Collisions between complex atomic nuclei
International Nuclear Information System (INIS)
Vaagen, J. S.
1977-08-01
The use of heavy ion accelerators in the study of nuclear structure and states is reviewed. The reactions discussed are the quasielastic reactions in which small amounts of energy and few particles are exchanged between the colliding nuclei. The development of heavy ion accelerators is also discussed, as well as detection equipment. Exotic phenomena, principally the possible existence of superheavy nuclei, are also treated. (JIW)
Complex fragments from excited actinide nuclei. A new test of the finite range model
International Nuclear Information System (INIS)
Sarantities, D.G.; Bowman, D.R.; Wozniak, G.J.; Charity, R.J.; Liu, Z.H.; McDonald, R.J.; McMahan, M.A.; Moretto, L.G.
1989-01-01
Complex fragments ranging in charge from 7 ≤ Z ≤ 45 have been detected in binary coincidence following the reaction of 8.4 MeV/u 232 Th+ 12 C, and are shown to arise from the binary decay of a 244 Cm compound nucleus. This work confirms earlier radiochemical observations of very light fragments in the fission fragment mass distribution, establishes their binary character, and interprets their yield in terms of finite range potential energy barriers. (orig.)
Complex fragments from excited actinide nuclei: A new test of the finite range model
International Nuclear Information System (INIS)
Sarantities, D.G.; Bowman, D.R.; Wozniak, G.J.; Charity, R.J.; Liu, Z.H.; McDonald, R.J.; McMahan, M.A.; Moretto, L.G.
1988-05-01
Complex fragments ranging in charge from 7≤Z≤45 have been detected in binary coincidence following the reaction of 8.4 MeV/u 232 Th+ 12 C, and are shown to arise from the binary decay of a 244 Cm compound nucleus. This work confirms earlier radiochemical observations of very light fragments in the fission fragment mass distribution, establishes their binary character, and interprets their yield in terms of finite range potential energy barriers. 15 refs., 3 figs
A phenomenological model of deep-inelastic collisions between complex nuclei
International Nuclear Information System (INIS)
Siwek-Wilczynska, K.; Wilczynski, J.
1976-01-01
A simple model of heavy-ion collisions is proposed. Classical equations of motion with inclusion of a phenomenological two-body friction force are integrated numerically along trajectories. The nucleus-nucleus interaction potential which is used in the calculations includes deformation degrees of freedom in the exit channel. Both entrance and exit-channel potentials are based on the boundary conditions following the liquid-drop model. The existing data on fusion cross sections, and also the energy-angle distributions of deep-inelastic reactions are very well reproduced by the model. (author)
Complex fragment emission from hot compound nuclei
International Nuclear Information System (INIS)
Moretto, L.G.
1986-03-01
The experimental evidence for compound nucleus emission of complex fragments at low energies is used to interpret the emission of the same fragments at higher energies. The resulting experimental picture is that of highly excited compound nuclei formed in incomplete fusion processes which decay statistically. In particular, complex fragments appear to be produced mostly through compound nucleus decay. In the appendix a geometric-kinematic theory for incomplete fusion and the associated momentum transfer is outlined. 10 refs., 19 figs
International Nuclear Information System (INIS)
Harvey, M.; Khanna, F.C.
1975-01-01
The general problem of what constitutes a physical model and what is known about the free nucleon-nucleon interaction are considered. A time independent formulation of the basic equations is chosen. Construction of the average field in which particles move in a general independent particle model is developed, concentrating on problems of defining the average spherical single particle field for any given nucleus, and methods for construction of effective residual interactions and other physical operators. Deformed shell models and both spherical and deformed harmonic oscillator models are discussed in detail, and connections between spherical and deformed shell models are analyzed. A section on cluster models is included. 11 tables, 21 figures
On Complex Nuclei Energetics in LENR
Miley, George H.; Hora, Heinz
2005-03-01
Swimming Electron Layer (SEL) theory plus fission of ``complex nuclei'' were proposed earlier to explain reaction products observed in electrolysis with multi-layer thin-film metallic electrodesootnotetext1.G.H. Miley, and J.A. Patterson, J. New Energy, Vol. 1, pp.11-15, (1996).. SEL was then extended to treat gas-diffusion driven transmutation experimentsootnotetextG. H. Miley and H. Hora, ``Nuclear Reactions in Solids,'' APS DNP Mtg., East Lansing, MI, Oct (2002).. It is also consistent with measured charged-particle emission during thin-film electrolysis and x-ray emission during plasma bombardment experimentsootnotetextA. Karabut, ``X-ray emission in high-current glow discharge,'' Proc., ICCF-9, Beijing China, May (2002).. The binding energy per complex nucleon can be estimated by an energy balance combined with identification of products for each complex e.g. complexes of A 39 have ˜ 0.05 MeV/Nucleon, etc, in thin film electrolysis. Energies in gas diffusion experiments are lower due to the reduced trap site potential at the multi-atom surface. In the case of x-ray emission, complexes involve subsurface defect center traps, giving only a few keV/Nucleon, consistent with experiments^3.
Mean-field models and exotic nuclei
Energy Technology Data Exchange (ETDEWEB)
Bender, M; Buervenich, T; Maruhn, J A; Greiner, W [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P G [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)
1998-06-01
We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)
Mean-field models and exotic nuclei
International Nuclear Information System (INIS)
Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W.; Rutz, K.; Reinhard, P.G.
1998-01-01
We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)
Collective models of transition nuclei Pt. 2
International Nuclear Information System (INIS)
Dombradi, Zs.
1982-01-01
The models describing the even-odd and odd-odd transition nuclei (nuclei of moderate ground state deformation) are reviewed. The nuclear core is described by models of even-even nuclei, and the interaction of a single particle and the core is added. Different models of particle-core coupling (phenomenological models, collective models, nuclear field theory, interacting boson-fermion model, vibration nucleon cluster model) and their results are discussed. New developments like dynamical supersymmetry and new research trends are summarized. (D.Gy.)
Influence of complex particle emission on properties of giant dipole resonance of hot nuclei
International Nuclear Information System (INIS)
Wen Wanxin; Jin Genming
2003-01-01
The possible reasons for the discrepancy between calculation results based on the statistical evaporation model and experimental data of giant dipole resonance of very hot nuclei are discussed. Both of simulations with the standard CASCADE code and the code coupling complex particle emission are carried out. It is shown that the complex particle emission affects the properties of giant dipole resonance of very hot nuclei
Thomas Fermi model of finite nuclei
International Nuclear Information System (INIS)
Boguta, J.; Rafelski, J.
1977-01-01
A relativistic Thomas-Fermi model of finite-nuclei is considered. The effective nuclear interaction is mediated by exchanges of isoscalar scalar and vector mesons. The authors include also a self-interaction of the scalar meson field and the Coulomb repulsion of the protons. The parameters of the model are constrained by the average nuclear properties. The Thomas-Fermi equations are solved numerically for finite, stable nuclei. The particular case of 208 82 Pb is considered in more detail. (Auth.)
Microscopic methods for the interactions between complex nuclei
International Nuclear Information System (INIS)
Ikeda, Kiyomi; Tamagaki, Ryozo; Saito, Sakae; Horiuchi, Hisashi; Tohsaki-Suzuki, Akihiro.
1978-01-01
Microscopic study on composite-particle interaction performed in Japan is described in this paper. In chapter 1, brief historical description of the study is presented. In chapter 2, the theory of resonating group method (RGM) for describing microscopically the interaction between nuclei (clusters) is reviewed, and formulation on the description is presented. It is shown that the generator coordinate method (GCM) is a useful one for the description of interaction between shell model clusters, and that the kernels in the RGM are easily obtained from those of the GCM. The inter-cluster interaction can be well described by the orthogonality condition model (OCM). In chapter 3, the calculational procedures for the kernels of GCN, RGM and OCM and some properties related to their calculation are discussed. The GCM kernels for various types of systems are treated. The RGM kernels are evaluated by the integral transformation of GCM kernels. The problems related to the RGM norm kernel (RGM-NK) are discussed. The projection operator onto the Pauli-allowed state in OCM is obtained directly from the solution of the eigenvalue problem of RGM-NK. In chapter 4, the exchange kernels due to the antisymmetrization are derived in analytical way with the symbolical use of computer memory by taking the α + O 16 system as a typical example. New algorisms for deriving analytically the generator coordinate kernel (GCM kernel) are presented. In chapter 5, precise generalization of the Kohn-Hulthen-Kato variational method for scattering matrix is made for the purpose of microscopic study of reactions between complex nuclei with many channels coupled. (Kato, T.)
Thomas-Fermi model of warm nuclei
International Nuclear Information System (INIS)
Buchler, J.R.; Epstein, R.I.
1980-01-01
The average nuclear level density of spherical nuclei is computed with a finite temperature Thomas-Fermi model. More than 80% of the low energy nuclear excitations can be accounted for in terms of this statistical model. The relevance for stellar collapse is discussed
(γ,2n) reactions in complexe nuclei at intermediate energies
International Nuclear Information System (INIS)
Pinheiro Filho, J. de D.
1976-01-01
The Monte Carlo Method has been used in the intranuclear cascade model for the calculation of the cross sections of the (γ,2n) reactions in complex nuclei 9 Be, 12 C, 16 O, 59 Co, 103 Rh, 127 I, 197 Au and 209 Bi at intermediate energies (200MeV-1000MeV). The initial photon-interaction via the photomesonic and quasi-deuteron mechanisms have been taken into account. The nuclear model used was a degenerate Fermi gas of nucleons, and the Pauli exclusion principle was considered in all secondary interactions. To improve accuracy in the results of the calculations, 30000 cascades have been followed for each target nucleus at a given incident photon energy. The probabilities of the various (γ,2n) reactions, as well as the correspondent cross section obtained, are summarized in tables and graphs. New data on the cross sections of the 59 Co (γ,2n) and 209 Bi (γ,2n) reactions at photon energies between 300 MeV and 1000MeV are also reported. These measurements were obtained with the Bremsstrahlung beams of the Frascati 1 GeV Electron Synchrotron. A comparison between all existing data in the literature on the (γ,2n) reaction cross sections and the estimates by the Monte Carlo Method, is presented. (Author) [pt
Unstable states produced in collisions among complex nuclei
International Nuclear Information System (INIS)
Sepulveda J, D.
1978-01-01
A theory about resonant elastic dispersion is formulated and the wave function of unstable states associated with the resonances observed in the differential and total sections is studied. The object of this theory is to extend to the elastic collisions among complex nuclei interesting case, the methods and formalism of the dispersion of particles without structure by an external potential, following an idea originally formulated by H. Feshbach. (author)
Microscopic collective models of nuclei
International Nuclear Information System (INIS)
Lovas, Rezsoe
1985-01-01
Microscopic Rosensteel-Rowe theory of the nuclear collective motion is described. The theoretical insufficiency of the usual microscopic establishment of the collective model is pointed. The new model treating exactly the degrees of freedom separates the coordinates describing the collective motion and the internal coordinates by a consistent way. Group theoretical methods analyzing the symmetry properties of the total Hamiltonian are used defining the collective subspaces transforming as irreducible representations of the group formed by the collective operators. Recent calculations show that although the results of the usual collective model are approximately correct and similar to those of the new microscopic collective model, the underlying philosophy of the old model is essentially erroneous. (D.Gy.)
Directory of Open Access Journals (Sweden)
Minkov N.
2016-01-01
Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.
Shell model calculations for exotic nuclei
International Nuclear Information System (INIS)
Brown, B.A.; Wildenthal, B.H.
1991-01-01
A review of the shell-model approach to understanding the properties of light exotic nuclei is given. Binding energies including p and p-sd model spaces and sd and sd-pf model spaces; cross-shell excitations around 32 Mg, including weak-coupling aspects and mechanisms for lowering the ntw excitations; beta decay properties of neutron-rich sd model, of p-sd and sd-pf model spaces, of proton-rich sd model space; coulomb break-up cross sections are discussed. (G.P.) 76 refs.; 12 figs
Dinotor model for anomalous nuclei
International Nuclear Information System (INIS)
Castillejo, L.; Goldhaber, A.S.; Jackson, A.D.; Johnson, M.B.
1986-01-01
The simplest version of the MIT bag model implies the existence of metastable toroidal bags, with large radius proportional to the enclosed baryon number, and small radius comparable to that of an ordinary nucleon (we refer to those toroidal bags as dinotors). Considerations of various possible instabilities, and of the effects of quark interactions through intermediate gluons, suggest that the metastability is still valid when the model is treated more realistically. These results might provide an explanation for reports of anomalously large interaction cross sections of secondary fragments (''anomalons'') observed in visual track detectors. However, it appears that the most likely characteristics of toroidal bags would not be compatible with those of anomalons, and would not be as easy to detect in emulsions. copyright 1986 Academic Press, Inc
Shell model for warm rotating nuclei
Energy Technology Data Exchange (ETDEWEB)
Matsuo, M.; Yoshida, K. [Kyoto Univ. (Japan); Dossing, T. [Univ. of Copenhagen (Denmark)] [and others
1996-12-31
Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.
Vibrational-rotational model of odd-odd nuclei
International Nuclear Information System (INIS)
Afanas'ev, A.V.; Guseva, T.V.; Tamberg, Yu.Ya.
1988-01-01
The rotational vibrational (RV) model of odd nuclei is generalized to odd-odd nuclei. The hamiltonian, wave functions and matrix elements of the RV-model of odd-odd nuclei are obtained. The expressions obtained for matrix elements of the RV-model of odd-odd nuclei can be used to study the role of vibrational additions in low-lying two-particle states of odd-odd deformed nuclei. Such calculations permit to study more correctly the residual neutron-proton interaction of valent nucleons with respect to collectivization effects
Modeling a neutron rich nuclei source
Energy Technology Data Exchange (ETDEWEB)
Mirea, M.; Bajeat, O.; Clapier, F.; Ibrahim, F.; Mueller, A.C.; Pauwels, N.; Proust, J. [Institut de Physique Nucleaire, IN2P3/CNRS, 91 - Orsay (France); Mirea, M. [Institute of Physics and Nuclear Engineering, Tandem Lab., Bucharest (Romania)
2000-07-01
The deuteron break-up process in a suitable converter gives rise to intense neutron beams. A source of neutron rich nuclei based on the neutron induced fission can be realised using these beams. A theoretical optimization of such a facility as a function of the incident deuteron energy is reported. The model used to determine the fission products takes into account the excitation energy of the target nucleus and the evaporation of prompt neutrons. Results are presented in connection with a converter-target specific geometry. (author000.
Modeling a neutron rich nuclei source
International Nuclear Information System (INIS)
Mirea, M.; Bajeat, O.; Clapier, F.; Ibrahim, F.; Mueller, A.C.; Pauwels, N.; Proust, J.; Mirea, M.
2000-01-01
The deuteron break-up process in a suitable converter gives rise to intense neutron beams. A source of neutron rich nuclei based on the neutron induced fission can be realised using these beams. A theoretical optimization of such a facility as a function of the incident deuteron energy is reported. The model used to determine the fission products takes into account the excitation energy of the target nucleus and the evaporation of prompt neutrons. Results are presented in connection with a converter-target specific geometry. (authors)
Exotic nuclei in self-consistent mean-field models
International Nuclear Information System (INIS)
Bender, M.; Rutz, K.; Buervenich, T.; Reinhard, P.-G.; Maruhn, J. A.; Greiner, W.
1999-01-01
We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei with emphasis on neutron-rich tin isotopes and superheavy nuclei. (c) 1999 American Institute of Physics
International Nuclear Information System (INIS)
Shapira, D.; Shivakumar, B.; Ayik, S.; Harmon, B.A.
1986-01-01
A model for fusion of light nuclei has been proposed recently wherein fusion progresses through nucleus-nucleus capture via a dinuclear stage which acts as a doorway to fusion. While this model accounts for the fusion cross sections, it makes no attempt at predicting observables associated with the non-fusion part of the captured flux. A study of products from the decay of the dinuclear complex into non-fusion channels can provide a stringent test for such a model. In this contribution a model which addresses both the binary decay and the fusion of a dinuclear complex formed in the collision is described and model predictions are compared with data. Accompanying contributions discuss the formalism which is used to describe the evolution of the dinuclear complex and present new data which provide information that helps justify the approximations made in applying this model
Projected shell model description of N = 114 superdeformed isotone nuclei
International Nuclear Information System (INIS)
Guo, R S; Chen, L M; Chou, C H
2006-01-01
A systematic description of the yrast superdeformed (SD) bands in N 114, Z = 80-84 isotone nuclei using the projected shell model is presented. The calculated γ-ray energies, moment of inertia and M1 transitions are compared with the data for which spin is assigned. Excellent agreement with the available data for all isotones is obtained. The calculated electromagnetic properties provide a microscopic understanding of those measured nuclei. Some predictions in superdeformed nuclei are also discussed
Vibrational collective model for spheric even-even nuclei
International Nuclear Information System (INIS)
Cruz, M.T.F. da.
1985-01-01
A review is made on the evidences of collective motions in spherical even-even nuclei. The several multipole transitions occuring in such a nuclei are discussed. Some hypothesis which are necessary in order to build-up the model are presented. (L.C.) [pt
Description of transitional nuclei in the sdg boson model
International Nuclear Information System (INIS)
Lac, V.S.; Kuyucak, S.
1992-01-01
The study of the transitional nuclei in the framework of the sdg boson model was necessitated by recent measurements of E2 and E4 transitions in the Pt and Os isotopes which can not be explained in the sd boson models. It is shown how γ-unstable and triaxial shapes arise from special choices of sdg model Hamiltonians. Ways of limiting the number of free parameters through consistency and coherence conditions are also discussed. A satisfactory description of E2 and E4 properties is obtained for the Pt and Os nuclei, which also predicts dynamic shape transitions in these nuclei. 36 refs., 10 tabs., 12 figs
Description of transitional nuclei in the sdg boson model
International Nuclear Information System (INIS)
Lac, V.S.; Kuyucak, S.
1992-01-01
We study the transitional nuclei in the framework of the sdg boson model. This extension is necessitated by recent measurements of E2 and E4 transitions in the Pt and Os isotopes which can not be explained in the sd boson models. We show how γ-unstable and triaxial shapes arise from special choices of sdg model hamiltonians and discuss ways of limiting the number of free parameters through consistency and coherence conditions. A satisfactory description of E2 and E4 properties is obtained for the Pt and Os nuclei, which also predicts dynamic shape transitions in these nuclei. (orig.)
Description of transitional nuclei in the sdg boson model
Lac, V.-S.; Kuyucak, S.
1992-03-01
We study the transitional nuclei in the framework of the sdg boson model. This extension is necessitated by recent measurements of E2 and E4 transitions in the Pt and Os isotopes which can not be explained in the sd boson models. We show how γ-unstable and triaxial shapes arise from special choices of sdg model hamiltonians and discuss ways of limiting the number of free parameters through consistency and coherence conditions. A satisfactory description of E2 and E4 properties is obtained for the Pt and Os nuclei, which also predicts dynamic shape transitions in these nuclei.
Description of transitional nuclei in the sdg boson model
Energy Technology Data Exchange (ETDEWEB)
Lac, V.S.; Kuyucak, S. (School of Physics, Univ. Melbourne, Victoria (Australia))
1992-03-30
We study the transitional nuclei in the framework of the sdg boson model. This extension is necessitated by recent measurements of E2 and E4 transitions in the Pt and Os isotopes which can not be explained in the sd boson models. We show how {gamma}-unstable and triaxial shapes arise from special choices of sdg model hamiltonians and discuss ways of limiting the number of free parameters through consistency and coherence conditions. A satisfactory description of E2 and E4 properties is obtained for the Pt and Os nuclei, which also predicts dynamic shape transitions in these nuclei. (orig.).
Superheavy Nuclei in the Quark-Meson-Coupling Model
Directory of Open Access Journals (Sweden)
Stone Jirina
2017-01-01
Full Text Available We present a selection of the first results obtained in a comprehensive calculation of ground state properties of even-even superheavy nuclei in the region of 96 < Z < 136 and 118 < N < 320 from the Quark-Meson-Coupling model (QMC. Ground state binding energies, the neutron and proton number dependence of quadrupole deformations and Qα values are reported for even-even nuclei with 100 < Z < 136 and compared with available experimental data and predictions of macro-microscopic models. Predictions of properties of nuclei, including Qα values, relevant for planning future experiments are presented.
Energy spectra of odd nuclei in the generalized model
Directory of Open Access Journals (Sweden)
I. O. Korzh
2015-04-01
Full Text Available Based on the generalized nuclear model, energy spectra of the odd nuclei of such elements as 25Mg, 41K, and 65Cu are determined, and the structure of wave functions of these nuclei in the excited and normal states is studied. High quality in determining the energy spectra is possible due to the accurate calculations of all elements of the energy matrix. It is demonstrated that the structure of the wave functions so determined provides the possibility to more accurately select the nuclear model and the method for calculating the nucleon cross-sections of the inelastic scattering of nucleons by odd nuclei.
Isospin invariant boson models for fp-shell nuclei
International Nuclear Information System (INIS)
Van Isacker, P.
1994-01-01
Isospin invariant boson models, IBM-3 and IBM-4, applicable in nuclei with neutrons and protons in the same valence shell, are reviewed. Some basic results related to these models are discussed: the mapping onto the shell model, the relation to Wigner's supermultiplet scheme, the boson-number and isospin dependence of parameters, etc. These results are examined for simple single-j shell situations (e.g. f 7/2 ) and their extension to the f p shell is investigated. Other extensions discussed here concern the treatment of odd-mass nuclei and the classification of particle-hole excitations in light nuclei. The possibility of a pseudo-SU(4) supermultiplet scheme in f p -shell nuclei is discussed. (author) 4 figs., 3 tabs., 23 refs
Shell-model Monte Carlo studies of nuclei
International Nuclear Information System (INIS)
Dean, D.J.
1997-01-01
The pair content and structure of nuclei near N = Z are described in the frwnework of shell-model Monte Carlo (SMMC) calculations. Results include the enhancement of J=0 T=1 proton-neutron pairing at N=Z nuclei, and the maxked difference of thermal properties between even-even and odd-odd N=Z nuclei. Additionally, a study of the rotational properties of the T=1 (ground state), and T=0 band mixing seen in 74 Rb is presented
Modeling level structures of odd-odd deformed nuclei
International Nuclear Information System (INIS)
Hoff, R.W.; Kern, J.; Piepenbring, R.; Boisson, J.P.
1984-01-01
A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei has been applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation were derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings were used. Calculated and experimental level structures for 238 Np, 244 Am, and 250 Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Corresponding average deviations for five rare-earth nuclei are 47 keV and 7%. Several applications of this modeling technique are discussed. 18 refs., 5 figs., 4 tabs
Studies of new modes of radioactive decay by spontaneous emission of complex nuclei
International Nuclear Information System (INIS)
Barwick, S.W.; Hulet, E.K.; Moody, K.; Price, P.B.; Ravn, H.L.
1990-01-01
Impressive progress has been made in the two years since Rose and Jones first reported the novel spontaneous decay mode 223 Ra → 14 C + 209 Pb. Since then, the isotopes 222 Ra, 224 Ra, and 226 Ra have been observed to emit 14 C, and stringent upper limits have been set on branching ratios B( 14 C/α) for 221 Ra and 225 Ac. The discoveries of emission of 24 Ne from 232 U, and 231 Pa, and 233 U show that the phenomenon of heavy ion emission is a general one. A goal of recent experiments by the authors collaboration is to test models that differ by as much as 10 5 in predicted half-lives for the emission of complex nuclei with Z ≥ 12. Due to small branching ratios B approx-lt 10 -14 , and large fission background, they are developing new techniques to insure reliable identification of such rare decay modes. Experimental support for the unified models of alpha decay, complex nuclei emission, and spontaneous fission are addressed
Description of deformed nuclei in the sdg boson model
International Nuclear Information System (INIS)
Li, S.C.; Kuyucak, S.
1996-01-01
We present a study of deformed nuclei in the framework of the sdg interacting boson model utilizing both numerical diagonalization and analytical 1/N expansion techniques. The focus is on the description of high-spin states which have recently become computationally accessible through the use of computer algebra in the 1/N expansion formalism. A systematic study is made of high-spin states in rare-earth and actinide nuclei. (orig.)
Description of deformed nuclei in the sdg boson model
Energy Technology Data Exchange (ETDEWEB)
Li, S.C. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences; Kuyucak, S. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences
1996-07-15
We present a study of deformed nuclei in the framework of the sdg interacting boson model utilizing both numerical diagonalization and analytical 1/N expansion techniques. The focus is on the description of high-spin states which have recently become computationally accessible through the use of computer algebra in the 1/N expansion formalism. A systematic study is made of high-spin states in rare-earth and actinide nuclei. (orig.).
Description of deformed nuclei in the sdg boson model
Li, S. C.; Kuyucak, S.
1996-02-01
We present a study of deformed nuclei in the framework of the sdg interacting boson model utilizing both numerical diagonalization and analytical {1}/{N} expansion techniques. The focus is on the description of high-spin states which have recently become computationally accessible through the use of computer algebra in the {1}/{N} expansion formalism. A systematic study is made of high-spin states in rare-earth and actinide nuclei.
State densities and spectrum fluctuations: Information propagation in complex nuclei
International Nuclear Information System (INIS)
French, J.B.; Kota, V.K.B.
1988-01-01
At excitation energies in nuclei where the state density is unambiguously defined there is a sharp separation between the smoothed spectrum (which defines the density) and fluctuations about it which have recently been studied with a view to understanding some aspects of quantum chaos. We briefly review these two complementary subjects, paying special attention to: the role of the effective interaction in determining the density; the calculation of interacting-particle state and level densities, and of expectation values of interesting operators; the information about the effective nucleon-nucleon interaction which is carried both by the density and the fluctuations. 28 refs., 1 fig
Atomic nuclei: a laboratory for the study of complexity
International Nuclear Information System (INIS)
Abe, Y.; Suraud, E.
1993-01-01
The nucleus is a mandatory step in the understanding of nature, between elementary particles and atoms and molecules. To what extent might it be understood with the help of complexity viewpoints. Conversely, could the atomic nucleus provide a laboratory for understanding the behaviour of 'complex' systems. The purpose of this note is to capitalize on the fad for complexity and claim that nuclear physics is an excellent choice to do physics of complex systems...without getting lost
Real and complex boson expansions in even-even deformed nuclei
International Nuclear Information System (INIS)
Silvestre-Brac, B.; Piepenbring, R.
1977-01-01
Analysis of real and complex boson expansions of the Kishimoto-Tamura type is performed in a deformed basis in order to allow a further study of the anharmonicities of vibrations in deformed nuclei. It is shown that complex solutions cannot be found in the cases where no real one exists. (Auth.)
Model for pairing phase transition in atomic nuclei
International Nuclear Information System (INIS)
Schiller, A.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.
2002-01-01
A model is developed which allows the investigation and classification of the pairing phase transition in atomic nuclei. The regions of the parameter space are discussed for which a pairing phase transition can be observed. The model parameters include number of particles, attenuation of pairing correlations with increasing seniority, single-particle level spacing, and pairing gap parameter
A quasi-particle model for computational nuclei
International Nuclear Information System (INIS)
Boal, D.H.; Glosli, J.N.
1988-03-01
A model Hamiltonian is derived which provides a computationally efficient means of representing nuclei. The Hamiltonian includes both coulomb and isospin dependent terms, and incorporates antisymmetrization effects through a momentum dependent potential. Unlike many other classical or semiclassical models, the nuclei of this simulation have a well-defined ground state with a a non-vanishing 2 >. It is shown that the binding energies per nucleon and r.m.s. radii of these ground states are close to the measured values over a wide mass range
Shell model Monte Carlo investigation of rare earth nuclei
International Nuclear Information System (INIS)
White, J. A.; Koonin, S. E.; Dean, D. J.
2000-01-01
We utilize the shell model Monte Carlo method to study the structure of rare earth nuclei. This work demonstrates the first systematic full oscillator shell with intruder calculations in such heavy nuclei. Exact solutions of a pairing plus quadrupole Hamiltonian are compared with the static path approximation in several dysprosium isotopes from A=152 to 162, including the odd mass A=153. Some comparisons are also made with Hartree-Fock-Bogoliubov results from Baranger and Kumar. Basic properties of these nuclei at various temperatures and spin are explored. These include energy, deformation, moments of inertia, pairing channel strengths, band crossing, and evolution of shell model occupation numbers. Exact level densities are also calculated and, in the case of 162 Dy, compared with experimental data. (c) 2000 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Shi, Min [Anhui University, School of Physics and Materials Science, Hefei (China); RIKEN Nishina Center, Wako (Japan); Shi, Xin-Xing; Guo, Jian-You [Anhui University, School of Physics and Materials Science, Hefei (China); Niu, Zhong-Ming [Anhui University, School of Physics and Materials Science, Hefei (China); Interdisciplinary Theoretical Science Research Group, RIKEN, Wako (Japan); Sun, Ting-Ting [Zhengzhou University, School of Physics and Engineering, Zhengzhou (China)
2017-03-15
We have extended the complex scaled Green's function method to the relativistic framework describing deformed nuclei with the theoretical formalism presented in detail. We have checked the applicability and validity of the present formalism for exploration of the resonances in deformed nuclei. Furthermore, we have studied the dependences of resonances on nuclear deformations and the shape of potential, which are helpful to recognize the evolution of resonant levels from stable nuclei to exotic nuclei with axially quadruple deformations. (orig.)
An Exactly Solvable Supersymmetric Model of Semimagic Nuclei
International Nuclear Information System (INIS)
Balantekin, A. B.; Gueven, Nurtac; Pehlivan, Yamac
2008-01-01
A simple model of nucleons coupled to angular momentum zero (s-pairs) occupying the valance shell of a semi-magic nuclei is considered. The model has a separable, orbit dependent pairing interaction which dominates over the kinetic term. It is shown that such an interaction leads to an exactly solvable model whose (0 + ) eigenstates and energies can be computed very easily with the help of the algebraic Bethe ansatz method. It is also shown that the model has a supersymmetry which connects the spectra of some semimagic nuclei. The results obtained from this model for the semimagic Ni isotopes from 58 Ni to 68 Ni are given. In addition, a new and easier technique for calculating the energy eigenvalues from the Bethe ansatz equations is also presented.
The collective model of nuclei and its applications
International Nuclear Information System (INIS)
Frank H, A.; Castanos G, O.H.
1975-01-01
The concepts of collective coordinates, the establishment of Hamiltonian collectives through the model of the drop of liquid or through the symmetry arguments and of the operators in these variables are discussed in this study. The passage of the laboratory system to the principal axis system is discussed thoroughly with the symmetries produced by this transformation, considering a drop in two dimensions. It is also observed that the deformed nuclei have some properties that can be described through the rotation-vibration and symmetric rotor models. The rotation-vibration model concerns the nuclei with axially symmetric deformations in the basic state and its importance is due to the fact that it can predict the nuclear spectrum at low energies. The asymmetric rotor model assumes the existence of triaxial nuclei and considers their collective movements. This model can be modified taking into consideration that vibrations β can also appear. Finally there is a comparison between the two models and the models are also compared with the experiment. (author)
A collective model for transitional nuclei
International Nuclear Information System (INIS)
Bernus, L. von; Kappatsch, A.; Rezwani, V.; Scheid, W.; Schneider, U.; Sedlmayr, M.; Sedlmayr, R.
1975-01-01
The paper consists of the following sections: 1. Introduction; 2. The model (The quadrupole co-ordinates, the potential energy surface, the Hamilton operator, quadrupole moments, B(E2)-values and rms-radii); 3. The diagonalization of the collective Hamilton operator (The eigen-states of the five-dimensional oscillator, classification of the basis: R(5) is contained in R(3) and R(5) is contained in R(4) = SU(2) x SU(2), calculation of the matrix elements of H, convergence of the numerical procedure); 4. Application of the model (General remarks, typical spectra, selected spectra, conclusions); 5. The coupling of the giant-resonance states with the low-energy spectrum (The Hamilton operator, hydrodynamical model for the GR, the interaction Hamilton operator Hsub(DQ), the basis states for diagonalization, the dipole operator and the γ-absorption cross-section, results); 6. Summary. (author)
Emission of complex particles from highly excited nuclei
International Nuclear Information System (INIS)
Gadioli, E.
1984-01-01
A great deal of work has been made to investigated experimentally and predict theoretically the continuous spectra of composite particles produced in reactions induced by nucleons with energy ranging from a few to several ten MeV. Some recent results in the field are summarized. In particular the exciton coalescence-pickup model and the exciton knock-on model, in the case of alpha emission, are reviewed and discussed
Recent shell-model results for exotic nuclei
Directory of Open Access Journals (Sweden)
Utsuno Yusuke
2014-03-01
Full Text Available We report on our recent advancement in the shell model and its applications to exotic nuclei, focusing on the shell evolution and large-scale calculations with the Monte Carlo shell model (MCSM. First, we test the validity of the monopole-based universal interaction (VMU as a shell-model interaction by performing large-scale shell-model calculations in two different mass regions using effective interactions which partly comprise VMU. Those calculations are successful and provide a deeper insight into the shell evolution beyond the single-particle model, in particular showing that the evolution of the spin-orbit splitting due to the tensor force plays a decisive role in the structure of the neutron-rich N ∼ 28 region and antimony isotopes. Next, we give a brief overview of recent developments in MCSM, and show that it is applicable to exotic nuclei that involve many valence orbits. As an example of its applications to exotic nuclei, shape coexistence in 32Mg is examined.
Cloud condensation nuclei in Western Colorado: Observations and model predictions
Ward, Daniel Stewart
Variations in the warm cloud-active portion of atmospheric aerosols, or cloud condensation nuclei (CCN), have been shown to impact cloud droplet number concentration and subsequently cloud and precipitation processes. This issue carries special significance in western Colorado where a significant portion of the region's water resources is supplied by precipitation from winter season, orographic clouds, which are particularly sensitive to variations in CCN. Temporal and spatial variations in CCN in western Colorado were investigated using a combination of observations and a new method for modeling CCN. As part of the Inhibition of Snowfall by Pollution Aerosols (ISPA-III) field campaign, total particle and CCN number concentration were measured for a 24-day period in Mesa Verde National Park, climatologically upwind of the San Juan Mountains. These data were combined with CCN observations from Storm Peak Lab (SPL) in northwestern Colorado and from the King Air platform, flying north to south along the Western Slope. Altogether, the sampled aerosols were characteristic of a rural continental environment and the cloud-active portion varied slowly in time, and little in space. Estimates of the is hygroscopicity parameter indicated consistently low aerosol hygroscopicity typical of organic aerosol species. The modeling approach included the addition of prognostic CCN to the Regional Atmospheric Modeling System (RAMS). The RAMS droplet activation scheme was altered using parcel model simulations to include variations in aerosol hygroscopicity, represented by K. Analysis of the parcel model output and a supplemental sensitivity study showed that model CCN will be sensitive to changes in aerosol hygroscopicity, but only for conditions of low supersaturation or small particle sizes. Aerosol number, size distribution median radius, and hygroscopicity (represented by the K parameter) in RAMS were constrained by nudging to forecasts of these quantities from the Weather
International Nuclear Information System (INIS)
Scharff-Goldhaber, G.
1979-01-01
It was shown previously that, below a critical angular momentum, yrast bands of nonmagic nuclei are well described by the two-parameter variable moment of inertia model. Some striking exceptions to this rule are found in nuclei which have the same mass number as doubly magic nuclei but possess either one (or two) proton pairs beyond a magic number and one (or two) neutron hole pairs, or vice versa. Yrast bands in these pseudomagic nuclei resemble those in magic nuclei. 17 references
The 1992 FRDM mass model and unstable nuclei
International Nuclear Information System (INIS)
Moeller, P.
1994-01-01
We discuss the reliability of a recent global nuclear-structure calculation in regions far from β stability. We focus on the results for nuclear masses, but also mention other results obtained in the nuclear-structure calculation, for example ground-state spins. We discuss what should be some minimal requirements of a nuclear mass model and study how the macroscopic-microscopic method and other nuclear mass models fullfil such basic requirements. We study in particular the reliability of nuclear mass models in regions of nuclei that were not considered in the determination of the model parameters
About dynamic model of limiting fragmentation of heavy nuclei
International Nuclear Information System (INIS)
Kuchin, I.A.
2001-01-01
Full text: As is known, during last years defined progress in understanding of static aspect of a dynamic structure organization of massive nuclei was reached. The offered model of a 'crystalline' structure of the nucleus generalizes drop, shell and cluster models in a natural way. Now increased interest induces the phenomenon of limiting fragmentation of heavy nuclei. There is a hope, that clearing up the general regularities of a soft disintegration of the massive nuclei on nucleons, component it, in a broad range of high energies can give a valuable information about dynamics of origin of nuclear structures and nature of their qualitative difference from a quark system structure, i.e. from nucleons. The key for understanding the indicated phenomenon can be it's study in connection with other aspects of disintegration of the nuclei - Coulomb and diffraction dissociation, fission etc. The sequential analysis of all these a processes from a single point of view is possible only within the framework of results and methods of the dynamic system theory. The purpose of the present research is clearing up a possibility to understand the nature of limiting fragmentation as a consequence of development of dynamic instability in a system of the nuclei as a result of ions interaction at high energy. In the analysis we based on data of the phenomenological analysis of heavy ion interactions at ultra-relativistic energies obtained by many authors for a number of years. As a result we came to a conclusion about general stochastic nature of an investigated phenomenon. In it development the fragmentation passes three different stages. On the first there is a process of preparation of chaos at a quantum level in an outcome of a Coulomb dissociation of the approaching nuclei and isotopic recharge of their nucleons, carrying a random character. A dominant here - viscous dissociation of nuclei under an operation of Coulomb forces. (A two body initial state). Then the multiparticle
Unified model studies of N = 84 and N = 80 nuclei
International Nuclear Information System (INIS)
Corrigan, T.M.
1977-12-01
The unified model which couples two valence nucleons to collective quadrupole surface vibrations is applied to the N = 84 and N = 80 nuclei which have respectively two neutrons and two neutron holes outside the closed N = 82 core. Two different interactions between these valence nucleons are considered. The first is a simple pairing interaction, and the second used matrix elements determined in a bare G matrix calculation. The simple pairing force gives much better results. A two step diagonalization is employed to treat the core and valence nucleons consistently. Up to four phonons are retained in the collective basis and the diagonalized (coupled) valence nucleon space is truncated at approximately the same energy. The experimental spectra and electromagnetic properties are well reproduced for both types of nuclei, and in the N = 84 nuclei the four phonon contribution was found to be nonnegligible. In addition, a closed form, multiplicity resolved expression for matrix elements of α (the collective surface coordinate) is presented, and a table of these values for N less than or equal to 6 is given
Emission temperatures from the decay of particle-unstable complex nuclei
International Nuclear Information System (INIS)
Nayak, T.K.
1990-01-01
Relative populations of particle-unstable states were measured for complex fragments emitted in the reaction 14 N + Ag at E/A = 35 MeV by using a position sensitive high resolution hodoscope. Experimental population probabilities of particle-unstable states were extracted by fitting the coincidence spectra of the decay products by an appropriate R-matrix or Breit-Wigner formalism. According to thermal models, the populations of excited states at freezeout are expected to follow a Boltzmann distribution weighted by the emission temperature of the system. Tests of this freezeout assumption were made by comparing the experimental population to the predictions of statistical calculations. Extensive statistical calculation which include the effect of sequential feeding from heavier particle unstable nuclei were performed to estimate the population probabilities and the ratios of population probabilities indicate emission temperatures of about 3-4 MeV. But a detailed comparison for individual fragments for a calculation with T em = 4 MeV reveals that about half of the measured population probabilities and one third of the ratios of the population probabilities differ significantly from the predictions of statistical calculations. Calculations which include rotational effects could not satisfactorily account for this discrepancy. These results suggest a possible breakdown of the assumption of local thermal equilibrium at freezeout
Estimation of PHI (γ,n) average probability for complex nuclei in the quasi-deuteron region
International Nuclear Information System (INIS)
Ferreira, M.C. da S.
1977-01-01
The average probabilities of (γ,n) reactions for complexe nuclei of 6 C 12 , 19 F 19 , 25 Mn 55 , 79 Au 197 and 92 U 238 , in the energy range from giant resonance end to photomesonic threshold (quasi-deuteron region), using values of cross sections per quantum equivalent to 300 Mev produced by Bremsstrahlung photons in the Frascati and Orsay accelerators were determined. The probabilities were also calculated using nuclear transparence for protons and neutrons, resultants from quasi-deuteron disintegration. The transparence formulaes were determined by optical model. (M.C.K.) [pt
International Nuclear Information System (INIS)
Bilwes, B.; Bilwes, R.; Diaz, J.; Ferrero, J.L.; Pacheco, J.C.; Ruiz, J.A.
1988-01-01
Experimental data of elastic scattering between nuclei of various structures on a large energy scale has been analyzed in the framework of the folding model by use of the complex effective interaction of Faessler et al (1981). A general good reproduction of the data is obtained if renormalization coefficients for the real and the imaginary parts of the optical potential are introduced. The application of the dispersion relation of Mahaux et al (1986) allows to reproduce the observed energy dependence of the real part of the potential
Masses and fission barriers of nuclei in the LSD model
Energy Technology Data Exchange (ETDEWEB)
Pomorski, Krzysztof
2009-07-01
Recently developed Lublin-Strasbourg Drop (LSD) model together with the microscopic corrections taken r is very successful in describing many features of nuclei. In addition to the classical liquid drop model the LSD contains the curvature term proportional to the A{sup 1/3}. The r.m.s. deviation of the LSD binding energies of 2766 isotopes with Z,N>7 from the experimental ones is 0.698 MeV only. It turns out that the LSD model gives also a satisfactory prediction of the fission barrier heights. In addition, it was found in that taking into account the deformation dependence of the congruence energy proposed by Myers and Swiatecki significantly approaches the LSD-model barrier-heights to the experimental data in the case of light isotopes while the fission barriers for heavy nuclei remain nearly unchanged and agree well with experiment. It was also shown in that the saddle point masses of transactinides from {sup 232}Th to {sup 250}Cf evaluated using the LSD differ by less than 0.67 MeV from the experimental data.
Advanced modeling of reaction cross sections for light nuclei
International Nuclear Information System (INIS)
Resler, D.A.
1991-01-01
The shell model/R-matrix technique of calculating nuclear reaction cross sections for light projectiles incident on light nuclei is discussed, particularly in the application of the technique to thermonuclear reactions. Details are presented on the computational methods for the shell model which display how easily the calculations can be performed. Results of the shell model/R-matrix technique are discussed as are some of the problems encountered in picking an appropriate nucleon-nucleon interaction for the large model spaces which must be used for current problems. The status of our work on developing an effective nucleon-nucleon interaction for use in large-basis shell model calculations is presented. This new interaction is based on a combination of global constraints and microscopic nuclear data. 23 refs., 6 figs., 2 tabs
Structure of transition nuclei states in fermion dynamic-symmetry model
International Nuclear Information System (INIS)
Baktybaev, K.; Kojlyk, N.O.; Romankulov, K.
2007-01-01
In the paper collective structures of osmium heavy isotopes nucleons are studied. Results of diagonalization of SO(6) symmetric Hamiltonian of fermion-dynamical symmetry-model are comparing with results of other phenomenological methods such as Bohr-Mottelson model and interacting bosons model. For heavy osmium isotopes not only collective excitations spectral bands but also for probability of E2-electromagnet transition are which are compared with existing experimental data. It is revealed, that complexity of state structure for examined nuclei is related with competition and interweaving of rotation and vibration states and also more complicated states of γ instable nature
Finite Nuclei in the Quark-Meson Coupling Model.
Stone, J R; Guichon, P A M; Reinhard, P G; Thomas, A W
2016-03-04
We report the first use of the effective quark-meson coupling (QMC) energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the nonrelativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having a clear physics basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist, however, multiple Skyrme parameter sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF set of fewer parameters, derived in this work, is not open to such variation, chosen set being applied, without adjustment, to both the properties of finite nuclei and nuclear matter.
International Nuclear Information System (INIS)
Levchenko, B.B.; Nikolaev, N.N.
1985-01-01
In the framework of the additive quark model of multiple production on nuclei we calculate the multiplicity distributions of secondary particles and the correlations between secondary particles in πA and pA interactions with heavy nuclei. We show that intranuclear cascades are responsible for up to 50% of the nuclear increase of the multiplicity of fast particles. We analyze the sensitivity of the multiplicities and their correlations to the choice of the quark-hadronization function. We show that with good accuracy the yield of relativistic secondary particles from heavy and intermediate nuclei depends only on the number N/sub p/ of protons knocked out of the nucleus, and not on the mass number of the nucleus (N/sub p/ scaling)
The tightly bound nuclei in the liquid drop model
Sree Harsha, N. R.
2018-05-01
In this paper, we shall maximise the binding energy per nucleon function in the semi-empirical mass formula of the liquid drop model of the atomic nuclei to analytically prove that the mean binding energy per nucleon curve has local extrema at A ≈ 58.6960, Z ≈ 26.3908 and at A ≈ 62.0178, Z ≈ 27.7506. The Lagrange method of multipliers is used to arrive at these results, while we have let the values of A and Z take continuous fractional values. The shell model that shows why 62Ni is the most tightly bound nucleus is outlined. A brief account on stellar nucleosynthesis is presented to show why 56Fe is more abundant than 62Ni and 58Fe. We believe that the analytical proof presented in this paper can be a useful tool to the instructors to introduce the nucleus with the highest mean binding energy per nucleon.
International Nuclear Information System (INIS)
Evlanov, M.V.
1989-01-01
The differential and integral cross sections of diffractive elastic and inelastic scattering and of the disintegration of complex particles by axial and nonaxial deformed nuclei are investigated depending on the shape, deformability and diffuseness of nuclear boundary as well as on the structure of the incident particles and of the rescattering processes. It is shown that the complicated coincidence experiments and experimnts on inelastic scattering with excitation of the target nucleus collective states are satisfactorily described taking simultaneously into account all factors mentioned above and the final-state interaction between the disintegration products of the incident particle
Diffraction scattering and disintegration of complex particles by nonspherical deformable nuclei
International Nuclear Information System (INIS)
Evlanov, M.V.; Isupov, V.Y.; Tartakovskii, V.K.
1989-01-01
We study the dependence of the differential and integrated cross sections for diffraction scattering and disintegration of complex particles by axially symmetric and non-axially-symmetric nuclei on the shape, deformability, and diffuseness of the nuclear surface, and also on the structure of the incident particles and rescattering processes. It is shown that when all of these factors are taken into account, as well as the interaction in the final state between the disintegration products of the incident particle, a satisfactory description of complicated coincidence experiments can be obtained, and also inelastic scattering experiments with excitation of collective states of the target nucleus
Systematics of light nuclei in a relativistic model
International Nuclear Information System (INIS)
Price, C.E.
1988-01-01
The results of relativistic mean field calculations for non-spherical nuclei are presented and discussed. The need for non-linear scalar meson self-couplings in order to describe the properties of s-d shell nuclei is emphasized along with the importance of self-consistency in calculations of magnetic moments of odd-mass nuclei. 16 refs., 3 figs., 2 tabs
Realistic Gamow shell model for resonance and continuum in atomic nuclei
Xu, F. R.; Sun, Z. H.; Wu, Q.; Hu, B. S.; Dai, S. J.
2018-02-01
The Gamow shell model can describe resonance and continuum for atomic nuclei. The model is established in the complex-moment (complex-k) plane of the Berggren coordinates in which bound, resonant and continuum states are treated on equal footing self-consistently. In the present work, the realistic nuclear force, CD Bonn, has been used. We have developed the full \\hat{Q}-box folded-diagram method to derive the realistic effective interaction in the model space which is nondegenerate and contains resonance and continuum channels. The CD-Bonn potential is renormalized using the V low-k method. With choosing 16O as the inert core, we have applied the Gamow shell model to oxygen isotopes.
Fluctuations in the thermal superfluid model for heated spherical nuclei
International Nuclear Information System (INIS)
Nguyen Dinhdang; Nguyen Zuythang
1990-01-01
The effect of the non-vanishing thermal pairing gap due to statistical fluctuations is investigated by calculating fluctuations of selected observables such as the energy and particle number fluctuations, the nuclear level density, the level density parameter and the specific heat within the framework of the thermal nuclear superfluid model. In numerical calculations for heated spherical nuclei 58 Ni, 142 Sm and 208 Pb the realistic single-particle energy spectra defined in the Woods-Saxon potential are used. It is found that the results obtained with the non-vanishing thermal average pairing gap can yield an adequate estimate of the true fluctuations in the finite heating non-rotating nuclear systems. (author)
Deexcitation of single excited nuclei in the QMD model
International Nuclear Information System (INIS)
Mueller, W.; Begemann-Blaich, M.; Aichelin, J.
1992-10-01
We investigate the emission pattern of a single excited nucleus in the QMD model and compare the results with several statistical and phenomenological models. We find that the number of intermediate mass fragments as a function of the excitation energy is in very good agreement with the results of statistical models in which the emission pattern is governed by phase space only. This allows two conclusions: (a) The microscopic dynamical description of the disintegration of static excited nuclei in the QMD yields directly the emission pattern expected from phase space decay. This is the case despite of the fact that nuclear level densities are not given directly but are modeled semiclassically by the nucleon-nucleon interaction. Thus there is no need to supplement the QMD calculations by an additional evaporation model. (b) Differences between the QMD results and the data are not due to insufficiencies in the description of the disintegration of excited systems. Thus other possible reasons, like a substantial change of the free cross section in the nuclear environment have to be investigated. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Furusawa, Shun; Yamada, Shoichi [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Sumiyoshi, Kohsuke [Numazu College of Technology, Ooka 3600, Numazu, Shizuoka 410-8501 (Japan); Suzuki, Hideyuki, E-mail: furusawa@heap.phys.waseda.ac.jp [Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510 (Japan)
2013-08-01
We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to {approx}1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.
International Nuclear Information System (INIS)
Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki
2013-01-01
We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ∼1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes
Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki
2013-08-01
We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ~1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.
Relativistic Chiral Mean Field Model for Finite Nuclei
Ogawa, Y.; Toki, H.; Tamenaga, S.; Haga, A.
2009-08-01
We present a relativistic chiral mean field (RCMF) model, which is a method for the proper treatment of pion-exchange interaction in the nuclear many-body problem. There the dominant term of the pionic correlation is expressed in two-particle two-hole (2p-2h) states with particle-holes having pionic quantum number, J^{π}. The charge-and-parity-projected relativistic mean field (CPPRMF) model developed so far treats surface properties of pionic correlation in 2p-2h states with J^{π} = 0^{-} (spherical ansatz). We extend the CPPRMF model by taking 2p-2h states with higher spin quantum numbers, J^{π} = 1^{+}, 2^{-}, 3^{+}, ... to describe the full strength of the pionic correlation in the intermediate range (r > 0.5 fm). We apply the RCMF model to the ^{4}He nucleus as a pilot calculation for the study of medium and heavy nuclei. We study the behavior of energy convergence with the pionic quantum number, J^{π}, and find convergence around J^{π}_{max} = 6^{-}. We include further the effect of the short-range repulsion in terms of the unitary correlation operator method (UCOM) for the central part of the pion-exchange interaction. The energy contribution of about 50% of the net two-body interaction comes from the tensor part and 20% comes from the spin-spin central part of the pion-exchange interaction.}
Directory of Open Access Journals (Sweden)
Oleg Svatos
2013-01-01
Full Text Available In this paper we analyze complexity of time limits we can find especially in regulated processes of public administration. First we review the most popular process modeling languages. There is defined an example scenario based on the current Czech legislature which is then captured in discussed process modeling languages. Analysis shows that the contemporary process modeling languages support capturing of the time limit only partially. This causes troubles to analysts and unnecessary complexity of the models. Upon unsatisfying results of the contemporary process modeling languages we analyze the complexity of the time limits in greater detail and outline lifecycles of a time limit using the multiple dynamic generalizations pattern. As an alternative to the popular process modeling languages there is presented PSD process modeling language, which supports the defined lifecycles of a time limit natively and therefore allows keeping the models simple and easy to understand.
International Nuclear Information System (INIS)
Brown, T.W.
2010-11-01
The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Brown, T.W.
2010-11-15
The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)
Nuclei and models, 2001-2003. DEA fields, particles and matter
International Nuclear Information System (INIS)
Sida, J.L.
2003-01-01
This document gathers a series of 6 lessons dedicated to students in the first year of their thesis (DEA) in fields and particles physics: 1) the extent of nuclear physics, 2) the nucleus as a cluster of interacting fermions, 3) models and deformation, 4) nuclei and rotation, 5) isospin and exotic nuclei, and 6) fission reactions from the saddle point to the scission point
Overlap integrals of model wave functions of 4He and 3He,3H nuclei
International Nuclear Information System (INIS)
Voloshin, N.I.; Levshin, E.B.; Fursa, A.D.
1990-01-01
Overlap integrals of wave functions 4 He nucleus and 3 He and 3 H nuclei are calculated. Two types of model wave functions are used to describe the structure of nuclei. The wace function is taken as a product of the one-particle Gaussian functions of the Gaussian type in the second case
Nuclear collectivity and complex alignment mechanisms in light tungsten and osmium nuclei
International Nuclear Information System (INIS)
Johnson, N.R.
1989-01-01
During the past few years there have been significant advances in our understanding of nuclei excited into states of high angular momentum. The development of large multi-detector arrays for γ-γ coincidence spectroscopy studies has propelled the amount of new experimental information available and this has been complemented by notable advances in the theoretical treatments of high-spin phenomena. To provide yet a more detailed understanding of the structure of these high-spin states and to provide a stringent test of these models, we have resorted to measurements of their dynamic electromagnetic multipole moments which are a direct reflection of the collective aspects of the nuclear wave functions. For the most part, these multipole moments are obtained by lifetime measurements utilizing Doppler-shift techniques. Let me stress that the great value of lifetime measurements is that they provide the transition matrix elements without the necessity to rely on nuclear models. 24 refs., 10 figs
Simulation in Complex Modelling
DEFF Research Database (Denmark)
Nicholas, Paul; Ramsgaard Thomsen, Mette; Tamke, Martin
2017-01-01
This paper will discuss the role of simulation in extended architectural design modelling. As a framing paper, the aim is to present and discuss the role of integrated design simulation and feedback between design and simulation in a series of projects under the Complex Modelling framework. Complex...... performance, engage with high degrees of interdependency and allow the emergence of design agency and feedback between the multiple scales of architectural construction. This paper presents examples for integrated design simulation from a series of projects including Lace Wall, A Bridge Too Far and Inflated...... Restraint developed for the research exhibition Complex Modelling, Meldahls Smedie Gallery, Copenhagen in 2016. Where the direct project aims and outcomes have been reported elsewhere, the aim for this paper is to discuss overarching strategies for working with design integrated simulation....
Boccara, Nino
2010-01-01
Modeling Complex Systems, 2nd Edition, explores the process of modeling complex systems, providing examples from such diverse fields as ecology, epidemiology, sociology, seismology, and economics. It illustrates how models of complex systems are built and provides indispensable mathematical tools for studying their dynamics. This vital introductory text is useful for advanced undergraduate students in various scientific disciplines, and serves as an important reference book for graduate students and young researchers. This enhanced second edition includes: . -recent research results and bibliographic references -extra footnotes which provide biographical information on cited scientists who have made significant contributions to the field -new and improved worked-out examples to aid a student’s comprehension of the content -exercises to challenge the reader and complement the material Nino Boccara is also the author of Essentials of Mathematica: With Applications to Mathematics and Physics (Springer, 2007).
International Nuclear Information System (INIS)
Schreckenberg, M
2004-01-01
This book by Nino Boccara presents a compilation of model systems commonly termed as 'complex'. It starts with a definition of the systems under consideration and how to build up a model to describe the complex dynamics. The subsequent chapters are devoted to various categories of mean-field type models (differential and recurrence equations, chaos) and of agent-based models (cellular automata, networks and power-law distributions). Each chapter is supplemented by a number of exercises and their solutions. The table of contents looks a little arbitrary but the author took the most prominent model systems investigated over the years (and up until now there has been no unified theory covering the various aspects of complex dynamics). The model systems are explained by looking at a number of applications in various fields. The book is written as a textbook for interested students as well as serving as a comprehensive reference for experts. It is an ideal source for topics to be presented in a lecture on dynamics of complex systems. This is the first book on this 'wide' topic and I have long awaited such a book (in fact I planned to write it myself but this is much better than I could ever have written it!). Only section 6 on cellular automata is a little too limited to the author's point of view and one would have expected more about the famous Domany-Kinzel model (and more accurate citation!). In my opinion this is one of the best textbooks published during the last decade and even experts can learn a lot from it. Hopefully there will be an actualization after, say, five years since this field is growing so quickly. The price is too high for students but this, unfortunately, is the normal case today. Nevertheless I think it will be a great success! (book review)
Modeling complexes of modeled proteins.
Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A
2017-03-01
Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C α RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The broken-pair model for nuclei and its extension with quadrupole vibrations
International Nuclear Information System (INIS)
Hofstra, P.
1979-01-01
The author presents calculations for low energy properties of nuclei with an odd number of particles. These are described in the Broken-Pair approximation, where it is assumed that all but three particles occur as ordered Cooper pairs; the unpaired (one or three) particles are called quasiparticles. A model is developed with which it is hoped to describe odd nuclei with two open shells in terms of both single-particle and collective degrees of freedom. (Auth.)
International Nuclear Information System (INIS)
Wozniak, G.J.; Colonna, N.; Charity, R.J.; Moretto, L.G.
1989-02-01
The dependence of complex fragment production on the asymmetry of the entrance channel has been investigated with the 18 A MeV 139 La + 12 C, 27 Al, 64 Ni reactions. Invariant cross section plots show a very simple pattern for the two lighter targets and a more complex one for the heavier 64 Ni target. The observed complex fragments are shown to result from quasi-elastic/deep-inelastic reactions and from compound nuclei formed in complete/incomplete fusion processes. 9 refs., 10 figs
Predictive Surface Complexation Modeling
Energy Technology Data Exchange (ETDEWEB)
Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences
2016-11-29
Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO_{2} and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.
Polystochastic Models for Complexity
Iordache, Octavian
2010-01-01
This book is devoted to complexity understanding and management, considered as the main source of efficiency and prosperity for the next decades. Divided into six chapters, the book begins with a presentation of basic concepts as complexity, emergence and closure. The second chapter looks to methods and introduces polystochastic models, the wave equation, possibilities and entropy. The third chapter focusing on physical and chemical systems analyzes flow-sheet synthesis, cyclic operations of separation, drug delivery systems and entropy production. Biomimetic systems represent the main objective of the fourth chapter. Case studies refer to bio-inspired calculation methods, to the role of artificial genetic codes, neural networks and neural codes for evolutionary calculus and for evolvable circuits as biomimetic devices. The fifth chapter, taking its inspiration from systems sciences and cognitive sciences looks to engineering design, case base reasoning methods, failure analysis, and multi-agent manufacturing...
Extended interacting boson model description of Pd nuclei in the A∼100 transitional region
Directory of Open Access Journals (Sweden)
Böyükata M.
2014-03-01
Full Text Available Studies of even-even nuclei in the A∼100 transitional mass region within the framework of the interacting boson model-1 (IBM-1 have been expanded down to 98Pd nuclei to compare the calculation with new experimental results from measurements obtained at the Institute of Nuclear Physics in Cologne. The low-lying energy levels and the E2 transition rates of 98−100Pd nuclei are investigated and their geometric structures are described in the present work. We have also focused on the new B(E2:21+ → 01+ values of 112,114Pd nuclei to compare with previously calculated values.
Energy Technology Data Exchange (ETDEWEB)
Pasechnik, M V
1978-01-01
Major results of investigations into the shell structure of deformed nuclei with the number of neutrons of approximately 100, as well as new isotopic effects in the inelastic scattering of fast neutrons with nuclei are reported. The experiments conducted at the WWR-M research reactor have shown a substantial dependence of the nuclear excited energy-level density on the mass number and the number of neutrons. The fact resulted in a conclusion that the deformed nuclei possess filled shells, that was an incentive to revise the whole nuclear shell concept. In particular it was established that the property of magicity rests not only on the sphericity of nuclei but it may be also observed in strongly deformed nuclei. The isotope-spin dependence of the nuclear potential was studied at the AG-5 pulse electrostatic generator. The parameters of the potential were determined by comparing the experimental data on inelastic scattering and polarization of fast neutrons by nuclei from /sup 48/Ti to /sup 209/Bi with the calculations in terms of the optical model. Simple correlations were established between the optical potential and the nucleus asymmetry parameter ..cap alpha..=N-Z/A in wide ranges of mass numbers and neutron energy.
Collectivity in heavy nuclei in the shell model Monte Carlo approach
International Nuclear Information System (INIS)
Özen, C.; Alhassid, Y.; Nakada, H.
2014-01-01
The microscopic description of collectivity in heavy nuclei in the framework of the configuration-interaction shell model has been a major challenge. The size of the model space required for the description of heavy nuclei prohibits the use of conventional diagonalization methods. We have overcome this difficulty by using the shell model Monte Carlo (SMMC) method, which can treat model spaces that are many orders of magnitude larger than those that can be treated by conventional methods. We identify a thermal observable that can distinguish between vibrational and rotational collectivity and use it to describe the crossover from vibrational to rotational collectivity in families of even-even rare-earth isotopes. We calculate the state densities in these nuclei and find them to be in close agreement with experimental data. We also calculate the collective enhancement factors of the corresponding level densities and find that their decay with excitation energy is correlated with the pairing and shape phase transitions. (author)
Ciofi degli Atti, Claudio; Morita, Hiko
2017-12-01
Background: The nuclear spectral function is a fundamental quantity that describes the mean-field and short-range correlation dynamics of nucleons embedded in the nuclear medium; its knowledge is a prerequisite for the interpretation of various electroweak scattering processes off nuclear targets aimed at providing fundamental information on strong and weak interactions. Whereas in the case of the three-nucleon and, partly, the four-nucleon systems, the spectral function can be calculated ab initio within a nonrelativistic many-body Schroedinger approach, in the case of complex nuclei only models of the correlated, high-momentum part of the spectral function are available so far. Purpose: The purpose of this paper is to present a new approach such that the spectral function for a specific nucleus can be obtained from a reliable many-body calculation based upon realistic nucleon-nucleon interactions, thus avoiding approximations leading to adjustable parameters. Methods: The expectation value of the nuclear many-body Hamiltonian, containing realistic nucleon-nucleon interaction of the Argonne family, is evaluated variationally by a normalization-conserving linked-cluster expansion and the resulting many-body correlated wave functions are used to calculate the one-nucleon and the two-nucleon momentum distributions; by analyzing the high-momentum behavior of the latter, the spectral function can be expressed in terms of a transparent convolution formula involving the relative and center-of-mass (c.m.) momentum distributions in specific regions of removal energy E and momentum k . Results: It is found that as a consequence of the factorization of the many-body wave functions at short internucleon separations, the high-momentum behavior of the two-nucleon momentum distributions in A =3 ,4 ,12 ,16 ,40 nuclei factorizes, at proper values of the relative and c.m. momenta, into the c.m. and relative momentum distributions, with the latter exhibiting a universal A
Symmetry-dictated trucation: Solutions of the spherical shell model for heavy nuclei
International Nuclear Information System (INIS)
Guidry, M.W.
1992-01-01
Principles of dynamical symmetry are used to simplify the spherical shell model. The resulting symmetry-dictated truncation leads to dynamical symmetry solutions that are often in quantitative agreement with a variety of observables. Numerical calculations, including terms that break the dynamical symmetries, are shown that correspond to shell model calculations for heavy deformed nuclei. The effective residual interaction is simple, well-behaved, and can be determined from basic observables. With this approach, we intend to apply the shell model in systematic fashion to all nuclei. The implications for nuclear structure far from stability and for nuclear masses and other quantities of interest in astrophysics are discussed
Wei, Mingrui; Wu, Sheng; Li, Fan; Zhang, Dongju; Zhang, Tingting; Guo, Guanlun
2017-11-01
Pyrene dimerisation was successfully used to model the beginning of soot nucleation in some simulation models. However, the quantum mechanics (QM) calculations proved that the binding energy of a PAH dimer with three six-member rings was similar to that of a pyrene dimer. Meanwhile, the high concentration of phenanthrene at flame conditions indicated high probability of collisions among them. The small difference of the binding energy and high concentration indicated that PAHs structurally smaller than pyrene also could be involved in soot inception. Hence, binary collisions of phenanthrene were simulated to find out whether phenanthrene dimers can serve as soot primary nuclei or not by using non-equilibrium molecular dynamics (MD). Three temperatures, six collision orientations and 155 initial translational velocities (ITVs) were considered. The results indicated that the number of dimers with lifetime over 10 ps which can serve as soot nuclei decreased from 52 at 1000 K to 17 at 1600 K, and further to 6 at 2400 K, which means that low temperature was more favourable for phenanthrene to form soot nuclei. Meanwhile, no soot nuclei were formed at the high velocity region (HVR), compared to 43 and 9 at low and middle velocity regions (LVR and MVR), respectively, when temperature was 1000 K. Also, no soot nuclei were formed at HVR when the temperature was raised to 1600 K and 2400 K. This indicated that HVR was unfavourable for phenanthrene to form soot nuclei. The results computationally further illustrated that small PAHs such as phenanthrene could serve as soot primary nuclei, since they have similar mole fractions in some flames. This may be useful for future soot simulation models.
Mean field theory of nuclei and shell model. Present status and future outlook
International Nuclear Information System (INIS)
Nakada, Hitoshi
2003-01-01
Many of the recent topics of the nuclear structure are concerned on the problems of unstable nuclei. It has been revealed experimentally that the nuclear halos and the neutron skins as well as the cluster structures or the molecule-like structures can be present in the unstable nuclei, and the magic numbers well established in the stable nuclei disappear occasionally while new ones appear. The shell model based on the mean field approximation has been successfully applied to stable nuclei to explain the nuclear structure as the finite many body system quantitatively and it is considered as the standard model at present. If the unstable nuclei will be understood on the same model basis or not is a matter related to fundamental principle of nuclear structure theories. In this lecture, the fundamental concept and the framework of the theory of nuclear structure based on the mean field theory and the shell model are presented to make clear the problems and to suggest directions for future researches. At first fundamental properties of nuclei are described under the subtitles: saturation and magic numbers, nuclear force and effective interactions, nuclear matter, and LS splitting. Then the mean field theory is presented under subtitles: the potential model, the mean field theory, Hartree-Fock approximation for nuclear matter, density dependent force, semiclassical mean field theory, mean field theory and symmetry, Skyrme interaction and density functional, density matrix expansion, finite range interactions, effective masses, and motion of center of mass. The subsequent section is devoted to the shell model with the subtitles: beyond the mean field approximation, core polarization, effective interaction of shell model, one-particle wave function, nuclear deformation and shell model, and shell model of cross shell. Finally structure of unstable nuclei is discussed with the subtitles: general remark on the study of unstable nuclear structure, asymptotic behavior of wave
Microscopic Cluster Theory for Exotic Nuclei
International Nuclear Information System (INIS)
Tomaselli, M; Kuehl, T; Ursescu, D; Fritzsche, S
2006-01-01
For a better understanding of the dynamics of complex exotic nuclei it is of crucial importance to develop a practical microscopic theory easy to be applied to a wide range of masses. In this paper we propose to calculate the structure of neutron-rich nuclei within a dynamic model based on the EoM theory
Unraveling models of CP violation through electric dipole moments of light nuclei
Dekens, W.; Vries, J. de; Bsaisou, J.; Bernreuther, W.; Hanhart, C.; Meißner, Ulf-G; Nogga, A.; Wirzba, A.
2014-01-01
We show that the proposed measurements of the electric dipole moments of light nuclei in storage rings would put strong constraints on models of flavor-diagonal CP violation. Our analysis is exemplified by a comparison of the Standard Model including the QCD theta term, the minimal left-right
Jensen, Eric
2018-01-01
One of the proposed concepts for mitigating the warming effect of increasing greenhouse gases is seeding cirrus cloud with ice nuclei (IN) in order to reduce the lifetime and coverage of cold cirrus that have a net warming impact on the earth's surface. Global model simulations of the net impact of changing upper tropospheric IN have given widely disparate results, partly as a result of poor understanding of ice nucleation processes in the current atmosphere, and partly as a result of poor representation of these processes in global models. Here, we present detailed process-model simulations of tropical tropopause layer (TTL) transport and cirrus formation with ice nuclei properties based on recent laboratory nucleation experiments and field measurements of aerosol composition. The model is used to assess the sensitivity of TTL cirrus occurrence frequency and microphysical properties to the abundance and efficacy of ice nuclei. The simulated cloud properties compared with recent high-altitude aircraft measurements of TTL cirrus and ice supersaturation. We find that abundant effective IN (either from glassy organic aerosols or crystalline ammonium sulfate with concentrations greater than about 100/L) prevent the occurrences of large ice concentration and large ice supersaturations, both of which are clearly indicated by the in situ observations. We find that concentrations of effective ice nuclei larger than about 50/L can drive significant changes in cirrus microphysical properties and occurrence frequency. However, the cloud occurrence frequency can either increase or decrease, depending on the efficacy and abundance of IN added to the TTL. We suggest that our lack of information about ice nuclei properties in the current atmosphere, as well as uncertainties in ice nucleation processes and their representations in global models, preclude meaningful estimates of climate impacts associated with addition of ice nuclei in the upper troposphere. We will briefly discuss
International Nuclear Information System (INIS)
Lazarev, Yu.A.
1986-01-01
An analytically solvable model is used to study the potential barrier penetrability in the case when the gap parameter Δ is treated as a dynamical variable governed by the least action principle. It is found that, as compared to the standard (BCS) approach, the dynamical treatment of pairing results in a considerably weakened dependence of the fission barrier penetrability on the intensity of pairing correlations in the initial state (Δ 0 ), on the barrier height, and on the energy of the initial state. On this basis, a more adequate explanation is proposed for typical order-of-magnitude values of the empirical hidrance factors for groun-state spontaneous fission of odd nuclei. It is also shown that a large enhancement of superfluidity in tunneling - the inherent effect of the dynamical treatment of pairing - strongly facilitates deeply subbarier fusion of complex nuclei. Finally, an analysis is given for the probability of spontaneous fission from K-isomeric quasiparticle (q-p) states in even-even heavy nuclei. The relative change of the partial spontaneous fission half-life in going from the ground-state to a high-spin q-p isomeric state, T* sf /T sf , is found to be strongly dependent on whether or not there takes place the dynamically induced enhancement of superfluidity in tunneling. Measurements of T* sf /T sf provide thus a unique possibility of verifying theoretical predictions about the strong, inverse-square Δ dependence of the effective inertia associated with large-scale subbarrier rearrangements of nuclei
International Nuclear Information System (INIS)
Haba, Hiromitsu; Oura, Yasuji; Shibata, Seiichi; Furukawa, Michiaki; Fujiwara, Ichiro
2001-01-01
A short review is given on our studies of recoil properties of radionuclides formed in photospallation reactions induced by bremsstrahlung of end-point energies (E 0 ) from 600 to 1100 MeV, in which the thick-target thick-catcher method was employed. The measurements have been successful on 14, 24, 26, 31, 21 and 20 nuclides from nat V, nat Cu, 93 Nb, nat Ag, nat Ta, and 197 Au, respectively. Reflecting the resonance character in a photonuclear reaction, the mean ranges FW and BW in the forward and backward directions, respectively, are E 0 -independent at the studied energies and classified into two groups accounting for the (γ, xn) (x ≥ 1) and (γ, xnyp) (x, y ≥ 1) processes. The forward-to-backward ratios (F/B) are independent of the mass difference (ΔA) between a product (A p ) and a target (A t ) and also of A t . The kinematic properties of the product nuclei were analyzed by the two-step vector velocity model. The forward velocity ν after the first step of photon-reaction is quite different from that of proton-reaction at proton energies of E p ≤ 3 GeV, though the difference disappears at higher energies. On the other hand, the mean kinetic energy T of the residual nucleus in the second step is almost equal to that of proton-reaction irrespective of E p . A comparison with T values calculated by the PICA (Photon-Induced Intranuclear Cascade Analysis) code at E 0 =400 MeV was also performed. It was found that although the code well reproduces the experimental results of nat V and nat Cu, the same calculation for heavier targets gives T values lower than the experimental results, indicating some nuclear-structure effect, such as a medium effect notably at A t ≥ 100. An average kinetic energy carried off by the emitted particles ε s =T/(ΔA/A t ) of both photon- and proton-reactions seem to increase with an increase of A t up to around A t =100, and become almost constant at larger A t , implying some change in the nuclear structure effect in this
Projected shell model study of yrast states of neutron-deficient odd-mass Pr nuclei
International Nuclear Information System (INIS)
Ibanez-Sandoval, A.; Ortiz, M. E.; Velazquez, V.; Galindo-Uribarri, A.; Hess, P. O.; Sun, Y.
2011-01-01
A wide variety of modern instruments allow us to study neutron-deficient nuclei in the A=130 mass region. Highly deformed nuclei have been found in this region, providing opportunities to study the deformed rotational bands. The description of the 125,127,129,131,133 Pr isotopes with the projected shell model is presented in this paper. Good agreement between theory and experiment is obtained and some characteristics are discussed, including the dynamic moment of inertia J (2) , kinetic moment of inertia J (1) , the crossing of rotational bands, and backbending effects.
Dynamical and luminosity evolution of active galactic nuclei - Models with a mass spectrum
International Nuclear Information System (INIS)
Murphy, B.W.; Cohn, H.N.; Durisen, R.H.
1991-01-01
A multimass energy-space Fokker-Planck code is used to follow the dynamical and luminosity evolution of an AGN model that consists of a dense stellar system surrounding a massive black hole. It is found that stellar evolution and tidal disruption are the predominant mass-loss mechanisms for low-density nuclei, whereas physical collisions dominate in high-density nuclei. For initial central densities greater than 10 million solar masses/cu pc the core of the stellar system contacts due to the removal of kinetic energy by collisions, whereas for densities less than this the core of the stellar system expands due to heating that results from the settling of a small population of stars into orbits tightly bound to the black hole. These mechanisms produce differing power-law slopes in the resulting stellar density cusp surrounding the black hole, -7/4 and -1/2 for low- and high-density nuclei, respectively. 60 refs
Structure of exotic nuclei by large-scale shell model calculations
International Nuclear Information System (INIS)
Utsuno, Yutaka; Otsuka, Takaharu; Mizusaki, Takahiro; Honma, Michio
2006-01-01
An extensive large-scale shell-model study is conducted for unstable nuclei around N = 20 and N = 28, aiming to investigate how the shell structure evolves from stable to unstable nuclei and affects the nuclear structure. The structure around N = 20 including the disappearance of the magic number is reproduced systematically, exemplified in the systematics of the electromagnetic moments in the Na isotope chain. As a key ingredient dominating the structure/shell evolution in the exotic nuclei from a general viewpoint, we pay attention to the tensor force. Including a proper strength of the tensor force in the effective interaction, we successfully reproduce the proton shell evolution ranging from N = 20 to 28 without any arbitrary modifications in the interaction and predict the ground state of 42Si to contain a large deformed component
Fingerprint states of odd mass 115I nuclei in the framework of particle rotor model
International Nuclear Information System (INIS)
Goswami, R.; Saha Sarkar, M.; Sen, S.
2008-01-01
Extensive theoretical as well as experimental investigation of the nuclear structure of odd-mass iodine nuclei have revealed systematic presence of strongly coupled bands in all neutron deficient as well as neutron rich odd-mass iodine isotopes. The present work shows that the positive as well as the negative parity are fairly well reproduced in the framework of particle rotor model
Vogt, D.; Letelier, P.S.
2005-01-01
An exact but simple general relativistic model for the gravitational field of active galactic nuclei is constructed, based on the superposition in Weyl coordinates of a black hole, a Chazy-Curzon disk and two rods, which represent matter jets. The influence of the rods on the matter properties of
International Nuclear Information System (INIS)
Mueller, J. M.; Shane, R.; Waldecker, S. J.; Dickhoff, W. H.; Charity, R. J.; Sobotka, L. G.; Crowell, A. S.; Esterline, J. H.; Fallin, B.; Howell, C. R.; Westerfeldt, C.; Youngs, M.; Crowe, B. J. III; Pedroni, R. S.
2011-01-01
Neutron elastic-scattering angular distributions were measured at beam energies of 11.9 and 16.9 MeV on 40,48 Ca targets. These data plus other elastic-scattering measurements, total and reaction cross-sections measurements, (e,e ' p) data, and single-particle energies for magic and doubly magic nuclei have been analyzed in the dispersive optical-model (DOM), generating nucleon self-energies (optical-model potentials) that can be related, via the many-body Dyson equation, to spectroscopic factors and occupation probabilities. It is found that, for stable nuclei with N≥Z, the imaginary surface potential for protons exhibits a strong dependence on the neutron-proton asymmetry. This result leads to a more modest dependence of the spectroscopic factors on asymmetry. The measured data and the DOM analysis of all considered nuclei clearly demonstrate that the neutron imaginary surface potential displays very little dependence on the neutron-proton asymmetry for nuclei near stability (N≥Z).
An icy-glue model of cometary nuclei
International Nuclear Information System (INIS)
Gombosi, T.I.; Houpis, H.L.F.
1986-05-01
Since 1950 a number of models have been proposed to explain the observations of comets. For the most part the icy conglomerate model of Whipple was the standard. Based on the recent images made by VEGA and GIOTTO spacecrafts of comet Halley, a model of the nucleus is suggested that retains the advantages of the icy conglomerate formalism on a local level, while a new global framework is introduced. The model is disscussed in terms of the mounting knowledge of comets, the creation of the nucleus in the cosmogenic sence, and expectations of future analysis of data and observations are presented. A new methodology for calculating the evolution and thermal profiles of the nucleus is also presented. (author)
Neutron-skin thickness of finite nuclei in relativistic mean-field models with chiral limits
International Nuclear Information System (INIS)
Jiang Weizhou; Li Baoan; Chen Liewen
2007-01-01
We study several structure properties of finite nuclei using relativistic mean-field Lagrangians constructed according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities. The models are consistent with current experimental constraints for the equations of state of symmetric matter at both normal and supranormal densities and of asymmetric matter at subsaturation densities. It is shown that these models can successfully describe the binding energies and charge radii of finite nuclei. Compared to calculations with usual relativistic mean-field models, these models give a reduced thickness of neutron skin in 208 Pb between 0.17 fm and 0.21 fm. The reduction of the predicted neutron skin thickness is found to be due to not only the softening of the symmetry energy but also the scaling property of ρ meson required by the partial restoration of chiral symmetry
Model of coupled bands in even-even nuclei
Energy Technology Data Exchange (ETDEWEB)
Nadzhakov, E G; Nozharov, R M; Myankova, G Z; Antonova, V A [Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika
1979-01-01
The model is derived in a natural way from the theory of coupled modes. It is based on an expansion of the Hamiltonian in terms of elementary transition operators, including direct rotation-vibration coupling with phonons. The treatment is limited to three types of phonons: ( I = K = 0), S (I = K = 1) and (I = K = 2). The basis of the operators, acting on the ground state is truncated by an inclusion of a reasonable number of phonon states. In the framework of this approximation one may evaluate the matrix elements of the model Hamiltonian and diagonalize it by standard numerical methods to fit the experimental spectrum. The well known picture of band hybridization is obtained as a special case of the model under consideration.
γ-unstable nuclei in the sdg boson model
International Nuclear Information System (INIS)
Kuyucak, S.; Lac, V-S.; Morrison, I.; Barret, B.R.
1991-01-01
Following the recent Pt(p,p') experiments which indicated the need for g bosons to reproduce the E4 data, we have extended the O(6) limit of the sd boson model to the sdg bosons. It is shown that a γ-unstable Hamiltonian in the sdg model consisting of a quadrupole interaction and a g boson energy leads to results that are very similar to the O(6) limit. Deviations from the empirical energy spectrum that stem from the γ-unstable nature of the Hamiltonian can be improved by including a consistent hexadecapole interaction which induces triaxiality. The same hexadecapole operator can also account for the strong E4 transitions to the 4 + states presumed to be g boson states. Specific applications are made to the Xe and Pt isotopes. 12 refs., 2 tabs., 4 figs
gamma. -unstable nuclei in the sdg boson model
Energy Technology Data Exchange (ETDEWEB)
Kuyucak, S.; Lac, V.S.; Morrison, I.; Barrett, B.R. (School of Physics, Univ. of Melbourne, Parkville (Australia))
1991-07-18
Following the recent Pt(p, p') experiments which indicated the need for g bosons to reproduce the E4 data, we have extended the O(6) limit of the sd boson model to include g bosons. It is shown that a {gamma}-unstable hamiltonian in the sdg model consisting of a quadrupole interaction and a g boson energy leads to results that are very similar to the O(6) limit. Deviations from the empirical energy spectrum that stem from the {gamma}-unstable nature of the hamiltonian can be improved by including a consistent hexadecapole interaction which induces triaxiality. The same hexadecapole operator can also account for the strong E4 transitions. Applications are made to the Xe and Pt isotopes. (orig.).
Gamma-unstable nuclei in the sdg boson model
Kuyucak, S.; Lac, V.-S.; Morrison, I.; Barret, B. R.
Following the recent Pt(p,p') experiments which indicated the need for high angular momentum (g) bosons to reproduce the E4 data, we have extended the O(6) limit of the sd boson model to the sdg bosons. It is shown that a gamma-unstable Hamiltonian in the sdg model consisting of a quadrupole interaction and a g boson energy leads to results that are very similar to the O(6) limit. Deviations from the empirical energy spectrum that stem from the gamma-unstable nature of the Hamiltonian can be improved by including a consistent hexadecapole interaction which induces triaxiality. The same hexadecapole operator can also account for the strong E4 transitions to the 4(sup +) states presumed to be g boson states. Specific applications are made to the Xe and Pt isotopes.
γ-unstable nuclei in the sdg boson model
Kuyucak, S.; Lac, V.-S.; Morrison, I.; Barrett, B. R.
1991-07-01
Following the recent Pt(p, p‧) experiments which indicated the need for g bosons to reproduce the E4 data, we have extended the O(6) limit of the sd boson model to include g bosons. It is shown that a γ-unstable hamiltonian in the sdg model consisting of a quadrupole interaction and a g boson energy leads to results that are very similar to the O(6) limit. Deviations from the empirical energy spectrum that stem from the γ-unstable nature of the hamiltonian can be improved by including a consistent hexadecapole interaction which induces triaxiality. The same hexadecapole operator can also account for the strong E4 transitions. Applications are made to the Xe and Pt isotopes.
Contribution of meson exchange currents to magnetic form factor of a few complex nuclei
International Nuclear Information System (INIS)
Mathiot, J.F.
1981-12-01
We were interested in the contribution of meson exchange currents (MEC) to the magnetic form factor (MFF) of 49 Ti, 51 V, 87 Sr, 93 Nb at high momentum transfer (1.8 fm -1 to 3.2 fm -1 ). We found that the contribution of tensor correlations to the 1 S 0 - 3 S 1 transition of MEC (adding the 3 D 1 tensor part to the 3 S 1 relative state) multiply the previous calculations by a factor of 2.5 to 4. The sensitivity of MEC to the hadronic form factor is also estimated. It remains of discrepancy of a factor 2 for the MFF at 3 fm -1 for the first three nuclei [fr
Development of the α-decay theory of spherical nuclei by means of the shell model
International Nuclear Information System (INIS)
Holan, S.
1978-01-01
The new results achieved within the α-decay theory of spherical nuclei with a (2)-(5) integral formula, unaffected by arbitrary parameters, taking into account the finite shape of the α particle and using a basis of Woods-Saxon uniparticle functions to describe initial and final nuclei, may be summarized as follows: Through α-width calculations performed for many spherical nuclei it has been proved that experimental classifying of α-transition into favoured and unfavoured transitions as well as the hyperfine structure of the transitions can be theoretically explained if considered the nucleon-nucleon correlations in the description of initial and final nuclei; The absolute values of the theoretical α-widths obtained are about 10 2 times smaller compared to the experimental ones. This might be due to an oversimplified approximation of the α-particle-daughter nucleus interaction potential or either to an inaccuracy of the model functions used in describing nucleus decay in the surface area. (author)
Infinite nuclear matter model and mass formulae for nuclei
International Nuclear Information System (INIS)
Satpathy, L.
2016-01-01
The matter composed of the nucleus is a quantum-mechanical interacting many-fermionic system. However, the shell and classical liquid drop have been taken as the two main features of nuclear dynamics, which have guided the evolution of nuclear physics. These two features can be considered as the macroscopic manifestation of the microscopic dynamics of the nucleons at fundamental level. Various mass formulae have been developed based on either of these features over the years, resulting in many ambiguities and uncertainties posing many challenges in this field. Keeping this in view, Infinite Nuclear Matter (INM) model has been developed during last couple of decades with a many-body theoretical foundation employing the celebrated Hugenholtz-Van Hove theorem, quite appropriate for the interacting quantum-mechanical nuclear system. A mass formula called INM mass formula based on this model yields rms deviation of 342 keV being the lowest in literature. Some of the highlights of its result includes its determination of INM density in agreement with the electron scattering data leading to the resolution of the long standing 'r 0 -paradox' it predicts new magic numbers giving rise to new island of stability in the drip-line regions. This is the manifestation of a new phenomenon where shell-effect over comes the repulsive component of nucleon-nucleon force resulting in the broadening of the stability peninsula. Shell quenching in N= 82,and N= 126 shells, and several islands of inversion have been predicted. The model determines the empirical value of the nuclear compression modulus, using high precission 4500 data comprising nuclear masses, neutron and proton separation energies. The talk will give a critical review of the field of mass formula and our understanding of nuclear dynamics as a whole
Unified description of pf-shell nuclei by the Monte Carlo shell model calculations
Energy Technology Data Exchange (ETDEWEB)
Mizusaki, Takahiro; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Honma, Michio
1998-03-01
The attempts to solve shell model by new methods are briefed. The shell model calculation by quantum Monte Carlo diagonalization which was proposed by the authors is a more practical method, and it became to be known that it can solve the problem with sufficiently good accuracy. As to the treatment of angular momentum, in the method of the authors, deformed Slater determinant is used as the basis, therefore, for making angular momentum into the peculiar state, projected operator is used. The space determined dynamically is treated mainly stochastically, and the energy of the multibody by the basis formed as the result is evaluated and selectively adopted. The symmetry is discussed, and the method of decomposing shell model space into dynamically determined space and the product of spin and isospin spaces was devised. The calculation processes are shown with the example of {sup 50}Mn nuclei. The calculation of the level structure of {sup 48}Cr with known exact energy can be done with the accuracy of peculiar absolute energy value within 200 keV. {sup 56}Ni nuclei are the self-conjugate nuclei of Z=N=28. The results of the shell model calculation of {sup 56}Ni nucleus structure by using the interactions of nuclear models are reported. (K.I.)
Appropriate complexity landscape modeling
Larsen, Laurel G.; Eppinga, Maarten B.; Passalacqua, Paola; Getz, Wayne M.; Rose, Kenneth A.; Liang, Man
Advances in computing technology, new and ongoing restoration initiatives, concerns about climate change's effects, and the increasing interdisciplinarity of research have encouraged the development of landscape-scale mechanistic models of coupled ecological-geophysical systems. However,
Stopped pion absorption by medium and heavy nuclei in the cascade-exciton model
International Nuclear Information System (INIS)
Mashnik, S.G.
1992-03-01
A large variety of experimental data on stopped negative pion absorption by nuclei from C to Bi (energy spectra and multiplicities of n, p, d, t, 3 He and 4 He; angular correlations of two secondary particles; spectra of the energy release in the ''live'' 28 Si target on recording protons, deuterons and tritons in the energy range 40-70 MeV, 30-60 MeV and 30-50 MeV, respectively; isotope yields; momentum and angular momentum distributions of residual nuclei) are analyzed within the framework of the cascade-exciton model of nuclear reactions. Comparison is made with other up-to-date models of the process. The contributions of different pion absorption mechanisms and the relative role of different particle production mechanisms in these reactions are discussed. (author). 59 refs, 13 figs, 4 tabs
Stability of nuclei in peripheral collisions in the JAERI quantum molecular dynamics model
International Nuclear Information System (INIS)
Mancusi, Davide; Niita, Koji; Maruyama, Tomoyuki; Sihver, Lembit
2009-01-01
The JAERI quantum molecular dynamics (JQMD) model has been successfully used for a long time now to describe many different aspects of nuclear reactions in a unified way. In some cases, however, the JQMD model cannot produce consistent results: First, it lacks a fully relativistically covariant approach to the problem of molecular dynamics; second, the quantum-mechanical ground state of nuclei cannot be faithfully reproduced in a semiclassical framework. Therefore, we introduce R-JQMD, an improved version of JQMD that also features a new ground-state initialization algorithm for nuclei. We compare the structure of the two codes and discuss whether R-JQMD can be adjusted to improve JQMD's agreement with measured heavy-ion fragmentation cross sections
Energy Technology Data Exchange (ETDEWEB)
Christillin, P [Scuola Normale Superiore, Pisa (Italy); Lipparini, E; Stringari, S [Dipartimento Matematica e Fisica, Trento, Italy
1978-09-25
A sum-rule approach is used to study the influence of surface thickness upon the splitting of dipole and isoscalar quadrupole energies in deformed nuclei. It is shown that hydrodynamic model results are recovered in the case of a deformed skin thickness. A constant skin thickness leads in the dipole case to slightly different predictions which seem in better agreement with experiments. The splitting of the isoscalar quadrupole mode is not sensitive to the surface thickness shape.
Spectra of nuclei 9Be and 9B in a three-cluster microscopic model
International Nuclear Information System (INIS)
Nesterov, A.V.; Vasilevsky, V.S.; Kovalenko, T.P.
2012-01-01
Within a microscopic three-cluster α + α + n(p) model, which is a three-cluster version of the algebraic approach to the Resonating Group Method (RGM), we consider the spectra of the low-lying states of mirror nuclei 9 Be and 9 B in the energy range from zero to 5 MeV excitation. The obtained theoretical results are compared with the available experimental data
β4 systematics in rare-earth and actinide nuclei: sdg interacting boson model description
International Nuclear Information System (INIS)
Devi, Y.D.; Kota, V.K.B.
1992-01-01
The observed variation of hexadecupole deformation parameter β 4 with mass number A in rare-earth and actinide nuclei is studied in the sdg interacting boson model (IBM) using single j-shell Otsuka-Arima-Iachello mapped and IBM-2 to IBM-1 projected hexadecupole transition operator together with SU sdg (3) and SU sdg (5) coherent states. The SU sdg (3) limit is found to provide a good description of data
Microscopic theory of light exotic nuclei. Shell Models Embedded in the Continuum
International Nuclear Information System (INIS)
Bennaceur, K.
1999-01-01
The recent advances in experimental nuclear physics make it possible to study nuclear systems far from the beta stability line. The discovery of new phenomena, like halos or neutron skins, requires the development of new theoretical models which enable to study these systems. The first part of this work is devoted to the development and the applications of the Shell Model Embedded in the Continuum (SMEC). This new formalism allows to take into account the correlations between the bound and scattering states of loosely bound nuclei. SMEC is applied here to the study of the spectroscopy of the Mirror nuclei 8 B- 8 Li and 17 F- 17 O. It can also be used to calculate the cross sections of the elastic scattering, the Coulomb breakup processes and the radiative n,p capture processes. The results concerning the reactions of astrophysical interest: 18 O(p, γ) 17 F and 7 Be(p, γ) 8 B, are discussed in details. This last reaction is very important because the disintegration of 8 B is the main source of High energy neutrinos in the sun. The second part of this work is related to the analysis of pairing interaction for weakly bound nuclei. We have developed a new approach, based on the Hartree-Fock-Bogolyubov (HFB) theory, that allows to study the pairing correlations between bound and scattering states, both resonant and not resonant ones. The 'particle-hole' potential is replaced by a model potential for which the solutions are analytically known. This method allows to analyse the effect of pairing on bound and resonant states, independently of their energy position. We have clearly demonstrated that the non-resonant continuum plays a crucial role in the loosely bound nuclei and that solving the HFB equations in the coordinate space is the only method that permits to treat this problem correctly. (author)
Alpha-cluster preformation factor within cluster-formation model for odd-A and odd-odd heavy nuclei
Saleh Ahmed, Saad M.
2017-06-01
The alpha-cluster probability that represents the preformation of alpha particle in alpha-decay nuclei was determined for high-intensity alpha-decay mode odd-A and odd-odd heavy nuclei, 82 CSR) and the hypothesised cluster-formation model (CFM) as in our previous work. Our previous successful determination of phenomenological values of alpha-cluster preformation factors for even-even nuclei motivated us to expand the work to cover other types of nuclei. The formation energy of interior alpha cluster needed to be derived for the different nuclear systems with considering the unpaired-nucleon effect. The results showed the phenomenological value of alpha preformation probability and reflected the unpaired nucleon effect and the magic and sub-magic effects in nuclei. These results and their analyses presented are very useful for future work concerning the calculation of the alpha decay constants and the progress of its theory.
Elastic electron scattering from 4N nuclei in the α-cluster model with dispersion
Energy Technology Data Exchange (ETDEWEB)
Berezhnoy, Yu.A. [Karazin Kharkov National University, Kharkov (Ukraine); Mikhailyuk, V.P. [Institute for Nuclear Research, Kiev (Ukraine)
2017-06-15
The α-cluster model with dispersion has been developed for some 4N nuclei in the 2s-1d shell. The previously considered molecule-like configuration for the {sup 24}Mg nucleus is compared with the octahedron one. For the {sup 32}S nucleus both the cubic and bitetrahedron configurations are discussed. Molecule-like configurations with the {sup 32}S nucleus core and additional dumb-bell for the {sup 40}Ca nucleus are proposed. The structure of the {sup 40}Ca nucleus consisting of six α-clusters arranged in a octahedron outside of tetrahedron {sup 16}O core is also considered. The calculated charge form factors and root mean square radii of such nuclei are in a reasonable agreement with the available experimental data. (orig.)
Experimental complex to study nuclei far from beta-stability line-isol-facility YASNAPP-2
International Nuclear Information System (INIS)
Kalinnikov, V.G.; Gromov, K.Ya.; Ianicki, M.
1990-01-01
A complex of installations (complex YASNAPP-2), developed for spectroscopic investigations of short-lived isotopes and working on the line of the proton beam of the JINR phasotron, is briefly described. The first physics results of investigations of short-lived nuclides in the rare earth region are presented: the alpha-spectrum of A=155 and the gamma-gamma coincidence spectrum for A=157. 25 refs.; 9 figs.; 2 tabs
DEFF Research Database (Denmark)
Cherry, John F.; Frandsen, Mads T.; Shoemaker, Ian M.
2015-01-01
We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, {but rather} the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection...... to nuclei, the limit from annihilation to relativistic particles in the Sun can be stronger than that of conventional non-relativistic direct detection by more than three orders of magnitude for masses in a 2-7 GeV window.......We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, {but rather} the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection...... experiments is controlled by relativistic kinematics. This results in a distinctive recoil spectrum, a non-standard and or even absent annual modulation, and the ability to probe DM masses as low as a $\\sim$10 MeV. We use current LUX data to show that experimental sensitivity to thermal relic annihilation...
Three-Body Potentials in α-Particle Model of Light Nuclei
International Nuclear Information System (INIS)
Ishikawa, Souichi
2017-01-01
In three-body model calculations of atomic nuclei, e.g., the "1"2C nucleus as α-α-α system and the "9Be nucleus as α-α-n system, the Hamiltonians of the systems consisting of two- and three-body potentials are important inputs. However, our knowledge of three-body potentials is quite restricted. In this paper, I will examine a relation between α-α-α and α-α-n three-body potentials that is obtained in a simple cluster model picture, which gives a phenomenological constraint condition on the three-body potential models to be used. (author)
Giant halos in medium nuclei within modified relativistic mean field (MRMF) model
Energy Technology Data Exchange (ETDEWEB)
Nugraha, A. M., E-mail: alpi.mahisha@gmail.com; Sulaksono, A. [Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Sumaryada, T. [Department of Physics, Bogor Agricultural University, Jalan Meranti Kampus IPB Dramaga Bogor 16680 (Indonesia)
2016-04-19
The large number of neutrons in a region beyond a closed shell core indicates the presence of giant halos in nuclei. In this work, by using the Rotival method within a modified relativistic mean field (MRMF) model, we predict theoretically the formation of giant halos in Cr and Zr isotopes. The MRMF model is a modification of standard RMF model augmented with isoscalar and isovector tensor terms, isovector-isoscalar vector cross coupling term and electromagnetic exchange term for Coulomb interaction in local density approximation (LDA).
Symplectic no-core shell-model approach to intermediate-mass nuclei
Tobin, G. K.; Ferriss, M. C.; Launey, K. D.; Dytrych, T.; Draayer, J. P.; Dreyfuss, A. C.; Bahri, C.
2014-03-01
We present a microscopic description of nuclei in the intermediate-mass region, including the proximity to the proton drip line, based on a no-core shell model with a schematic many-nucleon long-range interaction with no parameter adjustments. The outcome confirms the essential role played by the symplectic symmetry to inform the interaction and the winnowing of shell-model spaces. We show that it is imperative that model spaces be expanded well beyond the current limits up through 15 major shells to accommodate particle excitations, which appear critical to highly deformed spatial structures and the convergence of associated observables.
International Nuclear Information System (INIS)
Balian, Roger; Remaud, Bernard; Suraud, E.; Durand, Dominique; Tamain, Bernard; Gobbi, A.; Cugnon, J.; Drapier, Olivier; Govaerts, Jan; Prieels, Rene
1995-09-01
This 14. international school Joliot-Curie of nuclear physic deals with nuclei in collision at high energy. Nine lectures are included in the proceedings of this summer school: 1 - From statistical mechanics outside equilibrium to transport equations (Balian, R.); 2 - Modeling of heavy ions reactions (Remaud, B.); 3 - Kinetic equations in heavy ions physics (Suraud, E.); 4 - Colliding nuclei near the Fermi energy (Durand, D.; Tamain, B.); 5 - From the Fermi to the relativistic energy domain: which observable? For which physics? (Gobbi, A.); 6 - Collisions at relativistic and ultra relativistic energies, Theoretical aspects (Cugnon, J.); 7 - Quark-gluon plasma: experimental signatures (Drapier, O.); 8 - Electroweak interaction: a window on physics beyond the standard model (Govaerts, J.); 9 - Symmetry tests in β nuclear process: polarization techniques (Prieels, R.)
International Nuclear Information System (INIS)
Chomaz, Ph.
2000-01-01
This document gathers the slides and their commentaries that have been presented at the conference 'physics and fundamental questions' by P. Chomaz. The author reviews the different quantum aspects of nuclei: tunnel effect, symmetries, magic numbers, wave functions, size, shapes and deformations. The author shows that nuclei are quantum objects of great complexity, their structures are not yet well understood and the study of exotic nuclei will continue bringing valuable information
International Nuclear Information System (INIS)
Moretto, L.G.; Wozniak, G.J.
1988-11-01
The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs
Systematics of β and γ parameters of O(6)-like nuclei in the interacting boson model
International Nuclear Information System (INIS)
Wang Baolin
1997-01-01
By comparing quadrupole moments between the interacting boson model (IBM) and the collective model, a simple calculation for the triaxial deformation parameters β and γ in the O(6)-like nuclei is presented, based on the intrinsic frame in the IBM. The systematics of the β and γ are studied. The realistic cases are calculated for the even-even Xe, Ba and Ce isotopes, and the smooth dependences of the strength ratios θ 3 /κ and the effective charges e 2 on the proton and neutron boson numbers N π and N ν are discovered
Application of the interacting boson model to collective states in medium heavy nuclei
International Nuclear Information System (INIS)
Kaup, U.
1983-01-01
In the framework of the interacting boson model a systematic description of even-even isotopes of the medium heavy elements selenium, krypton, and strontium is given. The number of the free parameters could be kept very small by the determination of the physically relevant terms of the general model Hamiltonian. The variation of the collectivity from spherical to deformed, γ-soft nuclei could be mainly derived from the influence of the number of valence nucleons. All model parameters vary smoothly as function of the valence particle number and in qualitative agreement with predictions of a simplified microscopical model. Odd nuclei were studied in the framework of the interacting boson-fermion model. Beside the phenomenological description of odd-even rubidium, technetium, and silver isotope this part of the thesis is occupied mainly by the microscopical theory of the boson-fermion model. The effect of the antisymmetrization of the last, odd particle with the core nucleons is discussed. The microscopic theory is supplemented by the derivation of the so called Pauli term from the interaction of identical nucleons. (orig./HSI) [de
Epidemic modeling in complex realities.
Colizza, Vittoria; Barthélemy, Marc; Barrat, Alain; Vespignani, Alessandro
2007-04-01
In our global world, the increasing complexity of social relations and transport infrastructures are key factors in the spread of epidemics. In recent years, the increasing availability of computer power has enabled both to obtain reliable data allowing one to quantify the complexity of the networks on which epidemics may propagate and to envision computational tools able to tackle the analysis of such propagation phenomena. These advances have put in evidence the limits of homogeneous assumptions and simple spatial diffusion approaches, and stimulated the inclusion of complex features and heterogeneities relevant in the description of epidemic diffusion. In this paper, we review recent progresses that integrate complex systems and networks analysis with epidemic modelling and focus on the impact of the various complex features of real systems on the dynamics of epidemic spreading.
Correlations in multiple production on nuclei and Glauber model of multiple scattering
International Nuclear Information System (INIS)
Zoller, V.R.; Nikolaev, N.N.
1982-01-01
Critical analysis of possibility for describing correlation phenomena during multiple production on nuclei within the framework of the Glauber multiple seattering model generalized for particle production processes with Capella, Krziwinski and Shabelsky has been performed. It was mainly concluded that the suggested generalization of the Glauber model gives dependences on Ng(Np) (where Ng-the number of ''grey'' tracess, and Np-the number of protons flying out of nucleus) and, eventually, on #betta# (where #betta#-the number of intranuclear interactions) contradicting experience. Independent of choice of relation between #betta# and Ng(Np) in the model the rapidity corrletor Rsub(eta) is overstated in the central region and understated in the region of nucleus fragmentation. In mean multiplicities these two contradictions of experience are disguised with random compensation and agreement with experience in Nsub(S) (function of Ng) cannot be an argument in favour of the model. It is concluded that eiconal model doesn't permit to quantitatively describe correlation phenomena during the multiple production on nuclei
International Nuclear Information System (INIS)
Nesterenko, V.O.; Kleinig, W.
1995-01-01
The self-consistent vibrating potential model (VPM) is extended for description of Eλ collective excitations in atomic nuclei and metal clusters with practically any kind of static deformation. The model is convenient for a qualitative analysis and provides the RPA accuracy of numerical calculations. The VPM is applied to study Eλ giant resonances in spherical metal clusters and deformed and superdeformed nuclei. It is shown that the deformation splitting of superdeformed nuclei results in a very complicated (''jungle-like'') structure of the resonances, which makes the experimental observation of E2 and E3 giant resonances in superdeformed nuclei quite problematic. Calculations of E1 giant resonance in spherical sodium clusters Na 8 , Na 20 and Na 40 are presented, as a test of the VPM in this field. The results are in qualitative agreement with the experimental data. (orig.)
International Nuclear Information System (INIS)
Short, C. J.; Thomas, P. A.
2009-01-01
We present hydrodynamical N-body simulations of clusters of galaxies with feedback taken from semianalytic models of galaxy formation. The advantage of this technique is that the source of feedback in our simulations is a population of galaxies that closely resembles that found in the real universe. We demonstrate that, to achieve the high entropy levels found in clusters, active galactic nuclei must inject a large fraction of their energy into the intergalactic/intracluster media throughout the growth period of the central black hole. These simulations reinforce the argument of Bower et al., who arrived at the same conclusion on the basis of purely semianalytic reasoning.
Quasiparticle--phonon model of the nucleus. V. Odd spherical nuclei
International Nuclear Information System (INIS)
Vdovin, A.I.; Voronov, V.V.; Solov'ev, V.G.; Stoyanov, C.
1985-01-01
The formalism of the quasiparticle--phonon model of the nucleus for odd spherical nuclei is presented. The exact commutation relations of the quasiparticle and phonon operators together with the anharmonic corrections for the phonon excitations are taken into account in the derivation of equations for the energies and structure coefficients of the wave functions of excited states, which include quasiparticle--phonon and quasiparticle--two-phonon components. The influence of various physical effects and of the dimension of the phonon basis on the fragmentation of the single-quasiparticle and quasiparticle-phonon states is investigated
Collective excitations in neutron-rich nuclei within the model of a Fermi liquid drop
International Nuclear Information System (INIS)
Kolomietz, V.M.; Magner, A.G.
2000-01-01
We discuss a new mechanism of splitting of giant multipole resonances (GMR) in spherical neutron-rich nuclei. This mechanism is associated with the basic properties of an asymmetric drop of nuclear Fermi liquid. In addition to well-known isospin shell-model predictions, our approach can be used to describe the GMR splitting phenomenon in the wide nuclear-mass region A ∼ 40-240. For the dipole isovector modes, the splitting energy, the relative strength of resonance peaks, and the contribution to the energy-weighted sum rules are in agreement with experimental data for the integrated cross sections for photonuclear (γ, n) and (γ, p) reactions
Damping width of giant dipole resonances of cold and hot nuclei: A macroscopic model
International Nuclear Information System (INIS)
Mughabghab, S.F.; Sonzogni, A.A.
2002-01-01
A phenomenological macroscopic model of the giant dipole resonance (GDR) damping width of cold and hot nuclei with ground-state spherical and near-spherical shapes is developed. The model is based on a generalized Fermi liquid model which takes into account the nuclear surface dynamics. The temperature dependence of the GDR damping width is accounted for in terms of surface and volume components. Parameter-free expressions for the damping width and the effective deformation are obtained. The model is validated with GDR measurements of the following nuclides: 39,40 K, 42 Ca, 45 Sc, 59,63 Cu, 109-120 Sn, 147 Eu, 194 Hg, and 208 Pb, and is compared with the predictions of other models
SU(6) quadrupole phonon model for even and odd nuclei and the SU(3) limit
Energy Technology Data Exchange (ETDEWEB)
Paar, V; Brant, S [Zagreb Univ. (Yugoslavia). Prirodoslovno Matematicki Fakultet; Canto, L F [Rio de Janeiro Univ. (Brazil). Inst. de Fisica; Leander, G [Lund Inst. of Tech. (Sweden). Dept. of Mathematical Physics; Oak Ridge National Lab., TN (USA)); Vouk, M [Zagreb Univ. (Yugoslavia). Computing Centre SRCE
1982-04-05
Analogous to the equivalence between the SU(6) quadrupole-phonon model (TQM) and the interacting boson model (IBM), the equivalence is pointed out for odd systems between the SU(6) particle quadrupole-phonon coupling model (PTQM) and the interacting boson-fermion model (IBFM). PTQM is formulated starting from the Dyson representation for the odd system. Different aspects of the SU(3) limit of TQM and PTQM are studied; the quadrupole-phonon block structure of rotational bands in even and odd nuclei and analytic expressions based on the coherent state; signature effects generated in PTQM; electromagnetic properties and correction factors for PTQM; overlaps of the PTQM analogs of Nilsson states with Coriolis-coupled Nilsson states and the relation to the rotational model representation.
Spectroscopic information on light halo - nuclei within the framework of multiparticle shell model
International Nuclear Information System (INIS)
Khaydarov, R.R.
2004-09-01
Aim of the inquiry: to develop the potential approach within the framework of multiparticle shell model; to obtain analytical expressions for a wave function and equations for widths off sub-barrier resonance states; to apply the theoretical approach for obtaining properties of 5 He, 5 Li, 8 B and 11 N nuclei; to estimate values of root-mean-square radiuses, radial density of nucleons, magnetic dipole and electrical quadrupole moments and spectroscopic information for 8 B and 8 Li with use of a method of expansion on functions of Storm - Liouville; to estimate the contribution of 2p - shell of 13 C and process of exchange replacement to the astrophysical S-factor of 13 C (α, n) 16 O reaction. Method of the research: theoretical approaches within the framework of multiparticle shell model. Achieved results and their novelty: new theoretical approach allowing to describe correctly the experimental static characteristics of sub-barrier one-particle resonance states in of 5 He, 5 Li, 8 B and 11 N light nuclei has been developed. Structure of 8 B and 8 Li light mirror nuclei with use of the approach for the description of one-particle resonance states based on the method of expansion on functions of Storm - Liouville has been investigated; The spectroscopic information for proton halo in 8 B and values of the magnetic dipole and electric quadrupole moments of 8 B and 8 Li with use of technique of genealogical coefficients have been obtained. The contribution of 2p - shell of 13 C (α, n) 16 O reaction has been estimated. (author)
Energy Technology Data Exchange (ETDEWEB)
Czerny, B.; Panda, S.; Wildy, C.; Sniegowska, M. [Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Li, Yan-Rong; Wang, J.-M. [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Hryniewicz, K.; Sredzinska, J. [Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw (Poland); Karas, V., E-mail: bcz@cft.edu.pl [Astronomical Institute, Academy of Sciences, Bocni II 1401, CZ-141 00 Prague (Czech Republic)
2017-09-10
The physical origin of the broad line region in active galactic nuclei is still unclear despite many years of observational studies. The reason is that the region is unresolved, and the reverberation mapping results imply a complex velocity field. We adopt a theory-motivated approach to identify the principal mechanism responsible for this complex phenomenon. We consider the possibility that the role of dust is essential. We assume that the local radiation pressure acting on the dust in the accretion disk atmosphere launches the outflow of material, but higher above the disk the irradiation from the central parts causes dust evaporation and a subsequent fallback. This failed radiatively accelerated dusty outflow is expected to represent the material forming low ionization lines. In this paper we formulate simple analytical equations to describe the cloud motion, including the evaporation phase. The model is fully described just by the basic parameters of black hole mass, accretion rate, black hole spin, and viewing angle. We study how the spectral line generic profiles correspond to this dynamic. We show that the virial factor calculated from our model strongly depends on the black hole mass in the case of enhanced dust opacity, and thus it then correlates with the line width. This could explain why the virial factor measured in galaxies with pseudobulges differs from that obtained from objects with classical bulges, although the trend predicted by the current version of the model is opposite to the observed trend.
Application of shell model with the modified surface delta interaction to 42Ca and 42Sc nuclei
International Nuclear Information System (INIS)
Jasielska, A.; Wiktor, S.
1975-01-01
The shell model with MSDI residual interaction is used to investigate properties of levels in the 42 Ca and 42 Sc nuclei. The 40 Ca core with two active outer nucleons is assumed. The energy matrices are diagonalized and the calculated level schemes for both 42 Ca and 42 Sc nuclei are presented. In both nuclei the density of the calculated levels is significantly less than of the observed levels. This fact leads to the conclusion, that some core excitation modes play an important role in the formation of low-lying states in the 42 Ca and 42 Sc nuclei. The calculated eigenvalues and eigenvectors of the states below 5 MeV are given. (author)
Finite nuclei in relativistic models with a light chiral scalar meson
International Nuclear Information System (INIS)
Serot, B.D.; Furnstahl, R.J.
1993-01-01
Relativistic chiral models with a light scalar, meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. In these models, the scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. There deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario for chiral hadronic models, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed
Energy Technology Data Exchange (ETDEWEB)
Sida, J.L
2003-07-01
This document gathers a series of 6 lessons dedicated to students in the first year of their thesis (DEA) in fields and particles physics: 1) the extent of nuclear physics, 2) the nucleus as a cluster of interacting fermions, 3) models and deformation, 4) nuclei and rotation, 5) isospin and exotic nuclei, and 6) fission reactions from the saddle point to the scission point.
The effective Schroedinger equation of the optical model of composite nuclei elastic collisions
International Nuclear Information System (INIS)
Mondragon, A.; Hernandez, E.
1980-01-01
An effective hamiltonian for elastic collisions between composite nuclei is obtained from the Schroedinger equation of the complete many-body system and its fully antisymmetric wave functions by means of a projection operator technique. This effective hamiltonian, defined in such a way that it has to reproduce the scattering amplitude in full detail, including exchange effects, is explicitly Galilean invariant. The effective interaction operator is a function of the relative distance between the centers of mass of the colliding nuclei and the constants of the motion of the whole system. The interaction operator of the optical model is obtained next, requiring as usual, that it reproduces the average over the energy of the scattering amplitude and keeping the Galilean invariance. The resulting optical potential operator has some terms identical to those obtained in the Resonating Group Method, and others coming from the elimination of all non elastic channels and the delayed elastic scattering. This result makes the relation existing among the projection operator method to the Feshbach and the cluster model equations of motion for positive energies (RGM) explicit. The additional interaction terms due to the flux loss in the elastic channel are non-local, and non-hermitean operators expressed in terms of the transition amplitudes and the density of states of the compound nucleus in such a way that an approximate evaluation, in a systematic fashion, seems possible. Theangular momentum dependence of the optical potential operator is discussed in some detail. (author)
Computational models of complex systems
Dabbaghian, Vahid
2014-01-01
Computational and mathematical models provide us with the opportunities to investigate the complexities of real world problems. They allow us to apply our best analytical methods to define problems in a clearly mathematical manner and exhaustively test our solutions before committing expensive resources. This is made possible by assuming parameter(s) in a bounded environment, allowing for controllable experimentation, not always possible in live scenarios. For example, simulation of computational models allows the testing of theories in a manner that is both fundamentally deductive and experimental in nature. The main ingredients for such research ideas come from multiple disciplines and the importance of interdisciplinary research is well recognized by the scientific community. This book provides a window to the novel endeavours of the research communities to present their works by highlighting the value of computational modelling as a research tool when investigating complex systems. We hope that the reader...
Microscopic model accounting of 2p2p configurations in magic nuclei
International Nuclear Information System (INIS)
Kamerdzhiev, S.P.
1983-01-01
A model for account of the 2p2h configurations in magic nuclei is described in the framework of the Green function formalism. The model is formulated in the lowest order in the phonon production amplitude, so that the series are expansions not over pure 2p2h configurations, but over con figurations of the type ''1p1h+phonon''. Equations are obtained for the vertex and the density matrix, as well as an expression for the transition probabilities, that are extensions of the corresponding results of the theory of finite Fermi systems, or of the random-phase approximation to the case where the ''1p1h+phonon'' configurations are taken into account. Corrections to the one-particle phenomenological basis which arise with account for complicated configurations are obtained. Comparison with other approaches, using phonons, has shown that they are particular cases of the described model
International Nuclear Information System (INIS)
De Oliveira, Z.M.
1980-01-01
A detailed analysis of the simple statistical model description for delayed neutron emission of 87 Br, 137 I, 85 As and 135 Sb has been performed. In agreement with experimental findings, structure in the #betta#-strength function is required to reproduce the envelope of the neutron spectrum from 87 Br. For 85 As and 135 Sb the model is found incapable of simultaneously reproducing envelopes of delayed neutron spectra and neutron branching ratios to excited states in the final nuclei for any choice of #betta#-strength function. The results indicate that partial widths for neutron emission are not compatible with optical-model transmission coefficients. The simple shell model with pairing is shown to qualitatively describe the main features of the #betta#-strength functions for decay of 87 Br and 91 93 95 97 Rb. It is found that the location of apparent resonances in the experimental data are in rough agreement with the location of centroids of strength calculated with this model. An extension of the shell model picture which includes the Gamow-Teller residual interaction is used to investigate decay properties of 84 86 As, 86 92 Br and 88 102 Rb. For a realistic choice of interaction strength, the half lives of these isotopes are fairly well reproduced and semiquantitative agreement with experimental #betta#-strength functions is found. Delayed neutron emission probabilities are reproduced for precursors nearer stability with systematic deviations being observed for the heavier nuclei. Contrary to the assumption of a structureless Gamow-Teller giant resonance as embodied gross theory of #betta#-decay, we find that structures in the tail of the Gamow-Teller giant resonances are expected which strongly influence the decay properties of nuclides in this region
International Nuclear Information System (INIS)
Angelique, J.C.; Orr, N.A.
1997-01-01
The study of the nuclei far off stability valley is of much interest for testing the nuclear models established for the stable nuclei but also for astrophysics to understand the nucleosynthesis. Experiments aim to measure the mass and lifetime, to build the decay schemes and also to study the structure and the properties of these nuclei. The radioactive beam group focused its research on light neutron-rich nuclei having a halo neutron structure. Mass measurements in N ∼ Z nuclei namely in A ∼ 60-80 proton-rich nuclei, important for understanding the rp process, are mentioned, as well as in nuclei in the 100 Sn region. In the newly obtained 26 O and 28 O nuclei the lifetimes, the probabilities of emission of one for more neutrons were determined. The data analysis has permitted to determine also for the first time the lifetimes of 27,29 F and 30 Ne. Studies of nuclei in the 100 Sn region, near the proton drip line in the ground and isomeric states are now under way. The spectroscopy (energy levels, gamma emissions, etc.) of the neutron-rich nuclei produced by the 36 S fragmentation has been carried out in 31 Ne, 17 B and 29 F. Studies by Coulomb excitation of the 2 + excited states and associated probability B (E2) in O, Ne, Ni and Zn are now analysed
Complexity-aware simple modeling.
Gómez-Schiavon, Mariana; El-Samad, Hana
2018-02-26
Mathematical models continue to be essential for deepening our understanding of biology. On one extreme, simple or small-scale models help delineate general biological principles. However, the parsimony of detail in these models as well as their assumption of modularity and insulation make them inaccurate for describing quantitative features. On the other extreme, large-scale and detailed models can quantitatively recapitulate a phenotype of interest, but have to rely on many unknown parameters, making them often difficult to parse mechanistically and to use for extracting general principles. We discuss some examples of a new approach-complexity-aware simple modeling-that can bridge the gap between the small-scale and large-scale approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.
Complex Networks in Psychological Models
Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.
We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.
Clustering of 1p-shell nuclei in the framework of the shell model
International Nuclear Information System (INIS)
Kwasniewicz, E.
1991-01-01
The two- and three-fragment clustering of the 1p-shell nuclei has been studied in the framework of the shell model. The absolute probabilities of the required types of clustering in a given nucleus have been obtained by projecting its realistic shell-model wavefunction onto the suitable subspace of the orthonormal, completely antisymmetric two- or three-cluster states. With the aid of these data the selectivity in population of final states produced in multinucleon transfer reactions has been discussed. This problem has also been considered in the approach where the exchange of nucleons between clusters has been neglected. This has enabled to demonstrate the role of the complete antisymmetrization in predicting the intensities of states populated in multinucleon transfer reactions. The compact theory of the multinucleon one- and two-cluster spectroscopic amplitudes has been formulated. The examples of studying the nuclear structure and reactions with the aid of these spectroscopic amplitudes have been presented. (author)
Complex fluids modeling and algorithms
Saramito, Pierre
2016-01-01
This book presents a comprehensive overview of the modeling of complex fluids, including many common substances, such as toothpaste, hair gel, mayonnaise, liquid foam, cement and blood, which cannot be described by Navier-Stokes equations. It also offers an up-to-date mathematical and numerical analysis of the corresponding equations, as well as several practical numerical algorithms and software solutions for the approximation of the solutions. It discusses industrial (molten plastics, forming process), geophysical (mud flows, volcanic lava, glaciers and snow avalanches), and biological (blood flows, tissues) modeling applications. This book is a valuable resource for undergraduate students and researchers in applied mathematics, mechanical engineering and physics.
Li, Rui; Dong, Xue; Guo, Jingchao; Fu, Yunfei; Zhao, Chun; Wang, Yu; Min, Qilong
2017-10-23
Mineral dust is the most important natural source of atmospheric ice nuclei (IN) which may significantly mediate the properties of ice cloud through heterogeneous nucleation and lead to crucial impacts on hydrological and energy cycle. The potential dust IN effect on cloud top temperature (CTT) in a well-developed mesoscale convective system (MCS) was studied using both satellite observations and cloud resolving model (CRM) simulations. We combined satellite observations from passive spectrometer, active cloud radar, lidar, and wind field simulations from CRM to identify the place where ice cloud mixed with dust particles. For given ice water path, the CTT of dust-mixed cloud is warmer than that in relatively pristine cloud. The probability distribution function (PDF) of CTT for dust-mixed clouds shifted to the warmer end and showed two peaks at about -45 °C and -25 °C. The PDF for relatively pristine cloud only show one peak at -55 °C. Cloud simulations with different microphysical schemes agreed well with each other and showed better agreement with satellite observations in pristine clouds, but they showed large discrepancies in dust-mixed clouds. Some microphysical schemes failed to predict the warm peak of CTT related to heterogeneous ice formation.
Proton scattering from unstable nuclei 20O, 30S, 34Ar: experimental study and models
International Nuclear Information System (INIS)
Khan, Elias
2000-01-01
Elastic and inelastic proton scattering from the unstable nuclei 20 O, 30 S and 34 Ar were measured in inverse kinematics at the Grand Accelerateur National d'Ions Lourds. Secondary beams of 20 O at 43 MeV/A, 30 S at 53 MeV/A and 34 Ar at 47 MeV/A impinged on a (CH 2 ) n target. Recoiling protons were detected in the silicon strip array MUST. Energies and angular distributions of the first 2 + and 3 - states were measured. A phenomenological analysis yields values of the deformation parameters β 2 and β 3 of 0.55 (6) and 0.35 (5) for 20 O, 0.32 (3) and 0.22 (4) for 30 S, 0.27 (2) and 0.39 (3) for 34 Ar, respectively, and allows the extraction of the ratio of neutron to proton transition matrix elements (M n /M p )/(N/Z) for 2 + states: 2.35 (37) for 20 O, 0.93 (20) for 30 S and 1.35 (28) for 34 Ar. Therefore the proton rich nuclei 30 S and 34 Ar show a 2 + excitation of isoscalar character whereas the excitation of 20 O is of isovector character. In order to perform a microscopic analysis of the data, we have developed a QRPA model, using three Skyrme interaction: SIII, SG2, SLy4. This model reproduces measured B(EL) values for the oxygen, sulfur and argon isotopic chains, whereas RPA calculations, which do not take pairing into account, underestimate these values. In the case of the QRPA model the energies of the first 2 + state are overestimated by about 1 MeV, but the evolution along the isotopic chains is well reproduced. (M n /M p )/(N/Z) ratios for the first 2 + state deduced from the microscopic analysis using QRPA are 1.98 for 20 O, 1.05 for 30 S and 1.00 for 34 Ar, in agreement with the conclusions of the phenomenological analysis. However important discrepancies are observed between the two types of analysis for other isotopes, in particular neutron rich argon and sulfur nuclei. (author)
International Nuclear Information System (INIS)
Dupuis, M.; Karataglidis, S.; Bauge, E.; Delaroche, J.P.; Gogny, D.
2006-01-01
The random phase approximation (RPA) long-range correlations are known to play a significant role in understanding the depletion of single particle-hole states observed in (e,e ' ) and (e,e ' p) measurements. Here the RPA theory, implemented using the D1S force is considered for the specific purpose of building correlated ground states and related one-body density matrix elements. These may be implemented and tested in a fully microscopic optical model for NA scattering off doubly closed-shell nuclei. A method is presented to correct for the correlations overcounting inherent to the RPA formalism. One-body density matrix elements in the uncorrelated (i.e., Hartree-Fock) and correlated (i.e., RPA) ground states are then challenged in proton scattering studies based on the Melbourne microscopic optical model to highlight the role played by the RPA correlations. Agreement between the parameter free scattering predictions and measurements is good for incident proton energies ranging from 200 MeV down to approximately 60 MeV and becomes gradually worse in the lower energy range. Those features point unambiguously to the relevance of the g-matrix method to build microscopic optical model potentials at medium energies, and emphasize the need to include nucleon-phonon coupling, that is, a second-order component of the Feshbach type in the potential at lower energies. Illustrations are given for proton scattering observables measured up to 201 MeV for the 16 O, 40 Ca, 48 Ca, and 208 Pb target nuclei
Energy Technology Data Exchange (ETDEWEB)
Ghiorso, A; Diamond, R M; Conzett, H E [eds.
1963-07-01
The goals of the meeting were: to provide information on the developments in the field of reactions between complex nuclei since the second conference held in Gatlinburg, TN in 1960; to allow an informal exchange of ideas bwtween scientists of universities/laboratories participating in heavy-ion research; and, to point to fruitful research for the future. Conference papers and a conference summary are included in these proceedings.
International Nuclear Information System (INIS)
Liu, L.C.
1987-01-01
The possibility of producing eta-mesic nuclei by the use of pions is discussed. If these nuclei are observed experimentally, then the binding energies of the eta in this new nuclear matter can be used to extract accurately the eta-N-N* coupling constant in a nucleus. The framework for these calculations is the coupled channel isobar model
Energy Technology Data Exchange (ETDEWEB)
Gulshani, P., E-mail: matlap@bell.net [NUTECH Services, 3313 Fenwick Crescent, Mississauga, Ontario, L5L 5N1 (Canada)
2016-07-07
We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For harmonic oscillator mean-field potentials, these equations are solved in closed forms for excitation energy, cut-off angular momentum, and other nuclear properties for the ground-state rotational band in some deformed nuclei. The results are compared with measured data.
Comparison with Tilted Axis Cranking and particle rotor model for triaxial nuclei
Energy Technology Data Exchange (ETDEWEB)
Ohtsubo, Shin-ichi; Shimizu, Yoshifumi R [Kyushu Univ., Fukuoka (Japan). Dept. of Physics
1998-03-01
An extension of the cranking model in such a way to allow a rotation axis to deviate from the principal axes of the deformed mean-field is a promising tool for the spectroscopic study of rapidly rotating nuclei. We have applied such a `Tilted Axis Cranking` (TAC) method to a simple system of one-quasiparticle coupled to a triaxial rotor and compared it with a particle-rotor coupling calculation in order to check whether the spin-orientation degrees of freedom can be well described within the mean-field approximation. The result shows that the TAC method gives a good approximation to observable quantities and it is a suitable method to understand the dynamical interplay between the collective and single-particle angular momenta. (author)
Macroscopic model description of heavy-ion induced complex-fragment emission
International Nuclear Information System (INIS)
Carjan, N.
1988-01-01
The Yukawa-plus-exponential finite-range model and the standard liquid-drop model are shortly reviewed and compared. The dependence of the barrier heights and of the saddle-point shapes on mass-asymmetry and on angular momentum is studied for the compound nuclei 110 Sn, 149 Tb and 194 Hg. The predicted asymmetric-fission barriers, charge yields and total kinetic energies are compared with experimental data obtained from the deexcitation of compound nuclei by complex-fragment emission
Model complexity control for hydrologic prediction
Schoups, G.; Van de Giesen, N.C.; Savenije, H.H.G.
2008-01-01
A common concern in hydrologic modeling is overparameterization of complex models given limited and noisy data. This leads to problems of parameter nonuniqueness and equifinality, which may negatively affect prediction uncertainties. A systematic way of controlling model complexity is therefore
Galactic cosmic-ray model in the light of AMS-02 nuclei data
Niu, Jia-Shu; Li, Tianjun
2018-01-01
Cosmic ray (CR) physics has entered a precision-driven era. With the latest AMS-02 nuclei data (boron-to-carbon ratio, proton flux, helium flux, and antiproton-to-proton ratio), we perform a global fitting and constrain the primary source and propagation parameters of cosmic rays in the Milky Way by considering 3 schemes with different data sets (with and without p ¯ /p data) and different propagation models (diffusion-reacceleration and diffusion-reacceleration-convection models). We find that the data set with p ¯/p data can remove the degeneracy between the propagation parameters effectively and it favors the model with a very small value of convection (or disfavors the model with convection). The separated injection spectrum parameters are used for proton and other nucleus species, which reveal the different breaks and slopes among them. Moreover, the helium abundance, antiproton production cross sections, and solar modulation are parametrized in our global fitting. Benefited from the self-consistence of the new data set, the fitting results show a little bias, and thus the disadvantages and limitations of the existed propagation models appear. Comparing to the best fit results for the local interstellar spectra (ϕ =0 ) with the VOYAGER-1 data, we find that the primary sources or propagation mechanisms should be different between proton and helium (or other heavier nucleus species). Thus, how to explain these results properly is an interesting and challenging question.
Deformed model Sp(4) model for studying pairing correlations in atomic nuclei
Georgieva, A I; Sviratcheva, K
2002-01-01
A fermion representation of the compact symplectic sp(4) algebra introduces a theoretical framework for describing pairing correlations in atomic nuclei. The important non-deformed and deformed subalgebras of sp sub ( sub q sub ) (4) and the corresponding reduction chains are explored for the multiple orbit problem. One realization of the u sub ( sub q sub ) (2) subalgebra is associated with the valence isospin, other reductions describe coupling between identical nucleons or proton-neutron pairs. Microscopic non-deformed and deformed Hamiltonians are expressed in terms of the generators of the sp(4) and sp sub q (4) algebras. In both cases eigenvalues of the isospin breaking Hamiltonian are fit to experimental ground state energies. The theory can be used to investigate the origin of the deformation and predict binding energies of nuclei in proton-rich regions. The q-deformation parameter changes the pairing strength and in so doing introduces a non-linear coupling into the collective degree of freedom
International Nuclear Information System (INIS)
Villari, A.C.C.
1990-01-01
The actual tendencies to study exotic nuclei; applications of exotic nuclei beams in material study and medicine; recent results obtained by GANIL and Berkeley Laboratories of measurements of binding energy and radii of light nuclei; the future experiences to be carry out in several international laboratories and; proposal of studies in Brazil using Pelletron-USP accelerator and the LINAC superconductor accelerator, in construction in the same laboratory, are presented. (M.C.K.)
Approximate symmetries in atomic nuclei from a large-scale shell-model perspective
Launey, K. D.; Draayer, J. P.; Dytrych, T.; Sun, G.-H.; Dong, S.-H.
2015-05-01
In this paper, we review recent developments that aim to achieve further understanding of the structure of atomic nuclei, by capitalizing on exact symmetries as well as approximate symmetries found to dominate low-lying nuclear states. The findings confirm the essential role played by the Sp(3, ℝ) symplectic symmetry to inform the interaction and the relevant model spaces in nuclear modeling. The significance of the Sp(3, ℝ) symmetry for a description of a quantum system of strongly interacting particles naturally emerges from the physical relevance of its generators, which directly relate to particle momentum and position coordinates, and represent important observables, such as, the many-particle kinetic energy, the monopole operator, the quadrupole moment and the angular momentum. We show that it is imperative that shell-model spaces be expanded well beyond the current limits to accommodate particle excitations that appear critical to enhanced collectivity in heavier systems and to highly-deformed spatial structures, exemplified by the second 0+ state in 12C (the challenging Hoyle state) and 8Be. While such states are presently inaccessible by large-scale no-core shell models, symmetry-based considerations are found to be essential.
Models of direct reactions and quantum pre-equilibrium for nucleon scattering on spherical nuclei
International Nuclear Information System (INIS)
Dupuis, M.
2006-01-01
When a nucleon collides with a target nucleus, several reactions may occur: elastic and inelastic scatterings, charge exchange... In order to describe these reactions, different models are involved: the direct reactions, pre-equilibrium and compound nucleus models. Our goal is to study, within a quantum framework and without any adjustable parameter, the direct and pre-equilibrium reactions for nucleons scatterings off double closed-shell nuclei. We first consider direct reactions: we are studying nucleon scattering with the Melbourne G-matrix, which represents the interaction between the projectile and one target nucleon, and with random phase approximation (RPA) wave functions which describe all target states. This is a fully microscopic approach since no adjustable parameters are involved. A second part is dedicated to the study of nucleon inelastic scattering for large energy transfer which necessarily involves the pre-equilibrium mechanism. Several models have been developed in the past to deal with pre-equilibrium. They start from the Born expansion of the transition amplitude which is associated to the inelastic process and they use several approximations which have not yet been tested. We have achieved some comparisons between second order cross sections which have been calculated with and without these approximations. Our results allow us to criticize some of these approximations and give several directions to improve the quantum pre-equilibrium models. (author)
PAAR, [No Value; VORKAPIC, D; DIERPERINK, AEL
1992-01-01
We study the fluctuation properties of 0+ levels in rotational nuclei using the framework of SU(3) dynamical symmetry of the interacting boson model. Computations of Poincare sections for SU(3) dynamical symmetry and its breaking confirm the expected relation between dynamical symmetry and classical
The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei
Directory of Open Access Journals (Sweden)
L. A. Lee
2013-09-01
Full Text Available Aerosol–cloud interaction effects are a major source of uncertainty in climate models so it is important to quantify the sources of uncertainty and thereby direct research efforts. However, the computational expense of global aerosol models has prevented a full statistical analysis of their outputs. Here we perform a variance-based analysis of a global 3-D aerosol microphysics model to quantify the magnitude and leading causes of parametric uncertainty in model-estimated present-day concentrations of cloud condensation nuclei (CCN. Twenty-eight model parameters covering essentially all important aerosol processes, emissions and representation of aerosol size distributions were defined based on expert elicitation. An uncertainty analysis was then performed based on a Monte Carlo-type sampling of an emulator built for each model grid cell. The standard deviation around the mean CCN varies globally between about ±30% over some marine regions to ±40–100% over most land areas and high latitudes, implying that aerosol processes and emissions are likely to be a significant source of uncertainty in model simulations of aerosol–cloud effects on climate. Among the most important contributors to CCN uncertainty are the sizes of emitted primary particles, including carbonaceous combustion particles from wildfires, biomass burning and fossil fuel use, as well as sulfate particles formed on sub-grid scales. Emissions of carbonaceous combustion particles affect CCN uncertainty more than sulfur emissions. Aerosol emission-related parameters dominate the uncertainty close to sources, while uncertainty in aerosol microphysical processes becomes increasingly important in remote regions, being dominated by deposition and aerosol sulfate formation during cloud-processing. The results lead to several recommendations for research that would result in improved modelling of cloud–active aerosol on a global scale.
International Nuclear Information System (INIS)
El-Bakry, M.N.Y.; Basha, A.M.; Rashed, N.; Mahmoud, M.A.; Radi, A.
2008-01-01
Artificial Neural Network (ANN) is one of the important tools in high energy physics. In this paper, we are using ANN for modeling the multiplicity distributions of grey particles produced from interactions of P, 3 He, 4 He, 6 Li, 12 C, 24 Mg, and 32 S with emulsion nuclei, light nuclei (CNO), and heavy nuclei (Ag Br). The equations of these distributions were obtained
Santhosh, K. P.; Sukumaran, Indu
2017-09-01
Half-life predictions have been performed for the proton emitters with Z >50 in the ground state and isomeric state using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The agreement of the calculated values with the experimental data made it possible to predict some proton emissions that are not verified experimentally yet. For a comparison, the calculations also are performed using other theoretical models, such as the Gamow-like model of Zdeb et al. [Eur. Phys. J. A 52, 323 (2016), 10.1140/epja/i2016-16323-7], the semiempirical relation of Hatsukawa et al. [Phys. Rev. C 42, 674 (1990), 10.1103/PhysRevC.42.674], and the CPPM of Santhosh et al. [Pramana 58, 611 (2002)], 10.1007/s12043-002-0019-2. The Geiger-Nuttall law, originally observed for α decay, studied for proton radioactivity is found to work well provided it is plotted for the isotopes of a given proton emitter nuclide with the same ℓ value. The universal curve is found to be valid for proton radioactivity also as we obtained a single straight line for all proton emissions irrespective of the parents. Through the analysis of the experimentally measured half-lives of 44 proton emitters, the study revealed that the present systematic study lends support to a unified description for studying α decay, cluster radioactivity, and proton radioactivity.
Coupled SU(3) models of rotational states in nuclei and quasi-dynamical symmetry
International Nuclear Information System (INIS)
Thiamova, G.; Rowe, D. J.
2007-01-01
This contribution reports a first step towards the development of a model of low-lying nuclear collective states based on the progression from weak to strong coupling of a combination of systems in multiple SU(3) irreps. The motivation for such a model comes partly from the remarkable persistence of rotational structure observed experimentally and in many model calculations. This work considers the spectra obtainable by coupling just two SU(3) irreps by means of a quadrupole-quadrupole interaction. For a particular value of this interaction, the two irreps combine to form strongly-coupled irreps while for zero interaction the weakly-coupled results are mixtures of many such strongly-coupled irreps. A notable result is the persistence of the rotor character of the low-energy states for a wide range of the interaction strength. Also notable is the fact that, for very weak interaction strengths, the energy levels of the yrast band resemble those of a vibrational sequence while the B(E2) transition strengths remain close to those of an axially symmetric rotor, as observed in many nuclei. (Author)
Quark-Meson-Coupling (QMC) model for finite nuclei, nuclear matter and beyond
Guichon, P. A. M.; Stone, J. R.; Thomas, A. W.
2018-05-01
The Quark-Meson-Coupling model, which self-consistently relates the dynamics of the internal quark structure of a hadron to the relativistic mean fields arising in nuclear matter, provides a natural explanation to many open questions in low energy nuclear physics, including the origin of many-body nuclear forces and their saturation, the spin-orbit interaction and properties of hadronic matter at a wide range of densities up to those occurring in the cores of neutron stars. Here we focus on four aspects of the model (i) a full comprehensive survey of the theory, including the latest developments, (ii) extensive application of the model to ground state properties of finite nuclei and hypernuclei, with a discussion of similarities and differences between the QMC and Skyrme energy density functionals, (iii) equilibrium conditions and composition of hadronic matter in cold and warm neutron stars and their comparison with the outcome of relativistic mean-field theories and, (iv) tests of the fundamental idea that hadron structure changes in-medium.
International Nuclear Information System (INIS)
Anon.
1995-01-01
The recent detection of intergalactic helium by NASA's Astro-2 mission backs up two earlier measurements by ESA and the University of California, San Diego, using instruments aboard the Hubble Space Telescope. Taken together, these results give strong evidence that this helium is primordial, confirming a key prediction of the Big Bang theory. The amount of helium the results imply could also account for some of the Universe's invisible dark matter - material which affects galactic motion but is otherwise undetectable. According to theory, helium nuclei formed at around 100 seconds after the Big Bang, but the amount of helium depended on even earlier events. Initially, protons turned into neutrons with the same probability that neutrons turned into protons. But after about one second, the Universe had cooled down enough for the weak interaction to freeze out. Neutrons continued to decay into the slightly lighter protons, whilst the opposite reaction became much more scarce. At around 100 seconds, thermonuclear fusion reactions could begin, and all the neutrons that were left became absorbed into helium nuclei, leaving the remaining protons locked up in hydrogen. The ratio of helium to hydrogen was therefore determined by events occurring when the Universe was just one second old. Standard models of primordial nucleosynthesis fix this ratio at slightly less than 2 5% by mass. All heavier elements were cooked up much later in the stars, and amount to less than 1 % of the Universe's mass. These predictions have been borne out remarkably well by observation, although proof of the primordial origins of hydrogen and helium has remained elusive until now. Big Bang nucleosynthesis goes on to estimate that primordial baryonic matter in the form of light nuclei could account for around 10% of the Universe's dark matter. All three recent measurements used the same technique of looking at distant quasars, some of the most luminous objects in the Universe, to
A version of the Quasiparticle-Phonon Nuclear Model for doubly-even well-deformed nuclei
International Nuclear Information System (INIS)
Soloviev, V.G.
1992-06-01
The basic assumptions concerning the Quasiparticle-Phonon Nuclear Model are formulated and the mathematical apparatus is developed. The Hamiltonian, containing a finite-rank separable isoscalar and isovector multipole, a spin-multipole and a tensor particle-hole as well as particle-particle interactions transforms to a form containing quasiparticle, phonon and quasiparticle-phonon interactions. The general RPA equation is derived and the particular cases are discussed. The very complex interaction does not complicate the description of the fragmentation one-phonon states. It is shown that the three-phonon terms added to the one- and two-phonon terms in the wave function lead to an additional small shift of the two-phonon poles in the secular equation. The influence of the density-dependent separable interaction on the vibrational states is small. A common description of the collective, weakly collective and two-quasiparticle states in doubly-even well-deformed nuclei is obtained. (author)
Fission dynamics of excited nuclei within the liquid-drop model
International Nuclear Information System (INIS)
Radionov, S.V.; Ivanyuk, F.A.; Kolomietz, V.M.; Magner, A.G.
2002-01-01
The temperature T scis at the scission point and the saddle-to-scission time τ scis for the fission of heated nuclei is evaluated. The classical Lagrange-like equations of motion within the liquid-drop model are used. The nuclear surface is parametrized by the two-parametric family of the Lawrence shapes. Conservative forces are defined through the free energy of the nucleus at finite temperatures. The friction tensor derived from the Navier-Stokes momentum flux tensor taking into account the boundary conditions on the nuclear surface is used. The scission line is determined from the instability condition of the nuclear shape with respect to the variations of the neck radius. The numerical solution of the dynamical equations is performed for the nucleus 236 U. The viscosity coefficient μ was obtained from the comparison of the experimental data for the kinetic energy for the fission fragments with the computed one. A significant deviation of μ, obtained by used approach, from μ of the standard hydrodynamical model is found [ru
Liu, Fei; Wang, Jiang; Liu, Chen; Li, Huiyan; Deng, Bin; Fietkiewicz, Chris; Loparo, Kenneth A.
2016-12-01
An increase in beta oscillations within the basal ganglia nuclei has been shown to be associated with movement disorder, such as Parkinson's disease. The motor cortex and an excitatory-inhibitory neuronal network composed of the subthalamic nucleus (STN) and the external globus pallidus (GPe) are thought to play an important role in the generation of these oscillations. In this paper, we propose a neuron mass model of the basal ganglia on the population level that reproduces the Parkinsonian oscillations in a reciprocal excitatory-inhibitory network. Moreover, it is shown that the generation and frequency of these pathological beta oscillations are varied by the coupling strength and the intrinsic characteristics of the basal ganglia. Simulation results reveal that increase of the coupling strength induces the generation of the beta oscillation, as well as enhances the oscillation frequency. However, for the intrinsic properties of each nucleus in the excitatory-inhibitory network, the STN primarily influences the generation of the beta oscillation while the GPe mainly determines its frequency. Interestingly, describing function analysis applied on this model theoretically explains the mechanism of pathological beta oscillations.
Nonparametric Bayesian Modeling of Complex Networks
DEFF Research Database (Denmark)
Schmidt, Mikkel Nørgaard; Mørup, Morten
2013-01-01
an infinite mixture model as running example, we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model?s fit and predictive performance. We explain how advanced nonparametric models......Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...
International Nuclear Information System (INIS)
Wang Baolin
1995-01-01
The analytical calculation of the nuclear ground state deformation of the even-even isotopes in the rare-earth region is given by utilizing the intrinsic states of the sdg interacting boson model. It is compared systematically with the reported theoretical and experimental results. It is shown that the sdg interacting boson model is a reasonable scheme for the description of even-even nuclei deformation
Model calculations for the airborne Fast Ice Nuclei CHamber FINCH-HALO
Nillius, B.; Bingemer, H.; Bundke, U.; Jaenicke, R.; Reimann, B.; Wetter, T.
2009-04-01
Ice nuclei (IN) initiate the formation of primary ice in tropospheric clouds. In mixed phase clouds the primary ice crystals can grow very fast by the Bergeron-Findeisen process (Findeisen, 1938) at the expense of evaporating water droplets, and form precipitation. Thus, IN are essential for the development of precipitation in mixed phase clouds in the middle latitude. However, the role of IN in the development of clouds is still poorly understood and needs to be studied (Levin and Cotton, 2007). A Fast Ice Nuclei CHamber (FINCH-HALO) for airborne operation on the High And LOng Range research aircraft (HALO) is under development at the Institute for Atmosphere and Environment University Frankfurt. IN particles are activated within the chamber at certain ice super-saturation and temperature by mixing three gas flows, a warm moist, a cold dry, and an aerosol flow. After activation the particles will grow within a processing chamber. In an optical depolarisation detector droplets and ice crystals are detected separately. The setup of the new FINCH-HALO instrument is based on the ground based IN counter FINCH (Bundke, 2008). In FINCH-HALO a new cooling unit is used. Thus, measurements down to -40°C are possible. Furthermore minor changes of the inlet section where the mixing occurs were done. The contribution will present 3D model calculations with FLUENT of the flow conditions in the new inlet section for different pressure levels during a flight typical for HALO. Growth rates of ice crystals in the chamber at different temperature and super-saturation will be shown. References: Bundke U., B. Nillius, R. Jaenicke, T. Wetter, H. Klein, H. Bingemer, (2008). The Fast Ice Nucleus Chamber FINCH, Atmospheric Research, doi:10.1016/j.atmosres.2008.02.008 Findeisen, R., (1938). Meteorologisch-physikalische Begebenheiten der Vereisung in der Atmosphäre. Hauptversammlung 1938 der Lilienthal-Gesellschaft. Levin, Z., W. Cotton, (2007). Aerosol pollution impact on precipitation
Spectroscopy of 96-98Ru and neighboring nuclei: shell model calculations and lifetime measurements
International Nuclear Information System (INIS)
Kharraja, B.; Garg, U.; Ghugre, S.S.
1997-01-01
High Spin states in 94,95 Mo, 94-96 Tc, 96-98 Ru and 97,98 Rh were populated via the 65 Cu( 36 S,xpyn) reactions at 142 MeV. Level schemes of these nuclei have been extended up to a spin of J ∼ 20ℎ and an excitation energy of E x ∼12 -14 MeV. Information on the high spin structure for 96 Tc and 98 Rh has been obtained for the first time. Spherical shell model calculations have been performed and compared with the experimental excitation energies. The level structures of the N=51, 52 isotones exhibit single-particle nature even at the highest spins and excitation energies. A fragmentation of intensity into several branches after breaking of the N = 50 core has been observed. There are indications for the onset of collectivity around neutron number N = 53 in this mass region. A sequence of E2 transitions, reminiscent of vibrational degree of freedom, were observed in 98 Ru at spins just above the observed N = 50 core breaking. RDM lifetime measurements have been performed to ascertain the intrinsic structures of these level sequences. (author)
Fission dynamics of excited nuclei within the liquid-drop model
Radionov, S V; Kolomietz, V M; Magner, A G
2002-01-01
The temperature T sub s sub c sub i sub s at the scission point and the saddle-to-scission time tau sub s sub c sub i sub s for the fission of heated nuclei is evaluated. The classical Lagrange-like equations of motion within the liquid-drop model are used. The nuclear surface is parametrized by the two-parametric family of the Lawrence shapes. Conservative forces are defined through the free energy of the nucleus at finite temperatures. The friction tensor derived from the Navier-Stokes momentum flux tensor taking into account the boundary conditions on the nuclear surface is used. The scission line is determined from the instability condition of the nuclear shape with respect to the variations of the neck radius. The numerical solution of the dynamical equations is performed for the nucleus sup 2 sup 3 sup 6 U. The viscosity coefficient mu was obtained from the comparison of the experimental data for the kinetic energy for the fission fragments with the computed one. A significant deviation of mu, obtained ...
Effective interactions for valence-hole nuclei with modern meson-exchange potential models
International Nuclear Information System (INIS)
Hjort-Jensen, M.; Osnes, E.; Kuo, E.
1991-10-01
Within the framework of the folded-diagram theory, the authors have studied the effective interaction appropriate for hole-hole nuclei in the mass regions of 16 O and 40 Ca, using the Bonn and Paris potential models. To sum up the folded diagrams the renormalization procedure of Lee and Suzuki has been employed, using a so-called Q-box in which were included all one-body and two-body irreducible valence-linked diagrams through third order in perturbation theory. Discrepancies for the mass dependence of the effective interaction for several JT configurations with respect to empirically deduced mass dependencies is reported. The role of core polarization processes through third order were found to be one of the mechanisms behind these discrepancies. Compared to the results obtained with the Paris potential, more attraction is introduced by the Bonn potential for all matrix elements of concerns, a result which agrees well with previous findings for the particle-particle interaction in the same mass regions. A qualitative agreements with experimental data is obtained. 31 refs., 6 figs., 8 tabs
New developments in the study of the caloric curve for finite nuclei within relativistic models
International Nuclear Information System (INIS)
Menezes, Debora Peres; Providencia, C.
2001-01-01
Relativistic nuclear models have been widely used in describing infinite nuclear matter and finite nuclei properties. With the help of the Thomas Fermi approximation, we have investigated droplet formation in the liquid-gas phase transition in cold and warm asymmetric nuclear matters using the non-linear Walecka model. We have shown that the optimal nuclear size of a droplet in a neutron gas is determined by a delicate balance between nuclear Coulomb and surface energies. On the other hand, the production of several intermediate mass fragments in a short time scale during heavy ion collisions is known as nuclear multifragmentation. In these experiments, the spectator matter has been used to investigate a possible liquid-gas phase transition. The caloric curve, which is given by the excitation energy per nucleon in terms of the thermodynamic temperature is an important quantity to be investigated in the search for a signal of a phase transition. In the present work we obtain the excitation energies of arising droplets in a vapor system, up to T = 6.5 MeV. The droplets are described in terms of a non-linear Walecka-type model with the NL1 parameterization, within the Thomas-Fermi approximation. We conclude that the excitation energies of droplets either corresponding to 150 Sm or 166 Sm, are consistent with the caloric curve in the Fermi gas approximation with a level density parameter A/13. This result agrees with experimental data obtained in heavy-ion collisions at intermediate energies. We have shown that the caloric curve is sensitive to the proton fraction and the inclusion of the Coulomb interaction is important. (author)
The core-quasiparticle model for odd-odd nuclei and applications to candidates for gamma-ray lasers
International Nuclear Information System (INIS)
Strottman, D.D.
1988-01-01
A reliable estimate of the properties of isomers that may be viable candidates for a gamma-ray laser requires the use of the most accurate save functions possible. The majority of models that have been used to estimate the properties of isomers are applicable to only selected regions of the nuclear mass table. In particular, the Bohr-Mottelson model of odd-A and odd-odd nuclei will fail if the even-even core is not strongly deformed or if the deformations are changing strongly as a function of mass. This paper reports how the problem is overcome in a new core- quasiparticle model for odd-odd nuclei. The model introduces the pairing interaction ab initio; the odd-A states are mixtures of particle and hole states. The core may be soft towards deformation or axial asymmetry and may change rapidly as a function of mass. Thus, the model is ideally suited for application to the region of transitional nuclei such as the Te, La, and Os regions
International Nuclear Information System (INIS)
Mackintosh, R.S.
1977-01-01
For the class of nuclei which are 'strongly deformed' it is possible to introduce the idea of an empirically measurable static nuclear shape. The limitations of this concept as applied to nuclei (fundamentally quantum-mechanical objects) are discussed. These are basically the limitations of the rotational model which must be introduced in order to define and measure nuclear shape. A unified discussion of the ways in which the shape has been parametrized is given with emphasis on the fact that different parametrizations correspond to different nuclear structures. Accounts of the various theoretical procedures for calculating nuclear shapes and of the interaction between nuclear shapes and nuclear spectroscopy are given. A coherent account of a large subset of nuclei (strongly deformed nuclei) can be given by means of a model in which the concept of nuclear shape plays a central role. (author)
Mena, Francisco; Bond, Tami C.; Riemer, Nicole
2017-08-01
Residential biofuel combustion is an important source of aerosols and gases in the atmosphere. The change in cloud characteristics due to biofuel burning aerosols is uncertain, in part, due to the uncertainty in the added number of cloud condensation nuclei (CCN) from biofuel burning. We provide estimates of the CCN activity of biofuel burning aerosols by explicitly modeling plume dynamics (coagulation, condensation, chemical reactions, and dilution) in a young biofuel burning plume from emission until plume exit, defined here as the condition when the plume reaches ambient temperature and specific humidity through entrainment. We found that aerosol-scale dynamics affect CCN activity only during the first few seconds of evolution, after which the CCN efficiency reaches a constant value. Homogenizing factors in a plume are co-emission of semi-volatile organic compounds (SVOCs) or emission at small particle sizes; SVOC co-emission can be the main factor determining plume-exit CCN for hydrophobic or small particles. Coagulation limits emission of CCN to about 1016 per kilogram of fuel. Depending on emission factor, particle size, and composition, some of these particles may not activate at low supersaturation (ssat). Hygroscopic Aitken-mode particles can contribute to CCN through self-coagulation but have a small effect on the CCN activity of accumulation-mode particles, regardless of composition differences. Simple models (monodisperse coagulation and average hygroscopicity) can be used to estimate plume-exit CCN within about 20 % if particles are unimodal and have homogeneous composition, or when particles are emitted in the Aitken mode even if they are not homogeneous. On the other hand, if externally mixed particles are emitted in the accumulation mode without SVOCs, an average hygroscopicity overestimates emitted CCN by up to a factor of 2. This work has identified conditions under which particle populations become more homogeneous during plume processes. This
International Nuclear Information System (INIS)
Grudzevich, O.D.; Zelenetskij, A.V.; Pashchenko, A.B.
1986-01-01
The last version of the KOP program for calculating cross sections of neutron and charged particle interaction with atomic nuclei within the scope of the optical model is described. The structure and program organization, library of total parameters of the optical potential, program identificators and peculiarities of its operation, input of source data and output of calculational results for printing are described in detail. The KOP program is described in Fortran- and adapted for EC-1033 computer
Oakey, Zack B; Jensen, Jason D; Zaugg, Brian E; Radmall, Bryce R; Pettey, Jeff H; Olson, Randall J
2013-08-01
To validate a porcine lens model by comparing density and ultrasound (US) with known human standards using the Infiniti Ozil with Intelligent Phacoemulsification (torsional), Whitestar Signature Micropulse (longitudinal), and Ellips FX (transversal) modalities. Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA. Experimental study. Lens nuclei were formalin soaked in hour-based intervals and divided into 2.0 mm cubes. Density was characterized by crushing experiments and compared with known human measures. Efficiency and chatter were examined. The mean weight to cut thickness in half ranged from 16.9 g ± 5.5 (SD) in the 0-hour group to 121.3 ± 47.5 gm in the 4-hour group. Lenses in the 2-hour group (mean 70.2 ± 19.1 g) best matched human density (P=.215). The mean efficiency ranged from 0.432 ± 0.178 seconds to 9.111 ± 2.925 seconds; chatter ranged from zero to 1.85 ± 1.927 bounces. No significant difference was detected when comparing the 2-hour formalin group with human lenses in torsional and transversal US. There was no significant difference between transversal and torsional modalities, consistent with human studies. Although longitudinal (6 milliseconds on, 12 milliseconds off) was significantly more efficient at 50% power than at 25%, there was no significant difference compared with transversal or torsional US. Animal lenses soaked for 2 hours in formalin were most comparable to human lenses. Longitudinal US may be an acceptable alternative to torsional and transversal US. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Aaberg, S.; Uhrenholt, H.
2009-01-01
We study the structure of nuclei in the energy region between the ground state and the neutron separation energy, here called warm nuclei. The onset of chaos in the nucleus as excitation energy is increased is briefly reviewed. Chaos implies fluctuations of energies and wave functions qualitatively the same for all chaotic nuclei. On the other hand, large structure effects are seen, e.g. in the level-density function at same excitation energies. A microscopic model for the level density is reviewed and we discuss effects on structure of the total level-density function, parity enhancement, and the spin distribution function. Comparisons to data are performed at the neutron separation energy for all observed nuclei, and structure of the level-density function for a few measured cases. The role of structure effects in the level-density function for fission dynamics is exemplified.
Jafarizadeh, M. A.; Ranjbar, Z.; Fouladi, N.; Ghapanvari, M.
2018-01-01
In this paper, a successful algebraic method based on the dual algebraic structure for three level pairing model in the framework of sdg IBM is proposed for transitional nuclei which show transitional behavior from spherical to gamma-unstable quantum shape phase transition. In this method complicated sdg Hamiltonian, which is a three level pairing Hamiltonian is determined easily via the exactly solvable method. This description provides a better interpretation of some observables such as BE (4) in nuclei which exhibits the necessity of inclusion of g boson in the sd IBM, while BE (4) cannot be explained in the sd boson model. Some observables such as Energy levels, BE (2), BE (4), the two neutron separation energies signature splitting of the γ-vibrational band and expectation values of the g-boson number operator are calculated and examined for 46 104 - 110Pd isotopes.
Evaluation of the (n,xn) and (n,xnf) cross sections for heavy nuclei with the statistical model
International Nuclear Information System (INIS)
Jary, J.
1975-01-01
A method was presented to calculate the (n,xn) and (n,xnf) cross sections for the heavy nuclei having mass numbers of 232 1) without fission, according to the law of conventional statistical models, in the (n,xn) process. Fission can also compete with the emission of neutrons and γ-ray for the nuclei and the excitation energy considered. The fission cross sections of 235 U and 238 U recently evaluated by Sowerby and the fission cross section of 236 U have been used to determine the other parameters needed in the calculation. The fission widths of 239 U and 238 U have been obtained by fitting the first-chance and second-chance fission plateaus of the 238 U cross section. For the fission width of 238 U, good agreement was observed between the authors' results and Landrum and others' experimental data. (Iwase, T.)
International Nuclear Information System (INIS)
Casten, R.F.; Warner, D.D.
1982-01-01
The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for 168 Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong β → γ transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the β → γ transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ΔK=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics
Osteosarcoma models : understanding complex disease
Mohseny, Alexander Behzad
2012-01-01
A mesenchymal stem cell (MSC) based osteosarcoma model was established. The model provided evidence for a MSC origin of osteosarcoma. Normal MSCs transformed spontaneously to osteosarcoma-like cells which was always accompanied by genomic instability and loss of the Cdkn2a locus. Accordingly loss of
Cluster models of light nuclei and the method of hyperspherical harmonics: Successes and challenges
International Nuclear Information System (INIS)
Danilin, B. V.; Shul'gina, N. B.; Ershov, S. N.; Vaagen, J. S.
2009-01-01
Hyperspherical-harmonics method to investigate the lightest nuclei having three-cluster structure is discussed together with recent experiments. Properties of bound states and methods to explore three-body continuum are presented. The challenges created by large neutron excess and halo phenomena are highlighted. Astrophysical aspects of the 7 Li + n → 8 Li + γ reaction and the solar-boron-neutrinos problem are analyzed. Three-cluster structure of highly excited states in 8 Be is shown to be responsible for extreme isospin mixing. Progress in studies of 6 He- and 11 Li-induced inclusive and exclusive nuclear reactions is demonstrated, providing information on the nature of continuum structures of Borromean nuclei.
International Nuclear Information System (INIS)
Janssens, R.V.F.; Khoo, T.L.
1991-01-01
Superdeformation was first proposed some twenty years ago to explain the fission isomers observed in some actinide nuclei. It was later realized that superdeformed shapes can occur at high angular momentum in lighter nuclei. The interest in the mechanisms responsible for these exotic shapes has increased enormously with the discovery of a superdeformed band of nineteen discrete lines in 152 Dy (8). At about the same time, evidence for highly deformed nuclei (axis ratio 3:2) was also reported near 132 Ce(9). Striking properties emerged from the first experiments, such as the essentially constant energy spacing between transitions (picket-fence spectra), the unexpectedly strong population of superdeformed bands at high spins, and the apparent lack of a link between the superdeformed states and the yrast levels. These findings were reviewed by Nolan and Twin. The present article follows upon their work and discusses the wealth of information that has since become available. This includes the discovery of a new island of superdeformation near A = 190, the detailed spectroscopy of ground and excited bands in the superdeformed well near A = 150 and A = 190, the surprising occurrence of superdeformed bands with identical transition energies in nuclei differing by one or two mass units, and the improved understanding of mechanisms responsible for the feeding into and the decay out of the superdeformed states
Fragment emission in reactions of 18.5-GeV 12C ions with complex nuclei
International Nuclear Information System (INIS)
Porile, N.T.; Cole, G.D.
1982-01-01
The emission of fragments ranging from 24 Na to 52 Mn in reactions of 18.5 GeV 12 C ions with Cu, Ag, Gd, Ta, Au, and U targets has been studied by means of activation techniques. The experiments involved determination of the fragment production cross sections and thick-target recoil properties. The latter were used to obtain mean fragment kinetic energies and values of β/sub parallel to/, the forward velocity component of the struck nucleus (in units of c). The results are compared with similar data for incident protons of the same total kinetic energy. The data may be used to assess the importance of central collisions in fragment production. Such collisions lead to the near total destruction of both interacting nuclei and the resulting fragments are emitted by a system of intermediate rapidity. In such a process, the factorization hypothesis, which has been shown to be valid for target and projectile fragmentation reactions, should not be obeyed. A test for factorization is performed by means of a relation which states that the ratio of the cross sections for producing fragment /sup A/Z in 12 C reactions to that for producing the same fragment in proton reactions with the same target is unity, provided both cross sections are reduced by the values of the corresponding total reaction cross sections sigma/sub R/, and evaluated for the same total kinetic energy of the projectile. The results of this comparison for the targets studied are presented and discussed
Thermodynamic modeling of complex systems
DEFF Research Database (Denmark)
Liang, Xiaodong
after an oil spill. Engineering thermodynamics could be applied in the state-of-the-art sonar products through advanced artificial technology, if the speed of sound, solubility and density of oil-seawater systems could be satisfactorily modelled. The addition of methanol or glycols into unprocessed well...... is successfully applied to model the phase behaviour of water, chemical and hydrocarbon (oil) containing systems with newly developed pure component parameters for water and chemicals and characterization procedures for petroleum fluids. The performance of the PCSAFT EOS on liquid-liquid equilibria of water...... with hydrocarbons has been under debate for some vii years. An interactive step-wise procedure is proposed to fit the model parameters for small associating fluids by taking the liquid-liquid equilibrium data into account. It is still far away from a simple task to apply PC-SAFT in routine PVT simulations and phase...
Role models for complex networks
Reichardt, J.; White, D. R.
2007-11-01
We present a framework for automatically decomposing (“block-modeling”) the functional classes of agents within a complex network. These classes are represented by the nodes of an image graph (“block model”) depicting the main patterns of connectivity and thus functional roles in the network. Using a first principles approach, we derive a measure for the fit of a network to any given image graph allowing objective hypothesis testing. From the properties of an optimal fit, we derive how to find the best fitting image graph directly from the network and present a criterion to avoid overfitting. The method can handle both two-mode and one-mode data, directed and undirected as well as weighted networks and allows for different types of links to be dealt with simultaneously. It is non-parametric and computationally efficient. The concepts of structural equivalence and modularity are found as special cases of our approach. We apply our method to the world trade network and analyze the roles individual countries play in the global economy.
Modelling the structure of complex networks
DEFF Research Database (Denmark)
Herlau, Tue
networks has been independently studied as mathematical objects in their own right. As such, there has been both an increased demand for statistical methods for complex networks as well as a quickly growing mathematical literature on the subject. In this dissertation we explore aspects of modelling complex....... The next chapters will treat some of the various symmetries, representer theorems and probabilistic structures often deployed in the modelling complex networks, the construction of sampling methods and various network models. The introductory chapters will serve to provide context for the included written...
International Nuclear Information System (INIS)
Schramm, D.N.
1995-01-01
Primordial nucleosynthesis has established itself as one of the three pillars of Big Bang cosmology. Many of the Big Bang Nucleosynthesis reactions involve unstable nuclei. Hence there is a tight relationship hetween the subject of this conference and cosmology. The prime role of unstable nuclei in cosmology is related to lithium synthesis and the lack of cosmological synthesis of Be and B. These nuclei will thus be focused upon. Nucleosynthesis involves comparing calculated abundances with observed abundances. In general, abundance determinations are dominated by systematic rather than statistical errors, and work on bounding systematics is crucial. The quark-hadron inspired inhomogeneous calculations now unanimously agree that only relatively small variations in Ω b are possible vis-a-vis the homogeneous model; hence the robustness of Ω b ∼0.05 is now apparent. (These calculations depend critically on unstable nuclei.) The above argues that the bulk of the baryons in the universe are not producing visible light. A comparison with the ROSAT cluster data is also shown to be consistent with the standard BBN model. Ω b ∼1 seems to be definitely excluded, so if Ω TOTAL =1, as some recent observations may hint, then non-baryonic dark matter is required. The implications of the recently reported halo microlensing events are discussed. In summary, it is argued that the physics of unstable nuclei affects the fundamental dark matter argument. ((orig.))
Energy Technology Data Exchange (ETDEWEB)
Vargas, Carlos E.; Bagatella-Flores, Norma [Universidad Veracruzana, Facultad de Fisica, Veracruz (Mexico); Velazquez, Victor [Universidad Nacional Autonoma de Mexico, Facultad de Ciencias, Mexico D.F. (Mexico); Lerma-Hernandez, Sergio [Universidad Veracruzana, Facultad de Fisica, Veracruz (Mexico); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico D.F. (Mexico)
2017-04-15
The large collectivity observed in the rare-earth region of the nuclear landscape is well known. The microscopic studies are difficult to perform in this region due to the enormous size of the valence spaces, a problem that can be avoided by means of the use of symmetry-based models. Here we present calculations for electromagnetic properties of {sup 160-170}Dy nuclei within the pseudo-SU(3) scheme. The model Hamiltonian includes the preserving symmetry Q.Q term and the symmetry-breaking Nilsson and pairing terms, systematically parametrized for all members of the chain. The model is used to calculate B(E2) and B(M1) inter-band transition strengths between the ground state, γ and β-bands. In addition, we present results for quadrupole moments and g factors in these rotational bands. The results show that the pseudo-SU(3) shell model is a powerful microscopic theory for a description of electromagnetic properties of states in the normal parity sector in heavy deformed nuclei. (orig.)
International Nuclear Information System (INIS)
Kunasz, P.B.; Hummer, D.G.; Mihalas, D.
1975-01-01
Spherical static non-LTE model atmospheres are presented for stars with M/M/sub sun/=30 and 60 at various points on their evolutionary tracks, and for some nuclei of planetary nebulae at two points of a modified Harman-Seaton sequence. The method of Mihalas and Hummer was employed, which uses a parametrized radiation force multiplier to simulate the force of radiation arising from the entire line spectrum. However, in the present work the density structure computed in the LTE models was held fixed in the calculation of the corresponding non-LTE models; in addition, the opacity of an ''average light ion'' was taken into account. The temperatures for the non-LTE models are generally lower, at a given depth, than for the corresponding LTE models when T/sub eff/<45,000 K, while the situation is reversed at higher temperatures. The continuous energy distributions are generally flattened by extension. The Lyman jump is in emission for extended models of massive stars, but never for the models of nuclei of planetary nebulae (this is primarily a temperature effect). The Balmer jumps are always in absorption. The Lyman lines are in emission, and the Balmer lines in absorption; He ii lambda4686 comes into emission in the most extended models without hydrogen line pumping, showing that it is an indicator of atmospheric extension. Very severe limb darkening is found for extended models, which have apparent angular sized significantly smaller than expected from the geometrical size of the star. Extensive tables are given of monochromatic magnitudes, continuum jumps and gradients, Stomgren-system colors, monochromatic extensions, and the profiles and equivalent widths of the hydrogen lines for all models, and of the He ii lines for some of the 60 M/sub X/ models
Computational Modeling of Complex Protein Activity Networks
Schivo, Stefano; Leijten, Jeroen; Karperien, Marcel; Post, Janine N.; Prignet, Claude
2017-01-01
Because of the numerous entities interacting, the complexity of the networks that regulate cell fate makes it impossible to analyze and understand them using the human brain alone. Computational modeling is a powerful method to unravel complex systems. We recently described the development of a
Models of complex attitude systems
DEFF Research Database (Denmark)
Sørensen, Bjarne Taulo
search algorithms and structural equation models. The results suggest that evaluative judgments of the importance of production system attributes are generated in a schematic manner, driven by personal value orientations. The effect of personal value orientations was strong and largely unmediated...... that evaluative affect propagates through the system in such a way that the system becomes evaluatively consistent and operates as a schema for the generation of evaluative judgments. In the empirical part of the paper, the causal structure of an attitude system from which people derive their evaluations of pork......Existing research on public attitudes towards agricultural production systems is largely descriptive, abstracting from the processes through which members of the general public generate their evaluations of such systems. The present paper adopts a systems perspective on such evaluations...
International Nuclear Information System (INIS)
Arvieu, Robert
1963-01-01
This research thesis deals with nuclear physics theory, and more particularly with the issues of collective states and matching properties. In a first part, the author presents the formalism and approximations used to obtain individual states and collective states of spherical nuclei, notably by studying the Bogoliubov-Valatin transformation and how it is possible to report matching phenomena, and then by introducing collective modes by means of an approximate diagonalization and of the 'quasi bosons' method. The phenomenon mechanism is described on a simple example, and, in a second part, the theory is applied to the detailed description of tin isotopes by means of finite range interaction
Study and modeling of the most energetic Active Galactic Nuclei with the Fermi satellite
International Nuclear Information System (INIS)
Sanchez, D.
2010-06-01
The Fermi satellite was launched in June 2008. The onboard LAT detector is dedicated to the study of galactic and extra-galactic gamma sources with an energy comprised between 200 MeV and 300 GeV. 1451 sources have been detected in less than 11 months. This document is divided into 6 chapters: 1) gamma astronomy, 2) the Fermi satellite, 3) the active galactic nuclei (NAG), 4) the observation of several blazars (PKS-2155-304 and PG-1553+113) and its simulation, 5) the observation of PKS-2155-304 with both RXTE and Fermi, and 6) conclusion
Schartmann, M.; Meisenheimer, K.; Camenzind, M.; Wolf, S.; Henning, Th.
2005-07-01
We explore physically self-consistent models of dusty molecular tori in Active Galactic Nuclei (AGN) with the goal of interpreting VLTI observations and fitting high resolution mid-IR spectral energy distributions (SEDs). The input dust distribution is analytically calculated by assuming hydrostatic equilibrium between pressure forces - due to the turbulent motion of the gas clouds - and gravitational and centrifugal forces as a result of the contribution of the nuclear stellar distribution and the central black hole. For a fully three-dimensional treatment of the radiative transfer problem through the tori we employ the Monte Carlo code MC3D. We find that in homogeneous dust distributions the observed mid-infrared emission is dominated by the inner funnel of the torus, even when observing along the equatorial plane. Therefore, the stratification of the distribution of dust grains - both in terms of size and composition - cannot be neglected. In the current study we only include the effect of different sublimation radii which significantly alters the SED in comparison to models that assume an average dust grain property with a common sublimation radius, and suppresses the silicate emission feature at 9.7~μm. In this way we are able to fit the mean SED of both type I and type II AGN very well. Our fit of special objects for which high angular resolution observations (≤0.3´´) are available indicates that the hottest dust in NGC 1068 reaches the sublimation temperature while the maximum dust temperature in the low-luminosity AGN Circinus falls short of 1000 K.
Forestieri, S.; Cappa, C. D.; Ruehl, C. R.; Bertram, T. H.; Staudt, S.; Kuborn, T.
2017-12-01
Aerosol impacts on cloud properties, also known as indirect effects, remain a major source of uncertainty in modeling global radiative forcing. Reducing this uncertainty necessitates better understanding of how aerosol chemical composition impacts the cloud-forming ability of aerosols. The presence of surfactants in aerosols can decrease the surface tension of activating droplets relative to water and lead to more efficient activation. The importance of this effect has been debated, but recent surface tension measurements of microscopic droplets indicate that surface tension is substantially depressed relative to water for lab-generated particles consisting of salt and a single organic species and for complex mixtures of organic matter. However, little work has been done on understanding how chemical complexity (i.e. interaction between different surfactant species) impacts surface tension for particles containing mixtures of surfactants. In this work, we quantified the surface tension of lab-generated aerosols containing surfactants that are commonly found in nascent sea spray aerosol (SSA) at humidities close to activation using a continuous flow stream-wise thermal gradient chamber (CFSTGC). Surface tension was quantified for particles containing single surfactant species and mixtures of these surfactants to investigate the role of chemical complexity on surface tension and molecular packing at the air-water interface. For all surfactants tested in this study, substantial surface tension depression (20-40 mN/m) relative to water was observed for particles containing large fractions of organic matter at humidities just below activation. However, the presence of these surfactants only weakly depressed surface tension at activation. Kinetic limitations were observed for particles coated with just palmitic acid, since palmitic acid molecules inhibit water uptake through their ability to pack tightly at the surface. However, these kinetic limitations disappeared when
International Nuclear Information System (INIS)
Walecka, J.D.
1983-01-01
Nuclei provide systems where the strong, electomagnetic, and weak interactions are all present. The current picture of the strong interactions is based on quarks and quantum chromodynamics (QCD). The symmetry structure of this theory is SU(3)/sub C/ x SU(2)/sub W/ x U(1)/sub W/. The electroweak interactions in nuclei can be used to probe this structure. Semileptonic weak interactions are considered. The processes under consideration include beta decay, neutrino scattering and weak neutral-current interactions. The starting point in the analysis is the effective Lagrangian of the Standard Model
International Nuclear Information System (INIS)
2001-01-01
The present collection of letters from JINR, Dubna, contains seven separate records on physics from extra dimensions, new physics in the new millennium with GENIUS: double beta decay, dark matter, solar neutrinos, the (μ - , e + ) conversion in nuclei mediated by light Majorana neutrinos, exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model, solar neutrino problem accounting for self consistent magnetohydrodynamics solution for solar magnetic fields, first neutrino observations from the Sudbury neutrino observatory and status report on BOREXINO and results of the muon-background measurements at CERN
International Nuclear Information System (INIS)
Bohr, A.
1976-01-01
Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra
International Nuclear Information System (INIS)
Clark, R.M.
2004-01-01
It has been suggested that a change of nuclear shape may be described in terms of a phase transition and that specific nuclei may lie close to the critical point of the transition. Analytical descriptions of such critical-point nuclei have been introduced recently and they are described briefly. The results of extensive searches for possible examples of critical-point behavior are presented. Alternative pictures, such as describing bands in the candidate nuclei using simple ΔK = 0 and ΔK = 2 rotational-coupling models, are discussed, and the limitations of the different approaches highlighted. A possible critical-point description of the transition from a vibrational to rotational pairing phase is suggested
Modeling Musical Complexity: Commentary on Eerola (2016
Directory of Open Access Journals (Sweden)
Joshua Albrecht
2016-07-01
Full Text Available In his paper, "Expectancy violation and information-theoretic models of melodic complexity," Eerola compares a number of models that correlate musical features of monophonic melodies with participant ratings of perceived melodic complexity. He finds that fairly strong results can be achieved using several different approaches to modeling perceived melodic complexity. The data used in this study are gathered from several previously published studies that use widely different types of melodies, including isochronous folk melodies, isochronous 12-tone rows, and rhythmically complex African folk melodies. This commentary first briefly reviews the article's method and main findings, then suggests a rethinking of the theoretical framework of the study. Finally, some of the methodological issues of the study are discussed.
International Nuclear Information System (INIS)
Yu Qingjuan; Lu Youjun; Mohayaee, Roya; Colin, Jacques
2011-01-01
Dual active galactic nuclei (AGNs) are natural byproducts of hierarchical mergers of galaxies in the ΛCDM cosmogony. Recent observations have shown that only a small fraction (∼0.1%-2.5%) of AGNs at redshift z ∼< 0.3 are dual with kpc-scale separations, which is rather low compared to the high merger rate of galaxies. Here we construct a phenomenological model to estimate the number density of dual AGNs and its evolution according to the observationally estimated major merger rates of galaxies and various scaling relations on the properties of galaxies and their central massive black holes. We show that our model reproduces the observed frequency and separation distribution of dual AGNs provided that significant nuclear activities are triggered only in gas-rich progenitor galaxies with central massive black holes and only when the nuclei of these galaxies are roughly within the half-light radii of their companion galaxies. Under these constraints, the observed low dual AGN frequency is consistent with the relatively high merger rate of galaxies and supports the hypothesis that major mergers lead to AGN/QSO activities. We also predict that the number of kpc-scale dual AGNs decreases with increasing redshift and only about 0.02%-0.06% of AGNs are dual AGNs with double-peaked narrow line features at redshifts of z ∼ 0.5-1.2. Future observations of high-redshift dual AGNs would provide a solid test for this prediction.
Directory of Open Access Journals (Sweden)
Chiba Satoshi
2013-03-01
Full Text Available A dispersive coupled-channel optical model potential (DCCOMP that couples the ground-state rotational and low-lying vibrational bands of 238U and 232Th nuclei is studied. The derived DCCOMP couples almost all excited levels below 1 MeV of excitation energy of the corresponding even-even actinides. The ground state, octupole, beta, gamma, and non-axial bands are coupled. The first two isobar analogue states (IAS populated in the quasi-elastic (p,n reaction are also coupled in the proton induced calculation, making the potential approximately Lane consistent. The coupled-channel potential is based on a soft-rotor description of the target nucleus structure, where dynamic vibrations are considered as perturbations of the rigid rotor underlying structure. Matrix elements required to use the proposed structure model in Tamura coupled-channel scheme are derived. Calculated ratio R(U238/Th232 of the total cross-section difference to the averaged σT for 238U and 232Th nuclei is shown to be in excellent agreement with measured data.
Universe, stars, nuclei and particles: recent discoveries and new questions
International Nuclear Information System (INIS)
2002-01-01
The scientific community aims to reduce the apparent complexity of the Universe to some elementary physical laws. Our Universe Physics is described at any observation scale by a theoretical framework called ''standard model''. This document deals with the great questions of the today Physics trough the following standard models: the cosmos standard model, the stars standard model, the atomic nuclei standard model and the elementary particles Physics standard model. (A.L.B)
Sugawara, M.
2018-05-01
An empirical model with independent variable moments of inertia for triaxial nuclei is devised and applied to 76Ge and 192Os. Three intrinsic moments of inertia, J1, J2, and J3, are varied independently as a particular function of spin I within a revised version of the triaxial rotor model so as to reproduce the energy levels of the ground-state, γ , and (in the case of 192Os) Kπ=4+ bands. The staggering in the γ band is well reproduced in both phase and amplitude. Effective γ values are extracted as a function of spin I from the ratios of the three moments of inertia. The eigenfunctions and the effective γ values are subsequently used to calculate the ratios of B (E 2 ) values associated with these bands. Good agreement between the model calculation and the experimental data is obtained for both 76Ge and 192Os.
Modeling complex work systems - method meets reality
van der Veer, Gerrit C.; Hoeve, Machteld; Lenting, Bert
1996-01-01
Modeling an existing task situation is often a first phase in the (re)design of information systems. For complex systems design, this model should consider both the people and the organization involved, the work, and situational aspects. Groupware Task Analysis (GTA) as part of a method for the
Fatigue modeling of materials with complex microstructures
DEFF Research Database (Denmark)
Qing, Hai; Mishnaevsky, Leon
2011-01-01
with the phenomenological model of fatigue damage growth. As a result, the fatigue lifetime of materials with complex structures can be determined as a function of the parameters of their structures. As an example, the fatigue lifetimes of wood modeled as a cellular material with multilayered, fiber reinforced walls were...
Free-parameterless model of high energy particle collisions with atomic nuclei
International Nuclear Information System (INIS)
Strugalski, Z.
1982-01-01
In result of studies, it has been discovered that: a) Intensive emission of fast nucleons of kinetic energy from 20 to 400 MeV proceeds independently of the pion production process; b) The particle production in hadron-nucleon collisions is mediated by intermediate objects produced first in a 2 → 2 type endoergic reaction and decaying after lifetime tausub(g) > or approximately 10 - 22 s into commonly known resonances and particles; c) Inside of massive enough atomic nuclei quasi-onedimensional cascades of the intermediate objects can develop; d) A definite simple connection exists between the characteristics of the secondaries appearing in hadron-nucleus collision events and corresponding hadron-nucleon collision events, the target-nucleus size and the nucleon density distribution in it. The yield of the hadron-nucleus collisions is described in a convincing manner in terms of the hadron-nucleon collision data by means of simple formulas
Updating the debate on model complexity
Simmons, Craig T.; Hunt, Randall J.
2012-01-01
As scientists who are trying to understand a complex natural world that cannot be fully characterized in the field, how can we best inform the society in which we live? This founding context was addressed in a special session, “Complexity in Modeling: How Much is Too Much?” convened at the 2011 Geological Society of America Annual Meeting. The session had a variety of thought-provoking presentations—ranging from philosophy to cost-benefit analyses—and provided some areas of broad agreement that were not evident in discussions of the topic in 1998 (Hunt and Zheng, 1999). The session began with a short introduction during which model complexity was framed borrowing from an economic concept, the Law of Diminishing Returns, and an example of enjoyment derived by eating ice cream. Initially, there is increasing satisfaction gained from eating more ice cream, to a point where the gain in satisfaction starts to decrease, ending at a point when the eater sees no value in eating more ice cream. A traditional view of model complexity is similar—understanding gained from modeling can actually decrease if models become unnecessarily complex. However, oversimplified models—those that omit important aspects of the problem needed to make a good prediction—can also limit and confound our understanding. Thus, the goal of all modeling is to find the “sweet spot” of model sophistication—regardless of whether complexity was added sequentially to an overly simple model or collapsed from an initial highly parameterized framework that uses mathematics and statistics to attain an optimum (e.g., Hunt et al., 2007). Thus, holistic parsimony is attained, incorporating “as simple as possible,” as well as the equally important corollary “but no simpler.”
Complexity, Modeling, and Natural Resource Management
Directory of Open Access Journals (Sweden)
Paul Cilliers
2013-09-01
Full Text Available This paper contends that natural resource management (NRM issues are, by their very nature, complex and that both scientists and managers in this broad field will benefit from a theoretical understanding of complex systems. It starts off by presenting the core features of a view of complexity that not only deals with the limits to our understanding, but also points toward a responsible and motivating position. Everything we do involves explicit or implicit modeling, and as we can never have comprehensive access to any complex system, we need to be aware both of what we leave out as we model and of the implications of the choice of our modeling framework. One vantage point is never sufficient, as complexity necessarily implies that multiple (independent conceptualizations are needed to engage the system adequately. We use two South African cases as examples of complex systems - restricting the case narratives mainly to the biophysical domain associated with NRM issues - that make the point that even the behavior of the biophysical subsystems themselves are already complex. From the insights into complex systems discussed in the first part of the paper and the lessons emerging from the way these cases have been dealt with in reality, we extract five interrelated generic principles for practicing science and management in complex NRM environments. These principles are then further elucidated using four further South African case studies - organized as two contrasting pairs - and now focusing on the more difficult organizational and social side, comparing the human organizational endeavors in managing such systems.
Multifaceted Modelling of Complex Business Enterprises.
Chakraborty, Subrata; Mengersen, Kerrie; Fidge, Colin; Ma, Lin; Lassen, David
2015-01-01
We formalise and present a new generic multifaceted complex system approach for modelling complex business enterprises. Our method has a strong focus on integrating the various data types available in an enterprise which represent the diverse perspectives of various stakeholders. We explain the challenges faced and define a novel approach to converting diverse data types into usable Bayesian probability forms. The data types that can be integrated include historic data, survey data, and management planning data, expert knowledge and incomplete data. The structural complexities of the complex system modelling process, based on various decision contexts, are also explained along with a solution. This new application of complex system models as a management tool for decision making is demonstrated using a railway transport case study. The case study demonstrates how the new approach can be utilised to develop a customised decision support model for a specific enterprise. Various decision scenarios are also provided to illustrate the versatility of the decision model at different phases of enterprise operations such as planning and control.
Multifaceted Modelling of Complex Business Enterprises
2015-01-01
We formalise and present a new generic multifaceted complex system approach for modelling complex business enterprises. Our method has a strong focus on integrating the various data types available in an enterprise which represent the diverse perspectives of various stakeholders. We explain the challenges faced and define a novel approach to converting diverse data types into usable Bayesian probability forms. The data types that can be integrated include historic data, survey data, and management planning data, expert knowledge and incomplete data. The structural complexities of the complex system modelling process, based on various decision contexts, are also explained along with a solution. This new application of complex system models as a management tool for decision making is demonstrated using a railway transport case study. The case study demonstrates how the new approach can be utilised to develop a customised decision support model for a specific enterprise. Various decision scenarios are also provided to illustrate the versatility of the decision model at different phases of enterprise operations such as planning and control. PMID:26247591
Modeling OPC complexity for design for manufacturability
Gupta, Puneet; Kahng, Andrew B.; Muddu, Swamy; Nakagawa, Sam; Park, Chul-Hong
2005-11-01
Increasing design complexity in sub-90nm designs results in increased mask complexity and cost. Resolution enhancement techniques (RET) such as assist feature addition, phase shifting (attenuated PSM) and aggressive optical proximity correction (OPC) help in preserving feature fidelity in silicon but increase mask complexity and cost. Data volume increase with rise in mask complexity is becoming prohibitive for manufacturing. Mask cost is determined by mask write time and mask inspection time, which are directly related to the complexity of features printed on the mask. Aggressive RET increase complexity by adding assist features and by modifying existing features. Passing design intent to OPC has been identified as a solution for reducing mask complexity and cost in several recent works. The goal of design-aware OPC is to relax OPC tolerances of layout features to minimize mask cost, without sacrificing parametric yield. To convey optimal OPC tolerances for manufacturing, design optimization should drive OPC tolerance optimization using models of mask cost for devices and wires. Design optimization should be aware of impact of OPC correction levels on mask cost and performance of the design. This work introduces mask cost characterization (MCC) that quantifies OPC complexity, measured in terms of fracture count of the mask, for different OPC tolerances. MCC with different OPC tolerances is a critical step in linking design and manufacturing. In this paper, we present a MCC methodology that provides models of fracture count of standard cells and wire patterns for use in design optimization. MCC cannot be performed by designers as they do not have access to foundry OPC recipes and RET tools. To build a fracture count model, we perform OPC and fracturing on a limited set of standard cells and wire configurations with all tolerance combinations. Separately, we identify the characteristics of the layout that impact fracture count. Based on the fracture count (FC) data
Sutherland models for complex reflection groups
International Nuclear Information System (INIS)
Crampe, N.; Young, C.A.S.
2008-01-01
There are known to be integrable Sutherland models associated to every real root system, or, which is almost equivalent, to every real reflection group. Real reflection groups are special cases of complex reflection groups. In this paper we associate certain integrable Sutherland models to the classical family of complex reflection groups. Internal degrees of freedom are introduced, defining dynamical spin chains, and the freezing limit taken to obtain static chains of Haldane-Shastry type. By considering the relation of these models to the usual BC N case, we are led to systems with both real and complex reflection groups as symmetries. We demonstrate their integrability by means of new Dunkl operators, associated to wreath products of dihedral groups
Energy Technology Data Exchange (ETDEWEB)
Yamanaka, Nodoka [iTHES Research Group, RIKEN,Wako, Saitama 351-0198 (Japan); Hiyama, Emiko [RIKEN Nishina Center, RIKEN,Wako, Saitama 351-0198 (Japan)
2016-02-10
We calculate for the first time the electric dipole moment (EDM) of the deuteron, {sup 3}H, and {sup 3}He nuclei generated by the one-meson exchange CP-odd nuclear force in the standard model. The effective |ΔS|=1 four-quark operators are matched to the |ΔS|=1 standard model processes involving the CP phase of the Cabibbo-Kobayashi-Maskawa matrix at the electroweak scale and run down to the hadronic scale μ=1 GeV according to the renormalization group evolution in the next-to-leading logarithmic order. At the hadronic scale, the hadron matrix elements are modeled in the factorization approach. We then obtain the one-meson (pion, eta meson, and kaon) exchange CP-odd nuclear force, which is the combination of the |ΔS|=1 meson-baryon vertices which issue from the penguin operator and the hyperon-nucleon transition. From this CP-odd nuclear force, the nuclear EDM is calculated with the realistic Argonne v18 interaction and the CP-odd nuclear force using the Gaussian expansion method. It is found that the EDMs of light nuclear systems are of order O(10{sup −31})e cm. We also estimate the standard model contribution to other hadronic CP violating observables such as the EDMs of {sup 6}Li, {sup 9}Be nuclei, and the atomic EDMs of {sup 129}Xe, {sup 199}Hg, {sup 211}Rn, and {sup 225}Ra generated through the nuclear Schiff moment. We then analyze the source of theoretical uncertainties and show some possible ways to overcome them.
Minimum-complexity helicopter simulation math model
Heffley, Robert K.; Mnich, Marc A.
1988-01-01
An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed.
Directory of Open Access Journals (Sweden)
Holt Roy J.
2016-01-01
Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.
International Nuclear Information System (INIS)
Brenner, D.J.
1984-01-01
A model has been developed for calculating fast neutron cross sections (E > 14 MeV) for light nuclei of biomedical interest. The model explicitly includes experimental nuclear structure information. Some calculations for 12 C, 14 N, and 16 O are presented
Spectroscopic Studies of Exotic Nuclei at ISOLDE
2002-01-01
Experiment IS50 is designed to: a) Investigate the full range of the @b strength function of heavy (A~$>$~48)~K nuclei b)~Study the decay of isomeric states in n-deficient bromine nuclei (A~=~72 and 70). The heavy K isotopes appeared to have complex decay schemes, including feeding by the @b-decay of levels having open neutron channels (Beta decay energy Q(@b) exceeds neutron binding energy S^n); in addition, a large fraction of the delayed transitions populate excited levels in the daughter nuclei. The allowed @b-decay selects states in the daughter nucleus with wave functions having a large overlap with the initial state. Hence, the @b strength functions, deduced from these deca reveal simple structures correlated to the particle-hole excitation energies in the Ca nuclei. These results are valuable for the application of the shell-model calculations far from stability. The delayed neutron spectra are measured with a large area curved scintillator in coincidence either with high resolution Ge(Li) detectors, ...
Study of the (e,e'p) quasi-elastic reaction in complex nuclei: theory and experiment
Energy Technology Data Exchange (ETDEWEB)
Herraiz, Joaquin Lopez [Complutense Univ. of Madrid (Spain)
2010-03-01
Experimental coincidence cross section and transverse-longitudinal asymmetry _{ATL} have been obtained for the quasielastic (e,e'p) reaction in ^{16}O, ^{12}C, and {sup 208}Pb in constant q-ω kinematics in the missing momentum range -350 < p_{miss} < 350 MeV/c. In these experiments, performed in experimental Hall A of the Thomas Jefferson National Accelerator Facility (JLAB), the beam energy and the momentum and angle of the scattered electrons were kept fixed, while the angle between the proton momentum and the momentum transfer q was varied in order to map out the missing momentum distribution. The experimental cross section and A_{TL} asymmetry have been compared with Monte Carlo simulations based on Distorted Wave Impulse Approximation (DWIA) calculations with both relativistic and non-relativistic spinor structure. The spectroscopic factors obtained for both models are in agreement with previous experimental values, while A_{TL} measurements favor the relativistic DWIA calculation. This thesis describes the details of the experimental setup, the calibration of the spectrometers, the techniques used in the data analysis to derive the final cross sections and the A_{TL}, the ingredients of the theoretical calculations employed and the comparison of the results with the simulations based on these theoretical models.
Complex Systems and Self-organization Modelling
Bertelle, Cyrille; Kadri-Dahmani, Hakima
2009-01-01
The concern of this book is the use of emergent computing and self-organization modelling within various applications of complex systems. The authors focus their attention both on the innovative concepts and implementations in order to model self-organizations, but also on the relevant applicative domains in which they can be used efficiently. This book is the outcome of a workshop meeting within ESM 2006 (Eurosis), held in Toulouse, France in October 2006.
Geometric Modelling with a-Complexes
Gerritsen, B.H.M.; Werff, K. van der; Veltkamp, R.C.
2001-01-01
The shape of real objects can be so complicated, that only a sampling data point set can accurately represent them. Analytic descriptions are too complicated or impossible. Natural objects, for example, can be vague and rough with many holes. For this kind of modelling, a-complexes offer advantages
The Kuramoto model in complex networks
Rodrigues, Francisco A.; Peron, Thomas K. DM.; Ji, Peng; Kurths, Jürgen
2016-01-01
Synchronization of an ensemble of oscillators is an emergent phenomenon present in several complex systems, ranging from social and physical to biological and technological systems. The most successful approach to describe how coherent behavior emerges in these complex systems is given by the paradigmatic Kuramoto model. This model has been traditionally studied in complete graphs. However, besides being intrinsically dynamical, complex systems present very heterogeneous structure, which can be represented as complex networks. This report is dedicated to review main contributions in the field of synchronization in networks of Kuramoto oscillators. In particular, we provide an overview of the impact of network patterns on the local and global dynamics of coupled phase oscillators. We cover many relevant topics, which encompass a description of the most used analytical approaches and the analysis of several numerical results. Furthermore, we discuss recent developments on variations of the Kuramoto model in networks, including the presence of noise and inertia. The rich potential for applications is discussed for special fields in engineering, neuroscience, physics and Earth science. Finally, we conclude by discussing problems that remain open after the last decade of intensive research on the Kuramoto model and point out some promising directions for future research.
A cognitive model for software architecture complexity
Bouwers, E.; Lilienthal, C.; Visser, J.; Van Deursen, A.
2010-01-01
Evaluating the complexity of the architecture of a softwaresystem is a difficult task. Many aspects have to be considered to come to a balanced assessment. Several architecture evaluation methods have been proposed, but very few define a quality model to be used during the evaluation process. In
Investigation of the rotational nuclei 167168Hf and 170171W and the shell-model nucleus 26Mg
International Nuclear Information System (INIS)
Arciszewski, H.F.R.
1984-01-01
Two gamma-gamma coincidence experiments on neighbouring nuclei that exhibit the backbending phenomenon are described. The first experiment performed with the cyclotron of the KVI at Groningen is an investigation of 167 Hf and 168 Hf, whereas in the second experiment, performed at the cyclotron facility of Louvain University, high spin states are studied and compared with predictions of the cranked shell model. A new method for the correction of the large background of Compton-scattered events is described. Apart from this, an investigation of the single particle (d,p) transfer reaction at 26 Mg has been performed with the van de Graaff tandem accelerator at 14 MeV. Specroscopic factors are presented for many levels up to an excitation energy of 8 MeV. Several new spin assignments could be made. (Auth.)
Projected shell model study of odd-odd f-p-g shell proton-rich nuclei
International Nuclear Information System (INIS)
Palit, R.; Sheikh, J.A.; Sun, Y.; Jain, H.C.
2003-01-01
A systematic study of two-quasiparticle bands of the proton-rich odd-odd nuclei in the mass A∼70-80 region is performed using the projected shell model approach. The study includes Br, Rb, and Y isotopes with N=Z+2 and Z+4. We describe the energy spectra and electromagnetic transition strengths in terms of the configuration mixing of the angular-momentum projected multi-quasiparticle states. Signature splitting and signature inversion in the rotational bands are discussed and are shown to be well described. A preliminary study of the odd-odd N=Z nucleus 74 Rb, using the concept of spontaneous symmetry breaking is also presented
International Nuclear Information System (INIS)
Chen, F. Q.; Sun, Y.
2013-01-01
Description of the interplay between different nuclear shapes is an interesting but challenging problem. The original projected shell model (PSM) is applicable to nuclei with fixed shapes. We extend the PSM by superimposing (angular-momentum- and particle-number-) projected product wave functions in the spirit of the generate coordinate method. With this development, the Gd isotopes across the N = 90 region are studied, and the results indicate spectroscopic features of shape phase transition with varying neutron number. In order to illustrate the shape distribution in microscopic wave functions, we introduce a deformation representation and show that the collectively excited K π = 0 + states in the Gd isotopes have characters of shape vibration. (authors)
International Nuclear Information System (INIS)
Brizzi, R.; Fabre de la Ripelle, M.; Lassaut, M.
1999-01-01
The binding energies and root mean square radii obtained from the Integro-Differential Equation Approach (IDEA) and from the Weight Function Approximation (WFA) of the IDEA for an even number of bosons and for 12 C, 16 O and 40 Ca are compared to those recently obtained by the Variational Monte Carlo, Fermi Hypernetted Chain and Coupled Cluster expansion method with model potentials. The IDEA provides numbers very similar to those obtained by other methods although it takes only two-body correlations into account. The analytical expression of the wave function for the WFA is given for bosons in ground state when the interaction pair is outside the potential range. Due to its simple structure, the equations of the IDEA can easily be extended to realistic interaction for nuclei like it has already been done for the tri-nucleon and the 4 He. (authors)
Detailed study of the cluster structure of light nuclei in a three-body model. Pt. 3
International Nuclear Information System (INIS)
Kukulin, V.I.; Eramzhyan, R.A.
1990-01-01
The multicluster dynamic model with the Pauli projection (MDMP) for treating light nuclei, developed earlier, is used to study in detail the 6 Li electromagnetic structure including all the measured elastic and inelastic, transverse and longitudinal, isoscalar and isovector electromagnetic form factors of the nucleus and to make some predictions concerning other, not yet measured, form factors. The model is also used to calculate all the measured radiation widths Γ γ0 of the excited 6 Li * states. A proper description has been obtained for most of the known electromagnetic form factors of the nucleus. The reasons for disagreement with experimental data in the case of large momentum transfers in the M1 form factors, both elastic and inelastic, are discussed. The elastic C0 form factor of 6 Li and, probably, of other light nuclei in the region of the secondary maximum is shown to be defined, to a very great extent, by the behaviour of the α-particle charge form factor in the region of its secondary maximum. The radiation widths of the 3 + 0, 2 + 0, and 1 + 0 levels have been found to be highly sensitive to minor impurities of the wavefunction components with higher orbital moments for the excited states, as well as the ground state, of 6 Li. The Siegert theorem is shown to be of great importance when studying the probabilities of transverse electromagnetic transitions. The copious results obtained by the present authors, as well as elsewhere, concerning the diverse aspects of the behaviour of six-nucleon system in the strong, weak, and electromagnetic processes are used to formulate the concept of using the given system as an extremely convenient theoretical laboratory in nuclear physics. The relevant proposals concerning future experiments are formulated. (orig.)
Comparing flood loss models of different complexity
Schröter, Kai; Kreibich, Heidi; Vogel, Kristin; Riggelsen, Carsten; Scherbaum, Frank; Merz, Bruno
2013-04-01
Any deliberation on flood risk requires the consideration of potential flood losses. In particular, reliable flood loss models are needed to evaluate cost-effectiveness of mitigation measures, to assess vulnerability, for comparative risk analysis and financial appraisal during and after floods. In recent years, considerable improvements have been made both concerning the data basis and the methodological approaches used for the development of flood loss models. Despite of that, flood loss models remain an important source of uncertainty. Likewise the temporal and spatial transferability of flood loss models is still limited. This contribution investigates the predictive capability of different flood loss models in a split sample cross regional validation approach. For this purpose, flood loss models of different complexity, i.e. based on different numbers of explaining variables, are learned from a set of damage records that was obtained from a survey after the Elbe flood in 2002. The validation of model predictions is carried out for different flood events in the Elbe and Danube river basins in 2002, 2005 and 2006 for which damage records are available from surveys after the flood events. The models investigated are a stage-damage model, the rule based model FLEMOps+r as well as novel model approaches which are derived using data mining techniques of regression trees and Bayesian networks. The Bayesian network approach to flood loss modelling provides attractive additional information concerning the probability distribution of both model predictions and explaining variables.
Complex scaling in the cluster model
International Nuclear Information System (INIS)
Kruppa, A.T.; Lovas, R.G.; Gyarmati, B.
1987-01-01
To find the positions and widths of resonances, a complex scaling of the intercluster relative coordinate is introduced into the resonating-group model. In the generator-coordinate technique used to solve the resonating-group equation the complex scaling requires minor changes in the formulae and code. The finding of the resonances does not need any preliminary guess or explicit reference to any asymptotic prescription. The procedure is applied to the resonances in the relative motion of two ground-state α clusters in 8 Be, but is appropriate for any systems consisting of two clusters. (author) 23 refs.; 5 figs
Modeling of anaerobic digestion of complex substrates
International Nuclear Information System (INIS)
Keshtkar, A. R.; Abolhamd, G.; Meyssami, B.; Ghaforian, H.
2003-01-01
A structured mathematical model of anaerobic conversion of complex organic materials in non-ideally cyclic-batch reactors for biogas production has been developed. The model is based on multiple-reaction stoichiometry (enzymatic hydrolysis, acidogenesis, aceto genesis and methano genesis), microbial growth kinetics, conventional material balances in the liquid and gas phases for a cyclic-batch reactor, liquid-gas interactions, liquid-phase equilibrium reactions and a simple mixing model which considers the reactor volume in two separate sections: the flow-through and the retention regions. The dynamic model describes the effects of reactant's distribution resulting from the mixing conditions, time interval of feeding, hydraulic retention time and mixing parameters on the process performance. The model is applied in the simulation of anaerobic digestion of cattle manure under different operating conditions. The model is compared with experimental data and good correlations are obtained
International Nuclear Information System (INIS)
Whelan, N.D.
1993-01-01
Random Matrix Theory successfully describes the statistics of the low-lying spectra of some nuclei but not of others. It is currently believed that this theory applies to systems in which the corresponding classical motion is chaotic. This conjecture is tested for collective nuclei by studying the Interacting Boson Model. Quantum and classical measures of chaos are proposed and found to be in agreement throughout the parameter space of the model. For some parameter values the measures indicate the presence of a previously unknown approximate symmetry. A phenomenon called partial dynamical symmetry is explored and shown to lead to a suppression of chaos. A time dependent function calculated from the quantum spectrum is discussed. This function is sensitive to the extent of chaos and provides a robust method of analyzing experimental spectra
Cavitation inception from bubble nuclei
DEFF Research Database (Denmark)
Mørch, Knud Aage
2015-01-01
, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid....... The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model...
International Nuclear Information System (INIS)
Katz, A.
1975-01-01
A model to account for the broad hydrogen line emission from the nuclei of Seyfert galaxies based on charge exchange and collisional processes, as proposed by Ptak and Stoner, is investigated. The model consists of a source of fast (E approx. 10 5 eV) protons streaming through a medium of quiescent gas. One of the major problems that results from such a model concerns the strong narrow hydrogen line core that would be produced, in direct conflict with the observations. The lines cannot arise from gas arranged throughout a spherical volume surrounding the source of the fast particles because the fast protons would produce far more ionizations than the possible number of recombinations. A very dense shell source of less than 1 AU in thickness and at least several tens of parsecs in radius must be invoked to reproduce the asymmetric broad profiles observed. There must be absorption throughout the center of the shell to account for the line profiles. The gas cannot be arranged in dense clumps throughout a large volume because momentum exchange of the gas with the primary particles would quickly accelerate any clumps. The energy balance and energy requirements of such a model are investigated, and it is found that an energy equal to or greater than the total luminosity of most Seyfert galaxies is required to produce the hydrogen line alone. The gas must be mostly neutral and den []e (N approx. 10 7 ) if a reasonable temperature is to be maintained
International Nuclear Information System (INIS)
Costa, Tassio S; Gonçalves, Fábio L T; Yamasoe, Marcia A; Martins, Jorge A; Morris, Cindy E
2014-01-01
This study examines the effect of the bacterial species Pseudomonas syringae acting as ice nuclei (IN) on cloud properties to understand its impact on local radiative budget and heating rates. These bacteria may become active IN at temperatures as warm as −2 °C. Numerical simulations were developed using the Brazilian Regional Atmospheric Model System (BRAMS). To investigate the isolated effect of bacterial IN, four scenarios were created considering only homogeneous and bacterial ice nucleation, with 1, 10 and 100 IN per cubic meter of cloud volume and one with no bacteria. Moreover, two other scenarios were generated: the BRAMS default parameterization and its combination with bacterial IN. The model reproduced a strong convective cell over São Paulo on 3 March 2003. Results showed that bacterial IN may change cloud evolution as well as its microphysical properties, which in turn influence cloud radiative properties. For example, the reflected shortwave irradiance over an averaged domain in a scenario considering bacterial IN added to the BRAMS default parameterization was 14% lower than if bacteria were not considered. Heating rates can also be impacted, especially due to differences in cloud lifetime. Results suggest that the omission of bacterial IN in numerical models, including global cloud models, could neglect relevant ice nucleation processes that potentially influence cloud radiative properties. (letter)
International Nuclear Information System (INIS)
Margetan, F.J.
1979-01-01
A closed expression is presented for intrinsic-coordinate (β, γ, theta/sub i/) eigenfunctions of the hydrodynamic, quadrupole-vibration Hamiltonian of A. Bohr. These functions are used as an expansion basis for the treatment of more general collective Hamiltonians. Two classes of such Hamiltonians are considered. In each the potential energy term of the Bohr Hamiltonian, 1/2 Cβ 2 , was replaced with a more general function of the shape coordinates, V(β, γ). The potential of Gneuss and Greiner (1) is used to demonstrate the soundness of the calculational techniques, and to illustrate convergence properties of calculated energies. Potentials possessing a single minimum on 0 less than or equal to γ less than or equal to 60 0 are considered through the study of a quadratic-potential [QP] Hamiltonian. The smooth development from spherical to asymmetrically deformed nuclear shapes is investigated by systematically varying the parameters β 0 and C/sub γ/. Model energies and E2 transition rates are traced during this process. The QP model is then applied to 106 Pd, 166 Er, 182 W, 122 Te, and 186 188 190 192 Os. Low-energy γ vibrations appear to play a prominent role in the latter five nuclei, and the QP model offers a better accounting of experimental spectra than does the model of Davydov and Chaban (2). 74 references
A Practical Philosophy of Complex Climate Modelling
Schmidt, Gavin A.; Sherwood, Steven
2014-01-01
We give an overview of the practice of developing and using complex climate models, as seen from experiences in a major climate modelling center and through participation in the Coupled Model Intercomparison Project (CMIP).We discuss the construction and calibration of models; their evaluation, especially through use of out-of-sample tests; and their exploitation in multi-model ensembles to identify biases and make predictions. We stress that adequacy or utility of climate models is best assessed via their skill against more naive predictions. The framework we use for making inferences about reality using simulations is naturally Bayesian (in an informal sense), and has many points of contact with more familiar examples of scientific epistemology. While the use of complex simulations in science is a development that changes much in how science is done in practice, we argue that the concepts being applied fit very much into traditional practices of the scientific method, albeit those more often associated with laboratory work.
Maydanyuk, Sergei P.
2012-07-01
A model of the bremsstrahlung emission which accompanies proton decay and collisions of protons off nuclei in the low- to intermediate-energy region has been developed. This model includes spin formalism, a potential approach for describing the interaction between protons and nuclei, and an emission that includes a component of the magnetic emission (defined on the basis of the Pauli equation). For the problem of bremsstrahlung during proton decay the role of magnetic emission is studied by using such a model. For the 146Tm nucleus the following has been studied: (1) How much does the magnetic emission change the full bremsstrahlung spectrum? (2) At which angle is the magnetic emission the most intensive relative to the electric emission? (3) Is there some spatial region where the magnetic emission increases strongly relative to the electric emission? (4) How intensive is the magnetic emission in the tunneling region? (5) Which is the maximal probability? Which value does it equal to at the zero-energy limit of the emitted photons? It is demonstrated that the model is able to describe well enough experimental data of bremsstrahlung emission which accompanies collisions of protons off 9C, 64Cu, and 107Ag nuclei at an incident energy of Tlab=72 MeV (at a photon energy up to 60 MeV) and off 9Be, 12C, and 208Pb nuclei at an incident energy of Tlab=140 MeV (at a photon energy up to 120 MeV).
Intrinsic Uncertainties in Modeling Complex Systems.
Energy Technology Data Exchange (ETDEWEB)
Cooper, Curtis S; Bramson, Aaron L.; Ames, Arlo L.
2014-09-01
Models are built to understand and predict the behaviors of both natural and artificial systems. Because it is always necessary to abstract away aspects of any non-trivial system being modeled, we know models can potentially leave out important, even critical elements. This reality of the modeling enterprise forces us to consider the prospective impacts of those effects completely left out of a model - either intentionally or unconsidered. Insensitivity to new structure is an indication of diminishing returns. In this work, we represent a hypothetical unknown effect on a validated model as a finite perturba- tion whose amplitude is constrained within a control region. We find robustly that without further constraints, no meaningful bounds can be placed on the amplitude of a perturbation outside of the control region. Thus, forecasting into unsampled regions is a very risky proposition. We also present inherent difficulties with proper time discretization of models and representing in- herently discrete quantities. We point out potentially worrisome uncertainties, arising from math- ematical formulation alone, which modelers can inadvertently introduce into models of complex systems. Acknowledgements This work has been funded under early-career LDRD project #170979, entitled "Quantify- ing Confidence in Complex Systems Models Having Structural Uncertainties", which ran from 04/2013 to 09/2014. We wish to express our gratitude to the many researchers at Sandia who con- tributed ideas to this work, as well as feedback on the manuscript. In particular, we would like to mention George Barr, Alexander Outkin, Walt Beyeler, Eric Vugrin, and Laura Swiler for provid- ing invaluable advice and guidance through the course of the project. We would also like to thank Steven Kleban, Amanda Gonzales, Trevor Manzanares, and Sarah Burwell for their assistance in managing project tasks and resources.
Different Epidemic Models on Complex Networks
International Nuclear Information System (INIS)
Zhang Haifeng; Small, Michael; Fu Xinchu
2009-01-01
Models for diseases spreading are not just limited to SIS or SIR. For instance, for the spreading of AIDS/HIV, the susceptible individuals can be classified into different cases according to their immunity, and similarly, the infected individuals can be sorted into different classes according to their infectivity. Moreover, some diseases may develop through several stages. Many authors have shown that the individuals' relation can be viewed as a complex network. So in this paper, in order to better explain the dynamical behavior of epidemics, we consider different epidemic models on complex networks, and obtain the epidemic threshold for each case. Finally, we present numerical simulations for each case to verify our results.
FRAM Modelling Complex Socio-technical Systems
Hollnagel, Erik
2012-01-01
There has not yet been a comprehensive method that goes behind 'human error' and beyond the failure concept, and various complicated accidents have accentuated the need for it. The Functional Resonance Analysis Method (FRAM) fulfils that need. This book presents a detailed and tested method that can be used to model how complex and dynamic socio-technical systems work, and understand both why things sometimes go wrong but also why they normally succeed.
Complex Constructivism: A Theoretical Model of Complexity and Cognition
Doolittle, Peter E.
2014-01-01
Education has long been driven by its metaphors for teaching and learning. These metaphors have influenced both educational research and educational practice. Complexity and constructivism are two theories that provide functional and robust metaphors. Complexity provides a metaphor for the structure of myriad phenomena, while constructivism…
International Nuclear Information System (INIS)
Dote, Akinobu; Akaishi, Yoshinori; Yamazaki, Toshimitsu
2005-01-01
New nuclei 'K-bar-Mesic Nuclei' having the strangeness are described. At first it is shown that the strongly attractive nature of K-bar N interaction is reasoned inductively from consideration of the relation between Kaonic hydrogen atom and Λ (1405) which is an excited state of hyperon Λ. The K-bar N interactions are reviewed and summarized into three categories: 1. Phenomenological approach with density dependent K-bar N interaction (DD), relativistic mean field (RMF) approach, and hybrid of them (RMF+DD). 2. Boson exchange model. 3. Chiral SU(3) theory. The investigation of some light K-bar-nuclei by Akaishi and Yamazaki using phenomenological K-bar N interaction is explained in detail. Studies by antisymmetrized molecular dynamics (AMD) approach are also presented. From these theoretical researches, the following feature of K-bar-mesic nuclei are revealed: 1) Ground state is discrete and bound by 100 MeV or more. 2) Density is very high in side the K-bar-mesic nuclei. 3) Strange structures develop which are not seen in ordinary nuclei. Finally some recent experiments to explore K-bar-mesic nuclei are reviewed. (S. Funahashi)
Complex networks under dynamic repair model
Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao
2018-01-01
Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.
From complex to simple: interdisciplinary stochastic models
International Nuclear Information System (INIS)
Mazilu, D A; Zamora, G; Mazilu, I
2012-01-01
We present two simple, one-dimensional, stochastic models that lead to a qualitative understanding of very complex systems from biology, nanoscience and social sciences. The first model explains the complicated dynamics of microtubules, stochastic cellular highways. Using the theory of random walks in one dimension, we find analytical expressions for certain physical quantities, such as the time dependence of the length of the microtubules, and diffusion coefficients. The second one is a stochastic adsorption model with applications in surface deposition, epidemics and voter systems. We introduce the ‘empty interval method’ and show sample calculations for the time-dependent particle density. These models can serve as an introduction to the field of non-equilibrium statistical physics, and can also be used as a pedagogical tool to exemplify standard statistical physics concepts, such as random walks or the kinetic approach of the master equation. (paper)
Amirkhanov, I V; Zemlyanaya, E V; Polanski, A; Puzynina, T P; Uzhinsky, V V
2004-01-01
Combinations of the QMD model with various models of nuclear residual de-excitation are considered. The QMD model parameters are fitted; neutron spectra in hadron-nucleus interactions are calculated. The numerical results were compared with analogous calculations by the cascade-evaporation model and with experimental data. The comparison shows that the numerical results are in agreement between each other and with the experimental data for the energies of projectile particles lower than 200-300 MeV for fast neutrons. Cross-sections of isotope yields in the neutron interactions with radioactive iodine, americium, plutonium and others isotopes have been calculated.
A SIMULATION MODEL OF THE GAS COMPLEX
Directory of Open Access Journals (Sweden)
Sokolova G. E.
2016-06-01
Full Text Available The article considers the dynamics of gas production in Russia, the structure of sales in the different market segments, as well as comparative dynamics of selling prices on these segments. Problems of approach to the creation of the gas complex using a simulation model, allowing to estimate efficiency of the project and determine the stability region of the obtained solutions. In the presented model takes into account the unit repayment of the loan, allowing with the first year of simulation to determine the possibility of repayment of the loan. The model object is a group of gas fields, which is determined by the minimum flow rate above which the project is cost-effective. In determining the minimum source flow rate for the norm of discount is taken as a generalized weighted average percentage on debt and equity taking into account risk premiums. He also serves as the lower barrier to internal rate of return below which the project is rejected as ineffective. Analysis of the dynamics and methods of expert evaluation allow to determine the intervals of variation of the simulated parameters, such as the price of gas and the exit gas complex at projected capacity. Calculated using the Monte Carlo method, for each random realization of the model simulated values of parameters allow to obtain a set of optimal for each realization of values minimum yield of wells, and also allows to determine the stability region of the solution.
Development of numerical dispersion model for radioactive nuclei including resuspension processes
International Nuclear Information System (INIS)
Chiba, Masaru; Kurita, Susumu; Sasaki, Hidetaka
2003-01-01
Global-scale and local-scale dispersion model are developed combining to global and local scale meteorological forecasting model. By applying this system to another miner constituent such as mineral dust blowing by strong wind in arid region, this system shows very good performance to watch and predict the distribution of it. (author)
Gamow-Teller decay of T = 1 nuclei to odd-odd N = Z nuclei
Energy Technology Data Exchange (ETDEWEB)
Lisetskiy, A F [National Superconducting Cyclotron Laboratory, MSU, East Lansing, MI 48824 (United States); Gelberg, A [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany); Institute of Physical and Chemical Reasearch (RIKEN), Wako, 351-0198 (Japan); Brentano, P von [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany)
2005-01-01
Transition strengths of Gamow-Teller decay of T{sub z} = {+-}1 nuclei to N = Z odd-odd nuclei have been calculated in a two-nucleon approximation for spherical and deformed nuclei. The results obtained for the latter are quite close to the values obtained by full-space shell-model calculations and to the experiment.
A spatial track formation model and its use for calculating etch-pit parameters of light nuclei
International Nuclear Information System (INIS)
Somogyi, G.; Scherzer, R.; Grabisch, K.; Enge, W.
1976-01-01
A generalized geometrical model of etch-pit formation in three dimensions is presented for nuclear particles entering isotropic solids at arbitrary angles of incidence. With this model one can calculate the relations between any particle parameter /Z = charge, M = mass, R = range, theta = angle of incidence/ and etching or track parameter /h = removed detector layer, L = track length, d = track diameter, etch-pit profile and contour/ for track etching rates varying monotonically along the trajectory of particles. Using a computer algorithm, calculations have been performed to study identification problems of nuclei of Z = 1-8 registered in a stack of polycarbonate sheets. For these calculations the etching rate ratio vs residual range curves were parametrized with a form of V -1 (R) = 1-Σasub(i) exp (- bsub(i)R) which does not involve the existence of a threshold for track registration. Particular attention was paid to the study of the evolution of etch-pit sizes for relatively high values of h. For this case, data are presented for the charge and isotope resolving power of the identification methods based on the relations L(R) of d(R). Calculations were also made to show the effect of the relative /parallel and opposite/ orientations between the directions of track etching and particle speed on etch-pit evolution. These studies offered new identification methods based on the determination of the curves L(parallel) vs L(opposite) and d(parallel) vs d(opposite), respectively. (orig.) [de
B(E2) ↑ (01+ -> 21+) predictions for even–even nuclei in the differential equation model
International Nuclear Information System (INIS)
Nayak, R.C.; Pattnaik, S.
2015-01-01
We use the recently developed differential equation model (DEM) for the reduced electric quadrupole transition probability B(E2)↑ for the transition from the ground to the first 2 + state for predicting its values for a wide range of even–even nuclides almost throughout the nuclear landscape from Neon to Californium. This is made possible as the principal equation in the model, namely, the differential equation connecting the B(E2)↑ value of a given even–even nucleus with its derivatives with respect to the neutron and proton numbers, provides two different recursion relations, each connecting three different neighboring even–even nuclei from lower- to higher-mass numbers and vice versa. These relations are primarily responsible in extrapolating from known to unknown terrain of the B(E2)↑-landscape and thereby facilitate the predictions throughout. As a result, we have succeeded in predicting its hitherto unknown value for the adjacent 251 isotopes lying on either side of the known B(E2)↑ database. (author)
Structured analysis and modeling of complex systems
Strome, David R.; Dalrymple, Mathieu A.
1992-01-01
The Aircrew Evaluation Sustained Operations Performance (AESOP) facility at Brooks AFB, Texas, combines the realism of an operational environment with the control of a research laboratory. In recent studies we collected extensive data from the Airborne Warning and Control Systems (AWACS) Weapons Directors subjected to high and low workload Defensive Counter Air Scenarios. A critical and complex task in this environment involves committing a friendly fighter against a hostile fighter. Structured Analysis and Design techniques and computer modeling systems were applied to this task as tools for analyzing subject performance and workload. This technology is being transferred to the Man-Systems Division of NASA Johnson Space Center for application to complex mission related tasks, such as manipulating the Shuttle grappler arm.
Directory of Open Access Journals (Sweden)
F. L. T. Gonçalves
2012-07-01
Full Text Available Many studies from the last decades have shown that airborne microorganisms can be intrinsically linked to atmospheric processes. Certain bacteria may constitute the most active ice nuclei found in the atmosphere and might have some influence on the formation of ice crystals in clouds. This study deals with the ice nucleation activity of Pseudomonas syringae inside of thunderstorms through numerical simulations using BRAMS (Brazilian Regional Atmospheric Model System. The numerical simulations were developed in order to investigate the effect on the total amount of rainwater as a function of ice nuclei (IN P. syringae concentrations with different scenarios (classified as S2 to S4 scenarios corresponding to a maximum of 10^{2} to 10^{4} IN bacteria per liter of cloud water plus the BRAMS default (classified as S5 scenario. Additionally, two other scenarios were included without any IN (S1 and the sum of RAMS default and S4 scenario (classified as S6. The chosen radiosonde data is for 3 March 2003, typical summertime in São Paulo City which presents a strong convective cell. The objective of the simulations was to analyze the effect of the IN concentrations on the BRAMS modeled cloud properties and precipitation. The simulated electrification of the cloud permitted analysis of the total flashes estimated from precipitable and non-precipitable ice mass fluxes in two different lightning frequencies. Among all scenarios, only S4 and S6 presented a tendency to decrease the total cloud water, and all bacteria scenarios presented a tendency to decrease the total amount of rain (−8%, corroborating other reports in the literature. All bacteria scenarios also present higher precipitable ice concentrations compared to S5 scenario, the RAMS default. The main results present the total flash number per simulation as well. From the results, the total flash numbers, from both lightning frequencies, in S4 and S6 scenarios
Glass Durability Modeling, Activated Complex Theory (ACT)
International Nuclear Information System (INIS)
CAROL, JANTZEN
2005-01-01
The most important requirement for high-level waste glass acceptance for disposal in a geological repository is the chemical durability, expressed as a glass dissolution rate. During the early stages of glass dissolution in near static conditions that represent a repository disposal environment, a gel layer resembling a membrane forms on the glass surface through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer has been found to age into either clay mineral assemblages or zeolite mineral assemblages. The formation of one phase preferentially over the other has been experimentally related to changes in the pH of the leachant and related to the relative amounts of Al +3 and Fe +3 in a glass. The formation of clay mineral assemblages on the leached glass surface layers ,lower pH and Fe +3 rich glasses, causes the dissolution rate to slow to a long-term steady state rate. The formation of zeolite mineral assemblages ,higher pH and Al +3 rich glasses, on leached glass surface layers causes the dissolution rate to increase and return to the initial high forward rate. The return to the forward dissolution rate is undesirable for long-term performance of glass in a disposal environment. An investigation into the role of glass stoichiometry, in terms of the quasi-crystalline mineral species in a glass, has shown that the chemistry and structure in the parent glass appear to control the activated surface complexes that form in the leached layers, and these mineral complexes ,some Fe +3 rich and some Al +3 rich, play a role in whether or not clays or zeolites are the dominant species formed on the leached glass surface. The chemistry and structure, in terms of Q distributions of the parent glass, are well represented by the atomic ratios of the glass forming components. Thus, glass dissolution modeling using simple
Unmatter Entities inside Nuclei, Predicted by the Brightsen Nucleon Cluster Model
Directory of Open Access Journals (Sweden)
Smarandache F.
2006-01-01
Full Text Available Applying the R. A. Brightsen Nucleon Cluster Model of the atomic nucleus we discuss how unmatter entities (the conjugations of matter and antimatter may be formed as clusters inside a nucleus. The model supports a hypothesis that antimatter nucleon clusters are present as a parton (sensu Feynman superposition within the spatial confinement of the proton (1H1, the neutron, and the deuteron (1H2. If model predictions can be confirmed both mathematically and experimentally, a new physics is suggested. A proposed experiment is connected to othopositronium annihilation anomalies, which, being related to one of known unmatter entity, orthopositronium (built on electron and positron, opens a way to expand the Standard Model.
Baloković, M.; Brightman, M.; Harrison, F. A.; Comastri, A.; Ricci, C.; Buchner, J.; Gandhi, P.; Farrah, D.; Stern, D.
2018-02-01
The basic unified model of active galactic nuclei (AGNs) invokes an anisotropic obscuring structure, usually referred to as a torus, to explain AGN obscuration as an angle-dependent effect. We present a new grid of X-ray spectral templates based on radiative transfer calculations in neutral gas in an approximately toroidal geometry, appropriate for CCD-resolution X-ray spectra (FWHM ≥ 130 eV). Fitting the templates to broadband X-ray spectra of AGNs provides constraints on two important geometrical parameters of the gas distribution around the supermassive black hole: the average column density and the covering factor. Compared to the currently available spectral templates, our model is more flexible, and capable of providing constraints on the main torus parameters in a wider range of AGNs. We demonstrate the application of this model using hard X-ray spectra from NuSTAR (3–79 keV) for four AGNs covering a variety of classifications: 3C 390.3, NGC 2110, IC 5063, and NGC 7582. This small set of examples was chosen to illustrate the range of possible torus configurations, from disk-like to sphere-like geometries with column densities below, as well as above, the Compton-thick threshold. This diversity of torus properties challenges the simple assumption of a standard geometrically and optically thick toroidal structure commonly invoked in the basic form of the unified model of AGNs. Finding broad consistency between our constraints and those from infrared modeling, we discuss how the approach from the X-ray band complements similar measurements of AGN structures at other wavelengths.
Chaos from simple models to complex systems
Cencini, Massimo; Vulpiani, Angelo
2010-01-01
Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theor
Uncertainties in modeling low-energy neutrino-induced reactions on iron-group nuclei
International Nuclear Information System (INIS)
Paar, N.; Vretenar, D.; Suzuki, T.; Honma, M.; Marketin, T.
2011-01-01
Charged-current neutrino-nucleus cross sections for 54,56 Fe and 58,60 Ni are calculated and compared using frameworks based on relativistic and Skyrme energy-density functionals and on the shell model. The current theoretical uncertainties in modeling neutrino-nucleus cross sections are assessed in relation to the predicted Gamow-Teller transition strength and available data, to multipole decomposition of the cross sections, and to cross sections averaged over the Michel flux and Fermi-Dirac distribution. By employing different microscopic approaches and models, the decay-at-rest (DAR) neutrino- 56 Fe cross section and its theoretical uncertainty are estimated to be th =(258±57)x10 -42 cm 2 , in very good agreement with the experimental value exp =(256±108±43)x10 -42 cm 2 .
International Nuclear Information System (INIS)
Surowiec, Aa.; Pomorski, K.; Schmitt, Ch.; Bartel, J.
2002-01-01
The emission widths Γ n and Γ p for emission of neutrons and protons are calculated within the Thomas-Fermi model, which we have recently developed, and are compared with those obtained in the usual Weisskopf approach for the case of zero angular momentum. Both methods yield quite similar results at small deformations, but rather important differences are observed for very deformed shapes, in particular for charged particles. A possible generalization of the model for emission of α-particles is also discussed. (author)
Exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model
International Nuclear Information System (INIS)
Divari, P.C.; Vergados, J.D.; Kosmas, T.S.; Skouras, L.D.
2001-01-01
A comprehensive study of the exotic (μ - ,e + ) conversion in 27 Al, 27 Al(μ - ,e + ) 27 Na is presented. The relevant operators are deduced assuming one-pion and two-pion modes in the framework of intermediate neutrino mixing models, paying special attention to the light neutrino case. The total rate is calculated by summing over partial transition strengths for all kinematically accessible final states derived with s-d shell model calculations employing the well-known Wildenthal realistic interaction
Shell model estimate of electric dipole moments in medium and heavy nuclei
Directory of Open Access Journals (Sweden)
Teruya E.
2014-03-01
Full Text Available It is evidence for an extension of the Standard Model in particle physics, if static electric dipole moments (EDMs are measured for any elementary particle. The nuclear EDM arises mainly from two sources: one comes from asymmetric charge distribution in a nucleus and the other is due to the nucleon intrinsic EDM. We estimate the nuclear EDMs from two sources for the 1/21+ states in Xe isotopes by a shell model approach using full orbitals between magic numbers 50 and 82.
Investigation of high spin structure of N ∼ 28 nuclei with PHF model
International Nuclear Information System (INIS)
Naik, Z.
2016-01-01
Nucleus in 50 mass shows verity of high spin phenomena. Some of them are K-Isomer, Band termination, States Beyond Band termination, Superdeformed Structure, Shape co-existence and many more. Some of these phenomena with Projected Hartree-Fock (PHF) model are addressed and the microscopic structure associate with them is discussed
A realistic solvable model for the Coulomb dissociation of neutron halo nuclei
International Nuclear Information System (INIS)
Baur, G.; Hencken, K.; Trautmann, D.
2003-01-01
As a model of a neutron halo nucleus we consider a neutron bound to an inert core by a zero range force. We study the breakup of this simple nucleus in the Coulomb field of a target nucleus. In the post-form DWBA (or, in our simple model CWBA (''Coulomb wave born approximation'')) an analytic solution for the T-matrix is known. We study limiting cases of this T-matrix. As it should be, we recover the Born approximation for weak Coulomb fields (i.e., for the relevant Coulomb parameters much smaller than 1). For strong Coulomb fields, high beam energies, and scattering to the forward region we find a result which is very similar to the Born result. It is only modified by a relative phase (close to 0) between the two terms and a prefactor (close to 1). A similar situation exists for bremsstrahlung emission. This formula can be related to the first order semiclassical treatment of the electromagnetic dissociation. Since our CWBA model contains the electromagnetic interaction between the core and the target nucleus to all orders, this means that higher order effects (including postacceleration effects) are small in the case of high beam energies and forward scattering. Our model also predicts a scaling behavior of the differential cross section, that is, different systems (with different binding energies, beam energies and scattering angles) show the same dependence on two variables x and y. (orig.)
E4 properties in deformed nuclei and the sdg interacting boson model
Wu, H.C.; Dieperink, A. E. L.; Scholten, O.; Harakeh, M. N.; de Leo, R.; Pignanelli, M.; Morrison, I.
1988-01-01
The hexadecapole transition strength distribution is measured for the deformed nucleus 150Nd using the (p,p') reaction at Ep=30 MeV. The experimental information on B(E4) values in this nucleus and in 156Gd is interpreted in the framework of the sdg interacting boson model. It is found that the main
Optical model analysis of 3He elastic scattering from s-d shell nuclei at 25 MeV
International Nuclear Information System (INIS)
Vernotte, J.; Berrier-Ronsin, G.; Kalifa, J.; Tamisier, R.; Nantes Univ., 44
1982-01-01
Angular distributions of elastically scattered 3 He particles from 16 O, 18 O, 19 F, 23 Na, 24 Mg, 25 Mg, 26 Mg, 27 Al, 28 Si, 29 Si, 30 Si, 31 P, 35 Cl, 37 Cl, 39 K and 40 Ca nuclei were measured at 25 MeV bombarding energy. The absolute differential cross-section data were analysed in the framework of the standard optical model with either a volume or a surface imaginary part. Three families of parameters were considered. For all these families, the real potential volume integral Jsub(R) per interacting nucleon pair decreases as the mass number A increases. The family with Jsub(R) = 380 MeV x fm 3 for 40 Ca and Jsub(R) = 590 MeV x fm 3 for 16 O has been identified with the unique family obtained at higher energies, and is therefore considered as the 'physical' family. The matter and charge radii deduced from the analysis are presented. The charge radii are compared with the ones obtained from muonic X-ray transitions and electron scattering measurements. (orig.)
Complex singlet extension of the standard model
International Nuclear Information System (INIS)
Barger, Vernon; McCaskey, Mathew; Langacker, Paul; Ramsey-Musolf, Michael; Shaughnessy, Gabe
2009-01-01
We analyze a simple extension of the standard model (SM) obtained by adding a complex singlet to the scalar sector (cxSM). We show that the cxSM can contain one or two viable cold dark matter candidates and analyze the conditions on the parameters of the scalar potential that yield the observed relic density. When the cxSM potential contains a global U(1) symmetry that is both softly and spontaneously broken, it contains both a viable dark matter candidate and the ingredients necessary for a strong first order electroweak phase transition as needed for electroweak baryogenesis. We also study the implications of the model for discovery of a Higgs boson at the Large Hadron Collider.
Extension of association models to complex chemicals
DEFF Research Database (Denmark)
Avlund, Ane Søgaard
Summary of “Extension of association models to complex chemicals”. Ph.D. thesis by Ane Søgaard Avlund The subject of this thesis is application of SAFT type equations of state (EoS). Accurate and predictive thermodynamic models are important in many industries including the petroleum industry......; CPA and sPC-SAFT. Phase equilibrium and monomer fraction calculations with sPC-SAFT for methanol are used in the thesis to illustrate the importance of parameter estimation when using SAFT. Different parameter sets give similar pure component vapor pressure and liquid density results, whereas very...... association is presented in the thesis, and compared to the corresponding lattice theory. The theory for intramolecular association is then applied in connection with sPC-SAFT for mixtures containing glycol ethers. Calculations with sPC-SAFT (without intramolecular association) are presented for comparison...
Study of nickel nuclei by (p,d) and (p,t) reactions. Shell model interpretation
International Nuclear Information System (INIS)
Kong-A-Siou, D.-H.
1975-01-01
The experimental techniques employed at the Nuclear Science Institute (Grenoble) and at Michigan State University are described. The development of the transition amplitude calculation of the one-or two-nucleon transfer reactions is described first, after which the principle of shell model calculations is outlined. The choices of configuration space and two-body interactions are discussed. The DWBA method of analysis is studied in more detail. The effects of different approximations and the influence of the parameters are examined. Special attention is paid to the j-dependence of the form of the angular distributions, on effect not explained in the standard DWBA framework. The results are analysed and a large section is devoted to a comparative study of the experimental results obtained and those from other nuclear reactions. The spectroscopic data obtained are compared with the results of shell model calculations [fr
Phenomenological Hamiltonian of Sp(2,R) model for heavy deformed nuclei
International Nuclear Information System (INIS)
Avramenko, V.I.; Asherova, R.M.; Filippov, G.F.; Smirnov, Yu.F.; Zajtsev, S.A.
1985-01-01
In the frame of the symplectic collective model, operating with the microscopical basic functions of irraducible representation of SU(3) groups the energy spectrum of collective excitation in 164 Kr nucleus is calculated. Also the aOsolute and relative values of probabilities E2-transitions between collective states are obtained. The indexes of SU(3) symmetry are chosen in correspondence with rules of Nillsson orbital occupation
Pseudo SU(3) shell model: Normal parity bands in odd-mass nuclei
International Nuclear Information System (INIS)
Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.
2000-01-01
A pseudo shell SU(3) model description of normal parity bands in 159 Tb is presented. The Hamiltonian includes spherical Nilsson single-particle energies, the quadrupole-quadrupole and pairing interactions, as well as three rotor terms. A systematic parametrization is introduced, accompanied by a detailed discussion of the effect each term in the Hamiltonian has on the energy spectrum. Yrast and excited band wavefunctions are analyzed together with their B(E2) values
Light nuclei: an experimental proving ground for the microscopic cluster model
International Nuclear Information System (INIS)
Brown, R.E.
1978-01-01
A selected review is given of comparisons of experimental data for low-mass nuclear systems with results of calculations using microscopic cluster models. Stress is on the mass-4, -7, and -8 systems. Topics include influence of components of the nucleon-nucleon force, some consequences of the Pauli principle, effects of the Coulomb-exchange interaction, specific distortion, absorption in elastic scattering, and future needs and directions. Some as yet unpublished results are presented
Isobar contributions to the imaginary part of the optical-model potential for finite nuclei
International Nuclear Information System (INIS)
Hjort-Jensen, M.; Borromeo, M.; Muether, H.; Polls, A.
1992-03-01
A recently developed non-relativistic method for calculating the nucleon optical-model potential has been employed to evaluate the contributions from isobaric degrees of freedom to the imaginary part of the nucleon optical-model potential. To evaluate the imaginary part of the optical-model potential, the authors include the contributions from terms to second order in the Brueckner G-matrix with and without the inclusion of isobars Δ. Results for 16 O are presented in this work. The contributions to the imaginary part are given by the two-particle-one-hole (2p1h) and three-particle-two-hole (3p2h) diagrams. The latter contributes at negative energies only and the contribution from isobar intermediate states is rather small. The 2p1h receives significant contributions from isobars at energies near the resonance and above the threshold for the excitation of ΔΔ states. In particular, the importance of ΔΔ configurations is rather sensitive to the treatment of short-range correlations. The parameterization of the self-energy in terms of local potentials is discussed. The depletion of the occupation of the single-particle orbits due to nucleon-nucleon correlations and Δ excitations is evaluated. 49 refs., 14 figs., 3 tabs
A soluble model for the study of saturation in finite nuclei
International Nuclear Information System (INIS)
Grammaticos, B.
1979-01-01
The deviation of very small nuclear systems from saturation is studied. In the framework of a soluble one-dimensional model based on the energy density formalism simple expressions for the density profile, the deviation from nuclear matter density, the Fermi energy as a function of particle number are established. The binding energy of the nucleus is computed and the effect of the departure from saturation is identified as a term exponentially decaying for large A. A comparison with the theory of Krappe and Nix is also presented
Development of the model describing highly excited states of odd deformed nuclei
International Nuclear Information System (INIS)
Malov, L.A.; Solov'ev, V.G.
1975-01-01
An approximate method is given for solving the system of equations obtained earlier for describing the structure of states with intermediate and high energies in the framework of the model taking into account the interaction of quasiparticles with phonons. The new method possesses a number of advantages over the approximate methods of solving the system of equations mentioned. The study is performed for the example of an odd deformed nucleus when several one-quasiparticle components are taken into account at the same time
A number-projected model with generalized pairing interaction in application to rotating nuclei
Energy Technology Data Exchange (ETDEWEB)
Satula, W. [Warsaw Univ. (Poland)]|[Joint Institute for Heavy Ion Research, Oak Ridge, TN (United States)]|[Univ. of Tennessee, Knoxville, TN (United States)]|[Royal Institute of Technology, Stockholm (Sweden); Wyss, R. [Royal Institute of Technology, Stockholm (Sweden)
1996-12-31
A cranked mean-field model that takes into account both T=1 and T=0 pairing interactions is presented. The like-particle pairing interaction is described by means of a standard seniority force. The neutron-proton channel includes simultaneously correlations among particles moving in time reversed orbits (T=1) and identical orbits (T=0). The coupling between different pairing channels and nuclear rotation is taken into account selfconsistently. Approximate number-projection is included by means of the Lipkin-Nogami method. The transitions between different pairing phases are discussed as a function of neutron/proton excess, T{sub z}, and rotational frequency, {Dirac_h}{omega}.
Anharmonicities in vibrational spectra of deformed nuclei discussed in a simple model. Pt. 2
International Nuclear Information System (INIS)
Piepenbring, R.; Silvestre-Brac, B.; Szymanski, Z.
1982-01-01
The Lipkin-Nogami method is applied to the multiphonon treatment of a model for which the exact solution is available. The better treatment of the number fluctuation improves drastically the ground-state energy, and to a less extent the energy spectrun. The domain of validity of the multiphonon method is enlarged with the help of the Nogami treatment. However, other observables cannot be easily described. The Lipkin-Nogami method is also compared to exact projection on good particle number in some particular cases. (orig.)
Shell model estimate of electric dipole moments in medium and heavy nuclei
Directory of Open Access Journals (Sweden)
Teruya Eri
2015-01-01
Full Text Available Existence of the electric dipole moment (EDM is deeply related with time-reversal invariance. The EDMof a diamagnetic atom is mainly induced by the nuclear Schiff moment. After carrying out the shell model calculations to obtain wavefunctions for Xe isotopes, we evaluate nuclear Schiff moments for Xe isotopes to estimate their atomic EDMs. We estimate the contribution from each single particle orbital for the Schiff moment. It is found that the contribution on the Schiff moment is very different from orbital to orbital.
International Nuclear Information System (INIS)
Royer, G.
2012-01-01
A particular version of the liquid drop model taking into account both the mass and charge asymmetries, the proximity energy, the rotational energy, the shell and pairing energies and the temperature has been developed to describe smoothly the transition between one and two-body shapes in entrance and exit channels of nuclear reactions. In the quasi-molecular shape valley where the proximity energy is optimized, the calculated l-dependent fusion and fission barriers, alpha and cluster radioactivity half-lives as well as actinide half-lives are in good agreement with the available experimental data. In this particular deformation path, double-humped potential barriers begin to appear even macroscopically for heavy nuclear systems due to the influence of the proximity forces and, consequently, quasi-molecular isomeric states can survive in the second minimum of the potential barriers in a large angular momentum range
The Model of Complex Structure of Quark
Liu, Rongwu
2017-09-01
In Quantum Chromodynamics, quark is known as a kind of point-like fundamental particle which carries mass, charge, color, and flavor, strong interaction takes place between quarks by means of exchanging intermediate particles-gluons. An important consequence of this theory is that, strong interaction is a kind of short-range force, and it has the features of ``asymptotic freedom'' and ``quark confinement''. In order to reveal the nature of strong interaction, the ``bag'' model of vacuum and the ``string'' model of string theory were proposed in the context of quantum mechanics, but neither of them can provide a clear interaction mechanism. This article formulates a new mechanism by proposing a model of complex structure of quark, it can be outlined as follows: (1) Quark (as well as electron, etc) is a kind of complex structure, it is composed of fundamental particle (fundamental matter mass and electricity) and fundamental volume field (fundamental matter flavor and color) which exists in the form of limited volume; fundamental particle lies in the center of fundamental volume field, forms the ``nucleus'' of quark. (2) As static electric force, the color field force between quarks has classical form, it is proportional to the square of the color quantity carried by each color field, and inversely proportional to the area of cross section of overlapping color fields which is along force direction, it has the properties of overlap, saturation, non-central, and constant. (3) Any volume field undergoes deformation when interacting with other volume field, the deformation force follows Hooke's law. (4) The phenomena of ``asymptotic freedom'' and ``quark confinement'' are the result of color field force and deformation force.
Clinical Complexity in Medicine: A Measurement Model of Task and Patient Complexity.
Islam, R; Weir, C; Del Fiol, G
2016-01-01
Complexity in medicine needs to be reduced to simple components in a way that is comprehensible to researchers and clinicians. Few studies in the current literature propose a measurement model that addresses both task and patient complexity in medicine. The objective of this paper is to develop an integrated approach to understand and measure clinical complexity by incorporating both task and patient complexity components focusing on the infectious disease domain. The measurement model was adapted and modified for the healthcare domain. Three clinical infectious disease teams were observed, audio-recorded and transcribed. Each team included an infectious diseases expert, one infectious diseases fellow, one physician assistant and one pharmacy resident fellow. The transcripts were parsed and the authors independently coded complexity attributes. This baseline measurement model of clinical complexity was modified in an initial set of coding processes and further validated in a consensus-based iterative process that included several meetings and email discussions by three clinical experts from diverse backgrounds from the Department of Biomedical Informatics at the University of Utah. Inter-rater reliability was calculated using Cohen's kappa. The proposed clinical complexity model consists of two separate components. The first is a clinical task complexity model with 13 clinical complexity-contributing factors and 7 dimensions. The second is the patient complexity model with 11 complexity-contributing factors and 5 dimensions. The measurement model for complexity encompassing both task and patient complexity will be a valuable resource for future researchers and industry to measure and understand complexity in healthcare.
Reducing Spatial Data Complexity for Classification Models
International Nuclear Information System (INIS)
Ruta, Dymitr; Gabrys, Bogdan
2007-01-01
Intelligent data analytics gradually becomes a day-to-day reality of today's businesses. However, despite rapidly increasing storage and computational power current state-of-the-art predictive models still can not handle massive and noisy corporate data warehouses. What is more adaptive and real-time operational environment requires multiple models to be frequently retrained which further hinders their use. Various data reduction techniques ranging from data sampling up to density retention models attempt to address this challenge by capturing a summarised data structure, yet they either do not account for labelled data or degrade the classification performance of the model trained on the condensed dataset. Our response is a proposition of a new general framework for reducing the complexity of labelled data by means of controlled spatial redistribution of class densities in the input space. On the example of Parzen Labelled Data Compressor (PLDC) we demonstrate a simulatory data condensation process directly inspired by the electrostatic field interaction where the data are moved and merged following the attracting and repelling interactions with the other labelled data. The process is controlled by the class density function built on the original data that acts as a class-sensitive potential field ensuring preservation of the original class density distributions, yet allowing data to rearrange and merge joining together their soft class partitions. As a result we achieved a model that reduces the labelled datasets much further than any competitive approaches yet with the maximum retention of the original class densities and hence the classification performance. PLDC leaves the reduced dataset with the soft accumulative class weights allowing for efficient online updates and as shown in a series of experiments if coupled with Parzen Density Classifier (PDC) significantly outperforms competitive data condensation methods in terms of classification performance at the
Reducing Spatial Data Complexity for Classification Models
Ruta, Dymitr; Gabrys, Bogdan
2007-11-01
Intelligent data analytics gradually becomes a day-to-day reality of today's businesses. However, despite rapidly increasing storage and computational power current state-of-the-art predictive models still can not handle massive and noisy corporate data warehouses. What is more adaptive and real-time operational environment requires multiple models to be frequently retrained which further hinders their use. Various data reduction techniques ranging from data sampling up to density retention models attempt to address this challenge by capturing a summarised data structure, yet they either do not account for labelled data or degrade the classification performance of the model trained on the condensed dataset. Our response is a proposition of a new general framework for reducing the complexity of labelled data by means of controlled spatial redistribution of class densities in the input space. On the example of Parzen Labelled Data Compressor (PLDC) we demonstrate a simulatory data condensation process directly inspired by the electrostatic field interaction where the data are moved and merged following the attracting and repelling interactions with the other labelled data. The process is controlled by the class density function built on the original data that acts as a class-sensitive potential field ensuring preservation of the original class density distributions, yet allowing data to rearrange and merge joining together their soft class partitions. As a result we achieved a model that reduces the labelled datasets much further than any competitive approaches yet with the maximum retention of the original class densities and hence the classification performance. PLDC leaves the reduced dataset with the soft accumulative class weights allowing for efficient online updates and as shown in a series of experiments if coupled with Parzen Density Classifier (PDC) significantly outperforms competitive data condensation methods in terms of classification performance at the
On sampling and modeling complex systems
International Nuclear Information System (INIS)
Marsili, Matteo; Mastromatteo, Iacopo; Roudi, Yasser
2013-01-01
The study of complex systems is limited by the fact that only a few variables are accessible for modeling and sampling, which are not necessarily the most relevant ones to explain the system behavior. In addition, empirical data typically undersample the space of possible states. We study a generic framework where a complex system is seen as a system of many interacting degrees of freedom, which are known only in part, that optimize a given function. We show that the underlying distribution with respect to the known variables has the Boltzmann form, with a temperature that depends on the number of unknown variables. In particular, when the influence of the unknown degrees of freedom on the known variables is not too irregular, the temperature decreases as the number of variables increases. This suggests that models can be predictable only when the number of relevant variables is less than a critical threshold. Concerning sampling, we argue that the information that a sample contains on the behavior of the system is quantified by the entropy of the frequency with which different states occur. This allows us to characterize the properties of maximally informative samples: within a simple approximation, the most informative frequency size distributions have power law behavior and Zipf’s law emerges at the crossover between the under sampled regime and the regime where the sample contains enough statistics to make inferences on the behavior of the system. These ideas are illustrated in some applications, showing that they can be used to identify relevant variables or to select the most informative representations of data, e.g. in data clustering. (paper)
International Nuclear Information System (INIS)
Solov'ev, V.G.; Shirikova, N.Yu.
1989-01-01
The QPNM equations are derived taking account of p-h and p-p interactions. The calculated quadrupole, octupole and hexadecapole vibrational states in 168 Er, 172 Yb and 178 Hf are found to be reasonale agreement with experimental data. It is shown that distribution of the Eλ strength in some deformed nuclei differs from the standard one. There are cases when for a given K π and Eλ strength is concentrated not on the first but on higher-lying states. The assertion made earlier about the absence of collective two-phonon states in deformed nuclei is confirmed. 44 refs.; 1 fig.; 6 tabs
International Nuclear Information System (INIS)
Kahl, T.
1976-01-01
Compton scattering on hydrogen, deuterium and heavy nuclei up to hold was studied at very small momentum transfer and at two energies. Measurements were carried out in the region 0.002LT= /t/ LT=0.06 (GeV/c)**2 at 5 GeV and in the region 0.001 LT=/t/LT=0.02 (GeV/c)**2 at 3 GeV. (orig.) [de
Modeling the Structure and Complexity of Engineering Routine Design Problems
Jauregui Becker, Juan Manuel; Wits, Wessel Willems; van Houten, Frederikus J.A.M.
2011-01-01
This paper proposes a model to structure routine design problems as well as a model of its design complexity. The idea is that having a proper model of the structure of such problems enables understanding its complexity, and likewise, a proper understanding of its complexity enables the development
International Nuclear Information System (INIS)
Pinto Neto, A.
1987-01-01
A new theoretical model for active galaxy nuclei which describes the continuous spectrum of rest massless particles (photons, neutrinos and gravitons) in the frequency range from radiofrequency to gamma ray frequency, is presented. The model consists in a black hole gas interacting with a background gravitacional field. The previously models proposed for active galaxy nuclei are exposured. Whole theoretical fundaments based on Einstein general relativity theory for defining and studying singularity properties (black holes) are also presented. (M.C.K.) [pt
Isospin-symmetry-breaking effects in A∼70 nuclei within beyond-mean-field approach
Energy Technology Data Exchange (ETDEWEB)
Petrovici, A.; Andrei, O. [National Institute for Physics and Nuclear Engineering, R-077125 Bucharest (Romania)
2015-02-24
Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A∼70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A∼70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A∼70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z {sup 66}As and {sup 70}Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.
International Nuclear Information System (INIS)
Oyamatsu, K.; Yamada, M.
1994-01-01
We report on the recent progress in understanding the matter in the crust of a neutron star. For nuclides in the outer crust, recently measured masses of neutron-rich nuclei enable us to determine more accurately the stable nuclide as a function of the matter density. In the inner crust, the compressible liquid-drop model predicts successive change of the nuclear shape, from sphere to cylinder, slab, cylindrical hole and spherical hole at densities just before the transition to uniform matter. In order to go beyond the liquiddrop model, we performed the Thomas-Fermi calculation paying special attention to the surface diffuseness, and have recently calculated the shell energies of the non-spherical nuclei. We have found from these studies that all these non-spherical nuclei exist stably in the above order even if we include the surface diffuseness and shell energies. (author)
Ciofi degli Atti, Claudio; Mezzetti, Chiara Benedetta; Morita, Hiko
2017-04-01
order of magnitude less than the effect of two-nucleon short-range correlations. Conclusions: The convolution model of the spectral function of the three-nucleon systems featuring both two- and three-nucleon short-range correlations and correctly depending upon the ab initio two-nucleon relative and center-of-mass momentum distributions provides in the correlation region a satisfactory approximation of the spectral function in a wide range of momentum and removal energy. The extension of the model to complex nuclei is expected to provide a realistic microscopic parameter-free model of the spectral function, whose properties are therefore governed by the features of realistic two-nucleon interactions and the momentum distributions in a given nucleus.
Energy Technology Data Exchange (ETDEWEB)
Gupta, Anuradha; Singh, Suram; Bharti, Arun [University of Jammu, Department of Physics and Electronics, Jammu (India); Khosa, S.K. [Central University of Jammu, Department of Physics and Astronomical Sciences, Jammu (India); Bhat, G.H.; Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India)
2017-01-15
By employing a systematically parametrized Hamiltonian and the best fit of the various input parameters, high-spin yrast energy states for an isotopic chain of odd mass {sup 59-69}Cu nuclei have been investigated by using a novel computational quantum mechanical framework-projected shell model. Comparison of calculations and experiments yields good agreement. The present study of various intriguing nuclear structure properties along the yrast lines in these odd proton isotopes reflects some interesting informative nuclear physics results. The calculations successfully describe the formation of the yrast level structures from multi-quasi-particle configurations based on πf x νg bands for {sup 59-69}Cu isotopes. The present calculations indicate the evolution of the nuclear structure near the magic nuclei, Ni, and also provide an indication of coexistence of both, collective as well as single-particle, levels for {sup 69}Cu nucleus at N=40. (orig.)
Collective excitations in nuclei
International Nuclear Information System (INIS)
Chomaz, Ph.
1998-01-01
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors)
Collective excitations in nuclei
Energy Technology Data Exchange (ETDEWEB)
Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)
1998-12-31
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.
Complete destruction of heavy nuclei by hadrons and nuclei
International Nuclear Information System (INIS)
Tolstov, K.D.
1980-01-01
The total disintegration is considered of Ag and Pb nuclei and 4 He, 12 C nuclei With a momentum of 4.5 GeV/c per nucleon. It is shown that nucleons are mainly emitted, and there is no residual nUcleus the mass of which is comparable to that of the primary nucleus. The probability of total nucleus disintegration is considered as a function of projectile energy and the mass. The multiplicity, energy and emission angle of particles are considerred as well. It is shown that the density of nuclear matter in the overlap zone of colliding nuclei exceeds the usual one by a factor of approximately 4. A comparison is made with interaction models. A conclusion is drawn of the collective interaction mechanism (perhaps, of the shock wave type) of particle ejection from the target nucleus at the first stage of interaction and of explosive decay of the residual nucleus at the next one
Electron scattering off nuclei
International Nuclear Information System (INIS)
Gattone, A.O.
1989-01-01
Two recently developed aspects related to the scattering of electrons off nuclei are presented. On the one hand, a model is introduced which emphasizes the relativistic aspects of the problem in the impulse approximation, by demanding strict maintenance of the algebra of the Poincare group. On the other hand, the second model aims at a more sophisticated description of the nuclear response in the case of collective excitations. Basically, it utilizes the RPA formalism with a new development which enables a more careful treatment of the states in the continuum as is the case for the giant resonances. Applications of both models to the description of elastic scattering, inelastic scattering to discrete levels, giant resonances and the quasi-elastic region are discussed. (Author) [es
Antideuteron annihilation on nuclei
International Nuclear Information System (INIS)
Cugnon, J.
1992-01-01
An investigation of antideuteron annihilation on nuclei within an intranuclear cascade (INC) model is presented. Two models are set up to describe the annihilation itself, which either implies the antideuteron as a whole and occurs at a single point, or which may be considered as two independent nucleon-antinucleon annihilation occurring at different points and different times. Particular attention is paid to the energy transferred from the pions issued from the annihilation to the nuclear system and to the possibility of having a multifragmentation of the target. The latter feature is investigated within a percolation model. The pion distribution and the energy distribution are also discussed. Predictions of proton multiplicity distributions are compared with experiment. (orig.)
Modeling competitive substitution in a polyelectrolyte complex
International Nuclear Information System (INIS)
Peng, B.; Muthukumar, M.
2015-01-01
We have simulated the invasion of a polyelectrolyte complex made of a polycation chain and a polyanion chain, by another longer polyanion chain, using the coarse-grained united atom model for the chains and the Langevin dynamics methodology. Our simulations reveal many intricate details of the substitution reaction in terms of conformational changes of the chains and competition between the invading chain and the chain being displaced for the common complementary chain. We show that the invading chain is required to be sufficiently longer than the chain being displaced for effecting the substitution. Yet, having the invading chain to be longer than a certain threshold value does not reduce the substitution time much further. While most of the simulations were carried out in salt-free conditions, we show that presence of salt facilitates the substitution reaction and reduces the substitution time. Analysis of our data shows that the dominant driving force for the substitution process involving polyelectrolytes lies in the release of counterions during the substitution
Modelling of information processes management of educational complex
Directory of Open Access Journals (Sweden)
Оксана Николаевна Ромашкова
2014-12-01
Full Text Available This work concerns information model of the educational complex which includes several schools. A classification of educational complexes formed in Moscow is given. There are also a consideration of the existing organizational structure of the educational complex and a suggestion of matrix management structure. Basic management information processes of the educational complex were conceptualized.
Sandpile model for relaxation in complex systems
International Nuclear Information System (INIS)
Vazquez, A.; Sotolongo-Costa, O.; Brouers, F.
1997-10-01
The relaxation in complex systems is, in general, nonexponential. After an initial rapid decay the system relaxes slowly following a long time tail. In the present paper a sandpile moderation of the relaxation in complex systems is analysed. Complexity is introduced by a process of avalanches in the Bethe lattice and a feedback mechanism which leads to slower decay with increasing time. In this way, some features of relaxation in complex systems: long time tails relaxation, aging, and fractal distribution of characteristic times, are obtained by simple computer simulations. (author)
Quasars, Seyfert galaxies and active galactic nuclei
International Nuclear Information System (INIS)
Osterbrock, D.E.
1987-01-01
This chapter is devoted to the spectroscopic methods for analyzing the observed plasma in the nuclei of quasars, Seyfert galazies, and active galactic nuclei. Both the narrow-line region and the broad-line region are discussed. Physical models are presented
Quantum phase transitions in atomic nuclei
International Nuclear Information System (INIS)
Zamfir, N.V.
2005-01-01
Studies of quantum phase transitions in mesoscopic systems and applications to atomic nuclei are presented. Analysis in terms of the Interacting Boson Model shows that the main features persist even for moderate number of particles. Experimental evidence in rare-earth nuclei is discussed. New order and control parameters for systems with the same number of particles are proposed. (author)
Deconvolution of Complex 1D NMR Spectra Using Objective Model Selection.
Directory of Open Access Journals (Sweden)
Travis S Hughes
Full Text Available Fluorine (19F NMR has emerged as a useful tool for characterization of slow dynamics in 19F-labeled proteins. One-dimensional (1D 19F NMR spectra of proteins can be broad, irregular and complex, due to exchange of probe nuclei between distinct electrostatic environments; and therefore cannot be deconvoluted and analyzed in an objective way using currently available software. We have developed a Python-based deconvolution program, decon1d, which uses Bayesian information criteria (BIC to objectively determine which model (number of peaks would most likely produce the experimentally obtained data. The method also allows for fitting of intermediate exchange spectra, which is not supported by current software in the absence of a specific kinetic model. In current methods, determination of the deconvolution model best supported by the data is done manually through comparison of residual error values, which can be time consuming and requires model selection by the user. In contrast, the BIC method used by decond1d provides a quantitative method for model comparison that penalizes for model complexity helping to prevent over-fitting of the data and allows identification of the most parsimonious model. The decon1d program is freely available as a downloadable Python script at the project website (https://github.com/hughests/decon1d/.
Neutron scattering on deformed nuclei
International Nuclear Information System (INIS)
Hansen, L.F.; Haight, R.C.; Pohl, B.A.; Wong, C.; Lagrange, C.
1984-09-01
Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9 Be, C, 181 Ta, 232 Th, 238 U and 239 Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonable good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP
Nuclei, hadrons, and elementary particles
International Nuclear Information System (INIS)
Bopp, F.W.
1989-01-01
This book is a short introduction to the physics of the nuclei, hadrons, and elementary particles for students of physics. Important facts and model imaginations on the structure, the decay, and the scattering of nuclei, the 'zoology' of the hadrons and basic facts of hadronic scattering processes, a short introduction to quantum electrodynamics and quantum chromodynamics and the most important processes of lepton and parton physics, as well as the current-current approach of weak interactions and the Glashow-Weinberg-Salam theory are presented. (orig.) With 153 figs., 10 tabs [de
Stability of superheavy nuclei
Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.
2018-03-01
The potential-energy surfaces of an extended set of heavy and superheavy even-even nuclei with 92 ≤Z ≤126 and isospins 40 ≤N -Z ≤74 are evaluated within the recently developed Fourier shape parametrization. Ground-state and decay properties are studied for 324 different even-even isotopes in a four-dimensional deformation space, defined by nonaxiality, quadrupole, octupole, and hexadecapole degrees of freedom. Nuclear deformation energies are evaluated in the framework of the macroscopic-microscopic approach, with the Lublin-Strasbourg drop model and a Yukawa-folded mean-field potential. The evolution of the ground-state equilibrium shape (and possible isomeric, metastable states) is studied as a function of Z and N . α -decay Q values and half-lives, as well as fission-barrier heights, are deduced. In order to understand the transition from asymmetric to symmetric fission along the Fm isotopic chain, the properties of all identified fission paths are investigated. Good agreement is found with experimental data wherever available. New interesting features about the population of different fission modes for nuclei beyond Fm are predicted.
Modeling Complex Chemical Systems: Problems and Solutions
van Dijk, Jan
2016-09-01
Non-equilibrium plasmas in complex gas mixtures are at the heart of numerous contemporary technologies. They typically contain dozens to hundreds of species, involved in hundreds to thousands of reactions. Chemists and physicists have always been interested in what are now called chemical reduction techniques (CRT's). The idea of such CRT's is that they reduce the number of species that need to be considered explicitly without compromising the validity of the model. This is usually achieved on the basis of an analysis of the reaction time scales of the system under study, which identifies species that are in partial equilibrium after a given time span. The first such CRT that has been widely used in plasma physics was developed in the 1960's and resulted in the concept of effective ionization and recombination rates. It was later generalized to systems in which multiple levels are effected by transport. In recent years there has been a renewed interest in tools for chemical reduction and reaction pathway analysis. An example of the latter is the PumpKin tool. Another trend is that techniques that have previously been developed in other fields of science are adapted as to be able to handle the plasma state of matter. Examples are the Intrinsic Low Dimension Manifold (ILDM) method and its derivatives, which originate from combustion engineering, and the general-purpose Principle Component Analysis (PCA) technique. In this contribution we will provide an overview of the most common reduction techniques, then critically assess the pros and cons of the methods that have gained most popularity in recent years. Examples will be provided for plasmas in argon and carbon dioxide.
Modeling the Chemical Complexity in Titan's Atmosphere
Vuitton, Veronique; Yelle, Roger; Klippenstein, Stephen J.; Horst, Sarah; Lavvas, Panayotis
2018-06-01
Titan's atmospheric chemistry is extremely complicated because of the multiplicity of chemical as well as physical processes involved. Chemical processes begin with the dissociation and ionization of the most abundant species, N2 and CH4, by a variety of energy sources, i.e. solar UV and X-ray photons, suprathermal electrons (reactions involving radicals as well as positive and negative ions, all possibly in some excited electronic and vibrational state. Heterogeneous chemistry at the surface of the aerosols could also play a significant role. The efficiency and outcome of these reactions depends strongly on the physical characteristics of the atmosphere, namely pressure and temperature, ranging from 1.5×103 to 10-10 mbar and from 70 to 200 K, respectively. Moreover, the distribution of the species is affected by molecular diffusion and winds as well as escape from the top of the atmosphere and condensation in the lower stratosphere.Photochemical and microphysical models are the keystones of our understanding of Titan's atmospheric chemistry. Their main objective is to compute the distribution and nature of minor chemical species (typically containing up to 6 carbon atoms) and haze particles, respectively. Density profiles are compared to the available observations, allowing to identify important processes and to highlight those that remain to be constrained in the laboratory, experimentally and/or theoretically. We argue that positive ion chemistry is at the origin of complex organic molecules, such as benzene, ammonia and hydrogen isocyanide while neutral-neutral radiative association reactions are a significant source of alkanes. We find that negatively charged macromolecules (m/z ~100) attract the abundant positive ions, which ultimately leads to the formation of the aerosols. We also discuss the possibility that an incoming flux of oxygen from Enceladus, another Saturn's satellite, is responsible for the presence of oxygen-bearing species in Titan's reductive
Rotational damping motion in nuclei
International Nuclear Information System (INIS)
Egido, J.L.; Faessler, A.
1991-01-01
The recently proposed model to explain the mechanism of the rotational motion damping in nuclei is exactly solved. When compared with the earlier approximative solution, we find significative differences in the low excitation energy limit (i.e. Γ μ 0 ). For the strength functions we find distributions going from the Wigner semicircle through gaussians to Breit-Wigner shapes. (orig.)
Modelling the complex dynamics of vegetation, livestock and rainfall ...
African Journals Online (AJOL)
Open Access DOWNLOAD FULL TEXT ... In this paper, we present mathematical models that incorporate ideas from complex systems theory to integrate several strands of rangeland theory in a hierarchical framework. ... Keywords: catastrophe theory; complexity theory; disequilibrium; hysteresis; moving attractors
Generative complexity of Gray-Scott model
Adamatzky, Andrew
2018-03-01
In the Gray-Scott reaction-diffusion system one reactant is constantly fed in the system, another reactant is reproduced by consuming the supplied reactant and also converted to an inert product. The rate of feeding one reactant in the system and the rate of removing another reactant from the system determine configurations of concentration profiles: stripes, spots, waves. We calculate the generative complexity-a morphological complexity of concentration profiles grown from a point-wise perturbation of the medium-of the Gray-Scott system for a range of the feeding and removal rates. The morphological complexity is evaluated using Shannon entropy, Simpson diversity, approximation of Lempel-Ziv complexity, and expressivity (Shannon entropy divided by space-filling). We analyse behaviour of the systems with highest values of the generative morphological complexity and show that the Gray-Scott systems expressing highest levels of the complexity are composed of the wave-fragments (similar to wave-fragments in sub-excitable media) and travelling localisations (similar to quasi-dissipative solitons and gliders in Conway's Game of Life).
MCNP6 fragmentation of light nuclei at intermediate energies
Energy Technology Data Exchange (ETDEWEB)
Mashnik, Stepan G., E-mail: mashnik@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Kerby, Leslie M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of Idaho, Moscow, ID 83844 (United States)
2014-11-11
Fragmentation reactions induced on light target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the latest Los Alamos Monte Carlo transport code MCNP6 and with its cascade-exciton model (CEM) and Los Alamos version of the quark-gluon string model (LAQGSM) event generators, version 03.03, used as stand-alone codes. Such reactions are involved in different applications, like cosmic-ray-induced single event upsets (SEU's), radiation protection, and cancer therapy with proton and ion beams, among others; therefore, it is important that MCNP6 simulates them as well as possible. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. Both CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to {sup 4}He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.
Structure and clusters of light unstable nuclei
International Nuclear Information System (INIS)
En'yo, Yoshiko
2010-01-01
As it is known, cluster structures are often observed in light nuclei. In the recent evolution of unstable nuclear research (on nuclei having unbalanced number of neutron and proton) further new types of clusters are coming to be revealed. In this report, structures of light unstable nuclei and some of the theoretical models to describe them are reviewed. The following topics are picked up. 1. Cluster structure and theoretical models, 2. Cluster structure of unstable nuclei (low excited state). 3. Cluster structure of neutron excess beryllium isotopes. 4. Cluster gas like state in C isotope. 5. Dineutron structure of He isotopes. Numbers of strange nuclear structures of light nuclei are illustrated. Antisymmetrized molecular dynamics (AMD) is the recently developed theoretical framework which has been successfully used in heavy ion reactions and nuclear structure studies. Successful application of AMD to the isotopes of Be, B and C are illustrated. (S. Funahashi)
Pairing correlations in nuclei
International Nuclear Information System (INIS)
Baba, C.V.K.
1988-01-01
There are many similarities between the properties of nucleons in nuclei and electrons in metals. In addition to the properties explainable in terms of independent particle motion, there are many important co-operative effects suggesting correlated motion. Pairing correlation which leads to superconductivity in metals and several important properties in nuclei , is an exmple of such correlations. An attempt has been made to review the effects of pairing correlations in nuclei. Recent indications of reduction in pairing correlations at high angular momenta is discussed. A comparision between pairing correlations in the cases of nuclei and electrons in metals is attempted. (author). 20 refs., 10 figs
Collective excitations in nuclei
International Nuclear Information System (INIS)
Chomaz, Ph.
1997-01-01
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author)
Collective excitations in nuclei
Energy Technology Data Exchange (ETDEWEB)
Chomaz, Ph
1997-12-31
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author) 270 refs.
Electron scattering and collective excitations in nuclei
International Nuclear Information System (INIS)
Goutte, D.
1989-01-01
Nuclear collective degrees of freedom are investigated through the study of the radial dependance of their wave function. Inelastic electron scattering is shown to be the appropriate tool to extract such a detailed information. Some recent results on spherical as well as deformed nuclei are discussed and the most recent extensions to the mean field approach are compared to these data in order to clarify the present status of our understanding of the dynamical properties of complex nuclei
Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics: - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...
International Nuclear Information System (INIS)
Afnan, I.R.; Thomas, A.W.
1976-01-01
A method has been suggested for relating μ-capture in nuclei to pion absorption through partially conserved axial vector current hypothesis. The success of the method relies heavily on the knowledge of the pion absorption amplitude at a momentum transfer equal to the μ-meson mass. That is we need to know the pion absorption amplitude off the mass-shell. The simplest nucleus for which this suggestion can be examined is μ-capture in deuterium. The Koltum-Reitan model is used to determine the pion absorption amplitude off the mass shell. In particular the senstivity of this off-mass-shell extrapolution to details of the N-N interaction is studied. (author)
Deng, Jun-Gang; Zhao, Jie-Cheng; Chu, Peng-Cheng; Li, Xiao-Hua
2018-04-01
In the present work, we systematically study the α decay preformation factors Pα within the cluster-formation model and α decay half-lives by the proximity potential 1977 formalism for nuclei around Z =82 ,N =126 closed shells. The calculations show that the realistic Pα is linearly dependent on the product of valance protons (holes) and valance neutrons (holes) NpNn . It is consistent with our previous works [Sun et al., Phys. Rev. C 94, 024338 (2016), 10.1103/PhysRevC.94.024338; Deng et al., Phys. Rev. C 96, 024318 (2017), 10.1103/PhysRevC.96.024318], in which Pα are model dependent and extracted from the ratios of calculated α half-lives to experimental data. Combining with our previous works, we confirm that the valance proton-neutron interaction plays a key role in the α preformation for nuclei around Z =82 ,N =126 shell closures whether the Pα is model dependent or microcosmic. In addition, our calculated α decay half-lives by using the proximity potential 1977 formalism taking Pα evaluated by the cluster-formation model can well reproduce the experimental data and significantly reduce the errors.
Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters
Directory of Open Access Journals (Sweden)
L. A. Lee
2011-12-01
Full Text Available Sensitivity analysis of atmospheric models is necessary to identify the processes that lead to uncertainty in model predictions, to help understand model diversity through comparison of driving processes, and to prioritise research. Assessing the effect of parameter uncertainty in complex models is challenging and often limited by CPU constraints. Here we present a cost-effective application of variance-based sensitivity analysis to quantify the sensitivity of a 3-D global aerosol model to uncertain parameters. A Gaussian process emulator is used to estimate the model output across multi-dimensional parameter space, using information from a small number of model runs at points chosen using a Latin hypercube space-filling design. Gaussian process emulation is a Bayesian approach that uses information from the model runs along with some prior assumptions about the model behaviour to predict model output everywhere in the uncertainty space. We use the Gaussian process emulator to calculate the percentage of expected output variance explained by uncertainty in global aerosol model parameters and their interactions. To demonstrate the technique, we show examples of cloud condensation nuclei (CCN sensitivity to 8 model parameters in polluted and remote marine environments as a function of altitude. In the polluted environment 95 % of the variance of CCN concentration is described by uncertainty in the 8 parameters (excluding their interaction effects and is dominated by the uncertainty in the sulphur emissions, which explains 80 % of the variance. However, in the remote region parameter interaction effects become important, accounting for up to 40 % of the total variance. Some parameters are shown to have a negligible individual effect but a substantial interaction effect. Such sensitivities would not be detected in the commonly used single parameter perturbation experiments, which would therefore underpredict total uncertainty. Gaussian process
Modeling Complex Workflow in Molecular Diagnostics
Gomah, Mohamed E.; Turley, James P.; Lu, Huimin; Jones, Dan
2010-01-01
One of the hurdles to achieving personalized medicine has been implementing the laboratory processes for performing and reporting complex molecular tests. The rapidly changing test rosters and complex analysis platforms in molecular diagnostics have meant that many clinical laboratories still use labor-intensive manual processing and testing without the level of automation seen in high-volume chemistry and hematology testing. We provide here a discussion of design requirements and the results of implementation of a suite of lab management tools that incorporate the many elements required for use of molecular diagnostics in personalized medicine, particularly in cancer. These applications provide the functionality required for sample accessioning and tracking, material generation, and testing that are particular to the evolving needs of individualized molecular diagnostics. On implementation, the applications described here resulted in improvements in the turn-around time for reporting of more complex molecular test sets, and significant changes in the workflow. Therefore, careful mapping of workflow can permit design of software applications that simplify even the complex demands of specialized molecular testing. By incorporating design features for order review, software tools can permit a more personalized approach to sample handling and test selection without compromising efficiency. PMID:20007844
Complex systems modeling by cellular automata
Kroc, J.; Sloot, P.M.A.; Rabuñal Dopico, J.R.; Dorado de la Calle, J.; Pazos Sierra, A.
2009-01-01
In recent years, the notion of complex systems proved to be a very useful concept to define, describe, and study various natural phenomena observed in a vast number of scientific disciplines. Examples of scientific disciplines that highly benefit from this concept range from physics, mathematics,
Modeling pitch perception of complex tones
Houtsma, A.J.M.
1986-01-01
When one listens to a series of harmonic complex tones that have no acoustic energy at their fundamental frequencies, one usually still hears a melody that corresponds to those missing fundamentals. Since it has become evident some two decades ago that neither Helmholtz's difference tone theory nor
Lukyanov, V. K.; Kadrev, D. N.; Zemlyanaya, E. V.; Spasova, K.; Lukyanov, K. V.; Antonov, A. N.; Gaidarov, M. K.
2015-03-01
The density distributions of 10Be and 11Be nuclei obtained within the quantum Monte Carlo model and the generator coordinate method are used to calculate the microscopic optical potentials (OPs) and cross sections of elastic scattering of these nuclei on protons and 12C at energies E energy approximation. In this hybrid model of OP the free parameters are the depths of the real and imaginary parts obtained by fitting the experimental data. The well-known energy dependence of the volume integrals is used as a physical constraint to resolve the ambiguities of the parameter values. The role of the spin-orbit potential and the surface contribution to the OP is studied for an adequate description of available experimental elastic scattering cross-section data. Also, the cluster model, in which 11Be consists of a n -halo and the 10Be core, is adopted. Within the latter, the breakup cross sections of 11Be nucleus on 9Be,93Nb,181Ta , and 238U targets and momentum distributions of 10Be fragments are calculated and compared with the existing experimental data.
High-spin excitations of atomic nuclei
International Nuclear Information System (INIS)
Xu Furong; National Laboratory of Heavy Ion Physics, Lanzhou; Chinese Academy of Sciences, Beijing
2004-01-01
The authors used the cranking shell model to investigate the high-spin motions and structures of atomic nuclei. The authors focus the collective rotations of the A∼50, 80 and 110 nuclei. The A∼50 calculations show complicated g spectroscopy, which can have significant vibration effects. The A≅80 N≅Z nuclei show rich shape coexistence with prolate and oblate rotational bands. The A≅110 nuclei near the r-process path can have well-deformed oblate shapes that become yrast and more stable with increasing rotational frequency. As another important investigation, the authors used the configuration-constrained adiabatic method to calculate the multi-quasiparticle high-K states in the A∼130, 180 and superheavy regions. The calculations show significant shape polarizations due to quasi-particle excitations for soft nuclei, which should be considered in the investigations of high-K states. The authors predicted some important high-K isomers, e.g., the 8 - isomers in the unstable nuclei of 140 Dy and 188 Pb, which have been confirmed in experiments. In superheavy nuclei, our calculations show systematic existence of high-K states. The high-K excitations can increase the productions of synthesis and the survival probabilities of superheavy nuclei. (authors)
Thermodynamics of pairing phase transition in nuclei
International Nuclear Information System (INIS)
Karim, Afaque; Ahmad, Shakeb
2014-01-01
The pairing gaps, pairing energy, heat capacity and entropy are calculated within BCS (Bardeen- Cooper-Schrieffer) based quasi particle approach, including thermal fluctuations on pairing field within pairing model for all nuclei (light, medium, heavy and super heavy nuclei). Quasi particles approach in BCS theory was introduced and reformulated to study various properties. For thermodynamic behavior of nuclei at finite temperatures, the anomalous averages of creation and annihilation operators are introduced. It is solved self consistently at finite temperatures to obtain BCS Hamiltonian. After doing unitary transformation, we obtained the Hamiltonian in the diagonal form. Thus, one gets temperature dependence gap parameter and pairing energy for nuclei. Moreover, the energy at finite temperatures is the sum of the condensation energy and the thermal energy of fermionic quasi particles. With the help of BCS Hamiltonian, specific heat, entropy and free energy are calculated for different nuclei. In this paper the gap parameter occupation number and pairing energy as a function of temperature which is important for all the light, medium, heavy and super heavy nuclei is calculated. Moreover, the various thermo dynamical quantities like specific heat, entropy and free energy is also obtained for different nuclei. Thus, the thermodynamics of pairing phase transition in nuclei is studied
Fission barriers of light nuclei
International Nuclear Information System (INIS)
Grotowski, K.; Planeta, R.; Blann, M.; Komoto, T.
1989-01-01
Experimental fission excitation functions for compound nuclei /sup 52/Fe, /sup 49/Cr, /sup 46/V, and /sup 44/Ti formed in heavy-ion reactions are analyzed in the Hauser-Feshbach/Bohr-Wheeler formalism using fission barriers based on the rotating liquid drop model of Cohen et al. and on the rotating finite range model of Sierk. We conclude that the rotating finite range approach gives better reproduction of experimental fission yields, consistent with results found for heavier systems
Nuclei with exotic constituents
International Nuclear Information System (INIS)
Yamazaki, Toshimitsu.
1990-08-01
We discuss various interesting features in the behavior of exotic constituents of nuclei such as hyperons and mesons, in particular, with emphases on the aspect of exotic halos which are formed in general by short-range repulsion and long-range attraction. Specifically, Λ and Σ hypernuclei and pionic nuclei are discussed. (author)
International Nuclear Information System (INIS)
Foucher, R.
1979-01-01
If some β - emitters are particularly interesting to study in light, medium, and heavy nuclei, another (and also) difficult problem is to know systematically the properties of these neutron rich nuclei far from the stability line. A review of some of their characteristics is presented. How far is it possible to be objective in the interpretation of data is questioned and implications are discussed
International Nuclear Information System (INIS)
Arenhoevel, H.
1977-01-01
The field of baryon resonances in nuclei is reviewed. Theoretical developments and experimental evidence as well are discussed. Special emphasis is laid on electromagnetic processes for the two nucleon system. Some aspects of real isobars in nuclei are touched upon. (orig.) [de
International Nuclear Information System (INIS)
Szymanski, Z.; Berger, J.F.; Heenen, P.H.; Heyde, K.; Haas, B.; Janssens, R.; Paya, D.; Gogny, D.; Huber, G.; Bjoernholm, S.; Brack, M.
1991-01-01
The purpose of 1991 Joliot-Curie Summer School is to review the most advances in the understanding of the nuclei physics after the considerable progress in gamma spectroscopy. It covers the following topics: Highly and super-deformed nuclei, nuclear structures, mean-field approach and beyond, fission isomers, nuclear excitations with long lifetime and metal clusters
International Nuclear Information System (INIS)
Shimizu, Yoshifumi
2009-01-01
Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)
The utility of Earth system Models of Intermediate Complexity
Weber, S.L.
2010-01-01
Intermediate-complexity models are models which describe the dynamics of the atmosphere and/or ocean in less detail than conventional General Circulation Models (GCMs). At the same time, they go beyond the approach taken by atmospheric Energy Balance Models (EBMs) or ocean box models by
Advances in dynamic network modeling in complex transportation systems
Ukkusuri, Satish V
2013-01-01
This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.
Close collisions between light nuclei: Orbiting and fusion
International Nuclear Information System (INIS)
Shapira, D.; Shivakumar, B.; Harmon, B.A.; Ayik, S.
1987-01-01
Our data have demonstrated that in close collisions the two nuclei first form a rotating dinuclear complex (DNC) which can break up into two complex fragments (Orbiting) or evolve into a compound nucleus. The binary fragment yield was found to be significant in contradiction with earlier views which held that whenever nucleus-nucleus capture occurs fusion is a certainty. The time duration of the dinuclear stage and the nature of its evolution into a compound nucleus were studied and a model which describes these processes will be presented. 25 refs., 14 figs
Narrowing the gap between network models and real complex systems
Viamontes Esquivel, Alcides
2014-01-01
Simple network models that focus only on graph topology or, at best, basic interactions are often insufficient to capture all the aspects of a dynamic complex system. In this thesis, I explore those limitations, and some concrete methods of resolving them. I argue that, in order to succeed at interpreting and influencing complex systems, we need to take into account slightly more complex parts, interactions and information flows in our models.This thesis supports that affirmation with five a...
Cluster structure in Cf nuclei
International Nuclear Information System (INIS)
Singh, Shailesh K.; Biswal, S.K.; Bhuyan, M.; Patra, S.K.; Gupta, R.K.
2014-01-01
Due to the availability of advance experimental facilities, it is possible to probe the nuclei upto their nucleon level very precisely and analyzed the internal structure which will help us to resolve some mysterious problem of the decay of nuclei. Recently, the relativistic nuclear collision, confirmed the α cluster type structure in the 12 C which is the mile stone for the cluster structure in nuclei. The clustering phenomena in light and intermediate elements in nuclear chart is very interesting. There is a lot of work done by our group in the clustering behaviour of the nuclei. In this paper, the various prospectus of clustering in the isotopes of Cf nucleus including fission state is discussed. Here, 242 Cf isotope for the analysis, which is experimentally known is taken. The relativistic mean field model with well established NL3 parameter set is taken. For getting the exact ground state configuration of the isotopes, the calculation for minimizing the potential energy surface is performed by constraint method. The clustering structure of other Cf isotopes is discussed
Electric monopole transitions from low energy excitations in nuclei
Wood, J L; De Coster, C; Heyde, Kris L G
1999-01-01
Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an introductory discussion of various model results (shell model, geometric vibrational and rotational models, algebraic models), we point out that many of the largest E0 transition strengths, $\\rho^2$(E0), are associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present extensive data for~: single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states. We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between $\\rho^2$(E0) and isotopic shifts.
Uncertainty and Complexity in Mathematical Modeling
Cannon, Susan O.; Sanders, Mark
2017-01-01
Modeling is an effective tool to help students access mathematical concepts. Finding a math teacher who has not drawn a fraction bar or pie chart on the board would be difficult, as would finding students who have not been asked to draw models and represent numbers in different ways. In this article, the authors will discuss: (1) the properties of…
Information, complexity and efficiency: The automobile model
Energy Technology Data Exchange (ETDEWEB)
Allenby, B. [Lucent Technologies (United States)]|[Lawrence Livermore National Lab., CA (United States)
1996-08-08
The new, rapidly evolving field of industrial ecology - the objective, multidisciplinary study of industrial and economic systems and their linkages with fundamental natural systems - provides strong ground for believing that a more environmentally and economically efficient economy will be more information intensive and complex. Information and intellectual capital will be substituted for the more traditional inputs of materials and energy in producing a desirable, yet sustainable, quality of life. While at this point this remains a strong hypothesis, the evolution of the automobile industry can be used to illustrate how such substitution may, in fact, already be occurring in an environmentally and economically critical sector.
Modeling Power Systems as Complex Adaptive Systems
Energy Technology Data Exchange (ETDEWEB)
Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.
2004-12-30
Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.
Linking Complexity and Sustainability Theories: Implications for Modeling Sustainability Transitions
Directory of Open Access Journals (Sweden)
Camaren Peter
2014-03-01
Full Text Available In this paper, we deploy a complexity theory as the foundation for integration of different theoretical approaches to sustainability and develop a rationale for a complexity-based framework for modeling transitions to sustainability. We propose a framework based on a comparison of complex systems’ properties that characterize the different theories that deal with transitions to sustainability. We argue that adopting a complexity theory based approach for modeling transitions requires going beyond deterministic frameworks; by adopting a probabilistic, integrative, inclusive and adaptive approach that can support transitions. We also illustrate how this complexity-based modeling framework can be implemented; i.e., how it can be used to select modeling techniques that address particular properties of complex systems that we need to understand in order to model transitions to sustainability. In doing so, we establish a complexity-based approach towards modeling sustainability transitions that caters for the broad range of complex systems’ properties that are required to model transitions to sustainability.
Proton radioactivity from proton-rich nuclei
International Nuclear Information System (INIS)
Guzman, F.; Goncalves, M.; Tavares, O.A.P.; Duarte, S.B.; Garcia, F.; Rodriguez, O.
1999-03-01
Half-lives for proton emission from proton-rich nuclei have been calculated by using the effective liquid drop model of heavy-particle decay of nuclei. It is shown that this model is able to offer results or spontaneous proton-emission half-life-values in excellent agreement with the existing experimental data. Predictions of half-life-values for other possible proton-emission cases are present for null orbital angular momentum. (author)
Mathematical modeling and optimization of complex structures
Repin, Sergey; Tuovinen, Tero
2016-01-01
This volume contains selected papers in three closely related areas: mathematical modeling in mechanics, numerical analysis, and optimization methods. The papers are based upon talks presented on the International Conference for Mathematical Modeling and Optimization in Mechanics, held in Jyväskylä, Finland, March 6-7, 2014 dedicated to Prof. N. Banichuk on the occasion of his 70th birthday. The articles are written by well-known scientists working in computational mechanics and in optimization of complicated technical models. Also, the volume contains papers discussing the historical development, the state of the art, new ideas, and open problems arising in modern continuum mechanics and applied optimization problems. Several papers are concerned with mathematical problems in numerical analysis, which are also closely related to important mechanical models. The main topics treated include: * Computer simulation methods in mechanics, physics, and biology; * Variational problems and methods; minimiz...
Hierarchical Models of the Nearshore Complex System
National Research Council Canada - National Science Library
Werner, Brad
2004-01-01
.... This grant was termination funding for the Werner group, specifically aimed at finishing up and publishing research related to synoptic imaging of near shore bathymetry, testing models for beach cusp...
Complex models of nodal nuclear data
International Nuclear Information System (INIS)
Dufek, Jan
2011-01-01
During the core simulations, nuclear data are required at various nodal thermal-hydraulic and fuel burnup conditions. The nodal data are also partially affected by thermal-hydraulic and fuel burnup conditions in surrounding nodes as these change the neutron energy spectrum in the node. Therefore, the nodal data are functions of many parameters (state variables), and the more state variables are considered by the nodal data models the more accurate and flexible the models get. The existing table and polynomial regression models, however, cannot reflect the data dependences on many state variables. As for the table models, the number of mesh points (and necessary lattice calculations) grows exponentially with the number of variables. As for the polynomial regression models, the number of possible multivariate polynomials exceeds the limits of existing selection algorithms that should identify a few dozens of the most important polynomials. Also, the standard scheme of lattice calculations is not convenient for modelling the data dependences on various burnup conditions since it performs only a single or few burnup calculations at fixed nominal conditions. We suggest a new efficient algorithm for selecting the most important multivariate polynomials for the polynomial regression models so that dependences on many state variables can be considered. We also present a new scheme for lattice calculations where a large number of burnup histories are accomplished at varied nodal conditions. The number of lattice calculations being performed and the number of polynomials being analysed are controlled and minimised while building the nodal data models of a required accuracy. (author)
Integrated Modeling of Complex Optomechanical Systems
Andersen, Torben; Enmark, Anita
2011-09-01
Mathematical modeling and performance simulation are playing an increasing role in large, high-technology projects. There are two reasons; first, projects are now larger than they were before, and the high cost calls for detailed performance prediction before construction. Second, in particular for space-related designs, it is often difficult to test systems under realistic conditions beforehand, and mathematical modeling is then needed to verify in advance that a system will work as planned. Computers have become much more powerful, permitting calculations that were not possible before. At the same time mathematical tools have been further developed and found acceptance in the community. Particular progress has been made in the fields of structural mechanics, optics and control engineering, where new methods have gained importance over the last few decades. Also, methods for combining optical, structural and control system models into global models have found widespread use. Such combined models are usually called integrated models and were the subject of this symposium. The objective was to bring together people working in the fields of groundbased optical telescopes, ground-based radio telescopes, and space telescopes. We succeeded in doing so and had 39 interesting presentations and many fruitful discussions during coffee and lunch breaks and social arrangements. We are grateful that so many top ranked specialists found their way to Kiruna and we believe that these proceedings will prove valuable during much future work.
Diffraction scattering and disintegration of 3He nuclei by atomic nuclei
International Nuclear Information System (INIS)
Koval'chuk, V.I.
2006-01-01
Within diffraction model framework a method of cross sections calculation for scattering and disintegration of weakly-bounded two-clustered nuclei by nuclei when both of its clusters are changed has been proposed. The experimental elastic scattering cross sections of 3 He by 40 Ca, 90 Zr and coincidence spectra of disintegration products from 28 Si( 3 He,dp) have been described
Smart modeling and simulation for complex systems practice and theory
Ren, Fenghui; Zhang, Minjie; Ito, Takayuki; Tang, Xijin
2015-01-01
This book aims to provide a description of these new Artificial Intelligence technologies and approaches to the modeling and simulation of complex systems, as well as an overview of the latest scientific efforts in this field such as the platforms and/or the software tools for smart modeling and simulating complex systems. These tasks are difficult to accomplish using traditional computational approaches due to the complex relationships of components and distributed features of resources, as well as the dynamic work environments. In order to effectively model the complex systems, intelligent technologies such as multi-agent systems and smart grids are employed to model and simulate the complex systems in the areas of ecosystem, social and economic organization, web-based grid service, transportation systems, power systems and evacuation systems.
International Nuclear Information System (INIS)
Grange, P.; Mathiot, J.F.; Roy-Stephan, M.; Frascaria, R.; Gales, S.
1990-01-01
The topics presented at the 1989 Joliot-Curie Lectures are reported. Two main subjects were retained: a simplified description of the N-body motion of particles in the quasi-particle configuration; study of the dynamics of nuclear components which are not described by nucleons in their ground state. The following themes were presented: quasiparticles and the Green functions, relativistic aspects of the quasiparticle concept, the dimensions of nucleons in the nuclei and the EMC effect, quarks and gluons in the nuclei, the delta in the nuclei, the strangeness, quasiparticles far from the Fermi sea, diffusion of electrons, stellar evolution and nucleosynthesis [fr
Dynamic polarisation of nuclei
International Nuclear Information System (INIS)
Borghini, M.; Abragam, A.
1961-01-01
In magnetic fields of about 13000 gauss, at a temperature of 1.5 deg. K, in samples of about 2 mm 3 , we have obtained by the 'solid effect' (application of a magnetic field at an appropriate frequency around 35000 MHz), nuclear polarizations /I of a few percent: 19 per cent for hydrogen nuclei in single crystals of La 2 Mg 3 (NO 3 ) 12 , 24H 2 O; 5 per cent for hydrogen nuclei in polystyrene; 6 per cent for fluorine nuclei in single crystals of LiF. (author) [fr
The sigma model on complex projective superspaces
Energy Technology Data Exchange (ETDEWEB)
Candu, Constantin; Mitev, Vladimir; Schomerus, Volker [DESY, Hamburg (Germany). Theory Group; Quella, Thomas [Amsterdam Univ. (Netherlands). Inst. for Theoretical Physics; Saleur, Hubert [CEA Saclay, 91 - Gif-sur-Yvette (France). Inst. de Physique Theorique; USC, Los Angeles, CA (United States). Physics Dept.
2009-08-15
The sigma model on projective superspaces CP{sup S-1} {sup vertical} {sup stroke} {sup S} gives rise to a continuous family of interacting 2D conformal field theories which are parametrized by the curvature radius R and the theta angle {theta}. Our main goal is to determine the spectrum of the model, non-perturbatively as a function of both parameters. We succeed to do so for all open boundary conditions preserving the full global symmetry of the model. In string theory parlor, these correspond to volume filling branes that are equipped with a monopole line bundle and connection. The paper consists of two parts. In the first part, we approach the problem within the continuum formulation. Combining combinatorial arguments with perturbative studies and some simple free field calculations, we determine a closed formula for the partition function of the theory. This is then tested numerically in the second part. There we propose a spin chain regularization of the CP{sup S-1} {sup vertical} {sup stroke} {sup S} model with open boundary conditions and use it to determine the spectrum at the conformal fixed point. The numerical results are in remarkable agreement with the continuum analysis. (orig.)
The sigma model on complex projective superspaces
International Nuclear Information System (INIS)
Candu, Constantin; Mitev, Vladimir; Schomerus, Volker; Quella, Thomas; Saleur, Hubert; USC, Los Angeles, CA
2009-08-01
The sigma model on projective superspaces CP S-1 vertical stroke S gives rise to a continuous family of interacting 2D conformal field theories which are parametrized by the curvature radius R and the theta angle θ. Our main goal is to determine the spectrum of the model, non-perturbatively as a function of both parameters. We succeed to do so for all open boundary conditions preserving the full global symmetry of the model. In string theory parlor, these correspond to volume filling branes that are equipped with a monopole line bundle and connection. The paper consists of two parts. In the first part, we approach the problem within the continuum formulation. Combining combinatorial arguments with perturbative studies and some simple free field calculations, we determine a closed formula for the partition function of the theory. This is then tested numerically in the second part. There we propose a spin chain regularization of the CP S-1 vertical stroke S model with open boundary conditions and use it to determine the spectrum at the conformal fixed point. The numerical results are in remarkable agreement with the continuum analysis. (orig.)
A complex autoregressive model and application to monthly temperature forecasts
Directory of Open Access Journals (Sweden)
X. Gu
2005-11-01
Full Text Available A complex autoregressive model was established based on the mathematic derivation of the least squares for the complex number domain which is referred to as the complex least squares. The model is different from the conventional way that the real number and the imaginary number are separately calculated. An application of this new model shows a better forecast than forecasts from other conventional statistical models, in predicting monthly temperature anomalies in July at 160 meteorological stations in mainland China. The conventional statistical models include an autoregressive model, where the real number and the imaginary number are separately disposed, an autoregressive model in the real number domain, and a persistence-forecast model.
Understanding complex urban systems integrating multidisciplinary data in urban models
Gebetsroither-Geringer, Ernst; Atun, Funda; Werner, Liss
2016-01-01
This book is devoted to the modeling and understanding of complex urban systems. This second volume of Understanding Complex Urban Systems focuses on the challenges of the modeling tools, concerning, e.g., the quality and quantity of data and the selection of an appropriate modeling approach. It is meant to support urban decision-makers—including municipal politicians, spatial planners, and citizen groups—in choosing an appropriate modeling approach for their particular modeling requirements. The contributors to this volume are from different disciplines, but all share the same goal: optimizing the representation of complex urban systems. They present and discuss a variety of approaches for dealing with data-availability problems and finding appropriate modeling approaches—and not only in terms of computer modeling. The selection of articles featured in this volume reflect a broad variety of new and established modeling approaches such as: - An argument for using Big Data methods in conjunction with Age...
Coulomb energy differences in mirror nuclei
International Nuclear Information System (INIS)
Lenzi, Silvia M
2006-01-01
By comparing the excitation energies of analogue states in mirror nuclei, several nuclear structure properties can be studied as a function of the angular momentum up to high spin states. They can be described in the shell model framework by including electromagnetic and nuclear isospin-non-conserving interactions. Calculations for the mirror energy differences in nuclei of the f 7/2 shell are described and compared with recent experimental data. These studies are extended to mirror nuclei in the upper sd and fp shells
Bubble nuclei in relativistic mean field theory
International Nuclear Information System (INIS)
Shukla, A.; Aberg, S.; Patra, S.K.
2011-01-01
Bubble nuclei are characterized by a depletion of their central density, i.e. the formation of the proton or neutron void and subsequently forming proton or neutron bubble nuclei. Possibility of the formation of bubble nuclei has been explored through different nuclear models and in different mass regions. Advancements in experimental nuclear physics has led our experimental access to many new shapes and structures, which were inaccessible hitherto. In the present paper, the possibility of observing nuclear bubble in oxygen isotopes, particularly for 22 O has been studied
Fluid flow modeling in complex areas*, **
Directory of Open Access Journals (Sweden)
Poullet Pascal
2012-04-01
Full Text Available We show first results of 3D simulation of sea currents in a realistic context. We use the full Navier–Stokes equations for incompressible viscous fluid. The problem is solved using a second order incremental projection method associated with the finite volume of the staggered (MAC scheme for the spatial discretization. After validation on classical cases, it is used in a numerical simulation of the Pointe à Pitre harbour area. The use of the fictious domain method permits us to take into account the complexity of bathymetric data and allows us to work with regular meshes and thus preserves the efficiency essential for a 3D code. Dans cette étude, nous présentons les premiers résultats de simulation d’un écoulement d’un fluide incompressible visqueux dans un contexte environnemental réel. L’approche utilisée utilise une méthode de domaines fictifs pour une prise en compte d’un domaine physique tridimensionnel très irrégulier. Le schéma numérique combine un schéma de projection incrémentale et des volumes finis utilisant des volumes de contrôle adaptés à un maillage décalé. Les tests de validation sont menés pour les cas tests de la cavité double entraînée ainsi que l’écoulement dans un canal avec un obstacle placé de manière asymmétrique.
Shippee, Nathan D; Shah, Nilay D; May, Carl R; Mair, Frances S; Montori, Victor M
2012-10-01
To design a functional, patient-centered model of patient complexity with practical applicability to analytic design and clinical practice. Existing literature on patient complexity has mainly identified its components descriptively and in isolation, lacking clarity as to their combined functions in disrupting care or to how complexity changes over time. The authors developed a cumulative complexity model, which integrates existing literature and emphasizes how clinical and social factors accumulate and interact to complicate patient care. A narrative literature review is used to explicate the model. The model emphasizes a core, patient-level mechanism whereby complicating factors impact care and outcomes: the balance between patient workload of demands and patient capacity to address demands. Workload encompasses the demands on the patient's time and energy, including demands of treatment, self-care, and life in general. Capacity concerns ability to handle work (e.g., functional morbidity, financial/social resources, literacy). Workload-capacity imbalances comprise the mechanism driving patient complexity. Treatment and illness burdens serve as feedback loops, linking negative outcomes to further imbalances, such that complexity may accumulate over time. With its components largely supported by existing literature, the model has implications for analytic design, clinical epidemiology, and clinical practice. Copyright © 2012 Elsevier Inc. All rights reserved.
Meson-exchange forces and medium polarization in finite nuclei
International Nuclear Information System (INIS)
Hengeveld, W.
1986-01-01
A G-matrix, derived from a meson-exchange potential in nuclear matter, is applied to finite, semi-magic nuclei. For the open shell the broken-pair model, which can accomodate many particle levels, is used. The excitations of the closed shell are treated as particle-hole states. Energy spectra and electromagnetic transition densities are calculated for 88 Sr and 58 Ni. The standard random-phase approximation for finite systems is extended by including the effects of the exchange of the RPA phonons in the residual interaction selfconsistently. It is shown that this particle-hole interaction is strongly energy dependent due to the presence of poles corresponding to 2p-2h (and more complex) excitations. The RPA eigenvalue problem with this energy-dependent residual interaction also provides solutions for these predominantly 2p2h-like states. In addition a modified normalization condition is obtained. This scheme is applied to 56 Ni( 56 Co) in a large configuration space using a residual interaction of the G-matrix type. The effect of dynamic medium polarization on the properties of giant resonances is illustrated for the case of A=48 nuclei. A large fragmentation of the monopole strength is calculated, which is in accordance with the non-observation of the GMR in light nuclei. Properties of A=48 nuclei are computed with an interaction deduced from the NN scattering data without introduction of additional parameters. The role of medium polarization is illustrated for spectra and (e,e') form factors. It is shown how medium polarization induces a coupling between excitations in even-even and in the adjacent odd-odd nuclei. (Auth.)
International Nuclear Information System (INIS)
Roberts, R.G.
1984-11-01
The paper concerns the behaviour of quarks in nuclei. Confinement size changes and dynamical rescaling; A dependence; low-x region; gluons and confinement size; and nucleons in a nucleus; are all discussed. (U.K.)
Symmetry and Phase Transitions in Nuclei
International Nuclear Information System (INIS)
Iachello, F.
2009-01-01
Phase transitions in nuclei have received considerable attention in recent years, especially after the discovery that, contrary to expectations, systems at the critical point of a phase transition display a simple structure. In this talk, quantum phase transitions (QPT), i.e. phase transitions that occur as a function of a coupling constant that appears in the quantum Hamiltonian, H, describing the system, will be reviewed and experimental evidence for their occurrence in nuclei will be presented. The phase transitions discussed in the talk will be shape phase transitions. Different shapes have different symmetries, classified by the dynamic symmetries of the Interacting Boson Model, U(5), SU(3) and SO(6). Very recently, the concept of Quantum Phase Transitions has been extended to Excited State Quantum Phase Transitions (ESQPT). This extension will be discussed and some evidence for incipient ESQPT in nuclei will be presented. Systems at the critical point of a phase transition are called 'critical systems'. Approximate analytic formulas for energy spectra and other properties of 'critical nuclei', in particular for nuclei at the critical point of the second order U(5)-SO(6) transition, called E(5), and along the line of first order U(5)-SU(3) transitions, called X(5), will be presented. Experimental evidence for 'critical nuclei' will be also shown. Finally, the microscopic derivation of shape phase transitions in nuclei within the framework of density functional methods will be briefly discussed.(author)
International Nuclear Information System (INIS)
Guerreau, D.
1993-01-01
A review is made of the present status concerning the production of nuclei above 5 MeV temperature. Considerable progress has been made recently on the understanding of the formation and the fate of such hot nuclei. It appears that the nucleus seems more stable against temperature than predicted by static calculations. However, the occurrence of multifragment production at high excitation energies is now well established. The various experimental features of the fragmentation process are discussed. (author) 59 refs., 12 figs
Inner shell ionization by incident nuclei
International Nuclear Information System (INIS)
Hansteen, J.M.
1974-10-01
The atomic Coulomb excitation process induced by impinging heavy charged particles such as protons, deuterons, α-particles and complex heavy ions is reviewed. Recent experimental and theoretical efforts have led toimproved understanding of the atomic Coulomb excitation as well as to discovery of new types of ionization mechanisms. The following models are mentioned: the Plane Wave Born Approximation (PWBA); theeeeeeeeeeeee modified PWBA model; the Binary Encounter Approximation (BEA); the Semi-Classical Approximation (SCA); the Perturbed-Stationary-State model (PSS). The structure of the SCA model is more thoroughly treated. Experimental results on single Coulomb ionizations of the K-, L-, and M-shells, and of the connected sub-shells by protons are compared with predictions. Most calculations are based on straight line projectile paths and non-relativistic hydrogen-like target electron wave functions. The BEA model and the SCA model seem to work reasonably well for multiple Coulomb ionizations by stripped light ions. Background effects in ion-atom collisions are commented upon. Future aspects of atomic Coulomb excitation by incident nuclei and ions are discussed. The interplay between Coulomb induced processes and united atom phenomena is especially mentioned. The simple ionization models have yielded valuable insights but it is suggested that this branch of collision physics has reached a turning point where new and more advanced and unifying models are needed. (JIW)
Passengers, Crowding and Complexity : Models for passenger oriented public transport
P.C. Bouman (Paul)
2017-01-01
markdownabstractPassengers, Crowding and Complexity was written as part of the Complexity in Public Transport (ComPuTr) project funded by the Netherlands Organisation for Scientific Research (NWO). This thesis studies in three parts how microscopic data can be used in models that have the potential
Stability of Rotor Systems: A Complex Modelling Approach
DEFF Research Database (Denmark)
Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob
1996-01-01
A large class of rotor systems can be modelled by a complex matrix differential equation of secondorder. The angular velocity of the rotor plays the role of a parameter. We apply the Lyapunov matrix equation in a complex setting and prove two new stability results which are compared...
Complex versus simple models: ion-channel cardiac toxicity prediction.
Mistry, Hitesh B
2018-01-01
There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model B net was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the B net model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.
Complex versus simple models: ion-channel cardiac toxicity prediction
Directory of Open Access Journals (Sweden)
Hitesh B. Mistry
2018-02-01
Full Text Available There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model Bnet was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the Bnet model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.
Modeling Air-Quality in Complex Terrain Using Mesoscale and ...
African Journals Online (AJOL)
Air-quality in a complex terrain (Colorado-River-Valley/Grand-Canyon Area, Southwest U.S.) is modeled using a higher-order closure mesoscale model and a higher-order closure dispersion model. Non-reactive tracers have been released in the Colorado-River valley, during winter and summer 1992, to study the ...
Surface-complexation models for sorption onto heterogeneous surfaces
International Nuclear Information System (INIS)
Harvey, K.B.
1997-10-01
This report provides a description of the discrete-logK spectrum model, together with a description of its derivation, and of its place in the larger context of surface-complexation modelling. The tools necessary to apply the discrete-logK spectrum model are discussed, and background information appropriate to this discussion is supplied as appendices. (author)
On spin and matrix models in the complex plane
International Nuclear Information System (INIS)
Damgaard, P.H.; Heller, U.M.
1993-01-01
We describe various aspects of statistical mechanics defined in the complex temperature or coupling-constant plane. Using exactly solvable models, we analyse such aspects as renormalization group flows in the complex plane, the distribution of partition function zeros, and the question of new coupling-constant symmetries of complex-plane spin models. The double-scaling form of matrix models is shown to be exactly equivalent to finite-size scaling of two-dimensional spin systems. This is used to show that the string susceptibility exponents derived from matrix models can be obtained numerically with very high accuracy from the scaling of finite-N partition function zeros in the complex plane. (orig.)
A Framework for Modeling and Analyzing Complex Distributed Systems
National Research Council Canada - National Science Library
Lynch, Nancy A; Shvartsman, Alex Allister
2005-01-01
Report developed under STTR contract for topic AF04-T023. This Phase I project developed a modeling language and laid a foundation for computational support tools for specifying, analyzing, and verifying complex distributed system designs...
Modelling the self-organization and collapse of complex networks
Indian Academy of Sciences (India)
Modelling the self-organization and collapse of complex networks. Sanjay Jain Department of Physics and Astrophysics, University of Delhi Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore Santa Fe Institute, Santa Fe, New Mexico.
Nuclear treasure island [superheavy nuclei
CERN. Geneva
1999-01-01
Summary form only given. Soon after the experiments at Dubna, which synthesized element 114 and made the first footprints on the beach of the "island of nuclear stability", two new superheavy elements have been discovered at the Lawrence Berkeley National Laboratory. Element 118 and its immediate decay product, element 116, were manufactured at Berkeley's 88 inch cyclotron by fusing targets of lead-208 with an intense beam of 449 MeV krypton-86 ions. Although both new nuclei almost instantly decay into lighter ones, the decay sequence is consistent with theories that have long predicted the island of stability for nuclei with approximately 114 protons and 184 neutrons. Theorist Robert Smolanczuk, visiting from the Soltan Institute for Nuclear Studies in Poland, had calculated that this reaction should have particularly favourable production rates. Now that this route has been signposted, similar reactions could be possible: new elements and isotopes, tests of nuclear stability and mass models, and a new under...
Size and complexity in model financial systems
Arinaminpathy, Nimalan; Kapadia, Sujit; May, Robert M.
2012-01-01
The global financial crisis has precipitated an increasing appreciation of the need for a systemic perspective toward financial stability. For example: What role do large banks play in systemic risk? How should capital adequacy standards recognize this role? How is stability shaped by concentration and diversification in the financial system? We explore these questions using a deliberately simplified, dynamic model of a banking system that combines three different channels for direct transmission of contagion from one bank to another: liquidity hoarding, asset price contagion, and the propagation of defaults via counterparty credit risk. Importantly, we also introduce a mechanism for capturing how swings in “confidence” in the system may contribute to instability. Our results highlight that the importance of relatively large, well-connected banks in system stability scales more than proportionately with their size: the impact of their collapse arises not only from their connectivity, but also from their effect on confidence in the system. Imposing tougher capital requirements on larger banks than smaller ones can thus enhance the resilience of the system. Moreover, these effects are more pronounced in more concentrated systems, and continue to apply, even when allowing for potential diversification benefits that may be realized by larger banks. We discuss some tentative implications for policy, as well as conceptual analogies in ecosystem stability and in the control of infectious diseases. PMID:23091020
Algebraic computability and enumeration models recursion theory and descriptive complexity
Nourani, Cyrus F
2016-01-01
This book, Algebraic Computability and Enumeration Models: Recursion Theory and Descriptive Complexity, presents new techniques with functorial models to address important areas on pure mathematics and computability theory from the algebraic viewpoint. The reader is first introduced to categories and functorial models, with Kleene algebra examples for languages. Functorial models for Peano arithmetic are described toward important computational complexity areas on a Hilbert program, leading to computability with initial models. Infinite language categories are also introduced to explain descriptive complexity with recursive computability with admissible sets and urelements. Algebraic and categorical realizability is staged on several levels, addressing new computability questions with omitting types realizably. Further applications to computing with ultrafilters on sets and Turing degree computability are examined. Functorial models computability is presented with algebraic trees realizing intuitionistic type...
Modeling of Complex Life Cycle Prediction Based on Cell Division
Directory of Open Access Journals (Sweden)
Fucheng Zhang
2017-01-01
Full Text Available Effective fault diagnosis and reasonable life expectancy are of great significance and practical engineering value for the safety, reliability, and maintenance cost of equipment and working environment. At present, the life prediction methods of the equipment are equipment life prediction based on condition monitoring, combined forecasting model, and driven data. Most of them need to be based on a large amount of data to achieve the problem. For this issue, we propose learning from the mechanism of cell division in the organism. We have established a moderate complexity of life prediction model across studying the complex multifactor correlation life model. In this paper, we model the life prediction of cell division. Experiments show that our model can effectively simulate the state of cell division. Through the model of reference, we will use it for the equipment of the complex life prediction.
Applications of Nonlinear Dynamics Model and Design of Complex Systems
In, Visarath; Palacios, Antonio
2009-01-01
This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.
Coping with Complexity Model Reduction and Data Analysis
Gorban, Alexander N
2011-01-01
This volume contains the extended version of selected talks given at the international research workshop 'Coping with Complexity: Model Reduction and Data Analysis', Ambleside, UK, August 31 - September 4, 2009. This book is deliberately broad in scope and aims at promoting new ideas and methodological perspectives. The topics of the chapters range from theoretical analysis of complex and multiscale mathematical models to applications in e.g., fluid dynamics and chemical kinetics.
Mathematical Models to Determine Stable Behavior of Complex Systems
Sumin, V. I.; Dushkin, A. V.; Smolentseva, T. E.
2018-05-01
The paper analyzes a possibility to predict functioning of a complex dynamic system with a significant amount of circulating information and a large number of random factors impacting its functioning. Functioning of the complex dynamic system is described as a chaotic state, self-organized criticality and bifurcation. This problem may be resolved by modeling such systems as dynamic ones, without applying stochastic models and taking into account strange attractors.
International Nuclear Information System (INIS)
Giallongo, E.; Menci, N.; Fiore, F.; Castellano, M.; Fontana, A.; Grazian, A.; Pentericci, L.
2012-01-01
We have evaluated the contribution of the active galactic nuclei (AGN) population to the ionization history of the universe based on a semi-analytic model of galaxy formation and evolution in the cold dark matter cosmological scenario. The model connects the growth of black holes and of the ensuing AGN activity to galaxy interactions. In the model we have included a self-consistent physical description of the escape of ionizing UV photons; this is based on the blast-wave model for the AGN feedback we developed in a previous paper to explain the distribution of hydrogen column densities in AGNs of various redshifts and luminosities, due to absorption by the host galaxy gas. The model predicts UV luminosity functions for AGNs that are in good agreement with those derived from the observations especially at low and intermediate redshifts (z ∼ 3). At higher redshifts (z > 5), the model tends to overestimate the data at faint luminosities. Critical biases in both the data and in the model are discussed to explain such apparent discrepancies. The predicted hydrogen photoionization rate as a function of redshift is found to be consistent with that derived from the observations. All of the above suggests that we should reconsider the role of the AGNs as the main driver of the ionization history of the universe.
Jolie, J
2002-01-01
All the elementary particles that make up matter (as do quarks, electrons, neutrinos....) are fermions, the particles that convey the fundamental interactions (as do photons, gluons, W, Z...) are bosons. Composite particles are either bosons, or fermions according to the number of fermions they contain: if this number is even the particle is a boson, otherwise it is a fermion. According to this rule a proton is a fermion and the He sup 4 atom is a boson. Symmetry plays an important role in the standard model, a symmetry is a transformation that connect bosons with other bosons or fermions with other fermions. Supersymmetry associates a boson with a fermion or a fermion with a boson, in fact supersymmetry connects nuclei that are not generally considered as akin. Supersymmetry has just been observed in low energy levels of Gold sup 1 sup 9 sup 5 sup - sup 1 sup 9 sup 6 and Platinum sup 1 sup 9 sup 4 - sup 1 sup 9 sup 5 , it means that the description of these energy levels is simplified and can be made by a co...
International Nuclear Information System (INIS)
Jolie, J.
2002-01-01
All the elementary particles that make up matter (as do quarks, electrons, neutrinos....) are fermions, the particles that convey the fundamental interactions (as do photons, gluons, W, Z...) are bosons. Composite particles are either bosons, or fermions according to the number of fermions they contain: if this number is even the particle is a boson, otherwise it is a fermion. According to this rule a proton is a fermion and the He 4 atom is a boson. Symmetry plays an important role in the standard model, a symmetry is a transformation that connect bosons with other bosons or fermions with other fermions. Supersymmetry associates a boson with a fermion or a fermion with a boson, in fact supersymmetry connects nuclei that are not generally considered as akin. Supersymmetry has just been observed in low energy levels of Gold 195-196 and Platinum 194 - 195 , it means that the description of these energy levels is simplified and can be made by a common set of quantum numbers. (A.C.)
Fragmentation of relativistic nuclei
International Nuclear Information System (INIS)
Cork, B.
1975-06-01
Nuclei with energies of several GeV/n interact with hadrons and produce fragments that encompass the fields of nuclear physics, meson physics, and particle physics. Experimental results are now available to explore problems in nuclear physics such as the validity of the shell model to explain the momentum distribution of fragments, the contribution of giant dipole resonances to fragment production cross sections, the effective Coulomb barrier, and nuclear temperatures. A new approach to meson physics is possible by exploring the nucleon charge-exchange process. Particle physics problems are explored by measuring the energy and target dependence of isotope production cross sections, thus determining if limiting fragmentation and target factorization are valid, and measuring total cross sections to determine if the factorization relation, sigma/sub AB/ 2 = sigma/sub AA/ . sigma/sub BB/, is violated. Also, new experiments have been done to measure the angular distribution of fragments that could be explained as nuclear shock waves, and to explore for ultradense matter produced by very heavy ions incident on heavy atoms. (12 figures, 2 tables)
New high spin states and isomers in the {sup 208}Pb and {sup 207}Pb nuclei
Energy Technology Data Exchange (ETDEWEB)
Broda, R.; Wrzesinski, J.; Pawlat, T. [and others
1996-12-31
The two most prominent examples of the heavy doubly closed shell (DCS) nuclei, {sup 208}Pb and {sup 132}Sn, are not accessible by conventional heavy-ion fusion processes populating high-spin states. This experimental difficulty obscured for a long time the investigation of yrast high-spin states in both DCS and neighboring nuclei and consequently restricted the study of the shell model in its most attractive regions. Recent technical development of multidetector gamma arrays opened new ways to exploit more complex nuclear processes which populate the nuclei of interest with suitable yields for gamma spectroscopy and involve population of moderately high spin states. This new possibility extended the range of accessible spin values and is a promising way to reach new yrast states. Some of these states are expected to be of high configurational purity and can be a source of important shell model parameters which possibly can be used later to check the validity of the spherical shell model description at yet higher spin and higher excitation energy. The nuclei in the closest vicinity of {sup 132}Sn are produced in spontaneous fission and states with spin values up to I=14 can be reached in fission gamma spectroscopy studies with the presently achieved sensitivity of gamma arrays. New results on yrast states in the {sup 134}Te and {sup 135}I nuclei populated in fission of the {sup 248}Cm presented at this conference illustrate such application of the resolving power offered by modern gamma techniques.
Dominant Modes in Light Nuclei - Ab Initio View of Emergent Symmetries
International Nuclear Information System (INIS)
Draayer, J P; Dytrych, T; Launey, K D; Dreyfuss, A C; Langr, D
2015-01-01
An innovative symmetry-guided concept is discussed with a focus on emergent symmetry patterns in complex nuclei. In particular, the ab initio symmetry-adapted no-core shell model (SA-NCSM), which capitalizes on exact as well as partial symmetries that underpin the structure of nuclei, provides remarkable insight into how simple symmetry patterns emerge in the many-body nuclear dynamics from first principles. This ab initio view is complemented by a fully microscopic no-core symplectic shell-model framework (NCSpM), which, in turn, informs key features of the primary physics responsible for the emergent phenomena of large deformation and alpha-cluster substructures in studies of the challenging Hoyle state in Carbon-12 and enhanced collectivity in intermediate-mass nuclei. Furthermore, by recognizing that deformed configurations often dominate the low-energy regime, the SA-NCSM provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small subspace of the symmetry-reorganized complete model space, which opens new domains of nuclei for ab initio investigations, namely, the intermediate-mass region, including isotopes of Ne, Mg, and Si
Understanding complex urban systems multidisciplinary approaches to modeling
Gurr, Jens; Schmidt, J
2014-01-01
Understanding Complex Urban Systems takes as its point of departure the insight that the challenges of global urbanization and the complexity of urban systems cannot be understood – let alone ‘managed’ – by sectoral and disciplinary approaches alone. But while there has recently been significant progress in broadening and refining the methodologies for the quantitative modeling of complex urban systems, in deepening the theoretical understanding of cities as complex systems, or in illuminating the implications for urban planning, there is still a lack of well-founded conceptual thinking on the methodological foundations and the strategies of modeling urban complexity across the disciplines. Bringing together experts from the fields of urban and spatial planning, ecology, urban geography, real estate analysis, organizational cybernetics, stochastic optimization, and literary studies, as well as specialists in various systems approaches and in transdisciplinary methodologies of urban analysis, the volum...
Energy Technology Data Exchange (ETDEWEB)
NONE
2002-07-01
The scientific community aims to reduce the apparent complexity of the Universe to some elementary physical laws. Our Universe Physics is described at any observation scale by a theoretical framework called ''standard model''. This document deals with the great questions of the today Physics trough the following standard models: the cosmos standard model, the stars standard model, the atomic nuclei standard model and the elementary particles Physics standard model. (A.L.B)
Royer, G; Eudes, P
2015-01-01
The potential energy governing the shape and the entrance and decay channels of the 12 C, 16 O, 20 Ne, 24 Mg, and 32 S 4n-nuclei has been determined within a generalized liquid drop model. Different three-dimensional and planar shapes have been investigated: linear chain, triangle, square, tetrahedron, pentagon, trigonal bipyramid, square pyramid, hexagon, octahedron, octogon and cube. The rms radii of the linear chains are higher than the experimental rms radii of the ground states. The binding energies of the planar shapes at the contact point are lower than the ones of the three-dimensional configurations. The a particle plus A-4 daughter configuration leads always to the lowest potential barrier relatively to the sphere configuration.
Dynamic complexities in a parasitoid-host-parasitoid ecological model
International Nuclear Information System (INIS)
Yu Hengguo; Zhao Min; Lv Songjuan; Zhu Lili
2009-01-01
Chaotic dynamics have been observed in a wide range of population models. In this study, the complex dynamics in a discrete-time ecological model of parasitoid-host-parasitoid are presented. The model shows that the superiority coefficient not only stabilizes the dynamics, but may strongly destabilize them as well. Many forms of complex dynamics were observed, including pitchfork bifurcation with quasi-periodicity, period-doubling cascade, chaotic crisis, chaotic bands with narrow or wide periodic window, intermittent chaos, and supertransient behavior. Furthermore, computation of the largest Lyapunov exponent demonstrated the chaotic dynamic behavior of the model
Dynamic complexities in a parasitoid-host-parasitoid ecological model
Energy Technology Data Exchange (ETDEWEB)
Yu Hengguo [School of Mathematic and Information Science, Wenzhou University, Wenzhou, Zhejiang 325035 (China); Zhao Min [School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325027 (China)], E-mail: zmcn@tom.com; Lv Songjuan; Zhu Lili [School of Mathematic and Information Science, Wenzhou University, Wenzhou, Zhejiang 325035 (China)
2009-01-15
Chaotic dynamics have been observed in a wide range of population models. In this study, the complex dynamics in a discrete-time ecological model of parasitoid-host-parasitoid are presented. The model shows that the superiority coefficient not only stabilizes the dynamics, but may strongly destabilize them as well. Many forms of complex dynamics were observed, including pitchfork bifurcation with quasi-periodicity, period-doubling cascade, chaotic crisis, chaotic bands with narrow or wide periodic window, intermittent chaos, and supertransient behavior. Furthermore, computation of the largest Lyapunov exponent demonstrated the chaotic dynamic behavior of the model.
A marketing mix model for a complex and turbulent environment
Directory of Open Access Journals (Sweden)
R. B. Mason
2007-12-01
Full Text Available Purpose: This paper is based on the proposition that the choice of marketing tactics is determined, or at least significantly influenced, by the nature of the companys external environment. It aims to illustrate the type of marketing mix tactics that are suggested for a complex and turbulent environment when marketing and the environment are viewed through a chaos and complexity theory lens. Design/Methodology/Approach: Since chaos and complexity theories are proposed as a good means of understanding the dynamics of complex and turbulent markets, a comprehensive review and analysis of literature on the marketing mix and marketing tactics from a chaos and complexity viewpoint was conducted. From this literature review, a marketing mix model was conceptualised. Findings: A marketing mix model considered appropriate for success in complex and turbulent environments was developed. In such environments, the literature suggests destabilising marketing activities are more effective, whereas stabilising type activities are more effective in simple, stable environments. Therefore the model proposes predominantly destabilising type tactics as appropriate for a complex and turbulent environment such as is currently being experienced in South Africa. Implications: This paper is of benefit to marketers by emphasising a new way to consider the future marketing activities of their companies. How this model can assist marketers and suggestions for research to develop and apply this model are provided. It is hoped that the model suggested will form the basis of empirical research to test its applicability in the turbulent South African environment. Originality/Value: Since businesses and markets are complex adaptive systems, using complexity theory to understand how to cope in complex, turbulent environments is necessary, but has not been widely researched. In fact, most chaos and complexity theory work in marketing has concentrated on marketing strategy, with
The morphology of cometary nuclei
Keller, H. U.; Jorda, L.
comets display residual activity or clouds of dust grains around their nuclei. Taking the residual signal into account (mostly using simple models for the brightness distribution) the size estimates of the nuclei could be improved. The (nuclear) magnitude of a comet depends on the product of its albedo and cross-section. Only in a few cases could the albedo and size of a cometary nucleus be separated by additional observation of its thermal emission at infrared wavelengths. By comparison with outer Solar System asteroids Cruikshank et al. (1985) derived a surprisingly low albedo of about 0.04. A value in clear contradiction to the perception of an icy surface but fully confirmed by the first resolved images of a cometary nucleus during the flybys of the Vega and Giotto spacecraft of comet Halley (Sagdeev et al. 1986, Keller et al. 1986). The improvements of radar techniques led to the detection of reflected signals and finally to the derivation of nuclear dimensions and rotation rates. The observations, however, are also model dependent (rotation and size are similarly interwoven as are albedo and size) and sensitive to large dust grains in the vicinity of a nucleus. As an example, Kamoun et al. (1982) determined the radius of comet Encke to 1.5 (2.3, 1.0) km using the spin axis determination of Whipple and Sekanina (1979). The superb spatial resolution of the Hubble Space Telescope (HST) is not quite sufficient to resolve a cometary nucleus. The intensity distribution of the inner coma, however, can be observed and extrapolated toward the nucleus based on models of the dust distribution. If this contribution is subtracted from the central brightness the signal of the nucleus can be derived and hence its product of albedo times cross-section (Lamy and Toth 1995, Rembor 1998, Keller and Rembor 1998; Section 4.3). It has become clear that cometary nuclei are dark, small, often irregular bodies with dimensions ranging from about a kilometre (comet Wirtanen, the target of
Generalized complex geometry, generalized branes and the Hitchin sigma model
International Nuclear Information System (INIS)
Zucchini, Roberto
2005-01-01
Hitchin's generalized complex geometry has been shown to be relevant in compactifications of superstring theory with fluxes and is expected to lead to a deeper understanding of mirror symmetry. Gualtieri's notion of generalized complex submanifold seems to be a natural candidate for the description of branes in this context. Recently, we introduced a Batalin-Vilkovisky field theoretic realization of generalized complex geometry, the Hitchin sigma model, extending the well known Poisson sigma model. In this paper, exploiting Gualtieri's formalism, we incorporate branes into the model. A detailed study of the boundary conditions obeyed by the world sheet fields is provided. Finally, it is found that, when branes are present, the classical Batalin-Vilkovisky cohomology contains an extra sector that is related non trivially to a novel cohomology associated with the branes as generalized complex submanifolds. (author)
Understanding nuclei in the upper sd - shell
Energy Technology Data Exchange (ETDEWEB)
Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Kshetri, Ritesh [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India and Sidho-Kanho-Birsha University, Purulia - 723101 (India); Sarkar, S. [Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103 (India)
2014-08-14
Nuclei in the upper-sd shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A ≃ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.
Nuclear Computational Low Energy Initiative (NUCLEI)
Energy Technology Data Exchange (ETDEWEB)
Reddy, Sanjay K. [University of Washington
2017-08-14
This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS and FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).
Reassessing Geophysical Models of the Bushveld Complex in 3D
Cole, J.; Webb, S. J.; Finn, C.
2012-12-01
Conceptual geophysical models of the Bushveld Igneous Complex show three possible geometries for its mafic component: 1) Separate intrusions with vertical feeders for the eastern and western lobes (Cousins, 1959) 2) Separate dipping sheets for the two lobes (Du Plessis and Kleywegt, 1987) 3) A single saucer-shaped unit connected at depth in the central part between the two lobes (Cawthorn et al, 1998) Model three incorporates isostatic adjustment of the crust in response to the weight of the dense mafic material. The model was corroborated by results of a broadband seismic array over southern Africa, known as the Southern African Seismic Experiment (SASE) (Nguuri, et al, 2001; Webb et al, 2004). This new information about the crustal thickness only became available in the last decade and could not be considered in the earlier models. Nevertheless, there is still on-going debate as to which model is correct. All of the models published up to now have been done in 2 or 2.5 dimensions. This is not well suited to modelling the complex geometry of the Bushveld intrusion. 3D modelling takes into account effects of variations in geometry and geophysical properties of lithologies in a full three dimensional sense and therefore affects the shape and amplitude of calculated fields. The main question is how the new knowledge of the increased crustal thickness, as well as the complexity of the Bushveld Complex, will impact on the gravity fields calculated for the existing conceptual models, when modelling in 3D. The three published geophysical models were remodelled using full 3Dl potential field modelling software, and including crustal thickness obtained from the SASE. The aim was not to construct very detailed models, but to test the existing conceptual models in an equally conceptual way. Firstly a specific 2D model was recreated in 3D, without crustal thickening, to establish the difference between 2D and 3D results. Then the thicker crust was added. Including the less
International Nuclear Information System (INIS)
Dos Santos, Morgane
2013-01-01
Ionizing radiations are known to induce critical damages on biological matter and especially on DNA. Among these damages, DNA double strand breaks (DSB) are considered as key precursor of lethal effects of ionizing radiations. Understand and predict how DNA double and simple strand breaks are created by ionizing radiation and repaired in cell nucleus is nowadays a major challenge in radiobiology research. This work presents the results on the simulation of the DNA double strand breaks produced from the energy deposited by the irradiation at the intracellular level. At the nano-metric scale, the only method to accurately simulate the topological details of energy deposited on the biological matter is the use of Monte Carlo codes. In this work, we used the Geant4 Monte Carlo code and, in particular, the low energy electromagnetic package extensions, referred as Geant4-DNA processes.In order to evaluate DNA radio-induced damages, the first objective of this work consisted in implementing a detailed geometry of the DNA on the Monte Carlo simulations. Two types of cell nuclei, representing a fibroblast and an endothelium, were described in order to evaluate the influence of the DNA density on the topology of the energy deposits contributing to strand breaks. Indeed, the implemented geometry allows the selection of energy transfer points that can lead to strand breaks because they are located on the backbone. Then, these energy transfer points were analysed with a clustering algorithm in order to reveal groups of aggregates and to study their location and complexity. In this work, only the physical interactions of ionizing radiations are simulated. Thus, it is not possible to achieve an absolute number of strand breaks as the creation and transportation of radical species which could lead to indirect DNA damages is not included. Nevertheless, the aim of this work was to evaluate the relative dependence of direct DNA damages with the DNA density, radiation quality, cell
Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.
Paramanandam, Maqlin; O'Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram
2016-01-01
The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets.
Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.
Directory of Open Access Journals (Sweden)
Maqlin Paramanandam
Full Text Available The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP algorithm on a Markov Random Field (MRF. The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012 and Veta et al. (2013, which were tested using their own datasets.
Multifragmentation of hot nuclei
International Nuclear Information System (INIS)
Tamain, B.
1990-10-01
It is difficult to deposit a large amount (∼ 1 Gev) of excitation energy into a nucleus. And if one wants to deposit large excitation energy values, the best way consists of shooting a given target nucleus with several nucleons, which can be achieved by using intermediate energy (10-100 MeV/nucleon) heavy ions. Such very excited objects were named hot nuclei. The study of hot nuclei has been undertaken only for 7 years because intermediate energy heavy ion facilities were not available before. The game is then to determine the decay properties of such nuclei, their limits of existence. Their study is connected with general properties of nuclear matter: namely its equation of state. Of special interest, is the onset of a new decay mechanism: multifragmentation, which is the non-sequential disassembly of a hot nucleus into several light nuclei (often called intermediate-mass fragments or IMF) or particles. This paper, shows how this mechanism can reflect fundamental properties of nuclear matter, but also how its experimental signature is difficult to establish. Multifragmentation has also been studied by using very energetic projectiles (protons and heavy ions) in the relativistic or ultra-relativistic region. The multifragmentation question of hot nuclei is far from being solved. One knows that IMF production increases when the excitation energy brought into a system is strongly increased, but very little is known about the mechanisms involved and a clear onset for multifragmentation is not established
Investigation of copper nuclei
International Nuclear Information System (INIS)
Delfini, M.G.
1983-01-01
An extensive study has been performed on copper isotopes in the mass region A=63-66. The results of a precise measurement are presented on the properties of levels of 64 Cu and 66 Cu. They were obtained by bombarding the 63 Cu and 65 Cu nuclei with neutrons. The gamma spectra collected after capture of thermal, 2-keV, 24-keV neutrons have been analysed and combined to give a rather extensive set of precise level energies and gamma transition strengths. From the angular distribution of the gamma rays it is possible to obtain information concerning the angular momentum J of several low-lying states. The level schemes derived from such measurements have been used as a test for calculations in the framework of the shell model. The spectral distributions of eigenstates in 64 Cu for different configuration spaces are presented and discussed. In this study the relative importance of configurations with n holes in the 1f7/2 shell with n up to 16, are investigated. It is found that the results strongly depend on the values of the single-particle energies. The results of the spectral-distribution method were utilized for shell-model calculations. From the information obtained from the spectral analysis it was decided to adopt a configuration space which includes up to one hole in the 1f7/2 shell and up to two particles in the 1g9/2 shell. Further, restrictions on seniority and on the coupling of the two particles in the 1g9/2 orbit have been applied and their effects have been studied. It is found that the calculated excitation energies reproduce the measured values in a satisfactory way, but that some of the electromagnetic properties are less well in agreement with experimental data. (Auth.)
Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes.
Taha, Mohamed; Khan, Imran; Coutinho, João A P
2016-04-01
With many metal-based drugs extensively used today in the treatment of cancer, attention has focused on the development of new coordination compounds with antitumor activity with europium(III) complexes recently introduced as novel anticancer drugs. The aim of this work is to design new Eu(III) complexes with gallic acid, an antioxida'nt phenolic compound. Gallic acid was chosen because it shows anticancer activity without harming health cells. As antioxidant, it helps to protect human cells against oxidative damage that implicated in DNA damage, cancer, and accelerated cell aging. In this work, the formation of binary and ternary complexes of Eu(III) with gallic acid, primary ligand, and amino acids alanine, leucine, isoleucine, and tryptophan was studied by glass electrode potentiometry in aqueous solution containing 0.1M NaNO3 at (298.2 ± 0.1) K. Their overall stability constants were evaluated and the concentration distributions of the complex species in solution were calculated. The protonation constants of gallic acid and amino acids were also determined at our experimental conditions and compared with those predicted by using conductor-like screening model for realistic solvation (COSMO-RS) model. The geometries of Eu(III)-gallic acid complexes were characterized by the density functional theory (DFT). The spectroscopic UV-visible and photoluminescence measurements are carried out to confirm the formation of Eu(III)-gallic acid complexes in aqueous solutions. Copyright © 2016 Elsevier Inc. All rights reserved.
Modeling Complex Nesting Structures in International Business Research
DEFF Research Database (Denmark)
Nielsen, Bo Bernhard; Nielsen, Sabina
2013-01-01
hierarchical random coefficient models (RCM) are often used for the analysis of multilevel phenomena, IB issues often result in more complex nested structures. This paper illustrates how cross-nested multilevel modeling allowing for predictor variables and cross-level interactions at multiple (crossed) levels...
Foundations for Streaming Model Transformations by Complex Event Processing.
Dávid, István; Ráth, István; Varró, Dániel
2018-01-01
Streaming model transformations represent a novel class of transformations to manipulate models whose elements are continuously produced or modified in high volume and with rapid rate of change. Executing streaming transformations requires efficient techniques to recognize activated transformation rules over a live model and a potentially infinite stream of events. In this paper, we propose foundations of streaming model transformations by innovatively integrating incremental model query, complex event processing (CEP) and reactive (event-driven) transformation techniques. Complex event processing allows to identify relevant patterns and sequences of events over an event stream. Our approach enables event streams to include model change events which are automatically and continuously populated by incremental model queries. Furthermore, a reactive rule engine carries out transformations on identified complex event patterns. We provide an integrated domain-specific language with precise semantics for capturing complex event patterns and streaming transformations together with an execution engine, all of which is now part of the Viatra reactive transformation framework. We demonstrate the feasibility of our approach with two case studies: one in an advanced model engineering workflow; and one in the context of on-the-fly gesture recognition.
Universal correlators for multi-arc complex matrix models
International Nuclear Information System (INIS)
Akemann, G.
1997-01-01
The correlation functions of the multi-arc complex matrix model are shown to be universal for any finite number of arcs. The universality classes are characterized by the support of the eigenvalue density and are conjectured to fall into the same classes as the ones recently found for the Hermitian model. This is explicitly shown to be true for the case of two arcs, apart from the known result for one arc. The basic tool is the iterative solution of the loop equation for the complex matrix model with multiple arcs, which provides all multi-loop correlators up to an arbitrary genus. Explicit results for genus one are given for any number of arcs. The two-arc solution is investigated in detail, including the double-scaling limit. In addition universal expressions for the string susceptibility are given for both the complex and Hermitian model. (orig.)
Bim Automation: Advanced Modeling Generative Process for Complex Structures
Banfi, F.; Fai, S.; Brumana, R.
2017-08-01
The new paradigm of the complexity of modern and historic structures, which are characterised by complex forms, morphological and typological variables, is one of the greatest challenges for building information modelling (BIM). Generation of complex parametric models needs new scientific knowledge concerning new digital technologies. These elements are helpful to store a vast quantity of information during the life cycle of buildings (LCB). The latest developments of parametric applications do not provide advanced tools, resulting in time-consuming work for the generation of models. This paper presents a method capable of processing and creating complex parametric Building Information Models (BIM) with Non-Uniform to NURBS) with multiple levels of details (Mixed and ReverseLoD) based on accurate 3D photogrammetric and laser scanning surveys. Complex 3D elements are converted into parametric BIM software and finite element applications (BIM to FEA) using specific exchange formats and new modelling tools. The proposed approach has been applied to different case studies: the BIM of modern structure for the courtyard of West Block on Parliament Hill in Ottawa (Ontario) and the BIM of Masegra Castel in Sondrio (Italy), encouraging the dissemination and interaction of scientific results without losing information during the generative process.
Systems Engineering Metrics: Organizational Complexity and Product Quality Modeling
Mog, Robert A.
1997-01-01
Innovative organizational complexity and product quality models applicable to performance metrics for NASA-MSFC's Systems Analysis and Integration Laboratory (SAIL) missions and objectives are presented. An intensive research effort focuses on the synergistic combination of stochastic process modeling, nodal and spatial decomposition techniques, organizational and computational complexity, systems science and metrics, chaos, and proprietary statistical tools for accelerated risk assessment. This is followed by the development of a preliminary model, which is uniquely applicable and robust for quantitative purposes. Exercise of the preliminary model using a generic system hierarchy and the AXAF-I architectural hierarchy is provided. The Kendall test for positive dependence provides an initial verification and validation of the model. Finally, the research and development of the innovation is revisited, prior to peer review. This research and development effort results in near-term, measurable SAIL organizational and product quality methodologies, enhanced organizational risk assessment and evolutionary modeling results, and 91 improved statistical quantification of SAIL productivity interests.
International Nuclear Information System (INIS)
Rho, M.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette
1983-01-01
Some features of quark degrees of freedom in nuclei are discussed in the light of recent developments in QCD. The principal aim of this talk is to propose, and give a tentative support to, the motion that one can study through nuclear matter different facets of the vacuum structure implied by quantum chromodynamics (QCD). This will be done using the recent (exciting) results obtained in particle physics, in particular lattice gauge calculations. Relevance of this aspect of problem to quark degrees of freedom as well as meson degrees of freedom in nuclei will be discussed. (orig.)
Disintegration of comet nuclei
Ksanfomality, Leonid V.
2012-02-01
The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.
International Nuclear Information System (INIS)
2002-01-01
The present collection of letters from JINR, Dubna, contains seven separate records on kinematic separation and mass analysis of heavy recoiling nuclei, dynamical effects prior to heavy ion fusion, VACTIV-DELPHI graphical dialog based program for the analysis of gamma-ray spectra, irradiation of nuclear emulsions in relativistic beams of 6 He and 3 H nuclei, optical and structural investigations of PLZT x/65/35 (x = 4, 8 %) ferroelectric ceramics irradiated by a high-current pulsed electron beam, the oscillating charge and first evidence for neutrinoless double beta decay
Complex groundwater flow systems as traveling agent models
Directory of Open Access Journals (Sweden)
Oliver López Corona
2014-10-01
Full Text Available Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow.
International Nuclear Information System (INIS)
Fett, E.; Haatuft, A.; Olsen, J.M.
1977-01-01
A method is presented, which has been used to determine the pion multiplicity distributions for antiproton annihilations on free protons from a sample of events obtained in a heavy liquid bubble chamber experiment. The method uses data obtained in the experiment in question together with the usual invariance principles satisfied by strong interactions. Furthermore no particular nuclear model is assumed
Energy Technology Data Exchange (ETDEWEB)
Dinh, Thanh-Chung; Renger, Thomas, E-mail: thomas.renger@jku.at [Institut für Theoretische Physik, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz (Austria)
2016-07-21
In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures
Synchronization Experiments With A Global Coupled Model of Intermediate Complexity
Selten, Frank; Hiemstra, Paul; Shen, Mao-Lin
2013-04-01
In the super modeling approach an ensemble of imperfect models are connected through nudging terms that nudge the solution of each model to the solution of all other models in the ensemble. The goal is to obtain a synchronized state through a proper choice of connection strengths that closely tracks the trajectory of the true system. For the super modeling approach to be successful, the connections should be dense and strong enough for synchronization to occur. In this study we analyze the behavior of an ensemble of connected global atmosphere-ocean models of intermediate complexity. All atmosphere models are connected to the same ocean model through the surface fluxes of heat, water and momentum, the ocean is integrated using weighted averaged surface fluxes. In particular we analyze the degree of synchronization between the atmosphere models and the characteristics of the ensemble mean solution. The results are interpreted using a low order atmosphere-ocean toy model.
Energy Technology Data Exchange (ETDEWEB)
Goldsby, Michael E.; Mayo, Jackson R.; Bhattacharyya, Arnab (Massachusetts Institute of Technology, Cambridge, MA); Armstrong, Robert C.; Vanderveen, Keith
2008-09-01
The goal of this research was to examine foundational methods, both computational and theoretical, that can improve the veracity of entity-based complex system models and increase confidence in their predictions for emergent behavior. The strategy was to seek insight and guidance from simplified yet realistic models, such as cellular automata and Boolean networks, whose properties can be generalized to production entity-based simulations. We have explored the usefulness of renormalization-group methods for finding reduced models of such idealized complex systems. We have prototyped representative models that are both tractable and relevant to Sandia mission applications, and quantified the effect of computational renormalization on the predictive accuracy of these models, finding good predictivity from renormalized versions of cellular automata and Boolean networks. Furthermore, we have theoretically analyzed the robustness properties of certain Boolean networks, relevant for characterizing organic behavior, and obtained precise mathematical constraints on systems that are robust to failures. In combination, our results provide important guidance for more rigorous construction of entity-based models, which currently are often devised in an ad-hoc manner. Our results can also help in designing complex systems with the goal of predictable behavior, e.g., for cybersecurity.
ANS main control complex three-dimensional computer model development
International Nuclear Information System (INIS)
Cleaves, J.E.; Fletcher, W.M.
1993-01-01
A three-dimensional (3-D) computer model of the Advanced Neutron Source (ANS) main control complex is being developed. The main control complex includes the main control room, the technical support center, the materials irradiation control room, computer equipment rooms, communications equipment rooms, cable-spreading rooms, and some support offices and breakroom facilities. The model will be used to provide facility designers and operations personnel with capabilities for fit-up/interference analysis, visual ''walk-throughs'' for optimizing maintain-ability, and human factors and operability analyses. It will be used to determine performance design characteristics, to generate construction drawings, and to integrate control room layout, equipment mounting, grounding equipment, electrical cabling, and utility services into ANS building designs. This paper describes the development of the initial phase of the 3-D computer model for the ANS main control complex and plans for its development and use
Nostradamus 2014 prediction, modeling and analysis of complex systems
Suganthan, Ponnuthurai; Chen, Guanrong; Snasel, Vaclav; Abraham, Ajith; Rössler, Otto
2014-01-01
The prediction of behavior of complex systems, analysis and modeling of its structure is a vitally important problem in engineering, economy and generally in science today. Examples of such systems can be seen in the world around us (including our bodies) and of course in almost every scientific discipline including such “exotic” domains as the earth’s atmosphere, turbulent fluids, economics (exchange rate and stock markets), population growth, physics (control of plasma), information flow in social networks and its dynamics, chemistry and complex networks. To understand such complex dynamics, which often exhibit strange behavior, and to use it in research or industrial applications, it is paramount to create its models. For this purpose there exists a rich spectrum of methods, from classical such as ARMA models or Box Jenkins method to modern ones like evolutionary computation, neural networks, fuzzy logic, geometry, deterministic chaos amongst others. This proceedings book is a collection of accepted ...
Numerical simulation of cometary nuclei. III. Internal temperatures of cometary nuclei
International Nuclear Information System (INIS)
Herman, G.; Weissman, P.R.
1987-01-01
The thermal diffusion equation for the internal temperature of cometary nuclei is exactly solved by means of a one-dimensional numerical model in order to shed light on the complex behavior of these temperatures with varying orbital and thermal parameters and in order to consider possible cometary nucleus thermal evolution targets for comet rendezvous and/or sample-return missions. The concept of new and old comets, classified in terms of how many passages around the sun have been made, may take on new meaning in view of the present demonstration that differences in eccentricity between two comets having the same period and number of apparitions may yield significantly different internal temperature profiles. 19 references
The effects of model and data complexity on predictions from species distributions models
DEFF Research Database (Denmark)
García-Callejas, David; Bastos, Miguel
2016-01-01
How complex does a model need to be to provide useful predictions is a matter of continuous debate across environmental sciences. In the species distributions modelling literature, studies have demonstrated that more complex models tend to provide better fits. However, studies have also shown...... that predictive performance does not always increase with complexity. Testing of species distributions models is challenging because independent data for testing are often lacking, but a more general problem is that model complexity has never been formally described in such studies. Here, we systematically...
Production and de excitation of hot nuclei
International Nuclear Information System (INIS)
Auger, F.; Faure, B.; Wirleczki, J.P.; Cunsolo, A.; Foti, A.; Plagnol, E.
1988-01-01
We studied Kr induced reactions on C, Al and Ti at 26.4, 34.4 and 45.4 MeV/nucleon. The aims of these experiments were to learn about the influence of the incident energy and asymmetry of the system on the incomplete fusion mechanism, that is on the characteristics (E,l) of the nuclei formed in the reactions and on the competition between massive transfer and preequilibrium emission. We also wanted to study the influence of excitation energy and angular momentum of the nuclei on their deexcitation modes, specially on the competition between light particles (n, p, α) and complex fragments (M>4). Considering the available energies (2.8 < ε < 10.5 MeV/nucleon), the grazing and the total masses (96 ≤ M ≤ 132), nuclei with masses around 100 are likely to be formed with very different excitation energies and angular momenta
Modeling geophysical complexity: a case for geometric determinism
Directory of Open Access Journals (Sweden)
C. E. Puente
2007-01-01
Full Text Available It has been customary in the last few decades to employ stochastic models to represent complex data sets encountered in geophysics, particularly in hydrology. This article reviews a deterministic geometric procedure to data modeling, one that represents whole data sets as derived distributions of simple multifractal measures via fractal functions. It is shown how such a procedure may lead to faithful holistic representations of existing geophysical data sets that, while complementing existing representations via stochastic methods, may also provide a compact language for geophysical complexity. The implications of these ideas, both scientific and philosophical, are stressed.
Deterministic ripple-spreading model for complex networks.
Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S; Hines, Evor L; Di Paolo, Ezequiel
2011-04-01
This paper proposes a deterministic complex network model, which is inspired by the natural ripple-spreading phenomenon. The motivations and main advantages of the model are the following: (i) The establishment of many real-world networks is a dynamic process, where it is often observed that the influence of a few local events spreads out through nodes, and then largely determines the final network topology. Obviously, this dynamic process involves many spatial and temporal factors. By simulating the natural ripple-spreading process, this paper reports a very natural way to set up a spatial and temporal model for such complex networks. (ii) Existing relevant network models are all stochastic models, i.e., with a given input, they cannot output a unique topology. Differently, the proposed ripple-spreading model can uniquely determine the final network topology, and at the same time, the stochastic feature of complex networks is captured by randomly initializing ripple-spreading related parameters. (iii) The proposed model can use an easily manageable number of ripple-spreading related parameters to precisely describe a network topology, which is more memory efficient when compared with traditional adjacency matrix or similar memory-expensive data structures. (iv) The ripple-spreading model has a very good potential for both extensions and applications.
International Nuclear Information System (INIS)
Henley, E.M.
1987-01-01
Nuclei are very useful for testing symmetries, and for studies of symmetry breaking. This thesis is illustrated for two improper space-time transformations, parity and time-reversal and for one internal symmetry: charge symmetry and independence. Recent progress and present interest is reviewed. 23 refs., 8 figs., 2 tabs
Electroweak interactions in nuclei
International Nuclear Information System (INIS)
Henley, E.M.
1984-06-01
Topics include: introduction to electroweak theory; the Weinberg-Salam theory for leptons; the Weinberg-Salam theory for hadrons-the GIM mechanism; electron scattering as a probe of the electroweak interaction (observation of PV, the weak interaction for nucleons, and parity violation in atoms); and time reversed invariance and electric dipole moments of nucleons, nuclei, and atoms. 52 references
Transfer involving deformed nuclei
International Nuclear Information System (INIS)
Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.
1985-03-01
Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs
International Nuclear Information System (INIS)
Gulamov, K.G.
1987-01-01
It is well known that interactions of high energy particles with nuclei, owing to possible intranuclear rescatterings, may provide information about the space-time behaviour of the production process. Therefore the main goals of these investigations are related with the attempts to study the space-time process of hadronization of coloured quarks and gluons produced at the initial stage of an interaction to white final state particles and to clarify the influence of composite quark-gluon structure of both the projectile and target on features of the production mechanisms. Since in both the initial and final states of these reactions the authors have strongly interacting multiparticle systems, it is of importance to study the collective properties of these systems. The questions to the point are: what is the degree of collectivization of particles newly produced in collisions with nuclei and what is the influence of the collective nature of a nucleus itself on the production mechanisms, in particular, what are the manifestations of possible multinucleon (multiquark) configurations in nuclei? It is obvious that the reductability of, say, hadron-nucleus (hA) interaction to hadron-nucleon (hN) collisions is directly related to the above problems. Due to time limitations the author discusses here only a few aspects of low p/sub t/ hA interactions which in his opinion are of importance for better understanding of general regularities of collisions with nuclei and for further investigations of the above problems
International Nuclear Information System (INIS)
Laget, J.M.
1988-01-01
This summary is a review of our understanding of nuclei in terms of hadrons exchanging mesons. The open problems are: the determination of the high momentum components of nuclear systems, the role of the three-body forces and the nature of the short range correlations. The ways of studying these problems are discussed
Electromagnetic structure of nuclei
International Nuclear Information System (INIS)
Arnold, R.G.
1986-07-01
A brief review is given of selected topics in the electromagnetic structure of nucleons and nuclei, including nucleon form factors from both quantum chromodynamics and electron scattering data, measurements of the deuteron and triton form factors, quasi-elastic scattering, and the EMC effect. 47 refs., 13 figs
International Nuclear Information System (INIS)
Bohr, A.
1977-01-01
History is surveyed of the development of the theory of rotational states in nuclei. The situation in the 40's when ideas formed of the collective states of a nucleus is evoked. The general rotation theory and the relation between the single-particle and rotational motion are briefly discussed. Future prospects of the rotation theory development are indicated. (I.W.)
International Nuclear Information System (INIS)
Truhlik, E.; Mach, R.
1992-01-01
62 papers and one summary talk were presented at the conference, on subject matters in between nuclear physics (mainly light nuclei) and elementary particle physics, as indicated by the session headings (1) Electroweak nuclear interaction (2) Nuclear physics with pions and antiprotons (3) Nuclear physics with strange particles (4) Relativistic nuclear physics (5) Quark degrees of freedom. (Quittner)
International Nuclear Information System (INIS)
Mittig, W.; Plagnol, E.; Schutz, Y.
1989-11-01
A new simple direct method for the measurement of the total reaction cross section (σ R ) for several light radioactive nuclei (A≤40) is developed. From that, the reduced strong absorption radii (r o 2 ) are obtained. A comparison is made with data obtained by other techniques. A strong isospin dependence of the nuclear radii is observed. (L.C.) [pt
International Nuclear Information System (INIS)
Hodgson, P.E.
1990-01-01
The effects of nucleon clustering in nuclei are described, with reference to both nuclear structure and nuclear reactions, and the advantages of using the cluster formalism to describe a range of phenomena are discussed. It is shown that bound and scattering alpha-particle states can be described in a unified way using an energy-dependent alpha-nucleus potential. (author)
International Nuclear Information System (INIS)
Harris, J.
1986-01-01
The book on particles, imaging and nuclei is one of the Background Readers for the Revised Nuffield Advanced Physics course. The contents contain five educational articles, which extend concepts covered in the course and examine recent developments in physics. Four of the articles on:- particles and the forces of nature, radioisotopes, lasers probe the atomic nucleus, and nuclear history, are indexed separately. (UK)
Fundamental Physics with Electroweak Probes of Nuclei
Pastore, Saori
2018-02-01
The past decade has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of nuclei. A number of microscopic calculations of nuclear electroweak structure and reactions have successfully explained the available experimental data, yielding a complex picture of the way nuclei interact with electroweak probes. This achievement is of great interest from the pure nuclear-physics point of view. But it is of much broader interest too, because the level of accuracy and confidence reached by these calculations opens up the concrete possibility of using nuclei to address open questions in other sub-fields of physics, such as, understanding the fundamental properties of neutrinos, or the particle nature of dark matter. In this talk, I will review recent progress in microscopic calculations of electroweak properties of light nuclei, including electromagnetic moments, form factors and transitions in between lowlying nuclear states along with preliminary studies for single- and double-beta decay rates. I will illustrate the key dynamical features required to explain the available experimental data, and, if time permits, present a novel framework to calculate neutrino-nucleus cross sections for A > 12 nuclei.
Particle-rotation coupling in atomic nuclei
International Nuclear Information System (INIS)
Almberger, J.
1980-01-01
Recently an increased interest in the rotational nuclei has been spurred by the new experimental high-spin activities and by the possibilities for lower spins to interpret an impressive amount of experimental data by some comparatively simple model calculations. The author discusses the particle modes of excitation for rotational nuclei in the pairing regime where some puzzles in the theoretical description remain to be resolved. A model comparison is made between the particle-rotor and cranking models which have different definitions of the collective rotation. The cranking model is found to imply a smaller value of the quasiparticle spin alignment than the particle-rotor model. Rotational spectra for both even and odd nuclei are investigated with the use of the many-BCS-quasiparticles plus rotor model. This model gives an accurate description of the ground and S-bands in many even-even rare-earth nuclei. However, the discrepancies for odd-A nuclei between theory and experiments point to the importance of additional physical components. Therefore the rotationally induced quadrupole pair field is considered. This field has an effect on the low spin states in odd-A nuclei, but is not sufficient to account for the experimental data. Another topic considered is the interaction matrix element in crossings for given spin between quasiparticle rotational bands. The matrix elements are found to oscillate as a function of the number of particles, thereby influencing the sharpness of the backbending. Finally the low-spin continuation of the S-band is studied and it is shown that such states can be populated selectively by means of one-particle pickup reactions involving high angular momentum transfer. (Auth.)
Geometry and dynamics of particle emission from strongly deformed nuclei
International Nuclear Information System (INIS)
Aleshin, V.P.
1995-01-01
By using our semiclassical approach to particle evaporation from deformed nuclei, we analyze the heuristic models of particle emission from deformed nuclei which are used in the codes GANES, ALICE, and EVAP. The calculations revealed that the heuristic models are reasonable for particle energy spectra but fail, at large deformations, to describe the angular distributions
Predictive modelling of complex agronomic and biological systems.
Keurentjes, Joost J B; Molenaar, Jaap; Zwaan, Bas J
2013-09-01
Biological systems are tremendously complex in their functioning and regulation. Studying the multifaceted behaviour and describing the performance of such complexity has challenged the scientific community for years. The reduction of real-world intricacy into simple descriptive models has therefore convinced many researchers of the usefulness of introducing mathematics into biological sciences. Predictive modelling takes such an approach another step further in that it takes advantage of existing knowledge to project the performance of a system in alternating scenarios. The ever growing amounts of available data generated by assessing biological systems at increasingly higher detail provide unique opportunities for future modelling and experiment design. Here we aim to provide an overview of the progress made in modelling over time and the currently prevalent approaches for iterative modelling cycles in modern biology. We will further argue for the importance of versatility in modelling approaches, including parameter estimation, model reduction and network reconstruction. Finally, we will discuss the difficulties in overcoming the mathematical interpretation of in vivo complexity and address some of the future challenges lying ahead. © 2013 John Wiley & Sons Ltd.
Isotope shifts in unstable nuclei
International Nuclear Information System (INIS)
Rebel, H.
1980-05-01
Current experimental investigations of isotope shifts in atomic spectra of unstable nuclei and the resulting information about size and shape of nuclei far off stability are discussed with reference to some representative examples. (orig.)
Stålne, Kristian; Kjellström, Sofia; Utriainen, Jukka
2016-01-01
An important aspect of higher education is to educate students who can manage complex relationships and solve complex problems. Teachers need to be able to evaluate course content with regard to complexity, as well as evaluate students' ability to assimilate complex content and express it in the form of a learning outcome. One model for evaluating…
Directory of Open Access Journals (Sweden)
Giovanni La Mura
2017-11-01
Full Text Available The spectra of active galactic nuclei (AGNs are often characterized by a wealth of emission lines with different profiles and intensity ratios that lead to a complicated classification. Their electromagnetic radiation spans more than 10 orders of magnitude in frequency. In spite of the differences between various classes, the origin of their activity is attributed to a combination of emitting components, surrounding an accreting supermassive black hole (SMBH, in the unified model. Currently, the execution of sky surveys, with instruments operating at various frequencies, provides the possibility to detect and to investigate the properties of AGNs on very large statistical samples. As a result of the spectroscopic surveys that allow the investigation of many objects, we have the opportunity to place new constraints on the nature and evolution of AGNs. In this contribution, we present the results obtained by working on multi-frequency data, and we discuss their relations with the available optical spectra. We compare our findings with the AGN unified model predictions, and we present a revised technique to select AGNs of different types from other line-emitting objects. We discuss the multi-frequency properties in terms of the innermost structures of the sources.
Modelling, Estimation and Control of Networked Complex Systems
Chiuso, Alessandro; Frasca, Mattia; Rizzo, Alessandro; Schenato, Luca; Zampieri, Sandro
2009-01-01
The paradigm of complexity is pervading both science and engineering, leading to the emergence of novel approaches oriented at the development of a systemic view of the phenomena under study; the definition of powerful tools for modelling, estimation, and control; and the cross-fertilization of different disciplines and approaches. This book is devoted to networked systems which are one of the most promising paradigms of complexity. It is demonstrated that complex, dynamical networks are powerful tools to model, estimate, and control many interesting phenomena, like agent coordination, synchronization, social and economics events, networks of critical infrastructures, resources allocation, information processing, or control over communication networks. Moreover, it is shown how the recent technological advances in wireless communication and decreasing in cost and size of electronic devices are promoting the appearance of large inexpensive interconnected systems, each with computational, sensing and mobile cap...
Infinite Multiple Membership Relational Modeling for Complex Networks
DEFF Research Database (Denmark)
Mørup, Morten; Schmidt, Mikkel Nørgaard; Hansen, Lars Kai
Learning latent structure in complex networks has become an important problem fueled by many types of networked data originating from practically all fields of science. In this paper, we propose a new non-parametric Bayesian multiplemembership latent feature model for networks. Contrary to existing...... multiplemembership models that scale quadratically in the number of vertices the proposedmodel scales linearly in the number of links admittingmultiple-membership analysis in large scale networks. We demonstrate a connection between the single membership relational model and multiple membership models and show...
Modeling data irregularities and structural complexities in data envelopment analysis
Zhu, Joe
2007-01-01
In a relatively short period of time, Data Envelopment Analysis (DEA) has grown into a powerful quantitative, analytical tool for measuring and evaluating performance. It has been successfully applied to a whole variety of problems in many different contexts worldwide. This book deals with the micro aspects of handling and modeling data issues in modeling DEA problems. DEA's use has grown with its capability of dealing with complex "service industry" and the "public service domain" types of problems that require modeling of both qualitative and quantitative data. This handbook treatment deals with specific data problems including: imprecise or inaccurate data; missing data; qualitative data; outliers; undesirable outputs; quality data; statistical analysis; software and other data aspects of modeling complex DEA problems. In addition, the book will demonstrate how to visualize DEA results when the data is more than 3-dimensional, and how to identify efficiency units quickly and accurately.
Modeling the propagation of mobile malware on complex networks
Liu, Wanping; Liu, Chao; Yang, Zheng; Liu, Xiaoyang; Zhang, Yihao; Wei, Zuxue
2016-08-01
In this paper, the spreading behavior of malware across mobile devices is addressed. By introducing complex networks to model mobile networks, which follows the power-law degree distribution, a novel epidemic model for mobile malware propagation is proposed. The spreading threshold that guarantees the dynamics of the model is calculated. Theoretically, the asymptotic stability of the malware-free equilibrium is confirmed when the threshold is below the unity, and the global stability is further proved under some sufficient conditions. The influences of different model parameters as well as the network topology on malware propagation are also analyzed. Our theoretical studies and numerical simulations show that networks with higher heterogeneity conduce to the diffusion of malware, and complex networks with lower power-law exponents benefit malware spreading.
Uncertainty and validation. Effect of model complexity on uncertainty estimates
International Nuclear Information System (INIS)
Elert, M.
1996-09-01
In the Model Complexity subgroup of BIOMOVS II, models of varying complexity have been applied to the problem of downward transport of radionuclides in soils. A scenario describing a case of surface contamination of a pasture soil was defined. Three different radionuclides with different environmental behavior and radioactive half-lives were considered: Cs-137, Sr-90 and I-129. The intention was to give a detailed specification of the parameters required by different kinds of model, together with reasonable values for the parameter uncertainty. A total of seven modelling teams participated in the study using 13 different models. Four of the modelling groups performed uncertainty calculations using nine different modelling approaches. The models used range in complexity from analytical solutions of a 2-box model using annual average data to numerical models coupling hydrology and transport using data varying on a daily basis. The complex models needed to consider all aspects of radionuclide transport in a soil with a variable hydrology are often impractical to use in safety assessments. Instead simpler models, often box models, are preferred. The comparison of predictions made with the complex models and the simple models for this scenario show that the predictions in many cases are very similar, e g in the predictions of the evolution of the root zone concentration. However, in other cases differences of many orders of magnitude can appear. One example is the prediction of the flux to the groundwater of radionuclides being transported through the soil column. Some issues that have come to focus in this study: There are large differences in the predicted soil hydrology and as a consequence also in the radionuclide transport, which suggests that there are large uncertainties in the calculation of effective precipitation and evapotranspiration. The approach used for modelling the water transport in the root zone has an impact on the predictions of the decline in root
Modelling and simulating in-stent restenosis with complex automata
Hoekstra, A.G.; Lawford, P.; Hose, R.
2010-01-01
In-stent restenosis, the maladaptive response of a blood vessel to injury caused by the deployment of a stent, is a multiscale system involving a large number of biological and physical processes. We describe a Complex Automata Model for in-stent restenosis, coupling bulk flow, drug diffusion, and
The Complexity of Developmental Predictions from Dual Process Models
Stanovich, Keith E.; West, Richard F.; Toplak, Maggie E.
2011-01-01
Drawing developmental predictions from dual-process theories is more complex than is commonly realized. Overly simplified predictions drawn from such models may lead to premature rejection of the dual process approach as one of many tools for understanding cognitive development. Misleading predictions can be avoided by paying attention to several…
Constructive Lower Bounds on Model Complexity of Shallow Perceptron Networks
Czech Academy of Sciences Publication Activity Database
Kůrková, Věra
2018-01-01
Roč. 29, č. 7 (2018), s. 305-315 ISSN 0941-0643 R&D Projects: GA ČR GA15-18108S Institutional support: RVO:67985807 Keywords : shallow and deep networks * model complexity and sparsity * signum perceptron networks * finite mappings * variational norms * Hadamard matrices Subject RIV: IN - Informatics, Computer Science Impact factor: 2.505, year: 2016
Complexity effects in choice experiments-based models
Dellaert, B.G.C.; Donkers, B.; van Soest, A.H.O.
2012-01-01
Many firms rely on choice experiment–based models to evaluate future marketing actions under various market conditions. This research investigates choice complexity (i.e., number of alternatives, number of attributes, and utility similarity between the most attractive alternatives) and individual
Kolmogorov complexity, pseudorandom generators and statistical models testing
Czech Academy of Sciences Publication Activity Database
Šindelář, Jan; Boček, Pavel
2002-01-01
Roč. 38, č. 6 (2002), s. 747-759 ISSN 0023-5954 R&D Projects: GA ČR GA102/99/1564 Institutional research plan: CEZ:AV0Z1075907 Keywords : Kolmogorov complexity * pseudorandom generators * statistical models testing Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.341, year: 2002
Framework for Modelling Multiple Input Complex Aggregations for Interactive Installations
DEFF Research Database (Denmark)
Padfield, Nicolas; Andreasen, Troels
2012-01-01
on fuzzy logic and provides a method for variably balancing interaction and user input with the intention of the artist or director. An experimental design is presented, demonstrating an intuitive interface for parametric modelling of a complex aggregation function. The aggregation function unifies...
Model-based safety architecture framework for complex systems
Schuitemaker, Katja; Rajabali Nejad, Mohammadreza; Braakhuis, J.G.; Podofillini, Luca; Sudret, Bruno; Stojadinovic, Bozidar; Zio, Enrico; Kröger, Wolfgang
2015-01-01
The shift to transparency and rising need of the general public for safety, together with the increasing complexity and interdisciplinarity of modern safety-critical Systems of Systems (SoS) have resulted in a Model-Based Safety Architecture Framework (MBSAF) for capturing and sharing architectural
A binary logistic regression model with complex sampling design of ...
African Journals Online (AJOL)
2017-09-03
Sep 3, 2017 ... Bi-variable and multi-variable binary logistic regression model with complex sampling design was fitted. .... Data was entered into STATA-12 and analyzed using. SPSS-21. .... lack of access/too far or costs too much. 35. 1.2.
On the general procedure for modelling complex ecological systems
International Nuclear Information System (INIS)
He Shanyu.
1987-12-01
In this paper, the principle of a general procedure for modelling complex ecological systems, i.e. the Adaptive Superposition Procedure (ASP) is shortly stated. The result of application of ASP in a national project for ecological regionalization is also described. (author). 3 refs
The dynamic complexity of a three species food chain model
International Nuclear Information System (INIS)
Lv Songjuan; Zhao Min
2008-01-01
In this paper, a three-species food chain model is analytically investigated on theories of ecology and using numerical simulation. Bifurcation diagrams are obtained for biologically feasible parameters. The results show that the system exhibits rich complexity features such as stable, periodic and chaotic dynamics
Properties of semi-infinite nuclei
International Nuclear Information System (INIS)
El-Jaick, L.J.; Kodama, T.
1976-04-01
Several relations among density distributions and energies of semi-infinite and infinite nuclei are iventigated in the framework of Wilets's statistical model. The model is shown to be consistent with the theorem of surface tension given by Myers and Swiatecki. Some numerical results are shown by using an appropriate nuclear matter equation of state
Energetic Nuclei, Superdensity and Biomedicine
Baldin, A. M.
1977-01-01
High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…
Medium energy hadron scattering from nuclei
International Nuclear Information System (INIS)
Ginocchio, J.N.; Wenes, G.
1986-01-01
The Glauber approximation for medium energy scattering of hadronic projectiles from nuclei is combined with the interacting boson model of nuclei to produce a transition matrix for elastic and inelastic scattering in algebraic form which includes coupling to all the intermediate states. We present closed form analytic expresions for the transition matrix elements for the three dynamical symmetries of the interacting boson model; that is for, a spherical quadrupole vibrator, a γ unstable rotor, and both prolate and oblate axially symmetric rotors. We give examples of application of this formalism to proton scattering from 154 Sm and 154 Gd. 27 refs., 5 figs., 1 tab
Sulis, William H
2017-10-01
Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.
Relativistic description of atomic nuclei
International Nuclear Information System (INIS)
Krutov, V.A.
1985-01-01
Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters
Deformation and shape coexistence in medium mass nuclei
International Nuclear Information System (INIS)
Meyer, R.A.
1985-01-01
Emerging evidence for deformed structures in medium mass nuclei is reviewed. Included in this review are both nuclei that are ground state symmetric rotors and vibrational nuclei where there are deformed structures at excited energies (shape coexistence). For the first time, Nilsson configurations in odd-odd nuclei within the region of deformation are identified. Shape coexistence in nuclei that abut the medium mass region of deformation is also examined. Recent establishment of a four-particle, four-hole intruder band in the double subshell closure nucleus 96 Zr 56 is presented and its relation to the nuclear vibron model is discussed. Special attention is given to the N=59 nuclei where new data have led to the reanalysis of 97 Sr and 99 Zr and the presence of the [404 9/2] hole intruder state as isomers in these nuclei. The low energy levels of the N=59 nuclei from Z=38 to 50 are compared with recent quadrupole-phonon model calculations that can describe their transition from near-rotational to single closed shell nuclei. The odd-odd N=59 nuclei are discussed in the context of coexisting shape isomers based on the (p[303 5/2]n[404 9/2])2 - configuration. Ongoing in-beam (t,p conversion-electron) multiparameter measurements that have led to the determination of monopole matrix elements for even-even 42 Mo nuclei are presented, and these are compared with initial estimates using IBA-2 calculations that allow mixing of normal and cross subshell excitations. Lastly, evidence for the neutron-proton 3 S 1 force's influence on the level structure of these nuclei is discussed within the context of recent quadrupole-phonon model calculations. (Auth.)
Interactions of 10.6 GeV/n gold nuclei with light and heavy target nuclei in nuclear emulsion
International Nuclear Information System (INIS)
Cherry, M.L.; Denes-Jones, P.
1994-03-01
We have investigated the particle production and fragmentation of nuclei participating in the interactions of 10.6 GeV/n gold nuclei in nuclear emulsions. A new criteria has been developed to distinguish between the interactions of these gold nuclei with the light (H, C, N, O) and heavy (Ag, Br) target nuclei in the emulsion. This has allowed separate analyzes of the multiplicity and pseudo-rapidity distributions of the singly charged particles emitted in Au-(H, C, N, O) and Au-(Ag, Br) interactions, as well as of the models of breakup of the projectile and target nuclei. The pseudo-rapidity distributions show strong forward asymmetries, particularly for the interactions with the light nuclei. Heavy target nuclei produce a more severe breakup of the projectile gold nucleus than do the lighter targets. A negative correlation between the number of fragments emitted from the target nuclei and the degree of centrality of the collisions has been observed, which can be attributed to the total destruction of the relatively light target nuclei by these very heavy projectile nuclei. (author). 14 refs, 11 figs, 1 tab
Uncertainty and validation. Effect of model complexity on uncertainty estimates
Energy Technology Data Exchange (ETDEWEB)
Elert, M. [Kemakta Konsult AB, Stockholm (Sweden)] [ed.
1996-09-01
In the Model Complexity subgroup of BIOMOVS II, models of varying complexity have been applied to the problem of downward transport of radionuclides in soils. A scenario describing a case of surface contamination of a pasture soil was defined. Three different radionuclides with different environmental behavior and radioactive half-lives were considered: Cs-137, Sr-90 and I-129. The intention was to give a detailed specification of the parameters required by different kinds of model, together with reasonable values for the parameter uncertainty. A total of seven modelling teams participated in the study using 13 different models. Four of the modelling groups performed uncertainty calculations using nine different modelling approaches. The models used range in complexity from analytical solutions of a 2-box model using annual average data to numerical models coupling hydrology and transport using data varying on a daily basis. The complex models needed to consider all aspects of radionuclide transport in a soil with a variable hydrology are often impractical to use in safety assessments. Instead simpler models, often box models, are preferred. The comparison of predictions made with the complex models and the simple models for this scenario show that the predictions in many cases are very similar, e g in the predictions of the evolution of the root zone concentration. However, in other cases differences of many orders of magnitude can appear. One example is the prediction of the flux to the groundwater of radionuclides being transported through the soil column. Some issues that have come to focus in this study: There are large differences in the predicted soil hydrology and as a consequence also in the radionuclide transport, which suggests that there are large uncertainties in the calculation of effective precipitation and evapotranspiration. The approach used for modelling the water transport in the root zone has an impact on the predictions of the decline in root
Chaos in nuclei: Theory and experiment
Muñoz, L.; Molina, R. A.; Gómez, J. M. G.
2018-05-01
During the last three decades the quest for chaos in nuclei has been quite intensive, both with theoretical calculations using nuclear models and with detailed analyses of experimental data. In this paper we outline the concept and characteristics of quantum chaos in two different approaches, the random matrix theory fluctuations and the time series fluctuations. Then we discuss the theoretical and experimental evidence of chaos in nuclei. Theoretical calculations, especially shell-model calculations, have shown a strongly chaotic behavior of bound states in regions of high level density. The analysis of experimental data has shown a strongly chaotic behavior of nuclear resonances just above the one-nucleon emission threshold. For bound states, combining experimental data of a large number of nuclei, a tendency towards chaotic motion is observed in spherical nuclei, while deformed nuclei exhibit a more regular behavior associated to the collective motion. On the other hand, it had never been possible to observe chaos in the experimental bound energy levels of any single nucleus. However, the complete experimental spectrum of the first 151 states up to excitation energies of 6.20 MeV in the 208Pb nucleus have been recently identified and the analysis of its spectral fluctuations clearly shows the existence of chaotic motion.
Reflections on cavitation nuclei in water
DEFF Research Database (Denmark)
Mørch, Knud Aage
2007-01-01
to explaining why the tensile strength of water varies so dramatically between the experiments reported. A model for calculation of the critical pressure of skin-covered free gas bubbles as well as that of interfacial gaseous nuclei covered by a skin is presented. This model is able to bridge the apparently......The origin of cavitation bubbles, cavitation nuclei, has been a subject of debate since the early years of cavitation research. This paper presents an analysis of a representative selection of experimental investigations of cavitation inception and the tensile strength of water. At atmospheric...... pressure, the possibility of stabilization of free gas bubbles by a skin has been documented, but only within a range of bubble sizes that makes them responsible for tensile strengths up to about 1.5 bar, and values reaching almost 300 bar have been measured. However, cavitation nuclei can also be harbored...
Hill, Renee J.; Chopra, Pradeep; Richardi, Toni
2012-01-01
Abstract Explaining the etiology of Complex Regional Pain Syndrome (CRPS) from the psychogenic model is exceedingly unsophisticated, because neurocognitive deficits, neuroanatomical abnormalities, and distortions in cognitive mapping are features of CRPS pathology. More importantly, many people who have developed CRPS have no history of mental illness. The psychogenic model offers comfort to physicians and mental health practitioners (MHPs) who have difficulty understanding pain maintained by newly uncovered neuro inflammatory processes. With increased education about CRPS through a biopsychosocial perspective, both physicians and MHPs can better diagnose, treat, and manage CRPS symptomatology. PMID:24223338
Directory of Open Access Journals (Sweden)
Henry de-Graft Acquah
2013-01-01
Full Text Available Information Criteria provides an attractive basis for selecting the best model from a set of competing asymmetric price transmission models or theories. However, little is understood about the sensitivity of the model selection methods to model complexity. This study therefore fits competing asymmetric price transmission models that differ in complexity to simulated data and evaluates the ability of the model selection methods to recover the true model. The results of Monte Carlo experimentation suggest that in general BIC, CAIC and DIC were superior to AIC when the true data generating process was the standard error correction model, whereas AIC was more successful when the true model was the complex error correction model. It is also shown that the model selection methods performed better in large samples for a complex asymmetric data generating process than with a standard asymmetric data generating process. Except for complex models, AIC's performance did not make substantial gains in recovery rates as sample size increased. The research findings demonstrate the influence of model complexity in asymmetric price transmission model comparison and selection.
Higher genus correlators for the complex matrix model
International Nuclear Information System (INIS)
Ambjorn, J.; Kristhansen, C.F.; Makeenko, Y.M.
1992-01-01
In this paper, the authors describe an iterative scheme which allows us to calculate any multi-loop correlator for the complex matrix model to any genus using only the first in the chain of loop equations. The method works for a completely general potential and the results contain no explicit reference to the couplings. The genus g contribution to the m-loop correlator depends on a finite number of parameters, namely at most 4g - 2 + m. The authors find the generating functional explicitly up to genus three. The authors show as well that the model is equivalent to an external field problem for the complex matrix model with a logarithmic potential
Reduced Complexity Volterra Models for Nonlinear System Identification
Directory of Open Access Journals (Sweden)
Hacıoğlu Rıfat
2001-01-01
Full Text Available A broad class of nonlinear systems and filters can be modeled by the Volterra series representation. However, its practical use in nonlinear system identification is sometimes limited due to the large number of parameters associated with the Volterra filter′s structure. The parametric complexity also complicates design procedures based upon such a model. This limitation for system identification is addressed in this paper using a Fixed Pole Expansion Technique (FPET within the Volterra model structure. The FPET approach employs orthonormal basis functions derived from fixed (real or complex pole locations to expand the Volterra kernels and reduce the number of estimated parameters. That the performance of FPET can considerably reduce the number of estimated parameters is demonstrated by a digital satellite channel example in which we use the proposed method to identify the channel dynamics. Furthermore, a gradient-descent procedure that adaptively selects the pole locations in the FPET structure is developed in the paper.
Deciphering the complexity of acute inflammation using mathematical models.
Vodovotz, Yoram
2006-01-01
Various stresses elicit an acute, complex inflammatory response, leading to healing but sometimes also to organ dysfunction and death. We constructed both equation-based models (EBM) and agent-based models (ABM) of various degrees of granularity--which encompass the dynamics of relevant cells, cytokines, and the resulting global tissue dysfunction--in order to begin to unravel these inflammatory interactions. The EBMs describe and predict various features of septic shock and trauma/hemorrhage (including the response to anthrax, preconditioning phenomena, and irreversible hemorrhage) and were used to simulate anti-inflammatory strategies in clinical trials. The ABMs that describe the interrelationship between inflammation and wound healing yielded insights into intestinal healing in necrotizing enterocolitis, vocal fold healing during phonotrauma, and skin healing in the setting of diabetic foot ulcers. Modeling may help in understanding the complex interactions among the components of inflammation and response to stress, and therefore aid in the development of novel therapies and diagnostics.
Nonlinear model of epidemic spreading in a complex social network.
Kosiński, Robert A; Grabowski, A
2007-10-01
The epidemic spreading in a human society is a complex process, which can be described on the basis of a nonlinear mathematical model. In such an approach the complex and hierarchical structure of social network (which has implications for the spreading of pathogens and can be treated as a complex network), can be taken into account. In our model each individual has one of the four permitted states: susceptible, infected, infective, unsusceptible or dead. This refers to the SEIR model used in epidemiology. The state of an individual changes in time, depending on the previous state and the interactions with other individuals. The description of the interpersonal contacts is based on the experimental observations of the social relations in the community. It includes spatial localization of the individuals and hierarchical structure of interpersonal interactions. Numerical simulations were performed for different types of epidemics, giving the progress of a spreading process and typical relationships (e.g. range of epidemic in time, the epidemic curve). The spreading process has a complex and spatially chaotic character. The time dependence of the number of infective individuals shows the nonlinear character of the spreading process. We investigate the influence of the preventive vaccinations on the spreading process. In particular, for a critical value of preventively vaccinated individuals the percolation threshold is observed and the epidemic is suppressed.
Elastic Network Model of a Nuclear Transport Complex
Ryan, Patrick; Liu, Wing K.; Lee, Dockjin; Seo, Sangjae; Kim, Young-Jin; Kim, Moon K.
2010-05-01
The structure of Kap95p was obtained from the Protein Data Bank (www.pdb.org) and analyzed RanGTP plays an important role in both nuclear protein import and export cycles. In the nucleus, RanGTP releases macromolecular cargoes from importins and conversely facilitates cargo binding to exportins. Although the crystal structure of the nuclear import complex formed by importin Kap95p and RanGTP was recently identified, its molecular mechanism still remains unclear. To understand the relationship between structure and function of a nuclear transport complex, a structure-based mechanical model of Kap95p:RanGTP complex is introduced. In this model, a protein structure is simply modeled as an elastic network in which a set of coarse-grained point masses are connected by linear springs representing biochemical interactions at atomic level. Harmonic normal mode analysis (NMA) and anharmonic elastic network interpolation (ENI) are performed to predict the modes of vibrations and a feasible pathway between locked and unlocked conformations of Kap95p, respectively. Simulation results imply that the binding of RanGTP to Kap95p induces the release of the cargo in the nucleus as well as prevents any new cargo from attaching to the Kap95p:RanGTP complex.
Entropy, complexity, and Markov diagrams for random walk cancer models.
Newton, Paul K; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter
2014-12-19
The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.
BlenX-based compositional modeling of complex reaction mechanisms
Directory of Open Access Journals (Sweden)
Judit Zámborszky
2010-02-01
Full Text Available Molecular interactions are wired in a fascinating way resulting in complex behavior of biological systems. Theoretical modeling provides a useful framework for understanding the dynamics and the function of such networks. The complexity of the biological networks calls for conceptual tools that manage the combinatorial explosion of the set of possible interactions. A suitable conceptual tool to attack complexity is compositionality, already successfully used in the process algebra field to model computer systems. We rely on the BlenX programming language, originated by the beta-binders process calculus, to specify and simulate high-level descriptions of biological circuits. The Gillespie's stochastic framework of BlenX requires the decomposition of phenomenological functions into basic elementary reactions. Systematic unpacking of complex reaction mechanisms into BlenX templates is shown in this study. The estimation/derivation of missing parameters and the challenges emerging from compositional model building in stochastic process algebras are discussed. A biological example on circadian clock is presented as a case study of BlenX compositionality.
Study of nuclear level densities for exotic nuclei
International Nuclear Information System (INIS)
Nasrabadi, M. N.; Sepiani, M.
2012-01-01
Nuclear level density is one of the properties of nuclei with widespread applications in astrophysics and nuclear medicine. Since there has been little experimental and theoretical research on the study of nuclei which are far from stability line, studying nuclear level density for these nuclei is of crucial importance. Also, as nuclear level density is an important input for nuclear research codes, hence studying the methods for calculation of this parameter is essential. Besides introducing various methods and models for calculating nuclear level density for practical applications, we used exact spectra distribution (SPDM) for determining nuclear level density of two neutron and proton enriched exotic nuclei with the same mass number.
Development of a model for the description of highly excited states in odd-A deformed nuclei
International Nuclear Information System (INIS)
Malov, L.A.; Soloviev, V.G.
1975-01-01
An approximate method is suggested for solution of the set of equations, obtained earlier for describing the structure of intermediate-and high-excitation states within the framework of the model taking into account quasiparticle-phonon interaction. The analysis is conducted for the case of an odd deformed nucleus, when several one-quasiparticle components are simultaneously taken into account
Hubbard, R.
1974-01-01
The radially-streaming particle model for broad quasar and Seyfert galaxy emission features is modified to include sources of time dependence. The results are suggestive of reported observations of multiple components, variability, and transient features in the wings of Seyfert and quasi-stellar emission lines.