sediment-hosted gold subtypes such as: increased sulfide minerals in the Chinese subtype and decalcification alteration dominant in the Carlin type. We therefore

  18. An Adapted Porter Diamond Model for the Evaluation of Transnational Education Host Countries

    Science.gov (United States)

    Tsiligiris, Vangelis

    2018-01-01

    Purpose: The purpose of this paper is to propose an adapted Porter Diamond Model (PDM) that can be used by transnational education (TNE) countries and institutions as an analytical framework for the strategic evaluation of TNE host countries in terms of attractiveness for exporting higher education. Design/methodology/approach: The study uses a…

  19. Cell Therapy Applications for Retinal Vascular Diseases: Diabetic Retinopathy and Retinal Vein Occlusion.

    Science.gov (United States)

    Park, Susanna S

    2016-04-01

    Retinal vascular conditions, such as diabetic retinopathy and retinal vein occlusion, remain leading causes of vision loss. No therapy exists to restore vision loss resulting from retinal ischemia and associated retinal degeneration. Tissue regeneration is possible with cell therapy. The goal would be to restore or replace the damaged retinal vasculature and the retinal neurons that are damaged and/or degenerating from the hypoxic insult. Currently, various adult cell therapies have been explored as potential treatment. They include mesenchymal stem cells, vascular precursor cells (i.e., CD34+ cells, hematopoietic cells or endothelial progenitor cells), and adipose stromal cells. Preclinical studies show that all these cells have a paracrine trophic effect on damaged ischemic tissue, leading to tissue preservation. Endothelial progenitor cells and adipose stromal cells integrate into the damaged retinal vascular wall in preclinical models of diabetic retinopathy and ischemia-reperfusion injury. Mesenchymal stem cells do not integrate as readily but appear to have a primary paracrine trophic effect. Early phase clinical trials have been initiated and ongoing using mesenchymal stem cells or autologous bone marrow CD34+ cells injected intravitreally as potential therapy for diabetic retinopathy or retinal vein occlusion. Adipose stromal cells or pluripotent stem cells differentiated into endothelial colony-forming cells have been explored in preclinical studies and show promise as possible therapies for retinal vascular disorders. The relative safety or efficacy of these various cell therapies for treating retinal vascular disorders have yet to be determined.

  20. Dose- and time-dependence of the host-mediated response to paclitaxel therapy: a mathematical modeling approach.

    Science.gov (United States)

    Benguigui, Madeleine; Alishekevitz, Dror; Timaner, Michael; Shechter, Dvir; Raviv, Ziv; Benzekry, Sebastien; Shaked, Yuval

    2018-01-05

    It has recently been suggested that pro-tumorigenic host-mediated processes induced in response to chemotherapy counteract the anti-tumor activity of therapy, and thereby decrease net therapeutic outcome. Here we use experimental data to formulate a mathematical model describing the host response to different doses of paclitaxel (PTX) chemotherapy as well as the duration of the response. Three previously described host-mediated effects are used as readouts for the host response to therapy. These include the levels of circulating endothelial progenitor cells in peripheral blood and the effect of plasma derived from PTX-treated mice on migratory and invasive properties of tumor cells in vitro . A first set of mathematical models, based on basic principles of pharmacokinetics/pharmacodynamics, did not appropriately describe the dose-dependence and duration of the host response regarding the effects on invasion. We therefore provide an alternative mathematical model with a dose-dependent threshold, instead of a concentration-dependent one, that describes better the data. This model is integrated into a global model defining all three host-mediated effects. It not only precisely describes the data, but also correctly predicts host-mediated effects at different doses as well as the duration of the host response. This mathematical model may serve as a tool to predict the host response to chemotherapy in cancer patients, and therefore may be used to design chemotherapy regimens with improved therapeutic outcome by minimizing host mediated effects.

  1. Effect of pigment epithelium derived factor on NO and the expression of caspase-3 in retinal tissues of model rats with optic nerve crush injury

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Yan

    2017-06-01

    Full Text Available AIM: To analyze the effect of pigment epithelium derived factor(PEDFon nitrogen monoxide(NOand expression of cysteine-containing, aspartate-specific proteases-3(caspase-3in retinal tissues of model rats with optic nerve crush injury. METHODS: A total of 60 SD rats were randomly divided into the blank control group, model group and PEDF group, with 20 rats in each group. Except the blank control group, the optic nerve crush injury rat models were established in the other groups, and left eyeballs were taken as samples. After successfully modeling, the model group were treated with intravitreal injection of 5μL of balanced salt solution while PEDF group were treated with intravitreal injection of 5μL of PEDF(0.2μg/μL. Two weeks later, the retinal tissues were collected, and changes of shape were observed under microscope after HE staining. The changes of NO level were measured by colorimetry assay, the expression of caspase-3 mRNA and caspase-3 protein was detected by reverse transcription-polymerase chain reaction(RT-PCRand Western-blot. RESULTS: HE staining showed that retinal tissues of the blank control group arranged neatly and clearly. Retinal ganglion cells(RGCsarranged in a monolayer, and cells were oval, uniform in size and distribution, the cell nuclei were clear, closely arranged, with clear boundaries. The retinal tissues of the model group were sparse in shape, RGCs showed vacuolar changes, the overall number of cells was reduced, and cell nuclei of residual RGCs showed pyknosis and uneven staining. RGCs in PEDF group were with slightly edema and arranged closely, and the degree of injury was significantly milder than that in the model group. Levels of Caspase-3 mRNA and protein and NO levels in the three groups showed the model group > PEDF group > blank control group(all P CONCLUSION: The application of PEDF can down regulate the expression of Caspase-3 and NO in rates with optic nerve injury and reduce RGCs injury.

  2. Modeling conduction in host-graft interactions between stem cell grafts and cardiomyocytes.

    Science.gov (United States)

    Chen, Michael Q; Yu, Jin; Whittington, R Hollis; Wu, Joseph C; Kovacs, Gregory T A; Giovangrandi, Laurent

    2009-01-01

    Cell therapy has recently made great strides towards aiding heart failure. However, while transplanted cells may electromechanically integrate into host tissue, there may not be a uniform propagation of a depolarization wave between the heterogeneous tissue boundaries. A model using microelectrode array technology that maps the electrical interactions between host and graft tissues in co-culture is presented and sheds light on the effects of having a mismatch of conduction properties at the boundary. Skeletal myoblasts co-cultured with cardiomyocytes demonstrated that conduction velocity significantly decreases at the boundary despite electromechanical coupling. In an attempt to improve the uniformity of conduction with host cells, differentiating human embryonic stem cells (hESC) were used in co-culture. Over the course of four to seven days, synchronous electrical activity was observed at the hESC boundary, implying differentiation and integration. Activity did not extend far past the boundary, and conduction velocity was significantly greater than that of the host tissue, implying the need for other external measures to properly match the conduction properties between host and graft tissue.

  3. Use of a Regression Model to Study Host-Genomic Determinants of Phage Susceptibility in MRSA

    DEFF Research Database (Denmark)

    Zschach, Henrike; Larsen, Mette V; Hasman, Henrik

    2018-01-01

    strains to 12 (nine monovalent) different therapeutic phage preparations and subsequently employed linear regression models to estimate the influence of individual host gene families on resistance to phages. Specifically, we used a two-step regression model setup with a preselection step based on gene...... family enrichment. We show that our models are robust and capture the data's underlying signal by comparing their performance to that of models build on randomized data. In doing so, we have identified 167 gene families that govern phage resistance in our strain set and performed functional analysis...... on them. This revealed genes of possible prophage or mobile genetic element origin, along with genes involved in restriction-modification and transcription regulators, though the majority were genes of unknown function. This study is a step in the direction of understanding the intricate host...

  4. Computational neural network regression model for Host based Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Gautam

    2016-09-01

    Full Text Available The current scenario of information gathering and storing in secure system is a challenging task due to increasing cyber-attacks. There exists computational neural network techniques designed for intrusion detection system, which provide security to single machine and entire network's machine. In this paper, we have used two types of computational neural network models, namely, Generalized Regression Neural Network (GRNN model and Multilayer Perceptron Neural Network (MPNN model for Host based Intrusion Detection System using log files that are generated by a single personal computer. The simulation results show correctly classified percentage of normal and abnormal (intrusion class using confusion matrix. On the basis of results and discussion, we found that the Host based Intrusion Systems Model (HISM significantly improved the detection accuracy while retaining minimum false alarm rate.

  5. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation?

    Energy Technology Data Exchange (ETDEWEB)

    Kocevski, Daniel; /KIPAC, Menlo Park; West, Andrew A.; /UC, Berkeley, Astron. Dept. /MIT, MKI; Modjaz, Maryam; /UC, Berkeley, Astron. Dept.

    2009-08-03

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity (M-Z) relationship for galaxies, along with a sharp host metallicity cut-off suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that sub-solar metallicity cut-offs effectively limit GRBs to low stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low metallicity cut-offs of 0.1 to 0.5 Z{sub {circle_dot}} are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H){sub KK04} = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z {approx} 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  6. MODELING THE GRB HOST GALAXY MASS DISTRIBUTION: ARE GRBs UNBIASED TRACERS OF STAR FORMATION?

    International Nuclear Information System (INIS)

    Kocevski, Daniel; West, Andrew A.; Modjaz, Maryam

    2009-01-01

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low-metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity relationship for galaxies, along with a sharp host metallicity cutoff suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that subsolar metallicity cutoffs effectively limit GRBs to low-stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low-metallicity cutoffs of 0.1 to 0.5 Z sun are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H) KK04 = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z ∼ 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity-biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  7. Foreign Body Infection Models to Study Host-Pathogen Response and Antimicrobial Tolerance of Bacterial Biofilm

    Directory of Open Access Journals (Sweden)

    Justyna Nowakowska

    2014-08-01

    Full Text Available The number of implanted medical devices is steadily increasing and has become an effective intervention improving life quality, but still carries the risk of infection. These infections are mainly caused by biofilm-forming staphylococci that are difficult to treat due to the decreased susceptibility to both antibiotics and host defense mechanisms. To understand the particular pathogenesis and treatment tolerance of implant-associated infection (IAI animal models that closely resemble human disease are needed. Applications of the tissue cage and catheter abscess foreign body infection models in the mouse will be discussed herein. Both models allow the investigation of biofilm and virulence of various bacterial species and a comprehensive insight into the host response at the same time. They have also been proven to serve as very suitable tools to study the anti-adhesive and anti-infective efficacy of different biomaterial coatings. The tissue cage model can additionally be used to determine pharmacokinetics, efficacy and cytotoxicity of antimicrobial compounds as the tissue cage fluid can be aspirated repeatedly without the need to sacrifice the animal. Moreover, with the advance in innovative imaging systems in rodents, these models may offer new diagnostic measures of infection. In summary, animal foreign body infection models are important tools in the development of new antimicrobials against IAI and can help to elucidate the complex interactions between bacteria, the host immune system, and prosthetic materials.

  8. Exploring Host-Microbiome Interactions using an in Silico Model of Biomimetic Robots and Engineered Living Cells

    OpenAIRE

    Keith C. Heyde; Warren C. Ruder

    2015-01-01

    The microbiome?s underlying dynamics play an important role in regulating the behavior and health of its host. In order to explore the details of these interactions, we created an in silico model of a living microbiome, engineered with synthetic biology, that interfaces with a biomimetic, robotic host. By analytically modeling and computationally simulating engineered gene networks in these commensal communities, we reproduced complex behaviors in the host. We observed that robot movements de...

  9. Impact of Chronic Neonatal Intermittent Hypoxia on Severity of Retinal Damage in a Rat Model of Oxygen-Induced Retinopathy.

    Science.gov (United States)

    Beharry, Kay D; Cai, Charles L; Ahmad, Taimur; Guzel, Sibel; Valencia, Gloria B; Aranda, Jacob V

    2018-01-01

    Neonatal intermittent hypoxia (IH) followed by re-oxygenation in normoxia or supplemental oxygen (IHR) increases the risk for severe retinopathy of prematurity (ROP). The exact timing for the onset of retinal damage which may guide strategic interventions during retinal development, is unknown. We tested the hypothesis that chronic exposure of the immature retina to neonatal IH induces early manifestations of retinal damage that can be utilized as key time points for strategic pharmacologic intervention. Newborn rats were exposed to IH within 2 hours of birth (P0) until P14, or allowed to recover in room air (RA) from P14 to P21 (IHR). Retinal integrity and angiogenesis biomarkers were progressively assessed before (P0), during IH, and post IH (recovery in RA), or IHR, and compared to normoxic age-matched controls. Retinal damage occurred as early as day 3 of neonatal IH, consistent with vascular abnormalities and disturbances in the astrocytic template. These abnormalities worsened during IHR. Pharmacologic and non-pharmacologic interventions to identify, prevent, or minimize neonatal IH should be implemented shortly after birth in high risk preterm newborns. This strategy may lead to a reduction in the outcome of severe ROP requiring later invasive treatments.

  10. Photostress Testing Device for Diagnosing Retinal Disease

    Directory of Open Access Journals (Sweden)

    Elizabeth Swan

    2014-08-01

    Full Text Available Retinal diseases such as Age-Related Macular Degeneration (ARMD affect nearly one in three elderly patients. ARMD damages the central vision photoreceptors in the fovea. The Photostress Test is a simple technique for testing for the early effects of ARMD. Here, the illumination sources in a novel self-administered Photostress Testing device were modeled for safety and distribution in illumination software. After satisfying the design constraints in the model, a prototype of the illumination system was fabricated and tested to confirm the modeling results. The resultant prototype can be used to aid in the diagnosis of retinal disease and is well within retinal safety levels.

  11. Adding Biotic Interactions into Paleodistribution Models: A Host-Cleptoparasite Complex of Neotropical Orchid Bees.

    Directory of Open Access Journals (Sweden)

    Daniel Paiva Silva

    Full Text Available Orchid bees compose an exclusive Neotropical pollinators group, with bright body coloration. Several of those species build their own nests, while others are reported as nest cleptoparasites. Here, the objective was to evaluate whether the inclusion of a strong biotic interaction, such as the presence of a host species, improved the ability of species distribution models (SDMs to predict the geographic range of the cleptoparasite species. The target species were Aglae caerulea and its host species Eulaema nigrita. Additionally, since A. caerulea is more frequently found in the Amazon rather than the Cerrado areas, a secondary objective was to evaluate whether this species is increasing or decreasing its distribution given South American past and current climatic conditions. SDMs methods (Maxent and Bioclim, in addition with current and past South American climatic conditions, as well as the occurrences for A. caerulea and E. nigrita were used to generate the distribution models. The distribution of A. caerulea was generated with and without the inclusion of the distribution of E. nigrita as a predictor variable. The results indicate A. caerulea was barely affected by past climatic conditions and the populations from the Cerrado savanna could be at least 21,000 years old (the last glacial maximum, as well as the Amazonian ones. On the other hand, in this study, the inclusion of the host-cleptoparasite interaction complex did not statistically improve the quality of the produced models, which means that the geographic range of this cleptoparasite species is mainly constrained by climate and not by the presence of the host species. Nonetheless, this could also be caused by unknown complexes of other Euglossini hosts with A. caerulea, which still are still needed to be described by science.

  12. Evaluation of Chronic Stress Induced Neurodegeneration and Treatment Using and In-Vivo Retinal Model

    National Research Council Canada - National Science Library

    Rentmeiater-Bryant, Heike

    2002-01-01

    ...) has been long suspected. This study will determine the effectiveness of the snake eye/Scanning Laser Ophthalmoscope model, an in vivo, non- invasive imaging technique, for use as a longitudinal model in the study of neural...

  13. Correlation between SD-OCT, immunocytochemistry and functional findings in a pigmented animal model of retinal degeneration

    Directory of Open Access Journals (Sweden)

    Nicolás eCuenca

    2014-12-01

    Full Text Available Purpose: The P23H rhodopsin mutation is an autosomal dominant cause of retinitis pigmentosa. The degeneration can be tracked using different anatomical and functional methods. In our case, we evaluated the anatomical changes using Spectral-Domain Optical Coherence Tomography (SD-OCT and correlated the findings with retinal thickness values determined by immunocytochemistry.Methods: Pigmented rats heterozygous for the P23H mutation, with ages between P18 and P180 were studied. Function was assessed by means of optomotor testing and ERGs. Retinal thicknesses measurements, autofluorescence and fluorescein angiography were performed using Spectralis OCT. Retinas were studied by means of immunohistochemistry. Results: Between P30 and P180, visual acuity decreased from 0.500 to 0.182 cycles per degree (cyc/deg and contrast sensitivity decreased from 54.56 to 2.98 for a spatial frequency of 0.089 cyc/deg. Only cone-driven b-wave responses reached developmental maturity. Flicker fusions were also comparable at P29 (42 Hz. Double flash-isolated rod-driven responses were already affected at P29. Photopic responses revealed deterioration after P29.A reduction in retinal thicknesses and morphological modifications were seen in OCT sections. Statistically significant differences were found in all evaluated thicknesses. Autofluorescence was seen in P23H rats as sparse dots. Immunocytochemistry showed a progressive decrease in the outer nuclear layer, and morphological changes. Although anatomical thickness measures were significantly lower than OCT values, there was a very strong correlation between the values measured by both techniques.Conclusions: In pigmented P23H rats, a progressive deterioration occurs in both retinal function and anatomy. Anatomical changes can be effectively evaluated using SD-OCT and immunocytochemistry, with a good correlation between their values, thus making SD-OCT an important tool for research in retinal degeneration.

  14. Highly sensitive measurements of disease progression in rare disorders: Developing and validating a multimodal model of retinal degeneration in Stargardt disease.

    Science.gov (United States)

    Lambertus, Stanley; Bax, Nathalie M; Fakin, Ana; Groenewoud, Joannes M M; Klevering, B Jeroen; Moore, Anthony T; Michaelides, Michel; Webster, Andrew R; van der Wilt, Gert Jan; Hoyng, Carel B

    2017-01-01

    Each inherited retinal disorder is rare, but together, they affect millions of people worldwide. No treatment is currently available for these blinding diseases, but promising new options-including gene therapy-are emerging. Arguably, the most prevalent retinal dystrophy is Stargardt disease. In each case, the specific combination of ABCA4 variants (> 900 identified to date) and modifying factors is virtually unique. It accounts for the vast phenotypic heterogeneity including variable rates of functional and structural progression, thereby potentially limiting the ability of phase I/II clinical trials to assess efficacy of novel therapies with few patients. To accommodate this problem, we developed and validated a sensitive and reliable composite clinical trial endpoint for disease progression based on structural measurements of retinal degeneration. We used longitudinal data from early-onset Stargardt patients from the Netherlands (development cohort, n = 14) and the United Kingdom (external validation cohort, n = 18). The composite endpoint was derived from best-corrected visual acuity, fundus autofluorescence, and spectral-domain optical coherence tomography. Weighting optimization techniques excluded visual acuity from the composite endpoint. After optimization, the endpoint outperformed each univariable outcome, and showed an average progression of 0.41° retinal eccentricity per year (95% confidence interval, 0.30-0.52). Comparing with actual longitudinal values, the model accurately predicted progression (R2, 0.904). These properties were largely preserved in the validation cohort (0.43°/year [0.33-0.53]; prediction: R2, 0.872). We subsequently ran a two-year trial simulation with the composite endpoint, which detected a 25% decrease in disease progression with 80% statistical power using only 14 patients. These results suggest that a multimodal endpoint, reflecting structural macular changes, provides a sensitive measurement of disease progression in

  15. Highly sensitive measurements of disease progression in rare disorders: Developing and validating a multimodal model of retinal degeneration in Stargardt disease.

    Directory of Open Access Journals (Sweden)

    Stanley Lambertus

    Full Text Available Each inherited retinal disorder is rare, but together, they affect millions of people worldwide. No treatment is currently available for these blinding diseases, but promising new options-including gene therapy-are emerging. Arguably, the most prevalent retinal dystrophy is Stargardt disease. In each case, the specific combination of ABCA4 variants (> 900 identified to date and modifying factors is virtually unique. It accounts for the vast phenotypic heterogeneity including variable rates of functional and structural progression, thereby potentially limiting the ability of phase I/II clinical trials to assess efficacy of novel therapies with few patients. To accommodate this problem, we developed and validated a sensitive and reliable composite clinical trial endpoint for disease progression based on structural measurements of retinal degeneration.We used longitudinal data from early-onset Stargardt patients from the Netherlands (development cohort, n = 14 and the United Kingdom (external validation cohort, n = 18. The composite endpoint was derived from best-corrected visual acuity, fundus autofluorescence, and spectral-domain optical coherence tomography. Weighting optimization techniques excluded visual acuity from the composite endpoint. After optimization, the endpoint outperformed each univariable outcome, and showed an average progression of 0.41° retinal eccentricity per year (95% confidence interval, 0.30-0.52. Comparing with actual longitudinal values, the model accurately predicted progression (R2, 0.904. These properties were largely preserved in the validation cohort (0.43°/year [0.33-0.53]; prediction: R2, 0.872. We subsequently ran a two-year trial simulation with the composite endpoint, which detected a 25% decrease in disease progression with 80% statistical power using only 14 patients.These results suggest that a multimodal endpoint, reflecting structural macular changes, provides a sensitive measurement of disease

  16. Highly sensitive measurements of disease progression in rare disorders: Developing and validating a multimodal model of retinal degeneration in Stargardt disease

    Science.gov (United States)

    Bax, Nathalie M.; Fakin, Ana; Groenewoud, Joannes M. M.; Klevering, B. Jeroen; Moore, Anthony T.; Michaelides, Michel; Webster, Andrew R.; van der Wilt, Gert Jan; Hoyng, Carel B.

    2017-01-01

    Background Each inherited retinal disorder is rare, but together, they affect millions of people worldwide. No treatment is currently available for these blinding diseases, but promising new options—including gene therapy—are emerging. Arguably, the most prevalent retinal dystrophy is Stargardt disease. In each case, the specific combination of ABCA4 variants (> 900 identified to date) and modifying factors is virtually unique. It accounts for the vast phenotypic heterogeneity including variable rates of functional and structural progression, thereby potentially limiting the ability of phase I/II clinical trials to assess efficacy of novel therapies with few patients. To accommodate this problem, we developed and validated a sensitive and reliable composite clinical trial endpoint for disease progression based on structural measurements of retinal degeneration. Methods and findings We used longitudinal data from early-onset Stargardt patients from the Netherlands (development cohort, n = 14) and the United Kingdom (external validation cohort, n = 18). The composite endpoint was derived from best-corrected visual acuity, fundus autofluorescence, and spectral-domain optical coherence tomography. Weighting optimization techniques excluded visual acuity from the composite endpoint. After optimization, the endpoint outperformed each univariable outcome, and showed an average progression of 0.41° retinal eccentricity per year (95% confidence interval, 0.30–0.52). Comparing with actual longitudinal values, the model accurately predicted progression (R2, 0.904). These properties were largely preserved in the validation cohort (0.43°/year [0.33–0.53]; prediction: R2, 0.872). We subsequently ran a two-year trial simulation with the composite endpoint, which detected a 25% decrease in disease progression with 80% statistical power using only 14 patients. Conclusions These results suggest that a multimodal endpoint, reflecting structural macular changes, provides a

  17. Neuroprotection of a novel cyclopeptide C*HSDGIC* from the cyclization of PACAP (1-5 in cellular and rodent models of retinal ganglion cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Huanhuan Cheng

    Full Text Available To investigate the protective effects of a novel cyclopeptide C*HSDGIC* (CHC from the cyclization of Pituitary adenylate cyclase-activating polypeptide (PACAP (1-5 in cellular and rodent models of retinal ganglion cell apoptosis.Double-labeling immunohistochemistry was used to detect the expression of Thy-1 and PACAP receptor type 1 in a retinal ganglion cell line RGC-5. The apoptosis of RGC-5 cells was induced by 0.02 J/cm(2 Ultraviolet B irradiation. MTT assay, flow cytometry, fluorescence microscopy were used to investigate the viability, the level of reactive oxygen species (ROS and apoptosis of RGC-5 cells respectively. CHC attenuated apoptotic cell death induced by Ultraviolet B irradiation and inhibited the excessive generation of ROS. Moreover, CHC treatment resulted in decreased expression of Bax and concomitant increase of Bcl-2, as was revealed by western-blot analysis. The in vivo apoptosis of retinal ganglion cells was induced by injecting 50 mM N-methyl-D-aspartate (NMDA (100 nmol in a 2 µL saline solution intravitreally, and different dosages of CHC were administered. At day 7, rats in CHC+ NMDA-treated groups showed obvious aversion to light when compared to NMDA rats. Electroretinogram recordings revealed a marked decrease in the amplitudes of a-wave, b-wave, and photopic negative response due to NMDA damage. In retina receiving intravitreal NMDA and CHC co-treatment, these values were significantly increased. CHC treatment also resulted in less NMDA-induced cell loss and a decrease in the proportion of dUTP end-labeling-positive cells in ganglion cell line.C*HSDGIC*, a novel cyclopeptide from PACAP (1-5 attenuates apoptosis in RGC-5 cells and inhibits NMDA-induced retinal neuronal death. The beneficial effects may occur via the mitochondria pathway. PACAP derivatives like CHC may serve as a promising candidate for neuroprotection in glaucoma.

  18. The P2Y12 Receptor Antagonist Ticagrelor Reduces Lysosomal pH and Autofluorescence in Retinal Pigmented Epithelial Cells From the ABCA4-/- Mouse Model of Retinal Degeneration

    Directory of Open Access Journals (Sweden)

    Wennan Lu

    2018-04-01

    Full Text Available The accumulation of partially degraded lipid waste in lysosomal-related organelles may contribute to pathology in many aging diseases. The presence of these lipofuscin granules is particularly evident in the autofluorescent lysosome-associated organelles of the retinal pigmented epithelial (RPE cells, and may be related to early stages of age-related macular degeneration. While lysosomal enzymes degrade material optimally at acidic pH levels, lysosomal pH is elevated in RPE cells from the ABCA4-/- mouse model of Stargardt’s disease, an early onset retinal degeneration. Lowering lysosomal pH through cAMP-dependent pathways decreases accumulation of autofluorescent material in RPE cells in vitro, but identification of an appropriate receptor is crucial for manipulating this pathway in vivo. As the P2Y12 receptor for ADP is coupled to the inhibitory Gi protein, we asked whether blocking the P2Y12 receptor with ticagrelor could restore lysosomal acidity and reduce autofluorescence in compromised RPE cells from ABCA4-/- mice. Oral delivery of ticagrelor giving rise to clinically relevant exposure lowered lysosomal pH in these RPE cells. Ticagrelor also partially reduced autofluorescence in the RPE cells of ABCA4-/- mice. In vitro studies in ARPE-19 cells using more specific antagonists AR-C69931 and AR-C66096 confirmed the importance of the P2Y12 receptor for lowering lysosomal pH and reducing autofluorescence. These observations identify P2Y12 receptor blockade as a potential target to lower lysosomal pH and clear lysosomal waste in RPE cells.

  19. Recognition, survival and persistence of Staphylococcus aureus in the model host Tenebrio molitor.

    Science.gov (United States)

    Dorling, Jack; Moraes, Caroline; Rolff, Jens

    2015-02-01

    The degree of specificity of any given immune response to a parasite is governed by the complexity and variation of interactions between host and pathogen derived molecules. Here, we assess the extent to which recognition and immuno-resistance of cell wall mutants of the pathogen Staphylococcus aureus may contribute to establishment and maintenance of persistent infection in the model insect host, Tenebrio molitor. The cell surface of S. aureus is decorated with various molecules, including glycopolymers such as wall teichoic acid (WTA). WTA is covalently bound to peptidoglycan (PGN) and its absence has been associated with increased recognition of PGN by host receptors (PGRPs). WTA is also further modified by other molecules such as D-alanine (D-alanylation). Both the level of WTA expression and its D-alanylation were found to be important in the mediation of the host-parasite interaction in this model system. Specifically, WTA itself was seen to influence immune recognition, while D-alanylation of WTA was found to increase immuno-resistance and was associated with prolonged persistence of S. aureus in T. molitor. These results implicate WTA and its D-alanylation as important factors in the establishment and maintenance of persistent infection, affecting different critical junctions in the immune response; through potential evasion of recognition by PGRPs and resistance to humoral immune effectors during prolonged exposure to the immune system. This highlights a mechanism by which specificity in this host-parasite interaction may arise. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Models of antimicrobial pressure on intestinal bacteria of the treated host populations.

    Science.gov (United States)

    Volkova, V V; Cazer, C L; Gröhn, Y T

    2017-07-01

    Antimicrobial drugs are used to treat pathogenic bacterial infections in animals and humans. The by-stander enteric bacteria of the treated host's intestine can become exposed to the drug or its metabolites reaching the intestine in antimicrobially active form. We consider which processes and variables need to be accounted for to project the antimicrobial concentrations in the host's intestine. Those include: the drug's fraction (inclusive of any active metabolites) excreted in bile; the drug's fractions and intestinal segments of excretion via other mechanisms; the rates and intestinal segments of the drug's absorption and re-absorption; the rates and intestinal segments of the drug's abiotic and biotic degradation in the intestine; the digesta passage time through the intestinal segments; the rates, mechanisms, and reversibility of the drug's sorption to the digesta and enteric microbiome; and the volume of luminal contents in the intestinal segments. For certain antimicrobials, the antimicrobial activity can further depend on the aeration and chemical conditions in the intestine. Model forms that incorporate the inter-individual variation in those relevant variables can support projections of the intestinal antimicrobial concentrations in populations of treated host, such as food animals. To illustrate the proposed modeling framework, we develop two examples of treatments of bovine respiratory disease in beef steers by oral chlortetracycline and injectable third-generation cephalosporin ceftiofur. The host's diet influences the digesta passage time, volume, and digesta and microbiome composition, and may influence the antimicrobial loss due to degradation and sorption in the intestine. We consider two diet compositions in the illustrative simulations. The examples highlight the extent of current ignorance and need for empirical data on the variables influencing the selective pressures imposed by antimicrobial treatments on the host's intestinal bacteria.

  1. Influence of transverse mode on retinal spot size and retinal injury effect: A theoretical analysis on 532-nm laser

    Directory of Open Access Journals (Sweden)

    Jia-Rui Wang

    2014-05-01

    Full Text Available The fundamental transverse mode (TEM00 is preferable for experimental and theoretical study on the laser-induced retinal injury effect, for it can produce the minimal retinal image and establish the most strict laser safety standards. But actually lasers with higher order mode were frequently used in both earlier and recent studies. Generally higher order mode leads to larger retinal spot size and so higher damage threshold, but there are few quantitative analyses on this problem. In this paper, a four-surface schematic eye model is established for human and macaque. The propagation of 532-nm laser in schematic eye is analyzed by the ABCD law of Gaussian optics. It is shown that retinal spot size increases with laser transverse mode order. For relative lower mode order, the retinal spot diameter will not exceed the minimum laser-induced retinal lesion (25 ~ 30 μm in diameter, and so has little effect on retinal damage threshold. While for higher order mode, the larger retinal spot requires more energy to induce injury and so the damage threshold increases. When beam divergence is lowered, the retinal spot size decreases correspondingly, so the effect of mode order can be compensated. The retinal spot size of macaque is slightly smaller than that of human and the ratio between them is independent of mode order. We conclude that the laser mode order has significant influence on retinal spot size but limited influence on the retinal injury effect.

  2. Modelling the effect of an alternative host population on the spread of citrus Huanglongbing

    Science.gov (United States)

    d'A. Vilamiu, Raphael G.; Ternes, Sonia; Laranjeira, Francisco F.; de C. Santos, Tâmara T.

    2013-10-01

    The objective of this work was to model the spread of citrus Huanglongbing (HLB) considering the presence of a population of alternative hosts (Murraya paniculata). We developed a compartmental deterministic mathematical model for representing the dynamics of HLB disease in a citrus orchard, including delays in the latency and incubation phases of the disease in the plants and a delay period on the nymphal stage of Diaphorina citri, the insect vector of HLB in Brazil. The results of numerical simulations indicate that alternative hosts should not play a crucial role on HLB dynamics considering a typical scenario for the Recôncavo Baiano region in Brazil . Also, the current policy of removing symptomatic plants every three months should not be expected to significantly hinder HLB spread.

  3. Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors

    Science.gov (United States)

    Rahme, Laurence G.; Tan, Man-Wah; Le, Long; Wong, Sandy M.; Tompkins, Ronald G.; Calderwood, Stephen B.; Ausubel, Frederick M.

    1997-01-01

    We used plants as an in vivo pathogenesis model for the identification of virulence factors of the human opportunistic pathogen Pseudomonas aeruginosa. Nine of nine TnphoA mutant derivatives of P. aeruginosa strain UCBPP-PA14 that were identified in a plant leaf assay for less pathogenic mutants also exhibited significantly reduced pathogenicity in a burned mouse pathogenicity model, suggesting that P. aeruginosa utilizes common strategies to infect both hosts. Seven of these nine mutants contain TnphoA insertions in previously unknown genes. These results demonstrate that an alternative nonvertebrate host of a human bacterial pathogen can be used in an in vivo high throughput screen to identify novel bacterial virulence factors involved in mammalian pathogenesis. PMID:9371831

  4. Linking spring phenology with mechanistic models of host movement to predict disease transmission risk

    Science.gov (United States)

    Merkle, Jerod A.; Cross, Paul C.; Scurlock, Brandon M.; Cole, Eric K.; Courtemanch, Alyson B.; Dewey, Sarah R.; Kauffman, Matthew J.

    2018-01-01

    Disease models typically focus on temporal dynamics of infection, while often neglecting environmental processes that determine host movement. In many systems, however, temporal disease dynamics may be slow compared to the scale at which environmental conditions alter host space-use and accelerate disease transmission.Using a mechanistic movement modelling approach, we made space-use predictions of a mobile host (elk [Cervus Canadensis] carrying the bacterial disease brucellosis) under environmental conditions that change daily and annually (e.g., plant phenology, snow depth), and we used these predictions to infer how spring phenology influences the risk of brucellosis transmission from elk (through aborted foetuses) to livestock in the Greater Yellowstone Ecosystem.Using data from 288 female elk monitored with GPS collars, we fit step selection functions (SSFs) during the spring abortion season and then implemented a master equation approach to translate SSFs into predictions of daily elk distribution for five plausible winter weather scenarios (from a heavy snow, to an extreme winter drought year). We predicted abortion events by combining elk distributions with empirical estimates of daily abortion rates, spatially varying elk seroprevelance and elk population counts.Our results reveal strong spatial variation in disease transmission risk at daily and annual scales that is strongly governed by variation in host movement in response to spring phenology. For example, in comparison with an average snow year, years with early snowmelt are predicted to have 64% of the abortions occurring on feedgrounds shift to occurring on mainly public lands, and to a lesser extent on private lands.Synthesis and applications. Linking mechanistic models of host movement with disease dynamics leads to a novel bridge between movement and disease ecology. Our analysis framework offers new avenues for predicting disease spread, while providing managers tools to proactively mitigate

  5. Rediscovering the chick embryo as a model to study retinal development.

    Science.gov (United States)

    Vergara, M Natalia; Canto-Soler, M Valeria

    2012-06-27

    The embryonic chick occupies a privileged place among animal models used in developmental studies. Its rapid development and accessibility for visualization and experimental manipulation are just some of the characteristics that have made it a vertebrate model of choice for more than two millennia. Until a few years ago, the inability to perform genetic manipulations constituted a major drawback of this system. However, the completion of the chicken genome project and the development of techniques to manipulate gene expression have allowed this classic animal model to enter the molecular age. Such techniques, combined with the embryological manipulations that this system is well known for, provide a unique toolkit to study the genetic basis of neural development. A major advantage of these approaches is that they permit targeted gene misexpression with extremely high spatiotemporal resolution and over a large range of developmental stages, allowing functional analysis at a level, speed and ease that is difficult to achieve in other systems. This article provides a general overview of the chick as a developmental model focusing more specifically on its application to the study of eye development. Special emphasis is given to the state of the art of the techniques that have made gene gain- and loss-of-function studies in this model a reality. In addition, we discuss some methodological considerations derived from our own experience that we believe will be beneficial to researchers working with this system.

  6. Rediscovering the chick embryo as a model to study retinal development

    Directory of Open Access Journals (Sweden)

    Vergara M Natalia

    2012-06-01

    Full Text Available Abstract The embryonic chick occupies a privileged place among animal models used in developmental studies. Its rapid development and accessibility for visualization and experimental manipulation are just some of the characteristics that have made it a vertebrate model of choice for more than two millennia. Until a few years ago, the inability to perform genetic manipulations constituted a major drawback of this system. However, the completion of the chicken genome project and the development of techniques to manipulate gene expression have allowed this classic animal model to enter the molecular age. Such techniques, combined with the embryological manipulations that this system is well known for, provide a unique toolkit to study the genetic basis of neural development. A major advantage of these approaches is that they permit targeted gene misexpression with extremely high spatiotemporal resolution and over a large range of developmental stages, allowing functional analysis at a level, speed and ease that is difficult to achieve in other systems. This article provides a general overview of the chick as a developmental model focusing more specifically on its application to the study of eye development. Special emphasis is given to the state of the art of the techniques that have made gene gain- and loss-of-function studies in this model a reality. In addition, we discuss some methodological considerations derived from our own experience that we believe will be beneficial to researchers working with this system.

  7. Objective and expert-independent validation of retinal image registration algorithms by a projective imaging distortion model

    NARCIS (Netherlands)

    Lee, Sangyeol; Reinhardt, Joseph M.; Cattin, Philippe C.; Abramoff, M.D.

    2010-01-01

    Fundus camera imaging of the retina is widely used to diagnose and manage ophthalmologic disorders including diabetic retinopathy, glaucoma, and age-related macular degeneration. Retinal images typically have a limited field of view, and multiple images can be joined together using an image

  8. Accumulation of phosphorylated alpha-synuclein (p129S) and retinal pathology in a mouse model of Parkinson's disease

    Science.gov (United States)

    Aims: Parkinson's disease (PD) is a neurodegenerative disorder characterized by accumulation of misfolded alpha-synuclein within the CNS. Although non-motor clinical phenotypes of PD such as visual dysfunction have become increasingly apparent, retinal pathology associated with PD is not well under...

  9. Pigment Epithelium-Derived Factor Reduces Apoptosis and Pro-Inflammatory Cytokine Gene Expression in a Murine Model of Focal Retinal Degeneration

    Directory of Open Access Journals (Sweden)

    Yujuan Wang

    2013-10-01

    Full Text Available AMD (age-related macular degeneration is a neurodegenerative disease causing irreversible central blindness in the elderly. Apoptosis and inflammation play important roles in AMD pathogenesis. PEDF (pigment epithelium-derived factor is a potent neurotrophic and anti-inflammatory glycoprotein that protects the retinal neurons and photoreceptors against cell death caused by pathological insults. We studied the effects of PEDF on focal retinal lesions in DKO rd8 (Ccl2 −/− /Cx3cr1 −/− on C57BL/6N [Crb1rd8 ] mice, a model for progressive, focal rd (retinal degeneration. First, we found a significant decrease in PEDF transcript expression in DKO rd8 mouse retina and RPE (retinal pigment epithelium than WT (wild-type, C57BL/6N. Next, cultured DKO rd8 RPE cells secreted lower levels of PEDF protein in the media than WT. Then the right eyes of DKO rd8 mice were injected intravitreously with recombinant human PEDF protein (1 μg, followed by a subconjunctival injection of PEDF (3 μg 4 weeks later. The untreated left eyes served as controls. The effect of PEDF was assessed by fundoscopy, ocular histopathology and A2E {[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl-1E,3E,5E,7E-octatetra-enyl]-1-(2-hydroxyethyl-4-[4-methyl-6(2,6,6-trimethyl-1-cyclohexen-1-yl 1E,3E,5E,7E-hexatrienyl]-pyridinium} levels, as well as apoptotic and inflammatory molecules. The PEDF-treated eyes showed slower progression or attenuation of the focal retinal lesions, fewer and/or smaller photoreceptor and RPE degeneration, and significantly lower A2E, relative to the untreated eyes. In addition, lower expression of apoptotic and inflammatory molecules were detected in the PEDF-treated than untreated eyes. Our results establish that PEDF potently stabilizes photoreceptor degeneration via suppression of both apoptotic and inflammatory pathways. The multiple beneficial effects of PEDF represent a novel approach for potential AMD treatment.

  10. Pigment epithelium-derived factor reduces apoptosis and pro-inflammatory cytokine gene expression in a murine model of focal retinal degeneration.

    Science.gov (United States)

    Wang, Yujuan; Subramanian, Preeti; Shen, Defen; Tuo, Jingsheng; Becerra, S Patricia; Chan, Chi-Chao

    2013-11-26

    AMD (age-related macular degeneration) is a neurodegenerative disease causing irreversible central blindness in the elderly. Apoptosis and inflammation play important roles in AMD pathogenesis. PEDF (pigment epithelium-derived factor) is a potent neurotrophic and anti-inflammatory glycoprotein that protects the retinal neurons and photoreceptors against cell death caused by pathological insults. We studied the effects of PEDF on focal retinal lesions in DKO rd8 (Ccl2(-/-)/Cx3cr1(-/-) on C57BL/6N [Crb1(rd8)]) mice, a model for progressive, focal rd (retinal degeneration). First, we found a significant decrease in PEDF transcript expression in DKO rd8 mouse retina and RPE (retinal pigment epithelium) than WT (wild-type, C57BL/6N). Next, cultured DKO rd8 RPE cells secreted lower levels of PEDF protein in the media than WT. Then the right eyes of DKO rd8 mice were injected intravitreously with recombinant human PEDF protein (1 μg), followed by a subconjunctival injection of PEDF (3 μg) 4 weeks later. The untreated left eyes served as controls. The effect of PEDF was assessed by fundoscopy, ocular histopathology and A2E {[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E,7E-octatetra-enyl]-1-(2-hydroxyethyl)-4-[4-methyl-6(2,6,6-trimethyl-1-cyclohexen-1-yl) 1E,3E,5E,7E-hexatrienyl]-pyridinium} levels, as well as apoptotic and inflammatory molecules. The PEDF-treated eyes showed slower progression or attenuation of the focal retinal lesions, fewer and/or smaller photoreceptor and RPE degeneration, and significantly lower A2E, relative to the untreated eyes. In addition, lower expression of apoptotic and inflammatory molecules were detected in the PEDF-treated than untreated eyes. Our results establish that PEDF potently stabilizes photoreceptor degeneration via suppression of both apoptotic and inflammatory pathways. The multiple beneficial effects of PEDF represent a novel approach for potential AMD treatment.

  11. Focal retinal phlebitis.

    Science.gov (United States)

    Hoang, Quan V; Freund, K Bailey; Klancnik, James M; Sorenson, John A; Cunningham, Emmett T; Yannuzzi, Lawrence A

    2012-01-01

    To report three cases of solitary, focal retinal phlebitis. An observational case series. Three eyes in three patients were noted to have unilateral decreased vision, macular edema, and a focal retinal phlebitis, which was not at an arteriovenous crossing. All three patients developed a branch retinal vein occlusion at the site of inflammation. These patients had no other evidence of intraocular inflammation, including vitritis, retinitis, retinal vasculitis, or choroiditis, nor was there any systemic disorder associated with inflammation, infection, or coagulation identified. Focal retinal phlebitis appears to be an uncommon and unique entity that produces macular edema and ultimately branch retinal vein occlusion. In our patients, the focal phlebitis and venous occlusion did not occur at an arteriovenous crossing, which is the typical site for branch retinal venous occlusive disease. This suggests that our cases represent a distinct clinical entity, which starts with a focal abnormality in the wall of a retinal venule, resulting in surrounding exudation and, ultimately, ends with branch retinal vein occlusion.

  12. Investigating host-pathogen behavior and their interaction using genome-scale metabolic network models.

    Science.gov (United States)

    Sadhukhan, Priyanka P; Raghunathan, Anu

    2014-01-01

    Genome Scale Metabolic Modeling methods represent one way to compute whole cell function starting from the genome sequence of an organism and contribute towards understanding and predicting the genotype-phenotype relationship. About 80 models spanning all the kingdoms of life from archaea to eukaryotes have been built till date and used to interrogate cell phenotype under varying conditions. These models have been used to not only understand the flux distribution in evolutionary conserved pathways like glycolysis and the Krebs cycle but also in applications ranging from value added product formation in Escherichia coli to predicting inborn errors of Homo sapiens metabolism. This chapter describes a protocol that delineates the process of genome scale metabolic modeling for analysing host-pathogen behavior and interaction using flux balance analysis (FBA). The steps discussed in the process include (1) reconstruction of a metabolic network from the genome sequence, (2) its representation in a precise mathematical framework, (3) its translation to a model, and (4) the analysis using linear algebra and optimization. The methods for biological interpretations of computed cell phenotypes in the context of individual host and pathogen models and their integration are also discussed.

  13. Within-host selection of drug resistance in a mouse model of repeated interrupted treatment of Plasmodium yoelii infection

    NARCIS (Netherlands)

    Nuralitha, Suci; Siregar, Josephine E; Syafruddin, Din; Hoepelman, Andy I M; Marzuki, Sangkot

    2017-01-01

    BACKGROUND: To study within-host selection of resistant parasites, an important factor in the development of resistance to anti-malarial drugs, a mouse model of repeated interrupted malaria treatment (RIT) has been developed. The characteristics of within host selection of resistance to atovaquone

  14. Human eye cataract microstructure modeling and its effect on simulated retinal imaging

    Science.gov (United States)

    Fan, Wen-Shuang; Chang, Chung-Hao; Horng, Chi-Ting; Yao, Hsin-Yu; Sun, Han-Ying; Huang, Shu-Fang; Wang, Hsiang-Chen

    2017-02-01

    We designed a crystalline microstructure during cataract lesions and calculated the aberration value of the eye by using ray trace modeling to identify the corresponding spherical aberration, coma aberration, and trefoil aberration value under different pathological-change degrees. The mutual relationship between microstructure and aberration was then discussed using these values. Calculation results showed that with increased layer number of microstructure, the influence of aberration value on spherical aberration was the greatest. In addition, the influence of a relatively compact microstructure on spherical aberration and coma aberration was small, but that on trefoil aberration was great.

  15. Effects of Host-rock Fracturing on Elastic-deformation Source Models of Volcano Deflation.

    Science.gov (United States)

    Holohan, Eoghan P; Sudhaus, Henriette; Walter, Thomas R; Schöpfer, Martin P J; Walsh, John J

    2017-09-08

    Volcanoes commonly inflate or deflate during episodes of unrest or eruption. Continuum mechanics models that assume linear elastic deformation of the Earth's crust are routinely used to invert the observed ground motions. The source(s) of deformation in such models are generally interpreted in terms of magma bodies or pathways, and thus form a basis for hazard assessment and mitigation. Using discontinuum mechanics models, we show how host-rock fracturing (i.e. non-elastic deformation) during drainage of a magma body can progressively change the shape and depth of an elastic-deformation source. We argue that this effect explains the marked spatio-temporal changes in source model attributes inferred for the March-April 2007 eruption of Piton de la Fournaise volcano, La Reunion. We find that pronounced deflation-related host-rock fracturing can: (1) yield inclined source model geometries for a horizontal magma body; (2) cause significant upward migration of an elastic-deformation source, leading to underestimation of the true magma body depth and potentially to a misinterpretation of ascending magma; and (3) at least partly explain underestimation by elastic-deformation sources of changes in sub-surface magma volume.

  16. Finite-element modeling of magma chamber-host rock interactions prior to caldera collapse

    Science.gov (United States)

    Kabele, Petr; Žák, Jiří; Somr, Michael

    2017-06-01

    Gravity-driven failure of shallow magma chamber roofs and formation of collapse calderas are commonly accompanied by ejection of large volumes of pyroclastic material to the Earth's atmosphere and thus represent severe volcanic hazards. In this respect, numerical analysis has proven as a key tool in understanding the mechanical conditions of caldera collapse. The main objective of this paper is to find a suitable approach to finite-element simulation of roof fracturing and caldera collapse during inflation and subsequent deflation of shallow magma chambers. Such a model should capture the dominant mechanical phenomena, for example, interaction of the host rock with magma and progressive deformation of the chamber roof. To this end, a comparative study, which involves various representations of magma (inviscid fluid, nearly incompressible elastic, or plastic solid) and constitutive models of the host rock (fracture and plasticity), was carried out. In particular, the quasi-brittle fracture model of host rock reproduced well the formation of tension-induced radial and circumferential fractures during magma injection into the chamber (inflation stage), especially at shallow crustal levels. Conversely, the Mohr-Coulomb shear criterion has shown to be more appropriate for greater depths. Subsequent magma withdrawal from the chamber (deflation stage) results in further damage or even collapse of the chamber roof. While most of the previous studies of caldera collapse rely on the elastic stress analysis, the proposed approach advances modeling of the process by incorporating non-linear failure phenomena and nearly incompressible behaviour of magma. This leads to a perhaps more realistic representation of the fracture processes preceding roof collapse and caldera formation.

  17. Silver nano - a trove for retinal therapies.

    Science.gov (United States)

    Kalishwaralal, Kalimuthu; Barathmanikanth, Selvaraj; Pandian, Sureshbabu Ram Kumar; Deepak, Venkatraman; Gurunathan, Sangiliyandi

    2010-07-14

    Pathological retinal angiogenesis (neovascularization) is one of the most feared complications among retinal diseases, leading to visual impairment and irreversible blindness. Recent findings made by us on therapeutic applications of biologically synthesized silver nanoparticles (AgNPs) against VEGF induced retinal endothelial cells, elucidates the effectual inhibitory activities of AgNPs over the downstream signaling pathways (Src and AKT/PI3K) leading to retinal angiogenesis. The current review focuses on the imperative role of VEGF induced angiogenesis in the development of retinal neovascularization and despite the fact that several VEGF targeting ocular drugs are available; the review examines the need for a cost economic alternative, thereby suggesting the role of AgNPs as an emerging economic ocular drug for retinal therapies. The current technologies available for the development of targeted and controlled release of drugs is being discussed and a model has been proposed for the amenable targeting mechanism, by which Poly gamma glutamic acid (PGA) capsulated AgNPs conjugated to cyclic RGD peptides carry out a sustained controlled release specifically targeting the neovascularization cells and induce apoptosis unaffecting the normal retinal cells. These constructs consequently affirm the futuristic application of silver nanoparticles as a boon to ocular therapies. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. Modelling the dynamics of an experimental host-pathogen microcosm within a hierarchical Bayesian framework.

    Directory of Open Access Journals (Sweden)

    David Lunn

    Full Text Available The advantages of Bayesian statistical approaches, such as flexibility and the ability to acknowledge uncertainty in all parameters, have made them the prevailing method for analysing the spread of infectious diseases in human or animal populations. We introduce a Bayesian approach to experimental host-pathogen systems that shares these attractive features. Since uncertainty in all parameters is acknowledged, existing information can be accounted for through prior distributions, rather than through fixing some parameter values. The non-linear dynamics, multi-factorial design, multiple measurements of responses over time and sampling error that are typical features of experimental host-pathogen systems can also be naturally incorporated. We analyse the dynamics of the free-living protozoan Paramecium caudatum and its specialist bacterial parasite Holospora undulata. Our analysis provides strong evidence for a saturable infection function, and we were able to reproduce the two waves of infection apparent in the data by separating the initial inoculum from the parasites released after the first cycle of infection. In addition, the parameter estimates from the hierarchical model can be combined to infer variations in the parasite's basic reproductive ratio across experimental groups, enabling us to make predictions about the effect of resources and host genotype on the ability of the parasite to spread. Even though the high level of variability between replicates limited the resolution of the results, this Bayesian framework has strong potential to be used more widely in experimental ecology.

  19. Chemical Control for Host-Parasitoid Model within the Parasitism Season and Its Complex Dynamics

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2016-01-01

    Full Text Available In the present paper, we develop a host-parasitoid model with Holling type II functional response function and chemical control, which can be applied at any time of each parasitism season or pest generation, and focus on addressing the importance of the timing of application pesticide during the parasitism season or pest generation in successful pest control. Firstly, the existence and stability of both the host and parasitoid populations extinction equilibrium and parasitoid-free equilibrium have been investigated. Secondly, the effects of key parameters on the threshold conditions have been discussed in more detail, which shows the importance of pesticide application times on the pest control. Thirdly, the complex dynamics including multiple attractors coexistence, chaotic behavior, and initial sensitivity have been studied by using numerical bifurcation analyses. Finally, the uncertainty and sensitivity of all the parameters on the solutions of both the host and parasitoid populations are investigated, which can help us to determine the key parameters in designing the pest control strategy. The present research can help us to further understand the importance of timings of pesticide application in the pest control and to improve the classical chemical control and to make management decisions.

  20. Use of a Rabbit Soft Tissue Chamber Model to Investigate Campylobacter jejuni - Host Interactions

    Directory of Open Access Journals (Sweden)

    Annika eFlint

    2010-11-01

    Full Text Available Despite the prevalence of C. jejuni as an important food borne pathogen, the microbial factors governing its infection process are poorly characterized. In this study, we developed a novel rabbit soft tissue chamber model to investigate C. jejuni interactions with its host. The in vivo transcriptome profile of C. jejuni was monitored as a function of time post-infection by competitive microarray hybridization with cDNA obtained from C. jejuni grown in vitro. Genome-wide expression analysis identified 449 genes expressed at significantly different levels in vivo. Genes implicated to play important roles in early colonization of C. jejuni within the tissue chamber include up-regulation of genes involved in ribosomal protein synthesis and modification, heat shock response, and primary adaptation to the host environment (DccSR regulon. Genes encoding proteins involved in the TCA cycle and flagella related components were found to be significantly down regulated during early colonization. Oxidative stress defense and stringent response genes were found to be maximally induced during the acute infectious phase. Overall, these findings reveal possible mechanisms involved in adaptation of Campylobacter to the host.

  1. Bottom-up modeling approach for the quantitative estimation of parameters in pathogen-host interactions.

    Science.gov (United States)

    Lehnert, Teresa; Timme, Sandra; Pollmächer, Johannes; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo

    2015-01-01

    Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon entering the blood stream of the host. The early immune response in human blood comprises the elimination of pathogens by antimicrobial peptides and innate immune cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method to examine these complex processes and to quantify the dynamics of pathogen-host interactions. Since model parameters are often not directly accessible from experiment, their estimation is required by calibrating model predictions with experimental data. Depending on the complexity of the mathematical model, parameter estimation can be associated with excessively high computational costs in terms of run time and memory. We apply a strategy for reliable parameter estimation where different modeling approaches with increasing complexity are used that build on one another. This bottom-up modeling approach is applied to an experimental human whole-blood infection assay for Candida albicans. Aiming for the quantification of the relative impact of different routes of the immune response against this human-pathogenic fungus, we start from a non-spatial state-based model (SBM), because this level of model complexity allows estimating a priori unknown transition rates between various system states by the global optimization method simulated annealing. Building on the non-spatial SBM, an agent-based model (ABM) is implemented that incorporates the migration of interacting cells in three-dimensional space. The ABM takes advantage of estimated parameters from the non-spatial SBM, leading to a decreased dimensionality of the parameter space. This space can be scanned using a local optimization approach, i.e., least-squares error estimation based on an adaptive regular grid search, to predict cell migration parameters that are not accessible in experiment. In the future, spatio-temporal simulations of whole-blood samples may enable timely

  2. Retinal detachment following endophthalmitis.

    Science.gov (United States)

    Nelsen, P T; Marcus, D A; Bovino, J A

    1985-08-01

    Fifty-five consecutive patients with a clinical diagnosis of bacterial endophthalmitis were reviewed. All patients were treated with systemic, periocular, topical, and intravitreal antibiotics. In addition, 33 of the patients underwent a pars plana vitrectomy. Nine retinal detachments occurred within six months of initial diagnosis. The higher frequency of retinal detachment in the vitrectomy group (21%) as compared to those patients managed without vitrectomy (9%) may be explained by a combination of surgical complications and the increased severity of endophthalmitis in the vitrectomy group. The two patients who developed retinal detachment during vitrectomy surgery rapidly progressed to no light perception. Conversely, the repair of retinal detachments diagnosed postoperatively had a good prognosis.

  3. Sediment-Hosted Zinc-Lead Deposits of the World - Database and Grade and Tonnage Models

    Science.gov (United States)

    Singer, Donald A.; Berger, Vladimir I.; Moring, Barry C.

    2009-01-01

    This report provides information on sediment-hosted zinc-lead mineral deposits based on the geologic settings that are observed on regional geologic maps. The foundation of mineral-deposit models is information about known deposits. The purpose of this publication is to make this kind of information available in digital form for sediment-hosted zinc-lead deposits. Mineral-deposit models are important in exploration planning and quantitative resource assessments: Grades and tonnages among deposit types are significantly different, and many types occur in different geologic settings that can be identified from geologic maps. Mineral-deposit models are the keystone in combining the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Too few thoroughly explored mineral deposits are available in most local areas for reliable identification of the important geoscience variables, or for robust estimation of undiscovered deposits - thus, we need mineral-deposit models. Globally based deposit models allow recognition of important features because the global models demonstrate how common different features are. Well-designed and -constructed deposit models allow geologists to know from observed geologic environments the possible mineral-deposit types that might exist, and allow economists to determine the possible economic viability of these resources in the region. Thus, mineral-deposit models play the central role in transforming geoscience information to a form useful to policy makers. This publication contains a computer file of information on sediment-hosted zinc-lead deposits from around the world. It also presents new grade and tonnage models for nine types of these deposits and a file allowing locations of all deposits to be plotted in Google Earth. The data are presented in FileMaker Pro, Excel and text files to make the information available to as many as possible. The

  4. Host immune response and acute disease in a zebrafish model of francisella pathogenesis

    Science.gov (United States)

    Vojtech, L.N.; Sanders, G.E.; Conway, C.; Ostland, V.; Hansen, J.D.

    2009-01-01

    Members of the bacterial genus Francisella are highly virulent and infectious pathogens. New models to study Francisella pathogenesis in evolutionarily distinct species are needed to provide comparative insight, as the mechanisms of host resistance and pathogen virulence are not well understood. We took advantage of the recent discovery of a novel species of Francisella to establish a zebrafish/Francisella comparative model of pathogenesis and host immune response. Adult zebraflsh were susceptible to acute Francisella-induced disease and suffered mortality in a dose-dependent manner. Using immunohistochemical analysis, we localized bacterial antigens primarily to lymphoid tissues and livers of zebraflsh following infection by intraperitoneal injection, which corresponded to regions of local cellular necrosis. Francisella sp. bacteria replicated rapidly in these tissues beginning 12 h postinfection, and bacterial titers rose steadily, leveled off, and then decreased by 7 days postinfection. Zebraflsh mounted a significant tissue-specific proinflammatory response to infection as measured by the upregulation of interleukin-l?? (IL-1??), gamma interferon, and tumor necrosis factor alpha mRNA beginning by 6 h postinfection and persisting for up to 7 days postinfection. In addition, exposure of zebraflsh to heat-killed bacteria demonstrated that the significant induction of IL-?? was highly specific to live bacteria. Taken together, the pathology and immune response to acute Francisella infection in zebraflsh share many features with those in mammals, highlighting the usefulness of this new model system for addressing both general and specific questions about Francisella host-pathogen interactions via an evolutionary approach. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  5. The synthetic progestin norgestrel modulates Nrf2 signaling and acts as an antioxidant in a model of retinal degeneration

    Directory of Open Access Journals (Sweden)

    Ashleigh M. Byrne

    2016-12-01

    Full Text Available Retinitis pigmentosa (RP is one of the most common retinal degenerative conditions affecting people worldwide, and is currently incurable. It is characterized by the progressive loss of photoreceptors, in which the death of rod cells leads to the secondary death of cone cells; the cause of eventual blindness. As rod cells die, retinal-oxygen metabolism becomes perturbed, leading to increased levels of reactive oxygen species (ROS and thus oxidative stress; a key factor in the secondary death of cones. In this study, norgestrel, an FDA-approved synthetic analog of progesterone, was found to be a powerful neuroprotective antioxidant, preventing light-induced ROS in photoreceptor cells, and subsequent cell death. Norgestrel also prevented light-induced photoreceptor morphological changes that were associated with ROS production, and that are characteristic of RP. Further investigation showed that norgestrel acts via post-translational modulation of the major antioxidant transcription factor Nrf2; bringing about its phosphorylation, subsequent nuclear translocation, and increased levels of its effector protein superoxide dismutase 2 (SOD2. In summary, these results demonstrate significant protection of photoreceptor cells from oxidative stress, and underscore the potential of norgestrel as a therapeutic option for RP.

  6. Retinal oximetry in patients with ischaemic retinal diseases

    DEFF Research Database (Denmark)

    Rilvén, Sandra; Torp, Thomas Lee; Grauslund, Jakob

    2017-01-01

    The retinal oximeter is a new tool for non-invasive measurement of retinal oxygen saturation in humans. Several studies have investigated the associations between retinal oxygen saturation and retinal diseases. In the present systematic review, we examine whether there are associations between...... retinal oxygen saturation and retinal ischaemic diseases. We used PubMed and Embase to search for retinal oxygen saturation and retinal ischaemic diseases. Three separate searches identified a total of 79 publications. After two levels of manual screening, 10 studies were included: six about diabetic...... retinopathy (DR) and four about retinal vein occlusion. No studies about retinal artery occlusion were included. In diabetes, all studies found that increases in retinal venous oxygen saturation (rvSatO2 ) were associated with present as well as increasing levels of DR. Four of six studies also found...

  7. Sialoglycoconjugates in Trypanosoma cruzi-host cell interaction: possible biological model - a review

    Directory of Open Access Journals (Sweden)

    Alane Beatriz Vermelho

    1994-03-01

    Full Text Available A number of glycoconjugates, including glycolipids and glycoproteins, participate in the process of host-cell invasion by Trypanosoma cruzi and one of the most important carbohydrates involved on this interaction is sialic acid. It is known that parasite trans-sialidase participates with sialic acid in a coordinated fashion in the initial stages of invasion. Given the importance of these sialogycoconjugates, this review sets out various possible biological models for the interaction between the parasite and mammalian cells that possess a sialylated receptor/ligand system.

  8. Human bone marrow mesenchymal stem cells for retinal vascular injury.

    Science.gov (United States)

    Wang, Jin-Da; An, Ying; Zhang, Jing-Shang; Wan, Xiu-Hua; Jonas, Jost B; Xu, Liang; Zhang, Wei

    2017-09-01

    To examine the potential of intravitreally implanted human bone marrow-derived mesenchymal stem cells (BMSCs) to affect vascular repair and the blood-retina barrier in mice and rats with oxygen-induced retinopathy, diabetic retinopathy or retinal ischaemia-reperfusion damage. Three study groups (oxygen-induced retinopathy group: 18 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received BMSCs injected intravitreally. Control groups (oxygen-induced retinopathy group: 12 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received an intravitreal injection of phosphate-buffered saline. We applied immunohistological techniques to measure retinal vascularization, spectroscopic measurements of intraretinally extravasated fluorescein-conjugated dextran to quantify the blood-retina barrier breakdown, and histomorphometry to assess retinal thickness and retinal ganglion cell count. In the oxygen-induced retinopathy model, the study group with intravitreally injected BMSCs as compared with the control group showed a significantly (p = 0.001) smaller area of retinal neovascularization. In the diabetic retinopathy model, study group and control group did not differ significantly in the amount of intraretinally extravasated dextran. In the retinal ischaemia-reperfusion model, on the 7th day after retina injury, the retina was significantly thicker in the study group than in the control group (p = 0.02), with no significant difference in the retinal ganglion cell count (p = 0.36). Intravitreally implanted human BMSCs were associated with a reduced retinal neovascularization in the oxygen-induced retinopathy model and with a potentially cell preserving effect in the retinal ischaemia-reperfusion model. Intravitreal BMSCs may be of potential interest for the therapy of retinal vascular disorders. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley

  9. Temporal Progression of Retinal Progenitor Cell Identity: Implications in Cell Replacement Therapies

    Directory of Open Access Journals (Sweden)

    Awais Javed

    2017-12-01

    Full Text Available Retinal degenerative diseases, which lead to the death of rod and cone photoreceptor cells, are the leading cause of inherited vision loss worldwide. Induced pluripotent or embryonic stem cells (iPSCs/ESCs have been proposed as a possible source of new photoreceptors to restore vision in these conditions. The proof of concept studies carried out in mouse models of retinal degeneration over the past decade have highlighted several limitations for cell replacement in the retina, such as the low efficiency of cone photoreceptor production from stem cell cultures and the poor integration of grafted cells in the host retina. Current protocols to generate photoreceptors from stem cells are largely based on the use of extracellular factors. Although these factors are essential to induce the retinal progenitor cell (RPC fate from iPSCs/ESCs, developmental studies have shown that RPCs alter fate output as a function of time (i.e., their temporal identity to generate the seven major classes of retinal cell types, rather than spatial position. Surprisingly, current stem cell differentiation protocols largely ignore the intrinsic temporal identity of dividing RPCs, which we argue likely explains the low efficiency of cone production in such cultures. In this article, we briefly review the mechanisms regulating temporal identity in RPCs and discuss how they could be exploited to improve cone photoreceptor production for cell replacement therapies.

  10. Within-host selection of drug resistance in a mouse model of repeated interrupted treatment of Plasmodium yoelii infection

    OpenAIRE

    Nuralitha, Suci; Siregar, Josephine E; Syafruddin, Din; Hoepelman, Andy I M; Marzuki, Sangkot

    2017-01-01

    BACKGROUND: To study within-host selection of resistant parasites, an important factor in the development of resistance to anti-malarial drugs, a mouse model of repeated interrupted malaria treatment (RIT) has been developed. The characteristics of within host selection of resistance to atovaquone and pyrimethamine in Plasmodium yoelii was examined in such a model. METHODS: Treatment of P. yoelii infected mice, with atovaquone or pyrimethamine, was started at parasitaemia level of 3-5%, inter...

  11. Dynamic, in vivo, real-time detection of retinal oxidative status in a model of elevated intraocular pressure using a novel, reversibly responsive, profluorescent nitroxide probe.

    Science.gov (United States)

    Rayner, Cassie L; Gole, Glen A; Bottle, Steven E; Barnett, Nigel L

    2014-12-01

    Changes to the redox status of biological systems have been implicated in the pathogenesis of a wide variety of disorders including cancer, Ischemia-reperfusion (I/R) injury and neurodegeneration. In times of metabolic stress e.g. ischaemia/reperfusion, reactive oxygen species (ROS) production overwhelms the intrinsic antioxidant capacity of the cell, damaging vital cellular components. The ability to quantify ROS changes in vivo, is therefore essential to understanding their biological role. Here we evaluate the suitability of a novel reversible profluorescent probe containing a redox-sensitive nitroxide moiety (methyl ester tetraethylrhodamine nitroxide, ME-TRN), as an in vivo, real-time reporter of retinal oxidative status. The reversible nature of the probe's response offers the unique advantage of being able to monitor redox changes in both oxidizing and reducing directions in real time. After intravitreal administration of the ME-TRN probe, we induced ROS production in rat retina using an established model of complete, acute retinal ischaemia followed by reperfusion. After restoration of blood flow, retinas were imaged using a Micron III rodent fundus fluorescence imaging system, to quantify the redox-response of the probe. Fluorescent intensity declined during the first 60 min of reperfusion. The ROS-induced change in probe fluorescence was ameliorated with the retinal antioxidant, lutein. Fluorescence intensity in non-Ischemia eyes did not change significantly. This new probe and imaging technology provide a reversible and real-time response to oxidative changes and may allow the in vivo testing of antioxidant therapies of potential benefit to a range of diseases linked to oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Sirtuin1 Over-Expression Does Not Impact Retinal Vascular and Neuronal Degeneration in a Mouse Model of Oxygen-Induced Retinopathy

    Science.gov (United States)

    Michan, Shaday; Juan, Aimee M.; Hurst, Christian G.; Cui, Zhenghao; Evans, Lucy P.; Hatton, Colman J.; Pei, Dorothy T.; Ju, Meihua; Sinclair, David A.; Smith, Lois E. H.; Chen, Jing

    2014-01-01

    Proliferative retinopathy is a leading cause of blindness, including retinopathy of prematurity (ROP) in children and diabetic retinopathy in adults. Retinopathy is characterized by an initial phase of vessel loss, leading to tissue ischemia and hypoxia, followed by sight threatening pathologic neovascularization in the second phase. Previously we found that Sirtuin1 (Sirt1), a metabolically dependent protein deacetylase, regulates vascular regeneration in a mouse model of oxygen-induced proliferative retinopathy (OIR), as neuronal depletion of Sirt1 in retina worsens retinopathy. In this study we assessed whether over-expression of Sirtuin1 in retinal neurons and vessels achieved by crossing Sirt1 over-expressing flox mice with Nestin-Cre mice or Tie2-Cre mice, respectively, may protect against retinopathy. We found that over-expression of Sirt1 in Nestin expressing retinal neurons does not impact vaso-obliteration or pathologic neovascularization in OIR, nor does it influence neuronal degeneration in OIR. Similarly, increased expression of Sirt1 in Tie2 expressing vascular endothelial cells and monocytes/macrophages does not protect retinal vessels in OIR. In addition to the genetic approaches, dietary supplement with Sirt1 activators, resveratrol or SRT1720, were fed to wild type mice with OIR. Neither treatment showed significant vaso-protective effects in retinopathy. Together these results indicate that although endogenous Sirt1 is important as a stress-induced protector in retinopathy, over-expression of Sirt1 or treatment with small molecule activators at the examined doses do not provide additional protection against retinopathy in mice. Further studies are needed to examine in depth whether increasing levels of Sirt1 may serve as a potential therapeutic approach to treat or prevent retinopathy. PMID:24416337

  13. Sirtuin1 over-expression does not impact retinal vascular and neuronal degeneration in a mouse model of oxygen-induced retinopathy.

    Science.gov (United States)

    Michan, Shaday; Juan, Aimee M; Hurst, Christian G; Cui, Zhenghao; Evans, Lucy P; Hatton, Colman J; Pei, Dorothy T; Ju, Meihua; Sinclair, David A; Smith, Lois E H; Chen, Jing

    2014-01-01

    Proliferative retinopathy is a leading cause of blindness, including retinopathy of prematurity (ROP) in children and diabetic retinopathy in adults. Retinopathy is characterized by an initial phase of vessel loss, leading to tissue ischemia and hypoxia, followed by sight threatening pathologic neovascularization in the second phase. Previously we found that Sirtuin1 (Sirt1), a metabolically dependent protein deacetylase, regulates vascular regeneration in a mouse model of oxygen-induced proliferative retinopathy (OIR), as neuronal depletion of Sirt1 in retina worsens retinopathy. In this study we assessed whether over-expression of Sirtuin1 in retinal neurons and vessels achieved by crossing Sirt1 over-expressing flox mice with Nestin-Cre mice or Tie2-Cre mice, respectively, may protect against retinopathy. We found that over-expression of Sirt1 in Nestin expressing retinal neurons does not impact vaso-obliteration or pathologic neovascularization in OIR, nor does it influence neuronal degeneration in OIR. Similarly, increased expression of Sirt1 in Tie2 expressing vascular endothelial cells and monocytes/macrophages does not protect retinal vessels in OIR. In addition to the genetic approaches, dietary supplement with Sirt1 activators, resveratrol or SRT1720, were fed to wild type mice with OIR. Neither treatment showed significant vaso-protective effects in retinopathy. Together these results indicate that although endogenous Sirt1 is important as a stress-induced protector in retinopathy, over-expression of Sirt1 or treatment with small molecule activators at the examined doses do not provide additional protection against retinopathy in mice. Further studies are needed to examine in depth whether increasing levels of Sirt1 may serve as a potential therapeutic approach to treat or prevent retinopathy.

  14. A murine model of graft-versus-host disease induced by allogeneic bone marrow transplantation

    International Nuclear Information System (INIS)

    Hu Jiangwei; Jin Jiangang; Ning Hongmei; Yu Liquan; Feng Kai; Chen Hu; Wang Lisha

    2007-01-01

    Objective: To establish the model of graft-versus-host disease (GVHD) in mice with allogeneic bone marrow transplantation. Methods: Bone marrow cells were combined with spleen cells of male donor C57BL/6 mice according to different proportions, then were transfused into female postradiation recipient BALB/c mice. General state, life span and histopathology of the recipient mice and detected chimera were observed. Results and Conclusion:The recipient mice groups which accepted above 5 x 10 6 donor spleen cells developed acute GVHD after different peroids of time. The GVHD model in mice after allo-BMT was successfully established. The transfusion of 5 x 10 6 -5 x 10 7 spleen cells may be adequate to establish the murine model of GVHD for the prevention and treatment of GVHD. The number of murine spleen cells can be chosen according to the experimental requirement. (authors)

  15. Viral persistence, liver disease and host response in Hepatitis C-like virus rat model

    DEFF Research Database (Denmark)

    Trivedi, Sheetal; Murthy, Satyapramod; Sharma, Himanshu

    2018-01-01

    The lack of a relevant, tractable, and immunocompetent animal model for hepatitis C virus (HCV) has severely impeded investigations of viral persistence, immunity and pathogenesis. In the absence of immunocompetent models with robust HCV infection, homolog hepaciviruses in their natural host could...... potentially provide useful surrogate models. We isolated a rodent hepacivirus (RHV) from wild rats (Rattus norvegicus), RHV-rn1, acquired the complete viral genome sequence and developed an infectious reverse genetics system. RHV-rn1 resembles HCV in genomic features including the pattern of polyprotein...... cleavage sites and secondary structures in the viral 5' and 3' UTRs. We used site-directed and random mutagenesis to determine that only the first of the two miR-122 seed sites in viral 5'UTR is required for viral replication and persistence in rats. Next, we used the clone derived virus progeny to infect...

  16. Modelling climate change impact on the spatial distribution of fresh water snails hosting trematodes in Zimbabwe.

    Science.gov (United States)

    Pedersen, Ulrik B; Stendel, Martin; Midzi, Nicholas; Mduluza, Takafira; Soko, White; Stensgaard, Anna-Sofie; Vennervald, Birgitte J; Mukaratirwa, Samson; Kristensen, Thomas K

    2014-12-12

    Freshwater snails are intermediate hosts for a number of trematodes of which some are of medical and veterinary importance. The trematodes rely on specific species of snails to complete their life cycle; hence the ecology of the snails is a key element in transmission of the parasites. More than 200 million people are infected with schistosomes of which 95% live in sub-Saharan Africa and many more are living in areas where transmission is on-going. Human infection with the Fasciola parasite, usually considered more of veterinary concern, has recently been recognised as a human health problem. Many countries have implemented health programmes to reduce morbidity and prevalence of schistosomiasis, and control programmes to mitigate food-borne fascioliasis. As these programmes are resource demanding, baseline information on disease prevalence and distribution becomes of great importance. Such information can be made available and put into practice through maps depicting spatial distribution of the intermediate snail hosts. A biology driven model for the freshwater snails Bulinus globosus, Biomphalaria pfeifferi and Lymnaea natalensis was used to make predictions of snail habitat suitability by including potential underlying environmental and climatic drivers. The snail observation data originated from a nationwide survey in Zimbabwe and the prediction model was parameterised with a high resolution Regional Climate Model. Georeferenced prevalence data on urinary and intestinal schistosomiasis and fascioliasis was used to calibrate the snail habitat suitability predictions to produce binary maps of snail presence and absence. Predicted snail habitat suitability across Zimbabwe, as well as the spatial distribution of snails, is reported for three time slices representative for present (1980-1999) and future climate (2046-2065 and 2080-2099). It is shown from the current study that snail habitat suitability is highly variable in Zimbabwe, with distinct high- and low

  17. Dynamics and Biocontrol: The Indirect Effects of a Predator Population on a Host-Vector Disease Model

    Directory of Open Access Journals (Sweden)

    Fengyan Zhou

    2014-01-01

    Full Text Available A model of the interactions among a host population, an insect-vector population, which transmits virus from hosts to hosts, and a vector predator population is proposed based on virus-host, host-vector, and prey (vector-enemy theories. The model is investigated to explore the indirect effect of natural enemies on host-virus dynamics by reducing the vector densities, which shows the basic reproduction numbers R01 (without predators and R02 (with predators that provide threshold conditions on determining the uniform persistence and extinction of the disease in a host population. When the model is absent from predator, the disease is persistent if R01>1; in such a case, by introducing predators of a vector, then the insect-transmitted disease will be controlled if R02<1. From the point of biological control, these results show that an additional predator population of the vector may suppress the spread of vector-borne diseases. In addition, there exist limit cycles with persistence of the disease or without disease in presence of predators. Finally, numerical simulations are conducted to support analytical results.

  18. Intracerebroventricular gene therapy that delays neurological disease progression is associated with selective preservation of retinal ganglion cells in a canine model of CLN2 disease.

    Science.gov (United States)

    Whiting, Rebecca E H; Jensen, Cheryl A; Pearce, Jacqueline W; Gillespie, Lauren E; Bristow, Daniel E; Katz, Martin L

    2016-05-01

    CLN2 disease is one of a group of lysosomal storage disorders called the neuronal ceroid lipofuscinoses (NCLs). The disease results from mutations in the TPP1 gene that cause an insufficiency or complete lack of the soluble lysosomal enzyme tripeptidyl peptidase-1 (TPP1). TPP1 is involved in lysosomal protein degradation, and lack of this enzyme results in the accumulation of protein-rich autofluorescent lysosomal storage bodies in numerous cell types including neurons throughout the central nervous system and the retina. CLN2 disease is characterized primarily by progressive loss of neurological functions and vision as well as generalized neurodegeneration and retinal degeneration. In children the progressive loss of neurological functions typically results in death by the early teenage years. A Dachshund model of CLN2 disease with a null mutation in TPP1 closely recapitulates the human disorder with a progression from disease onset at approximately 4 months of age to end-stage at 10-11 months. Delivery of functional TPP1 to the cerebrospinal fluid (CSF), either by periodic infusion of the recombinant protein or by a single administration of a TPP1 gene therapy vector to the CSF, significantly delays the onset and progression of neurological signs and prolongs life span but does not prevent the loss of vision or modest retinal degeneration that occurs by 11 months of age. In this study we found that in dogs that received the CSF gene therapy treatment, the degeneration of the retina and loss of retinal function continued to progress during the prolonged life spans of the treated dogs. Eventually the normal cell layers of the retina almost completely disappeared. An exception was the ganglion cell layer. In affected dogs that received TPP1 gene therapy to the CSF and survived an average of 80 weeks, ganglion cell axons were present in numbers comparable to those of normal Dachshunds of similar age. The selective preservation of the retinal ganglion cells suggests

  19. Dorzolamide increases retinal oxygen tension after branch retinal vein occlusion

    DEFF Research Database (Denmark)

    Noergaard, Michael Hove; Bach-Holm, Daniella; Scherfig, Erik

    2008-01-01

    To study the effect of dorzolamide on the preretinal oxygen tension (RPO(2)) in retinal areas affected by experimental branch retinal vein occlusion (BRVO) in pigs.......To study the effect of dorzolamide on the preretinal oxygen tension (RPO(2)) in retinal areas affected by experimental branch retinal vein occlusion (BRVO) in pigs....

  20. Host homeostatic responses to alcohol-induced cellular stress in animal models of alcoholic liver disease.

    Science.gov (United States)

    Wang, He Joe; Murray, Gary J; Jung, Mary Katherine

    2015-01-01

    Humans develop various clinical phenotypes of severe alcoholic liver disease, including alcoholic hepatitis and cirrhosis, generally after decades of heavy drinking. In such individuals, following each episode of drinking, their livers experience heightened intracellular and extracellular stresses that are closely associated with alcohol consumption and alcohol metabolism. This article focuses on the latest advances made in animal models on evolutionarily conserved homeostatic mechanisms for coping with and resolving these stress conditions. The mechanisms discussed include the stress-activated protein kinase JNK, energy regulator AMPK, autophagy and the inflammatory response. Over time, the host may respond variably to stress with protective mechanisms that are critical in determining an individual's vulnerability to developing severe alcoholic liver disease. A systematic review of these mechanisms and their temporal changes in animal models provides the basis for general conclusions, and raises questions for future studies. The relevance of these data to human conditions is also discussed.

  1. Characterization of the interaction between the human pathogen Listeria monocytogenes and the model host C. elegans

    DEFF Research Database (Denmark)

    Simonsen, Karina T.; Nielsen, Jesper S.; Hansen, Annie A.

    In nature, C. elegans lives in the soil and feeds on bacteria. This constant contact with soil-borne microbes suggests that nematodes must have evolved protective responses against pathogens which makes the worm an attractive host-pathogen model for exploring their innate immune response....... In addition, C. elegans is a promising model for the identification of novel virulence factors in various pathogens. A large number of human, animal, plant and insect pathogens have been shown to kill the worm, when C. elegans was allowed to feed on pathogens in stead of its normal laboratory diet [1......]. However, the mechanisms that lead to the shortened life span of the worm have been shown to be very different depending on the nature of the pathogen. Examples include Yersinia pestis, which forms a biofilm layer on the cuticle of C. elegans thus inhibiting feeding [2], enteropathogenic Escherichia coli...

  2. Partitioning the aggregation of parasites on hosts into intrinsic and extrinsic components via an extended Poisson-gamma mixture model.

    Directory of Open Access Journals (Sweden)

    Justin M Calabrese

    Full Text Available It is well known that parasites are often highly aggregated on their hosts such that relatively few individuals host the large majority of parasites. When the parasites are vectors of infectious disease, a key consequence of this aggregation can be increased disease transmission rates. The cause of this aggregation, however, is much less clear, especially for parasites such as arthropod vectors, which generally spend only a short time on their hosts. Regression-based analyses of ticks on various hosts have focused almost exclusively on identifying the intrinsic host characteristics associated with large burdens, but these efforts have had mixed results; most host traits examined have some small influence, but none are key. An alternative approach, the Poisson-gamma mixture distribution, has often been used to describe aggregated parasite distributions in a range of host/macroparasite systems, but lacks a clear mechanistic basis. Here, we extend this framework by linking it to a general model of parasite accumulation. Then, focusing on blacklegged ticks (Ixodes scapularis on mice (Peromyscus leucopus, we fit the extended model to the best currently available larval tick burden datasets via hierarchical Bayesian methods, and use it to explore the relative contributions of intrinsic and extrinsic factors on observed tick burdens. Our results suggest that simple bad luck-inhabiting a home range with high vector density-may play a much larger role in determining parasite burdens than is currently appreciated.

  3. Retinal pathology is associated with increased blood-retina barrier permeability in a diabetic and hypercholesterolaemic pig model: Beneficial effects of the LpPLA2 inhibitor Darapladib.

    Science.gov (United States)

    Acharya, Nimish K; Qi, Xin; Goldwaser, Eric L; Godsey, George A; Wu, Hao; Kosciuk, Mary C; Freeman, Theresa A; Macphee, Colin H; Wilensky, Robert L; Venkataraman, Venkat; Nagele, Robert G

    2017-05-01

    Using a porcine model of diabetes mellitus and hypercholesterolaemia, we previously showed that diabetes mellitus and hypercholesterolaemia is associated with a chronic increase in blood-brain barrier permeability in the cerebral cortex, leading to selective binding of immunoglobulin G and deposition of amyloid-beta 1-42 peptide in pyramidal neurons. Treatment with Darapladib (GlaxoSmithKline, SB480848), an inhibitor of lipoprotein-associated phospholipase-A2, alleviated these effects. Here, investigation of the effects of chronic diabetes mellitus and hypercholesterolaemia on the pig retina revealed a corresponding increased permeability of the blood-retina barrier coupled with a leak of plasma components into the retina, alterations in retinal architecture, selective IgG binding to neurons in the ganglion cell layer, thinning of retinal layers due to cell loss and increased glial fibrillary acidic protein expression in Müller cells, all of which were curtailed by treatment with Darapladib. These findings suggest that chronic diabetes mellitus and hypercholesterolaemia induces increased blood-retina barrier permeability that may be linked to altered expression of blood-retina barrier-associated tight junction proteins, claudin and occludin, leading to structural changes in the retina consistent with diabetic retinopathy. Additionally, results suggest that drugs with vascular anti-inflammatory properties, such as Darapladib, may have beneficial effects on eye diseases strongly linked to vascular abnormalities such as diabetic retinopathy and age-related macular degeneration.

  4. More Novel Hantaviruses and Diversifying Reservoir Hosts — Time for Development of Reservoir-Derived Cell Culture Models?

    Directory of Open Access Journals (Sweden)

    Isabella Eckerle

    2014-02-01

    Full Text Available Due to novel, improved and high-throughput detection methods, there is a plethora of newly identified viruses within the genus Hantavirus. Furthermore, reservoir host species are increasingly recognized besides representatives of the order Rodentia, now including members of the mammalian orders Soricomorpha/Eulipotyphla and Chiroptera. Despite the great interest created by emerging zoonotic viruses, there is still a gross lack of in vitro models, which reflect the exclusive host adaptation of most zoonotic viruses. The usually narrow host range and genetic diversity of hantaviruses make them an exciting candidate for studying virus-host interactions on a cellular level. To do so, well-characterized reservoir cell lines covering a wide range of bat, insectivore and rodent species are essential. Most currently available cell culture models display a heterologous virus-host relationship and are therefore only of limited value. Here, we review the recently established approaches to generate reservoir-derived cell culture models for the in vitro study of virus-host interactions. These successfully used model systems almost exclusively originate from bats and bat-borne viruses other than hantaviruses. Therefore we propose a parallel approach for research on rodent- and insectivore-borne hantaviruses, taking the generation of novel rodent and insectivore cell lines from wildlife species into account. These cell lines would be also valuable for studies on further rodent-borne viruses, such as orthopox- and arenaviruses.

  5. Using process algebra to develop predator-prey models of within-host parasite dynamics.

    Science.gov (United States)

    McCaig, Chris; Fenton, Andy; Graham, Andrea; Shankland, Carron; Norman, Rachel

    2013-07-21

    As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Studying Host-Pathogen Interactions In 3-D: Organotypic Models For Infectious Disease And Drug Development

    Science.gov (United States)

    Nickerson, Cheryl A.; Richter, Emily G.; Ott, C. Mark

    2006-01-01

    Representative, reproducible and high-throughput models of human cells and tissues are critical for a meaningful evaluation of host-pathogen interactions and are an essential component of the research developmental pipeline. The most informative infection models - animals, organ explants and human trials - are not suited for extensive evaluation of pathogenesis mechanisms and screening of candidate drugs. At the other extreme, more cost effective and accessible infection models such as conventional cell culture and static co-culture may not capture physiological and three-dimensional aspects of tissue biology that are important in assessing pathogenesis, and effectiveness and cytotoxicity of therapeutics. Our lab has used innovative bioengineering technology to establish biologically meaningful 3-D models of human tissues that recapitulate many aspects of the differentiated structure and function of the parental tissue in vivo, and we have applied these models to study infectious disease. We have established a variety of different 3-D models that are currently being used in infection studies - including small intestine, colon, lung, placenta, bladder, periodontal ligament, and neuronal models. Published work from our lab has shown that our 3-D models respond to infection with bacterial and viral pathogens in ways that reflect the infection process in vivo. By virtue of their physiological relevance, 3-D cell cultures may also hold significant potential as models to provide insight into the neuropathogenesis of HIV infection. Furthermore, the experimental flexibility, reproducibility, cost-efficiency, and high throughput platform afforded by these 3-D models may have important implications for the design and development of drugs with which to effectively treat neurological complications of HIV infection.

  7. Damage-plasticity model of the host rock in a nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Koudelka, Tomáš; Kruis, Jaroslav, E-mail: kruis@fsv.cvut.cz [Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague (Czech Republic)

    2016-06-08

    The paper describes damage-plasticity model for the modelling of the host rock environment of a nuclear waste repository. Radioactive Waste Repository Authority in Czech Republic assumes the repository to be in a granite rock mass which exhibit anisotropic behaviour where the strength in tension is lower than in compression. In order to describe this phenomenon, the damage-plasticity model is formulated with the help of the Drucker-Prager yield criterion which can be set to capture the compression behaviour while the tensile stress states is described with the help of scalar isotropic damage model. The concept of damage-plasticity model was implemented in the SIFEL finite element code and consequently, the code was used for the simulation of the Äspö Pillar Stability Experiment (APSE) which was performed in order to determine yielding strength under various conditions in similar granite rocks as in Czech Republic. The results from the performed analysis are presented and discussed in the paper.

  8. Characterisation of a C1qtnf5 Ser163Arg knock-in mouse model of late-onset retinal macular degeneration.

    Directory of Open Access Journals (Sweden)

    Xinhua Shu

    Full Text Available A single founder mutation resulting in a Ser163Arg substitution in the C1QTNF5 gene product causes autosomal dominant late-onset retinal macular degeneration (L-ORMD in humans, which has clinical and pathological features resembling age-related macular degeneration. We generated and characterised a mouse "knock-in" model carrying the Ser163Arg mutation in the orthologous murine C1qtnf5 gene by site-directed mutagenesis and homologous recombination into mouse embryonic stem cells. Biochemical, immunological, electron microscopic, fundus autofluorescence, electroretinography and laser photocoagulation analyses were used to characterise the mouse model. Heterozygous and homozygous knock-in mice showed no significant abnormality in any of the above measures at time points up to 2 years. This result contrasts with another C1qtnf5 Ser163Arg knock-in mouse which showed most of the features of L-ORMD but differed in genetic background and targeting construct.

  9. Host contact and shedding patterns clarify variation in pathogen exposure and transmission in threatened tortoise Gopherus agassizii: implications for disease modelling and management

    Science.gov (United States)

    Aiello, Christina M.; Nussear, Kenneth E.; Esque, Todd C.; Emblidge, Patrick G.; Sah, Pratha; Bansal, Shweta; Hudson, Peter J.

    2016-01-01

    Summary Most directly transmitted infections require some form of close contact between infectious and susceptible hosts to spread. Often disease models assume contacts are equal and use mean field estimates of transmission probability for all interactions with infectious hosts.

  10. Differential diagnosis of retinal vasculitis.

    Science.gov (United States)

    Abu El-Asrar, Ahmed M; Herbort, Carl P; Tabbara, Khalid F

    2009-10-01

    Retinal vaculitis is a sight-threatening inflammatory eye condition that involves the retinal vessels. Detection of retinal vasculitis is made clinically, and confirmed with the help of fundus fluorescein angiography. Active vascular disease is characterized by exudates around retinal vessels resulting in white sheathing or cuffing of the affected vessels. In this review, a practical approach to the diagnosis of retinal vasculitis is discussed based on ophthalmoscopic and fundus fluorescein angiographic findings.

  11. Modeling gas migration experiments in repository host rocks for the MEGAS project

    International Nuclear Information System (INIS)

    Worgan, K.; Impey, M.; Volckaert, G.; DePreter, P.

    1993-01-01

    In response to concerns over the possibility of hydrogen gas generation within an underground repository for high-level radioactive waste, and its implications for repository safety, a joint European research study (MEGAS) is underway. Its aims are to understand and characterize the behavior of gas migration within an argillacious, host-rock. Laboratory experiments are being carried out by SCK/CEN, BGS and ISMES. SCK/CEN are also conducting in situ experiments at the underground laboratory at Mol, Belgium. Modeling of gas migration is being done in parallel with the experiments, by Intera Information Technologies. A two-phase flow code, TOPAZ, has been developed specifically for this work. In this paper the authors report on the results of some preliminary calculations performed with TOPAZ, in advance of the in situ experiments

  12. Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model

    Directory of Open Access Journals (Sweden)

    Grassian Vicki H

    2011-09-01

    Full Text Available Abstract Background Human exposure to nanoparticles (NPs and environmental bacteria can occur simultaneously. NPs induce inflammatory responses and oxidative stress but may also have immune-suppressive effects, impairing macrophage function and altering epithelial barrier functions. The purpose of this study was to assess the potential pulmonary effects of inhalation and instillation exposure to copper (Cu NPs using a model of lung inflammation and host defense. Methods We used Klebsiella pneumoniae (K.p. in a murine lung infection model to determine if pulmonary bacterial clearance is enhanced or impaired by Cu NP exposure. Two different exposure modes were tested: sub-acute inhalation (4 hr/day, 5 d/week for 2 weeks, 3.5 mg/m3 and intratracheal instillation (24 hr post-exposure, 3, 35, and 100 μg/mouse. Pulmonary responses were evaluated by lung histopathology plus measurement of differential cell counts, total protein, lactate dehydrogenase (LDH activity, and inflammatory cytokines in bronchoalveolar lavage (BAL fluid. Results Cu NP exposure induced inflammatory responses with increased recruitment of total cells and neutrophils to the lungs as well as increased total protein and LDH activity in BAL fluid. Both inhalation and instillation exposure to Cu NPs significantly decreased the pulmonary clearance of K.p.-exposed mice measured 24 hr after bacterial infection following Cu NP exposure versus sham-exposed mice also challenged with K.p (1.4 × 105 bacteria/mouse. Conclusions Cu NP exposure impaired host defense against bacterial lung infections and induced a dose-dependent decrease in bacterial clearance in which even our lowest dose demonstrated significantly lower clearance than observed in sham-exposed mice. Thus, exposure to Cu NPs may increase the risk of pulmonary infection.

  13. New Paradigms for the Study of Ocular Alphaherpesvirus Infections: Insights into the Use of Non-Traditional Host Model Systems

    Directory of Open Access Journals (Sweden)

    Matthew R. Pennington

    2017-11-01

    Full Text Available Ocular herpesviruses, most notably human alphaherpesvirus 1 (HSV-1, canid alphaherpesvirus 1 (CHV-1 and felid alphaherpesvirus 1 (FHV-1, infect and cause severe disease that may lead to blindness. CHV-1 and FHV-1 have a pathogenesis and induce clinical disease in their hosts that is similar to HSV-1 ocular infections in humans, suggesting that infection of dogs and cats with CHV-1 and FHV-1, respectively, can be used as a comparative natural host model of herpesvirus-induced ocular disease. In this review, we discuss both strengths and limitations of the various available model systems to study ocular herpesvirus infection, with a focus on the use of these non-traditional virus-natural host models. Recent work has demonstrated the robustness and reproducibility of experimental ocular herpesvirus infections in dogs and cats, and, therefore, these non-traditional models can provide additional insights into the pathogenesis of ocular herpesvirus infections.

  14. A mathematical model for describing the retinal nerve fiber bundle trajectories in the human eye : Average course, variability, and influence of refraction, optic disc size and optic disc position

    NARCIS (Netherlands)

    Jansonius, Nomdo M.; Schiefer, Julia; Nevalainen, Jukka; Paetzold, Jens; Schiefer, Ulrich

    2012-01-01

    Previously we developed a mathematical model for describing the retinal nerve fiber bundle trajectories in the superior-temporal and inferior-temporal regions of the human retina, based on traced trajectories extracted from fundus photographs. Aims of the current study were to (i) validate the

  15. Computing Models of M-type Host Stars and their Panchromatic Spectral Output

    Science.gov (United States)

    Linsky, Jeffrey; Tilipman, Dennis; France, Kevin

    2018-06-01

    We have begun a program of computing state-of-the-art model atmospheres from the photospheres to the coronae of M stars that are the host stars of known exoplanets. For each model we are computing the emergent radiation at all wavelengths that are critical for assessingphotochemistry and mass-loss from exoplanet atmospheres. In particular, we are computing the stellar extreme ultraviolet radiation that drives hydrodynamic mass loss from exoplanet atmospheres and is essential for determing whether an exoplanet is habitable. The model atmospheres are computed with the SSRPM radiative transfer/statistical equilibrium code developed by Dr. Juan Fontenla. The code solves for the non-LTE statistical equilibrium populations of 18,538 levels of 52 atomic and ion species and computes the radiation from all species (435,986 spectral lines) and about 20,000,000 spectral lines of 20 diatomic species.The first model computed in this program was for the modestly active M1.5 V star GJ 832 by Fontenla et al. (ApJ 830, 152 (2016)). We will report on a preliminary model for the more active M5 V star GJ 876 and compare this model and its emergent spectrum with GJ 832. In the future, we will compute and intercompare semi-empirical models and spectra for all of the stars observed with the HST MUSCLES Treasury Survey, the Mega-MUSCLES Treasury Survey, and additional stars including Proxima Cen and Trappist-1.This multiyear theory program is supported by a grant from the Space Telescope Science Institute.

  16. Metallogenic characteristics, model and exploration prospect for the paleo-interlayer-oxidation type sandstone-hosted uranium deposits in China

    International Nuclear Information System (INIS)

    Huang Jingbai; Li Shengxiang

    2007-01-01

    In this paper, the paleo-interlayer-oxidation type sandstone-hosted uranium deposits occurred in the Meso-Cenozoic continental basins in China are divided into 3 subtype, they are stratum over lapping buried subtype, structure-uplifting destroy subtype and faulted-folding conserved subtype. The metallogenic characteristics, metallogenic model and exploration prospect for these 3 subtypes uranium deposits are discussed. It is proposed that the paleo-interlayer-oxidation type sandstone-hosted uranium deposits, besides the recent interlayer oxidation type sandstone-hosted uranium deposits, are of great prospecting potential in the Meso-Cenozoic continental basins in China. Therefore, the metallogenic theory of these types uranium deposits should be conscientiously summarized and replenished continuously so as to propel forward the exploration of the sandstone-hosted uranium deposits in China. (authors)

  17. Retinal Detachment Vision Simulator

    Science.gov (United States)

    ... Feb 20, 2018 Gene Therapy May Be a Game-Changer for People With Inherited Retinal Disease Dec 19, 2017 ... the Academy Jobs at the Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms of Service For ...

  18. Learning about Retinitis Pigmentosa

    Science.gov (United States)

    Skip to main content Learning about Retinitis Pigmentosa Enter Search Term(s): Español Research Funding An Overview Bioinformatics Current Grants Education and Training Funding Extramural Research ...

  19. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement

    OpenAIRE

    Cideciyan, Artur V.; Jacobson, Samuel G.; Beltran, William A.; Sumaroka, Alexander; Swider, Malgorzata; Iwabe, Simone; Roman, Alejandro J.; Olivares, Melani B.; Schwartz, Sharon B.; Komáromy, András M.; Hauswirth, William W.; Aguirre, Gustavo D.

    2013-01-01

    The first retinal gene therapy in human blindness from RPE65 mutations has focused on safety and efficacy, as defined by improved vision. The disease component not studied, however, has been the fate of photoreceptors in this progressive retinal degeneration. We show that gene therapy improves vision for at least 3 y, but photoreceptor degeneration progresses unabated in humans. In the canine model, the same result occurs when treatment is at the disease stage equivalent to humans. The study ...

  20. Modelling glioblastoma tumour-host cell interactions using adult brain organotypic slice co-culture

    Directory of Open Access Journals (Sweden)

    Maria Angeles Marques-Torrejon

    2018-02-01

    Full Text Available Glioblastoma multiforme (GBM is an aggressive incurable brain cancer. The cells that fuel the growth of tumours resemble neural stem cells found in the developing and adult mammalian forebrain. These are referred to as glioma stem cells (GSCs. Similar to neural stem cells, GSCs exhibit a variety of phenotypic states: dormant, quiescent, proliferative and differentiating. How environmental cues within the brain influence these distinct states is not well understood. Laboratory models of GBM can be generated using either genetically engineered mouse models, or via intracranial transplantation of cultured tumour initiating cells (mouse or human. Unfortunately, these approaches are expensive, time-consuming, low-throughput and ill-suited for monitoring live cell behaviours. Here, we explored whole adult brain coronal organotypic slices as an alternative model. Mouse adult brain slices remain viable in a serum-free basal medium for several weeks. GSCs can be easily microinjected into specific anatomical sites ex vivo, and we demonstrate distinct responses of engrafted GSCs to diverse microenvironments in the brain tissue. Within the subependymal zone – one of the adult neural stem cell niches – injected tumour cells could effectively engraft and respond to endothelial niche signals. Tumour-transplanted slices were treated with the antimitotic drug temozolomide as proof of principle of the utility in modelling responses to existing treatments. Engraftment of mouse or human GSCs onto whole brain coronal organotypic brain slices therefore provides a simplified, yet flexible, experimental model. This will help to increase the precision and throughput of modelling GSC-host brain interactions and complements ongoing in vivo studies. This article has an associated First Person interview with the first author of the paper.

  1. Albendazole inhibits endothelial cell migration, tube formation, vasopermeability, VEGF receptor-2 expression and suppresses retinal neovascularization in ROP model of angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Pourgholami, Mohammad H., E-mail: mh.pourgholami@unsw.edu.au [University of New South Wales, Department of Surgery, St George Hospital (SESIAHS), Sydney (Australia); Khachigian, Levon M.; Fahmy, Roger G. [Centre for Vascular Research, The University of New South Wales, Department of Haematology, The Prince of Wales Hospital, Sydney (Australia); Badar, Samina; Wang, Lisa; Chu, Stephanie Wai Ling; Morris, David Lawson [University of New South Wales, Department of Surgery, St George Hospital (SESIAHS), Sydney (Australia)

    2010-07-09

    The angiogenic process begins with the cell proliferation and migration into the primary vascular network, and leads to vascularization of previously avascular tissues and organs as well to growth and remodeling of the initially homogeneous capillary plexus to form a new microcirculation. Additionally, an increase in microvascular permeability is a crucial step in angiogenesis. Vascular endothelial growth factor (VEGF) plays a central role in angiogenesis. We have previously reported that albendazole suppresses VEGF levels and inhibits malignant ascites formation, suggesting a possible effect on angiogenesis. This study was therefore designed to investigate the antiangiogenic effect of albendazole in non-cancerous models of angiogenesis. In vitro, treatment of human umbilical vein endothelial cells (HUVECs) with albendazole led to inhibition of tube formation, migration, permeability and down-regulation of the VEGF type 2 receptor (VEGFR-2). In vivo albendazole profoundly inhibited hyperoxia-induced retinal angiogenesis in mice. These results provide new insights into the antiangiogenic effects of albendazole.

  2. Albendazole inhibits endothelial cell migration, tube formation, vasopermeability, VEGF receptor-2 expression and suppresses retinal neovascularization in ROP model of angiogenesis

    International Nuclear Information System (INIS)

    Pourgholami, Mohammad H.; Khachigian, Levon M.; Fahmy, Roger G.; Badar, Samina; Wang, Lisa; Chu, Stephanie Wai Ling; Morris, David Lawson

    2010-01-01

    The angiogenic process begins with the cell proliferation and migration into the primary vascular network, and leads to vascularization of previously avascular tissues and organs as well to growth and remodeling of the initially homogeneous capillary plexus to form a new microcirculation. Additionally, an increase in microvascular permeability is a crucial step in angiogenesis. Vascular endothelial growth factor (VEGF) plays a central role in angiogenesis. We have previously reported that albendazole suppresses VEGF levels and inhibits malignant ascites formation, suggesting a possible effect on angiogenesis. This study was therefore designed to investigate the antiangiogenic effect of albendazole in non-cancerous models of angiogenesis. In vitro, treatment of human umbilical vein endothelial cells (HUVECs) with albendazole led to inhibition of tube formation, migration, permeability and down-regulation of the VEGF type 2 receptor (VEGFR-2). In vivo albendazole profoundly inhibited hyperoxia-induced retinal angiogenesis in mice. These results provide new insights into the antiangiogenic effects of albendazole.

  3. Retinitis-pigmentosa-like tapetoretinal degeneration in a rabbit breed.

    Science.gov (United States)

    Reichenbach, A; Baar, U

    1985-08-15

    By chance, we found a rabbit strain with retinal dystrophy. The eyes of these rabbits were examined by ophthalmoscopy, electroretinography, histology, and cytology--the latter after retina dissociation with papaine. The results suggest this rabbit strain to be a possible animal model for human retinitis pigmentosa.

  4. Highly sensitive measurements of disease progression in rare disorders: Developing and validating a multimodal model of retinal degeneration in Stargardt disease

    NARCIS (Netherlands)

    Lambertus, S.; Bax, N.M.; Fakin, A.; Groenewoud, J.M.M.; Klevering, B.J.; Moore, A.T.; Michaelides, M.; Webster, A.R.; Wilt, G.J. van der; Hoyng, C.B.

    2017-01-01

    BACKGROUND: Each inherited retinal disorder is rare, but together, they affect millions of people worldwide. No treatment is currently available for these blinding diseases, but promising new options-including gene therapy-are emerging. Arguably, the most prevalent retinal dystrophy is Stargardt

  5. Graft versus host disease in the bone marrow, liver and thymus humanized mouse model.

    Directory of Open Access Journals (Sweden)

    Matthew B Greenblatt

    Full Text Available Mice bearing a "humanized" immune system are valuable tools to experimentally manipulate human cells in vivo and facilitate disease models not normally possible in laboratory animals. Here we describe a form of GVHD that develops in NOD/SCID mice reconstituted with human fetal bone marrow, liver and thymus (NS BLT mice. The skin, lungs, gastrointestinal tract and parotid glands are affected with progressive inflammation and sclerosis. Although all mice showed involvement of at least one organ site, the incidence of overt clinical disease was approximately 35% by 22 weeks after reconstitution. The use of hosts lacking the IL2 common gamma chain (NOD/SCID/γc(-/- delayed the onset of disease, but ultimately did not affect incidence. Genetic analysis revealed that particular donor HLA class I alleles influenced the risk for the development of GVHD. At a cellular level, GVHD is associated with the infiltration of human CD4+ T cells into the skin and a shift towards Th1 cytokine production. GVHD also induced a mixed M1/M2 polarization phenotype in a dermal murine CD11b+, MHC class II+ macrophage population. The presence of xenogenic GVHD in BLT mice both presents a major obstacle in the use of humanized mice and an opportunity to conduct preclinical studies on GVHD in a humanized model.

  6. PV Hosting Capacity Analysis and Enhancement Using High Resolution Stochastic Modeling

    Directory of Open Access Journals (Sweden)

    Emilio J. Palacios-Garcia

    2017-09-01

    Full Text Available Reduction of CO2 emissions is a main target in the future smart grid. This goal is boosting the installation of renewable energy resources (RES, as well as a major consumer engagement that seeks for a more efficient utilization of these resources toward the figure of ‘prosumers’. Nevertheless, these resources present an intermittent nature, which requires the presence of an energy storage system and an energy management system (EMS to ensure an uninterrupted power supply. Moreover, network-related issues might arise due to the increasing power of renewable resources installed in the grid, the storage systems also being capable of contributing to the network stability. However, to assess these future scenarios and test the control strategies, a simulation system is needed. The aim of this paper is to analyze the interaction between residential consumers with high penetration of PV generation and distributed storage and the grid by means of a high temporal resolution simulation scenario based on a stochastic residential load model and PV production records. Results of the model are presented for different PV power rates and storage capacities, as well as a two-level charging strategy as a mechanism for increasing the hosting capacity (HC of the network.

  7. Mapping the Excited State Potential Energy Surface of a Retinal Chromophore Model with Multireference and Equation-of-Motion Coupled-Cluster Methods.

    Science.gov (United States)

    Gozem, Samer; Melaccio, Federico; Lindh, Roland; Krylov, Anna I; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo

    2013-10-08

    The photoisomerization of the retinal chromophore of visual pigments proceeds along a complex reaction coordinate on a multidimensional surface that comprises a hydrogen-out-of-plane (HOOP) coordinate, a bond length alternation (BLA) coordinate, a single bond torsion and, finally, the reactive double bond torsion. These degrees of freedom are coupled with changes in the electronic structure of the chromophore and, therefore, the computational investigation of the photochemistry of such systems requires the use of a methodology capable of describing electronic structure changes along all those coordinates. Here, we employ the penta-2,4-dieniminium (PSB3) cation as a minimal model of the retinal chromophore of visual pigments and compare its excited state isomerization paths at the CASSCF and CASPT2 levels of theory. These paths connect the cis isomer and the trans isomer of PSB3 with two structurally and energetically distinct conical intersections (CIs) that belong to the same intersection space. MRCISD+Q energy profiles along these paths provide benchmark values against which other ab initio methods are validated. Accordingly, we compare the energy profiles of MRPT2 methods (CASPT2, QD-NEVPT2, and XMCQDPT2) and EOM-SF-CC methods (EOM-SF-CCSD and EOM-SF-CCSD(dT)) to the MRCISD+Q reference profiles. We find that the paths produced with CASSCF and CASPT2 are topologically and energetically different, partially due to the existence of a "locally excited" region on the CASPT2 excited state near the Franck-Condon point that is absent in CASSCF and that involves a single bond, rather than double bond, torsion. We also find that MRPT2 methods as well as EOM-SF-CCSD(dT) are capable of quantitatively describing the processes involved in the photoisomerization of systems like PSB3.

  8. Multi-host model-based identification of Armillifer agkistrodontis (Pentastomida), a new zoonotic parasite from China.

    Science.gov (United States)

    Chen, Shao-Hong; Liu, Qin; Zhang, Yong-Nian; Chen, Jia-Xu; Li, Hao; Chen, Ying; Steinmann, Peter; Zhou, Xiao-Nong

    2010-04-06

    Pentastomiasis is a rare parasitic infection of humans. Pentastomids are dioecious obligate parasites requiring multiple hosts to complete their lifecycle. Despite their worm-like appearance, they are commonly placed into a separate sub-class of the subphylum Crustacea, phylum Arthropoda. However, their systematic position is not uncontested and historically, they have been considered as a separate phylum. An appraisal of Armillifer agkistrodontis was performed in terms of morphology and genetic identification after its lifecycle had been established in a multi-host model, i.e., mice and rats as intermediate hosts, and snakes (Agkistrodon acutus and Python molurus) as definitive hosts. Different stages of the parasite, including eggs, larvae and adults, were isolated and examined morphologically using light and electron microscopes. Phylogenetic and cluster analysis were also undertaken, focusing on the 18S rRNA and the Cox1 gene. The time for lifecycle completion was about 14 months, including 4 months for the development of eggs to infectious larvae in the intermediate host and 10 months for infectious larvae to mature in the final host. The main morphological difference between A. armillatus and Linguatula serrata is the number of abdominal annuli. Based on the 18S rRNA sequence, the shortest hereditary distance was found between A. agkistrodontis and Raillietiella spp. The highest degree of homology in the Cox 1 nucleic acid sequences and predicted amino acid sequences was found between A. agkistrodontis and A. armillatus. This is the first time that a multi-host model of the entire lifecycle of A. agkistrodontis has been established. Morphologic and genetic analyses supported the notion that pentastomids should be placed into the phylum Arthropoda.

  9. Multi-host model-based identification of Armillifer agkistrodontis (Pentastomida, a new zoonotic parasite from China.

    Directory of Open Access Journals (Sweden)

    Shao-Hong Chen

    Full Text Available BACKGROUND: Pentastomiasis is a rare parasitic infection of humans. Pentastomids are dioecious obligate parasites requiring multiple hosts to complete their lifecycle. Despite their worm-like appearance, they are commonly placed into a separate sub-class of the subphylum Crustacea, phylum Arthropoda. However, their systematic position is not uncontested and historically, they have been considered as a separate phylum. METHODOLOGY/PRINCIPAL FINDINGS: An appraisal of Armillifer agkistrodontis was performed in terms of morphology and genetic identification after its lifecycle had been established in a multi-host model, i.e., mice and rats as intermediate hosts, and snakes (Agkistrodon acutus and Python molurus as definitive hosts. Different stages of the parasite, including eggs, larvae and adults, were isolated and examined morphologically using light and electron microscopes. Phylogenetic and cluster analysis were also undertaken, focusing on the 18S rRNA and the Cox1 gene. The time for lifecycle completion was about 14 months, including 4 months for the development of eggs to infectious larvae in the intermediate host and 10 months for infectious larvae to mature in the final host. The main morphological difference between A. armillatus and Linguatula serrata is the number of abdominal annuli. Based on the 18S rRNA sequence, the shortest hereditary distance was found between A. agkistrodontis and Raillietiella spp. The highest degree of homology in the Cox 1 nucleic acid sequences and predicted amino acid sequences was found between A. agkistrodontis and A. armillatus. CONCLUSION: This is the first time that a multi-host model of the entire lifecycle of A. agkistrodontis has been established. Morphologic and genetic analyses supported the notion that pentastomids should be placed into the phylum Arthropoda.

  10. Oxygen-induced retinopathy in mice with retinal photoreceptor cell degeneration.

    Science.gov (United States)

    Zhang, Qian; Zhang, Zuo-Ming

    2014-04-25

    It is reported that retinal neovascularization seems to rarely co-exist with retinitis pigmentosa in patients and in some mouse models; however, it is not widely acknowledged as a universal phenomenon in all strains of all animal species. We aimed to further explore this phenomenon with an oxygen-induced retinopathy model in mice with retinal photoreceptor cell degeneration. Oxygen-induced retinopathy of colored and albino mice with rapid retinal degeneration were compared to homologous wild-type mice. The retinas were analyzed using high-molecular-weight FITC-dextran stained flat-mount preparation, hematoxylin and eosin (H&E) stained cross-sections, an immunohistochemical test for vascular endothelial growth factor (VEGF) distribution and Western blotting for VEGF expression after exposure to hyperoxia between postnatal days 17 (P17) and 21. Leakage and areas of non-perfusion of the retinal blood vessels were alleviated in the retinal degeneration mice. The number of preretinal vascular endothelial cell nuclei in the retinal degeneration mice was smaller than that in the homologous wild-type mice after exposure to hyperoxia (Poxygen-induced retinopathy was positively correlated with the VEGF expression level. However, the VEGF expression level was lower in the retinal degeneration mice. Proliferative retinopathy occurred in mice with rapid retinal degeneration, but retinal photoreceptor cell degeneration could partially restrain the retinal neovascularization in this rapid retinal degeneration mouse model. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Disease susceptibiliy in the zig-zag model of host-microbe Interactions: only a consequence of immune suppression?

    OpenAIRE

    Keller, Harald; Boyer, Laurent; Abad, Pierre

    2016-01-01

    For almost ten years, the Zig-Zag model has provided a convenient framework for explaining the molecular bases of compatibility and incompatibility in plant-microbe interactions (Jones and Dangl, 2006). According to the Zig-Zag model, disease susceptibility is a consequence of the suppression of host immunity during the evolutionary arms race between plants and pathogens. The Zig-Zag model thus fits well with biotrophic interactions, but is less applicable to interactions involving pathogens ...

  12. Preparation of pre-confluent retinal cells increases graft viability in vitro and in vivo: a mouse model.

    Directory of Open Access Journals (Sweden)

    Kevin P Kennelly

    Full Text Available PURPOSE: Graft failure remains an obstacle to experimental subretinal cell transplantation. A key step is preparing a viable graft, as high levels of necrosis and apoptosis increase the risk of graft failure. Retinal grafts are commonly harvested from cell cultures. We termed the graft preparation procedure "transplant conditions" (TC. We hypothesized that culture conditions influenced graft viability, and investigated whether viability decreased following TC using a mouse retinal pigment epithelial (RPE cell line, DH01. METHODS: Cell viability was assessed by trypan blue exclusion. Levels of apoptosis and necrosis in vitro were determined by flow cytometry for annexin V and propidium iodide and Western blot analysis for the pro- and cleaved forms of caspases 3 and 7. Graft viability in vivo was established by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL and cleaved caspase 3 immunolabeling of subretinal allografts. RESULTS: Pre-confluent cultures had significantly less nonviable cells than post-confluent cultures (6.6%±0.8% vs. 13.1%±0.9%, p<0.01. Cell viability in either group was not altered significantly following TC. Caspases 3 and 7 were not altered by levels of confluence or following TC. Pre-confluent cultures had low levels of apoptosis/necrosis (5.6%±1.1% that did not increase following TC (4.8%±0.5%. However, culturing beyond confluence led to progressively increasing levels of apoptosis and necrosis (up to 16.5%±0.9%. Allografts prepared from post-confluent cultures had significantly more TUNEL-positive cells 3 hours post-operatively than grafts of pre-confluent cells (12.7%±3.1% vs. 4.5%±1.4%, p<0.001. Subretinal grafts of post-confluent cells also had significantly higher rates of cleaved caspase 3 than pre-confluent grafts (20.2%±4.3% vs. 7.8%±1.8%, p<0.001. CONCLUSION: Pre-confluent cells should be used to maximize graft cell viability.

  13. A method for volumetric retinal tissue oxygen tension imaging.

    Science.gov (United States)

    Felder, Anthony E; Wanek, Justin; Teng, Pang-Yu; Blair, Norman P; Shahidi, Mahnaz

    2018-01-01

    Inadequate retinal oxygenation occurs in many vision-threatening retinal diseases, including diabetic retinopathy, retinal vascular occlusions, and age-related macular degeneration. Therefore, techniques that assess retinal oxygenation are necessary to understand retinal physiology in health and disease. The purpose of the current study is to report a method for the three-dimensional (3D) imaging of retinal tissue oxygen tension (tPO 2 ) in rats. Imaging was performed in Long Evans pigmented rats under systemic normoxia (N = 6) or hypoxia (N = 3). A vertical laser line was horizontally scanned on the retina and a series of optical section phase-delayed phosphorescence images were acquired. From these images, phosphorescence volumes at each phase delay were constructed and a 3D retinal tPO 2 volume was generated. Retinal tPO 2 volumes were quantitatively analyzed by generating retinal depth profiles of mean tPO 2 (M tPO2 ) and the spatial variation of tPO 2 (SV tPO2 ). The effects of systemic condition (normoxia/hypoxia) and retinal depth on M tPO2 and SV tPO2 were determined by mixed linear model. Each 3D retinal tPO 2 volume was approximately 500 × 750 × 200 μm (horizontal × vertical × depth) and consisted of 45 en face tPO 2 images through the retinal depth. M tPO2 at the chorioretinal interface was significantly correlated with systemic arterial oxygen tension (P = 0.007; N = 9). There were significant effects of both systemic condition and retinal depth on M tPO2 and SV tPO2 , such that both were lower under hypoxia than normoxia and higher in the outer retina than inner retina (P < 0.001). For the first time, 3D imaging of retinal tPO 2 was demonstrated, with potential future application for assessment of physiological alterations in animal models of retinal diseases.

  14. Immunobiological outcomes of repeated chlamydial infection from two models of within-host population dynamics.

    Directory of Open Access Journals (Sweden)

    David M Vickers

    Full Text Available BACKGROUND: Chlamydia trachomatis is a common human pathogen that mediates disease processes capable of inflicting serious complications on reproduction. Aggressive inflammatory immune responses are thought to not only direct a person's level of immunity but also the potential for immunopathology. With human immunobiology being debated as a cause of prevailing epidemiological trends, we examined some fundamental issues regarding susceptibility to multiple chlamydial infections that could have implications for infection spread. We argue that, compared to less-frequent exposure, frequent exposure to chlamydia may well produce unique immunobiological characteristics that likely to have important clinical and epidemiological implications. METHODS AND RESULTS: As a novel tool for studying chlamydia, we applied principles of modeling within-host pathogen dynamics to enable an understanding of some fundamental characteristics of an individual's immunobiology during multiple chlamydial infections. While the models were able to reproduce shorter-term infection kinetics of primary and secondary infections previously observed in animal models, it was also observed that longer periods between initial and second infection may increase an individual's chlamydial load and lengthen their duration of infectiousness. The cessation of short-term repeated exposure did not allow for the formation of long-lasting immunity. However, frequent re-exposure non-intuitively linked the formation of protective immunity, persistent infection, and the potential for immunopathology. CONCLUSIONS: Overall, these results provide interesting insights that should be verified with continued study. Nevertheless, these results appear to raise challenges for current evidence of the development of long-lasting immunity against chlamydia, and suggest the existence of a previously unidentified mechanism for the formation of persistent infection. The obvious next goal is to investigate the

  15. OSI-027 modulates acute graft-versus-host disease after liver transplantation in a rat model.

    Science.gov (United States)

    Zhi, Xiao; Xue, Fei; Chen, Wei; Liang, Chao; Liu, Hao; Ma, Tao; Xia, Xuefeng; Hu, Liqiang; Bai, Xueli; Liang, Tingbo

    2017-09-01

    Despite its rarity (1%-2%), acute graft-versus-host disease after liver transplantation (LT-aGVHD) has a high mortality rate (85%). A gradual decrease in regulatory T cells (Tregs) correlates with disease progression in a rat LT-GVHD model, and treatments which increase Tregs exert therapeutic effects on LT-aGVHD. In this study, LT-aGVHD model rats were treated with rapamycin (RAPA), OSI-027, or an equal quantity of vehicle. Rats treated with OSI-027 survived longer (>100 days) than those in the RAPA (70 ± 8 days) or control (24 ± 3 days) groups. Flow cytometric analysis showed that the Treg ratios in peripheral blood mononuclear cells in the OSI-027 group were higher than those in the RAPA or control groups. The proportions of donor-derived lymphocytes in the OSI-027 group were lower than those in the RAPA or control groups. Hematoxylin-eosin staining of skin tissue demonstrated less severe lymphocyte infiltration in the OSI-027 group than that in the RAPA or control groups. In vitro, OSI-027 induced differentiation of CD4 + CD25 - T cells into CD4 + CD25 + forkhead box P3 + Tregs. Furthermore, injection of OSI-027-induced donor-derived CD4 + CD25 + T cells into the peripheral blood of LT-aGVHD model rats prevented LT-aGVHD. Thus, OSI-027 is implicated as a novel method for the treatment of LT-aGVHD. Liver Transplantation 23 1186-1198 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.

  16. MODELING HOST-PATHOGEN INTERACTIONS: COMPUTATIONAL BIOLOGY AND BIOINFORMATICS FOR INFECTIOUS DISEASE RESEARCH (Session introduction)

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Jason E.; Braun, Pascal; Bonneau, Richard A.; Hyduke, Daniel R.

    2011-12-01

    Pathogenic infections are a major cause of both human disease and loss of crop yields and animal stocks and thus cause immense damage to the worldwide economy. The significance of infectious diseases is expected to increase in an ever more connected warming world, in which new viral, bacterial and fungal pathogens can find novel hosts and ecologic niches. At the same time, the complex and sophisticated mechanisms by which diverse pathogenic agents evade defense mechanisms and subvert their hosts networks to suit their lifestyle needs is still very incompletely understood especially from a systems perspective [1]. Thus, understanding host-pathogen interactions is both an important and a scientifically fascinating topic. Recently, technology has offered the opportunity to investigate host-pathogen interactions on a level of detail and scope that offers immense computational and analytical possibilities. Genome sequencing was pioneered on some of these pathogens, and the number of strains and variants of pathogens sequenced to date vastly outnumbers the number of host genomes available. At the same time, for both plant and human hosts more and more data on population level genomic variation becomes available and offers a rich field for analysis into the genetic interactions between host and pathogen.

  17. Establishment of Myotis myotis cell lines--model for investigation of host-pathogen interaction in a natural host for emerging viruses.

    Directory of Open Access Journals (Sweden)

    Xiaocui He

    Full Text Available Bats are found to be the natural reservoirs for many emerging viruses. In most cases, severe clinical signs caused by such virus infections are normally not seen in bats. This indicates differences in the virus-host interactions and underlines the necessity to develop natural host related models to study these phenomena. Due to the strict protection of European bat species, immortalized cell lines are the only alternative to investigate the innate anti-virus immune mechanisms. Here, we report about the establishment and functional characterization of Myotis myotis derived cell lines from different tissues: brain (MmBr, tonsil (MmTo, peritoneal cavity (MmPca, nasal epithelium (MmNep and nervus olfactorius (MmNol after immortalization by SV 40 large T antigen. The usefulness of these cell lines to study antiviral responses has been confirmed by analysis of their susceptibility to lyssavirus infection and the mRNA patterns of immune-relevant genes after poly I:C stimulation. Performed experiments indicated varying susceptibility to lyssavirus infection with MmBr being considerably less susceptible than the other cell lines. Further investigation demonstrated a strong activation of interferon mediated antiviral response in MmBr contributing to its resistance. The pattern recognition receptors: RIG-I and MDA5 were highly up-regulated during rabies virus infection in MmBr, suggesting their involvement in promotion of antiviral responses. The presence of CD14 and CD68 in MmBr suggested MmBr cells are microglia-like cells which play a key role in host defense against infections in the central nervous system (CNS. Thus the expression pattern of MmBr combined with the observed limitation of lyssavirus replication underpin a protective mechanism of the CNS controlling the lyssavirus infection. Overall, the established cell lines are important tools to analyze antiviral innate immunity in M. myotis against neurotropic virus infections and present a valuable

  18. Establishment of Myotis myotis cell lines--model for investigation of host-pathogen interaction in a natural host for emerging viruses.

    Science.gov (United States)

    He, Xiaocui; Korytář, Tomáš; Zhu, Yaqing; Pikula, Jiří; Bandouchova, Hana; Zukal, Jan; Köllner, Bernd

    2014-01-01

    Bats are found to be the natural reservoirs for many emerging viruses. In most cases, severe clinical signs caused by such virus infections are normally not seen in bats. This indicates differences in the virus-host interactions and underlines the necessity to develop natural host related models to study these phenomena. Due to the strict protection of European bat species, immortalized cell lines are the only alternative to investigate the innate anti-virus immune mechanisms. Here, we report about the establishment and functional characterization of Myotis myotis derived cell lines from different tissues: brain (MmBr), tonsil (MmTo), peritoneal cavity (MmPca), nasal epithelium (MmNep) and nervus olfactorius (MmNol) after immortalization by SV 40 large T antigen. The usefulness of these cell lines to study antiviral responses has been confirmed by analysis of their susceptibility to lyssavirus infection and the mRNA patterns of immune-relevant genes after poly I:C stimulation. Performed experiments indicated varying susceptibility to lyssavirus infection with MmBr being considerably less susceptible than the other cell lines. Further investigation demonstrated a strong activation of interferon mediated antiviral response in MmBr contributing to its resistance. The pattern recognition receptors: RIG-I and MDA5 were highly up-regulated during rabies virus infection in MmBr, suggesting their involvement in promotion of antiviral responses. The presence of CD14 and CD68 in MmBr suggested MmBr cells are microglia-like cells which play a key role in host defense against infections in the central nervous system (CNS). Thus the expression pattern of MmBr combined with the observed limitation of lyssavirus replication underpin a protective mechanism of the CNS controlling the lyssavirus infection. Overall, the established cell lines are important tools to analyze antiviral innate immunity in M. myotis against neurotropic virus infections and present a valuable tool for a

  19. Establishment of Myotis myotis Cell Lines - Model for Investigation of Host-Pathogen Interaction in a Natural Host for Emerging Viruses

    Science.gov (United States)

    He, Xiaocui; Korytář, Tomáš; Zhu, Yaqing; Pikula, Jiří; Bandouchova, Hana; Zukal, Jan; Köllner, Bernd

    2014-01-01

    Bats are found to be the natural reservoirs for many emerging viruses. In most cases, severe clinical signs caused by such virus infections are normally not seen in bats. This indicates differences in the virus-host interactions and underlines the necessity to develop natural host related models to study these phenomena. Due to the strict protection of European bat species, immortalized cell lines are the only alternative to investigate the innate anti-virus immune mechanisms. Here, we report about the establishment and functional characterization of Myotis myotis derived cell lines from different tissues: brain (MmBr), tonsil (MmTo), peritoneal cavity (MmPca), nasal epithelium (MmNep) and nervus olfactorius (MmNol) after immortalization by SV 40 large T antigen. The usefulness of these cell lines to study antiviral responses has been confirmed by analysis of their susceptibility to lyssavirus infection and the mRNA patterns of immune-relevant genes after poly I:C stimulation. Performed experiments indicated varying susceptibility to lyssavirus infection with MmBr being considerably less susceptible than the other cell lines. Further investigation demonstrated a strong activation of interferon mediated antiviral response in MmBr contributing to its resistance. The pattern recognition receptors: RIG-I and MDA5 were highly up-regulated during rabies virus infection in MmBr, suggesting their involvement in promotion of antiviral responses. The presence of CD14 and CD68 in MmBr suggested MmBr cells are microglia-like cells which play a key role in host defense against infections in the central nervous system (CNS). Thus the expression pattern of MmBr combined with the observed limitation of lyssavirus replication underpin a protective mechanism of the CNS controlling the lyssavirus infection. Overall, the established cell lines are important tools to analyze antiviral innate immunity in M. myotis against neurotropic virus infections and present a valuable tool for a

  20. Retinal progenitor cell xenografts to the pig retina

    DEFF Research Database (Denmark)

    Warfvinge, Karin; Kiilgaard, Jens Folke; Klassen, Henry

    2006-01-01

    We evaluated the host response to murine retinal progenitor cells (RPCs) following transplantation to the subretinal space (SRS) of the pig. RPCs from GFP mice were transplanted subretinally in 18 nonimmunosuppressed normal or laser-treated pigs. Evaluation of the SRS was performed on hematoxylin-eosin...

  1. The hormone prolactin is a novel, endogenous trophic factor able to regulate reactive glia and to limit retinal degeneration.

    Science.gov (United States)

    Arnold, Edith; Thebault, Stéphanie; Baeza-Cruz, German; Arredondo Zamarripa, David; Adán, Norma; Quintanar-Stéphano, Andrés; Condés-Lara, Miguel; Rojas-Piloni, Gerardo; Binart, Nadine; Martínez de la Escalera, Gonzalo; Clapp, Carmen

    2014-01-29

    Retinal degeneration is characterized by the progressive destruction of retinal cells, causing the deterioration and eventual loss of vision. We explored whether the hormone prolactin provides trophic support to retinal cells, thus protecting the retina from degenerative pressure. Inducing hyperprolactinemia limited photoreceptor apoptosis, gliosis, and changes in neurotrophin expression, and it preserved the photoresponse in the phototoxicity model of retinal degeneration, in which continuous exposure of rats to bright light leads to retinal cell death and retinal dysfunction. In this model, the expression levels of prolactin receptors in the retina were upregulated. Moreover, retinas from prolactin receptor-deficient mice exhibited photoresponsive dysfunction and gliosis that correlated with decreased levels of retinal bFGF, GDNF, and BDNF. Collectively, these data unveiled prolactin as a retinal trophic factor that may regulate glial-neuronal cell interactions and is a potential therapeutic molecule against retinal degeneration.

  2. Retinal shows its true colours

    DEFF Research Database (Denmark)

    Coughlan, N. J.A.; Adamson, B. D.; Gamon, L.

    2015-01-01

    Retinal is one of Nature's most important and widespread chromophores, exhibiting remarkable versatility in its function and spectral response, depending on its protein environment. Reliable spectroscopic and photochemical data for the isolated retinal molecule are essential for calibrating theor...

  3. Retinal findings in membranoproliferative glomerulonephritis

    Directory of Open Access Journals (Sweden)

    Ahmad M. Mansour

    2017-09-01

    Conclusions and importance: Drusen remain the ocular stigmata for MPGN occuring at an early age. The retinal disease is progressive with gradual thickening of Bruch's membrane and occurrence of retinal pigment epithelium detachment.

  4. Activity of Potent and Selective Host Defense Peptide Mimetics in Mouse Models of Oral Candidiasis

    Science.gov (United States)

    Ryan, Lisa K.; Freeman, Katie B.; Masso-Silva, Jorge A.; Falkovsky, Klaudia; Aloyouny, Ashwag; Markowitz, Kenneth; Hise, Amy G.; Fatahzadeh, Mahnaz; Scott, Richard W.

    2014-01-01

    There is a strong need for new broadly active antifungal agents for the treatment of oral candidiasis that not only are active against many species of Candida, including drug-resistant strains, but also evade microbial countermeasures which may lead to resistance. Host defense peptides (HDPs) can provide a foundation for the development of such agents. Toward this end, we have developed fully synthetic, small-molecule, nonpeptide mimetics of the HDPs that improve safety and other pharmaceutical properties. Here we describe the identification of several HDP mimetics that are broadly active against C. albicans and other species of Candida, rapidly fungicidal, and active against yeast and hyphal cultures and that exhibit low cytotoxicity for mammalian cells. Importantly, specificity for Candida over commensal bacteria was also evident, thereby minimizing potential damage to the endogenous microbiome which otherwise could favor fungal overgrowth. Three compounds were tested as topical agents in two different mouse models of oral candidiasis and were found to be highly active. Following single-dose administrations, total Candida burdens in tongues of infected animals were reduced up to three logs. These studies highlight the potential of HDP mimetics as a new tool in the antifungal arsenal for the treatment of oral candidiasis. PMID:24752272

  5. Antifungal Potential of Host Defense Peptide Mimetics in a Mouse Model of Disseminated Candidiasis

    Directory of Open Access Journals (Sweden)

    Mobaswar Hossain Chowdhury

    2018-02-01

    Full Text Available Invasive candidiasis caused by Candida albicans and non-albicans Candida (NAC present a serious disease threat. Although the echinocandins are recommended as the first line of antifungal drug class, resistance to these agents is beginning to emerge, demonstrating the need for new antifungal agents. Host defense peptides (HDP exhibit potent antifungal activity, but as drugs they are difficult to manufacture efficiently, and they are often inactivated by serum proteins. HDP mimetics are low molecular weight non-peptide compounds that can alleviate these problems and were shown to be membrane-active against C. albicans and NAC. Here, we expand upon our previous works to describe the in vitro and in vivo activity of 11 new HDP mimetics that are active against C. albicans and NAC that are both sensitive and resistant to standard antifungal drugs. These compounds exhibit minimum inhibitory/fungicidal concentration (MIC/MFC in the µg/mL range in the presence of serum and are inhibited by divalent cations. Rapid propidium iodide influx into the yeast cells following in vitro exposure suggested that these HDP mimetics were also membrane active. The lead compounds were able to kill C. albicans in an invasive candidiasis CD-1 mouse model with some mimetic candidates decreasing kidney burden by 3–4 logs after 24 h in a dose-dependent manner. The data encouraged further development of this new anti-fungal drug class for invasive candidiasis.

  6. Inhibitors of Mycobacterium marinum virulence identified in a Dictyostelium discoideum host model.

    Directory of Open Access Journals (Sweden)

    Hajer Ouertatani-Sakouhi

    Full Text Available Tuberculosis remains one of the major threats to public health worldwide. Given the prevalence of multi drug resistance (MDR in Mycobacterium tuberculosis strains, there is a strong need to develop new anti-mycobacterial drugs with modes of action distinct from classical antibiotics. Inhibitors of mycobacterial virulence might target new molecular processes and may represent a potential new therapeutic alternative. In this study, we used a Dictyostelium discoideum host model to assess virulence of Mycobacterium marinum and to identify compounds inhibiting mycobacterial virulence. Among 9995 chemical compounds, we selected 12 inhibitors of mycobacterial virulence that do not inhibit mycobacterial growth in synthetic medium. Further analyses revealed that 8 of them perturbed functions requiring an intact mycobacterial cell wall such as sliding motility, bacterial aggregation or cell wall permeability. Chemical analogs of two compounds were analyzed. Chemical modifications altered concomitantly their effect on sliding motility and on mycobacterial virulence, suggesting that the alteration of the mycobacterial cell wall caused the loss of virulence. We characterized further one of the selected compounds and found that it inhibited the ability of mycobacteria to replicate in infected cells. Together these results identify new antimycobacterial compounds that represent new tools to unravel the molecular mechanisms controlling mycobacterial pathogenicity. The isolation of compounds with anti-virulence activity is the first step towards developing new antibacterial treatments.

  7. Relevance of the Lin's and Host hydropedological models to predict grape yield and wine quality

    Directory of Open Access Journals (Sweden)

    E. A. C. Costantini

    2009-09-01

    Full Text Available The adoption of precision agriculture in viticulture could be greatly enhanced by the diffusion of straightforward and easy to be applied hydropedological models, able to predict the spatial variability of available soil water. The Lin's and Host hydropedological models were applied to standard soil series descriptions and hillslope position, to predict the distribution of hydrological functional units in two vineyard and their relevance for grape yield and wine quality. A three-years trial was carried out in Chianti (Central Italy on Sangiovese. The soils of the vineyards differentiated in structure, porosity and related hydropedological characteristics, as well as in salinity. Soil spatial variability was deeply affected by earth movement carried out before vine plantation. Six plots were selected in the different hydrological functional units of the two vineyards, that is, at summit, backslope and footslope morphological positions, to monitor soil hydrology, grape production and wine quality. Plot selection was based upon a cluster analysis of local slope, topographic wetness index (TWI, and cumulative moisture up to the root limiting layer, appreciated by means of a detailed combined geophysical survey. Water content, redox processes and temperature were monitored, as well as yield, phenological phases, and chemical analysis of grapes. The isotopic ratio δ13C was measured in the wine ethanol upon harvesting to evaluate the degree of stress suffered by vines. The grapes in each plot were collected for wine making in small barrels. The wines obtained were analysed and submitted to a blind organoleptic testing.

    The results demonstrated that the combined application of the two hydropedological models can be used for the prevision of the moisture status of soils cultivated with grape during summertime in Mediterranean climate. As correctly foreseen by the models, the amount of mean daily transpirable soil water (TSW during

  8. Within-host selection of drug resistance in a mouse model reveals dose-dependent selection of atovaquone resistance mutations

    NARCIS (Netherlands)

    Nuralitha, Suci; Murdiyarso, Lydia S.; Siregar, Josephine E.; Syafruddin, Din; Roelands, Jessica; Verhoef, Jan; Hoepelman, Andy I.M.; Marzuki, Sangkot

    2017-01-01

    The evolutionary selection of malaria parasites within an individual host plays a critical role in the emergence of drug resistance. We have compared the selection of atovaquone resistance mutants in mouse models reflecting two different causes of failure of malaria treatment, an inadequate

  9. Addition of host genetic variants in a prediction rule for post meningitis hearing loss in childhood: a model updating study

    NARCIS (Netherlands)

    Sanders, Marieke S.; de Jonge, Rogier C. J.; Terwee, Caroline B.; Heymans, Martijn W.; Koomen, Irene; Ouburg, Sander; Spanjaard, Lodewijk; Morré, Servaas A.; van Furth, A. Marceline

    2013-01-01

    Sensorineural hearing loss is the most common sequela in survivors of bacterial meningitis (BM). In the past we developed a validated prediction model to identify children at risk for post-meningitis hearing loss. It is known that host genetic variations, besides clinical factors, contribute to

  10. highroad Is a Carboxypetidase Induced by Retinoids to Clear Mutant Rhodopsin-1 in Drosophila Retinitis Pigmentosa Models

    Directory of Open Access Journals (Sweden)

    Huai-Wei Huang

    2018-02-01

    Full Text Available Rhodopsins require retinoid chromophores for their function. In vertebrates, retinoids also serve as signaling molecules, but whether these molecules similarly regulate gene expression in Drosophila remains unclear. Here, we report the identification of a retinoid-inducible gene in Drosophila, highroad, which is required for photoreceptors to clear folding-defective mutant Rhodopsin-1 proteins. Specifically, knockdown or genetic deletion of highroad blocks the degradation of folding-defective Rhodopsin-1 mutant, ninaEG69D. Moreover, loss of highroad accelerates the age-related retinal degeneration phenotype of ninaEG69D mutants. Elevated highroad transcript levels are detected in ninaEG69D flies, and interestingly, deprivation of retinoids in the fly diet blocks this effect. Consistently, mutations in the retinoid transporter, santa maria, impairs the induction of highroad in ninaEG69D flies. In cultured S2 cells, highroad expression is induced by retinoic acid treatment. These results indicate that cellular quality-control mechanisms against misfolded Rhodopsin-1 involve regulation of gene expression by retinoids.

  11. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study

    Directory of Open Access Journals (Sweden)

    P. Stier

    2013-03-01

    Full Text Available Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is −4.47 Wm−2 and the inter-model standard deviation is 0.55 Wm−2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm−2, and the standard deviation increases to 1.01 W−2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption is low, with absolute (relative standard deviations of 0.45 Wm−2 (8% clear-sky and 0.62 Wm−2 (11% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm−2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model

  12. Stem Cell Therapies in Retinal Disorders

    Directory of Open Access Journals (Sweden)

    Aakriti Garg

    2017-02-01

    Full Text Available Stem cell therapy has long been considered a promising mode of treatment for retinal conditions. While human embryonic stem cells (ESCs have provided the precedent for regenerative medicine, the development of induced pluripotent stem cells (iPSCs revolutionized this field. iPSCs allow for the development of many types of retinal cells, including those of the retinal pigment epithelium, photoreceptors, and ganglion cells, and can model polygenic diseases such as age-related macular degeneration. Cellular programming and reprogramming technology is especially useful in retinal diseases, as it allows for the study of living cells that have genetic variants that are specific to patients’ diseases. Since iPSCs are a self-renewing resource, scientists can experiment with an unlimited number of pluripotent cells to perfect the process of targeted differentiation, transplantation, and more, for personalized medicine. Challenges in the use of stem cells are present from the scientific, ethical, and political realms. These include transplant complications leading to anatomically incorrect placement, concern for tumorigenesis, and incomplete targeting of differentiation leading to contamination by different types of cells. Despite these limitations, human ESCs and iPSCs specific to individual patients can revolutionize the study of retinal disease and may be effective therapies for conditions currently considered incurable.

  13. Synchrony of sylvatic dengue isolations: a multi-host, multi-vector SIR model of dengue virus transmission in Senegal.

    Directory of Open Access Journals (Sweden)

    Benjamin M Althouse

    Full Text Available Isolations of sylvatic dengue-2 virus from mosquitoes, humans and non-human primates in Senegal show synchronized multi-annual dynamics over the past 50 years. Host demography has been shown to directly affect the period between epidemics in other pathogen systems, therefore, one might expect unsynchronized multi-annual cycles occurring in hosts with dramatically different birth rates and life spans. However, in Senegal, we observe a single synchronized eight-year cycle across all vector species, suggesting synchronized dynamics in all vertebrate hosts. In the current study, we aim to explore two specific hypotheses: 1 primates with different demographics will experience outbreaks of dengue at different periodicities when observed as isolated systems, and that coupling of these subsystems through mosquito biting will act to synchronize incidence; and 2 the eight-year periodicity of isolations observed across multiple primate species is the result of long-term cycling in population immunity in the host populations. To test these hypotheses, we develop a multi-host, multi-vector Susceptible, Infected, Removed (SIR model to explore the effects of coupling multiple host-vector systems of dengue virus transmission through cross-species biting rates. We find that under small amounts of coupling, incidence in the host species synchronize. Long-period multi-annual dynamics are observed only when prevalence in troughs reaches vanishingly small levels (< 10(-10, suggesting that these dynamics are inconsistent with sustained transmission in this setting, but are consistent with local dengue virus extinctions followed by reintroductions. Inclusion of a constant introduction of infectious individuals into the system causes the multi-annual periods to shrink, while the effects of coupling remain the same. Inclusion of a stochastic rate of introduction allows for multi-annual periods at a cost of reduced synchrony. Thus, we conclude that the eight-year period

  14. Retinal Structure Measurements as Inclusion Criteria for Stem Cell-Based Therapies of Retinal Degenerations.

    Science.gov (United States)

    Jacobson, Samuel G; Matsui, Rodrigo; Sumaroka, Alexander; Cideciyan, Artur V

    2016-04-01

    We reviewed and illustrated the most optimal retinal structural measurements to make in stem cell clinical trials. Optical coherence tomography (OCT) and autofluorescence (AF) imaging were used to evaluate patients with severe visual loss from nonsyndromic and syndromic retinitis pigmentosa (RP), ABCA4-Stargardt disease, and nonneovascular age-related macular degeneration (AMD). Outer nuclear layer (ONL), rod outer segment (ROS) layer, inner retina, ganglion cell layer (GCL), and nerve fiber layer (NFL) thicknesses were quantified. All patients had severely reduced visual acuities. Retinitis pigmentosa patients had limited visual fields; maculopathy patients had central scotomas with retained peripheral function. For the forms of RP illustrated, there was detectable albeit severely reduced ONL across the scanned retina, and normal or hyperthick GCL and NFL. Maculopathy patients had no measurable ONL centrally; it became detectable with eccentricity. Some maculopathy patients showed unexpected GCL losses. Autofluorescence imaging illustrated central losses of RPE integrity. A hypothetical scheme to relate patient data with different phases of retinal remodeling in animal models of retinal degeneration was presented. Stem cell science is advancing, but it is not too early to open the discussion of criteria for patient selection and monitoring. Available clinical tools, such as OCT and AF imaging, can provide inclusion/exclusion criteria and robust objective outcomes. Accepting that early trials may not lead to miraculous cures, we should be prepared to know why-scientifically and clinically-so we can improve subsequent trials. We also must determine if retinal remodeling is an impediment to efficacy.

  15. Regenerative Therapy for Retinal Disorders

    Directory of Open Access Journals (Sweden)

    Narsis Daftarian

    2010-01-01

    Full Text Available Major advances in various disciplines of basic sciences including embryology, molecular and cell biology, genetics, and nanotechnology, as well as stem cell biology have opened new horizons for regenerative therapy. The unique characteristics of stem cells prompt a sound understanding for their use in modern regenerative therapies. This review article discusses stem cells, developmental stages of the eye field, eye field transcriptional factors, and endogenous and exogenous sources of stem cells. Recent studies and challenges in the application of stem cells for retinal pigment epithelial degeneration models will be summarized followed by obstacles facing regenerative therapy.

  16. Heritability of Retinal Vascular Fractals

    DEFF Research Database (Denmark)

    Vergmann, Anna Stage; Broe, Rebecca; Kessel, Line

    2017-01-01

    , the retinal vascular fractal dimension was measured using the box-counting method and compared within monozygotic and dizygotic twin pairs using Pearson correlation coefficients. Falconer's formula and quantitative genetic models were used to determine the genetic component of variation. Results: The mean...... fractal dimension did not differ statistically significantly between monozygotic and dizygotic twin pairs (1.505 vs. 1.495, P = 0.06), supporting that the study population was suitable for quantitative analysis of heritability. The intrapair correlation was markedly higher (0.505, P = 0...

  17. Porphyromonas gingivalis as a Model Organism for Assessing Interaction of Anaerobic Bacteria with Host Cells.

    Science.gov (United States)

    Wunsch, Christopher M; Lewis, Janina P

    2015-12-17

    Anaerobic bacteria far outnumber aerobes in many human niches such as the gut, mouth, and vagina. Furthermore, anaerobic infections are common and frequently of indigenous origin. The ability of some anaerobic pathogens to invade human cells gives them adaptive measures to escape innate immunity as well as to modulate host cell behavior. However, ensuring that the anaerobic bacteria are live during experimental investigation of the events may pose challenges. Porphyromonas gingivalis, a Gram-negative anaerobe, is capable of invading a variety of eukaryotic non-phagocytic cells. This article outlines how to successfully culture and assess the ability of P. gingivalis to invade human umbilical vein endothelial cells (HUVECs). Two protocols were developed: one to measure bacteria that can successfully invade and survive within the host, and the other to visualize bacteria interacting with host cells. These techniques necessitate the use of an anaerobic chamber to supply P. gingivalis with an anaerobic environment for optimal growth. The first protocol is based on the antibiotic protection assay, which is largely used to study the invasion of host cells by bacteria. However, the antibiotic protection assay is limited; only intracellular bacteria that are culturable following antibiotic treatment and host cell lysis are measured. To assess all bacteria interacting with host cells, both live and dead, we developed a protocol that uses fluorescent microscopy to examine host-pathogen interaction. Bacteria are fluorescently labeled with 2',7'-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and used to infect eukaryotic cells under anaerobic conditions. Following fixing with paraformaldehyde and permeabilization with 0.2% Triton X-100, host cells are labeled with TRITC phalloidin and DAPI to label the cell cytoskeleton and nucleus, respectively. Multiple images taken at different focal points (Z-stack) are obtained for temporal

  18. Modeling Environmental Influences in the Psyllaephagus bliteus (Hymenoptera: Encyrtidae)-Glycaspis brimblecombei (Hemiptera: Aphalaridae) Parasitoid-Host System.

    Science.gov (United States)

    Margiotta, M; Bella, S; Buffa, F; Caleca, V; Floris, I; Giorno, V; Lo Verde, G; Rapisarda, C; Sasso, R; Suma, P; Tortorici, F; Laudonia, S

    2017-04-01

    Glycaspis brimblecombei Moore (Hemiptera: Aphalaridae) is an invasive psyllid introduced into the Mediterranean area, where it affects several species of Eucalyptus. Psyllaephagus bliteus Riek (Hymenoptera: Encyrtidae) is a specialized parasitoid of this psyllid that was accidentally introduced into Italy in 2011. We developed a model of this host-parasitoid system that accounts for the influence of environmental conditions on the G. brimblecombei population dynamics and P. bliteus parasitism rates in the natural ecosystem. The Lotka-Volterra-based model predicts non-constant host growth and parasitoid mortality rates in association with variation in environmental conditions. The model was tested by analyzing sampling data collected in Naples in 2011 (before the parasitoid was present) and defining several environmental patterns, termed Temperature-Rain or T-R patterns, which correspond to the host growth rate. A mean value of the host growth rate was assigned to each T-R pattern, as well as a variation of the parasitoid mortality rate based on temperature thresholds. The proposed model was applied in simulation tests related to T-R patterns carried out with a data series sampled between June 2014 and July 2015 in five Italian sites located in Campania, Lazio, Sicily, and Sardinia regions. The simulation results showed that the proposed model provides an accurate approximation of population trends, although oscillation details may not be apparent. Results predict a 64% reduction in G. brimblecombei population density owing to P. bliteus parasitoid activity. Our results are discussed with respect to features of the host-parasitoid interaction that could be exploited in future biological control programs. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. A novel approach to probe host-pathogen interactions of bovine digital dermatitis, a model of a complex polymicrobial infection

    DEFF Research Database (Denmark)

    Marcatili, Paolo; Weiss Nielsen, Martin; Sicheritz-Pontén, Thomas

    2016-01-01

    Polymicrobial infections represent a great challenge for the clarification of disease etiology and the development of comprehensive diagnostic or therapeutic tools, particularly for fastidious and difficult-to-cultivate bacteria. Using bovine digital dermatitis (DD) as a disease model, we introduce...... a novel strategy to study the pathogenesis of complex infections. The strategy combines meta-transcriptomics with high-density peptide-microarray technology to screen for in vivo-expressed microbial genes and the host antibody response at the site of infection. Bacterial expression patterns supported....... The extraordinary diversity observed in bacterial expression, antigens and host antibody responses between individual cows pointed toward microbial variability as a hallmark of DD. Persistence of infection and DD reinfection in the same individual is common; thus, high microbial diversity may undermine the host...

  20. Bioelectronic retinal prosthesis

    Science.gov (United States)

    Weiland, James D.

    2016-05-01

    Retinal prosthesis have been translated to clinical use over the past two decades. Currently, two devices have regulatory approval for the treatment of retinitis pigmentosa and one device is in clinical trials for treatment of age-related macular degeneration. These devices provide partial sight restoration and patients use this improved vision in their everyday lives to navigate and to detect large objects. However, significant vision restoration will require both better technology and improved understanding of the interaction between electrical stimulation and the retina. In particular, current retinal prostheses do not provide peripheral visions due to technical and surgical limitations, thus limiting the effectiveness of the treatment. This paper reviews recent results from human implant patients and presents technical approaches for peripheral vision.

  1. Sector retinitis pigmentosa.

    Science.gov (United States)

    Van Woerkom, Craig; Ferrucci, Steven

    2005-05-01

    Retinitis pigmentosa (RP) is one of the most common hereditary retinal dystrophies and causes of visual impairment affecting all age groups. The reported incidence varies, but is considered to be between 1 in 3,000 to 1 in 7,000. Sector retinitis pigmentosa is an atypical form of RP that is characterized by regionalized areas of bone spicule pigmentation, usually in the inferior quadrants of the retina. A 57-year-old Hispanic man with a history of previously diagnosed retinitis pigmentosa came to the clinic with a longstanding symptom of decreased vision at night. Bone spicule pigmentation was found in the nasal and inferior quadrants in each eye. He demonstrated superior and temporal visual-field loss corresponding to the areas of the affected retina. Clinical measurements of visual-field loss, best-corrected visual acuity, and ophthalmoscopic appearance have remained stable during the five years the patient has been followed. Sector retinitis pigmentosa is an atypical form of RP that is characterized by bilateral pigmentary retinopathy, usually isolated to the inferior quadrants. The remainder of the retina appears clinically normal, although studies have found functional abnormalities in these areas as well. Sector RP is generally considered a stationary to slowly progressive disease, with subnormal electro-retinogram findings and visual-field defects corresponding to the involved retinal sectors. Management of RP is very difficult because there are no proven methods of treatment. Studies have shown 15,000 IU of vitamin A palmitate per day may slow the progression, though this result is controversial. Low vision rehabilitation, long wavelength pass filters, and pedigree counseling remain the mainstay of management.

  2. Cell Fate of Müller Cells During Photoreceptor Regeneration in an N-Methyl-N-nitrosourea-Induced Retinal Degeneration Model of Zebrafish.

    Science.gov (United States)

    Ogai, Kazuhiro; Hisano, Suguru; Sugitani, Kayo; Koriyama, Yoshiki; Kato, Satoru

    2016-01-01

    Zebrafish can regenerate several organs such as the tail fin, heart, central nervous system, and photoreceptors. Very recently, a study has demonstrated the photoreceptor regeneration in the alkylating agent N-methyl-N-nitrosourea (MNU)-induced retinal degeneration (RD) zebrafish model, in which whole photoreceptors are lost within a week after MNU treatment and then regenerated within a month. The research has also shown massive proliferation of Müller cells within a week. To address the question of whether proliferating Müller cells are the source of regenerating photoreceptors, which remains unknown in the MNU-induced zebrafish RD model, we employed a BrdU pulse-chase technique to label the proliferating cells within a week after MNU treatment. As a result of the BrdU pulse-chase technique, a number of BrdU(+) cells were observed in the outer nuclear layer as well as the inner nuclear layer. This implies that regenerating photoreceptors are derived from proliferating Müller cells in the zebrafish MNU-induced RD model.

  3. Quantitative and qualitative retinal microvascular characteristics and blood pressure.

    Science.gov (United States)

    Cheung, Carol Y; Tay, Wan T; Mitchell, Paul; Wang, Jie J; Hsu, Wynne; Lee, Mong L; Lau, Qiangfeng P; Zhu, Ai L; Klein, Ronald; Saw, Seang M; Wong, Tien Y

    2011-07-01

    The present study examined the effects of blood pressure on a spectrum of quantitative and qualitative retinal microvascular signs. Retinal photographs from the Singapore Malay Eye Study, a population-based cross-sectional study of 3280 (78.7% response) persons aged 40-80 years, were analyzed. Quantitative changes in the retinal vasculature (branching angle, vascular tortuosity, fractal dimension, and vascular caliber) were measured using a semi-automated computer-based program. Qualitative signs, including focal arteriolar narrowing (FAN), arteriovenous nicking (AVN), opacification of the arteriolar wall (OAW), and retinopathy (e.g., microaneurysms, retinal hemorrhages), were assessed from photographs by trained technicians. After excluding persons with diabetes and ungradable photographs, 1913 persons provided data for this analysis. In multivariable linear regression models controlling for age, sex, BMI, use of antihypertensive medication, and other factors, retinal arteriolar branching asymmetry ratio, arteriolar tortuosity, venular tortuosity, fractal dimension, arteriolar caliber, venular caliber, FAN, AVN, and retinopathy were independently associated with mean arterial blood pressure. In contrast, arteriolar/venular branching angle, venular branching asymmetry ratio and OAW were not related to blood pressure. Retinal arteriolar caliber (sβ = -0.277) and FAN (sβ = 0.170) had the strongest associations with mean arterial blood pressure, and higher blood pressure levels were associated with increasing number of both quantitative and qualitative retinal vascular signs (P trend qualitative retinal vascular signs, with the number of signs increasing with higher blood pressure levels.

  4. Layer-specific blood-flow MRI of retinitis pigmentosa in RCS rats☆

    Science.gov (United States)

    Li, Guang; Garza, Bryan De La; Shih, Yen-Yu I.; Muir, Eric R.; Duong, Timothy Q.

    2013-01-01

    The Royal College of Surgeons (RCS) rat is an established animal model of retinitis pigmentosa, a family of inherited retinal diseases which starts with loss of peripheral vision and progresses to eventual blindness. Blood flow (BF), an important physiological parameter, is intricately coupled to metabolic function under normal physiological conditions and is perturbed in many neurological and retinal diseases. This study reports non-invasive high-resolution MRI (44 × 44 × 600 μm) to image quantitative retinal and choroidal BF and layer-specific retinal thicknesses in RCS rat retinas at different stages of retinal degeneration compared with age-matched controls. The unique ability to separate retinal and choroidal BF was made possible by the depth-resolved MRI technique. RBF decreased with progressive retinal degeneration, but ChBF did not change in RCS rats up to post-natal day 90. We concluded that choroidal and retinal circulations have different susceptibility to progressive retinal degeneration in RCS rats. Layer-specific retinal thickness became progressively thinner and was corroborated by histological analysis in the same animals. MRI can detect progressive anatomical and BF changes during retinal degeneration with laminar resolution. PMID:22721720

  5. Layer-specific blood-flow MRI of retinitis pigmentosa in RCS rats.

    Science.gov (United States)

    Li, Guang; De La Garza, Bryan; Shih, Yen-Yu I; Muir, Eric R; Duong, Timothy Q

    2012-08-01

    The Royal College of Surgeons (RCS) rat is an established animal model of retinitis pigmentosa, a family of inherited retinal diseases which starts with loss of peripheral vision and progresses to eventual blindness. Blood flow (BF), an important physiological parameter, is intricately coupled to metabolic function under normal physiological conditions and is perturbed in many neurological and retinal diseases. This study reports non-invasive high-resolution MRI (44 × 44 × 600 μm) to image quantitative retinal and choroidal BF and layer-specific retinal thicknesses in RCS rat retinas at different stages of retinal degeneration compared with age-matched controls. The unique ability to separate retinal and choroidal BF was made possible by the depth-resolved MRI technique. RBF decreased with progressive retinal degeneration, but ChBF did not change in RCS rats up to post-natal day 90. We concluded that choroidal and retinal circulations have different susceptibility to progressive retinal degeneration in RCS rats. Layer-specific retinal thickness became progressively thinner and was corroborated by histological analysis in the same animals. MRI can detect progressive anatomical and BF changes during retinal degeneration with laminar resolution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Energy Technology Data Exchange (ETDEWEB)

    Holoien, Thomas W.-S.; /Ohio State U., Dept. Astron. /Ohio State U., CCAPP /KIPAC, Menlo Park /SLAC; Marshall, Philip J.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC

    2017-05-11

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  7. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Science.gov (United States)

    Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.

    2017-06-01

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  8. Conserved host response to highly pathogenic avian influenza virus infection in human cell culture, mouse and macaque model systems

    Directory of Open Access Journals (Sweden)

    McDermott Jason E

    2011-11-01

    Full Text Available Abstract Background Understanding host response to influenza virus infection will facilitate development of better diagnoses and therapeutic interventions. Several different experimental models have been used as a proxy for human infection, including cell cultures derived from human cells, mice, and non-human primates. Each of these systems has been studied extensively in isolation, but little effort has been directed toward systematically characterizing the conservation of host response on a global level beyond known immune signaling cascades. Results In the present study, we employed a multivariate modeling approach to characterize and compare the transcriptional regulatory networks between these three model systems after infection with a highly pathogenic avian influenza virus of the H5N1 subtype. Using this approach we identified functions and pathways that display similar behavior and/or regulation including the well-studied impact on the interferon response and the inflammasome. Our results also suggest a primary response role for airway epithelial cells in initiating hypercytokinemia, which is thought to contribute to the pathogenesis of H5N1 viruses. We further demonstrate that we can use a transcriptional regulatory model from the human cell culture data to make highly accurate predictions about the behavior of important components of the innate immune system in tissues from whole organisms. Conclusions This is the first demonstration of a global regulatory network modeling conserved host response between in vitro and in vivo models.

  9. Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension.

    Science.gov (United States)

    Trost, A; Motloch, K; Bruckner, D; Schroedl, F; Bogner, B; Kaser-Eichberger, A; Runge, C; Strohmaier, C; Klein, B; Aigner, L; Reitsamer, H A

    2015-07-01

    Glaucoma is a group of neurodegenerative diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, and is the second leading cause of blindness worldwide. Elevated intraocular pressure is a well known risk factor for the development of glaucomatous optic neuropathy and pharmacological or surgical lowering of intraocular pressure represents a standard procedure in glaucoma treatment. However, the treatment options are limited and although lowering of intraocular pressure impedes disease progression, glaucoma cannot be cured by the currently available therapy concepts. In an acute short-term ocular hypertension model in rat, we characterize RGC loss, but also microglial cell activation and vascular alterations of the retina at certain time points. The combination of these three parameters might facilitate a better evaluation of the disease progression, and could further serve as a new model to test novel treatment strategies at certain time points. Acute ocular hypertension (OHT) was induced by the injection of magnetic microbeads into the rat anterior chamber angle (n = 22) with magnetic position control, leading to constant elevation of IOP. At certain time points post injection (4d, 7d, 10d, 14d and 21d), RGC loss, microglial activation, and microvascular pericyte (PC) coverage was analyzed using immunohistochemistry with corresponding specific markers (Brn3a, Iba1, NG2). Additionally, the tightness of the retinal vasculature was determined via injections of Texas Red labeled dextran (10 kDa) and subsequently analyzed for vascular leakage. For documentation, confocal laser-scanning microscopy was used, followed by cell counts, capillary length measurements and morphological and statistical analysis. The injection of magnetic microbeads led to a progressive loss of RGCs at the five time points investigated (20.07%, 29.52%, 41.80%, 61.40% and 76.57%). Microglial cells increased in number and displayed an activated morphology

  10. End-to-End Adversarial Retinal Image Synthesis.

    Science.gov (United States)

    Costa, Pedro; Galdran, Adrian; Meyer, Maria Ines; Niemeijer, Meindert; Abramoff, Michael; Mendonca, Ana Maria; Campilho, Aurelio

    2018-03-01

    In medical image analysis applications, the availability of the large amounts of annotated data is becoming increasingly critical. However, annotated medical data is often scarce and costly to obtain. In this paper, we address the problem of synthesizing retinal color images by applying recent techniques based on adversarial learning. In this setting, a generative model is trained to maximize a loss function provided by a second model attempting to classify its output into real or synthetic. In particular, we propose to implement an adversarial autoencoder for the task of retinal vessel network synthesis. We use the generated vessel trees as an intermediate stage for the generation of color retinal images, which is accomplished with a generative adversarial network. Both models require the optimization of almost everywhere differentiable loss functions, which allows us to train them jointly. The resulting model offers an end-to-end retinal image synthesis system capable of generating as many retinal images as the user requires, with their corresponding vessel networks, by sampling from a simple probability distribution that we impose to the associated latent space. We show that the learned latent space contains a well-defined semantic structure, implying that we can perform calculations in the space of retinal images, e.g., smoothly interpolating new data points between two retinal images. Visual and quantitative results demonstrate that the synthesized images are substantially different from those in the training set, while being also anatomically consistent and displaying a reasonable visual quality.

  11. Highly sensitive measurements of disease progression in rare disorders: Developing and validating a multimodal model of retinal degeneration in Stargardt disease

    OpenAIRE

    Lambertus, Stanley; Bax, Nathalie M.; Fakin, Ana; Groenewoud, Joannes M. M.; Klevering, B. Jeroen; Moore, Anthony T.; Michaelides, Michel; Webster, Andrew R.; van der Wilt, Gert Jan; Hoyng, Carel B.

    2017-01-01

    BACKGROUND: Each inherited retinal disorder is rare, but together, they affect millions of people worldwide. No treatment is currently available for these blinding diseases, but promising new options-including gene therapy-are emerging. Arguably, the most prevalent retinal dystrophy is Stargardt disease. In each case, the specific combination of ABCA4 variants (> 900 identified to date) and modifying factors is virtually unique. It accounts for the vast phenotypic heterogeneity including vari...

  12. Highly sensitive measurements of disease progression in rare disorders: Developing and validating a multimodal model of retinal degeneration in Stargardt disease

    OpenAIRE

    Lambertus, S.; Bax, N. M.; Fakin, A.; Groenewoud, J. M. M.; Klevering, B. J.; Moore, A. T.; Michaelides, M.; Webster, A. R.; van der Wilt, G. J.; Hoyng, C. B.

    2017-01-01

    BACKGROUND: Each inherited retinal disorder is rare, but together, they affect millions of people worldwide. No treatment is currently available for these blinding diseases, but promising new options—including gene therapy—are emerging. Arguably, the most prevalent retinal dystrophy is Stargardt disease. In each case, the specific combination of ABCA4 variants (> 900 identified to date) and modifying factors is virtually unique. It accounts for the vast phenotypic heterogeneity including ...

  13. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice.

    Directory of Open Access Journals (Sweden)

    Budd A Tucker

    2011-04-01

    Full Text Available This study was designed to determine whether adult mouse induced pluripotent stem cells (iPSCs, could be used to produce retinal precursors and subsequently photoreceptor cells for retinal transplantation to restore retinal function in degenerative hosts. iPSCs were generated using adult dsRed mouse dermal fibroblasts via retroviral induction of the transcription factors Oct4, Sox2, KLF4 and c-Myc. As with normal mouse ES cells, adult dsRed iPSCs expressed the pluripotency genes SSEA1, Oct4, Sox2, KLF4, c-Myc and Nanog. Following transplantation into the eye of immune-compromised retinal degenerative mice these cells proceeded to form teratomas containing tissue comprising all three germ layers. At 33 days post-differentiation a large proportion of the cells expressed the retinal progenitor cell marker Pax6 and went on to express the photoreceptor markers, CRX, recoverin, and rhodopsin. When tested using calcium imaging these cells were shown to exhibit characteristics of normal retinal physiology, responding to delivery of neurotransmitters. Following subretinal transplantation into degenerative hosts differentiated iPSCs took up residence in the retinal outer nuclear layer and gave rise to increased electro retinal function as determined by ERG and functional anatomy. As such, adult fibroblast-derived iPSCs provide a viable source for the production of retinal precursors to be used for transplantation and treatment of retinal degenerative disease.

  14. Nanomaterials and Retinal Toxicity

    Science.gov (United States)

    The neuroretina should be considered as a potential site of nanomaterial toxicity. Engineered nanomaterials may reach the retina through three potential routes of exposure including; intra­ vitreal injection of therapeutics; blood-borne delivery in the retinal vasculature an...

  15. A model to estimate effects of SNPs on host susceptibility and infectivity for an endemic infectious disease.

    Science.gov (United States)

    Biemans, Floor; de Jong, Mart C M; Bijma, Piter

    2017-06-30

    Infectious diseases in farm animals affect animal health, decrease animal welfare and can affect human health. Selection and breeding of host individuals with desirable traits regarding infectious diseases can help to fight disease transmission, which is affected by two types of (genetic) traits: host susceptibility and host infectivity. Quantitative genetic studies on infectious diseases generally connect an individual's disease status to its own genotype, and therefore capture genetic effects on susceptibility only. However, they usually ignore variation in exposure to infectious herd mates, which may limit the accuracy of estimates of genetic effects on susceptibility. Moreover, genetic effects on infectivity will exist as well. Thus, to design optimal breeding strategies, it is essential that genetic effects on infectivity are quantified. Given the potential importance of genetic effects on infectivity, we set out to develop a model to estimate the effect of single nucleotide polymorphisms (SNPs) on both host susceptibility and host infectivity. To evaluate the quality of the resulting SNP effect estimates, we simulated an endemic disease in 10 groups of 100 individuals, and recorded time-series data on individual disease status. We quantified bias and precision of the estimates for different sizes of SNP effects, and identified the optimum recording interval when the number of records is limited. We present a generalized linear mixed model to estimate the effect of SNPs on both host susceptibility and host infectivity. SNP effects were on average slightly underestimated, i.e. estimates were conservative. Estimates were less precise for infectivity than for susceptibility. Given our sample size, the power to estimate SNP effects for susceptibility was 100% for differences between genotypes of a factor 1.56 or more, and was higher than 60% for infectivity for differences between genotypes of a factor 4 or more. When disease status was recorded 11 times on each

  16. CERKL knockdown causes retinal degeneration in zebrafish.

    Directory of Open Access Journals (Sweden)

    Marina Riera

    Full Text Available The human CERKL gene is responsible for common and severe forms of retinal dystrophies. Despite intense in vitro studies at the molecular and cellular level and in vivo analyses of the retina of murine knockout models, CERKL function remains unknown. In this study, we aimed to approach the developmental and functional features of cerkl in Danio rerio within an Evo-Devo framework. We show that gene expression increases from early developmental stages until the formation of the retina in the optic cup. Unlike the high mRNA-CERKL isoform multiplicity shown in mammals, the moderate transcriptional complexity in fish facilitates phenotypic studies derived from gene silencing. Moreover, of relevance to pathogenicity, teleost CERKL shares the two main human protein isoforms. Morpholino injection has been used to generate a cerkl knockdown zebrafish model. The morphant phenotype results in abnormal eye development with lamination defects, failure to develop photoreceptor outer segments, increased apoptosis of retinal cells and small eyes. Our data support that zebrafish Cerkl does not interfere with proliferation and neural differentiation during early developmental stages but is relevant for survival and protection of the retinal tissue. Overall, we propose that this zebrafish model is a powerful tool to unveil CERKL contribution to human retinal degeneration.

  17. Retinal Prosthesis System for Advanced Retinitis Pigmentosa: A Health Technology Assessment

    Science.gov (United States)

    Lee, Christine; Tu, Hong Anh; Weir, Mark; Holubowich, Corinne

    2016-01-01

    Background Retinitis pigmentosa is a group of genetic disorders that involves the breakdown and loss of photoreceptors in the retina, resulting in progressive retinal degeneration and eventual blindness. The Argus II Retinal Prosthesis System is the only currently available surgical implantable device approved by Health Canada. It has been shown to improve visual function in patients with severe visual loss from advanced retinitis pigmentosa. The objective of this analysis was to examine the clinical effectiveness, cost-effectiveness, budget impact, and safety of the Argus II system in improving visual function, as well as exploring patient experiences with the system. Methods We performed a systematic search of the literature for studies examining the effects of the Argus II retinal prosthesis system in patients with advanced retinitis pigmentosa, and appraised the evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria, focusing on visual function, functional outcomes, quality of life, and adverse events. We developed a Markov decision-analytic model to assess the cost-effectiveness of the Argus II system compared with standard care over a 10-year time horizon. We also conducted a 5-year budget impact analysis. We used a qualitative design and an interview methodology to examine patients’ lived experience, and we used a modified grounded theory methodology to analyze information from interviews. Transcripts were coded, and themes were compared against one another. Results One multicentre international study and one single-centre study were included in the clinical review. In both studies, patients showed improved visual function with the Argus II system. However, the sight-threatening surgical complication rate was substantial. In the base-case analysis, the Argus II system was cost-effective compared with standard care only if willingness-to-pay was more than $207,616 per quality-adjusted life

  18. Neuroprotective Treatment of Laser-Induced Retinal Injuries

    National Research Council Canada - National Science Library

    Rosner, Mordechai

    2001-01-01

    .... It is not possible to prevent all these injuries and there is no treatment. This study was designed to evaluate the neuroprotective effect of dextromethorphan, memantine and brimonidine in our rat model of laser- induced retinal-lesions Methods...

  19. Use of an adipocyte model to study the transcriptional adaptation of Mycobacterium tuberculosis to store and degrade host fat

    Directory of Open Access Journals (Sweden)

    Shivangi Rastogi

    2016-01-01

    Full Text Available During its persistence in the infected host, Mycobacterium tuberculosis (Mtb accumulates host-derived fatty acids in intracytoplasmic lipid inclusions as triacylglycerols which serve primarily as carbon and energy reserves. The Mtb genome codes for more than 15 triacylglycerol synthases, 24 lipase/esterases, and seven cutinase-like proteins. Hence, we looked at the expression of the corresponding genes in intracellular bacilli persisting amidst the host triacylglycerols. We used the Mtb infected murine adipocyte model to ensure persistence and transcripts were quantified using real-time reverse transcriptase polymerase chain reaction. Dormancy and glyoxylate metabolism was confirmed by the upregulated expression of dosR and icl, respectively, by intra-adipocyte bacilli compared with in vitro growing bacilli. The study revealed that tgs1, tgs2, Rv3371, and mycolyltransferase Ag85A are the predominant triacylglycerol synthases, while lipF, lipH, lipJ, lipK, lipN, lipV, lipX, lipY, culp5, culp7, and culp6 are the predominant lipases/esterases used by Mtb for the storage and degradation of host-derived fat. Moreover, it was observed that many of these enzymes are used by Mtb during active replication rather than during nonreplicating persistence, indicating their probable function in cell wall synthesis.

  20. Host-pathogen interactions between the human innate immune system and Candida albicans - Understanding and modeling defense and evasion strategies

    Directory of Open Access Journals (Sweden)

    Sybille eDühring

    2015-06-01

    Full Text Available The diploid, polymorphic yeast Candida albicans is one of the most important humanpathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within thehuman host for a long time. Alterations in the host environment, however, can render C. albicansvirulent. In this review, we describe the immunological cross-talk between C. albicans and thehuman innate immune system. We give an overview in form of pairs of human defense strategiesincluding immunological mechanisms as well as general stressors such as nutrient limitation,pH, fever etc. and the corresponding fungal response and evasion mechanisms. FurthermoreComputational Systems Biology approaches to model and investigate these complex interactionare highlighted with a special focus on game-theoretical methods and agent-based models. Anoutlook on interesting questions to be tackled by Systems Biology regarding entangled defenseand evasion mechanisms is given.

  1. Peripapillary retinal thermal coagulation following electrical injury

    Directory of Open Access Journals (Sweden)

    Manjari Tandon

    2013-01-01

    Full Text Available In this study, we have presented the case report of a 20 year old boy who suffered an electric injury shock, following which he showed peripapillary retinal opacification and increased retinal thickening that subsequently progressed to retinal atrophy. The fluorescein angiogram revealed normal retinal circulation, thus indicating thermal damage to retina without any compromise to retinal circulation.

  2. Protective effects of a composition of Chinese herbs-Gurigumu-13 on retinal ganglion cell apoptosis in DBA/2J glaucoma mouse model

    Directory of Open Access Journals (Sweden)

    Qiu-Li Zhang

    2018-03-01

    Full Text Available AIM: To explore the concrete mechanism of a Mongolian compound medicine-Gurigumu-13 (GRGM for glaucoma treatment. METHODS: DBA/2J mice, as glaucoma models, were intragastric administrated with GRGM to study the effect of GRGM on retinal ganglion cells (RGCs. The loss of RGCs was evaluated with the number of RGCs and axons. The expression of the target protein of RGCs or mouse retinas was determined by Western blot. The relative content of malondialdehyde (MDA was examined by ELISA assay. RESULTS: GRGM distinctly improved retina damage via increasing the number of neurons, RGCs and axons in a concentration dependent manner. Meanwhile, GRGM obviously decreased the high level of MDA and the expression of oxidative stress-related proteins in retinas of DBA/2J mice, but promoted the expression of antioxidant proteins. Additionally, GRGM also significantly inhibited the protein expression of Bip and Chop, which were markers of endoplasmic reticulum stress-induced apoptosis. CONCLUSION: GRGM have obvious protective effects on RGCs in DBA/2J mice, and increase the number of RGCs and axons via inhibiting oxidative stress and endoplasmic reticulum stress.

  3. Comparison of the effect of intravitreal bevacizumab and intravitreal fasudil on retinal VEGF, TNFα, and caspase 3 levels in an experimental diabetes model

    Directory of Open Access Journals (Sweden)

    Fatih Çelik

    2014-02-01

    Full Text Available AIM: To evaluate the influence of an intravitreal injection of bevacizumab and fasudil on the retinal vascular endothelial growth factor (VEGF, tumor necrosis factor alpha (TNFα, and caspase 3 levels in a diabetic rabbit model.RESULTS: There was a statistically significant difference in the VEGF and caspase 3 levels between groups (P=0.005 and P =0.013, respectively, but the TNFα level did not differ significantly between groups (P=0.792. It was found that VEGF levels were significantly lower in Group 1 and Group 3 than in Group 2 using the Mann-Whitney U test with the Bonferroni correction (P=0.004 for both comparison. There was no statistically significant difference between other groups with regard to VEGF levels (the P value ranged between 0.015 and 0.886. Although the P values of the caspase 3 levels were 0.015 for Group 1 and Group 4, 0.038 for Group 2 and Group 3, and 0.018 for Group 3 and Group 4, these P values remained above the threshold P value of 0.0083, which was the statistically significant level for post hoc tests.CONCLUSION: An intravitreal injection of bevacizumab decreased both the VEGF level, which plays a role in angiogenesis, and the caspase 3 level, which plays a role in apoptosis. Although not as effective as bevacizumab, fasudil had a beneficial effect on the VEGF levels but significantly increased the caspase 3 levels.

  4. Differentiation and Transplantation of Embryonic Stem Cell-Derived Cone Photoreceptors into a Mouse Model of End-Stage Retinal Degeneration

    Directory of Open Access Journals (Sweden)

    Kamil Kruczek

    2017-06-01

    Full Text Available The loss of cone photoreceptors that mediate daylight vision represents a leading cause of blindness, for which cell replacement by transplantation offers a promising treatment strategy. Here, we characterize cone differentiation in retinas derived from mouse embryonic stem cells (mESCs. Similar to in vivo development, a temporal pattern of progenitor marker expression is followed by the differentiation of early thyroid hormone receptor β2-positive precursors and, subsequently, photoreceptors exhibiting cone-specific phototransduction-related proteins. We establish that stage-specific inhibition of the Notch pathway increases cone cell differentiation, while retinoic acid signaling regulates cone maturation, comparable with their actions in vivo. MESC-derived cones can be isolated in large numbers and transplanted into adult mouse eyes, showing capacity to survive and mature in the subretinal space of Aipl1−/− mice, a model of end-stage retinal degeneration. Together, this work identifies a robust, renewable cell source for cone replacement by purified cell suspension transplantation.

  5. Simultaneous Fluorescein Angiography and Spectral Domain Optical Coherence Tomography Correlate Retinal Thickness Changes to Vascular Abnormalities in an In Vivo Mouse Model of Retinopathy of Prematurity

    Directory of Open Access Journals (Sweden)

    Olachi J. Mezu-Ndubuisi

    2017-01-01

    Full Text Available Background. Retinopathy of prematurity (ROP is a condition of abnormal retinal vascular development (RVD in premature infants. Fluorescein angiography (FA has depicted phases (early, mid, late, and mature of RVD in oxygen-induced retinopathy (OIR mice. We sought to establish the relationship between retinal structural and vascular changes using simultaneous FA and spectral domain optical coherence tomography (SD-OCT. Method. 63 mice were exposed to 77% oxygen at postnatal day 7 (P7 for 5 days, while 63 mice remained in room air (RA. Total retinal thickness (TRT, inner retinal thickness (IRT, and outer retinal thickness (ORT were calculated at early (P19, mid (P24, late (P32, and mature (P47 phases of RVD. Results. TRT was reduced in OIR (162.66 ± 17.75 μm, n=13 compared to RA mice at P19 (197.57 ± 3.49 μm, n=14, P24, P32, and P49 (P0.05. IRT was reduced in OIR (71.60 ± 17.14 μm compared to RA (103.07 ± 3.47 μm mice at P19 and all ages (P<0.0001. Conclusion. We have shown the spatial and temporal relationship between retinal structure and vascular development in OIR. Significant inner retinal thinning in OIR mice persisted despite revascularization of the capillary network; further studies will elucidate its functional implications in ROP.

  6. A generic model for a single strain mosquito-transmitted disease with memory on the host and the vector.

    Science.gov (United States)

    Sardar, Tridip; Rana, Sourav; Bhattacharya, Sabyasachi; Al-Khaled, Kamel; Chattopadhyay, Joydev

    2015-05-01

    In the present investigation, three mathematical models on a common single strain mosquito-transmitted diseases are considered. The first one is based on ordinary differential equations, and other two models are based on fractional order differential equations. The proposed models are validated using published monthly dengue incidence data from two provinces of Venezuela during the period 1999-2002. We estimate several parameters of these models like the order of the fractional derivatives (in case of two fractional order systems), the biting rate of mosquito, two probabilities of infection, mosquito recruitment and mortality rates, etc., from the data. The basic reproduction number, R0, for the ODE system is estimated using the data. For two fractional order systems, an upper bound for, R0, is derived and its value is obtained using the published data. The force of infection, and the effective reproduction number, R(t), for the three models are estimated using the data. Sensitivity analysis of the mosquito memory parameter with some important responses is worked out. We use Akaike Information Criterion (AIC) to identify the best model among the three proposed models. It is observed that the model with memory in both the host, and the vector population provides a better agreement with epidemic data. Finally, we provide a control strategy for the vector-borne disease, dengue, using the memory of the host, and the vector. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Peripheral retinal degenerations and the risk of retinal detachment.

    Science.gov (United States)

    Lewis, Hilel

    2003-07-01

    To review the degenerative diseases of the peripheral retina in relationship with the risk to develop a rhegmatogenous retinal detachment and to present recommendations for use in eyes at increased risk of developing a retinal detachment. Focused literature review and author's clinical experience. Retinal degenerations are common lesions involving the peripheral retina, and most of them are clinically insignificant. Lattice degeneration, degenerative retinoschisis, cystic retinal tufts, and, rarely, zonular traction tufts, can result in a rhegmatogenous retinal detachment. Therefore, these lesions have been considered for prophylactic therapy; however, adequate studies have not been performed to date. Well-designed, prospective, randomized clinical studies are necessary to determine the benefit-risk ratio of prophylactic treatment. In the meantime, the evidence available suggests that most of the peripheral retinal degenerations should not be treated except in rare, high-risk situations.

  8. Chronic graft-versus-host disease in the rat radiation chimera. III. Immunology and immunopathology in rapidly induced models

    International Nuclear Information System (INIS)

    Beschorner, W.E.; Tutschka, P.J.; Santos, G.W.

    1983-01-01

    Although chronic graft-versus-host disease (GVHD) frequently develops in the long-term rat radiation chimera, we present three additional models in which a histologically similar disease is rapidly induced. These include adoptive transfer of spleen and bone marrow from rats with spontaneous chronic GVHD into lethally irradiated rats of the primary host strain; sublethal irradiation of stable chimeras followed by a booster transplant; and transfer of spleen cells of chimeras recovering from acute GVHD into second-party (primary recipient strain) or third-party hosts. Some immunopathologic and immune abnormalities associated with spontaneous chronic GVHD were not observed in one or more of the induced models. Thus, IgM deposition in the skin, antinuclear antibodies, and vasculitis appear to be paraphenomena. On the other hand, lymphoid hypocellularity of the thymic medulla, immaturity of splenic follicles, and nonspecific suppressor cells were consistently present in the long term chimeras, and in all models. These abnormalities therefore may be pathogenetically important, or closely related to the development of chronic GVHD

  9. Demographic models reveal the shape of density dependence for a specialist insect herbivore on variable host plants.

    Science.gov (United States)

    Miller, Tom E X

    2007-07-01

    1. It is widely accepted that density-dependent processes play an important role in most natural populations. However, persistent challenges in our understanding of density-dependent population dynamics include evaluating the shape of the relationship between density and demographic rates (linear, concave, convex), and identifying extrinsic factors that can mediate this relationship. 2. I studied the population dynamics of the cactus bug Narnia pallidicornis on host plants (Opuntia imbricata) that varied naturally in relative reproductive effort (RRE, the proportion of meristems allocated to reproduction), an important plant quality trait. I manipulated per-plant cactus bug densities, quantified subsequent dynamics, and fit stage-structured models to the experimental data to ask if and how density influences demographic parameters. 3. In the field experiment, I found that populations with variable starting densities quickly converged upon similar growth trajectories. In the model-fitting analyses, the data strongly supported a model that defined the juvenile cactus bug retention parameter (joint probability of surviving and not dispersing) as a nonlinear decreasing function of density. The estimated shape of this relationship shifted from concave to convex with increasing host-plant RRE. 4. The results demonstrate that host-plant traits are critical sources of variation in the strength and shape of density dependence in insects, and highlight the utility of integrated experimental-theoretical approaches for identifying processes underlying patterns of change in natural populations.

  10. Specific allogeneic unresponsiveness in the adult host: present-day experimental models

    International Nuclear Information System (INIS)

    Rapaport, F.T.; Bachvaroff, R.J.; Cronkite, E.; Chanana, A.; Sato, T.; Asari, H.; Waltzer, W.C.

    1982-01-01

    As part of a long-term intensive effort to apply the induction of adult allogensic unresponsiveness to the transplantation problem, two techniques to control the variability in the persistence of immunologically competent postthymic cells iin the treated host and/or the inoculum of autologous marrow returned to the host after irradiation are described. The first consisted of exposing the peripheral blood of prospective recipients to a 5-week course of extra-corporeal irradiation (ECIB), the other of exposing the stored autologous marrow scheduled to repopulate a given recipient to methyl-prednisolone (MPd) and DNase prior to renifusion into the recipient. Serial analysis of bone marrow cell samples at various intervals before and after treatment was undertaken. The significance of the disappearance of a particular population of nonnuclear cells from the samples, and the association of such disappearance with increased success in the induction of allogeneic unresponsiveness is discussed

  11. Overexpression of retinal degeneration slow (RDS protein adversely affects rods in the rd7 model of enhanced S-cone syndrome.

    Directory of Open Access Journals (Sweden)

    Dibyendu Chakraborty

    Full Text Available The nuclear receptor NR2E3 promotes expression of rod photoreceptor genes while repressing cone genes. Mice lacking NR2E3 (Nr2e3(rd7/rd7 referred to here as rd7 are a model for enhanced S-cone syndrome, a disease associated with increased sensitivity to blue light and night blindness. Rd7 retinas have reduced levels of the outer segment (OS structural protein retinal degeneration slow (RDS. We test the hypothesis that increasing RDS levels would improve the Rd7 phenotype. Transgenic mice over-expressing normal mouse peripherin/RDS (NMP in rods and cones were crossed onto the rd7 background. Disease phenotypes were assessed in NMP/rd7 eyes and compared to wild-type (WT and rd7 eyes at postnatal day 30. NMP/rd7 retinas expressed total RDS (transgenic and endogenous message at WT levels, and NMP protein was correctly localized to the OS. NMP/rd7 retinas have shorter OSs compared to rd7 and WT and significantly reduced number of rosettes. NMP/rd7 mice also exhibited significant deficits in scotopic ERG amplitudes compared to rd7 while photopic amplitudes remained unaffected. Protein levels of rhodopsin, RDS, and the RDS homologue ROM-1 were significantly reduced in the NMP/rd7 retinas compared to rd7. We show that correcting the levels of RDS gene expression does not improve the phenotype of the rd7 suggesting that RDS deficiency is not responsible for the defect in this model. We suggest that the specific rod defect in the NMP/rd7 is likely associated with ongoing problems in the rd7 that are related to the expression of cone genes in rod cells, a characteristic of the model.

  12. Therapeutic Effect of Novel Single-Stranded RNAi Agent Targeting Periostin in Eyes with Retinal Neovascularization

    Directory of Open Access Journals (Sweden)

    Takahito Nakama

    2017-03-01

    Full Text Available Retinal neovascularization (NV due to retinal ischemia remains one of the principal causes of vision impairment in patients with ischemic retinal diseases. We recently reported that periostin (POSTN may play a role in the development of preretinal fibrovascular membranes, but its role in retinal NV has not been determined. The purpose of this study was to examine the expression of POSTN in the ischemic retinas of a mouse model of oxygen-induced retinal NV. We also studied the function of POSTN on retinal NV using Postn KO mice and human retinal endothelial cells (HRECs in culture. In addition, we used a novel RNAi agent, NK0144, which targets POSTN to determine its effect on the development of retinal NV. Our results showed that the expression of POSTN was increased in the vascular endothelial cells, pericytes, and M2 macrophages in ischemic retinas. POSTN promoted the ischemia-induced retinal NV by Akt phosphorylation through integrin αvβ3. NK0144 had a greater inhibitory effect than canonical double-stranded siRNA on preretinal pathological NV in vivo and in vitro. These findings suggest a causal relationship between POSTN and retinal NV, and indicate a potential therapeutic role of intravitreal injection of NK0144 for retinal neovascular diseases.

  13. Evaluation of Arabidopsis thaliana as a model host for Xylella fastidiosa.

    Science.gov (United States)

    Rogers, Elizabeth E

    2012-06-01

    The bacterium Xylella fastidiosa causes a number of plant diseases of significant economic impact. To date, progress determining mechanisms of host-plant susceptibility, tolerance, or resistance has been slow, due in large part to the long generation time and limited available genetic resources for grape, almond, and other known hosts of X. fastidiosa. To overcome many of these limitations, Arabidopsis thaliana has been evaluated as a host for X. fastidiosa. A pin-prick inoculation method has been developed to infect Arabidopsis with X. fastidiosa. Following infection, X. fastidiosa multiplies and can be detected by microscopy, polymerase chain reaction, and isolation. The ecotypes Van-0, LL-0, and Tsu-1 all allow more growth of strain X. fastidiosa Temecula than the reference ecotype Col-0. Affymetrix ATH1 microarray analysis of inoculated vs. noninoculated Tsu-1 reveals gene expression changes that differ greatly from changes seen after infection with apoplast-colonizing bacteria such as Psuedomonas syringae pvs. tomato or syringae. Many genes responsive to oxidative stress are differentially regulated, while classic pathogenesis-related genes are not induced by X. fastidiosa infection.

  14. Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future

    Directory of Open Access Journals (Sweden)

    Mingyue Luo

    2018-01-01

    Full Text Available As a constituent of blood-retinal barrier and retinal outer segment (ROS scavenger, retinal pigmented epithelium (RPE is fundamental to normal function of retina. Malfunctioning of RPE contributes to the onset and advance of retinal degenerative diseases. Up to date, RPE replacement therapy is the only possible method to completely reverse retinal degeneration. Transplantation of human RPE stem cell-derived RPE (hRPESC-RPE has shown some good results in animal models. With promising results in terms of safety and visual improvement, human embryonic stem cell-derived RPE (hESC-RPE can be expected in clinical settings in the near future. Despite twists and turns, induced pluripotent stem cell-derived RPE (iPSC-RPE is now being intensely investigated to overcome genetic and epigenetic instability. By far, only one patient has received iPSC-RPE transplant, which is a hallmark of iPSC technology development. During follow-up, no major complications such as immunogenicity or tumorigenesis have been observed. Future trials should keep focusing on the safety of stem cell-derived RPE (SC-RPE especially in long period, and better understanding of the nature of stem cell and the molecular events in the process to generate SC-RPE is necessary to the prosperity of SC-RPE clinical application.

  15. Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future.

    Science.gov (United States)

    Luo, Mingyue; Chen, Youxin

    2018-01-01

    As a constituent of blood-retinal barrier and retinal outer segment (ROS) scavenger, retinal pigmented epithelium (RPE) is fundamental to normal function of retina. Malfunctioning of RPE contributes to the onset and advance of retinal degenerative diseases. Up to date, RPE replacement therapy is the only possible method to completely reverse retinal degeneration. Transplantation of human RPE stem cell-derived RPE (hRPESC-RPE) has shown some good results in animal models. With promising results in terms of safety and visual improvement, human embryonic stem cell-derived RPE (hESC-RPE) can be expected in clinical settings in the near future. Despite twists and turns, induced pluripotent stem cell-derived RPE (iPSC-RPE) is now being intensely investigated to overcome genetic and epigenetic instability. By far, only one patient has received iPSC-RPE transplant, which is a hallmark of iPSC technology development. During follow-up, no major complications such as immunogenicity or tumorigenesis have been observed. Future trials should keep focusing on the safety of stem cell-derived RPE (SC-RPE) especially in long period, and better understanding of the nature of stem cell and the molecular events in the process to generate SC-RPE is necessary to the prosperity of SC-RPE clinical application.

  16. Modelling the host-pathogen interactions of macrophages and Candida albicans using Game Theory and dynamic optimization.

    Science.gov (United States)

    Dühring, Sybille; Ewald, Jan; Germerodt, Sebastian; Kaleta, Christoph; Dandekar, Thomas; Schuster, Stefan

    2017-07-01

    The release of fungal cells following macrophage phagocytosis, called non-lytic expulsion, is reported for several fungal pathogens. On one hand, non-lytic expulsion may benefit the fungus in escaping the microbicidal environment of the phagosome. On the other hand, the macrophage could profit in terms of avoiding its own lysis and being able to undergo proliferation. To analyse the causes of non-lytic expulsion and the relevance of macrophage proliferation in the macrophage- Candida albicans interaction, we employ Evolutionary Game Theory and dynamic optimization in a sequential manner. We establish a game-theoretical model describing the different strategies of the two players after phagocytosis. Depending on the parameter values, we find four different Nash equilibria and determine the influence of the systems state of the host upon the game. As our Nash equilibria are a direct consequence of the model parameterization, we can depict several biological scenarios. A parameter region, where the host response is robust against the fungal infection, is determined. We further apply dynamic optimization to analyse whether macrophage mitosis is relevant in the host-pathogen interaction of macrophages and C. albicans For this, we study the population dynamics of the macrophage- C. albicans interactions and the corresponding optimal controls for the macrophages, indicating the best macrophage strategy of switching from proliferation to attacking fungal cells. © 2017 The Author(s).

  17. Retinitis pigmentosa and deafness.

    OpenAIRE

    Mills, R P; Calver, D M

    1987-01-01

    Seventeen patients with retinitis pigmentosa (RP) have been investigated audiologically. Of 9 found to have a significant hearing loss, 6 were examples of Usher's syndrome; these patients had a cochlear pattern of hearing loss. The other 3 were examples of Senior's syndrome, Kearne-Sayre syndrome and Lawrence-Moon-Biedle syndrome respectively. Two of these patients had absent stapedius reflexes. It is suggested that patients with different RP-deafness syndromes may have lesions in different p...

  18. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development

    Science.gov (United States)

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  19. Vitamin A Derivatives as Treatment Options for Retinal Degenerative Diseases

    Directory of Open Access Journals (Sweden)

    Tadao Maeda

    2013-07-01

    Full Text Available The visual cycle is a sequential enzymatic reaction for vitamin A, all-trans-retinol, occurring in the outer layer of the human retina and is essential for the maintenance of vision. The central source of retinol is derived from dietary intake of both retinol and pro-vitamin A carotenoids. A series of enzymatic reactions, located in both the photoreceptor outer segment and the retinal pigment epithelium, transform retinol into the visual chromophore 11-cis-retinal, regenerating visual pigments. Retina specific proteins carry out the majority of the visual cycle, and any significant interruption in this sequence of reactions is capable of causing varying degrees of blindness. Among these important proteins are Lecithin:retinol acyltransferase (LRAT and retinal pigment epithelium-specific 65-kDa protein (RPE65 known to be responsible for esterification of retinol to all-trans-retinyl esters and isomerization of these esters to 11-cis-retinal, respectively. Deleterious mutations in these genes are identified in human retinal diseases that cause blindness, such as Leber congenital amaurosis (LCA and retinitis pigmentosa (RP. Herein, we discuss the pathology of 11-cis-retinal deficiency caused by these mutations in both animal disease models and human patients. We also review novel therapeutic strategies employing artificial visual chromophore 9-cis-retinoids which have been employed in clinical trials involving LCA patients.

  20. Screening retinal transplants with Fourier-domain OCT

    Science.gov (United States)

    Rao, Bin

    2009-02-01

    Transplant technologies have been studied for the recovery of vision loss from retinitis pigmentosa (RP) and age-related macular degeneration (AMD). In several rodent retinal degeneration models and in patients, retinal progenitor cells transplanted as layers to the subretinal space have been shown to restore or preserve vision. The methods for evaluation of transplants are expensive considering the large amount of animals. Alternatively, time-domain Stratus OCT was previously shown to be able to image the morphological structure of transplants to some extent, but could not clearly identify laminated transplants. The efficacy of screening retinal transplants with Fourier-domain OCT was studied on 37 S334ter line 3 rats with retinal degeneration 6-67 days after transplant surgery. The transplants were morphologically categorized as no transplant, detachment, rosettes, small laminated area and larger laminated area with both Fourier-domain OCT and histology. The efficacy of Fourier-domain OCT in screening retinal transplants was evaluated by comparing the categorization results with OCT and histology. Additionally, 4 rats were randomly selected for multiple OCT examinations (1, 5, 9, 14 and 21days post surgery) in order to determine the earliest image time of OCT examination since the transplanted tissue may need some time to show its tendency of growing. Finally, we demonstrated the efficacy of Fourier-domain OCT in screening retinal transplants in early stages and determined the earliest imaging time for OCT. Fourier-domain OCT makes itself valuable in saving resource spent on animals with unsuccessful transplants.

  1. Inherited Retinal Degenerative Disease Registry

    Science.gov (United States)

    2017-09-13

    Eye Diseases Hereditary; Retinal Disease; Achromatopsia; Bardet-Biedl Syndrome; Bassen-Kornzweig Syndrome; Batten Disease; Best Disease; Choroidal Dystrophy; Choroideremia; Cone Dystrophy; Cone-Rod Dystrophy; Congenital Stationary Night Blindness; Enhanced S-Cone Syndrome; Fundus Albipunctatus; Goldmann-Favre Syndrome; Gyrate Atrophy; Juvenile Macular Degeneration; Kearns-Sayre Syndrome; Leber Congenital Amaurosis; Refsum Syndrome; Retinitis Pigmentosa; Retinitis Punctata Albescens; Retinoschisis; Rod-Cone Dystrophy; Rod Dystrophy; Rod Monochromacy; Stargardt Disease; Usher Syndrome

  2. Unsupervised Retinal Vessel Segmentation Using Combined Filters.

    Directory of Open Access Journals (Sweden)

    Wendeson S Oliveira

    Full Text Available Image segmentation of retinal blood vessels is a process that can help to predict and diagnose cardiovascular related diseases, such as hypertension and diabetes, which are known to affect the retinal blood vessels' appearance. This work proposes an unsupervised method for the segmentation of retinal vessels images using a combined matched filter, Frangi's filter and Gabor Wavelet filter to enhance the images. The combination of these three filters in order to improve the segmentation is the main motivation of this work. We investigate two approaches to perform the filter combination: weighted mean and median ranking. Segmentation methods are tested after the vessel enhancement. Enhanced images with median ranking are segmented using a simple threshold criterion. Two segmentation procedures are applied when considering enhanced retinal images using the weighted mean approach. The first method is based on deformable models and the second uses fuzzy C-means for the image segmentation. The procedure is evaluated using two public image databases, Drive and Stare. The experimental results demonstrate that the proposed methods perform well for vessel segmentation in comparison with state-of-the-art methods.

  3. Retinal Layer Abnormalities as Biomarkers of Schizophrenia.

    Science.gov (United States)

    Samani, Niraj N; Proudlock, Frank A; Siram, Vasantha; Suraweera, Chathurie; Hutchinson, Claire; Nelson, Christopher P; Al-Uzri, Mohammed; Gottlob, Irene

    2018-06-06

    Schizophrenia is associated with several brain deficits, as well as visual processing deficits, but clinically useful biomarkers are elusive. We hypothesized that retinal layer changes, noninvasively visualized using spectral-domain optical coherence tomography (SD-OCT), may represent a possible "window" to these abnormalities. A Leica EnvisuTM SD-OCT device was used to obtain high-resolution central foveal B-scans in both eyes of 35 patients with schizophrenia and 50 demographically matched controls. Manual retinal layer segmentation was performed to acquire individual and combined layer thickness measurements in 3 macular regions. Contrast sensitivity was measured at 3 spatial frequencies in a subgroup of each cohort. Differences were compared using adjusted linear models and significantly different layer measures in patients underwent Spearman Rank correlations with contrast sensitivity, quantified symptoms severity, disease duration, and antipsychotic medication dose. Total retinal and photoreceptor complex thickness was reduced in all regions in patients (P layer (P layer (P layer thickness (R = -.47, P = .005). Our novel findings demonstrate considerable retinal layer abnormalities in schizophrenia that are related to clinical features and visual function. With time, SD-OCT could provide easily-measurable biomarkers to facilitate clinical assessment and further our understanding of the disease.

  4. Study of the neuroprotective effects and mechanisms of Tianma Gouteng Decoction on retinal ganglion cells in rat optic nerve crush model

    Directory of Open Access Journals (Sweden)

    Fan-Tao Lyu

    2018-01-01

    Full Text Available AIM: To observe the mechanism of Tianma Gouteng Decoction on the protein molecular level in the optic nerve crush model rats. METHODS: Totally 36 participants 36 male Wistar rats were divided randomly into six groups(6 in every group: normal control group, negative control group, Tianma Gouteng Decoction treatment groups(con-centrations were 0.6g/mL, 1.2g/mL, 2.4g/mL respictivelyand ginkgo biloba tablets positive control group(concentrations was 1.2mg/mL. Nothing was done in the normal control group. The optic nerve of right eye in the other groups was done with the optic nerve crush model. Normal control group and negative control group was treated only with water. The average grey scale values of the N-methyl-D-aspartic acid receptor 2B(NMDA2Breceptor protein, beta - amyloid protein(Aβin the average grey scale values were detected. RESULTS: The average grey scale value of Tianma Gouteng Decoction in low, medium and high dose groups about NMDA2B receptor protein was significantly less than that of the negative control group(all PP=0.092, 0.411, 0.676, the difference between normal control group and negative control group was significant(PP=0.030, 0.001. The low dose group than the negative control group was not obviously(P=0.614. The high dose group was not significantly different from the positive control group(P=0.927, the difference between normal control group and negative control group was significant(PCONCLUSION: Tianma Gouteng Decoction can go through the decrease of the NMDA2B receptor protein expression and the control of beta-amyloid deposition to reduce the retinal ganglion cell injury and apoptosis.

  5. Outcomes in bullous retinal detachment

    Directory of Open Access Journals (Sweden)

    Sarah P. Read

    2017-06-01

    Conclusions and importance: GRTs are an uncommon cause of retinal detachment. While pars plana vitrectomy with tamponade is standard in GRT management, there is variability in the use of scleral buckling and PFO in these cases. This is in contrast to retinal dialysis where scleral buckle alone can yield favorable results. Though a baseball ocular trauma is common, retinal involvement is rare compared to other sports injuries such as those occurring with tennis, soccer and golf. Sports trauma remains an important cause of retinal injury and patients should be counseled on the need for eye protection.

  6. Retinal Thickening and Photoreceptor Loss in HIV Eyes without Retinitis.

    Directory of Open Access Journals (Sweden)

    Cheryl A Arcinue

    Full Text Available To determine the presence of structural changes in HIV retinae (i.e., photoreceptor density and retinal thickness in the macula compared with age-matched HIV-negative controls.Cohort of patients with known HIV under CART (combination Antiretroviral Therapy treatment were examined with a flood-illuminated retinal AO camera to assess the cone photoreceptor mosaic and spectral-domain optical coherence tomography (SD-OCT to assess retinal layers and retinal thickness.Twenty-four eyes of 12 patients (n = 6 HIV-positive and 6 HIV-negative were imaged with the adaptive optics camera. In each of the regions of interest studied (nasal, temporal, superior, inferior, the HIV group had significantly less mean cone photoreceptor density compared with age-matched controls (difference range, 4,308-6,872 cones/mm2. A different subset of forty eyes of 20 patients (n = 10 HIV-positive and 10 HIV-negative was included in the retinal thickness measurements and retinal layer segmentation with the SD-OCT. We observed significant thickening in HIV positive eyes in the total retinal thickness at the foveal center, and in each of the three horizontal B-scans (through the macular center, superior, and inferior to the fovea. We also noted that the inner retina (combined thickness from ILM through RNFL to GCL layer was also significantly thickened in all the different locations scanned compared with HIV-negative controls.Our present study shows that the cone photoreceptor density is significantly reduced in HIV retinae compared with age-matched controls. HIV retinae also have increased macular retinal thickness that may be caused by inner retinal edema secondary to retinovascular disease in HIV. The interaction of photoreceptors with the aging RPE, as well as possible low-grade ocular inflammation causing diffuse inner retinal edema, may be the key to the progressive vision changes in HIV-positive patients without overt retinitis.

  7. Retinal vessel diameter and estimated cerebrospinal fluid pressure in arterial hypertension: the Beijing Eye Study.

    Science.gov (United States)

    Jonas, Jost B; Wang, Ningli; Wang, Shuang; Wang, Ya Xing; You, Qi Sheng; Yang, Diya; Wei, Wen Bin; Xu, Liang

    2014-09-01

    Hypertensive retinal microvascular abnormalities include an increased retinal vein-to-artery diameter ratio. Because central retinal vein pressure depends on cerebrospinal fluid pressure (CSFP), we examined whether the retinal vein-to-artery diameter ratio and other retinal hypertensive signs are associated with CSFP. Participants of the population-based Beijing Eye Study (n = 1,574 subjects) underwent measurement of the temporal inferior and superior retinal artery and vein diameter. CSFP was calculated as 0.44 × body mass index (kg/m(2)) + 0.16 × diastolic blood pressure (mm Hg) - 0.18 × age (years) - 1.91. Larger retinal vein diameters and higher vein-to-artery diameter ratios were significantly associated with higher estimated CSFP (P = 0.001) in multivariable analysis. In contrast, temporal inferior retinal arterial diameter was marginally associated (P = 0.03) with estimated CSFP, and temporal superior artery diameter was not significantly associated (P = 0.10) with estimated CSFP; other microvascular abnormalities, such as arteriovenous crossing signs, were also not significantly associated with estimated CSFP. In a reverse manner, higher estimated CSFP as a dependent variable in the multivariable analysis was associated with wider retinal veins and higher vein-to-artery diameter ratio. In the same model, estimated CSFP was not significantly correlated with retinal artery diameters or other retinal microvascular abnormalities. Correspondingly, arterial hypertension was associated with retinal microvascular abnormalities such as arteriovenous crossing signs (P = 0.003), thinner temporal retinal arteries (P arterial hypertension, an increased retinal vein-to-artery diameter ratio depends on elevated CSFP, which is correlated with blood pressure. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Retinal stem cells and regeneration of vision system.

    Science.gov (United States)

    Yip, Henry K

    2014-01-01

    The vertebrate retina is a well-characterized model for studying neurogenesis. Retinal neurons and glia are generated in a conserved order from a pool of mutlipotent progenitor cells. During retinal development, retinal stem/progenitor cells (RPC) change their competency over time under the influence of intrinsic (such as transcriptional factors) and extrinsic factors (such as growth factors). In this review, we summarize the roles of these factors, together with the understanding of the signaling pathways that regulate eye development. The information about the interactions between intrinsic and extrinsic factors for retinal cell fate specification is useful to regenerate specific retinal neurons from RPCs. Recent studies have identified RPCs in the retina, which may have important implications in health and disease. Despite the recent advances in stem cell biology, our understanding of many aspects of RPCs in the eye remains limited. PRCs are present in the developing eye of all vertebrates and remain active in lower vertebrates throughout life. In mammals, however, PRCs are quiescent and exhibit very little activity and thus have low capacity for retinal regeneration. A number of different cellular sources of RPCs have been identified in the vertebrate retina. These include PRCs at the retinal margin, pigmented cells in the ciliary body, iris, and retinal pigment epithelium, and Müller cells within the retina. Because PRCs can be isolated and expanded from immature and mature eyes, it is possible now to study these cells in culture and after transplantation in the degenerated retinal tissue. We also examine current knowledge of intrinsic RPCs, and human embryonic stems and induced pluripotent stem cells as potential sources for cell transplant therapy to regenerate the diseased retina. Copyright © 2013 Wiley Periodicals, Inc.

  9. Yeast as a model host to study replication and recombination of defective interfering RNA of Tomato bushy stunt virus

    International Nuclear Information System (INIS)

    Panavas, Tadas; Nagy, Peter D.

    2003-01-01

    Defective interfering (DI) RNA associated with Tomato bushy stunt virus (TBSV), which is a plus-strand RNA virus, requires p33 and p92 proteins of TBSV or the related Cucumber necrosis virus (CNV), for replication in plants. To test if DI RNA can replicate in a model host, we coexpressed TBSV DI RNA and p33/p92 of CNV in yeast. We show evidence for replication of DI RNA in yeast, including (i) dependence on p33 and p92 for DI replication; (ii) presence of active CNV RNA-dependent RNA polymerase in isolated membrane-containing preparations; (iii) increasing amount of DI RNA(+) over time; (iv) accumulation of (-)stranded DI RNA; (v) presence of correct 5' and 3' ends in DI RNA; (vi) inhibition of replication by mutations in the replication enhancer; and (vii) evolution of DI RNA over time, as shown by sequence heterogeneity. We also produced evidence supporting the occurrence of DI RNA recombinants in yeast. In summary, development of yeast as a host for replication of TBSV DI RNA will facilitate studies on the roles of viral and host proteins in replication/recombination

  10. Protective role of host aquaporin 6 against Hazara virus, a model for Crimean-Congo hemorrhagic fever virus infection.

    Science.gov (United States)

    Molinas, Andrea; Mirazimi, Ali; Holm, Angelika; Loitto, Vesa M; Magnusson, Karl-Eric; Vikström, Elena

    2016-04-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is an arthropod-borne pathogen that causes infectious disease with severe hemorrhagic manifestations in vascular system in humans. The proper function of the cells in the vascular system is critically regulated by aquaporins (AQP), water channels that facilitate fluxes of water and small solutes across membranes. With Hazara virus as a model for CCHFV, we investigated the effects of viruses on AQP6 and the impact of AQP6 on virus infectivity in host cells, using transiently expressed GFP-AQP6 cells, immunofluorescent assay for virus detection, epifluorescent imaging of living cells and confocal microscopy. In GFP-AQP6 expressing cells, Hazara virus reduced both the cellular and perinuclear AQP6 distribution and changed the cell area. Infection of human cell with CCHFV strain IbAR 10200 downregulated AQP6 expression at mRNA level. Interestingly, the overexpression of AQP6 in host cells decreased the infectivity of Hazara virus, speaking for a protective role of AQP6. We suggest the possibility for AQP6 being a novel player in the virus-host interactions, which may lead to less severe outcomes of an infection. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model.

    Science.gov (United States)

    Carlson, Jolene; O'Donnell, Vivian; Alfano, Marialexia; Velazquez Salinas, Lauro; Holinka, Lauren G; Krug, Peter W; Gladue, Douglas P; Higgs, Stephen; Borca, Manuel V

    2016-10-22

    African swine fever (ASF) is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV). There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4) virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus) is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi) showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi). This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN)-γ responses, or specific cytokine profiles) and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms.

  12. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model

    Directory of Open Access Journals (Sweden)

    Jolene Carlson

    2016-10-01

    Full Text Available African swine fever (ASF is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV. There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4 virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi. This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN-γ responses, or specific cytokine profiles and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms.

  13. [The role of natural environment in spreading of hantavirus--model of the correlation between host, pathogen and human infections].

    Science.gov (United States)

    Baumann, Anna; Dudek, Dorota; Sadkowska-Todys, Małgorzata

    2007-01-01

    The environmental changes caused by humans influence ecosystem and thus have significant impact on occurrence of emerging and re-emerging diseases. The hantavirus infection belong to the one of them. The aim of this paper was to present current knowledge about relationship between hantavirus, their natural host and the spread of the infection to people. Rodents constitute both the natural host of the hantaviruses and the reservoir of hantavirus for environment. Circulation of the virus in the rodent population is crucial to maintain the virus in the environment. The individual characteristics of rodents influence on risk of infection with hantavirus. However, this relationship is still unexplained. Risk of pathogen exposure often increases with age and behavioral differences associated with the sex of the susceptible individual. Mating behaviors seem to play an important role in the spread of the virus among rodents. Human incidence of hantavirus infection has in general been found to correlate to the population size of rodent host especially in the model of nephropathia epidemica (NE; a mild form of HFRS), Puumala virus (PUU) and bank voles. The occurrence of hantavirus infections in humans is assumed to rise as a secondary effect from altered population sizes of rodents in a changing environment due to e.g. mast years, forest fragmentation, global warming.

  14. Addition of host genetic variants in a prediction rule for post meningitis hearing loss in childhood: a model updating study.

    Science.gov (United States)

    Sanders, Marieke S; de Jonge, Rogier C J; Terwee, Caroline B; Heymans, Martijn W; Koomen, Irene; Ouburg, Sander; Spanjaard, Lodewijk; Morré, Servaas A; van Furth, A Marceline

    2013-07-23

    Sensorineural hearing loss is the most common sequela in survivors of bacterial meningitis (BM). In the past we developed a validated prediction model to identify children at risk for post-meningitis hearing loss. It is known that host genetic variations, besides clinical factors, contribute to severity and outcome of BM. In this study it was determined whether host genetic risk factors improve the predictive abilities of an existing model regarding hearing loss after childhood BM. Four hundred and seventy-one Dutch Caucasian childhood BM were genotyped for 11 single nucleotide polymorphisms (SNPs) in seven different genes involved in pathogen recognition. Genetic data were added to the original clinical prediction model and performance of new models was compared to the original model by likelihood ratio tests and the area under the curve (AUC) of the receiver operating characteristic curves. Addition of TLR9-1237 SNPs and the combination of TLR2 + 2477 and TLR4 + 896 SNPs improved the clinical prediction model, but not significantly (increase of AUC's from 0.856 to 0.861 and from 0.856 to 0.875 (p = 0.570 and 0.335, respectively). Other SNPs analysed were not linked to hearing loss. Although addition of genetic risk factors did not significantly improve the clinical prediction model for post-meningitis hearing loss, AUC's of the pre-existing model remain high after addition of genetic factors. Future studies should evaluate whether more combinations of SNPs in larger cohorts has an additional value to the existing prediction model for post meningitis hearing loss.

  15. Mycobacterium-Host Cell Relationships in Granulomatous Lesions in a Mouse Model of Latent Tuberculous Infection

    Directory of Open Access Journals (Sweden)

    Elena Ufimtseva

    2015-01-01

    Full Text Available Tuberculosis (TB is a dangerous infectious disease characterized by a tight interplay between mycobacteria and host cells in granulomatous lesions (granulomas during the latent, asymptomatic stage of infection. Mycobacterium-host cell relationships were analyzed in granulomas obtained from various organs of BALB/c mice with chronic TB infection caused by in vivo exposure to the Bacillus Calmette-Guérin (BCG vaccine. Acid-fast BCG-mycobacteria were found to be morphologically and functionally heterogeneous (in size, shape, and replication rates in colonies in granuloma macrophages, dendritic cells, and multinucleate Langhans giant cells. Cord formation by BCG-mycobacteria in granuloma cells has been observed. Granuloma macrophages retained their ability to ingest damaged lymphocytes and thrombocytes in the phagosomes; however, their ability to destroy BCG-mycobacteria contained in these cells was compromised. No colocalization of BCG-mycobacteria and the LysoTracker dye was observed in the mouse cells. Various relationships between granuloma cells and BCG-mycobacteria were observed in different mice belonging to the same line. Several mice totally eliminated mycobacterial infection. Granulomas in the other mice had mycobacteria actively replicating in cells of different types and forming cords, which is an indicator of mycobacterial virulence and, probably, a marker of the activation of tuberculous infection in animals.

  16. Mycobacterium-Host Cell Relationships in Granulomatous Lesions in a Mouse Model of Latent Tuberculous Infection

    Science.gov (United States)

    2015-01-01

    Tuberculosis (TB) is a dangerous infectious disease characterized by a tight interplay between mycobacteria and host cells in granulomatous lesions (granulomas) during the latent, asymptomatic stage of infection. Mycobacterium-host cell relationships were analyzed in granulomas obtained from various organs of BALB/c mice with chronic TB infection caused by in vivo exposure to the Bacillus Calmette-Guérin (BCG) vaccine. Acid-fast BCG-mycobacteria were found to be morphologically and functionally heterogeneous (in size, shape, and replication rates in colonies) in granuloma macrophages, dendritic cells, and multinucleate Langhans giant cells. Cord formation by BCG-mycobacteria in granuloma cells has been observed. Granuloma macrophages retained their ability to ingest damaged lymphocytes and thrombocytes in the phagosomes; however, their ability to destroy BCG-mycobacteria contained in these cells was compromised. No colocalization of BCG-mycobacteria and the LysoTracker dye was observed in the mouse cells. Various relationships between granuloma cells and BCG-mycobacteria were observed in different mice belonging to the same line. Several mice totally eliminated mycobacterial infection. Granulomas in the other mice had mycobacteria actively replicating in cells of different types and forming cords, which is an indicator of mycobacterial virulence and, probably, a marker of the activation of tuberculous infection in animals. PMID:26064970

  17. Deletion of a malaria invasion gene reduces death and anemia, in model hosts.

    Directory of Open Access Journals (Sweden)

    Noé D Gómez

    Full Text Available Malaria parasites induce complex cellular and clinical phenotypes, including anemia, cerebral malaria and death in a wide range of mammalian hosts. Host genes and parasite 'toxins' have been implicated in malarial disease, but the contribution of parasite genes remains to be fully defined. Here we assess disease in BALB/c mice and Wistar rats infected by the rodent malaria parasite Plasmodium berghei with a gene knock out for merozoite surface protein (MSP 7. MSP7 is not essential for infection but in P. falciparum, it enhances erythrocyte invasion by 20%. In vivo, as compared to wild type, the P. berghei Δmsp7 mutant is associated with an abrogation of death and a decrease from 3% to 2% in peak, circulating parasitemia. The Δmsp7 mutant is also associated with less anemia and modest increase in the size of follicles in the spleen. Together these data show that deletion of a single parasite invasion ligand modulates blood stage disease, as measured by death and anemia. This work is the first to assess the contribution of a gene present in all plasmodial species in severe disease.

  18. Heritability of Retinal Vascular Fractals

    DEFF Research Database (Denmark)

    Vergmann, Anna Stage; Broe, Rebecca; Kessel, Line

    2017-01-01

    Purpose: To determine the genetic contribution to the pattern of retinal vascular branching expressed by its fractal dimension. Methods: This was a cross-sectional study of 50 monozygotic and 49 dizygotic, same-sex twin pairs aged 20 to 46 years. In 50°, disc-centered fundus photographs, the reti...... fractal dimension did not differ statistically significantly between monozygotic and dizygotic twin pairs (1.505 vs. 1.495, P = 0.06), supporting that the study population was suitable for quantitative analysis of heritability. The intrapair correlation was markedly higher (0.505, P = 0.......0002) in monozygotic twins than in dizygotic twins (0.108, P = 0.46), corresponding to a heritability h2 for the fractal dimension of 0.79. In quantitative genetic models, dominant genetic effects explained 54% of the variation and 46% was individually environmentally determined. Conclusions: In young adult twins...

  19. Accounting for disagreements on average cone loss rates in retinitis pigmentosa with a new kinetic model: Its relevance for clinical trials.

    Science.gov (United States)

    Baumgartner, W A; Baumgartner, A M

    2016-04-01

    Since 1985, at least nine studies of the average rate of cone loss in retinitis pigmentosa (RP) populations have yielded conflicting average rate constant values (-k), differing by 90-160%. This is surprising, since, except for the first two investigations, the Harvard or Johns Hopkins' protocols used in these studies were identical with respect to: use of the same exponential decline model, calculation of average -k from individual patient k values, monitoring patients over similarly large time frames, and excluding data exhibiting floor and ceiling effects. A detailed analysis of Harvard's and Hopkins' protocols and data revealed two subtle differences: (i) Hopkins' use of half-life t0.5 (or t(1/e)) for expressing patient cone-loss rates rather than k as used by Harvard; (ii) Harvard obtaining substantially more +k from improving fields due to dormant-cone recovery effects and "small -k" values than Hopkins' ("small -k" is defined as less than -0.040 year(-1)), e.g., 16% +k, 31% small -k, vs. Hopkins' 3% and 6% respectively. Since t0.5=0.693/k, it follows that when k=0, or is very small, t0.5 (or t(1/e)) is respectively infinity or a very large number. This unfortunate mathematical property (which also prevents t0.5 (t(1/e)) histogram construction corresponding to -k to +k) caused Hopkins' to delete all "small -k" and all +k due to "strong leverage". Naturally this contributed to Hopkins' larger average -k. Difference (ii) led us to re-evaluate the Harvard/Hopkins' exponential unchanging -k model. In its place we propose a model of increasing biochemical stresses from dying rods on cones during RP progression: increasing oxidative stresses and trophic factor deficiencies (e.g., RdCVF), and RPE malfunction. Our kinetic analysis showed rod loss to follow exponential kinetics with unchanging -k due to constant genetic stresses, thereby providing a theoretical basis for Clarke et al.'s empirical observation of such kinetics with eleven animal models of RP. In

  20. Modeling Glaucoma: Retinal Ganglion Cells Generated from Induced Pluripotent Stem Cells of Patients with SIX6 Risk Allele Show Developmental Abnormalities.

    Science.gov (United States)

    Teotia, Pooja; Van Hook, Matthew J; Wichman, Christopher S; Allingham, R Rand; Hauser, Michael A; Ahmad, Iqbal

    2017-11-01

    Glaucoma represents a group of multifactorial diseases with a unifying pathology of progressive retinal ganglion cell (RGC) degeneration, causing irreversible vision loss. To test the hypothesis that RGCs are intrinsically vulnerable in glaucoma, we have developed an in vitro model using the SIX6 risk allele carrying glaucoma patient-specific induced pluripotent stem cells (iPSCs) for generating functional RGCs. Here, we demonstrate that the efficiency of RGC generation by SIX6 risk allele iPSCs is significantly lower than iPSCs-derived from healthy, age- and sex-matched controls. The decrease in the number of RGC generation is accompanied by repressed developmental expression of RGC regulatory genes. The SIX6 risk allele RGCs display short and simple neurites, reduced expression of guidance molecules, and immature electrophysiological signature. In addition, these cells have higher expression of glaucoma-associated genes, CDKN2A and CDKN2B, suggesting an early onset of the disease phenotype. Consistent with the developmental abnormalities, the SIX6 risk allele RGCs display global dysregulation of genes which map on developmentally relevant biological processes for RGC differentiation and signaling pathways such as mammalian target of rapamycin that integrate diverse functions for differentiation, metabolism, and survival. The results suggest that SIX6 influences different stages of RGC differentiation and their survival; therefore, alteration in SIX6 function due to the risk allele may lead to cellular and molecular abnormalities. These abnormalities, if carried into adulthood, may make RGCs vulnerable in glaucoma. Stem Cells 2017;35:2239-2252. © 2017 AlphaMed Press.

  1. Oct4 Methylation-Mediated Silencing As an Epigenetic Barrier Preventing Müller Glia Dedifferentiation in a Murine Model of Retinal Injury.

    Science.gov (United States)

    Reyes-Aguirre, Luis I; Lamas, Monica

    2016-01-01

    Müller glia (MG) is the most abundant glial type in the vertebrate retina. Among its many functions, it is capable of responding to injury by dedifferentiating, proliferating, and differentiating into every cell types lost to damage. This regenerative ability is notoriously absent in mammals. We have previously reported that cultured mammalian MG undergoes a partial dedifferentiation, but fails to fully acquire a progenitor phenotype and differentiate into neurons. This might be explained by a mnemonic mechanism comprised by epigenetic traits, such as DNA methylation. To achieve a better understanding of this epigenetic memory, we studied the expression of pluripotency-associated genes, such as Oct4, Nanog , and Lin28 , which have been reported as necessary for regeneration in fish, at early times after NMDA-induced retinal injury in a mouse experimental model. We found that although Oct4 is expressed rapidly after damage (4 hpi), it is silenced at 24 hpi. This correlates with a significant decrease in the DNA methyltransferase Dnmt3b expression, which returns to basal levels at 24 hpi. By MS-PCR, we observed a decrease in Oct4 methylation levels at 4 and 12 hpi, before returning to a fully methylated state at 24 hpi. To demonstrate that these changes are restricted to MG, we separated these cells using a GLAST antibody coupled with magnetic beads. Finally, intravitreous administration of the DNA-methyltransferase inhibitor SGI-1027 induced Oct4 expression at 24 hpi in MG. Our results suggest that mammalian MG injury-induced dedifferentiation could be restricted by DNA methylation, which rapidly silences Oct4 expression, preventing multipotency acquisition.

  2. EIAV-based retinal gene therapy in the shaker1 mouse model for usher syndrome type 1B: development of UshStat.

    Directory of Open Access Journals (Sweden)

    Marisa Zallocchi

    Full Text Available Usher syndrome type 1B is a combined deaf-blindness condition caused by mutations in the MYO7A gene. Loss of functional myosin VIIa in the retinal pigment epithelia (RPE and/or photoreceptors leads to blindness. We evaluated the impact of subretinally delivered UshStat, a recombinant EIAV-based lentiviral vector expressing human MYO7A, on photoreceptor function in the shaker1 mouse model for Usher type 1B that lacks a functional Myo7A gene. Subretinal injections of EIAV-CMV-GFP, EIAV-RK-GFP (photoreceptor specific, EIAV-CMV-MYO7A (UshStat or EIAV-CMV-Null (control vectors were performed in shaker1 mice. GFP and myosin VIIa expression was evaluated histologically. Photoreceptor function in EIAV-CMV-MYO7A treated eyes was determined by evaluating α-transducin translocation in photoreceptors in response to low light intensity levels, and protection from light induced photoreceptor degeneration was measured. The safety and tolerability of subretinally delivered UshStat was evaluated in macaques. Expression of GFP and myosin VIIa was confirmed in the RPE and photoreceptors in shaker1 mice following subretinal delivery of the EIAV-CMV-GFP/MYO7A vectors. The EIAV-CMV-MYO7A vector protected the shaker1 mouse photoreceptors from acute and chronic intensity light damage, indicated by a significant reduction in photoreceptor cell loss, and restoration of the α-transducin translocation threshold in the photoreceptors. Safety studies in the macaques demonstrated that subretinal delivery of UshStat is safe and well-tolerated. Subretinal delivery of EIAV-CMV-MYO7A (UshStat rescues photoreceptor phenotypes in the shaker1 mouse. In addition, subretinally delivered UshStat is safe and well-tolerated in macaque safety studies These data support the clinical development of UshStat to treat Usher type 1B syndrome.

  3. EIAV-based retinal gene therapy in the shaker1 mouse model for usher syndrome type 1B: development of UshStat.

    Science.gov (United States)

    Zallocchi, Marisa; Binley, Katie; Lad, Yatish; Ellis, Scott; Widdowson, Peter; Iqball, Sharifah; Scripps, Vicky; Kelleher, Michelle; Loader, Julie; Miskin, James; Peng, You-Wei; Wang, Wei-Min; Cheung, Linda; Delimont, Duane; Mitrophanous, Kyriacos A; Cosgrove, Dominic

    2014-01-01

    Usher syndrome type 1B is a combined deaf-blindness condition caused by mutations in the MYO7A gene. Loss of functional myosin VIIa in the retinal pigment epithelia (RPE) and/or photoreceptors leads to blindness. We evaluated the impact of subretinally delivered UshStat, a recombinant EIAV-based lentiviral vector expressing human MYO7A, on photoreceptor function in the shaker1 mouse model for Usher type 1B that lacks a functional Myo7A gene. Subretinal injections of EIAV-CMV-GFP, EIAV-RK-GFP (photoreceptor specific), EIAV-CMV-MYO7A (UshStat) or EIAV-CMV-Null (control) vectors were performed in shaker1 mice. GFP and myosin VIIa expression was evaluated histologically. Photoreceptor function in EIAV-CMV-MYO7A treated eyes was determined by evaluating α-transducin translocation in photoreceptors in response to low light intensity levels, and protection from light induced photoreceptor degeneration was measured. The safety and tolerability of subretinally delivered UshStat was evaluated in macaques. Expression of GFP and myosin VIIa was confirmed in the RPE and photoreceptors in shaker1 mice following subretinal delivery of the EIAV-CMV-GFP/MYO7A vectors. The EIAV-CMV-MYO7A vector protected the shaker1 mouse photoreceptors from acute and chronic intensity light damage, indicated by a significant reduction in photoreceptor cell loss, and restoration of the α-transducin translocation threshold in the photoreceptors. Safety studies in the macaques demonstrated that subretinal delivery of UshStat is safe and well-tolerated. Subretinal delivery of EIAV-CMV-MYO7A (UshStat) rescues photoreceptor phenotypes in the shaker1 mouse. In addition, subretinally delivered UshStat is safe and well-tolerated in macaque safety studies These data support the clinical development of UshStat to treat Usher type 1B syndrome.

  4. Analysis of Host Range Restriction Determinants in the Rabbit Model: Comparison of Homologous and Heterologous Rotavirus Infections

    Science.gov (United States)

    Ciarlet, Max; Estes, Mary K.; Barone, Christopher; Ramig, Robert F.; Conner, Margaret E.

    1998-01-01

    The main limitation of both the rabbit and mouse models of rotavirus infection is that human rotavirus (HRV) strains do not replicate efficiently in either animal. The identification of individual genes necessary for conferring replication competence in a heterologous host is important to an understanding of the host range restriction of rotavirus infections. We recently reported the identification of the P type of the spike protein VP4 of four lapine rotavirus strains as being P[14]. To determine whether VP4 is involved in host range restriction in rabbits, we evaluated infection in rotavirus antibody-free rabbits inoculated orally with two P[14] HRVs, PA169 (G6) and HAL1166 (G8), and with several other HRV strains and animal rotavirus strains of different P and G types. We also evaluated whether the parental rhesus rotavirus (RRV) (P5B[3], G3) and the derived RRV-HRV reassortant candidate vaccine strains RRV × D (G1), RRV × DS-1 (G2), and RRV × ST3 (G4) would productively infect rabbits. Based on virus shedding, limited replication was observed with the P[14] HRV strains and with the SA11 Cl3 (P[2], G3) and SA11 4F (P6[1], G3) animal rotavirus strains, compared to the homologous ALA strain (P[14], G3). However, even limited infection provided complete protection from rotavirus infection when rabbits were challenged orally 28 days postinoculation (DPI) with 103 50% infective doses of ALA rabbit rotavirus. Other HRVs did not productively infect rabbits and provided no significant protection from challenge, in spite of occasional seroconversion. Simian RRV replicated as efficiently as lapine ALA rotavirus in rabbits and provided complete protection from ALA challenge. Live attenuated RRV reassortant vaccine strains resulted in no, limited, or productive infection of rabbits, but all rabbits were completely protected from heterotypic ALA challenge. The altered replication efficiency of the reassortants in rabbits suggests a role for VP7 in host range restriction

  5. Neuroprotective and Antiapoptotic Activity of Lineage-Negative Bone Marrow Cells after Intravitreal Injection in a Mouse Model of Acute Retinal Injury

    Directory of Open Access Journals (Sweden)

    Anna Machalińska

    2015-01-01

    Full Text Available We investigated effects of bone marrow-derived, lineage-negative cell (Lin−BMC transplantation in acute retinal injury. Lin−BMCs were intravitreally injected into murine eyes at 24 h after NaIO3-induced injury. Morphology, function, and expression of apoptosis-related genes, including brain-derived neurotrophic factor (BDNF and its receptor, were assessed in retinas at 7 days, 28 days, and 3 months after transplantation. Moreover, global gene expression at day 7 was analyzed by RNA arrays. We observed that Lin−BMCs integrated into outer retinal layers improving morphological retinal structure and induced molecular changes such as downregulation of proapoptotic caspase-3 gene, a decrease in BAX/BCL-2 gene ratio, and significant elevation of BDNF expression. Furthermore, transplanted Lin−BMCs differentiated locally into cells with a macrophage-like phenotype. Finally, Lin−BMCs treatment was associated with generation of two distinct transcriptomic patterns. The first relates to downregulated genes associated with regulation of neuron cell death and apoptosis, response to oxidative stress/hypoxia and external stimuli, and negative regulation of cell proliferation. The second relates to upregulated genes associated with neurological system processes and sensory perception. Collectively, our data demonstrate that transplanted Lin−BMCs exert neuroprotective function against acute retinal injury and this effect may be associated with their antiapoptotic properties and ability to express neurotrophic factors.

  6. The relationship between retinal damage and current intensity in a pre-clinical suprachoroidal-transretinal stimulation model using a laser-formed microporous electrode

    Science.gov (United States)

    Kanda, Hiroyuki; Nakano, Yukari; Terasawa, Yasuo; Morimoto, Takeshi; Fujikado, Takashi

    2017-10-01

    Objective. Suprachoroidal-transretinal stimulation (STS) is a stimulation method for retinal prostheses. For STS-type retinal prostheses, we developed a new type of stimulating electrode called a femtosecond laser-induced porous electrode (FLiP electrode). To verify the safety of the FLiP electrode for STS, we investigated the characteristics of STS-induced retinal injury. Approach. Sixteen eyes of pigmented rabbits were studied in this in vivo study. For each examined eye, we implanted a single-channel FLiP electrode (diameter, 0.5 mm height, 0.3 mm geometric surface area, 0.43 mm2) in a scleral pocket created at the posterior pole of the eye. A return electrode (diameter, 0.5 mm length, 3 mm) was inserted into the vitreous cavity. The eyes were divided into five groups, and each group was stimulated with a different current intensity. The stimulus intensities and the number of eyes in each group were as follows: 1.0 mA (n  =  2), 1.5 mA (n  =  3), 2.0 mA (n  =  3), 2.5 mA (n  =  4), and 3.0 mA (n  =  2). Continuous biphasic pulses (0.5 ms/phase) were applied under general anesthesia at a frequency of 20 Hz for 48 h. Fundus photography, fluorescein angiography (FA), and optical coherence tomography were performed before and after applying the electrical stimulation to evaluate the retinal injury. Main results. The 1.0 mA and 1.5 mA groups showed little or no retinal damage. Fluorescent dye leakage in FA and punctate pigmentation in the fundus were observed around the stimulation site with stimulation of 2.0 mA (1/3), 2.5 mA (1/4), and 3.0 mA (2/2). Significance. Our findings indicate that the threshold current for inducing retinal damage is greater than that for eliciting electrical phosphenes (<1 mA) with STS observed in human trials. Therefore, STS by the FLiP electrode is a safe and feasible stimulation method for retinal prostheses as long as it is used with these pulse parameters.

  7. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy.

    Directory of Open Access Journals (Sweden)

    Thomas A Mendel

    Full Text Available Retinal vasculopathies, including diabetic retinopathy (DR, threaten the vision of over 100 million people. Retinal pericytes are critical for microvascular control, supporting retinal endothelial cells via direct contact and paracrine mechanisms. With pericyte death or loss, endothelial dysfunction ensues, resulting in hypoxic insult, pathologic angiogenesis, and ultimately blindness. Adipose-derived stem cells (ASCs differentiate into pericytes, suggesting they may be useful as a protective and regenerative cellular therapy for retinal vascular disease. In this study, we examine the ability of ASCs to differentiate into pericytes that can stabilize retinal vessels in multiple pre-clinical models of retinal vasculopathy.We found that ASCs express pericyte-specific markers in vitro. When injected intravitreally into the murine eye subjected to oxygen-induced retinopathy (OIR, ASCs were capable of migrating to and integrating with the retinal vasculature. Integrated ASCs maintained marker expression and pericyte-like morphology in vivo for at least 2 months. ASCs injected after OIR vessel destabilization and ablation enhanced vessel regrowth (16% reduction in avascular area. ASCs injected intravitreally before OIR vessel destabilization prevented retinal capillary dropout (53% reduction. Treatment of ASCs with transforming growth factor beta (TGF-β1 enhanced hASC pericyte function, in a manner similar to native retinal pericytes, with increased marker expression of smooth muscle actin, cellular contractility, endothelial stabilization, and microvascular protection in OIR. Finally, injected ASCs prevented capillary loss in the diabetic retinopathic Akimba mouse (79% reduction 2 months after injection.ASC-derived pericytes can integrate with retinal vasculature, adopting both pericyte morphology and marker expression, and provide functional vascular protection in multiple murine models of retinal vasculopathy. The pericyte phenotype demonstrated

  8. Retinal astrocytoma in a dog.

    Science.gov (United States)

    Kuroki, Keiichi; Kice, Nathan; Ota-Kuroki, Juri

    2017-09-01

    A miniature schnauzer dog presenting with hyphema and glaucoma of the right eye had a retinal neoplasm. Neoplastic cells stained positively for glial fibrillary acidic protein, vimentin, and S-100 and largely negatively for oligodendrocyte transcription factor 2 by immunohistochemistry. The clinical and histopathological features of canine retinal astrocytomas are discussed.

  9. Non-syndromic retinitis pigmentosa

    NARCIS (Netherlands)

    Verbakel, S.K. (Sanne K.); R.A.C. van Huet (Ramon A. C.); C.J.F. Boon (Camiel); A.I. Hollander (Anneke); R.W.J. Collin (Rob); C.C.W. Klaver (Caroline); C. Hoyng (Carel); R. Roepman (Ronald); B.J. Klevering (Jeroen)

    2018-01-01

    textabstractRetinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. RP is a leading cause of visual disability, with a worldwide prevalence of 1:4000. Although the majority of RP cases are non-syndromic,

  10. Retinal Imaging and Image Analysis

    Science.gov (United States)

    Abràmoff, Michael D.; Garvin, Mona K.; Sonka, Milan

    2011-01-01

    Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of blindness in the industrialized world that includes age-related macular degeneration, diabetic retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative techniques for analysis of fundus photographs with a focus on clinically relevant assessment of retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, building retinal atlases, and to automated methods for population screening for retinal diseases. A separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-associated derangements, as well as to OCT-based analysis of ONH morphology and shape. Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships. PMID:22275207

  11. Applications of CRISPR/Cas9 in retinal degenerative diseases

    Science.gov (United States)

    Peng, Ying-Qian; Tang, Luo-Sheng; Yoshida, Shigeo; Zhou, Ye-Di

    2017-01-01

    Gene therapy is a potentially effective treatment for retinal degenerative diseases. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been developed as a new genome-editing tool in ophthalmic studies. Recent advances in researches showed that CRISPR/Cas9 has been applied in generating animal models as well as gene therapy in vivo of retinitis pigmentosa (RP) and leber congenital amaurosis (LCA). It has also been shown as a potential attempt for clinic by combining with other technologies such as adeno-associated virus (AAV) and induced pluripotent stem cells (iPSCs). In this review, we highlight the main points of further prospect of using CRISPR/Cas9 in targeting retinal degeneration. We also emphasize the potential applications of this technique in treating retinal degenerative diseases. PMID:28503441

  12. Demonstration of clonable alloreactive host T cells in a primate model for bone marrow transplantation

    International Nuclear Information System (INIS)

    Reisner, Y.; Ben-Bassat, I.; Douer, D.; Kaploon, A.; Schwartz, E.; Ramot, B.

    1986-01-01

    The phenomenon of marrow rejection following supralethal radiochemotherapy was explained in the past mainly by non-T-cell mechanisms known to be resistant to high-dose irradiation. In the present study a low but significant number of radiochemoresistant-clonable T cells was found in the peripheral blood and spleen of Rhesus monkeys following the cytoreductive protocol used for treatment of leukemia patients prior to bone marrow transplantation. More than 95% of the clonable cells are concentrated in the spleen 5 days after transplant. The cells possess immune memory as demonstrated by the generation of alloreactive-specific cytotoxicity. The present findings suggest that host-versus-graft activity may be mediated by alloreactive T cells. It is hoped that elimination of such cells prior to bone marrow transplantation will increase the engraftment rate of HLA-nonidentical marrow in leukemia patients

  13. Arabidopsis thaliana: A model host plant to study plant-pathogen interaction using Chilean field isolates of Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    JUAN GONZÁLEZ

    2006-01-01

    Full Text Available One of the fungal pathogens that causes more agriculture damage is Botrytis cinerea. Botrytis is a constant threat to crops because the fungus infects a wide range of host species, both native and cultivated. Furthermore, Botrytis persists on plant debris in and on the soil. Some of the most serious diseases caused by Botrytis include gray mold on vegetables and fruits, such as grapes and strawberries. Botrytis also causes secondary soft rot of fruits and vegetables during storage, transit and at the market. In many plant-pathogen interactions, resistance often is associated with the deposition of callose, accumulation of autofluorescent compounds, the synthesis and accumulation of salicylic acid as well as pathogenesis-related proteins. Arabidopsis thaliana has been used as a plant model to study plant-pathogen interaction. The genome of Arabidopsis has been completely sequenced and this plant serves as a good genetic and molecular model. In this study, we demonstrate that Chilean field isolates infect Arabidopsis thaliana and that Arabidopsis subsequently activates several defense response mechanisms associated with a hypersensitive response. Furthermore, we propose that Arabidopsis may be used as a model host species to analyze the diversity associated with infectivity among populations of Botrytis cinerea field isolates

  14. Spectrophotometric retinal oximetry in pigs

    DEFF Research Database (Denmark)

    Traustason, Sindri; Kiilgaard, Jens Folke; Karlsson, Robert

    2013-01-01

    PURPOSE: To assess the validity of spectrophotometric retinal oximetry, by comparison to blood gas analysis and intra-vitreal measurements of partial pressure of oxygen (pO2). METHODS: Female domestic pigs were used for all experiments (n=8). Oxygen fraction in inspired air was changed using...... a mixture of room air, pure oxygen and pure nitrogen, ranging from 5% to 100% oxygen. Femoral arterial blood gas analysis and retinal oximetry was performed at each level of inspiratory oxygen fraction. Retinal oximetry was performed using a commercial instrument, the Oxymap Retinal Oximeter T1 (Oxymap ehf...... arterial oxygen saturation and the optical density ratio over retinal arteries revealed an approximately linear relationship (R(2) = 0.74, p = 3.4 x 10(-9)). In order to test the validity of applying the arterial calibration to veins, we compared non-invasive oximetry measurements to invasive pO2...

  15. Efficacy and Safety of Human Retinal Progenitor Cells

    Science.gov (United States)

    Semo, Ma'ayan; Haamedi, Nasrin; Stevanato, Lara; Carter, David; Brooke, Gary; Young, Michael; Coffey, Peter; Sinden, John; Patel, Sara; Vugler, Anthony

    2016-01-01

    Purpose We assessed the long-term efficacy and safety of human retinal progenitor cells (hRPC) using established rodent models. Methods Efficacy of hRPC was tested initially in Royal College of Surgeons (RCS) dystrophic rats immunosuppressed with cyclosporine/dexamethasone. Due to adverse effects of dexamethasone, this drug was omitted from a subsequent dose-ranging study, where different hRPC doses were tested for their ability to preserve visual function (measured by optokinetic head tracking) and retinal structure in RCS rats at 3 to 6 months after grafting. Safety of hRPC was assessed by subretinal transplantation into wild type (WT) rats and NIH-III nude mice, with analysis at 3 to 6 and 9 months after grafting, respectively. Results The optimal dose of hRPC for preserving visual function/retinal structure in dystrophic rats was 50,000 to 100,000 cells. Human retinal progenitor cells integrated/survived in dystrophic and WT rat retina up to 6 months after grafting and expressed nestin, vimentin, GFAP, and βIII tubulin. Vision and retinal structure remained normal in WT rats injected with hRPC and there was no evidence of tumors. A comparison between dexamethasone-treated and untreated dystrophic rats at 3 months after grafting revealed an unexpected reduction in the baseline visual acuity of dexamethasone-treated animals. Conclusions Human retinal progenitor cells appear safe and efficacious in the preclinical models used here. Translational Relevance Human retinal progenitor cells could be deployed during early stages of retinal degeneration or in regions of intact retina, without adverse effects on visual function. The ability of dexamethasone to reduce baseline visual acuity in RCS dystrophic rats has important implications for the interpretation of preclinical and clinical cell transplant studies. PMID:27486556

  16. Using occupancy models to investigate the prevalence of ectoparasitic vectors on hosts: an example with fleas on prairie dogs

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Doherty, Paul F.; Gage, Kenneth L.; Huyvaert, Kathryn P.; Long, Dustin H.; Antolin, Michael F.

    2013-01-01

    Ectoparasites are often difficult to detect in the field. We developed a method that can be used with occupancy models to estimate the prevalence of ectoparasites on hosts, and to investigate factors that influence rates of ectoparasite occupancy while accounting for imperfect detection. We describe the approach using a study of fleas (Siphonaptera) on black-tailed prairie dogs (Cynomys ludovicianus). During each primary occasion (monthly trapping events), we combed a prairie dog three consecutive times to detect fleas (15 s/combing). We used robust design occupancy modeling to evaluate hypotheses for factors that might correlate with the occurrence of fleas on prairie dogs, and factors that might influence the rate at which prairie dogs are colonized by fleas. Our combing method was highly effective; dislodged fleas fell into a tub of water and could not escape, and there was an estimated 99.3% probability of detecting a flea on an occupied host when using three combings. While overall detection was high, the probability of detection was always dogs, flea occupancy was heightened in old/natural colonies of prairie dogs, and on hosts that were in poor condition. Occupancy was initially low in plots with high densities of prairie dogs, but, as the study progressed, the rate of flea colonization increased in plots with high densities of prairie dogs in particular. Our methodology can be used to improve studies of ectoparasites, especially when the probability of detection is low. Moreover, the method can be modified to investigate the co-occurrence of ectoparasite species, and community level factors such as species richness and interspecific interactions.

  17. A benign helminth alters the host immune system and the gut microbiota in a rat model system.

    Science.gov (United States)

    Wegener Parfrey, Laura; Jirků, Milan; Šíma, Radek; Jalovecká, Marie; Sak, Bohumil; Grigore, Karina; Jirků Pomajbíková, Kateřina

    2017-01-01

    Helminths and bacteria are major players in the mammalian gut ecosystem and each influences the host immune system and health. Declines in helminth prevalence and bacterial diversity appear to play a role in the dramatic rise of immune mediated inflammatory diseases (IMIDs) in western populations. Helminths are potent modulators of immune system and their reintroduction is a promising therapeutic avenue for IMIDs. However, the introduction of helminths represents a disturbance for the host and it is important to understand the impact of helminth reintroduction on the host, including the immune system and gut microbiome. We tested the impact of a benign tapeworm, Hymenolepis diminuta, in a rat model system. We find that H. diminuta infection results in increased interleukin 10 gene expression in the beginning of the prepatent period, consistent with induction of a type 2 immune response. We also find induction of humoral immunity during the patent period, shown here by increased IgA in feces. Further, we see an immuno-modulatory effect in the small intestine and spleen in patent period, as measured by reductions in tissue immune cells. We observed shifts in microbiota community composition during the patent period (beta-diversity) in response to H. diminuta infection. However, these compositional changes appear to be minor; they occur within families and genera common to both treatment groups. There was no change in alpha diversity. Hymenolepis diminuta is a promising model for helminth therapy because it establishes long-term, stable colonization in rats and modulates the immune system without causing bacterial dysbiosis. These results suggest that the goal of engineering a therapeutic helminth that can safely manipulate the mammalian immune system without disrupting the rest of the gut ecosystem is in reach.

  18. A benign helminth alters the host immune system and the gut microbiota in a rat model system.

    Directory of Open Access Journals (Sweden)

    Laura Wegener Parfrey

    Full Text Available Helminths and bacteria are major players in the mammalian gut ecosystem and each influences the host immune system and health. Declines in helminth prevalence and bacterial diversity appear to play a role in the dramatic rise of immune mediated inflammatory diseases (IMIDs in western populations. Helminths are potent modulators of immune system and their reintroduction is a promising therapeutic avenue for IMIDs. However, the introduction of helminths represents a disturbance for the host and it is important to understand the impact of helminth reintroduction on the host, including the immune system and gut microbiome. We tested the impact of a benign tapeworm, Hymenolepis diminuta, in a rat model system. We find that H. diminuta infection results in increased interleukin 10 gene expression in the beginning of the prepatent period, consistent with induction of a type 2 immune response. We also find induction of humoral immunity during the patent period, shown here by increased IgA in feces. Further, we see an immuno-modulatory effect in the small intestine and spleen in patent period, as measured by reductions in tissue immune cells. We observed shifts in microbiota community composition during the patent period (beta-diversity in response to H. diminuta infection. However, these compositional changes appear to be minor; they occur within families and genera common to both treatment groups. There was no change in alpha diversity. Hymenolepis diminuta is a promising model for helminth therapy because it establishes long-term, stable colonization in rats and modulates the immune system without causing bacterial dysbiosis. These results suggest that the goal of engineering a therapeutic helminth that can safely manipulate the mammalian immune system without disrupting the rest of the gut ecosystem is in reach.

  19. Host age modulates within-host parasite competition.

    Science.gov (United States)

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-05-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Paternity-parasitism trade-offs: a model and test of host-parasite cooperation in an avian conspecific brood parasite.

    Science.gov (United States)

    Lyon, Bruce E; Hochachka, Wesley M; Eadie, John M

    2002-06-01

    Efforts to evaluate the evolutionary and ecological dynamics of conspecific brood parasitism in birds and other animals have focused on the fitness costs of parasitism to hosts and fitness benefits to parasites. However, it has been speculated recently that, in species with biparental care, host males might cooperate with parasitic females by allowing access to the host nest in exchange for copulations. We develop a cost-benefit model to explore the conditions under which such host-parasite cooperation might occur. When the brood parasite does not have a nest of her own, the only benefit to the host male is siring some of the parasitic eggs (quasi-parasitism). Cooperation with the parasite is favored when the ratio of host male paternity of his own eggs relative to his paternity of parasitic eggs exceeds the cost of parasitism. When the brood parasite has a nest of her own, a host male can gain additional, potentially more important benefits by siring the high-value, low-cost eggs laid by the parasite in her own nest. Under these conditions, host males should be even more likely to accept parasitic eggs in return for copulations with the parasitic female. We tested these predictions for American coots (Fulica americana), a species with a high frequency of conspecific brood parasitism. Multilocus DNA profiling indicated that host males did not sire any of the parasitic eggs laid in host nests, nor did they sire eggs laid by the parasite in her own nest. We used field estimates of the model parameters from a four-year study of coots to predict the minimum levels of paternity required for the costs of parasitism to be offset by the benefits of mating with brood parasites. Observed levels of paternity were significantly lower than those predicted under a variety of assumptions, and we reject the hypothesis that host males cooperated with parasitic females. Our model clarifies the specific costs and benefits that influence host-parasite cooperation and, more generally

  1. Modeling long-term host cell-Giardia lamblia interactions in an in vitro co-culture system.

    Directory of Open Access Journals (Sweden)

    Bridget S Fisher

    Full Text Available Globally, there are greater than 700,000 deaths per year associated with diarrheal disease. The flagellated intestinal parasite, Giardia lamblia, is one of the most common intestinal pathogens in both humans and animals throughout the world. While attached to the gastrointestinal epithelium, Giardia induces epithelial cell apoptosis, disrupts tight junctions, and increases intestinal permeability. The underlying cellular and molecular mechanisms of giardiasis, including the role lamina propria immune cells, such as macrophages, play in parasite control or clearance are poorly understood. Thus far, one of the major obstacles in ascertaining the mechanisms of Giardia pathology is the lack of a functionally relevant model for the long-term study of the parasite in vitro. Here we report on the development of an in vitro co-culture model which maintains the basolateral-apical architecture of the small intestine and allows for long-term survival of the parasite. Using transwell inserts, Caco-2 intestinal epithelial cells and IC-21 macrophages are co-cultured in the presence of Giardia trophozoites. Using the developed model, we show that Giardia trophozoites survive over 21 days and proliferate in a combination media of Caco-2 cell and Giardia medium. Giardia induces apoptosis of epithelial cells through caspase-3 activation and macrophages do not abrogate this response. Additionally, macrophages induce Caco-2 cells to secrete the pro-inflammatory cytokines, GRO and IL-8, a response abolished by Giardia indicating parasite induced suppression of the host immune response. The co-culture model provides additional complexity and information when compared to a single-cell model. This model will be a valuable tool for answering long-standing questions on host-parasite biology that may lead to discovery of new therapeutic interventions.

  2. Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice.

    Science.gov (United States)

    Dysli, Chantal; Dysli, Muriel; Zinkernagel, Martin S; Enzmann, Volker

    2016-12-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) was used to investigate retinal autofluorescence lifetimes in mouse models of pharmacologically induced retinal degeneration over time. Sodium iodate (NaIO 3 , 35 mg/kg intravenously) was used to induce retinal pigment epithelium (RPE) degeneration with subsequent loss of photoreceptors (PR) whereas N-methyl-N-nitrosourea (MNU, 45 mg/kg intraperitoneally) was employed for degeneration of the photoreceptor cell layer alone. All mice were measured at day 3, 7, 14, and 28 after the respective injection of NaIO 3 , MNU or NaCl (control). Fluorescence lifetime imaging was performed using a fluorescence lifetime imaging ophthalmoscope (Heidelberg Engineering, Heidelberg, Germany). Fluorescence was excited at 473 nm and fluorescence lifetimes were measured in a short and a long spectral channel (498-560 nm and 560-720 nm). Corresponding optical coherence tomography (OCT) images were consecutively acquired and histology was performed at the end of the experiments. Segmentation of OCT images and histology verified the cell type-specific degeneration process over time. Retinal autofluorescence lifetimes increased from day 3 to day 28 in mice after NaIO 3 treatment. Finally, at day 28, fluorescence lifetimes were prolonged by 8% in the short and 61% in the long spectral channel compared to control animals (p = 0.21 and p = 0.004, respectively). In mice after MNU treatment, the mean retinal autofluorescence lifetimes were already decreased at day 3 and retinal lifetimes were finally shortened by 27% in the short and 51% in the long spectral channel at day 28 (p = 0.0028). In conclusion, degeneration of the RPE with subsequent photoreceptor degeneration by NaIO 3 lead to longer mean fluorescence lifetimes of the retina compared to control mice, whereas during specific degeneration of the photoreceptor layer induced by MNU shorter lifetimes were measured. Therefore, short retinal fluorescence lifetimes may originate

  3. Effects of cyanobacteria Synechocystis spp. in the host-parasite model Crassostrea gasar–Perkinsus marinus

    Energy Technology Data Exchange (ETDEWEB)

    Queiroga, Fernando Ramos [Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba (Brazil); Marques-Santos, Luis Fernando [Laboratório de Biologia Celular e do Desenvolvimento (LABID), Departamento de Biologia Molecular, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba (Brazil); Hégaret, Hélène [Laboratoire des Sciences de l' Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280, Plouzané (France); Sassi, Roberto [Laboratório de Ambientes Recifais e Biotecnologia de Microalgas (LARBIM), Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba (Brazil); Farias, Natanael Dantas; Santana, Lucas Nunes [Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba (Brazil); and others

    2017-06-15

    cyanobacteria; while neither the WCs nor the ECPs modified phagocytosis of the biological particles, zymosan and P. marinus. Our results suggest a negative effect of cyanobacteria from the Synechocystis genus on host immune cells, in contrast to a more beneficial effect on the parasite cell, which could together disrupt the balance of the host-parasite interaction and make oysters more susceptible to P. marinus as well as opportunistic infections.

  4. Effects of cyanobacteria Synechocystis spp. in the host-parasite model Crassostrea gasar–Perkinsus marinus

    International Nuclear Information System (INIS)

    Queiroga, Fernando Ramos; Marques-Santos, Luis Fernando; Hégaret, Hélène; Sassi, Roberto; Farias, Natanael Dantas; Santana, Lucas Nunes

    2017-01-01

    cyanobacteria; while neither the WCs nor the ECPs modified phagocytosis of the biological particles, zymosan and P. marinus. Our results suggest a negative effect of cyanobacteria from the Synechocystis genus on host immune cells, in contrast to a more beneficial effect on the parasite cell, which could together disrupt the balance of the host-parasite interaction and make oysters more susceptible to P. marinus as well as opportunistic infections.

  5. A Trusted Host's Authentication Access and Control Model Faced on User Action

    Institute of Scientific and Technical Information of China (English)

    ZHANG Miao; XU Guoai; HU Zhengming; YANG Yixian

    2006-01-01

    The conception of trusted network connection (TNC) is introduced, and the weakness of TNC to control user's action is analyzed. After this, the paper brings out a set of secure access and control model based on access, authorization and control, and related authentication protocol. At last the security of this model is analyzed. The model can improve TNC's security of user control and authorization.

  6. Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model

    Science.gov (United States)

    Martin, Francois-Pierre J; Wang, Yulan; Sprenger, Norbert; Yap, Ivan K S; Lundstedt, Torbjörn; Lek, Per; Rezzi, Serge; Ramadan, Ziad; van Bladeren, Peter; Fay, Laurent B; Kochhar, Sunil; Lindon, John C; Holmes, Elaine; Nicholson, Jeremy K

    2008-01-01

    The transgenomic metabolic effects of exposure to either Lactobacillus paracasei or Lactobacillus rhamnosus probiotics have been measured and mapped in humanized extended genome mice (germ-free mice colonized with human baby flora). Statistical analysis of the compartmental fluctuations in diverse metabolic compartments, including biofluids, tissue and cecal short-chain fatty acids (SCFAs) in relation to microbial population modulation generated a novel top-down systems biology view of the host response to probiotic intervention. Probiotic exposure exerted microbiome modification and resulted in altered hepatic lipid metabolism coupled with lowered plasma lipoprotein levels and apparent stimulated glycolysis. Probiotic treatments also altered a diverse range of pathways outcomes, including amino-acid metabolism, methylamines and SCFAs. The novel application of hierarchical-principal component analysis allowed visualization of multicompartmental transgenomic metabolic interactions that could also be resolved at the compartment and pathway level. These integrated system investigations demonstrate the potential of metabolic profiling as a top-down systems biology driver for investigating the mechanistic basis of probiotic action and the therapeutic surveillance of the gut microbial activity related to dietary supplementation of probiotics. PMID:18197175

  7. Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis

    DEFF Research Database (Denmark)

    Moser, Claus; van Gennip, Maria; Bjarnsholt, Thomas

    2009-01-01

    Moser C, van Gennip M, Bjarnsholt T, Jensen PO, Lee B, Hougen HP, Calum H, Ciofu O, Givskov M, Molin S, Hoiby N. Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis. APMIS 2009; 117: 95-107. The dominant cause of premature...... death in patients suffering from cystic fibrosis (CF) is chronic lung infection with Pseudomonas aeruginosa. The chronic lung infection often lasts for decades with just one clone. However, as a result of inflammation, antibiotic treatment and different niches in the lungs, the clone undergoes...... and 2003) of the chronic lung infection of one CF patient using the seaweed alginate embedment model. The results showed that the non-mucoid clones reduced their virulence over time, resulting in faster clearing of the bacteria from the lungs, improved pathology and reduced pulmonary production...

  8. Convergence analysis of particle swarm optimization (PSO) method on the with-in host dengue infection treatment model

    Science.gov (United States)

    Handayani, D.; Nuraini, N.; Tse, O.; Saragih, R.; Naiborhu, J.

    2016-04-01

    PSO is a computational optimization method motivated by the social behavior of organisms like bird flocking, fish schooling and human social relations. PSO is one of the most important swarm intelligence algorithms. In this study, we analyze the convergence of PSO when it is applied to with-in host dengue infection treatment model simulation in our early research. We used PSO method to construct the initial adjoin equation and to solve a control problem. Its properties of control input on the continuity of objective function and ability of adapting to the dynamic environment made us have to analyze the convergence of PSO. With the convergence analysis of PSO we will have some parameters that ensure the convergence result of numerical simulations on this model using PSO.

  9. Roles of Chaperone/Usher Pathways of Yersinia pestis in a Murine Model of Plague and Adhesion to Host Cells

    Science.gov (United States)

    Hatkoff, Matthew; Runco, Lisa M.; Pujol, Celine; Jayatilaka, Indralatha; Furie, Martha B.; Bliska, James B.

    2012-01-01

    Yersinia pestis and many other Gram-negative pathogenic bacteria use the chaperone/usher (CU) pathway to assemble virulence-associated surface fibers termed pili or fimbriae. Y. pestis has two well-characterized CU pathways: the caf genes coding for the F1 capsule and the psa genes coding for the pH 6 antigen. The Y. pestis genome contains additional CU pathways that are capable of assembling pilus fibers, but the roles of these pathways in the pathogenesis of plague are not understood. We constructed deletion mutations in the usher genes for six of the additional Y. pestis CU pathways. The wild-type (WT) and usher deletion strains were compared in the murine bubonic (subcutaneous) and pneumonic (intranasal) plague infection models. Y. pestis strains containing deletions in CU pathways y0348-0352, y1858-1862, and y1869-1873 were attenuated for virulence compared to the WT strain by the intranasal, but not subcutaneous, routes of infection, suggesting specific roles for these pathways during pneumonic plague. We examined binding of the Y. pestis WT and usher deletion strains to A549 human lung epithelial cells, HEp-2 human cervical epithelial cells, and primary human and murine macrophages. Y. pestis CU pathways y0348-0352 and y1858-1862 were found to contribute to adhesion to all host cells tested, whereas pathway y1869-1873 was specific for binding to macrophages. The correlation between the virulence attenuation and host cell binding phenotypes of the usher deletion mutants identifies three of the additional CU pathways of Y. pestis as mediating interactions with host cells that are important for the pathogenesis of plague. PMID:22851745

  10. Genome-Wide Screen for Saccharomyces cerevisiae Genes Contributing to Opportunistic Pathogenicity in an Invertebrate Model Host

    Directory of Open Access Journals (Sweden)

    Sujal S. Phadke

    2018-01-01

    Full Text Available Environmental opportunistic pathogens can exploit vulnerable hosts through expression of traits selected for in their natural environments. Pathogenicity is itself a complicated trait underpinned by multiple complex traits, such as thermotolerance, morphology, and stress response. The baker’s yeast, Saccharomyces cerevisiae, is a species with broad environmental tolerance that has been increasingly reported as an opportunistic pathogen of humans. Here we leveraged the genetic resources available in yeast and a model insect species, the greater waxmoth Galleria mellonella, to provide a genome-wide analysis of pathogenicity factors. Using serial passaging experiments of genetically marked wild-type strains, a hybrid strain was identified as the most fit genotype across all replicates. To dissect the genetic basis for pathogenicity in the hybrid isolate, bulk segregant analysis was performed which revealed eight quantitative trait loci significantly differing between the two bulks with alleles from both parents contributing to pathogenicity. A second passaging experiment with a library of deletion mutants for most yeast genes identified a large number of mutations whose relative fitness differed in vivo vs. in vitro, including mutations in genes controlling cell wall integrity, mitochondrial function, and tyrosine metabolism. Yeast is presumably subjected to a massive assault by the innate insect immune system that leads to melanization of the host and to a large bottleneck in yeast population size. Our data support that resistance to the innate immune response of the insect is key to survival in the host and identifies shared genetic mechanisms between S. cerevisiae and other opportunistic fungal pathogens.

  11. Plant Growth Promoting Bacteria Associated with Langsdorffia hypogaea-Rhizosphere-Host Biological Interface: A Neglected Model of Bacterial Prospection

    Science.gov (United States)

    Felestrino, Érica B.; Santiago, Iara F.; Freitas, Luana da Silva; Rosa, Luiz H.; Ribeiro, Sérvio P.; Moreira, Leandro M.

    2017-01-01

    Soil is a habitat where plant roots and microorganisms interact. In the region of the Brazilian Iron Quadrangle (IQ), studies involving the interaction between microbiota and plants have been neglected. Even more neglected are the studies involving the holoparasite plant Langsdorffia hypogaea Mart. (Balanophoraceae). The geomorphological peculiarities of IQ soil, rich in iron ore, as well as the model of interaction between L. hypogaea, its hosts and the soil provide a unique niche that acts as selective pressure to the evolution of plant growth-promoting bacteria (PGPB). The aim of this study was to prospect the bacterial microbiota of holoparasitic plant L. hypogaea, its plant host and corresponding rhizosphere of IQ soil, and to analyze the potential of these isolates as PGPB. We obtained samples of 11 individuals of L. hypogaea containing fragments of host and rhizosphere remnants, resulting in 81 isolates associated with Firmicutes and Proteobacteria phyla. The ability to produce siderophores, hydrocyanic acid (HCN), indole-3-acetic acid (IAA), nitrogen (N2) fixation, hydrolytic enzymes secretion and inhibition of enteropathogens, and phytopathogens were evaluated. Of the total isolates, 62, 86, and 93% produced, respectively, siderophores, IAA, and were able to fix N2. In addition, 27 and 20% of isolates inhibited the growth of enteropathogens and phytopathogens, respectively, and 58% were able to produce at least one hydrolytic activity investigated. The high number of isolates that produce siderophores and indole-3-acetic acid suggests that this microbiota may be important for adaptation of plants to IQ. The results demonstrate for the first time the biological importance of Brazilian IQ species as reservoirs of specific microbiotas that might be used as PGPB on agricultural land or antropized soils that needs to be reforested. PMID:28239369

  12. Novel Neuroprotective Strategies in Ischemic Retinal Lesions

    Directory of Open Access Journals (Sweden)

    Robert Gabriel

    2010-02-01

    Full Text Available Retinal ischemia can be effectively modeled by permanent bilateral common carotid artery occlusion, which leads to chronic hypoperfusion-induced degeneration in the entire rat retina. The complex pathways leading to retinal cell death offer a complex approach of neuroprotective strategies. In the present review we summarize recent findings with different neuroprotective candidate molecules. We describe the protective effects of intravitreal treatment with: (i urocortin 2; (ii a mitochondrial ATP-sensitive K+ channel opener, diazoxide; (iii a neurotrophic factor, pituitary adenylate cyclase activating polypeptide; and (iv a novel poly(ADP-ribose polymerase inhibitor (HO3089. The retinoprotective effects are demonstrated with morphological description and effects on apoptotic pathways using molecular biological techniques.

  13. Barrier properties of cultured retinal pigment epithelium.

    Science.gov (United States)

    Rizzolo, Lawrence J

    2014-09-01

    The principal function of an epithelium is to form a dynamic barrier that regulates movement between body compartments. Each epithelium is specialized with barrier functions that are specific for the tissues it serves. The apical surface commonly faces a lumen, but the retinal pigment epithelium (RPE) appears to be unique by a facing solid tissue, the sensory retina. Nonetheless, there exists a thin (subretinal) space that can become fluid filled during pathology. RPE separates the subretinal space from the blood supply of the outer retina, thereby forming the outer blood-retinal barrier. The intricate interaction between the RPE and sensory retina presents challenges for learning how accurately culture models reflect native behavior. The challenge is heightened by findings that detail the variation of RPE barrier proteins both among species and at different stages of the life cycle. Among the striking differences is the expression of claudin family members. Claudins are the tight junction proteins that regulate ion diffusion across the spaces that lie between the cells of a monolayer. Claudin expression by RPE varies with species and life-stage, which implies functional differences among commonly used animal models. Investigators have turned to transcriptomics to supplement functional studies when comparing native and cultured tissue. The most detailed studies of the outer blood-retinal barrier have focused on human RPE with transcriptome and functional studies reported for human fetal, adult, and stem-cell derived RPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A hypothetical model of crossing Bombyx mori nucleopolyhedrovirus through its host midgut physical barrier.

    Directory of Open Access Journals (Sweden)

    Yang Cheng

    Full Text Available Bombyx mori nucleopolyhedrovirus (BmNPV is a primary pathogen of silkworm (B. mori that causes severe economic losses each year. However, the molecular mechanisms of silkworm-BmNPV interactions, especially the silkworm proteins that can interact with the virus, are still largely unknown. In this study, the total and membrane proteins of silkworm midguts were displayed using one- and two-dimensional electrophoresis. A virus overlay assay was used to detect B. mori proteins that specifically bind to BmNPV particles. Twelve proteins were located and identified using mass spectrometry, and the different expression of the corresponding genes in BmNPV susceptible and resistant silkworm strains also indicated their involvement in BmNPV infection. The 12 proteins are grouped based on their potential roles in viral infection, for example, endocytosis, intracellular transportation, and host responses. Based on these results, we hypothesize the following: I vacuolar ATP synthase catalytic subunit A and subunit B may be implicated in the process of the membrane fusion of virus and the release of the nucleocapsid into cytoplasm; II actin, enolase and phosphoglycerate kinase are cytoskeleton associated proteins and may play an important role in BmNPV intracellular transportation; III mitochondrial prohibitin complex protein 2, ganglioside-induced differentiation-associated protein, calreticulin, regucalcin-like isoform X1 and 60 kDa heat shock protein are involved in cell apoptosis regulation during BmNPV infection in larvae midguts; IV ribosomal P0 may be associated with BmNPV infection by regulating gene expression of BmNPV; V arginine kinase has a role in the antiviral activities against BmNPV. Our work should prove informative by providing multiple protein targets and a novel direction to investigate the molecular mechanisms of the interactions between silkworms and BmNPV.

  15. A Hypothetical Model of Crossing Bombyx mori Nucleopolyhedrovirus through Its Host Midgut Physical Barrier

    Science.gov (United States)

    Cheng, Yang; Wang, Xue-Yang; Hu, Hao; Killiny, Nabil; Xu, Jia-Ping

    2014-01-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) is a primary pathogen of silkworm (B. mori) that causes severe economic losses each year. However, the molecular mechanisms of silkworm-BmNPV interactions, especially the silkworm proteins that can interact with the virus, are still largely unknown. In this study, the total and membrane proteins of silkworm midguts were displayed using one- and two-dimensional electrophoresis. A virus overlay assay was used to detect B. mori proteins that specifically bind to BmNPV particles. Twelve proteins were located and identified using mass spectrometry, and the different expression of the corresponding genes in BmNPV susceptible and resistant silkworm strains also indicated their involvement in BmNPV infection. The 12 proteins are grouped based on their potential roles in viral infection, for example, endocytosis, intracellular transportation, and host responses. Based on these results, we hypothesize the following: I) vacuolar ATP synthase catalytic subunit A and subunit B may be implicated in the process of the membrane fusion of virus and the release of the nucleocapsid into cytoplasm; II) actin, enolase and phosphoglycerate kinase are cytoskeleton associated proteins and may play an important role in BmNPV intracellular transportation; III) mitochondrial prohibitin complex protein 2, ganglioside-induced differentiation-associated protein, calreticulin, regucalcin-like isoform X1 and 60 kDa heat shock protein are involved in cell apoptosis regulation during BmNPV infection in larvae midguts; IV) ribosomal P0 may be associated with BmNPV infection by regulating gene expression of BmNPV; V) arginine kinase has a role in the antiviral activities against BmNPV. Our work should prove informative by providing multiple protein targets and a novel direction to investigate the molecular mechanisms of the interactions between silkworms and BmNPV. PMID:25502928

  16. Hydro-mechanical modelling of a shaft seal in crystalline and sedimentary host rock media using COMSOL

    Energy Technology Data Exchange (ETDEWEB)

    Priyanto, D.G. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    Shaft seals are components of the engineered barriers system considered for closure of a Deep Geological Repository (DGR). These seals would be installed in strategic locations of the shafts, where significant fracture zones (FZ) are located and would serve to limit upward flow of groundwater from the repository level towards the surface. This paper presents the results of hydro-mechanical (HM) numerical modelling exercises to evaluate the performance of a shaft seal using a finite element computer code, COMSOL. This study considered a variety of host geological media as part of generic assessments of system evolution in a variety of environments including five hypothetical sedimentary and crystalline host rock conditions. Four simulations of a shaft seal in different sedimentary rocks were completed, including: shale with isotropic permeability; shale with anisotropic permeability; limestone with isotropic permeability; and limestone with anisotropic permeability. The other simulation was a shaft seal in crystalline rock with isotropic permeability. Two different stages were considered in these HM simulations. Stages 1 and 2 simulated the groundwater flow into an open shaft and after installation of shaft sealing components, respectively. As expected, the models were able to simulate that installation of the shaft seal limits groundwater flow through the shaft. Based on the conditions and assumptions defined for the host media and fracture features examined in this study, the following conclusions can be drawn from the results of the numerical modelling exercises. A shaft that remained open for a longer time was beneficial with respect to delaying of seal saturation because it could reduce the groundwater flow rate around the fracture zone. Delaying saturation time indicates slower movement of the groundwater or other substances that may be transported with the groundwater. The core of the shaft seal (i.e., the bentonite-sand mixture (BSM)) became fully saturated

  17. Use of a Regression Model to Study Host-Genomic Determinants of Phage Susceptibility in MRSA

    DEFF Research Database (Denmark)

    Zschach, Henrike; Larsen, Mette Voldby; Hasman, Henrik

    2018-01-01

    family enrichment. We show that our models are robust and capture the data’s underlying signal by comparing their performance to that of models build on randomized data. In doing so, we have identified 167 gene families that govern phage resistance in our strain set and performed functional analysis...

  18. Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption.

    Directory of Open Access Journals (Sweden)

    Michelle Lajko

    Full Text Available Bronchopulmonary dysplasia (BPD is a major cause of neonatal morbidity in premature infants, occurring as a result of arrested lung development combined with multiple postnatal insults. Infants with BPD exposed to supplemental oxygen are at risk of retinopathy of prematurity as well. Thus, we studied the effects of hyperoxia on the retinal vasculature in a murine model of BPD. The retinal phenotype of this model, which we termed hyperoxia-induced proliferative retinopathy (HIPR, shows severe disruption of retinal vasculature and loss of vascular patterning, disorganized intra-retinal angiogenesis, inflammation and retinal detachment. Neonatal mice were subjected to 75% oxygen exposure from postnatal day (P0 to P14 to model BPD, then allowed to recover in room air for 1 (P15, 7 (P21, or 14 days (P28. We quantified retinal thickness, protein levels of HIF-1α, NOX2, and VEGF, and examined the cellular locations of these proteins by immunohistochemistry. We examined the retinal blood vessel integrity and inflammatory markers, including macrophages (F4/80 and lymphocytes (CD45R. Compared to controls, normal retinal vascular development was severely disrupted and replaced by a disorganized sheet of intra-retinal angiogenesis in the HIPR mice. At all time-points, HIPR showed persistent hyaloidal vasculature and a significantly thinner central retina compared to controls. HIF-1α protein levels were increased at P15, while VEGF levels continued to increase until P21. Intra-retinal fibrinogen was observed at P21 followed by sub-retinal deposition in at P28. Inflammatory lymphocytes and macrophages were observed at P21 and P28, respectively. This model presents a severe phenotype of disrupted retinal vascular development, intra-retinal angiogenesis inflammation and retinal detachment.

  19. Role of endoplasmic reticulum stress in 12/15-lipoxygenase-induced retinal microvascular dysfunction in a mouse model of diabetic retinopathy.

    Science.gov (United States)

    Elmasry, Khaled; Ibrahim, Ahmed S; Saleh, Heba; Elsherbiny, Nehal; Elshafey, Sally; Hussein, Khaled A; Al-Shabrawey, Mohamed

    2018-05-01

    Our earlier studies have established the role of 12/15-lipoxygenase (LO) in mediating the inflammatory reaction in diabetic retinopathy. However, the exact mechanism is still unclear. The goal of the current study was to identify the potential role of endoplasmic reticulum (ER) stress as a major cellular stress response in the 12/15-LO-induced retinal changes in diabetic retinopathy. We used in vivo and in vitro approaches. For in vivo studies, experimental diabetes was induced in wild-type (WT) mice and 12/15-Lo (also known as Alox15) knockout mice (12/15-Lo -/- ); ER stress was then evaluated after 12-14 weeks of diabetes. We also tested the effect of intravitreal injection of 12-hydroxyeicosatetraenoic acid (HETE) on retinal ER stress in WT mice and in mice lacking the catalytic subunit of NADPH oxidase, encoded by Nox2 (also known as Cybb) (Nox2 -/- mice). In vitro studies were performed using human retinal endothelial cells (HRECs) treated with 15-HETE (0.1 μmol/l) or vehicle, with or without ER stress or NADPH oxidase inhibitors. This was followed by evaluation of ER stress response, NADPH oxidase expression/activity and the levels of phosphorylated vascular endothelial growth factor receptor-2 (p-VEGFR2) by western blotting and immunoprecipitation assays. Moreover, real-time imaging of intracellular calcium (Ca 2+ ) release in HRECs treated with or without 15-HETE was performed using confocal microscopy. Deletion of 12/15-Lo significantly attenuated diabetes-induced ER stress in mouse retina. In vitro, 15-HETE upregulated ER stress markers such as phosphorylated RNA-dependent protein kinase-like ER-regulated kinase (p-PERK), activating transcription factor 6 (ATF6) and protein disulfide isomerase (PDI) in HRECs. Inhibition of ER stress reduced 15-HETE-induced-leucocyte adhesion, VEGFR2 phosphorylation and NADPH oxidase expression/activity. However, inhibition of NADPH oxidase or deletion of Nox2 had no effect on ER stress induced by the 12/15-LO

  20. Taurine Provides Neuroprotection against Retinal Ganglion Cell Degeneration

    Science.gov (United States)

    Froger, Nicolas; Cadetti, Lucia; Lorach, Henri; Martins, Joao; Bemelmans, Alexis-Pierre; Dubus, Elisabeth; Degardin, Julie; Pain, Dorothée; Forster, Valérie; Chicaud, Laurent; Ivkovic, Ivana; Simonutti, Manuel; Fouquet, Stéphane; Jammoul, Firas; Léveillard, Thierry; Benosman, Ryad; Sahel, José-Alain; Picaud, Serge

    2012-01-01

    Retinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was incriminated in the retinal toxicity of an antiepileptic drug. We demonstrate here that taurine can improve RGC survival in culture or in different animal models of RGC degeneration. Taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion) and in a model of Retinitis pigmentosa with secondary RGC degeneration (P23H rats). After a 6-day incubation, 1 mM taurine significantly enhanced RGCs survival (+68%), whereas control RGCs were cultured in a taurine-free medium, containing all natural amino-acids. This effect was found to rely on taurine-uptake by RGCs. Furthermore taurine (1 mM) partly prevented NMDA-induced RGC excitotoxicity. Finally, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats by contrast to controls drinking taurine-free water. This study indicates that enriched taurine nutrition can directly promote RGC survival through RGC intracellular pathways. It provides evidence that taurine can positively interfere with retinal degenerative diseases. PMID:23115615

  1. POLYMORPHISMS OF DOPAMINE RECEPTORS IN PATIENTS WITH RETINITIS PIGMENTOSA

    Directory of Open Access Journals (Sweden)

    Melita T. Kermavnar

    2002-12-01

    Full Text Available Background. Dopamine (DA has a specific role in modulation of retinal function, renewal and phagocytosis of shed discs by the retinal pigment epithelium. Animal model of RCS (Royal College of Surgeons rats which have impaired retinal phagocytosis has shown an appearance similar to the clinical picture seen in patients with advanced retinitis pigmentosa (RP. Based on RCS rats’ studies and the fact that DA has an important role in retinal renewal we assume that certain DA receptor polymorphisms might play a role in pathogenesis of RP.Materials and methods. We compared a group of 65 RP patients and 80 healthy individuals. Using PCR method and restriction with DdeI, TaqI or MspI restriction enzymes (DRD1, DRD2, DRD3 respectively we determined the polymorphisms of DRD1, DRD2 and DRD3. Three models of expression (codominant, dominant, recessive were statistically compared with χ 2-test.Results. We found an evidence for association between DRD2 TaqI RFLP, OR = 1.9 (95% CI: 1.7–2.3, p = 0.08, under autosome recessive model of inheritance. Other models for any of the DRD polymorphisms did not show a significant association with RP.Conclusions. A potential association was found between RP and DRD2 polymorphism. Further investigation is needed to confirm potential implication of DRD2 in the pathogenesis of RP.

  2. Genetics Home Reference: retinitis pigmentosa

    Science.gov (United States)

    ... A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons. ... in known genes account for 58% of autosomal dominant retinitis pigmentosa (adRP). Adv Exp Med Biol. 2008; ...

  3. Automated detection of retinal disease.

    Science.gov (United States)

    Helmchen, Lorens A; Lehmann, Harold P; Abràmoff, Michael D

    2014-11-01

    Nearly 4 in 10 Americans with diabetes currently fail to undergo recommended annual retinal exams, resulting in tens of thousands of cases of blindness that could have been prevented. Advances in automated retinal disease detection could greatly reduce the burden of labor-intensive dilated retinal examinations by ophthalmologists and optometrists and deliver diagnostic services at lower cost. As the current availability of ophthalmologists and optometrists is inadequate to screen all patients at risk every year, automated screening systems deployed in primary care settings and even in patients' homes could fill the current gap in supply. Expanding screens to all patients at risk by switching to automated detection systems would in turn yield significantly higher rates of detecting and treating diabetic retinopathy per dilated retinal examination. Fewer diabetic patients would develop complications such as blindness, while ophthalmologists could focus on more complex cases.

  4. Advances in Retinal Optical Imaging

    Directory of Open Access Journals (Sweden)

    Yanxiu Li

    2018-04-01

    Full Text Available Retinal imaging has undergone a revolution in the past 50 years to allow for better understanding of the eye in health and disease. Significant improvements have occurred both in hardware such as lasers and optics in addition to software image analysis. Optical imaging modalities include optical coherence tomography (OCT, OCT angiography (OCTA, photoacoustic microscopy (PAM, scanning laser ophthalmoscopy (SLO, adaptive optics (AO, fundus autofluorescence (FAF, and molecular imaging (MI. These imaging modalities have enabled improved visualization of retinal pathophysiology and have had a substantial impact on basic and translational medical research. These improvements in technology have translated into early disease detection, more accurate diagnosis, and improved management of numerous chorioretinal diseases. This article summarizes recent advances and applications of retinal optical imaging techniques, discusses current clinical challenges, and predicts future directions in retinal optical imaging.

  5. Prophylactic treatment of retinal breaks

    DEFF Research Database (Denmark)

    Blindbæk, Søren Leer; Grauslund, Jakob

    2015-01-01

    Prophylactic treatment of retinal breaks has been examined in several studies and reviews, but so far, no studies have successfully applied a systematic approach. In the present systematic review, we examined the need of follow-up after posterior vitreous detachment (PVD) - diagnosed by slit...... published before 2012. Four levels of screening identified 13 studies suitable for inclusion in this systematic review. No meta-analysis was conducted as no data suitable for statistical analysis were identified. In total, the initial examination after symptomatic PVD identified 85-95% of subsequent retinal......-47% of cases, respectively. The cumulated incidence of RRD despite prophylactic treatment was 2.1-8.8%. The findings in this review suggest that follow-up after symptomatic PVD is only necessary in cases of incomplete retinal examination at presentation. Prophylactic treatment of symptomatic retinal breaks...

  6. Alternative host models for Testing Anti-Protozoal or Antifungal Compounds and fungal infection.

    Science.gov (United States)

    Torrecilhas, Ana Claudia; Xander, Patricia; Ferreira, Karen Spadari; Batista, Wagner Luiz

    2018-04-12

    The neglected tropical diseases (NTDs) are caused by several parasites, fungi, bacteria and viruses and affect more than one billion people in the world. The control and prevention against NTDs need implementation of alternative methods for testing new compounds against these diseases. For the implementation of alternative methods, it is necessary to apply the principles of replacement, reduction and refinement (the 3Rs) for the use of laboratory animals. Accordingly, the present review addressed a variety of alternative models to study the infections caused by protozoa and fungi. Overall, vertebrate and invertebrate models of fungal infection have been used to elucidate hostpathogen interactions. However, until now the insect model has not been used in protozoal studies as an alternative method, but there is interest in the scientific community to try new tools to screen alternative drugs to control and prevent protozoal infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. The interaction of host genetics and disease processes in chronic livestock disease: a simulation model of ovine footrot.

    Science.gov (United States)

    Russell, V N L; Green, L E; Bishop, S C; Medley, G F

    2013-03-01

    A stochastic, individual-based, simulation model of footrot in a flock of 200 ewes was developed that included flock demography, disease processes, host genetic variation for traits influencing infection and disease processes, and bacterial contamination of the environment. Sensitivity analyses were performed using ANOVA to examine the contribution of unknown parameters to outcome variation. The infection rate and bacterial death rate were the most significant factors determining the observed prevalence of footrot, as well as the heritability of resistance. The dominance of infection parameters in determining outcomes implies that observational data cannot be used to accurately estimate the strength of genetic control of underlying traits describing the infection process, i.e. resistance. Further work will allow us to address the potential for genetic selection to control ovine footrot. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Limitations in the use of Drosophila melanogaster as a model host for gram-positive bacterial infection

    DEFF Research Database (Denmark)

    Jensen, Rikke Lind; Pedersen, K.S.; Loeschcke, V

    2007-01-01

    resistance respectively, were subjected to infection by L. monocytogenes, S. aureus and E. coli. Mortality rates were comparable with that of the Oregon R strain. Conclusions: Use of the injection method shows the limitation of D. melanogaster as a model host for gram-positive bacteria as opportunistic......Aims: To examine sensitivities of various Drosophila melanogaster strains towards human pathogenic and nonpathogenic gram-positive bacteria. Methods and Results: The D. melanogaster Oregon R strain was infected by injecting the thorax with a needle containing Escherichia coli (negative control...... with the negative control. Infection with L. innocua, B. subtilis or C. maltaromaticum also resulted in a high fly mortality, whereas Lact. plantarum and P. acidilactici resulted in a slightly increased mortality. Four additional D. melanogaster lines, three of which had been selected for heat, cold and desiccation...

  9. Concentric retinitis pigmentosa: clinicopathologic correlations.

    Science.gov (United States)

    Milam, A H; De Castro, E B; Smith, J E; Tang, W X; John, S K; Gorin, M B; Stone, E M; Aguirre, G D; Jacobson, S G

    2001-10-01

    Progressive concentric (centripetal) loss of vision is one pattern of visual field loss in retinitis pigmentosa. This study provides the first clinicopathologic correlations for this form of retinitis pigmentosa. A family with autosomal dominant concentric retinitis pigmentosa was examined clinically and with visual function tests. A post-mortem eye of an affected 94 year old family member was processed for histopathology and immunocytochemistry with retinal cell specific antibodies. Unrelated simplex/multiplex patients with concentric retinitis pigmentosa were also examined. Affected family members of the eye donor and patients from the other families had prominent peripheral pigmentary retinopathy with more normal appearing central retina, good visual acuity, concentric field loss, normal or near normal rod and cone sensitivity within the preserved visual field, and reduced rod and cone electroretinograms. The eye donor, at age 90, had good acuity and function in a central island. Grossly, the central region of the donor retina appeared thinned but otherwise normal, while the far periphery contained heavy bone spicule pigment. Microscopically the central retina showed photoreceptor outer segment shortening and some photoreceptor cell loss. The mid periphery had a sharp line of demarcation where more central photoreceptors were near normal except for very short outer segments and peripheral photoreceptors were absent. Rods and cones showed abrupt loss of outer segments and cell death at this interface. It is concluded that concentric retinitis pigmentosa is a rare but recognizable phenotype with slowly progressive photoreceptor death from the far periphery toward the central retina. The disease is retina-wide but shows regional variation in severity of degeneration; photoreceptor death is severe in the peripheral retina with an abrupt edge between viable and degenerate photoreceptors. Peripheral to central gradients of unknown retinal molecule(s) may be defective

  10. Unilateral retinitis pigmentosa sine pigmento.

    Science.gov (United States)

    Pearlman, J T; Saxton, J; Hoffman, G

    1976-05-01

    A patient presented with unilateral findings of night blindness shown by impaired rod function and dark adaptation, constricted visual fields with good central acuity, a barely recordable electro-retinographic b-wave, and a unilaterally impaired electro-oculogram. There were none of the pigmentary changes usually associated with retinitis pigmentosa. The unaffected right eye was normal in all respects. Therefore the case is most probably one of unilateral retinitis pigmentosa sine pigmento.

  11. Light and inherited retinal degeneration

    OpenAIRE

    Paskowitz, D M; LaVail, M M; Duncan, J L

    2006-01-01

    Light deprivation has long been considered a potential treatment for patients with inherited retinal degenerative diseases, but no therapeutic benefit has been demonstrated to date. In the few clinical studies that have addressed this issue, the underlying mutations were unknown. Our rapidly expanding knowledge of the genes and mechanisms involved in retinal degeneration have made it possible to reconsider the potential value of light restriction in specific genetic contexts. This review summ...

  12. Dual Role of Host Par2 in a Murine Model of Spontaneous Metastatic B16 Melanoma

    Czech Academy of Sciences Publication Activity Database

    Olejár, Tomáš; Větvička, D.; Zadinová, M.; Poučková, P.; Kukal, J.; Ježek, Petr; Matěj, R.

    2014-01-01

    Roč. 34, č. 7 (2014), s. 3511-3515 ISSN 0250-7005 R&D Projects: GA ČR(CZ) GAP302/10/0346 Institutional support: RVO:67985823 Keywords : PAR2 * melanoma * metastasis * murine model Subject RIV: EA - Cell Biology Impact factor: 1.826, year: 2014

  13. A case of atypical progressive outer retinal necrosis after highly active antiretroviral therapy.

    Science.gov (United States)

    Woo, Se Joon; Yu, Hyeong Gon; Chung, Hum

    2004-06-01

    This is a report of an atypical case of progressive outer retinal necrosis (PORN) and the effect of highly active antiretroviral therapy (HAART) on the clinical course of viral retinitis in an acquired immunodeficiency syndrome (AIDS) patient. A 22-year-old male patient infected with human immunodeficiency virus (HIV) presented with unilaterally reduced visual acuity and a dense cataract. After cataract extraction, retinal lesions involving the peripheral and macular areas were found with perivascular sparing and the mud-cracked, characteristic appearance of PORN. He was diagnosed as having PORN based on clinical features and was given combined antiviral treatment. With concurrent HAART, the retinal lesions regressed, with the regression being accelerated by further treatment with intravenous acyclovir and ganciclovir. This case suggests that HAART may change the clinical course of PORN in AIDS patients by improving host immunity. PORN should be included in the differential diagnosis of acute unilateral cataract in AIDS patients.

  14. The Protective Effects of Lycium Barbarum Polysaccharides on Transient Retinal Ischemia

    Directory of Open Access Journals (Sweden)

    Di Yang

    2011-05-01

    Full Text Available Retinal ischemia/reperfusion (I/R injury leads to irreversible neuronal death, glial activation, retinal swelling and oxidative stress. It is a common feature in various ocular diseases, such as glaucoma, diabetic retinopathy and amaurosis fugax. In the present study, we aimed to evaluate the effects of Lycium Barbarum Polysaccharides (LBP in a murine retinal I/R model. Mice were orally treated with either vehicle (PBS or LBP (1mg/kg daily for 1 week before induction of retinal ischemia. Retinae were collected after 2 hours ischemia and 22 hours reperfusion. Paraffin-embedded sections were prepared for immunohistochemical analyses. Significantly fewer viable cells were found in vehicle-treated retinae comparing to LBP group. This finding was further confirmed by TUNEL assay where significantly fewer apoptotic cells were identified in LBP-treated retinae. Additionally, retinal swelling induced by retinal I/R injury in the vehicle-treated group was not observed in LBP-treated group. Moreover, intense GFAP immunoreactivity and IgG extravasation were observed in vehicle-treated group but not in LBP treated group. The results showed that pre-treatment with LBP was protective in retinal I/R injury via reducing neuronal death, apoptosis, retinal swelling, GFAP activation and blood vessel leakage. LBP may be used as a preventive agent for retinal ischemia diseases.

  15. The Protective Effects of Lycium Barbarum Polysaccharides on Transient Retinal Ischemia

    Science.gov (United States)

    Yang, Di; Li, Suk-Yee; Yeung, Chung-Man; Yu, Wing-Yan; Chang, Raymond Chuen-Chung; So, Kwok-Fai; Wong, David; Lo, Amy C. Y.

    2011-01-01

    Retinal ischemia/reperfusion (I/R) injury leads to irreversible neuronal death, glial activation, retinal swelling and oxidative stress. It is a common feature in various ocular diseases, such as glaucoma, diabetic retinopathy and amaurosis fugax. In the present study, we aimed to evaluate the effects of Lycium Barbarum Polysaccharides (LBP) in a murine retinal I/R model. Mice were orally treated with either vehicle (PBS) or LBP (1mg/kg) daily for 1 week before induction of retinal ischemia. Retinae were collected after 2 hours ischemia and 22 hours reperfusion. Paraffin-embedded sections were prepared for immunohistochemical analyses. Significantly fewer viable cells were found in vehicle-treated retinae comparing to LBP group. This finding was further confirmed by TUNEL assay where significantly fewer apoptotic cells were identified in LBP-treated retinae. Additionally, retinal swelling induced by retinal I/R injury in the vehicle-treated group was not observed in LBP-treated group. Moreover, intense GFAP immunoreactivity and IgG extravasation were observed in vehicle-treated group but not in LBP treated group. The results showed that pre-treatment with LBP was protective in retinal I/R injury via reducing neuronal death, apoptosis, retinal swelling, GFAP activation and blood vessel leakage. LBP may be used as a preventive agent for retinal ischemia diseases.

  16. Geologic characteristics of sediment- and volcanic-hosted disseminated gold deposits - Search for an occurrence model

    Science.gov (United States)

    White, Donald E.; Fournier, Robert O.; Rytuba, James J.; Rye, Robert O.; Cunningham, Charles G.; Berger, Byron R.; Silberman, Miles L.; Bonham, Harold F.; Strachan, Donald G.; Birak, Donald J.; Hawkins, Robert J.; Tooker, Edwin W.; Tooker, Edwin W.

    1985-01-01

    The current expansion of resource information, particularly on "disseminated" gold, and the improved technologies now available for resource investigations should place us in an enhanced position for developing a better predictive methodology for meeting one of the important responsibilities of the U.S. Geological Survey-to examine and assess the mineral resources of the geologic terranes composing the public (and privately owned) lands of the United States. The first step is systematic organization of these data. Geologic-occurrence models are an effective systematic method by which to organize large amounts of resource information into a logical sequence facilitating its use more effectively in meeting several industry and Survey objectives, which include the exploration for resources and the assessment of resource potential for land-use decisions. Such models also provide a scientific basis for metallogenesis research, which considers the observable features or attributes of ore occurrence and their "fit" into the Earth's resource puzzle. The use of models in making resource assessments/appraisals was addressed by Shawe (1981), who reported the results of a workshop on methods for resource appraisal of Wilderness and Conterminous United States Mineral Appraisal Program (CUSMAP; 1:250,000-scale quadrangles) areas. The Survey's main objective in the 1982 workshop was to evaluate the status of knowledge about disseminated or very fine grained gold deposits and, if possible, to develop an occurrence model(s).This report on the workshop proceedings has three main objectives: (1) Education through the publication of a summary review and presentation of new thinking and observations about the scientific bases for those geologic processes and environments that foster disseminated gold-ore formation; (2) systematic organization of available geologic, geochemical, and geophysical information for a range of typical disseminated gold deposits (including recognition of gaps

  17. A family of SCFTs hosting all 'very attractive' relatives of the (2)4 Gepner model

    International Nuclear Information System (INIS)

    Wendland, Katrin

    2006-01-01

    This work gives a manual for constructing superconformal field theories associated to a family of smooth K3 surfaces. A direct method is not known, but a combination of orbifold techniques with a non-classical duality turns out to yield such models. A four parameter family of superconformal field theories associated to certain quartic K3 surfaces in CP 3 is obtained, four of whose complex structure parameters give the parameters within superconformal field theory. Standard orbifold techniques are used to construct these models, so on the level of superconformal field theory they are already well understood. All 'very attractive' K3 surfaces belong to the family of quartics underlying these theories, that is all quartic hypersurfaces in CP 3 with maximal Picard number whose defining polynomial is given by the sum of two polynomials in two variables. A particular member of the family is the (2) 4 Gepner model, such that these theories can be viewed as complex structure deformations of (2) 4 in its geometric interpretation on the Fermat quartic

  18. Dose-response model of murine typhus (Rickettsia typhi: time post inoculation and host age dependency analysis

    Directory of Open Access Journals (Sweden)

    Tamrakar Sushil B

    2012-03-01

    Full Text Available Abstract Background Rickettsia typhi (R. mooseri is the causative agent of murine typhus. It is one of the most widely distributed flea-borne diseases with a relatively mild febrile initial illness with six to 14 days of incubation period. The bacterium is gram negative and an obligate intracellular pathogen. The disease is transmitted to humans and vertebrate host through fleabites or via contact with infected feces. This paper develops dose-response models of different routes of exposure for typhus in rodents. Methods Data from published articles were analyzed using parametric dose-response relationship models. Dose-response relationships were fit to data using the method of maximum likelihood estimation (MLE. Results Dose-response models quantifying the effects of different ages of rats and time post inoculation in BALB/c mice were analyzed in the study. Both the adult rats (inoculated intradermally and newborn rats (inoculated subcutaneously were best fit by exponential models and both distributions could be described by a single dose-response relationship. The BALB/C mice inoculated subcutaneously were best fit by Beta-Poisson models. The time post inoculation analysis showed that there was a definite time and response relationship existed in this case. Conclusions Intradermally or subcutaneously inoculated rats (adult and newborn models suggest that less than 1 plaque-forming unit (PFU (1.33 to 0.38 in 95% confidence limits of the pathogen is enough to seroconvert 50% of the exposed population on average. For the BALB/c mouse time post inoculation model, an average dose of 0.28 plaque-forming units (PFU (0.75 to 0.11 in 95% confidence limits will seroconvert 50% of the exposed mice.

  19. Evidence for diffuse central retinal edema in vivo in diabetic male Sprague Dawley rats.

    Directory of Open Access Journals (Sweden)

    Bruce A Berkowitz

    Full Text Available Investigations into the mechanism of diffuse retinal edema in diabetic subjects have been limited by a lack of animal models and techniques that co-localized retinal thickness and hydration in vivo. In this study we test the hypothesis that a previously reported supernormal central retinal thickness on MRI measured in experimental diabetic retinopathy in vivo represents a persistent and diffuse edema.In diabetic and age-matched control rats, and in rats experiencing dilutional hyponatremia (as a positive edema control, whole central retinal thickness, intraretinal water content and apparent diffusion coefficients (ADC, 'water mobility' were measured in vivo using quantitative MRI methods. Glycated hemoglobin and retinal thickness ex vivo (histology were also measured in control and diabetic groups. In the dilutional hyponatremia model, central retinal thickness and water content were supernormal by quantitative MRI, and intraretinal water mobility profiles changed in a manner consistent with intracellular edema. Groups of diabetic (2, 3, 4, 6, and 9 mo of diabetes, and age-matched controls were then investigated with MRI and all diabetic rats showed supernormal whole central retinal thickness. In a separate study in 4 mo diabetic rats (and controls, MRI retinal thickness and water content metrics were significantly greater than normal, and ADC was subnormal in the outer retina; the increase in retinal thickness was not detected histologically on sections of fixed and dehydrated retinas from these rats.Diabetic male Sprague Dawley rats demonstrate a persistent and diffuse retinal edema in vivo, providing, for the first time, an important model for investigating its pathogenesis and treatment. These studies also validate MRI as a powerful approach for investigating mechanisms of diabetic retinal edema in future experimental and clinical investigations.

  20. Host - HIF- 1alpha Pathway And Hypoxia: In Vitro Studies And Mathematical Model

    Science.gov (United States)

    2016-08-30

    E., Del Sal, G., Gustincich, S . (2010). Parkinson disease-associated DJ-1 required for the expression of the glial cell line-derived neurotrophic...other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a...Model 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER NA 5c. PROGRAM ELEMENT NUMBER 62202F 6. AUTHOR( S ) Robinson, Peter J.1, Molly E. Chapleau1

  1. A Caenorhabditis elegans Host Model Correlates with Invasive Disease Caused by Staphylococcus aureus Recovered during an Outbreak in Neonatal Intensive Care

    Directory of Open Access Journals (Sweden)

    Kaiyu Wu

    2012-01-01

    Full Text Available BACKGROUND: Caenorhabditis elegans has previously been used as a host model to determine the virulence of clinical methicillin-resistant Staphylococcus aureus isolates. In the present study, methicillin-susceptible S aureus (MSSA strains associated with an outbreak in a neonatal intensive care unit (NICU were investigated using the C elegans model.

  2. Determination of retinal surface area.

    Science.gov (United States)

    Nagra, Manbir; Gilmartin, Bernard; Thai, Ngoc Jade; Logan, Nicola S

    2017-09-01

    Previous attempts at determining retinal surface area and surface area of the whole eye have been based upon mathematical calculations derived from retinal photographs, schematic eyes and retinal biopsies of donor eyes. 3-dimensional (3-D) ocular magnetic resonance imaging (MRI) allows a more direct measurement, it can be used to image the eye in vivo, and there is no risk of tissue shrinkage. The primary purpose of this study is to compare, using T2-weighted 3D MRI, retinal surface areas for superior-temporal (ST), inferior-temporal (IT), superior-nasal (SN) and inferior-nasal (IN) retinal quadrants. An ancillary aim is to examine whether inter-quadrant variations in area are concordant with reported inter-quadrant patterns of susceptibility to retinal breaks associated with posterior vitreous detachment (PVD). Seventy-three adult participants presenting without retinal pathology (mean age 26.25 ± 6.06 years) were scanned using a Siemens 3-Tesla MRI scanner to provide T2-weighted MR images that demarcate fluid-filled internal structures for the whole eye and provide high-contrast delineation of the vitreous-retina interface. Integrated MRI software generated total internal ocular surface area (TSA). The second nodal point was used to demarcate the origin of the peripheral retina in order to calculate total retinal surface area (RSA) and quadrant retinal surface areas (QRSA) for ST, IT, SN, and IN quadrants. Mean spherical error (MSE) was -2.50 ± 4.03D and mean axial length (AL) 24.51 ± 1.57 mm. Mean TSA and RSA for the RE were 2058 ± 189 and 1363 ± 160 mm 2 , respectively. Repeated measures anova for QRSA data indicated a significant difference within-quadrants (P area/mm increase in AL. Although the differences between QRSAs are relatively small, there was evidence of concordance with reported inter-quadrant patterns of susceptibility to retinal breaks associated with PVD. The data allow AL to be converted to QRSAs, which will assist further

  3. RESOLVING THE ACTIVE GALACTIC NUCLEUS AND HOST EMISSION IN THE MID-INFRARED USING A MODEL-INDEPENDENT SPECTRAL DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Hernán-Caballero, Antonio; Alonso-Herrero, Almudena [Instituto de Física de Cantabria, CSIC-UC, Avenida de los Castros s/n, E-39005, Santander (Spain); Hatziminaoglou, Evanthia [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Spoon, Henrik W. W. [Cornell University, CRSR, Space Sciences Building, Ithaca, NY 14853 (United States); Almeida, Cristina Ramos [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Santos, Tanio Díaz [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Hönig, Sebastian F. [School of Physics and Astronomy, University of Southampton, Southampton SO18 1BJ (United Kingdom); González-Martín, Omaira [Centro de Radioastronomía y Astrofísica (CRyA-UNAM), 3-72 (Xangari), 8701, Morelia (Mexico); Esquej, Pilar, E-mail: ahernan@ifca.unican.es [Departamento de Astrofísica, Facultad de CC. Físicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2015-04-20

    We present results on the spectral decomposition of 118 Spitzer Infrared Spectrograph (IRS) spectra from local active galactic nuclei (AGNs) using a large set of Spitzer/IRS spectra as templates. The templates are themselves IRS spectra from extreme cases where a single physical component (stellar, interstellar, or AGN) completely dominates the integrated mid-infrared emission. We show that a linear combination of one template for each physical component reproduces the observed IRS spectra of AGN hosts with unprecedented fidelity for a template fitting method with no need to model extinction separately. We use full probability distribution functions to estimate expectation values and uncertainties for observables, and find that the decomposition results are robust against degeneracies. Furthermore, we compare the AGN spectra derived from the spectral decomposition with sub-arcsecond resolution nuclear photometry and spectroscopy from ground-based observations. We find that the AGN component derived from the decomposition closely matches the nuclear spectrum with a 1σ dispersion of 0.12 dex in luminosity and typical uncertainties of ∼0.19 in the spectral index and ∼0.1 in the silicate strength. We conclude that the emission from the host galaxy can be reliably removed from the IRS spectra of AGNs. This allows for unbiased studies of the AGN emission in intermediate- and high-redshift galaxies—currently inaccesible to ground-based observations—with archival Spitzer/IRS data and in the future with the Mid-InfraRed Instrument of the James Webb Space Telescope. The decomposition code and templates are available at http://denebola.org/ahc/deblendIRS.

  4. Modeling Multi-wavelength Stellar Astrometry. III. Determination of the Absolute Masses of Exoplanets and Their Host Stars

    Science.gov (United States)

    Coughlin, J. L.; López-Morales, Mercedes

    2012-05-01

    Astrometric measurements of stellar systems are becoming significantly more precise and common, with many ground- and space-based instruments and missions approaching 1 μas precision. We examine the multi-wavelength astrometric orbits of exoplanetary systems via both analytical formulae and numerical modeling. Exoplanets have a combination of reflected and thermally emitted light that causes the photocenter of the system to shift increasingly farther away from the host star with increasing wavelength. We find that, if observed at long enough wavelengths, the planet can dominate the astrometric motion of the system, and thus it is possible to directly measure the orbits of both the planet and star, and thus directly determine the physical masses of the star and planet, using multi-wavelength astrometry. In general, this technique works best for, though is certainly not limited to, systems that have large, high-mass stars and large, low-mass planets, which is a unique parameter space not covered by other exoplanet characterization techniques. Exoplanets that happen to transit their host star present unique cases where the physical radii of the planet and star can be directly determined via astrometry alone. Planetary albedos and day-night contrast ratios may also be probed via this technique due to the unique signature they impart on the observed astrometric orbits. We develop a tool to examine the prospects for near-term detection of this effect, and give examples of some exoplanets that appear to be good targets for detection in the K to N infrared observing bands, if the required precision can be achieved.

  5. MODELING MULTI-WAVELENGTH STELLAR ASTROMETRY. III. DETERMINATION OF THE ABSOLUTE MASSES OF EXOPLANETS AND THEIR HOST STARS

    International Nuclear Information System (INIS)

    Coughlin, J. L.; López-Morales, Mercedes

    2012-01-01

    Astrometric measurements of stellar systems are becoming significantly more precise and common, with many ground- and space-based instruments and missions approaching 1 μas precision. We examine the multi-wavelength astrometric orbits of exoplanetary systems via both analytical formulae and numerical modeling. Exoplanets have a combination of reflected and thermally emitted light that causes the photocenter of the system to shift increasingly farther away from the host star with increasing wavelength. We find that, if observed at long enough wavelengths, the planet can dominate the astrometric motion of the system, and thus it is possible to directly measure the orbits of both the planet and star, and thus directly determine the physical masses of the star and planet, using multi-wavelength astrometry. In general, this technique works best for, though is certainly not limited to, systems that have large, high-mass stars and large, low-mass planets, which is a unique parameter space not covered by other exoplanet characterization techniques. Exoplanets that happen to transit their host star present unique cases where the physical radii of the planet and star can be directly determined via astrometry alone. Planetary albedos and day-night contrast ratios may also be probed via this technique due to the unique signature they impart on the observed astrometric orbits. We develop a tool to examine the prospects for near-term detection of this effect, and give examples of some exoplanets that appear to be good targets for detection in the K to N infrared observing bands, if the required precision can be achieved.

  6. Heritability of retinal vascular fractals: a twin study

    DEFF Research Database (Denmark)

    Vergmann, Anna Stage; Broe, Rebecca; Kessel, Line

    . The retinal vascular fractal dimension was measured using the box-counting method and compared within monozygotic and dizygotic twin pairs using Pearson correlation coefficents. Falconer´s formula and quantitative genetic models were used to determine the genetic component of variation. Results: The retinal...... for quantitative analysis of heritability. The intrapair correlation was markedly higher (0.505, p=0.0002) in monozygotic twins than in dizygotic twins (0.108, p=0.46), corresponding to a heritability h2 for the fractal dimension of 0.79. In quantitative genetic models, 54% of the variation was explained...

  7. Retinal pigmentary changes in chronic uveitis mimicking retinitis pigmentosa.

    Science.gov (United States)

    Sevgi, D Damla; Davoudi, Samaneh; Comander, Jason; Sobrin, Lucia

    2017-09-01

    To present retinal pigmentary changes mimicking retinitis pigmentosa (RP) as a finding of advanced uveitis. We retrospectively reviewed charts of patients without a family history of inherited retinal degenerations who presented with retinal pigment changes and signs of past or present intraocular inflammation. Comprehensive eye examination including best-corrected visual acuity, slit-lamp examination and dilated fundus examination was performed on all patients in addition to color fundus photography, optical coherence tomography, fluorescein angiography (FA), and full-field electroretinogram testing. We identified five patients with ages ranging from 33 to 66 years, who presented with RP-like retinal pigmentary changes which were eventually attributed to longstanding uveitis. The changes were bilateral in three cases and unilateral in two cases. Four of five cases presented with active inflammation, and the remaining case showed evidence of active intraocular inflammation during follow-up. This study highlights the overlapping features of advanced uveitis and RP including the extensive pigmentary changes. Careful review of possible past uveitis history, detailed examination of signs of past or present inflammation and ancillary testing, with FA often being most helpful, are required for the correct diagnosis. This is important, because intervention can prevent further damage if the cause of the pigmentary changes is destructive inflammation.

  8. Retinal detachment in paediatric patients

    International Nuclear Information System (INIS)

    Zafar, S. N.; Qureshi, N.; Azad, N.; Khan, A.

    2013-01-01

    Objective: To assess the causes of retinal detachment in children and the various operative procedures requiring vitreoretinal surgical intervention for the same. Study Design: Case series. Place and Duration of Study: Department of Ophthalmology, Al-Shifa Trust Eye Hospital, Rawalpindi, from January 2006 to May 2009. Methodology: A total of 281 eyes of 258 patients, (aged 0 - 18 years) who underwent vitreo-retinal surgical intervention for retinal detachment were included. Surgical log was searched for the type of retinal detachment and its causes. Frequencies of various interventions done in these patients viz. vitrectomy, scleral buckle, use of tamponading agents, laser photocoagulation and cryotherapy were noted. Results were described as descriptive statistics. Results: Myopia was the cause in 62 (22.1%) and trauma in 51 (18.1%) of the eyes. Total retinal detachment (RD) was treated in 94 (33.5%) eyes, sub total RD in 36 (12.8%), recurrent RD in 32 (11.4%), giant retinal tear in 28 (10%), tractional RD in 15 (5.3%) and exudative RD in 2 (0.7%). Prophylactic laser or cryotherapy was applied in 74 (26.3%) of the eyes. Pars plana vitrectomy (PPV) was carried out in 159 (56.6%) eyes while scleral buckle procedure was done in 129 (45.9%) eyes. Silicon oil was used in 149 (53%), perfluorocarbon liquid in 32 (11.4%) and gas tamponade in 20 (7.1%) eyes. Conclusion: The most common cause of retinal detachment in paediatric patients was myopia, followed by trauma. Total RD was more common as compared to the other types. The most common procedure adopted was pars plana vitrectomy followed by scleral buckle procedure. (author)

  9. From retinal waves to activity-dependent retinogeniculate map development.

    Science.gov (United States)

    Markowitz, Jeffrey; Cao, Yongqiang; Grossberg, Stephen

    2012-01-01

    A neural model is described of how spontaneous retinal waves are formed in infant mammals, and how these waves organize activity-dependent development of a topographic map in the lateral geniculate nucleus, with connections from each eye segregated into separate anatomical layers. The model simulates the spontaneous behavior of starburst amacrine cells and retinal ganglion cells during the production of retinal waves during the first few weeks of mammalian postnatal development. It proposes how excitatory and inhibitory mechanisms within individual cells, such as Ca(2+)-activated K(+) channels, and cAMP currents and signaling cascades, can modulate the spatiotemporal dynamics of waves, notably by controlling the after-hyperpolarization currents of starburst amacrine cells. Given the critical role of the geniculate map in the development of visual cortex, these results provide a foundation for analyzing the temporal dynamics whereby the visual cortex itself develops.

  10. From retinal waves to activity-dependent retinogeniculate map development.

    Directory of Open Access Journals (Sweden)

    Jeffrey Markowitz

    Full Text Available A neural model is described of how spontaneous retinal waves are formed in infant mammals, and how these waves organize activity-dependent development of a topographic map in the lateral geniculate nucleus, with connections from each eye segregated into separate anatomical layers. The model simulates the spontaneous behavior of starburst amacrine cells and retinal ganglion cells during the production of retinal waves during the first few weeks of mammalian postnatal development. It proposes how excitatory and inhibitory mechanisms within individual cells, such as Ca(2+-activated K(+ channels, and cAMP currents and signaling cascades, can modulate the spatiotemporal dynamics of waves, notably by controlling the after-hyperpolarization currents of starburst amacrine cells. Given the critical role of the geniculate map in the development of visual cortex, these results provide a foundation for analyzing the temporal dynamics whereby the visual cortex itself develops.

  11. Immune recognition of Onchocerca volvulus proteins in the human host and animal models of onchocerciasis.

    Science.gov (United States)

    Manchang, T K; Ajonina-Ekoti, I; Ndjonka, D; Eisenbarth, A; Achukwi, M D; Renz, A; Brattig, N W; Liebau, E; Breloer, M

    2015-05-01

    Onchocerca volvulus is a tissue-dwelling, vector-borne nematode parasite of humans and is the causative agent of onchocerciasis or river blindness. Natural infections of BALB/c mice with Litomosoides sigmodontis and of cattle with Onchocerca ochengi were used as models to study the immune responses to O. volvulus-derived recombinant proteins (OvALT-2, OvNLT-1, Ov103 and Ov7). The humoral immune response of O. volvulus-infected humans against OvALT-2, OvNLT-1 and Ov7 revealed pronounced immunoglobulin G (IgG) titres which were, however, significantly lower than against the lysate of O. volvulus adult female worms. Sera derived from patients displaying the hyperreactive form of onchocerciasis showed a uniform trend of higher IgG reactivity both to the single proteins and the O. volvulus lysate. Sera derived from L. sigmodontis-infected mice and from calves exposed to O. ochengi transmission in a hyperendemic area also contained IgM and IgG1 specific for O. volvulus-derived recombinant proteins. These results strongly suggest that L. sigmodontis-specific and O. ochengi-specific immunoglobulins elicited during natural infection of mice and cattle cross-reacted with O. volvulus-derived recombinant antigens. Monitoring O. ochengi-infected calves over a 26-month period, provided a comprehensive kinetic of the humoral response to infection that was strictly correlated with parasite load and occurrence of microfilariae.

  12. Retinal vascular oximetry during ranibizumab treatment of central retinal vein occlusion

    DEFF Research Database (Denmark)

    Traustason, Sindri; la Cour, Morten; Larsen, Michael

    2014-01-01

    PURPOSE: To investigate the effect of intravitreal injections of the vascular endothelial growth factor inhibitor ranibizumab on retinal oxygenation in patients with central retinal vein occlusion (CRVO). METHODS: Retinal oxygen saturation in patients with CRVO was analysed using the Oxymap Retin...

  13. Gene Correction Reverses Ciliopathy and Photoreceptor Loss in iPSC-Derived Retinal Organoids from Retinitis Pigmentosa Patients

    Directory of Open Access Journals (Sweden)

    Wen-Li Deng

    2018-04-01

    Full Text Available Summary: Retinitis pigmentosa (RP is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence. : Jin and colleagues demonstrate that patient-specific iPSC-derived 3D retinae can recapitulate disease progress of retinitis pigmentosa through presenting defects in photoreceptor morphology, gene profile, and electrophysiology, as well as the defective ciliogenesis in iPSCs, iPSC-RPE, and 3D retinae. CRISPR/Cas9-mediated gene correction can rescue not only photoreceptor structure and electrophysiological property but also observed ciliopathy. Keywords: RPGR, photoreceptor, electrophysiology, retinitis pigmentosa, patient-derived iPSCs, retinal organoid, RPE cells, cilium, ciliopathy, disease modeling

  14. Noninvasive Retinal Markers in Diabetic Retinopathy

    DEFF Research Database (Denmark)

    Blindbæk, Søren Leer; Torp, Thomas Lee; Lundberg, Kristian

    2017-01-01

    The retinal vascular system is the only part of the human body available for direct, in vivo inspection. Noninvasive retinal markers are important to identity patients in risk of sight-threatening diabetic retinopathy. Studies have correlated structural features like retinal vascular caliber...... and fractals with micro- and macrovascular dysfunction in diabetes. Likewi