WorldWideScience

Sample records for modelling climate-change impacts

  1. Modeling climate change impacts on water trading.

    Science.gov (United States)

    Luo, Bin; Maqsood, Imran; Gong, Yazhen

    2010-04-01

    This paper presents a new method of evaluating the impacts of climate change on the long-term performance of water trading programs, through designing an indicator to measure the mean of periodic water volume that can be released by trading through a water-use system. The indicator is computed with a stochastic optimization model which can reflect the random uncertainty of water availability. The developed method was demonstrated in the Swift Current Creek watershed of Prairie Canada under two future scenarios simulated by a Canadian Regional Climate Model, in which total water availabilities under future scenarios were estimated using a monthly water balance model. Frequency analysis was performed to obtain the best probability distributions for both observed and simulated water quantity data. Results from the case study indicate that the performance of a trading system is highly scenario-dependent in future climate, with trading effectiveness highly optimistic or undesirable under different future scenarios. Trading effectiveness also largely depends on trading costs, with high costs resulting in failure of the trading program. (c) 2010 Elsevier B.V. All rights reserved.

  2. Conceptual Model of Climate Change Impacts at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual model of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).

  3. Modeling of climate change impacts on agriculture, forestry and fishery

    International Nuclear Information System (INIS)

    Bala, B.K.; Munnaf, M.A.

    2014-01-01

    Changes in climate affect agriculture, forest and fisheries. This paper examines the climate change impact on crop production, fishery and forestry using state - of - the - art modeling technique. Crop growth model InfoCrop was used to predict the climate change impacts on the yields of rice, wheat and maize in Bangladesh. Historical climate change scenario has little or no negative impacts on rice and wheat yields in Mymensingh and Dinajpur but IPCC climate change scenario has higher negative impacts. There is almost no change in the yields of maize for the historical climate change scenario in the Chittagong, Hill Tracts of but there is a small decrease in the yields of rice and maize for IPCC climate change scenario. A new statistical model to forecast climate change impacts on fishery in the world oceans has been developed. Total climate change impact on fishery in the Indian Ocean is negative and the predictor power is 94.14% for eastern part and 98.59% for the western part. Two models are presented for the mangrove forests of the Sundarbans. To bole volumes of the pioneer, intermediate and climax are simulated for three different logging strategies and the results have been discussed in this paper. (author)

  4. Selection of climate change scenario data for impact modelling

    DEFF Research Database (Denmark)

    Sloth Madsen, M; Fox Maule, C; MacKellar, N

    2012-01-01

    Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study...... illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make...... the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented...

  5. Which climatic modeling to assess climate change impacts on vineyards?

    OpenAIRE

    Quenol, Herve; Garcia De Cortazar Atauri, Inaki; Bois, Benjamin; Sturman, Andrew; Bonnardot, Valerie; Le Roux, Renan

    2017-01-01

    The impact of climatic change on viticulture is significant: main phenological stages appear earlier, wine characteristics are changing, ... This clearly illustrates the point that the adaptation of viticulture to climate change is crucial and should be based on simulations of future climate. Several types of models exist and are used to represent viticultural climates at various scales. In this paper, we propose a review of different types of climate models (methodology and uncertainties) an...

  6. Modelling climate change impacts on crop production for food security

    Czech Academy of Sciences Publication Activity Database

    Bindi, M.; Palosuo, T.; Trnka, Miroslav; Semenov, M. A.

    2015-01-01

    Roč. 65, SEP (2015), s. 3-5 ISSN 0936-577X Institutional support: RVO:67179843 Keywords : Crop production Upscaling * Climate change impact and adaptation assessments * Upscaling * Model ensembles Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.690, year: 2015

  7. Land use allocation model considering climate change impact

    Science.gov (United States)

    Lee, D. K.; Yoon, E. J.; Song, Y. I.

    2017-12-01

    In Korea, climate change adaptation plans are being developed for each administrative district based on impact assessments constructed in various fields. This climate change impact assessments are superimposed on the actual space, which causes problems in land use allocation because the spatial distribution of individual impacts may be different each other. This implies that trade-offs between climate change impacts can occur depending on the composition of land use. Moreover, the actual space is complexly intertwined with various factors such as required area, legal regulations, and socioeconomic values, so land use allocation in consideration of climate change can be very difficult problem to solve (Liu et al. 2012; Porta et al. 2013).Optimization techniques can generate a sufficiently good alternatives for land use allocation at the strategic level if only the fitness function of relationship between impact and land use composition are derived. It has also been noted that land use optimization model is more effective than the scenario-based prediction model in achieving the objectives for problem solving (Zhang et al. 2014). Therefore in this study, we developed a quantitative tool, MOGA (Multi Objective Genetic Algorithm), which can generate a comprehensive land use allocations considering various climate change impacts, and apply it to the Gangwon-do in Korea. Genetic Algorithms (GAs) are the most popular optimization technique to address multi-objective in land use allocation. Also, it allows for immediate feedback to stake holders because it can run a number of experiments with different parameter values. And it is expected that land use decision makers and planners can formulate a detailed spatial plan or perform additional analysis based on the result of optimization model. Acknowledgments: This work was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program (Project number: 2014001310006)"

  8. Modeling Impacts of Climate Change on Giant Panda Habitat

    Directory of Open Access Journals (Sweden)

    Melissa Songer

    2012-01-01

    Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

  9. Simulating climate change impact on soil erosion using RUSLE model

    Indian Academy of Sciences (India)

    Climate change, particularly due to the changed precipitation trend, can have a severe impact on soil erosion. The effect is more pronounced on the higher slopes of the Himalayan region. The goal of this study was to estimate the impact of climate change on soil erosion in a watershed of the Himalayan region using ...

  10. Appropriate modelling of climate change impacts on river flooding

    NARCIS (Netherlands)

    Booij, Martijn J.

    2002-01-01

    Global climate change is likely to increase temperatures, change precipitation patterns and probably raise the frequency of extreme events. Impacts of climate change on river flooding may be considerable and may cause enormous economical, social and environmental damage and even loss of lives. This

  11. Ensemble catchment hydrological modelling for climate change impact analysis

    Science.gov (United States)

    Vansteenkiste, Thomas; Ntegeka, Victor; Willems, Patrick

    2014-05-01

    It is vital to investigate how the hydrological model structure affects the climate change impact given that future changes not in the range for which the models were calibrated or validated are likely. Thus an ensemble modelling approach which involves a diversity of models with different structures such as spatial resolutions and process descriptions is crucial. The ensemble modelling approach was applied to a set of models: from the lumped conceptual models NAM, PDM and VHM, an intermediate detailed and distributed model WetSpa, to the highly detailed and fully distributed model MIKE-SHE. Explicit focus was given to the high and low flow extremes. All models were calibrated for sub flows and quick flows derived from rainfall and potential evapotranspiration (ETo) time series. In general, all models were able to produce reliable estimates of the flow regimes under the current climate for extreme peak and low flows. An intercomparison of the low and high flow changes under changed climatic conditions was made using climate scenarios tailored for extremes. Tailoring was important for two reasons. First, since the use of many scenarios was not feasible it was necessary to construct few scenarios that would reasonably represent the range of extreme impacts. Second, scenarios would be more informative as changes in high and low flows would be easily traced to changes of ETo and rainfall; the tailored scenarios are constructed using seasonal changes that are defined using different levels of magnitude (high, mean and low) for rainfall and ETo. After simulation of these climate scenarios in the five hydrological models, close agreement was found among the models. The different models predicted similar range of peak flow changes. For the low flows, however, the differences in the projected impact range by different hydrological models was larger, particularly for the drier scenarios. This suggests that the hydrological model structure is critical in low flow predictions

  12. Modelling the economic impacts of addressing climate change

    International Nuclear Information System (INIS)

    2002-01-01

    This Power Point report presents highlights of the latest economic modelling of Canada's Kyoto commitment to address climate change. It presents framework assumptions and a snapshot under 4 scenarios. The objective of this report is to evaluate the national, sectoral, provincial and territorial impacts of the federal reference case policy package in which the emissions reduction target is 170 Mt from a business-as-usual scenario. The reference case policy package also includes 30 Mt of sinks from current packages of which 20 Mt are derived from the forestry sector and the remainder from agricultural sector. The report examined 4 scenarios based on 2 international carbon prices ($10 and $50) per tonne of carbon dioxide in 2010. The scenarios were also based on the fiscal assumptions that climate change initiatives and revenue losses would directly affect the governments' balances, or that the government balances are maintained by increasing personal income tax. A comparison of impacts under each of the 4 scenarios to 2010 was presented. The model presents impacts on GDP, employment, disposable income per household, and energy prices. 4 tabs., 4 figs

  13. Estimating climate change impact on irrigation demand using integrated modelling

    International Nuclear Information System (INIS)

    Zupanc, Vesna; Pintar, Marina

    2004-01-01

    Water is basic element in agriculture, and along with the soil characteristics, it remains the essential for the growth and evolution of plants. Trends of air temperature and precipitation for Slovenia indicate the increase of the air temperature and reduction of precipitation during the vegetation period, which will have a substantial impact on rural economy in Slovenia. The impact of climate change will be substantial for soil the water balance. Distinctive drought periods in past years had great impact on rural plants in light soils. Climate change will most probably also result in drought in soils which otherwise provide optimal water supply for plants. Water balance in the cross section of the rooting depth is significant for the agriculture. Mathematical models enable smaller amount of measurements in a certain area by means of measurements carried out only in characteristic points serving for verification and calibration of the model. Combination of on site measurements and mathematical modelling proved to be an efficient method for understanding of processes in nature. Climate scenarios made for the estimation of the impact of climate change are based on the general circulation models. A study based on a hundred year set of monthly data showed that in Slovenia temperature would increase at min. by 2.3 o C, and by 5.6 o C at max and by 4.5 o C in average. Valid methodology for the estimate of the impact of climate change applies the model using a basic set of data for a thirty year period (1961-1990) and a changed set of climate input parameters on one hand, and, on the other, a comparison of output results of the model. Estimating climate change impact on irrigation demand for West Slovenia for peaches and nectarines grown on Cambisols and Fluvisols was made using computer model SWAP. SWAP is a precise and power too[ for the estimation of elements of soil water balance at the level of cross section of the monitored and studied profile from the soil surface

  14. Modeling Climate Change Impacts on Landscape Evolution, Fire, and Hydrology

    Science.gov (United States)

    Sheppard, B. S.; O Connor, C.; Falk, D. A.; Garfin, G. M.

    2015-12-01

    Landscape disturbances such as wildfire interact with climate variability to influence hydrologic regimes. We coupled landscape, fire, and hydrologic models and forced them using projected climate to demonstrate climate change impacts anticipated at Fort Huachuca in southeastern Arizona, USA. The US Department of Defense (DoD) recognizes climate change as a trend that has implications for military installations, national security and global instability. The goal of this DoD Strategic Environmental Research and Development Program (SERDP) project (RC-2232) is to provide decision making tools for military installations in the southwestern US to help them adapt to the operational realities associated with climate change. For this study we coupled the spatially explicit fire and vegetation dynamics model FireBGCv2 with the Automated Geospatial Watershed Assessment tool (AGWA) to evaluate landscape vegetation change, fire disturbance, and surface runoff in response to projected climate forcing. A projected climate stream for the years 2005-2055 was developed from the Multivariate Adaptive Constructed Analogs (MACA) 4 km statistical downscaling of the CanESM2 GCM using Representative Concentration Pathway (RCP) 8.5. AGWA, an ArcGIS add-in tool, was used to automate the parameterization and execution of the Soil Water Assessment Tool (SWAT) and the KINematic runoff and EROSion2 (KINEROS2) models based on GIS layers. Landscape raster data generated by FireBGCv2 project an increase in fire and drought associated tree mortality and a decrease in vegetative basal area over the years of simulation. Preliminary results from SWAT modeling efforts show an increase to surface runoff during years following a fire, and for future winter rainy seasons. Initial results from KINEROS2 model runs show that peak runoff rates are expected to increase 10-100 fold as a result of intense rainfall falling on burned areas.

  15. Modeling climate change impacts on overwintering bald eagles.

    Science.gov (United States)

    Harvey, Chris J; Moriarty, Pamela E; Salathé, Eric P

    2012-03-01

    Bald eagles (Haliaeetus leucocephalus) are recovering from severe population declines, and are exerting pressure on food resources in some areas. Thousands of bald eagles overwinter near Puget Sound, primarily to feed on chum salmon (Oncorhynchus keta) carcasses. We used modeling techniques to examine how anticipated climate changes will affect energetic demands of overwintering bald eagles. We applied a regional downscaling method to two global climate change models to obtain hourly temperature, precipitation, wind, and longwave radiation estimates at the mouths of three Puget Sound tributaries (the Skagit, Hamma Hamma, and Nisqually rivers) in two decades, the 1970s and the 2050s. Climate data were used to drive bald eagle bioenergetics models from December to February for each river, year, and decade. Bald eagle bioenergetics were insensitive to climate change: despite warmer winters in the 2050s, particularly near the Nisqually River, bald eagle food requirements declined only slightly (eagles in the 2050s. That estimate is likely conservative, as it does not account for decreased availability of carcasses due to anticipated increases in winter stream flow. Future climate-driven declines in winter food availability, coupled with a growing bald eagle population, may force eagles to seek alternate prey in the Puget Sound area or in more remote ecosystems.

  16. Selecting representative climate models for climate change impact studies : An advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; ter Maat, Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change

  17. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; Maat, ter Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change

  18. Impact of climate change on Taiwanese power market determined using linear complementarity model

    International Nuclear Information System (INIS)

    Tung, Ching-Pin; Tseng, Tze-Chi; Huang, An-Lei; Liu, Tzu-Ming; Hu, Ming-Che

    2013-01-01

    Highlights: ► Impact of climate change on average temperature is estimated. ► Temperature elasticity of demand is measured. ► Impact of climate change on Taiwanese power market determined. -- Abstract: The increase in the greenhouse gas concentration in the atmosphere causes significant changes in climate patterns. In turn, this climate change affects the environment, ecology, and human behavior. The emission of greenhouse gases from the power industry has been analyzed in many studies. However, the impact of climate change on the electricity market has received less attention. Hence, the purpose of this research is to determine the impact of climate change on the electricity market, and a case study involving the Taiwanese power market is conducted. First, the impact of climate change on temperature is estimated. Next, because electricity demand can be expressed as a function of temperature, the temperature elasticity of demand is measured. Then, a linear complementarity model is formulated to simulate the Taiwanese power market and climate change scenarios are discussed. Therefore, this paper establishes a simulation framework for calculating the impact of climate change on electricity demand change. In addition, the impact of climate change on the Taiwanese market is examined and presented.

  19. Probabilistic modeling of climate change impacts in permafrost regions

    Science.gov (United States)

    Anisimov, O.

    2009-04-01

    The new type of climate impact models has recently come into existence. Unlike conventional models, they take into account the probabilistic nature of climatic projections and small-scale spatial variability of permafrost parameters. In this study we describe the new stochastic permafrost modeling methodology and present the predictive results obtained for the Northern Eurasia under the ensemble climatic projection for the mid-21st century. Changes in permafrost are very illustrative of the impacts of global warming. It underlies about 22.8 million square km or 24% of the land area in the Northern Hemisphere and largely controls the state of the environment and socio-economical development in the northern lands. Observed and projected for the future warming is more pronounced in high latitudes, and there are indications that climatic change has already affected permafrost leading to deeper seasonal thawing and disappearance of the frozen ground in many locations. Particular concerns are associated with environmental and economical risks due to the damage of constructions, and with potential enhancement of the global warming through emission of greenhouse gases from thawing permafrost. Comprehensive permafrost projections are needed to predict such processes. We developed new type of stochastic model, which operates with the probability distribution functions of the parameters characterizing the state of permafrost. Air temperature, precipitation, snow depth, as well as vegetation and soil properties contribute to the variability of these parameters in space and over time, which is taken into account in the calculations of the statistical ensemble representing potential states of permafrost under the prescribed conditions. The model requires appropriate climatic and environmental data characterizing baseline or projected for the future conditions. Four gridded sets of climatic parameters constructed through spatial interpolation of meteorological observations and

  20. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    NARCIS (Netherlands)

    Hagemann, S.; Chen, Cui; Clark, D.B.; Folwell, S.; Gosling, S.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.

    2013-01-01

    Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three) and hydrological 5 models (eight) were used to systematically

  1. Multi-model approach to assess the impact of climate change on runoff

    Science.gov (United States)

    Dams, J.; Nossent, J.; Senbeta, T. B.; Willems, P.; Batelaan, O.

    2015-10-01

    The assessment of climate change impacts on hydrology is subject to uncertainties related to the climate change scenarios, stochastic uncertainties of the hydrological model and structural uncertainties of the hydrological model. This paper focuses on the contribution of structural uncertainty of hydrological models to the overall uncertainty of the climate change impact assessment. To quantify the structural uncertainty of hydrological models, four physically based hydrological models (SWAT, PRMS and a semi- and fully distributed version of the WetSpa model) are set up for a catchment in Belgium. Each model is calibrated using four different objective functions. Three climate change scenarios with a high, mean and low hydrological impact are statistically perturbed from a large ensemble of climate change scenarios and are used to force the hydrological models. This methodology allows assessing and comparing the uncertainty introduced by the climate change scenarios with the uncertainty introduced by the hydrological model structure. Results show that the hydrological model structure introduces a large uncertainty on both the average monthly discharge and the extreme peak and low flow predictions under the climate change scenarios. For the low impact climate change scenario, the uncertainty range of the mean monthly runoff is comparable to the range of these runoff values in the reference period. However, for the mean and high impact scenarios, this range is significantly larger. The uncertainty introduced by the climate change scenarios is larger than the uncertainty due to the hydrological model structure for the low and mean hydrological impact scenarios, but the reverse is true for the high impact climate change scenario. The mean and high impact scenarios project increasing peak discharges, while the low impact scenario projects increasing peak discharges only for peak events with return periods larger than 1.6 years. All models suggest for all scenarios a

  2. Workshop: Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Modeling Climate Change Impacts and Associated Economic Damages (2010 - part 1)

    Science.gov (United States)

    The purpose of this workshop Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis. focused on conceptual and methodological issues - integrated assessment modeling and valuation.

  3. Quantifying the impact of model inaccuracy in climate change impact assessment studies using an agro-hydrological model

    NARCIS (Netherlands)

    Droogers, P.; Loon, van A.F.; Immerzeel, W.W.

    2008-01-01

    Numerical simulation models are frequently applied to assess the impact of climate change on hydrology and agriculture. A common hypothesis is that unavoidable model errors are reflected in the reference situation as well as in the climate change situation so that by comparing reference to scenario

  4. Modeling the potential impacts of global climate change in ...

    African Journals Online (AJOL)

    One of the hottest issues in the recent environmental research worldwide has become the harmful effects of climate change on the ecosystems and environment due to global warming. Bangladesh is one of the most vulnerable countries not only in the South East Asia but also in the world. It is predicted that a large portion of ...

  5. Climate change - the impacts

    International Nuclear Information System (INIS)

    Reysset, Bertrand; Billes-Garabedian, Laurent; Henique, Julien; Pascal, Mathilde; Pirard, Philippe; Motreff, Yvon; Barbault, Robert; Weber, Jacques; Gate, Philippe; Salagnac, Jean-Luc; Desplat, Julien; Kounkou-Arnaud, Raphaelle

    2012-01-01

    This special dossier about the impacts of climate change is made of 6 contributions dealing with: the mitigation of climate effects and how to deal with them (Bertrand Reysset); how to dare and transmit (Laurent Billes-Garabedian); littoral risks, the Pas-de-Calais example (Julien Henique); extreme meteorological events and health impacts (Mathilde Pascal, Philippe Pirard, Yvon Motreff); Biodiversity and climate: the janus of global change (Robert Barbault, Jacques Weber); adapting agriculture to dryness and temperatures (Philippe Gate); Paris and the future heats of the year 2100 (Jean-Luc Salagnac, Julien Desplat, Raphaelle Kounkou-Arnaud)

  6. Climatic change and impacts: a general introduction

    International Nuclear Information System (INIS)

    Fantechi, R.; Almeida-Teixeira, M.E.; Maracchi, G.

    1991-01-01

    These proceedings are divided into six parts containing 29 technical papers. 1. An Overview of the Climatic System, 2. Past climate Changes, 3. Climate Processes and Climate Modelling, 4. Greenhouse Gas Induced Climate Change, 5. Climatic Impacts, 6. STUDENTS' PAPERS

  7. Implications of the choice and configuration of hydrologic models on the portrayal of climate change impact

    Science.gov (United States)

    Mendoza, P. A.; Clark, M. P.; Rajagopalan, B.; Mizukami, N.; Gutmann, E. D.

    2013-12-01

    Climate change studies involve several methodological choices that impact the hydrological sensitivities obtained. Among these, hydrologic model structure selection and parameter identification are particularly relevant and usually have a strong subjective component. This subjectivity is not only limited to engineering applications, but also extends to many of our research studies, resulting in problems such as missing processes in our models, inappropriate parameterizations and compensatory effects of model parameters. The goal of this research is to identify the role of model structures and parameter values on the assessment of hydrologic sensitivity to climate change. We conduct our study in three basins located in the Colorado Headwaters Region, using four different hydrologic models (PRMS, VIC, Noah and Noah-MP). We first compare both model performance and climate sensitivities using default parameterizations and parameter values calibrated with the Shuffled Complex Evolution algorithm. Our results demonstrate that calibration doesn't necessarily improve the representation of hydrological processes or decrease inter-model differences in the change of signature measures of hydrologic behavior with respect to a future climate scenario. We found that inter-model differences in hydrologic sensitivities to climate change may be larger than the climate change signal even after models have been calibrated. Results demonstrate that both model choice (after calibration) and parameter selection have important effects in the portrayal of climate change impacts, and work is ongoing to identify more robust modeling strategies that explicitly account for the subjectivity in these choices. Location of the basins of interest Hydrological models used in this study

  8. Modelling climate change impacts on stream habitat conditions

    DEFF Research Database (Denmark)

    Boegh, Eva; Conallin, John; Karthikeyan, Matheswaran

    required to conserve streams as biologically diverse and healthy ecosystems. Solutions to this intensifying conflict require a holistic approach whereby stream biota is related to their physical environment at catchment scale, as also demanded by the EU Water Framework Directive. In the present study......, climate impacts on stream ecological conditions were quantified by combining a heat and mass stream flow with a habitat suitability modelling approach. Habitat suitability indices were developed for stream velocity, water depth, water temperature and substrate. Generally, water depth was found...... to be the most critical factor for the stream ecological conditions at Sjælland, and field measurements show that water temperature is rising to damaging levels during low flow summer conditions. Using downstream longitudinal modelling of water flow and water temperature, it is found that shading by riparian...

  9. Estimation of climate change impact on water resources by using Bilan water balance model

    International Nuclear Information System (INIS)

    Horacek, Stanislav; Kasparek, Ladislav; Novicky, Oldrich

    2008-01-01

    Modelling of water balance under changed climate conditions has been carried out by T. G. Masaryk Water Research Institute in Prague for basins in the Czech Republic since 1990. The studies presently use climate change scenarios derived from simulations by regional climate models. Climate change scenarios are reflected in meteorological time-series for given catchment and subsequently used for simulation of water cycle components by using Bilan water balance model. Results of Bilan model simulations for input meteorological series not affected and affected by climate change scenarios give information for assessing the climate change impacts on output series of the model. The results of the studies generally show that annual runoff could largely decrease. The increased winter temperature could cause an increase in winter flows and a decrease in snow storage, and consequently, spring and summer outflows will decrease significantly, even to their current minimum values. The groundwater storage and base flow could also be highly reduced. The described method has been used in a number of research projects and operational applications. Its typical application is aimed at assessing possible impacts of climate change on surface water resources, whose availability can subsequently be analysed by using water management models of the individual basins. The Bilan model, particularly in combination with Modflow model, can also suitably be used for simulation and assessments of groundwater resources.

  10. Impact of climate change on river flooding assessed with different spatial model resolutions

    NARCIS (Netherlands)

    Booij, Martijn J.

    2005-01-01

    The impact of climate change on flooding in the river Meuse is assessed on a daily basis using spatially and temporally changed climate patterns and a hydrological model with three different spatial resolutions. This is achieved by selecting a hydrological modelling framework and implementing

  11. Impacts of climate change on farm income security in Central Asia: An integrated modeling approach

    OpenAIRE

    Bobojonov, Ihtiyor; Aw-Hassan, Aden

    2014-01-01

    Increased risk due to global warming has already become embedded in agricultural decision making in Central Asia and uncertainties are projected to increase even further. Agro-ecology and economies of Central Asia are heterogenous and very little is known about the impact of climate change at the sub-national levels. The bio-economic farm model (BEFM) is used for ex ante assessment of climate change impacts at sub-national levels in Central Asia. The BEFM is calibrated to 10 farming systems i...

  12. Ensembles modeling approach to study Climate Change impacts on Wheat

    Science.gov (United States)

    Ahmed, Mukhtar; Claudio, Stöckle O.; Nelson, Roger; Higgins, Stewart

    2017-04-01

    Simulations of crop yield under climate variability are subject to uncertainties, and quantification of such uncertainties is essential for effective use of projected results in adaptation and mitigation strategies. In this study we evaluated the uncertainties related to crop-climate models using five crop growth simulation models (CropSyst, APSIM, DSSAT, STICS and EPIC) and 14 general circulation models (GCMs) for 2 representative concentration pathways (RCP) of atmospheric CO2 (4.5 and 8.5 W m-2) in the Pacific Northwest (PNW), USA. The aim was to assess how different process-based crop models could be used accurately for estimation of winter wheat growth, development and yield. Firstly, all models were calibrated for high rainfall, medium rainfall, low rainfall and irrigated sites in the PNW using 1979-2010 as the baseline period. Response variables were related to farm management and soil properties, and included crop phenology, leaf area index (LAI), biomass and grain yield of winter wheat. All five models were run from 2000 to 2100 using the 14 GCMs and 2 RCPs to evaluate the effect of future climate (rainfall, temperature and CO2) on winter wheat phenology, LAI, biomass, grain yield and harvest index. Simulated time to flowering and maturity was reduced in all models except EPIC with some level of uncertainty. All models generally predicted an increase in biomass and grain yield under elevated CO2 but this effect was more prominent under rainfed conditions than irrigation. However, there was uncertainty in the simulation of crop phenology, biomass and grain yield under 14 GCMs during three prediction periods (2030, 2050 and 2070). We concluded that to improve accuracy and consistency in simulating wheat growth dynamics and yield under a changing climate, a multimodel ensemble approach should be used.

  13. Climate Change Impacts on US Water Quality using two Models: HAWQS and US Basins

    Science.gov (United States)

    Climate change and freshwater quality are well-linked. Changes in climate result in changes in streamflow and rising water temperatures, which impact biochemical reaction rates and increase stratification in lakes and reservoirs. Using two water quality modeling systems (the Hydr...

  14. Modeling anticipated climate change impact on biogeochemical cycles of an acidified headwater catchment

    Czech Academy of Sciences Publication Activity Database

    Benčoková, A.; Hruška, Jakub; Krám, P.

    2011-01-01

    Roč. 26, S (2011), S6-S8 ISSN 0883-2927 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : modeling anticipated * climate change * biogeochemical cycles * acidified headwater catchment Subject RIV: DD - Geochemistry Impact factor: 2.176, year: 2011

  15. Impacts of weighting climate models for hydro-meteorological climate change studies

    Science.gov (United States)

    Chen, Jie; Brissette, François P.; Lucas-Picher, Philippe; Caya, Daniel

    2017-06-01

    Weighting climate models is controversial in climate change impact studies using an ensemble of climate simulations from different climate models. In climate science, there is a general consensus that all climate models should be considered as having equal performance or in other words that all projections are equiprobable. On the other hand, in the impacts and adaptation community, many believe that climate models should be weighted based on their ability to better represent various metrics over a reference period. The debate appears to be partly philosophical in nature as few studies have investigated the impact of using weights in projecting future climate changes. The present study focuses on the impact of assigning weights to climate models for hydrological climate change studies. Five methods are used to determine weights on an ensemble of 28 global climate models (GCMs) adapted from the Coupled Model Intercomparison Project Phase 5 (CMIP5) database. Using a hydrological model, streamflows are computed over a reference (1961-1990) and future (2061-2090) periods, with and without post-processing climate model outputs. The impacts of using different weighting schemes for GCM simulations are then analyzed in terms of ensemble mean and uncertainty. The results show that weighting GCMs has a limited impact on both projected future climate in term of precipitation and temperature changes and hydrology in terms of nine different streamflow criteria. These results apply to both raw and post-processed GCM model outputs, thus supporting the view that climate models should be considered equiprobable.

  16. Climate change impacts: birds

    NARCIS (Netherlands)

    Tomotani, B.M.; Ramakers, J.J.C.; Gienapp, P.

    2016-01-01

    Climate change can affect populations and species in various ways. Rising temperatures can shift geographical distributions and lead to (phenotypic or genetic) changes in traits, mostly phenology, which may affect demography. Most of these effects are well documented in birds. For example, the

  17. The cascade of uncertainty in modeling the impacts of climate change on Europe's forests

    Science.gov (United States)

    Reyer, Christopher; Lasch-Born, Petra; Suckow, Felicitas; Gutsch, Martin

    2015-04-01

    Projecting the impacts of global change on forest ecosystems is a cornerstone for designing sustainable forest management strategies and paramount for assessing the potential of Europe's forest to contribute to the EU bioeconomy. Research on climate change impacts on forests relies to a large extent on model applications along a model chain from Integrated Assessment Models to General and Regional Circulation Models that provide important driving variables for forest models. Or to decision support systems that synthesize findings of more detailed forest models to inform forest managers. At each step in the model chain, model-specific uncertainties about, amongst others, parameter values, input data or model structure accumulate, leading to a cascade of uncertainty. For example, climate change impacts on forests strongly depend on the in- or exclusion of CO2-effects or on the use of an ensemble of climate models rather than relying on one particular climate model. In the past, these uncertainties have not or only partly been considered in studies of climate change impacts on forests. This has left managers and decision-makers in doubt of how robust the projected impacts on forest ecosystems are. We deal with this cascade of uncertainty in a structured way and the objective of this presentation is to assess how different types of uncertainties affect projections of the effects of climate change on forest ecosystems. To address this objective we synthesized a large body of scientific literature on modeled productivity changes and the effects of extreme events on plant processes. Furthermore, we apply the process-based forest growth model 4C to forest stands all over Europe and assess how different climate models, emission scenarios and assumptions about the parameters and structure of 4C affect the uncertainty of the model projections. We show that there are consistent regional changes in forest productivity such as an increase in NPP in cold and wet regions while

  18. Modeling the Impacts of Climate Change on Future Vietnamese Households : A Micro-Simulation Approach

    OpenAIRE

    Hallegatte, Stephane; Rozenberg, Julie

    2016-01-01

    The impacts of climate change on poverty depend on the magnitude of climate change, but also on demographic and socioeconomic trends. An analysis of hundreds of baseline scenarios for future economic development in the absence of climate change in Vietnam shows that the main determinant of the eradication of extreme poverty by 2030 is the income of unskilled agriculture workers, followed b...

  19. A framework for testing the ability of models to project climate change and its impacts

    DEFF Research Database (Denmark)

    Refsgaard, J. C.; Madsen, H.; Andréassian, V.

    2014-01-01

    Models used for climate change impact projections are typically not tested for simulation beyond current climate conditions. Since we have no data truly reflecting future conditions, a key challenge in this respect is to rigorously test models using proxies of future conditions. This paper presents...... a validation framework and guiding principles applicable across earth science disciplines for testing the capability of models to project future climate change and its impacts. Model test schemes comprising split-sample tests, differential split-sample tests and proxy site tests are discussed in relation...... to their application for projections by use of single models, ensemble modelling and space-time-substitution and in relation to use of different data from historical time series, paleo data and controlled experiments. We recommend that differential-split sample tests should be performed with best available proxy data...

  20. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    Directory of Open Access Journals (Sweden)

    S. Hagemann

    2013-05-01

    Full Text Available Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three and hydrological models (eight were used to systematically assess the hydrological response to climate change and project the future state of global water resources. This multi-model ensemble allows us to investigate how the hydrology models contribute to the uncertainty in projected hydrological changes compared to the climate models. Due to their systematic biases, GCM outputs cannot be used directly in hydrological impact studies, so a statistical bias correction has been applied. The results show a large spread in projected changes in water resources within the climate–hydrology modelling chain for some regions. They clearly demonstrate that climate models are not the only source of uncertainty for hydrological change, and that the spread resulting from the choice of the hydrology model is larger than the spread originating from the climate models over many areas. But there are also areas showing a robust change signal, such as at high latitudes and in some midlatitude regions, where the models agree on the sign of projected hydrological changes, indicative of higher confidence in this ensemble mean signal. In many catchments an increase of available water resources is expected but there are some severe decreases in Central and Southern Europe, the Middle East, the Mississippi River basin, southern Africa, southern China and south-eastern Australia.

  1. Exploring climate change impacts and adaptation options for maize production in the Central Rift Valley of Ethiopia using different climate change scenarios and crop models

    NARCIS (Netherlands)

    Kassie, B.T.; Asseng, S.; Rotter, R.P.; Hengsdijk, H.; Ruane, A.C.; Ittersum, van M.K.

    2015-01-01

    Exploring adaptation strategies for different climate change scenarios to support agricultural production and food security is a major concern to vulnerable regions, including Ethiopia. This study assesses the potential impacts of climate change on maize yield and explores specific adaptation

  2. Assessing climate change impacts on the Iberian power system using a coupled water-power model

    DEFF Research Database (Denmark)

    Cardenal, Silvio Javier Pereira; Madsen, Henrik; Arnbjerg-Nielsen, Karsten

    2014-01-01

    , these impacts have not yet been evaluated at the peninsular level. We coupled a hydrological model with a power market model to study three impacts of climate change on the current Iberian power system: changes in hydropower production caused by changes in precipitation and temperature, changes in temporal......Climate change is expected to have a negative impact on the power system of the Iberian Peninsula; changes in river runoff are expected to reduce hydropower generation, while higher temperatures are expected to increase summer electricity demand, when water resources are already limited. However...... patterns of electricity demand caused by temperature changes, and changes in irrigation water use caused by temperature and precipitation changes. A stochastic dynamic programming approach was used to develop operating rules for the integrated system given hydrological uncertainty. We found that changes...

  3. Workshop: Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Modeling Climate Change Impacts and Associated Economic Damages (2011 - part 2)

    Science.gov (United States)

    The purpose of this workshop Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis. focused on conceptual and methodological issues - estimating impacts and valuing damages on a sectoral basis.

  4. The influence of model structure on groundwater recharge rates in climate-change impact studies

    Science.gov (United States)

    Moeck, Christian; Brunner, Philip; Hunkeler, Daniel

    2016-08-01

    Numerous modeling approaches are available to provide insight into the relationship between climate change and groundwater recharge. However, several aspects of how hydrological model choice and structure affect recharge predictions have not been fully explored, unlike the well-established variability of climate model chains—combination of global climate models (GCM) and regional climate models (RCM). Furthermore, the influence on predictions related to subsoil parameterization and the variability of observation data employed during calibration remain unclear. This paper compares and quantifies these different sources of uncertainty in a systematic way. The described numerical experiment is based on a heterogeneous two-dimensional reference model. Four simpler models were calibrated against the output of the reference model, and recharge predictions of both reference and simpler models were compared to evaluate the effect of model structure on climate-change impact studies. The results highlight that model simplification leads to different recharge rates under climate change, especially under extreme conditions, although the different models performed similarly under historical climate conditions. Extreme weather conditions lead to model bias in the predictions and therefore must be considered. Consequently, the chosen calibration strategy is important and, if possible, the calibration data set should include climatic extremes in order to minimise model bias introduced by the calibration. The results strongly suggest that ensembles of climate projections should be coupled with ensembles of hydrogeological models to produce credible predictions of future recharge and with the associated uncertainties.

  5. Modeling climate change impact in hospitality sector, using building resources consumption signature

    Science.gov (United States)

    Pinto, Armando; Bernardino, Mariana; Silva Santos, António; Pimpão Silva, Álvaro; Espírito Santo, Fátima

    2016-04-01

    Hotels are one of building types that consumes more energy and water per person and are vulnerable to climate change because in the occurrence of extreme events (heat waves, water stress) same failures could compromise the hotel services (comfort) and increase energy cost or compromise the landscape and amenities due to water use restrictions. Climate impact assessments and the development of adaptation strategies require the knowledge about critical climatic variables and also the behaviour of building. To study the risk and vulnerability of buildings and hotels to climate change regarding resources consumption (energy and water), previous studies used building energy modelling simulation (BEMS) tools to study the variation in energy and water consumption. In general, the climate change impact in building is evaluated studying the energy and water demand of the building for future climate scenarios. But, hotels are complex buildings, quite different from each other and assumption done in simplified BEMS aren't calibrated and usually neglect some important hotel features leading to projected estimates that do not usually match hotel sector understanding and practice. Taking account all uncertainties, the use of building signature (statistical method) could be helpful to assess, in a more clear way, the impact of Climate Change in the hospitality sector and using a broad sample. Statistical analysis of the global energy consumption obtained from bills shows that the energy consumption may be predicted within 90% confidence interval only with the outdoor temperature. In this article a simplified methodology is presented and applied to identify the climate change impact in hospitality sector using the building energy and water signature. This methodology is applied to sixteen hotels (nine in Lisbon and seven in Algarve) with four and five stars rating. The results show that is expect an increase in water and electricity consumption (manly due to the increase in

  6. Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty.

    Science.gov (United States)

    Cheaib, Alissar; Badeau, Vincent; Boe, Julien; Chuine, Isabelle; Delire, Christine; Dufrêne, Eric; François, Christophe; Gritti, Emmanuel S; Legay, Myriam; Pagé, Christian; Thuiller, Wilfried; Viovy, Nicolas; Leadley, Paul

    2012-06-01

    Model-based projections of shifts in tree species range due to climate change are becoming an important decision support tool for forest management. However, poorly evaluated sources of uncertainty require more scrutiny before relying heavily on models for decision-making. We evaluated uncertainty arising from differences in model formulations of tree response to climate change based on a rigorous intercomparison of projections of tree distributions in France. We compared eight models ranging from niche-based to process-based models. On average, models project large range contractions of temperate tree species in lowlands due to climate change. There was substantial disagreement between models for temperate broadleaf deciduous tree species, but differences in the capacity of models to account for rising CO(2) impacts explained much of the disagreement. There was good quantitative agreement among models concerning the range contractions for Scots pine. For the dominant Mediterranean tree species, Holm oak, all models foresee substantial range expansion. © 2012 Blackwell Publishing Ltd/CNRS.

  7. Modeling climate change impacts on overwintering of Spodoptera exigua Hübner in regions of China

    Directory of Open Access Journals (Sweden)

    Xia-Lin Zheng

    2015-09-01

    Full Text Available Inferential models are usually used to evaluate the effect of winter warming on range expansion of insects. Generally, correlative approaches used to predict changes in the distributions of organisms are based on the assumption that climatic boundaries are fixed. Spodoptera exigua Htibner (Lepidoptera: Noctuidae overwinters as larvae or pupae in China regions. To understand the climate change impacts on overwintering of this species in regions of China, CLIMEX and Arc-GIS models were used to predict possible changes of distribution based on temperature. The climate change projection clearly indicated that the northern boundary of overwintering for S. exigua will shift northward from current distribution. Thus, the ongoing winter warming is likely to increase the frequency of S. exigua outbreaks.

  8. Modelling the Impacts of Climate Change on Tropospheric Ozone over three Centuries

    Science.gov (United States)

    Brandt Hedegaard, Gitte; Brandt, Jørgen; Christensen, Jesper H.; Gross, Allan; May, Wihelm; Hansen, Kaj M.; Skjøth, Carsten A.

    2010-05-01

    So far reduction of the anthropogenic emissions of chemical species to the atmosphere has been profoundly investigated. However, new research indicates that climate change on its own also has a significant impact on the future air pollution levels. Climate Change and its impact on air pollution levels are currently studied by a number of research groups using, global, hemispherical and regional modelling systems. In the Department of Atmospheric Environment, National Environmental Research Institute (NERI), Aarhus University, in Denmark, we have developed a hemispherical model system which is based on the DEHM model (Christensen, 1997; Frohn et al., 2002a; Frohn et al., 2002b). In the DEHM modelling system an option for modelling the impacts of climate change has been included by using meteorological input from global climate models. Here we present results by using climate data that are provided by the ECHAM5/MPI-OM Atmosphere-Ocean General Circulation Model (May, 2008; Roeckner et al., 2003). In the current experiment the anthropogenic emissions in the chemistry model DEHM are kept constant on a 2000 level to separate out the signal of climate change on air pollutants while the meteorological drivers simulated by the ECHAM5/MPI-OM climate model is based on the IPCC SRES A1B Scenario. To save computing time the experiment is carried out in time-slices representing four centuries (1890s, 1990s, 2090s and the 2190s). The results show that the dominating impacts from climate change on a large number of the chemical species are related to the predicted temperature increase. This temperature affects chemistry as well as emissions from nature. The largest changes in both meteorology and air quality is found to happen in the 21st century. However, significant changes are also found in some parameters including tropospheric ozone in the following century. In general the background ozone concentrations is predicted to decrease at surface level however in the densely

  9. Coupled water-energy modelling to assess climate change impacts on the Iberian Power System

    DEFF Research Database (Denmark)

    Pereira Cardenal, Silvio Javier; Madsen, H.; Riegels, N.

    . Temperature changes will shift a portion of the electricity demand from winter to summer months, resulting in increased electricity prices. The reduction of water availability caused by climate change will increase the competition between irrigation and power production, leading to a sharper trade-off between......Water resources systems and power systems are strongly linked; water is needed for most power generation technologies, and electricity is required in every stage of water usage. In the Iberian Peninsula, climate change is expected to have a negative impact on the power system: changes in runoff...... are expected to reduce hydropower generation and cooling water availability for thermal power generation; and higher temperatures are expected to increase (decrease) summer (winter) electricity demand, when water resources are already constrained. We use coupled hydrological and power system models to study...

  10. MODELLING THE POTENTIAL IMPACTS OF GLOBAL CLIMATE CHANGE IN BANGLADESH: AN OPTIMAL CONTROL APPROACH

    Directory of Open Access Journals (Sweden)

    H. A. Biswas

    2016-01-01

    Full Text Available One of the most hot issues in the recent environmental research worldwide has become the harmful effects of climate change on the ecosystems and environment due to global warming. Bangladesh is one of the most vulnerable countries not only in the South East Asia but also in the world. It is predicted that a large portion of the South-western region of Bangladesh will go under sea in the next 50 to 100 years due to sea level rise. In this paper, we first discuss some potential impacts of climate change in Bangladesh and its aftermath on the ecosystems and secondly, we study a mathematical model of climate change in terms of ordinary differential equations (ODEs and apply optimal control techniques in the form of Pontryagin Maximum Principle (PMP to investigate the control strategy of greenhouse gases (GHGs. We study the model numerically using some known nonlinear ‘optimal control solvers’ and the results are illustrated with numerical simulations.

  11. Climate Change Impacts on US Water Quality Using Two Models: HAWQS and US Basins

    Directory of Open Access Journals (Sweden)

    Charles Fant

    2017-02-01

    Full Text Available Climate change and freshwater quality are well-linked. Changes in climate result in changes in streamflow and rising water temperatures, which impact biochemical reaction rates and increase stratification in lakes and reservoirs. Using two water quality modeling systems (the Hydrologic and Water Quality System; HAWQS and US Basins, five climate models, and two greenhouse gas (GHG mitigation policies, we assess future water quality in the continental U.S. to 2100 considering four water quality parameters: water temperature, dissolved oxygen, total nitrogen, and total phosphorus. Once these parameters are aggregated into a water quality index, we find that, while the water quality models differ under the baseline, there is more agreement between future projections. In addition, we find that the difference in national-scale economic benefits across climate models is generally larger than the difference between the two water quality models. Both water quality models find that water quality will more likely worsen in the East than in the West. Under the business-as-usual emissions scenario, we find that climate change is likely to cause economic impacts ranging from 1.2 to 2.3 (2005 billion USD/year in 2050 and 2.7 to 4.8 in 2090 across all climate and water quality models.

  12. Improving models to assess impacts of climate change on Mediterranean water resources

    Science.gov (United States)

    Rocha, João; Carvalho Santos, Cláudia; Keizer, Jan Jacob; Alexandre Diogo, Paulo; Nunes, João Pedro

    2016-04-01

    In recent decades, water availability for human consumption has faced major constraints due to increasing pollution and reduced water availability. Water resources availability can gain additional stresses and pressures in the context of potential climate change scenarios. For the last decades, the climate change paradigm has been the scope of many researchers and the focus of decision makers, policies and environmental/climate legislation. Decision-makers face a wide range of constrains, as they are forced to define new strategies that merge planning, management and climate change adaptations. In turn, decision-makers must create integrated strategies aiming at the sustainable use of resources. There are multiple uncertainties associated with climate change impact assessment and water resources. Typically, most studies have dealt with uncertainties in emission scenarios and resulting socio-economic conditions, including land-use and water use. Less frequently, studies have address the disparities between the future climates generated by climate models for the same greenhouse gas concentrations; and the uncertainties related with the limited knowledge of how watersheds work, which also limits the capacity to simulate them with models. Therefore, the objective of this study is to apply the SWAT (Soil and Water Assessment Tool) hydrological model to a catchment in Alentejo, southern Portugal; and to evaluate the uncertainty associated both to the calibration of hydrological models and the use of different climate change scenarios and models (a combination of 4 GCM (General Circulation Models) and 1 RCM (Regional Circulation Models) for the scenarios RCP 4.5 and 8.5. The Alentejo region is highly vulnerable to the effects of potential climate changes with particular focus on water resources availability, despite several reservoirs used for freshwater supply and agriculture irrigation (e.g. the Alqueva reservoir - the largest artificial lake of the Iberian Peninsula

  13. A multi-model integrated assessment of the impacts of climate change in Washington State

    Science.gov (United States)

    McGuire Elsner, M.; Salathe, E. P.; Hamlet, A. F.; Lettenmaier, D. P.; Miles, E. L.

    2008-12-01

    In April 2007, the State of Washington passed legislation mandating a comprehensive statewide assessment of the impacts of climate change over the next 100 years. The Climate Impacts Group (CIG) at the University of Washington Joint Institute for the Study of the Atmosphere and Ocean (JISAO) is working with Washington State University, Pacific Northwest National Laboratory, and state agencies to perform an integrated assessment on the effects of climate change for eight statewide sectors: public health, agriculture, the coastal zone, forest ecosystems, salmon, infrastructure, energy, and water supply and management. An additional Climate Scenarios Working Group serves the eight other sectors by providing projections of future regional climate, downscaled to 1/16th degree spatial resolution over the state of Washington. We utilize projections from A1B and B1 greenhouse gas emissions scenarios, as simulated by the full suite of 20 GCMs, archived in the 2007 Fourth Assessment Report of the IPCC. In this approach, we apply 40 ensembles of statistically downscaled future climate to drive hydrologic model simulations. Each sector incorporates the projections of climatic and hydrologic variables in their evaluations of the impacts of climate change. Here we present impacts on hydrologic variables (such as snowpack and streamflow), as well as related implications for several of the sectors listed above, over the State of Washington for three periods: the 2020s, 2040s and 2080s. We also discuss CIG's collaboration with multi-stakeholder adaptation working groups to identify potential barriers to adaptation and strategies to address the projected impacts in each sector.

  14. The impacts of climate change on energy: An aggregate expenditure model for the US

    International Nuclear Information System (INIS)

    Morrison, W.; Mendelsohn, R.

    1998-01-01

    This paper develops a theoretical model to measure the climate change impacts to the energy sector. Welfare effects are approximately equal to the resulting change in expenditures on energy and buildings. Using micro data on individuals and firms across the United States, energy expenditures are regressed on climate and other control variables to estimate both short-run and long-run climate response functions. The analysis suggests that energy expenditures have a quadratic U-shaped relationship with respect to temperature. Future warming of 2 C is predicted to cause annual damages of about $6 billion but increases of 5 C would increase damages to almost $30 billion

  15. Curonian Lagoon drainage basin modelling and assessment of climate change impact

    Directory of Open Access Journals (Sweden)

    Natalja Čerkasova

    2016-04-01

    Full Text Available The Curonian Lagoon, which is the largest European coastal lagoon with a surface area of 1578 km2 and a drainage area of 100,458 km2, is facing a severe eutrophication problem. With its increasing water management difficulties, the need for a sophisticated hydrological model of the Curonian Lagoon's drainage area arose, in order to assess possible changes resulting from local and global processes. In this study, we developed and calibrated a sophisticated hydrological model with the required accuracy, as an initial step for the future development of a modelling framework that aims to correctly predict the movement of pesticides, sediments or nutrients, and to evaluate water-management practices. The Soil and Water Assessment Tool was used to implement a model of the study area and to assess the impact of climate-change scenarios on the run-off of the Nemunas River and the Minija River, which are located in the Curonian Lagoons drainage basin. The models calibration and validation were performed using monthly streamflow data, and evaluated using the coefficient of determination (R2 and the Nash-Sutcliffe model efficiency coefficient (NSE. The calculated values of the R2 and NSE for the Nemunas and Minija Rivers stations were 0.81 and 0.79 for the calibration, and 0.679 and 0.602 for the validation period. Two potential climate-change scenarios were developed within the general patterns of near-term climate projections, as defined by the Intergovernmental Panel on Climate Change Fifth Assessment Report: both pessimistic (substantial changes in precipitation and temperature and optimistic (insubstantial changes in precipitation and temperature. Both simulations produce similar general patterns in river-discharge change: a strong increase (up to 22% in the winter months, especially in February, a decrease during the spring (up to 10% and summer (up to 18%, and a slight increase during the autumn (up to 10%.

  16. Climate change impact assessment on hydrology of a small watershed using semi-distributed model

    Science.gov (United States)

    Pandey, Brij Kishor; Gosain, A. K.; Paul, George; Khare, Deepak

    2017-07-01

    This study is an attempt to quantify the impact of climate change on the hydrology of Armur watershed in Godavari river basin, India. A GIS-based semi-distributed hydrological model, soil and water assessment tool (SWAT) has been employed to estimate the water balance components on the basis of unique combinations of slope, soil and land cover classes for the base line (1961-1990) and future climate scenarios (2071-2100). Sensitivity analysis of the model has been performed to identify the most critical parameters of the watershed. Average monthly calibration (1987-1994) and validation (1995-2000) have been performed using the observed discharge data. Coefficient of determination (R2), Nash-Sutcliffe efficiency (ENS) and root mean square error (RMSE) were used to evaluate the model performance. Calibrated SWAT setup has been used to evaluate the changes in water balance components of future projection over the study area. HadRM3, a regional climatic data, have been used as input of the hydrological model for climate change impact studies. In results, it was found that changes in average annual temperature (+3.25 °C), average annual rainfall (+28 %), evapotranspiration (28 %) and water yield (49 %) increased for GHG scenarios with respect to the base line scenario.

  17. Variation in estimated ozone-related health impacts of climate change due to modeling choices and assumptions.

    Science.gov (United States)

    Post, Ellen S; Grambsch, Anne; Weaver, Chris; Morefield, Philip; Huang, Jin; Leung, Lai-Yung; Nolte, Christopher G; Adams, Peter; Liang, Xin-Zhong; Zhu, Jin-Hong; Mahoney, Hardee

    2012-11-01

    Future climate change may cause air quality degradation via climate-induced changes in meteorology, atmospheric chemistry, and emissions into the air. Few studies have explicitly modeled the potential relationships between climate change, air quality, and human health, and fewer still have investigated the sensitivity of estimates to the underlying modeling choices. Our goal was to assess the sensitivity of estimated ozone-related human health impacts of climate change to key modeling choices. Our analysis included seven modeling systems in which a climate change model is linked to an air quality model, five population projections, and multiple concentration-response functions. Using the U.S. Environmental Protection Agency's (EPA's) Environmental Benefits Mapping and Analysis Program (BenMAP), we estimated future ozone (O(3))-related health effects in the United States attributable to simulated climate change between the years 2000 and approximately 2050, given each combination of modeling choices. Health effects and concentration-response functions were chosen to match those used in the U.S. EPA's 2008 Regulatory Impact Analysis of the National Ambient Air Quality Standards for O(3). Different combinations of methodological choices produced a range of estimates of national O(3)-related mortality from roughly 600 deaths avoided as a result of climate change to 2,500 deaths attributable to climate change (although the large majority produced increases in mortality). The choice of the climate change and the air quality model reflected the greatest source of uncertainty, with the other modeling choices having lesser but still substantial effects. Our results highlight the need to use an ensemble approach, instead of relying on any one set of modeling choices, to assess the potential risks associated with O(3)-related human health effects resulting from climate change.

  18. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    DEFF Research Database (Denmark)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian

    2016-01-01

    on hydrology for a 486 km2 catchment in Denmark and to evaluate the sensitivity of the results to the choice of hydrological model. Three hydrological models, NAM, SWAT and MIKE SHE, were constructed and calibrated using similar methods. Each model was forced with results from four climate models and four land......Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes...... use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared...

  19. Impacts of Climate Change on Surface Ozone and Intercontinental Ozone Pollution: A Multi-Model Study

    Science.gov (United States)

    Doherty, R. M.; Wild, O.; Shindell, D. T.; Zeng, G.; MacKenzie, I. A.; Collins, W. J.; Fiore, A. M.; Stevenson, D. S.; Dentener, F. J.; Schultz, M. G.; hide

    2013-01-01

    The impact of climate change between 2000 and 2095 SRES A2 climates on surface ozone (O)3 and on O3 source-receptor (S-R) relationships is quantified using three coupled climate-chemistry models (CCMs). The CCMs exhibit considerable variability in the spatial extent and location of surface O3 increases that occur within parts of high NOx emission source regions (up to 6 ppbv in the annual average and up to 14 ppbv in the season of maximum O3). In these source regions, all three CCMs show a positive relationship between surface O3 change and temperature change. Sensitivity simulations show that a combination of three individual chemical processes-(i) enhanced PAN decomposition, (ii) higher water vapor concentrations, and (iii) enhanced isoprene emission-largely reproduces the global spatial pattern of annual-mean surface O3 response due to climate change (R2 = 0.52). Changes in climate are found to exert a stronger control on the annual-mean surface O3 response through changes in climate-sensitive O3 chemistry than through changes in transport as evaluated from idealized CO-like tracer concentrations. All three CCMs exhibit a similar spatial pattern of annual-mean surface O3 change to 20% regional O3 precursor emission reductions under future climate compared to the same emission reductions applied under present-day climate. The surface O3 response to emission reductions is larger over the source region and smaller downwind in the future than under present-day conditions. All three CCMs show areas within Europe where regional emission reductions larger than 20% are required to compensate climate change impacts on annual-mean surface O3.

  20. Evaluating the impacts of climate change on diurnal wind power cycles using multiple regional climate models

    KAUST Repository

    Goddard, Scott D.

    2015-05-01

    Electrical utility system operators must plan resources so that electricity supply matches demand throughout the day. As the proportion of wind-generated electricity in the US grows, changes in daily wind patterns have the potential either to disrupt the utility or increase the value of wind to the system over time. Wind power projects are designed to last many years, so at this timescale, climate change may become an influential factor on wind patterns. We examine the potential effects of climate change on the average diurnal power production cycles at 12 locations in North America by analyzing averaged and individual output from nine high-resolution regional climate models comprising historical (1971–1999) and future (2041–2069) periods. A semi-parametric mixed model is fit using cubic B-splines, and model diagnostics are checked. Then, a likelihood ratio test is applied to test for differences between the time periods in the seasonal daily averaged cycles, and agreement among the individual regional climate models is assessed. We investigate the significant changes by combining boxplots with a differencing approach and identify broad categories of changes in the amplitude, shape, and position of the average daily cycles. We then discuss the potential impact of these changes on wind power production.

  1. Potential Impacts of Climate Change on World Food Supply: Datasets from a Major Crop Modeling Study

    Data.gov (United States)

    National Aeronautics and Space Administration — Datasets from a Major Crop Modeling Study contain projected country and regional changes in grain crop yields due to global climate change. Equilibrium and transient...

  2. The role of hydrological model complexity and uncertainty in climate change impact assessment

    Directory of Open Access Journals (Sweden)

    D. Caya

    2009-08-01

    Full Text Available Little quantitative knowledge is as yet available about the role of hydrological model complexity for climate change impact assessment. This study investigates and compares the varieties of different model response of three hydrological models (PROMET, Hydrotel, HSAMI, each representing a different model complexity in terms of process description, parameter space and spatial and temporal scale. The study is performed in the Ammer watershed, a 709 km2 catchment in the Bavarian alpine forelands, Germany. All models are driven and validated by a 30-year time-series (1971–2000 of observation data. It is expressed by objective functions, that all models, HSAMI and Hydrotel due to calibration, perform almost equally well for runoff simulation over the validation period. Some systematic deviances in the hydrographs and the spatial patterns of hydrologic variables are however quite distinct and thus further discussed.

    Virtual future climate (2071–2100 is generated by the Canadian Regional Climate Model (vers 3.7.1, driven by the Coupled Global Climate Model (vers. 2 based on an A2 emission scenario (IPCC 2007. The hydrological model performance is evaluated by flow indicators, such as flood frequency, annual 7-day and 30-day low flow and maximum seasonal flows. The modified climatic boundary conditions cause dramatic deviances in hydrologic model response. HSAMI shows tremendous overestimation of evapotranspiration, while Hydrotel and PROMET behave in comparable range. Still, their significant differences, like spatially explicit patterns of summerly water shortage or spring flood intensity, highlight the necessity to extend and quantify the uncertainty discussion in climate change impact analysis towards the remarkable effect of hydrological model complexity. It is obvious that for specific application purposes, water resources managers need to be made aware of this effect and have to take its implications into account for

  3. Construction of climate change scenarios from transient climate change experiments for the IPCC impacts assessment

    International Nuclear Information System (INIS)

    Viner, D.; Hulme, M.; Raper, S.C.B.; Jones, P.D.

    1994-01-01

    This paper outlines the different methods which may be used for the construction of regional climate change scenarios. The main focus of the paper is the construction of global climate change scenarios from climate change experiments carried out using General Circulation Models (GCMS) An introduction to some GCM climate change experiments highlights the difference between model types and experiments (e.g., equilibrium or transient). The latest generation of climate change experiments has been performed using fully coupled ocean-atmosphere GCMS. These allow transient simulations of climate change to be performed with respect to a given greenhouse gas forcing scenario. There are, however, a number of problems with these simulations which pose difficulties for the construction of climate change scenarios for use in climate change impacts assessment. The characteristics of the transient climate change experiments which pose difficulties for the construction of climate change scenarios are discussed. Three examples of these problems are: different climate change experiments use different greenhouse gas concentration scenarios; the 'cold-start' problem makes it difficult to link future projections of climate change to a given calendar year; a drift of the climate is noticeable in the control simulations. In order to construct climate change scenarios for impacts assessment a method has therefore to be employed which addresses these problems. At present the climate modeling and climate change impacts communities are somewhat polarized in their approach to spatial scales. Current GCMs model the climate at resolutions larger than 2.5 x 3.75 degree, while the majority of impacts assessment studies are undertaken at scales below 50km (or 0.5 degree). This paper concludes by addressing the problems in bringing together these two different modeling perspectives by presenting a number of regional climate change scenarios. 35 refs., 8 figs., 2 tabs

  4. Papers of the CWRA climate change symposium : understanding climate change impacts on Manitoba's water resources

    International Nuclear Information System (INIS)

    2003-01-01

    This symposium provided an opportunity for discussions on climate change issues with particular reference to the impacts on Manitoba's water resources. The presentations addressed issues of importance to governments, scientists, academics, managers, consultants and the general public. Topics of discussion ranged from climate change impacts on water quality, wetlands, hydropower, fisheries and drought, to adaptation to climate change. Recent advances in global and regional climate modelling were highlighted along with paleo-environmental indicators of climate change. The objective was to provide a better understanding of the science of climate change. The conference featured 16 presentations of which 1 was indexed separately for inclusion in this database. refs., tabs., figs

  5. Assessment of Climate Change Impacts on Water Resources in Zarrinehrud Basin Using SWAT Model

    Directory of Open Access Journals (Sweden)

    B. Mansouri

    2015-06-01

    Full Text Available This paper evaluate impacts of climate change on temperature, rainfall and runoff in the future Using statistical model, LARS-WG, and conceptual hydrological model, SWAT. In order to the Zarrinehrud river basin, as the biggest catchment of the Lake Urmia basin was selected as a case study. At first, for the generation of future weather data in the basin, LARS-WG model was calibrated using meteorological data and then 14 models of AOGCM were applied and results of these models were downscaled using LARS-WG model in 6 synoptic stations for period of 2015 to 2030. SWAT model was used for evaluation of climate change impacts on runoff in the basin. In order to, the model was calibrated and validated using 6 gauging stations for period of 1987-2007 and the value of R2 was between 0.49 and 0.71 for calibration and between 0.54 and 0.77 for validation. Then by introducing average of downscaled results of AOGCM models to the SWAT, runoff changes of the basin were simulated during 2015-2030. Average of results of LARS-WG model indicated that the monthly mean of minimum and maximum temperatures will increase compared to the baseline period. Also monthly average of precipitation will decrease in spring season but will increase in summer and autumn. The results showed that in addition to the amount of precipitation, its pattern will change in the future period, too. The results of runoff simulation showed that the amount of inflow to the Zarrinehrud reservoir will reduce 28.4 percent compared to the baseline period.

  6. Modelling the impact of climate change on woody plant population dynamics in South African savanna

    Directory of Open Access Journals (Sweden)

    Jeltsch Florian

    2004-12-01

    Full Text Available Abstract Background In Southern Africa savannas climate change has been proposed to alter rainfall, the most important environmental driver for woody plants. Woody plants are a major component of savanna vegetation determining rangeland condition and biodiversity. In this study we use a spatially explicit, stochastic computer model to assess the impact of climate change on the population dynamics of Grewia flava, a common, fleshy-fruited shrub species in the southern Kalahari. Understanding the population dynamics of Grewia flava is a crucial task, because it is widely involved in the shrub/bush encroachment process, a major concern for rangeland management due to its adverse effect on livestock carrying capacity and biodiversity. Results For our study we consider four climate change scenarios that have been proposed for the southern Kalahari for the coming decades: (1 an increase in annual precipitation by 30–40%, (2 a decrease by 5–15%, (3 an increase in variation of extreme rainfall years by 10–20%, (4 and increase in temporal auto-correlation, i.e. increasing length and variation of periodic rainfall oscillations related to El Niño/La Niña phenomena. We evaluate the slope z of the time-shrub density relationship to quantify the population trend. For each climate change scenario we then compared the departure of z from typical stable population dynamics under current climatic conditions. Based on the simulation experiments we observed a positive population trend for scenario (1 and a negative trend for scenario (2. In terms of the projected rates of precipitation change for scenario (3 and (4 population dynamics were found to be relatively stable. However, for a larger increase in inter-annual variation or in temporal auto-correlation of rainfall population trends were negative, because favorable rainfall years had a limited positive impact due to the limited shrub carrying capacity. Conclusions We conclude that a possible increase in

  7. Modelling the impact of climate change on woody plant population dynamics in South African savanna.

    Science.gov (United States)

    Tews, Jörg; Jeltsch, Florian

    2004-12-17

    In Southern Africa savannas climate change has been proposed to alter rainfall, the most important environmental driver for woody plants. Woody plants are a major component of savanna vegetation determining rangeland condition and biodiversity. In this study we use a spatially explicit, stochastic computer model to assess the impact of climate change on the population dynamics of Grewia flava, a common, fleshy-fruited shrub species in the southern Kalahari. Understanding the population dynamics of Grewia flava is a crucial task, because it is widely involved in the shrub/bush encroachment process, a major concern for rangeland management due to its adverse effect on livestock carrying capacity and biodiversity. For our study we consider four climate change scenarios that have been proposed for the southern Kalahari for the coming decades: (1) an increase in annual precipitation by 30-40%, (2) a decrease by 5-15%, (3) an increase in variation of extreme rainfall years by 10-20%, (4) and increase in temporal auto-correlation, i.e. increasing length and variation of periodic rainfall oscillations related to El Nino/La Nina phenomena. We evaluate the slope z of the time-shrub density relationship to quantify the population trend. For each climate change scenario we then compared the departure of z from typical stable population dynamics under current climatic conditions. Based on the simulation experiments we observed a positive population trend for scenario (1) and a negative trend for scenario (2). In terms of the projected rates of precipitation change for scenario (3) and (4) population dynamics were found to be relatively stable. However, for a larger increase in inter-annual variation or in temporal auto-correlation of rainfall population trends were negative, because favorable rainfall years had a limited positive impact due to the limited shrub carrying capacity. We conclude that a possible increase in precipitation will strongly facilitate shrub encroachment

  8. Global climate change impacts on forests and markets

    Science.gov (United States)

    Xiaohui Tian; Brent Sohngen; John B Kim; Sara Ohrel; Jefferson Cole

    2016-01-01

    This paper develops an economic analysis of climate change impacts in the global forest sector. It illustrates how potential future climate change impacts can be integrated into a dynamic forestry economics model using data from a global dynamic vegetation model, theMC2model. The results suggest that climate change will cause forest outputs (such as timber) to increase...

  9. Schneider lecture: From climate change impacts to climate change risks

    Science.gov (United States)

    Field, C. B.

    2014-12-01

    Steve Schneider was a strong proponent of considering the entire range of possible climate-change outcomes. He wrote and spoke frequently about the importance of low probability/high consequence outcomes as well as most likely outcomes. He worked tirelessly on communicating the risks from overlapping stressors. Technical and conceptual issues have made it difficult for Steve's vision to reach maturity in mainstream climate-change research, but the picture is changing rapidly. The concept of climate-change risk, considering both probability and consequence, is central to the recently completed IPCC Fifth Assessment Report, and the concept frames much of the discussion about future research agendas. Framing climate change as a challenge in managing risks is important for five core reasons. First, conceptualizing the issue as being about probabilities builds a bridge between current climate variability and future climate change. Second, a formulation based on risks highlights the fact that climate impacts occur primarily in extremes. For historical variability and future impacts, the real concern is the conditions under which things break and systems fail, namely, in the extremes. Third, framing the challenge as one of managing risks puts a strong emphasis on exploring the full range of possible outcomes, including low-probability, high/consequence outcomes. Fourth, explaining climate change as a problem in managing risks links climate change to a wide range of sophisticated risk management tools and strategies that underpin much of modern society. Fifth, the concept of climate change as a challenge in managing risks helps cement the understanding that climate change is a threat multiplier, adding new dimensions and complexity to existing and emerging problems. Framing climate change as a challenge in managing risks creates an important but difficult agenda for research. The emphasis needs to shift from most likely outcomes to most risky outcomes, considering the full

  10. Climate change impacts and adaptations

    DEFF Research Database (Denmark)

    Arndt, Channing; Tarp, Finn

    2015-01-01

    , the inseparability of the development and climate agendas, and the rate of assimilation of climate and development information in key institutions. They are drawn from the Development Under Climate Change (DUCC) project carried out by UNU-WIDER of which the countries of the Greater Zambeze Valley formed a part......In this article, we assert that developing countries are much better prepared to undertake negotiations at the Conference of the Parties in Paris (CoP21) as compared to CoP15 in Copenhagen. An important element of this is the accumulation of knowledge with respect to the implications of climate...... change and the ongoing internalization thereof by key institutions in developing countries. The articles in this special issue set forth a set of technical contributions to this improved understanding. We also summarize five major lessons related to uncertainty, extreme events, timing of impacts...

  11. Modelling the Impact of Human Actors on Groundwater Resources under Conditions of Climate Change

    Science.gov (United States)

    Barthel, R.; Reichenau, T. G.; Krimly, T.; Dabbert, S.; Schneider, K.; Mauser, W.; Hennicker, R.

    2012-12-01

    Water resources, activities of human actors and climate change are related in many different and complex ways because of the existence of and strong interactions between various influencing factors, including those that are natural-environmental and socio-economic. The GLOWA-Danube research cooperation has developed the integrated simulation system DANUBIA to simulate water-related influences of global change in different spatial and temporal contexts. DANUBIA is a modular system comprised of 17 dynamically-coupled, process-based model components and a framework which controls the interaction of these components with respect to space and time. This contribution describes approaches and capabilities of DANUBIA with regard to the simulation of global change effects on human decisions in water related fields with a focus on agriculture and groundwater. In agriculture, market prices and legislation can be equally or even more important than water availability in determining farmers' behavior and thus in determining the agricultural impact on water resources quantity and quality. The DANUBIA simulation framework and the associated DeepActor-framework for simulation of decision-making by human actors are presented together with the model components which are most relevant to the interactions between agriculture and groundwater. The approach for developing combination climate and socio-economic scenarios is explained. Exemplary scenario results are shown for the Upper Danube Catchment in Southern Germany. References Barthel, R., Janisch, S., N. Schwarz, A. Trifkovic, D. Nickel, C. Schulz, W. Mauser (2008): An integrated modelling framework for simulating regional-scale actor responses to global change in the water domain. Environmental Modelling and Software, 23, 1095-1121 (doi:10.1016/j.envsoft.2008.02.004) Barthel, R., Reichenau T., Krimly, T., Dabbert, S., Schneider, K., Mauser, W. (2012) Integrated modeling of climate change impacts on agriculture and groundwater

  12. The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host-parasite interactions.

    Science.gov (United States)

    Kutz, Susan J; Jenkins, Emily J; Veitch, Alasdair M; Ducrocq, Julie; Polley, Lydden; Elkin, Brett; Lair, Stephane

    2009-08-07

    Climate change is influencing the structure and function of natural ecosystems around the world, including host-parasite interactions and disease emergence. Understanding the influence of climate change on infectious disease at temperate and tropical latitudes can be challenging because of numerous complicating biological, social, and political factors. Arctic and Subarctic regions may be particularly good models for unraveling the impacts of climate change on parasite ecology because they are relatively simple systems with low biological diversity and few other complicating anthropogenic factors. We examine some changing dynamics of host-parasite interactions at high latitudes and use these to illustrate a framework for approaching understanding, preventing, and mitigating climate change impacts on infectious disease, including zoonoses, in wildlife.

  13. Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum

    Science.gov (United States)

    Sulzbacher, H.; Wiederhold, H.; Siemon, B.; Grinat, M.; Igel, J.; Burschil, T.; Günther, T.; Hinsby, K.

    2012-03-01

    A numerical variable-density groundwater model is set up for the North Sea Island of Borkum to estimate climate change impacts on coastal aquifers and especially the situation of barrier islands in the Wadden Sea. The database includes information from boreholes, a seismic survey, a helicopter-borne electromagnetic survey (HEM), monitoring of the freshwater-saltwater boundary by vertical electrode chains in two boreholes, measurements of groundwater table, pumping and slug tests, as well as water samples. Based on a statistical analysis of borehole columns, seismic sections and HEM, a hydrogeological model is set up. The groundwater model is developed using the finite-element programme FEFLOW. The variable-density groundwater model is calibrated on the basis of hydraulic, hydrological and geophysical data, in particular spatial HEM and local monitoring data. Verification runs with the calibrated model show good agreement between measured and computed hydraulic heads. A good agreement is also obtained between measured and computed density or total dissolved solids data for both the entire freshwater lens on a large scale and in the area of the well fields on a small scale. For simulating future changes in this coastal groundwater system until the end of the current century we use the climate scenario A2, specified by the Intergovernmental Panel on Climate Change and in particular the data for the German North Sea coast. Simulation runs show proceeding salinization with time beneath the well fields of the two waterworks Waterdelle and Ostland. The modelling study shows that spreading of well fields is an appropriate protection measure against excessive salinization of the water supply until the end of the current century.

  14. Climate change, crop yields, and undernutrition: development of a model to quantify the impact of climate scenarios on child undernutrition.

    Science.gov (United States)

    Lloyd, Simon J; Kovats, R Sari; Chalabi, Zaid

    2011-12-01

    Global climate change is anticipated to reduce future cereal yields and threaten food security, thus potentially increasing the risk of undernutrition. The causation of undernutrition is complex, and there is a need to develop models that better quantify the potential impacts of climate change on population health. We developed a model for estimating future undernutrition that accounts for food and nonfood (socioeconomic) causes and can be linked to available regional scenario data. We estimated child stunting attributable to climate change in five regions in South Asia and sub-Saharan Africa (SSA) in 2050. We used current national food availability and undernutrition data to parameterize and validate a global model, using a process-driven approach based on estimations of the physiological relationship between a lack of food and stunting. We estimated stunting in 2050 using published modeled national calorie availability under two climate scenarios and a reference scenario (no climate change). We estimated that climate change will lead to a relative increase in moderate stunting of 1-29% in 2050 compared with a future without climate change. Climate change will have a greater impact on rates of severe stunting, which we estimated will increase by 23% (central SSA) to 62% (South Asia). Climate change is likely to impair future efforts to reduce child malnutrition in South Asia and SSA, even when economic growth is taken into account. Our model suggests that to reduce and prevent future undernutrition, it is necessary to both increase food access and improve socioeconomic conditions, as well as reduce greenhouse gas emissions.

  15. Estimating the Health Impact of Climate Change with Calibrated Climate Model Output.

    Science.gov (United States)

    Zhou, Jingwen; Chang, Howard H; Fuentes, Montserrat

    2012-09-01

    Studies on the health impacts of climate change routinely use climate model output as future exposure projection. Uncertainty quantification, usually in the form of sensitivity analysis, has focused predominantly on the variability arise from different emission scenarios or multi-model ensembles. This paper describes a Bayesian spatial quantile regression approach to calibrate climate model output for examining to the risks of future temperature on adverse health outcomes. Specifically, we first estimate the spatial quantile process for climate model output using nonlinear monotonic regression during a historical period. The quantile process is then calibrated using the quantile functions estimated from the observed monitoring data. Our model also down-scales the gridded climate model output to the point-level for projecting future exposure over a specific geographical region. The quantile regression approach is motivated by the need to better characterize the tails of future temperature distribution where the greatest health impacts are likely to occur. We applied the methodology to calibrate temperature projections from a regional climate model for the period 2041 to 2050. Accounting for calibration uncertainty, we calculated the number of of excess deaths attributed to future temperature for three cities in the US state of Alabama.

  16. Uncertainties in climate change impact assessment

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Uncertainties in climate change impact assessment. Possible errors in climate models, crop models and data used. Decrease in irrigation water availability will further reduce yields. Increased frequency of weather extremes will further increase production variability ...

  17. Modeling the impact of climate change on wild Piper nigrum (Black Pepper) in Western Ghats, India using ecological niche models.

    Science.gov (United States)

    Sen, Sandeep; Gode, Ameya; Ramanujam, Srirama; Ravikanth, G; Aravind, N A

    2016-11-01

    The center of diversity of Piper nigrum L. (Black Pepper), one of the highly valued spice crops is reported to be from India. Black pepper is naturally distributed in India in the Western Ghats biodiversity hotspot and is the only known existing source of its wild germplasm in the world. We used ecological niche models to predict the potential distribution of wild P. nigrum in the present and two future climate change scenarios viz (A1B) and (A2A) for the year 2080. Three topographic and nine uncorrelated bioclim variables were used to develop the niche models. The environmental variables influencing the distribution of wild P. nigrum across different climate change scenarios were identified. We also assessed the direction and magnitude of the niche centroid shift and the change in niche breadth to estimate the impact of projected climate change on the distribution of P. nigrum. The study shows a niche centroid shift in the future climate scenarios. Both the projected future climate scenarios predicted a reduction in the habitat of P. nigrum in Southern Western Ghats, which harbors many wild accessions of P. nigrum. Our results highlight the impact of future climate change on P. nigrum and provide useful information for designing sound germplasm conservation strategies for P. nigrum.

  18. Climate Change Impacts on Electricity Demand and Supply in the United States: A Multi-Model Comparison

    Science.gov (United States)

    This paper compares the climate change impacts on U.S. electricity demand and supply from three models: the Integrated Planning Model (IPM), the Regional Energy Deployment System (ReEDS) model, and GCAM. Rising temperatures cause an appreciable net increase in electricity demand....

  19. Climate change impact on global potato production

    NARCIS (Netherlands)

    Raymundo, Rubí; Asseng, Senthold; Robertson, Richard; Petsakos, Athanasios; Hoogenboom, Gerrit; Quiroz, Roberto; Hareau, Guy; Wolf, Joost

    2017-01-01

    Potato is the most important non-grain crop in the world. Therefore, understanding the potential impacts of climate change on potato production is critical for future global food security. The SUBSTOR-Potato model was recently evaluated across a wide range of growing conditions, and improvements

  20. Modeling the Impacts of Urbanization on Regional Climate Change: A Case Study in the Beijing-Tianjin-Tangshan Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Jinyan Zhan

    2013-01-01

    Full Text Available China has experienced rapid urbanization since 1978, and the dramatic change in land cover is expected to have significant impacts on the climate change. Some models have been used to simulate the relationship between land use and land cover change and climate change; however, there is still no sufficient evidence for the impacts of urbanization on the regional climate. This study aims to identify the impact of urban land use change on regional temperature and precipitation in summer in the Beijing-Tianjin-Tangshan Metropolitan area during 2030–2040 based on the analysis of the simulation results of WRF model. Firstly, we analyzed the land use change and climate change during 1995–2005 in the study area. The impacts of future urbanization on regional climate change were then simulated. The results indicate that urbanization in this area has affected the regional climate and has the potential to increase temperature and precipitation in the summer of 2030–2040. These research results can offer decision-making support information related to future planning strategies in urban environments in consideration of regional climate change.

  1. A new model to simulate climate-change impacts on forest succession for local land management.

    Science.gov (United States)

    Yospin, Gabriel I; Bridgham, Scott D; Neilson, Ronald P; Bolte, John P; Bachelet, Dominique M; Gould, Peter J; Harrington, Constance A; Kertis, Jane A; Evers, Cody; Johnson, Bart R

    2015-01-01

    We developed a new climate-sensitive vegetation state-and-transition simulation model (CV-STSM) to simulate future vegetation at a fine spatial grain commensurate with the scales of human land-use decisions, and under the joint influences of changing climate, site productivity, and disturbance. CV-STSM integrates outputs from four different modeling systems. Successional changes in tree species composition and stand structure were represented as transition probabilities and organized into a state-and-transition simulation model. States were characterized based on assessments of both current vegetation and of projected future vegetation from a dynamic global vegetation model (DGVM). State definitions included sufficient detail to support the integration of CV-STSM with an agent-based model of land-use decisions and a mechanistic model of fire behavior and spread. Transition probabilities were parameterized using output from a stand biometric model run across a wide range of site productivities. Biogeographic and biogeochemical projections from the DGVM were used to adjust the transition probabilities to account for the impacts of climate change on site productivity and potential vegetation type. We conducted experimental simulations in the Willamette Valley, Oregon, USA. Our simulation landscape incorporated detailed new assessments of critically imperiled Oregon white oak (Quercus garryana) savanna and prairie habitats among the suite of existing and future vegetation types. The experimental design fully crossed four future climate scenarios with three disturbance scenarios. CV-STSM showed strong interactions between climate and disturbance scenarios. All disturbance scenarios increased the abundance of oak savanna habitat, but an interaction between the most intense disturbance and climate-change scenarios also increased the abundance of subtropical tree species. Even so, subtropical tree species were far less abundant at the end of simulations in CV-STSM than in

  2. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    Energy Technology Data Exchange (ETDEWEB)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Flörke, M.; Huang, S.; Motovilov, Y.; Buda, S.; Yang, T.; Müller, C.; Leng, G.; Tang, Q.; Portmann, F. T.; Hagemann, S.; Gerten, D.; Wada, Y.; Masaki, Y.; Alemayehu, T.; Satoh, Y.; Samaniego, L.

    2017-01-04

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.

  3. Modeling potential climate change impacts on the trees of the northeastern United States

    Science.gov (United States)

    Louis Iverson; Anantha Prasad; Stephen Matthews

    2008-01-01

    We evaluated 134 tree species from the eastern United States for potential response to several scenarios of climate change, and summarized those responses for nine northeastern United States. We modeled and mapped each species individually and show current and potential future distributions for two emission scenarios (A1fi [higher emission] and B1 [lower emission]) and...

  4. Assessing the impacts of climate change on natural resource systems

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, K.D.; Rosenberg, N.J. [eds.

    1994-11-30

    This volume is a collection of papers addressing the theme of potential impacts of climatic change. Papers are entitled Integrated Assessments of the Impacts of Climatic Change on Natural Resources: An Introductory Editorial; Framework for Integrated Assessments of Global Warming Impacts; Modeling Land Use and Cover as Part of Global Environmental Change; Assessing Impacts of Climatic Change on Forests: The State of Biological Modeling; Integrating Climatic Change and Forests: Economic and Ecological Assessments; Environmental Change in Grasslands: Assessment using Models; Assessing the Socio-economic Impacts of Climatic Change on Grazinglands; Modeling the Effects of Climatic Change on Water Resources- A Review; Assessing the Socioeconomic Consequences of Climate Change on Water Resources; and Conclusions, Remaining Issues, and Next Steps.

  5. Climate change impacts on groundwater resources: modelled deficits in a chalky aquifer, Geer basin, Belgium

    Science.gov (United States)

    Brouyère, Serge; Carabin, Guy; Dassargues, Alain

    An integrated hydrological model (MOHISE) was developed in order to study the impact of climate change on the hydrological cycle in representative water basins in Belgium. This model considers most hydrological processes in a physically consistent way, more particularly groundwater flows which are modelled using a spatially distributed, finite-element approach. Thanks to this accurate numerical tool, after detailed calibration and validation, quantitative interpretations can be drawn from the groundwater model results. Considering IPCC climate change scenarios, the integrated approach was applied to evaluate the impact of climate change on the water cycle in the Geer basin in Belgium. The groundwater model is described in detail, and results are discussed in terms of climate change impact on the evolution of groundwater levels and groundwater reserves. From the modelling application on the Geer basin, it appears that, on a pluri-annual basis, most tested scenarios predict a decrease in groundwater levels and reserves in relation to variations in climatic conditions. However, for this aquifer, the tested scenarios show no enhancement of the seasonal changes in groundwater levels. Un modèle hydrologique intégré (MOHISE) a été développé afin d'étudier l'impact du changement climatique sur le cycle hydrologique de bassins versants représentatifs de Belgique. Ce modèle prend en compte tous les processus hydrologiques d'une manière physiquement consistante, plus particulièrement les écoulements souterrains qui sont modélisés par une approche spatialement distribuée aux éléments finis. Grâce à cet outil numérique précis, après une calibration et une validation détaillées, des interprétations quantitatives peuvent être réalisées à partir des résultats du modèle de nappe. Considérant des scénarios de changements climatiques de l'IPCC, l'approche intégrée a été appliquée pour évaluer l'impact du changement climatique sur le cycle de l

  6. Developing Conceptual Models for Assessing Climate Change Impacts to Contaminant Availability in Terrestrial Ecosystems

    Science.gov (United States)

    2015-03-01

    Threatened and endangered species (also top-level predators and other keystone species ) • Wetlands • Grassland/Rangeland plant communities • Microbial...aspects of climate change can impact contaminant availability and threatened, endangered, and at-risk species (TER-S) of terrestrial habitats on military...contaminants as well as emerging contaminants (e.g., nanomaterials), and invasive species /pathogens What are the mechanisms by which aspects of climate

  7. Updating known distribution models for forecasting climate change impact on endangered species.

    Science.gov (United States)

    Muñoz, Antonio-Román; Márquez, Ana Luz; Real, Raimundo

    2013-01-01

    To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their distributional response to climate change, especially under the current situation of rapid change. However, these predictions are customarily done by relating de novo the distribution of the species with climatic conditions with no regard of previously available knowledge about the factors affecting the species distribution. We propose to take advantage of known species distribution models, but proceeding to update them with the variables yielded by climatic models before projecting them to the future. To exemplify our proposal, the availability of suitable habitat across Spain for the endangered Bonelli's Eagle (Aquila fasciata) was modelled by updating a pre-existing model based on current climate and topography to a combination of different general circulation models and Special Report on Emissions Scenarios. Our results suggested that the main threat for this endangered species would not be climate change, since all forecasting models show that its distribution will be maintained and increased in mainland Spain for all the XXI century. We remark on the importance of linking conservation biology with distribution modelling by updating existing models, frequently available for endangered species, considering all the known factors conditioning the species' distribution, instead of building new models that are based on climate change variables only.

  8. Modeling the Impact of Climate Change on the Dynamics of Rift Valley Fever

    Directory of Open Access Journals (Sweden)

    Saul C. Mpeshe

    2014-01-01

    Full Text Available A deterministic SEIR model of rift valley fever (RVF with climate change parameters was considered to compute the basic reproduction number ℛ0 and investigate the impact of temperature and precipitation on ℛ0. To study the effect of model parameters to ℛ0, sensitivity and elasticity analysis of ℛ0 were performed. When temperature and precipitation effects are not considered, ℛ0 is more sensitive to the expected number of infected Aedes spp. due to one infected livestock and more elastic to the expected number of infected livestock due to one infected Aedes spp. When climatic data are used, ℛ0 is found to be more sensitive and elastic to the expected number of infected eggs laid by Aedes spp. via transovarial transmission, followed by the expected number of infected livestock due to one infected Aedes spp. and the expected number of infected Aedes spp. due to one infected livestock for both regions Arusha and Dodoma. These results call for attention to parameters regarding incubation period, the adequate contact rate of Aedes spp. and livestock, the infective periods of livestock and Aedes spp., and the vertical transmission in Aedes species.

  9. Modeling the Impact of Climate Change on the Dynamics of Rift Valley Fever

    Science.gov (United States)

    Mpeshe, Saul C.; Luboobi, Livingstone S.; Nkansah-Gyekye, Yaw

    2014-01-01

    A deterministic SEIR model of rift valley fever (RVF) with climate change parameters was considered to compute the basic reproduction number ℛ 0 and investigate the impact of temperature and precipitation on ℛ 0. To study the effect of model parameters to ℛ 0, sensitivity and elasticity analysis of ℛ 0 were performed. When temperature and precipitation effects are not considered, ℛ 0 is more sensitive to the expected number of infected Aedes spp. due to one infected livestock and more elastic to the expected number of infected livestock due to one infected Aedes spp. When climatic data are used, ℛ 0 is found to be more sensitive and elastic to the expected number of infected eggs laid by Aedes spp. via transovarial transmission, followed by the expected number of infected livestock due to one infected Aedes spp. and the expected number of infected Aedes spp. due to one infected livestock for both regions Arusha and Dodoma. These results call for attention to parameters regarding incubation period, the adequate contact rate of Aedes spp. and livestock, the infective periods of livestock and Aedes spp., and the vertical transmission in Aedes species. PMID:24795775

  10. A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    Science.gov (United States)

    Sarofim, M. C.; Martinich, J.; Waldhoff, S.; DeAngelo, B. J.; McFarland, J.; Jantarasami, L.; Shouse, K.; Crimmins, A.; Li, J.

    2014-12-01

    The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the physical impacts, economic damages, and risks from climate change. The primary goal of this framework is to estimate the degree to which climate change impacts and damages in the United States are avoided or reduced in the 21st century under multiple greenhouse gas (GHG) emissions mitigation scenarios. The first phase of the CIRA project is a modeling exercise that included two integrated assessment models and 15 sectoral models encompassing five broad impacts sectors: water resources, electric power, infrastructure, human health, and ecosystems. Three consistent socioeconomic and climate scenarios are used to analyze the benefits of global GHG mitigation targets: a reference scenario and two policy scenarios with total radiative forcing targets in 2100 of 4.5 W/m2 and 3.7 W/m2. In this exercise, the implications of key uncertainties are explored, including climate sensitivity, climate model, natural variability, and model structures and parameters. This presentation describes the motivations and goals of the CIRA project; the design and academic contribution of the first CIRA modeling exercise; and briefly summarizes several papers published in a special issue of Climatic Change. The results across impact sectors show that GHG mitigation provides benefits to the United States that increase over time, the effects of climate change can be strongly influenced by near-term policy choices, adaptation can reduce net damages, and impacts exhibit spatial and temporal patterns that may inform mitigation and adaptation policy discussions.

  11. Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe

    DEFF Research Database (Denmark)

    Thuiller, Wilfried; Lavorel, Sandra; Sykes, Martin T.

    2006-01-01

    . Atlantic areas provided an intermediate case, with a predicted reduction in the numbers of species and occasional predicted gains in functional diversity. This resulted from a loss in species within the broadleaved deciduous FT, but overall maintenance of the group. Our results illustrate the fact......Rapid anthropogenic climate change is already affecting species distributions and ecosystem functioning worldwide. We applied niche-based models to analyse the impact of climate change on tree species and functional diversity in Europe. Present-day climate was used to predict the distributions...... that both species-specific predictions and functional patterns should be examined separately in order to assess the impacts of climate change on biodiversity and gain insights into future ecosystem functioning....

  12. The economic impacts of climate change on the Chilean agricultural sector: A non-linear agricultural supply model

    Directory of Open Access Journals (Sweden)

    Roberto Ponce

    2014-12-01

    Full Text Available Agriculture could be one of the most vulnerable economic sectors to the impacts of climate change in the coming decades, with impacts threatening agricultural production in general and food security in particular. Within this context, climate change will impose a challenge to policy makers, especially in those countries that based their development on primary sectors. In this paper we present a non-linear agricultural supply model for the analysis of the economic impacts of changes in crop yields due to climate change. The model accounts for uncertainty through the use of Monte Carlo simulations about crop yields. According to our results, climate change impacts on the Chilean agricultural sector are widespread, with considerable distributional consequences across regions, and with fruits producers being worst-off than crops producers. In general, the results reported here are consistent with those reported by previous studies showing large economic impacts on the northern zone. However, our model does not simulate remarkable economic consequences at the country level as previous studies did.

  13. Cross - Scale Intercomparison of Climate Change Impacts Simulated by Regional and Global Hydrological Models in Eleven Large River Basins

    Science.gov (United States)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Florke, M.; Huang, S.; Motovilov, Y.; Buda, S.; hide

    2017-01-01

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used.

  14. Modelling the impacts of projected future climate change on water resources in north-west England

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Over the last two decades, the frequency of water resource drought in the UK, coupled with the more recent pan-European drought of 2003, has increased concern over changes in climate. Using the UKCIP02 Medium-High (SRES A2 scenario for 2070–2100, this study investigates the impact of climate change on the operation of the Integrated Resource Zone (IRZ, a complex conjunctive-use water supply system in north-western England. The results indicate that the contribution of individual sources to yield may change substantially but that overall yield is reduced by only 18%. Notwithstanding this significant effect on water supply, the flexibility of the system enables it to meet modelled demand for much of the time under the future climate scenario, even without a change in system management, but at significant expense for pumping additional abstraction from lake and borehole sources. This research provides a basis for the future planning and management of the complex water resource system in the north-west of England.

  15. Burden Sharing with Climate Change Impacts

    Science.gov (United States)

    Tavoni, M.; van Vuuren, D.; De Cian, E.; Marangoni, G.; Hof, A.

    2014-12-01

    Efficiency and equity have been at the center of the climate change policy making since the very first international environmental agreements on climate change, though over time how to implement these principles has taken different forms. Studies based on Integrated Assessment Models have also shown that the economic effort of achieving a 2 degree target in a cost-effective way would differ widely across regions (Tavoni et al. 2013) because of diverse economic and energy structure, baseline emissions, energy and carbon intensity. Policy instruments, such as a fully-fledged, global emission trading schemes can be used to pursuing efficiency and equity at the same time but the literature has analyzed the compensations required to redistribute only mitigation costs. However, most of these studies have neglected the potential impacts of climate change. In this paper we use two integrated assessment models -FAIR and WITCH- to explore the 2°C policy space when accounting for climate change impacts. Impacts are represented via two different reduced forms equations, which despite their simplicity allows us exploring the key sensitivities- Our results show that in a 2 degree stabilization scenarios residual damages remain significant (see Figure 1) and that if you would like to compensate those as part of an equal effort scheme - this would lead to a different allocation than focusing on a mitigation based perspective only. The residual damages and adaptation costs are not equally distributed - and while we do not cover the full uncertainty space - with 2 different models and 2 sets of damage curves we are still able to show quite similar results in terms of vulnerable regions and the relative position of the different scenarios. Therefore, accounting for the residual damages and the associated adaptation costs on top of the mitigation burden increases and redistributes the full burden of total climate change.

  16. Impacts of climate change on avian populations.

    Science.gov (United States)

    Jenouvrier, Stephanie

    2013-07-01

    This review focuses on the impacts of climate change on population dynamics. I introduce the MUP (Measuring, Understanding, and Predicting) approach, which provides a general framework where an enhanced understanding of climate-population processes, along with improved long-term data, are merged into coherent projections of future population responses to climate change. This approach can be applied to any species, but this review illustrates its benefit using birds as examples. Birds are one of the best-studied groups and a large number of studies have detected climate impacts on vital rates (i.e., life history traits, such as survival, maturation, or breeding, affecting changes in population size and composition) and population abundance. These studies reveal multifaceted effects of climate with direct, indirect, time-lagged, and nonlinear effects. However, few studies integrate these effects into a climate-dependent population model to understand the respective role of climate variables and their components (mean state, variability, extreme) on population dynamics. To quantify how populations cope with climate change impacts, I introduce a new universal variable: the 'population robustness to climate change.' The comparison of such robustness, along with prospective and retrospective analysis may help to identify the major climate threats and characteristics of threatened avian species. Finally, studies projecting avian population responses to future climate change predicted by IPCC-class climate models are rare. Population projections hinge on selecting a multiclimate model ensemble at the appropriate temporal and spatial scales and integrating both radiative forcing and internal variability in climate with fully specified uncertainties in both demographic and climate processes. © 2013 Blackwell Publishing Ltd.

  17. Climate change impacts in Zhuoshui watershed, Taiwan

    Science.gov (United States)

    Chao, Yi-Chiung; Liu, Pei-Ling; Cheng, Chao-Tzuen; Li, Hsin-Chi; Wu, Tingyeh; Chen, Wei-Bo; Shih, Hung-Ju

    2017-04-01

    There are 5.3 typhoons hit Taiwan per year on average in last decade. Typhoon Morakot in 2009, the most severe typhoon, causes huge damage in Taiwan, including 677 casualty and roughly NT 110 billion (3.3 billion USD) in economic loss. Some researches documented that typhoon frequency will decrease but increase in intensity in western North Pacific region. It is usually preferred to use high resolution dynamical model to get better projection of extreme events; because coarse resolution models cannot simulate intense extreme events. Under that consideration, dynamical downscaling climate data was chosen to describe typhoon satisfactorily. One of the aims for Taiwan Climate Change Projection and Information Platform (TCCIP) is to demonstrate the linkage between climate change data and watershed impact models. The purpose is to understand relative disasters induced by extreme rainfall (typhoons) under climate change in watersheds including landslides, debris flows, channel erosion and deposition, floods, and economic loss. The study applied dynamic downscaling approach to release climate change projected typhoon events under RCP 8.5, the worst-case scenario. The Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability (TRIGRS) and FLO-2D models, then, were used to simulate hillslope disaster impacts in the upstream of Zhuoshui River. CCHE1D model was used to elevate the sediment erosion or deposition in channel. FVCOM model was used to asses a flood impact in urban area in the downstream. Finally, whole potential loss associate with these typhoon events was evaluated by the Taiwan Typhoon Loss Assessment System (TLAS) under climate change scenario. Results showed that the total loss will increase roughly by NT 49.7 billion (1.6 billion USD) in future in Zhuoshui watershed in Taiwan. The results of this research could help to understand future impact; however model bias still exists. Because typhoon track is a critical factor to consider regional

  18. Assessing climate change impacts on runoff from karstic watersheds: NASA/GISS land-surface model improvement

    Science.gov (United States)

    Blake, Reginald Alexander

    The off-line version of the Goddard Institute for Space Studies (GISS) land-surface hydrological model over- predicted run-off from the karstic Rio Cobre watershed in Jamaica. To assess possible climate change impacts on runoff from the watershed, the model's simulation of observed runoff was improved by adding to it a karst component that has pipe flow features. The improved model was tested on two other karstic watersheds (Yangtze - China and Rio Grande - USA) and the results were encouraging. The impacts that possible climate change may have on the three karstic watersheds were then assessed. The assessment indicates that in a doubled carbon dioxide climate, the Rio Cobre and the Rio Grande may experience decreases in runoff, especially in low flow periods. The Yangtze, on the other hand, may not experience decreases in total runoff, but its peak flow which now occurs in July may be attenuated and shifted to September. The results of the study also show that climate feedbacks convolute climate change assessments and that different results can be obtained from the same climate change scenario depending on the choice of the modeling methodology-that is, on whether the models are coupled or uncoupled.

  19. Numerical Modeling for Flood Mapping under Climate Change Impacts: Transboundary Dniester River Study

    Science.gov (United States)

    Zheleznyak, Mark; Kolomiets, Pavlo; Dzjuba, Natalia; Ievgen, Ievgen; Sorokin, Maxim; Denisov, Nickolai; Ischuk, Oleksiy; Koeppel, Sonja

    2015-04-01

    The Dniester river is shared by Ukraine and Moldova. Ukraine being both upstream and downstream of Moldova. The basin is especially suffering from heavy floods, often with transboundary impacts: in Ukraine, disastrous floods in July 2008, which were possibly partly caused or exacerbated by climate change. Within the UNECE | ENVSEC project "Reducing vulnerability to extreme floods and climate change in the Dniester river basin" the numerical flood risks mapping for several "hot spots" along the Dniester river was initiated Two transboundary sites: "Mohyliv Podylskiy- Ataki" and "Dubossary HPP-, Mayaki" (in the delta zone) were chosen for flood risk modelling/mapping. . Floodplain inundation at Mohyliv Podylskiy- Ataki during historical and projected extreme floods scenarios is simulated by 2D model COASTOX -UN based on the numerical solution of shallow water equations on unstructured grid. The scenario of extreme flood, July 2008 that caused hazardous flooding of the riverside areas of Mohyliv Podylskiy has been used for model verification and calibration. The floodmarks of the inundated in 2008 streets have been collected and GIS processed to be used together with the data from the city's water gage station for model testing. The comparison of the simulated dynamics of floodplain inundation during 2008 flood with the observed data show good accuracy of the model. The technologies of the flood modeling and GIS based risk assessments verified for this site are implemented for analyses of the vulnerability to extreme floods for Q=7600 m3 / sec inflow to Dniester reservoir ( 1% flood for contemporary climate assessment) and for Q=8700 m3 / sec. that is considered as projection of 1% flood maximum for XXI century The detailed flood mapping was provided for all cases and was shown that 13% increase in water elevation for future extreme flood scenario will provide at 20% increasing of flooded areas in Mohilev Podolsky. For the site Dubossary NPP in Moldova downstream till

  20. Multi-model impacts of climate change on pollution transport from global emission source regions

    Directory of Open Access Journals (Sweden)

    R. M. Doherty

    2017-11-01

    Full Text Available The impacts of climate change on tropospheric transport, diagnosed from a carbon monoxide (CO-like tracer species emitted from global CO sources, are evaluated from an ensemble of four chemistry–climate models (CCMs contributing to the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP. Model time-slice simulations for present-day and end-of-the-21st-century conditions were performed under the Representative Concentrations Pathway (RCP climate scenario RCP 8.5. All simulations reveal a strong seasonality in transport, especially over the tropics. The highest CO-tracer mixing ratios aloft occur during boreal winter when strong vertical transport is co-located with biomass burning emission source regions. A consistent and robust decrease in future CO-tracer mixing ratios throughout most of the troposphere, especially in the tropics, and an increase around the tropopause is found across the four CCMs in both winter and summer. Decreases in CO-tracer mixing ratios in the tropical troposphere are associated with reduced convective mass fluxes in this region, which in turn may reflect a weaker Hadley cell circulation in the future climate. Increases in CO-tracer mixing ratios near the tropopause are largely attributable to a rise in tropopause height enabling lofting to higher altitudes, although a poleward shift in the mid-latitude jets may also play a minor role in the extratropical upper troposphere. An increase in CO-tracer mixing ratios also occurs near the Equator, centred over equatorial and Central Africa, extending from the surface to the mid-troposphere. This is most likely related to localised decreases in convection in the vicinity of the Intertropical Convergence Zone (ITCZ, resulting in larger CO-tracer mixing ratios over biomass burning regions and smaller mixing ratios downwind.

  1. Multi-model impacts of climate change on pollution transport from global emission source regions

    Science.gov (United States)

    Doherty, Ruth M.; Orbe, Clara; Zeng, Guang; Plummer, David A.; Prather, Michael J.; Wild, Oliver; Lin, Meiyun; Shindell, Drew T.; Mackenzie, Ian A.

    2017-11-01

    The impacts of climate change on tropospheric transport, diagnosed from a carbon monoxide (CO)-like tracer species emitted from global CO sources, are evaluated from an ensemble of four chemistry-climate models (CCMs) contributing to the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Model time-slice simulations for present-day and end-of-the-21st-century conditions were performed under the Representative Concentrations Pathway (RCP) climate scenario RCP 8.5. All simulations reveal a strong seasonality in transport, especially over the tropics. The highest CO-tracer mixing ratios aloft occur during boreal winter when strong vertical transport is co-located with biomass burning emission source regions. A consistent and robust decrease in future CO-tracer mixing ratios throughout most of the troposphere, especially in the tropics, and an increase around the tropopause is found across the four CCMs in both winter and summer. Decreases in CO-tracer mixing ratios in the tropical troposphere are associated with reduced convective mass fluxes in this region, which in turn may reflect a weaker Hadley cell circulation in the future climate. Increases in CO-tracer mixing ratios near the tropopause are largely attributable to a rise in tropopause height enabling lofting to higher altitudes, although a poleward shift in the mid-latitude jets may also play a minor role in the extratropical upper troposphere. An increase in CO-tracer mixing ratios also occurs near the Equator, centred over equatorial and Central Africa, extending from the surface to the mid-troposphere. This is most likely related to localised decreases in convection in the vicinity of the Intertropical Convergence Zone (ITCZ), resulting in larger CO-tracer mixing ratios over biomass burning regions and smaller mixing ratios downwind.

  2. A Water Resources Management Model to Evaluate Climate Change Impacts in North-Patagonia, Argentina

    Science.gov (United States)

    Bucciarelli, L. F.; Losano, F. T.; Marizza, M.; Cello, P.; Forni, L.; Young, C. A.; Girardin, L. O.; Nadal, G.; Lallana, F.; Godoy, S.; Vallejos, R.

    2014-12-01

    Most recently developed climate scenarios indicate a potential future increase in water stress in the region of Comahue, located in the North-Patagonia, Argentina. This region covers about 140,000 km2 where the Limay River and the Neuquén River converge into the Negro River, constituting the largest integrated basins in Argentina providing various uses of water resources: a) hydropower generation, contributing 15% of the national electricity market; b) fruit-horticultural products for local markets and export; c) human and industrial water supply; d) mining and oil exploitation, including Vaca Muerta, second world largest reserves of shale gas and fourth world largest reserves of shale-oil. The span of multiple jurisdictions and the convergence of various uses of water resources are a challenge for integrated understanding of economically and politically driven resource use activities on the natural system. The impacts of climate change on the system could lead to water resource conflicts between the different political actors and stakeholders. This paper presents the results of a hydrological simulation of the Limay river and Neuquén river basins using WEAP (Water Evaluation and Planning) considering the operation of artificial reservoirs located downstream at a monthly time step. This study aims to support policy makers via integrated tools for water-energy planning under climate uncertainties, and to facilitate the formulation of water policy-related actions for future water stress adaptation. The value of the integrated resource use model is that it can support local policy makers understand the implications of resource use trade-offs under a changing climate: 1) water availability to meet future growing demand for irrigated areas; 2) water supply for hydropower production; 3) increasing demand of water for mining and extraction of unconventional oil; 4) potential resource use conflicts and impacts on vulnerable populations.

  3. Welfare impacts of climate change

    NARCIS (Netherlands)

    Hof, Andries F.

    2015-01-01

    Climate change can affect well-being in poor economies more than previously shown if its effect on economic growth, and not only on current production, is considered. But this result does not necessarily suggest greater mitigation efforts are required.

  4. Assessing Climate change impacts on river basins in New Zealand using model based downscaling, statistical downscaling and regional climate modelling

    Science.gov (United States)

    Zammit, C.; Diettrich, J.; Sood, A.

    2013-12-01

    Spatial resolution of General Circulation Models (GCMs) is too coarse to represent regional climate variations at the scales required for environmental impact assessments in New Zealand. Downscaling is necessary for climate change impact analyses that seek to constrain regional climate by information from global climate models. It is particularly important in the New Zealand context, as given maritime, topographic and convective climate processes. As a result local to regional scale variability is not always well represented by the broader global scale features simulated by GCMs. Three techniques are available to generate climate change information that can be used as input of environmental models: i) Downscaling to the New Zealand Virtual Climate Station Network grid (Tait et al, 2006); ii) Semi-empirical (statistical) downscaling (SDS) of GCM outputs; and iii) Regional climate models (RCMs) nested within a GCM. In this study, we compare the downstream impact of the three techniques for three different emission scenarios as characterised in the IPCC Fourth Assessment (B1-low emission, A1B- middle of the road, and A2-high emission scenario) and two of the 12 GCM models used in New Zealand (UKMO_HADCM3 and MPI_ECHAM5). Our study will focus on surface water hydrological responses (ie discharge, infiltration, evaporation, snow storage) for a number of river basins across the North and South Island of New Zealand. The analysis will compare the current situation (1980-1999) with two future time periods (2030-2049 and 2080-2099) and will draw recommendation regarding climate change impact uncertainty and its communication to decision makers.

  5. Theoretical models of the impact of climate change on natural populations, communities and ecosystems. Final report, 1989--1992

    Energy Technology Data Exchange (ETDEWEB)

    Wiegert, R.

    1992-12-31

    Land use change is a relatively understudied aspect of global change. In many cases, the impact of land use on plant and animal species may be far greater than the impact of climate change per se. As an integral part of our long-term studies of the response of animal populations to global change, we have focused on land use change as a dominant driving force. Climate change, no doubt, will also play a role in determining the future abundance and distribution of many species, but, for many species, the signal from climate change per se may be difficult to detect if we do not first understand the impact of land use change. This formed the dominant theme of the research by the PI (Pulliam). Both land use change and year to year climate change can directly affect other populations and two examples of this formed the focus of the remaining research, models of invertebrates in Carolina Bays and a model of a commercial estuarine population of blue crabs.

  6. Using Water Quality Models in Management - A Multiple Model Assessment, Analysis of Confidence, and Evaluation of Climate Change Impacts

    Science.gov (United States)

    Irby, Isaac David

    Human impacts on the Chesapeake Bay through increased nutrient run-off as a result of land-use change, urbanization, and industrialization, have resulted in a degradation of water quality over the last half-century. These direct impacts, compounded with human-induced climate changes such as warming, rising sea-level, and changes in precipitation, have elevated the conversation surrounding the future of water quality in the Bay. The overall goal of this dissertation project is to use a combination of models and data to better understand and quantify the impact of changes in nutrient loads and climate on water quality in the Chesapeake Bay. This research achieves that goal in three parts. First, a set of eight water quality models is used to establish a model mean and assess model skill. All models were found to exhibit similar skill in resolving dissolved oxygen concentrations as well as a number of dissolved oxygen-influencing variables (temperature, salinity, stratification, chlorophyll and nitrate) and the model mean exhibited the highest individual skill. The location of stratification within the water column was found to be a limiting factor in the models' ability to adequately simulate habitat compression resulting from low-oxygen conditions. Second, two of the previous models underwent the regulatory Chesapeake Bay pollution diet mandated by the Environmental Protection Agency. Both models exhibited a similar relative improvement in dissolved oxygen concentrations as a result of the reduction of nutrients stipulated in the pollution diet. A Confidence Index was developed to identify the locations of the Bay where the models are in agreement and disagreement regarding the impacts of the pollution diet. The models were least certain in the deep part of the upper main stem of the Bay and the uncertainty primarily stemmed from the post-processing methodology. Finally, by projecting the impacts of climate change in 2050 on the Bay, the potential success of the

  7. Environmental impacts of climate change adaptation

    NARCIS (Netherlands)

    Enriquez-de-Salamanca, Alvaro; Diaz Sierra, R.; Martin-Aranda, Rosa; Ferreira Dos Santos, M.J.

    Climate change adaptation reduces adverse effects of climate change but may also have undesirable environmental impacts. However, these impacts are yet poorly defined and analysed in the existing literature. To complement this knowledge-gap, we reviewed the literature to unveil the relationship

  8. Possible impact of climate change on meningitis in northwest Nigeria: an assessment using CMIP5 climate model simulations

    Science.gov (United States)

    Abdussalam, Auwal; Monaghan, Andrew; Steinhoff, Daniel; Dukic, Vanja; Hayden, Mary; Hopson, Thomas; Thornes, John; Leckebusch, Gregor

    2014-05-01

    Meningitis remains a major health burden throughout Sahelian Africa, especially in heavily-populated northwest Nigeria. Cases exhibit strong sensitivity to intra- and inter-annual climate variability, peaking during the hot and dry boreal spring months, raising concern that future climate change may increase the incidence of meningitis in the region. The impact of future climate change on meningitis risk in northwest Nigeria is assessed by forcing an empirical model of meningitis with monthly simulations from an ensemble of thirteen statistically downscaled global climate model projections from the Coupled Model Intercomparison Experiment Phase 5 (CMIP5) for RCPs 2.6, 6.0 and 8.5 scenarios. The results suggest future temperature increases due to climate change has the potential to significantly increase meningitis cases in both the early and late 21st century, and to increase the length of the meningitis season in the late century. March cases may increase from 23 per 100,000 people for present day (1990-2005), to 29-30 per 100,000 (p<0.01) in the early century (2020-2035) and 31-42 per 100,000 (p<0.01) in the late century (2060-2075), the range being dependent on the emissions scenario. It is noteworthy that these results represent the climatological potential for increased cases due to climate change, as we assume current prevention and treatment strategies remain similar in the future.

  9. Modelling the impact of climate change and atmospheric N deposition on French forests biodiversity.

    Science.gov (United States)

    Rizzetto, Simon; Belyazid, Salim; Gégout, Jean-Claude; Nicolas, Manuel; Alard, Didier; Corcket, Emmanuel; Gaudio, Noémie; Sverdrup, Harald; Probst, Anne

    2016-06-01

    A dynamic coupled biogeochemical-ecological model was used to simulate the effects of nitrogen deposition and climate change on plant communities at three forest sites in France. The three sites had different forest covers (sessile oak, Norway spruce and silver fir), three nitrogen loads ranging from relatively low to high, different climatic regions and different soil types. Both the availability of vegetation time series and the environmental niches of the understory species allowed to evaluate the model for predicting the composition of the three plant communities. The calibration of the environmental niches was successful, with a model performance consistently reasonably high throughout the three sites. The model simulations of two climatic and two deposition scenarios showed that climate change may entirely compromise the eventual recovery from eutrophication of the simulated plant communities in response to the reductions in nitrogen deposition. The interplay between climate and deposition was strongly governed by site characteristics and histories in the long term, while forest management remained the main driver of change in the short term. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Evaluation of the impacts of climate change on disease vectors through ecological niche modelling.

    Science.gov (United States)

    Carvalho, B M; Rangel, E F; Vale, M M

    2017-08-01

    Vector-borne diseases are exceptionally sensitive to climate change. Predicting vector occurrence in specific regions is a challenge that disease control programs must meet in order to plan and execute control interventions and climate change adaptation measures. Recently, an increasing number of scientific articles have applied ecological niche modelling (ENM) to study medically important insects and ticks. With a myriad of available methods, it is challenging to interpret their results. Here we review the future projections of disease vectors produced by ENM, and assess their trends and limitations. Tropical regions are currently occupied by many vector species; but future projections indicate poleward expansions of suitable climates for their occurrence and, therefore, entomological surveillance must be continuously done in areas projected to become suitable. The most commonly applied methods were the maximum entropy algorithm, generalized linear models, the genetic algorithm for rule set prediction, and discriminant analysis. Lack of consideration of the full-known current distribution of the target species on models with future projections has led to questionable predictions. We conclude that there is no ideal 'gold standard' method to model vector distributions; researchers are encouraged to test different methods for the same data. Such practice is becoming common in the field of ENM, but still lags behind in studies of disease vectors.

  11. Betting and Belief: Modeling the Impact of Prediction Markets on Public Attribution of Climate Change

    Science.gov (United States)

    Gilligan, J. M.; Nay, J. J.; van der Linden, M.

    2016-12-01

    Despite overwhelming scientific evidence and an almost complete consensus among scientists, a large fraction of the American public is not convinced that global warming is anthropogenic. This doubt correlates strongly with political, ideological, and cultural orientation. [1] It has been proposed that people who do not trust climate scientists tend to trust markets, so prediction markets might be able to influence their beliefs about the causes of climate change. [2] We present results from an agent-based simulation of a prediction market in which traders invest based on their beliefs about what drives global temperature change (here, either CO2 concentration or total solar irradiance (TSI), which is a popular hypothesis among many who doubt the dominant role of CO2). At each time step, traders use historical and observed temperatures and projected future forcings (CO2 or TSI) to update Bayesian posterior probability distributions for future temperatures, conditional on their belief about what drives climate change. Traders then bet on future temperatures by trading in climate futures. Trading proceeds by a continuous double auction. Traders are randomly assigned initial beliefs about climate change, and they have some probability of changing their beliefs to match those of the most successful traders in their social network. We simulate two alternate realities in which the global temperature is controlled either by CO2 or by TSI, with stochastic noise. In both cases traders' beliefs converge, with a large majority reaching agreement on the actual cause of climate change. This convergence is robust, but the speed with which consensus emerges depends on characteristics of the traders' psychology and the structure of the market. Our model can serve as a test-bed for studying how beliefs might evolve under different market structures and different modes of decision-making and belief-change. We will report progress on studying alternate models of belief-change. This

  12. Environmental impact of climate change in pakistan

    International Nuclear Information System (INIS)

    Khan, S.; Raja, I.A.

    2014-01-01

    Climate change results in the increase or decrease in temperature and rainfall. These have significant impact on environment - impinge agricultural crop yields, affect human health, cause changes to forests and other ecosystems, and even impact our energy supply. Climate change is a global phenomenon and its impact can be observed on Pakistan's economy and environment. This paper contains details concerning the climate change and environmental impacts. It takes into account current and projected key vulnerabilities, prospects for adaptation, and the relationships between climate change mitigation and environment. The purpose of the study is to devise national policies and incentive systems combined with national level capacity-building programs to encourage demand-oriented conservation technologies. Recommendations are also made to abate the climate change related issues in country. (author)

  13. A model validation framework for climate change projection and impact assessment

    DEFF Research Database (Denmark)

    Madsen, Henrik; Refsgaard, Jens C.; Andréassian, Vazken

    2014-01-01

    methods for projection of climate change (single and ensemble model projections and space‐timesubstitution) and use of different data sources as proxy for future climate conditions (long historical records comprising non‐ stationarity, paleo data, and controlled experiments). The basic guiding principles...... proxy data, reflecting future conditions. This test can be used with both single and ensemble model projections as well as with space‐time‐substitutions. It is generally expected to be more powerful when applied to a model ensemble than to a single model. Since space‐timesubstitutions include...... a differential split‐sample test using best available proxy data that reflect the expected future conditions at the site being considered. Such proxy data may be obtained from long historical records comprising nonstationarity, paleo data, or controlled experiments. The test can be applied with different...

  14. Climate Change Impacts on Turkish Vegetation

    Science.gov (United States)

    Forrest, Matthew; Dönmez, Cenk; Çilek, Ahmet; Akif Erdogan, Mehmet; Buontempo, Carlo; Hickler, Thomas

    2014-05-01

    The Mediterranean has been identified as a potentially vulnerable hotspot under climate change. In Turkey, climate change projections consistently predict large temperature rises over the 21st century. With 9% of GDP and 25% of employment coming from agriculture, climate change has the potential to significantly affect both the Turkish economy and living standards. Relatively little work has been undertaken to estimate the effects and risks of climate change in Turkey, and many European studies cover do not include the whole of Turkey in their domain and so are of limited use for policy-makers. The Dynamic Global Vegetation Model LPJ-GUESS was parametrised to represent Turkish vegetation. Climate forcings were derived by interpolating meteorological data from over 600 stations from 1975-2010 to a 1km resolution. Soil depth and soil texture data from field measurements were also interpolated to a 1km grid. The model was benchmarked against vegetation type and remotely sensed biomass and tree cover data. Future climate conditions were calculated using the outputs from a set of regional model simulations. In particular the HadRM3P regional climate model was used to downscale five members of a perturbed physics ensemble of global climate projections obtained using HadCM3 general circulation model and the SRES A1B scenario. A delta change factor approach was then used in conjunction with the observed climate data to assess the impact on vegetation structure and ecological processes to the year 2100 using LPJ-GUESS. The resulting changes to productivity, vegetation structure and hydrology are discussed. Eventually these results will be combined with complementary studies concerning wildfire and erosion to produce a risk map for informing policy-makers.

  15. Investigation of climate change impact on water resources for an Alpine basin in northern Italy: implications for evapotranspiration modeling complexity.

    Directory of Open Access Journals (Sweden)

    Giovanni Ravazzani

    Full Text Available Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required because of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied.

  16. Climate Change in Myanmar: Impacts and Adaptation

    Science.gov (United States)

    2014-12-01

    effects of sea level rise on Myanmar. 76 IPCC , Climate Change 2013: The Physical Science Basis... effects of a changing climate . To assess the relationship between Myanmar and climate change , this thesis analyzes projected impacts on the nation...UN, and therefore is highly vulnerable to the negative effects of a changing climate . To assess the relationship between Myanmar and climate

  17. The Poverty Impacts of Climate Change

    OpenAIRE

    Brahmbhatt, Milan; Skoufias, Emmanuel; Olivieri, Sergio; Rabassa, Mariano

    2011-01-01

    Over the last century, the world has seen a sustained decline in the proportion of people living in poverty. However, there is an increasing concern that climate change could slow or possibly even reverse poverty reduction progress. Given the complexities involved in analyzing climate change impacts on poverty, different approaches can be helpful; this note surveys the results of recent re...

  18. Modelling the impact of the climatic changes on the dune erosion. The case of the Camargue

    International Nuclear Information System (INIS)

    Sabatier, F.

    2008-01-01

    Three climatic changes scenarios were investigated by an increase of energy and by the duration of an extreme storm. The wave characteristics properties and the sea level time series of the referenced storm were increased of about 5, 10 and 20 % in order to define the dune erosion. We evidenced that the wave height displays more influence on the dune erosion than the sea level. Moreover, the storm duration, over 4 days, does not play an important role on the dune erosion. However, there is no proportional relationships between a weak storm energy increase and/or duration, and dune erosion. A small increase of storm will have a large impact on dune erosion in the future. (author)

  19. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology

    Science.gov (United States)

    Shen, Mingxi; Chen, Jie; Zhuan, Meijia; Chen, Hua; Xu, Chong-Yu; Xiong, Lihua

    2018-01-01

    Uncertainty estimation of climate change impacts on hydrology has received much attention in the research community. The choice of a global climate model (GCM) is usually considered as the largest contributor to the uncertainty of climate change impacts. The temporal variation of GCM uncertainty needs to be investigated for making long-term decisions to deal with climate change. Accordingly, this study investigated the temporal variation (mainly long-term) of uncertainty related to the choice of a GCM in predicting climate change impacts on hydrology by using multi-GCMs over multiple continuous future periods. Specifically, twenty CMIP5 GCMs under RCP4.5 and RCP8.5 emission scenarios were adapted to adequately represent this uncertainty envelope, fifty-one 30-year future periods moving from 2021 to 2100 with 1-year interval were produced to express the temporal variation. Future climatic and hydrological regimes over all future periods were compared to those in the reference period (1971-2000) using a set of metrics, including mean and extremes. The periodicity of climatic and hydrological changes and their uncertainty were analyzed using wavelet analysis, while the trend was analyzed using Mann-Kendall trend test and regression analysis. The results showed that both future climate change (precipitation and temperature) and hydrological response predicted by the twenty GCMs were highly uncertain, and the uncertainty increased significantly over time. For example, the change of mean annual precipitation increased from 1.4% in 2021-2050 to 6.5% in 2071-2100 for RCP4.5 in terms of the median value of multi-models, but the projected uncertainty reached 21.7% in 2021-2050 and 25.1% in 2071-2100 for RCP4.5. The uncertainty under a high emission scenario (RCP8.5) was much larger than that under a relatively low emission scenario (RCP4.5). Almost all climatic and hydrological regimes and their uncertainty did not show significant periodicity at the P = .05 significance

  20. Impacts of climate change on peanut yield in China simulated by CMIP5 multi-model ensemble projections

    Science.gov (United States)

    Xu, Hanqing; Tian, Zhan; Zhong, Honglin; Fan, Dongli; Shi, Runhe; Niu, Yilong; He, Xiaogang; Chen, Maosi

    2017-09-01

    Peanut is one of the major edible vegetable oil crops in China, whose growth and yield are very sensitive to climate change. In addition, agriculture climate resources are expected to be redistributed under climate change, which will further influence the growth, development, cropping patterns, distribution and production of peanut. In this study, we used the DSSAT-Peanut model to examine the climate change impacts on peanut production, oil industry and oil food security in China. This model is first calibrated using site observations including 31 years' (1981-2011) climate, soil and agronomy data. This calibrated model is then employed to simulate the future peanut yield based on 20 climate scenarios from 5 Global Circulation Models (GCMs) developed by the InterSectoral Impact Model Intercomparison Project (ISIMIP) driven by 4 Representative Concentration Pathways (RCPs). Results indicate that the irrigated peanut yield will decrease 2.6% under the RCP 2.6 scenario, 9.9% under the RCP 4.5 scenario and 29% under the RCP 8.5 scenario, respectively. Similarly, the rain-fed peanut yield will also decrease, with a 2.5% reduction under the RCP 2.6 scenario, 11.5% reduction under the RCP 4.5 scenario and 30% reduction under the RCP 8.5 scenario, respectively.

  1. CLIMATE CHANGES: CAUSES AND IMPACT

    Directory of Open Access Journals (Sweden)

    Camelia Slave

    2013-07-01

    Full Text Available Present brings several environmental problems for people. Many of these are closely related, but by far the most important problem is the climate change. In the course of Earth evolution, climate has changed many times, sometimes dramatically. Warmer eras always replaced and were in turn replaced by glacial ones. However, the climate of the past almost ten thousand years has been very stable. During this period human civilization has also developed. In the past nearly 100 years - since the beginning of industrialization - the global average temperature has increased by approx. 0.6 ° C (after IPCC (Intergovernmental Panel on Climate Change, faster than at any time in the last 1000 years.

  2. Climate change impact assessment on Veneto and Friuli plain groundwater. Part I: An integrated modeling approach for hazard scenario construction

    International Nuclear Information System (INIS)

    Baruffi, F.; Cisotto, A.; Cimolino, A.; Ferri, M.; Monego, M.; Norbiato, D.; Cappelletto, M.; Bisaglia, M.; Pretner, A.; Galli, A.; Scarinci, A.; Marsala, V.; Panelli, C.; Gualdi, S.; Bucchignani, E.; Torresan, S.; Pasini, S.; Critto, A.

    2012-01-01

    Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life + project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961–1990 and the projection period 2010–2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071–2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble

  3. Can Impacts of Climate Change and Agricultural Adaptation Strategies Be Accurately Quantified if Crop Models Are Annually Re-Initialized?

    Science.gov (United States)

    Basso, Bruno; Hyndman, David W; Kendall, Anthony D; Grace, Peter R; Robertson, G Philip

    2015-01-01

    Estimates of climate change impacts on global food production are generally based on statistical or process-based models. Process-based models can provide robust predictions of agricultural yield responses to changing climate and management. However, applications of these models often suffer from bias due to the common practice of re-initializing soil conditions to the same state for each year of the forecast period. If simulations neglect to include year-to-year changes in initial soil conditions and water content related to agronomic management, adaptation and mitigation strategies designed to maintain stable yields under climate change cannot be properly evaluated. We apply a process-based crop system model that avoids re-initialization bias to demonstrate the importance of simulating both year-to-year and cumulative changes in pre-season soil carbon, nutrient, and water availability. Results are contrasted with simulations using annual re-initialization, and differences are striking. We then demonstrate the potential for the most likely adaptation strategy to offset climate change impacts on yields using continuous simulations through the end of the 21st century. Simulations that annually re-initialize pre-season soil carbon and water contents introduce an inappropriate yield bias that obscures the potential for agricultural management to ameliorate the deleterious effects of rising temperatures and greater rainfall variability.

  4. A modelling methodology for assessing the impact of climate variability and climatic change on hydroelectric generation

    International Nuclear Information System (INIS)

    Munoz, J.R.; Sailor, D.J.

    1998-01-01

    A new methodology relating basic climatic variables to hydroelectric generation was developed. The methodology can be implemented in large or small basins with any number of hydro plants. The method was applied to the Sacramento, Eel and Russian river basins in northern California where more than 100 hydroelectric plants are located. The final model predicts the availability of hydroelectric generation for the entire basin provided present and near past climate conditions, with about 90% accuracy. The results can be used for water management purposes or for analyzing the effect of climate variability on hydrogeneration availability in the basin. A wide range of results can be obtained depending on the climate change scenario used. (Author)

  5. Evaluating climate change impacts and adaptation options for agriculture in West Africa: a multi-model comparison

    Science.gov (United States)

    Sultan, B.; Lobell, D. B.; Biasutti, M.; Guan, K.; Roudier, P.; Piani, C.

    2013-12-01

    Climate change is likely to stress food production in many parts of the developing world over the next few decades. In areas such as West Africa, where poor communities are highly dependent on the direct use of local natural resources, the effects of climate change on food security could be particularly devastating. Given these concerns, there is great interest in identifying and investing in technologies or practices that could help farmers adapt to climate variability and change. Recent studies found a robust agreement across the various climate models of the IPCC Coupled Models Inter-comparison Program ensemble on the seasonal distribution of Sahel rainfall changes (with a drying of the early season and positive rainfall anomaly at the end) in contrast with a large uncertainty for summertime rainfall totals. These changes will therefore certainly impact agriculture strategy (selection of new cultivars, later sowing) and output. This study estimates such impacts by using a series of climate scenarios as input for two crop models for multiple locations within West Africa. Simulations are run for the two major crops in the region - sorghum and millets. Building on the above simulations, we then simulate different scenarios of adaptation that could be used to cope with climate changes.

  6. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe.

    Science.gov (United States)

    Fraga, Helder; García de Cortázar Atauri, Iñaki; Malheiro, Aureliano C; Santos, João A

    2016-11-01

    Viticulture is a key socio-economic sector in Europe. Owing to the strong sensitivity of grapevines to atmospheric factors, climate change may represent an important challenge for this sector. This study analyses viticultural suitability, yield, phenology, and water and nitrogen stress indices in Europe, for present climates (1980-2005) and future (2041-2070) climate change scenarios (RCP4.5 and 8.5). The STICS crop model is coupled with climate, soil and terrain databases, also taking into account CO 2 physiological effects, and simulations are validated against observational data sets. A clear agreement between simulated and observed phenology, leaf area index, yield and water and nitrogen stress indices, including the spatial differences throughout Europe, is shown. The projected changes highlight an extension of the climatic suitability for grapevines up to 55°N, which may represent the emergence of new winemaking regions. Despite strong regional heterogeneity, mean phenological timings (budburst, flowering, veraison and harvest) are projected to undergo significant advancements (e.g. budburst/harvest can be >1 month earlier), with implications also in the corresponding phenophase intervals. Enhanced dryness throughout Europe is also projected, with severe water stress over several regions in southern regions (e.g. southern Iberia and Italy), locally reducing yield and leaf area. Increased atmospheric CO 2 partially offsets dryness effects, promoting yield and leaf area index increases in central/northern Europe. Future biomass changes may lead to modifications in nitrogen demands, with higher stress in northern/central Europe and weaker stress in southern Europe. These findings are critical decision support systems for stakeholders from the European winemaking sector. © 2016 John Wiley & Sons Ltd.

  7. Climate Change Impacts on the Stability of Small Tidal Inlets: A Numerical Modelling Study Using the Realistic Analogue Approach

    Directory of Open Access Journals (Sweden)

    Trang Minh Duong

    2012-09-01

    Full Text Available Tidal inlets are of great societal importance as they are often associated with ports and harbours, industry, tourism, recreation and prime waterfront real estate. Their behaviour is governed by the delicate balance of oceanic processes (tides, waves and mean sea level, and fluvial/estuarine processes (riverflow and heat fluxes, all of which can be significantly affected by climate change (CC processes. This study investigates the potential range of CC impacts on the stability (closed/open state and locational stability via the application of a sophisticated process based morphodynamic model (Delft3D to strategically selected schematized inlet morphologies and forcing conditions. Results show that, under worst case scenario conditions, the integrated effect of climate change driven increase in mean sea level, wave height and wave angle may significantly change inlet stability condition.

  8. Adapting to the impacts of climate change

    National Research Council Canada - National Science Library

    America's Climate Choices: Panel on Adapting to the Impacts of Climate Change; National Research Council; Board on Atmospheric Sciences & Climate; Division on Earth and Life Studies; National Research Council

    2010-01-01

    "Across the United States, impacts of climate change are already evident. Heat waves have become more frequent and intense, cold extremes have become less frequent, and patterns of rainfall are likely changing...

  9. What's happening out there? (Climatic change impacts)

    International Nuclear Information System (INIS)

    Visconti, G.

    1990-01-01

    This article briefly comments on some stumbling-blocks to climatic change modelling accuracy - in assessments of the greenhouse effect, 25% (missing link) of atmospheric carbon dioxide absorption is still unaccounted for; 1989 World Bank estimates of the Amazon rain forest deforestation rate have since proven to be inaccurate; there are difficulties in assessing the movement of the earth's crust relative to variations in sea level; and different studies vary in results relative to global temperature measurement and trend assessment. The need for an assessment of the economic impacts of increased atmospheric concentrations of carbon dioxide is also pointed out

  10. MOSAICC: An inter-disciplinary system of models to evaluate the impact of climate change on agriculture.

    NARCIS (Netherlands)

    Poortinga, A.; Delobel, F.; Rojas, O.

    2012-01-01

    ABSTRACT Climate change potentially threatens the livelihood of many people who depend on local food production. Information from different disciplines has become an essential to estimate and predict the impact of climate change on local food production. However, data is often scattered and

  11. Investigating the impact of climate change on crop phenological events in Europe with a phenology model

    Science.gov (United States)

    Ma, Shaoxiu; Churkina, Galina; Trusilova, Kristina

    2012-07-01

    Predicting regional and global carbon and water dynamics requires a realistic representation of vegetation phenology. Vegetation models including cropland models exist (e.g. LPJmL, Daycent, SIBcrop, ORCHIDEE-STICS, PIXGRO) but they have various limitations in predicting cropland phenological events and their responses to climate change. Here, we investigate how leaf onset and offset days of major European croplands responded to changes in climate from 1971 to 2000 using a newly developed phenological model, which solely relies on climate data. Net ecosystem exchange (NEE) data measured with eddy covariance technique at seven sites in Europe were used to adjust model parameters for wheat, barley, and rapeseed. Observational data from the International Phenology Gardens were used to corroborate modeled phenological responses to changes in climate. Enhanced vegetation index (EVI) and a crop calendar were explored as alternative predictors of leaf onset and harvest days, respectively, over a large spatial scale. In each spatial model simulation, we assumed that all European croplands were covered by only one crop type. Given this assumption, the model estimated that the leaf onset days for wheat, barley, and rapeseed in Germany advanced by 1.6, 3.4, and 3.4 days per decade, respectively, during 1961-2000. The majority of European croplands (71.4%) had an advanced mean leaf onset day for wheat, barley, and rapeseed (7.0% significant), whereas 28.6% of European croplands had a delayed leaf onset day (0.9% significant) during 1971-2000. The trend of advanced onset days estimated by the model is similar to observations from the International Phenology Gardens in Europe. The developed phenological model can be integrated into a large-scale ecosystem model to simulate the dynamics of phenological events at different temporal and spatial scales. Crop calendars and enhanced vegetation index have substantial uncertainties in predicting phenological events of croplands. Caution

  12. Implications of the subjectivity in hydrologic model choice and parameter identification on the portrayal of climate change impact

    Science.gov (United States)

    Mendoza, Pablo; Clark, Martyn; Rajagopalan, Balaji; MIzukami, Naoki; Gutmann, Ethan; Newman, Andy; Barlage, Michael; Brekke, Levi; Arnold, Jeffrey

    2014-05-01

    Climate change studies involve several methodological choices that affect the hydrological sensitivities obtained, including emission scenarios, climate models, downscaling techniques and hydrologic modeling approaches. Among these, hydrologic model structure selection (i.e. the set of equations that describe catchment processes) and parameter identification are particularly relevant and usually have a strong subjective component. This subjectivity is not only limited to engineering applications, but also extends to many of our research studies, resulting in problems such as missing processes in our models, inappropriate parameterizations and compensatory effects of model parameters (i.e. getting the right answers for the wrong reasons). The goal of this research is to assess the impact of our modeling decisions on projected changes in water balance and catchment behavior for future climate scenarios. Additionally, we aim to better understand the relative importance of hydrologic model structures and parameters on the portrayal of climate change impact. Therefore, we compare hydrologic sensitivities coming from four different models structures (PRMS, VIC, Noah and Noah-MP) with those coming from parameter sets identified using different decisions related to model calibration (objective function, multiple local optima and calibration forcing dataset). We found that both model structure selection and parameter estimation strategy (objective function and forcing dataset) affect the direction and magnitude of climate change signal. Furthermore, the relative effect of subjective decisions on projected variations of catchment behavior depends on the hydrologic signature measure analyzed. Finally, parameter sets with similar values of the objective function may not affect current and future changes in water balance, but may lead to very different sensitivities in hydrologic behavior.

  13. A Statistical Modeling Framework for Projecting Future Ambient Ozone and its Health Impact due to Climate Change.

    Science.gov (United States)

    Chang, Howard H; Hao, Hua; Sarnat, Stefanie Ebelt

    2014-06-01

    The adverse health effects of ambient ozone are well established. Given the high sensitivity of ambient ozone concentrations to meteorological conditions, the impacts of future climate change on ozone concentrations and its associated health effects are of concern. We describe a statistical modeling framework for projecting future ozone levels and its health impacts under a changing climate. This is motivated by the continual effort to evaluate projection uncertainties to inform public health risk assessment. The proposed approach was applied to the 20-county Atlanta metropolitan area using regional climate model (RCM) simulations from the North American Regional Climate Change Assessment Program. Future ozone levels and ozone-related excesses in asthma emergency department (ED) visits were examined for the period 2041-2070. The computationally efficient approach allowed us to consider 8 sets of climate model outputs based on different combinations of 4 RCMs and 4 general circulation models. Compared to the historical period of 1999-2004, we found consistent projections across climate models of an average 11.5% higher ozone levels (range: 4.8%, 16.2%), and an average 8.3% (range: -7% to 24%) higher number of ozone exceedance days. Assuming no change in the at-risk population, this corresponds to excess ozone-related ED visits ranging from 267 to 466 visits per year. Health impact projection uncertainty was driven predominantly by uncertainty in the health effect association and climate model variability. Calibrating climate simulations with historical observations reduced differences in projections across climate models.

  14. Investigating the Capacity of Hydrological Models to Project Impacts of Climate Change in the Context of Water Allocation

    Science.gov (United States)

    Velez, Carlos; Maroy, Edith; Rocabado, Ivan; Pereira, Fernando

    2017-04-01

    To analyse the impacts of climate changes, hydrological models are used to project the hydrology responds under future conditions that normally differ from those for which they were calibrated. The challenge is to assess the validity of the projected effects when there is not data to validate it. A framework for testing the ability of models to project climate change was proposed by Refsgaard et al., (2014). The authors recommend the use of the differential-split sample test (DSST) in order to build confidence in the model projections. The method follow three steps: 1. A small number of sub-periods are selected according to one climate characteristics, 2. The calibration - validation test is applied on these periods, 3. The validation performances are compered to evaluate whether they vary significantly when climatic characteristics differ between calibration and validation. DSST rely on the existing records of climate and hydrological variables; and performances are estimated based on indicators of error between observed and simulated variables. Other authors suggest that, since climate models are not able to reproduce single events but rather statistical properties describing the climate, this should be reflected when testing hydrological models. Thus, performance criteria such as RMSE should be replaced by for instance flow duration curves or other distribution functions. Using this type of performance criteria, Van Steenbergen and Willems, (2012) proposed a method to test the validity of hydrological models in a climate changing context. The method is based on the evaluation of peak flow increases due to different levels of rainfall increases. In contrast to DSST, this method use the projected climate variability and it is especially useful to compare different modelling tools. In the framework of a water allocation project for the region of Flanders (Belgium) we calibrated three hydrological models: NAM, PDM and VHM; for 67 gauged sub-catchments with approx

  15. Environmental impacts of climate change adaptation

    International Nuclear Information System (INIS)

    Enríquez-de-Salamanca, Álvaro; Díaz-Sierra, Rubén; Martín-Aranda, Rosa M.; Santos, Maria J.

    2017-01-01

    Climate change adaptation reduces adverse effects of climate change but may also have undesirable environmental impacts. However, these impacts are yet poorly defined and analysed in the existing literature. To complement this knowledge-gap, we reviewed the literature to unveil the relationship between climate change adaptation and environmental impact assessment, and the degree to which environmental impacts are included in climate change adaptation theory and practice. Our literature review showed that technical, social and economic perspectives on climate change adaptation receive much more attention than the environmental perspective. The scarce interest on the environmental impacts of adaptation may be attributed to (1) an excessive sectoral approach, with dominance of non-environmental perspectives, (2) greater interest in mitigation and direct climate change impacts rather than in adaptation impacts, (3) a tendency to consider adaptation as inherently good, and (4) subjective/preconceived notions on which measures are good or bad, without a comprehensive assessment. Environmental Assessment (EA) has a long established history as an effective tool to include environment into decision-making, although it does not yet guarantee a proper assessment of adaptation, because it is still possible to postpone or even circumvent the processes of assessing the impacts of climate adaptation. Our results suggest that there is a need to address adaptation proactively by including it in EA, to update current policy frameworks, and to demand robust and reliable evaluation of alternatives. Only through the full EA of adaptation measures can we improve our understanding of the primary and secondary impacts of adaptation to global environmental change. - Highlights: • Climate change adaptation may have undesirable environmental impacts. • The impacts of adaptation are yet poorly analysed in the literature. • There is an excessive sectoral approach to adaptation, mainly

  16. Assessing climate change impacts on water balance in the Mount ...

    Indian Academy of Sciences (India)

    A statistical downscaling known for producing station-scale climate information from GCM output was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water balance assessment of climate change ...

  17. Assessing climate change impacts on water balance in the Mount

    Indian Academy of Sciences (India)

    A statistical downscaling known for producing station-scale climate information from GCM output was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water balance assessment of climate change ...

  18. Assessing climate change impacts on water balance in the Mount ...

    Indian Academy of Sciences (India)

    A statistical downscaling known for producing station-scale climate information from GCM out- put was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water bal- ance assessment of climate change ...

  19. Distributed modelling of climate change impacts on snow sublimation in Northern Mongolia

    Directory of Open Access Journals (Sweden)

    L. Menzel

    2009-08-01

    Full Text Available Sublimation of snow is an important factor of the hydrological cycle in Mongolia and is likely to increase according to future climate projections. In this study the hydrological model TRAIN was used to assess spatially distributed current and future sublimation rates based on interpolated daily data of precipitation, air temperature, air humidity, wind speed and solar radiation. An automated procedure for the interpolation of the input data is provided. Depending on the meteorological parameter and the data availability for the individual days, the most appropriate interpolation method is chosen automatically from inverse distance weighting, Ordinary Least Squares interpolation, Ordinary or Universal Kriging. Depending on elevation simulated annual sublimation in the period 1986–2006 was 23 to 35 mm, i.e. approximately 80% of total snowfall. Moreover, future climate projections for 2071–2100 of ECHAM5 and HadCM3, based on the A1B emission scenario of the Intergovernmental Panel on Climate Change, were analysed with TRAIN. In the case of ECHAM5 simulated sublimation increases by up to 17% (26...41 mm while it remains at the same level for HadCM3 (24...34 mm. The differences are mainly due to a distinct increase in winter precipitation for ECHAM5. Simulated changes of the all-season hydrological conditions, e.g. the sublimation-to-precipitation ratio, were ambiguous due to diverse precipitation patterns derived by the global circulation models.

  20. A Refined Methodology for Modelling Climate Change Impacts on Snow Sports Tourism

    Science.gov (United States)

    Demiroglu, O. Cenk; Turp, M. Tufan; Ozturk, Tugba; An, Nazan; Kurnaz, M. Levent

    2015-04-01

    Nature-based tourism is one of the most vulnerable sectors of the economy against climate change. Among its types, winter tourism stands out as the most critical due to the relatively high exposure and sensitivity of snow cover to the anthropogenic warming trends. In this study, we aim at improving previous works by Ozturk et al. where snow reliability of ski resorts have been examined through projections based on regional climate model outputs downscaled from various GCMs. Major improvements to these studies will be related to increasing the resolution, obtaining snow depth values from snow-water equivalent outputs, and hourly, instead of the daily, calculations of wet bulb temperatures. Daily snow depth values will be utilized for 100-days rule that looks for at least 100 days of snow cover at a minimum of 30 cm in order for a ski resort to be viable, whereas the wet bulb temperatures below -7 oC will indicate the snowmaking capacity. The domain of analysis will be the Balkans, the Middle East and the Caucasus. Therefore the spatial gap in the mostly Euro- and Amero-centric literature will also be improved. The domain will be modelled through RegCM 4.4.2 of the International Centre for Theoretical Physics basing its resolution on MPI-ESM-MR of Max Planck Institut für Meteorologie and the concentration scenario RCP 4.5 for a realistic tourism development future of 2020-2050.

  1. Distributional Aspects of Climate Change Impacts

    International Nuclear Information System (INIS)

    Tol, R.S.J. Tol; Kuik, O.J.; Downing, T.; Smith, J.B.

    2003-01-01

    This paper gives a brief review about the state of knowledge on the distributional aspects of climate change impacts. The paper is largely limited to the distribution of impacts between countries (in Section 2). Although there are virtually no estimates reported in the literature, the distribution of impacts within countries is also important. Impact estimates for different sectors (agriculture, health, sea level rise) provides little guidance for estimating differential impacts within countries. It is even harder to find estimates based on social classes. The paper restricts itself to equity about the consequences of climate change. Equity issues about the consequences of emission reduction are ignored here, but should of course be part of a policy analysis. Equity issues about procedures for decision making are also ignored. The paper is organised as follows. Section 2 reviews recent estimates of the regional impacts of climate change. Section 3 discusses alternative ways of aggregating regional impact estimates. Section 4 focusses on the vulnerability of the poor to climate change impacts, both with respect to exposure as well as to their limited capacity for adaptation. Section 5 discusses the impacts of economic development and other dynamic changes on vulnerability. The paper abstains from a discussion of aggregating climate change impacts over time, partly because the literature on that is too substantial to be reviewed here, and partly because, under virtually all scenarios, the current generation is the poorest and therefore particularly worthy in equity considerations. In Section 6 we present salient conclusions

  2. Modelling the impact of future socio-economic and climate change scenarios on river microbial water quality.

    Science.gov (United States)

    Islam, M M Majedul; Iqbal, Muhammad Shahid; Leemans, Rik; Hofstra, Nynke

    2018-03-01

    Microbial surface water quality is important, as it is related to health risk when the population is exposed through drinking, recreation or consumption of irrigated vegetables. The microbial surface water quality is expected to change with socio-economic development and climate change. This study explores the combined impacts of future socio-economic and climate change scenarios on microbial water quality using a coupled hydrodynamic and water quality model (MIKE21FM-ECOLab). The model was applied to simulate the baseline (2014-2015) and future (2040s and 2090s) faecal indicator bacteria (FIB: E. coli and enterococci) concentrations in the Betna river in Bangladesh. The scenarios comprise changes in socio-economic variables (e.g. population, urbanization, land use, sanitation and sewage treatment) and climate variables (temperature, precipitation and sea-level rise). Scenarios have been developed building on the most recent Shared Socio-economic Pathways: SSP1 and SSP3 and Representative Concentration Pathways: RCP4.5 and RCP8.5 in a matrix. An uncontrolled future results in a deterioration of the microbial water quality (+75% by the 2090s) due to socio-economic changes, such as higher population growth, and changes in rainfall patterns. However, microbial water quality improves under a sustainable scenario with improved sewage treatment (-98% by the 2090s). Contaminant loads were more influenced by changes in socio-economic factors than by climatic change. To our knowledge, this is the first study that combines climate change and socio-economic development scenarios to simulate the future microbial water quality of a river. This approach can also be used to assess future consequences for health risks. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  3. From catchment scale hydrologic processes to numerical models and robust predictions of climate change impacts at regional scales

    Science.gov (United States)

    Wagener, T.

    2017-12-01

    Current societal problems and questions demand that we increasingly build hydrologic models for regional or even continental scale assessment of global change impacts. Such models offer new opportunities for scientific advancement, for example by enabling comparative hydrology or connectivity studies, and for improved support of water management decision, since we might better understand regional impacts on water resources from large scale phenomena such as droughts. On the other hand, we are faced with epistemic uncertainties when we move up in scale. The term epistemic uncertainty describes those uncertainties that are not well determined by historical observations. This lack of determination can be because the future is not like the past (e.g. due to climate change), because the historical data is unreliable (e.g. because it is imperfectly recorded from proxies or missing), or because it is scarce (either because measurements are not available at the right scale or there is no observation network available at all). In this talk I will explore: (1) how we might build a bridge between what we have learned about catchment scale processes and hydrologic model development and evaluation at larger scales. (2) How we can understand the impact of epistemic uncertainty in large scale hydrologic models. And (3) how we might utilize large scale hydrologic predictions to understand climate change impacts, e.g. on infectious disease risk.

  4. Climate change impacts on global food security.

    Science.gov (United States)

    Wheeler, Tim; von Braun, Joachim

    2013-08-02

    Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a "climate-smart food system" that is more resilient to climate change influences on food security.

  5. Economic impacts of climate change in Australia: framework and analysis

    International Nuclear Information System (INIS)

    Ford, Melanie

    2007-01-01

    Full text: There is growing interest in understanding the potential impacts of climate change in Australia, and especially the economic impacts of 'inaction'. In this study, a preliminary analysis of the possible economic impacts of future climate change in Australia is undertaken using ABARE's general equilibrium model of the global economy, GTEM. In order to understand the potential economy-wide economic impacts, the broad climatic trends that Australia is likely to experience over the next several decades are canvassed and the potential economic and non-economic impacts on key risk areas, such as water resources, agriculture and forests, health, industry and human settlements and the ecosystems, are identified. A more detailed analysis of the economic impacts of climate change are undertaken by developing two case studies. In the first case study, the economic impact of climate change and reduced water availability on the agricultural sector is assessed in the Murray-Darling Basin. In the second case study, the sectoral economic impacts on the Australian resources sector of a projected decline in global economic activity due to climate change is analysed. The key areas of required development to more fully understand the economy-wide and sectoral impacts of climate change are also discussed including issues associated with estimating both non-market and market impacts. Finally, an analytical framework for undertaking integrated assessment of climate change impacts domestically and globally is developed

  6. Modeling daily flowering probabilities: expected impact of climate change on Japanese cherry phenology.

    Science.gov (United States)

    Allen, Jenica M; Terres, Maria A; Katsuki, Toshio; Iwamoto, Kojiro; Kobori, Hiromi; Higuchi, Hiroyoshi; Primack, Richard B; Wilson, Adam M; Gelfand, Alan; Silander, John A

    2014-04-01

    Understanding the drivers of phenological events is vital for forecasting species' responses to climate change. We developed flexible Bayesian survival regression models to assess a 29-year, individual-level time series of flowering phenology from four taxa of Japanese cherry trees (Prunus spachiana, Prunus × yedoensis, Prunus jamasakura, and Prunus lannesiana), from the Tama Forest Cherry Preservation Garden in Hachioji, Japan. Our modeling framework used time-varying (chill and heat units) and time-invariant (slope, aspect, and elevation) factors. We found limited differences among taxa in sensitivity to chill, but earlier flowering taxa, such as P. spachiana, were more sensitive to heat than later flowering taxa, such as P. lannesiana. Using an ensemble of three downscaled regional climate models under the A1B emissions scenario, we projected shifts in flowering timing by 2100. Projections suggest that each taxa will flower about 30 days earlier on average by 2100 with 2-6 days greater uncertainty around the species mean flowering date. Dramatic shifts in the flowering times of cherry trees may have implications for economically important cultural festivals in Japan and East Asia. The survival models used here provide a mechanistic modeling approach and are broadly applicable to any time-to-event phenological data, such as plant leafing, bird arrival time, and insect emergence. The ability to explicitly quantify uncertainty, examine phenological responses on a fine time scale, and incorporate conditions leading up to an event may provide future insight into phenologically driven changes in carbon balance and ecological mismatches of plants and pollinators in natural populations and horticultural crops. © 2013 John Wiley & Sons Ltd.

  7. Using statistical model to simulate the impact of climate change on maize yield with climate and crop uncertainties

    Science.gov (United States)

    Zhang, Yi; Zhao, Yanxia; Wang, Chunyi; Chen, Sining

    2017-11-01

    Assessment of the impact of climate change on crop productions with considering uncertainties is essential for properly identifying and decision-making agricultural practices that are sustainable. In this study, we employed 24 climate projections consisting of the combinations of eight GCMs and three emission scenarios representing the climate projections uncertainty, and two crop statistical models with 100 sets of parameters in each model representing parameter uncertainty within the crop models. The goal of this study was to evaluate the impact of climate change on maize ( Zea mays L.) yield at three locations (Benxi, Changling, and Hailun) across Northeast China (NEC) in periods 2010-2039 and 2040-2069, taking 1976-2005 as the baseline period. The multi-models ensembles method is an effective way to deal with the uncertainties. The results of ensemble simulations showed that maize yield reductions were less than 5 % in both future periods relative to the baseline. To further understand the contributions of individual sources of uncertainty, such as climate projections and crop model parameters, in ensemble yield simulations, variance decomposition was performed. The results indicated that the uncertainty from climate projections was much larger than that contributed by crop model parameters. Increased ensemble yield variance revealed the increasing uncertainty in the yield simulation in the future periods.

  8. Integrating Plant Science and Crop Modeling: Assessment of the Impact of Climate Change on Soybean and Maize Production.

    Science.gov (United States)

    Fodor, Nándor; Challinor, Andrew; Droutsas, Ioannis; Ramirez-Villegas, Julian; Zabel, Florian; Koehler, Ann-Kristin; Foyer, Christine H

    2017-11-01

    Increasing global CO2 emissions have profound consequences for plant biology, not least because of direct influences on carbon gain. However, much remains uncertain regarding how our major crops will respond to a future high CO2 world. Crop model inter-comparison studies have identified large uncertainties and biases associated with climate change. The need to quantify uncertainty has drawn the fields of plant molecular physiology, crop breeding and biology, and climate change modeling closer together. Comparing data from different models that have been used to assess the potential climate change impacts on soybean and maize production, future yield losses have been predicted for both major crops. When CO2 fertilization effects are taken into account significant yield gains are predicted for soybean, together with a shift in global production from the Southern to the Northern hemisphere. Maize production is also forecast to shift northwards. However, unless plant breeders are able to produce new hybrids with improved traits, the forecasted yield losses for maize will only be mitigated by agro-management adaptations. In addition, the increasing demands of a growing world population will require larger areas of marginal land to be used for maize and soybean production. We summarize the outputs of crop models, together with mitigation options for decreasing the negative impacts of climate on the global maize and soybean production, providing an overview of projected land-use change as a major determining factor for future global crop production. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  9. Impact of the choice of the precipitation reference data set on climate model selection and the resulting climate change signal

    Science.gov (United States)

    Gampe, D.; Ludwig, R.

    2017-12-01

    Regional Climate Models (RCMs) that downscale General Circulation Models (GCMs) are the primary tool to project future climate and serve as input to many impact models to assess the related changes and impacts under such climate conditions. Such RCMs are made available through the Coordinated Regional climate Downscaling Experiment (CORDEX). The ensemble of models provides a range of possible future climate changes around the ensemble mean climate change signal. The model outputs however are prone to biases compared to regional observations. A bias correction of these deviations is a crucial step in the impact modelling chain to allow the reproduction of historic conditions of i.e. river discharge. However, the detection and quantification of model biases are highly dependent on the selected regional reference data set. Additionally, in practice due to computational constraints it is usually not feasible to consider the entire ensembles of climate simulations with all members as input for impact models which provide information to support decision-making. Although more and more studies focus on model selection based on the preservation of the climate model spread, a selection based on validity, i.e. the representation of the historic conditions is still a widely applied approach. In this study, several available reference data sets for precipitation are selected to detect the model bias for the reference period 1989 - 2008 over the alpine catchment of the Adige River located in Northern Italy. The reference data sets originate from various sources, such as station data or reanalysis. These data sets are remapped to the common RCM grid at 0.11° resolution and several indicators, such as dry and wet spells, extreme precipitation and general climatology, are calculate to evaluate the capability of the RCMs to produce the historical conditions. The resulting RCM spread is compared against the spread of the reference data set to determine the related uncertainties and

  10. Icy rivers heating up : Modelling hydrological impacts of climate change in the (sub)arctic

    NARCIS (Netherlands)

    Linden, Sandra van der

    2002-01-01

    The Arctic is considered to be particularly sensitive to global climate change. Global warming will seriously affect the components of the water balance in northern regions and changes in precipitation and temperature have immediate as well as long term effects on river systems. The main goal of

  11. Climate change, tropospheric ozone and particulate matter, and health impacts.

    Science.gov (United States)

    Ebi, Kristie L; McGregor, Glenn

    2008-11-01

    Because the state of the atmosphere determines the development, transport, dispersion, and deposition of air pollutants, there is concern that climate change could affect morbidity and mortality associated with elevated concentrations of these gases and fine particles. We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health. We review studies projecting the impacts of climate change on air quality and studies projecting the impacts of these changes on morbidity and mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty include the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given these uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, which would increase morbidity and mortality. Few projections are available for low- and middle-income countries. The evidence is less robust for PM, primarily because few studies have been conducted. Additional research is needed to better understand the possible impacts of climate change on air pollution-related health impacts. If improved models continue to project higher ozone concentrations with climate change, then reducing greenhouse gas emissions would enhance the health of current and future generations.

  12. Assessment of climate change impacts on climate variables using probabilistic ensemble modeling and trend analysis

    Science.gov (United States)

    Safavi, Hamid R.; Sajjadi, Sayed Mahdi; Raghibi, Vahid

    2017-10-01

    Water resources in snow-dependent regions have undergone significant changes due to climate change. Snow measurements in these regions have revealed alarming declines in snowfall over the past few years. The Zayandeh-Rud River in central Iran chiefly depends on winter falls as snow for supplying water from wet regions in high Zagrous Mountains to the downstream, (semi-)arid, low-lying lands. In this study, the historical records (baseline: 1971-2000) of climate variables (temperature and precipitation) in the wet region were chosen to construct a probabilistic ensemble model using 15 GCMs in order to forecast future trends and changes while the Long Ashton Research Station Weather Generator (LARS-WG) was utilized to project climate variables under two A2 and B1 scenarios to a future period (2015-2044). Since future snow water equivalent (SWE) forecasts by GCMs were not available for the study area, an artificial neural network (ANN) was implemented to build a relationship between climate variables and snow water equivalent for the baseline period to estimate future snowfall amounts. As a last step, homogeneity and trend tests were performed to evaluate the robustness of the data series and changes were examined to detect past and future variations. Results indicate different characteristics of the climate variables at upstream stations. A shift is observed in the type of precipitation from snow to rain as well as in its quantities across the subregions. The key role in these shifts and the subsequent side effects such as water losses is played by temperature.

  13. Fisheries: climate change impacts and adaptation

    International Nuclear Information System (INIS)

    2003-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on fisheries focuses on the impact of climate change on Canada's marine and freshwater fisheries, and the role of adaptation in reducing the vulnerability of the sector. Canadian fisheries encompass the Atlantic, Pacific and Arctic oceans as well as freshwater systems. Fish health, productivity and distribution is strongly influenced by climatic factors such as air and water temperature, precipitation and wind. Most fish species have a distinct set of environmental conditions for optimal growth and survival. If the conditions change in response to changing climate, the fish may be affected. Some of the impacts include reduced growth, increased competition, a shift in species distribution, greater susceptibility to disease, and altered ecosystem function. Studies show that in some areas, fisheries may already be experiencing the effect of climate change. Recommendations were suggested on how to deal with the impacts associated with climate change in sensitive environments. It was noted that actions taken in the fisheries sector will have implications for the water resources, transportation, tourism and human health sectors. 103 refs., 2 tabs., 6 figs

  14. Salmon Population Summary - Impacts of climate change on Pacific salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This work involves 1) synthesizing information from the literature and 2) modeling impacts of climate change on specific aspects of salmon life history and...

  15. Assessment of the Impact of Climate Change on the Water Balances and Flooding Conditions of Peninsular Malaysia watersheds by a Coupled Numerical Climate Model - Watershed Hydrology Model

    Science.gov (United States)

    Ercan, A.; Kavvas, M. L.; Ishida, K.; Chen, Z. Q.; Amin, M. Z. M.; Shaaban, A. J.

    2017-12-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over various watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model that utilized an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century were dynamically downscaled to 6 km resolution over Peninsular Malaysia by a regional numerical climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over the selected watersheds of Peninsular Malaysia. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions at the selected watersheds during the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90 years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant at the selected watersheds. Furthermore, the flood frequency analyses for the selected watersheds indicate an overall increasing trend in the second half of the 21st century.

  16. Learning to Adapt. Organisational Adaptation to Climate Change Impacts

    International Nuclear Information System (INIS)

    Berkhout, F.; Hertin, J.; Gann, D.M.

    2006-01-01

    Analysis of human adaptation to climate change should be based on realistic models of adaptive behaviour at the level of organisations and individuals. The paper sets out a framework for analysing adaptation to the direct and indirect impacts of climate change in business organisations with new evidence presented from empirical research into adaptation in nine case-study companies. It argues that adaptation to climate change has many similarities with processes of organisational learning. The paper suggests that business organisations face a number of obstacles in learning how to adapt to climate change impacts, especially in relation to the weakness and ambiguity of signals about climate change and the uncertainty about benefits flowing from adaptation measures. Organisations rarely adapt 'autonomously', since their adaptive behaviour is influenced by policy and market conditions, and draws on resources external to the organisation. The paper identifies four adaptation strategies that pattern organisational adaptive behaviour

  17. Model study of the impacts of future climate change on the hydrology of Ganges–Brahmaputra–Meghna basin

    OpenAIRE

    M. Masood; P. J.-F. Yeh; N. Hanasaki; K. Takeuchi

    2015-01-01

    The intensity, duration, and geographic extent of floods in Bangladesh mostly depend on the combined influences of three river systems, the Ganges, Brahmaputra and Meghna (GBM). In addition, climate change is likely to have significant effects on the hydrology and water resources of the GBM basin and may ultimately lead to more serious floods in Bangladesh. However, the assessment of climate change impacts on the basin-scale hydrology by using well-calibrated hydrologic mode...

  18. CLIMATE CHANGE IMPACTS ON WATER RESOURCES

    Directory of Open Access Journals (Sweden)

    T.M. CORNEA

    2011-03-01

    Full Text Available Climate change impacts on water resources – The most recent scientific assessment by the Intergovernmental Panel on Climate Change (IPCC [6] concludes that, since the late 19th century, anthropogenic induced emissions of greenhouse gases have contributed to an increase in global surface temperatures of about 0.3 to 0.6o C. Based on the IPCC’s scenario of future greenhouse gas emissions and aerosols a further increase of 2o C is expected by the year 2100. Plants, animals, natural and managed ecosystems, and human settlements are susceptible to variations in the storage, fluxes, and quality of water and sensitive to climate change. From urban and agricultural water supplies to flood management and aquatic ecosystem protection, global warming is affecting all aspects of water resource management. Rising temperatures, loss of snowpack, escalating size and frequency of flood events, and rising sea levels are just some of the impacts of climate change that have broad implications for the management of water resources. With robust scientific evidence showing that human-induced climate change is occurring, it is critical to understand how water quantity and quality might be affected. The purpose of this paper is to highlight the environmental risks caused by climate anomalies on water resources, to examine the negative impacts of a greenhouse warming on the supply and demand for water and the resulting socio-economic implications.

  19. Estimates of Climate Change Impact on River Discharge in Japan Based on a Super-High-Resolution Climate Model

    Directory of Open Access Journals (Sweden)

    Yoshinobu Sato

    2012-01-01

    Full Text Available The impact of climate change on river discharge was assessed by hydrological simulations for several major river basins in Japan using the latest version of a super-high-resolution atmospheric general circulation model (AGCM with a horizontal resolution of about 20 km. Projections were made using two different datasets, one representing the present climate (1980 - 1999 and the other representing the end of the 21st century (2080 - 2099 assuming the SRES A1B scenario. River discharge was estimated by a distributed hydrological model calibrated against observed river discharge in advance. The results showed that even if the amount of precipitation does not change much in the future, river discharge will change significantly because of the increase in rainfall, decrease in snowmelt, and increase in evapotranspiration with higher air temperature. The impact of climate change on river discharge will be more significant in the northern part of Japan, especially in the Tohoku and Hokuriku regions. In these regions, the monthly average river discharge at the end of the 21st century was projected to be more than 200% higher in February and approximately 50 - 60% lower in May compared with the present flow. These results imply that the increase in air temperature has important consequences for the hydrological cycle, particularly in regions where the water supply is currently dominated by snowmelt.

  20. The Poverty Impacts of Climate Change : A Review of the Evidence

    OpenAIRE

    Olivieri, Sergio; Skoufias, Emmanuel; Rabassa, Mariano

    2011-01-01

    Climate change is believed to represent a serious challenge to poverty reduction efforts around the globe. This paper conducts an up-to-date review of three main strands of the literature analyzing the poverty impacts of climate change : (i) economy-wide growth models incorporating climate change impacts to work out consistent scenarios for how climate change might affect the path of pover...

  1. Modelling the impacts of climate change on muddy flooding and the effectiveness of mitigation measures in Flanders, Belgium

    Science.gov (United States)

    Mullan, Donal; Vandaele, Karel; Boardman, John; Favis-Mortlock, Dave

    2014-05-01

    The 'off-site' impacts of soil erosion have become a major source of concern in Europe and elsewhere during recent decades. This is due, in part, to the environmental damage and economic costs associated with 'muddy flooding.' Muddy floods occur when large volumes of runoff are generated on agricultural land, triggering the detachment and transport of sediment. This may then be deposited in neighbouring settlements. The Belgian loess belt is particularly vulnerable to muddy floods since loess-derived soils are susceptible to crusting, which decreases their infiltration rates and promotes high levels of runoff and erosion. Severe economic damages in many Flemish municipalities led to government provision of funding for voluntary mitigation measures from 2001. In the Melsterbeek catchment, where several villages have been particularly affected by severe muddy floods, mitigation measures have been implemented and their effectiveness subsequently monitored. Runoff, erosion and the occurrence of muddy floods have all considerably decreased. The scheme was cost-effective within three years. The success of these mitigation measures may diminish over the coming decades, however, as climate change poses new threats ranging from direct changes in rainfall intensity to the indirect effects of climate-driven shifts in land use. Such changes could potentially generate increased runoff over agricultural land and lead to a resurgence of muddy flooding in vulnerable areas, with severe repercussions for the effectiveness of mitigation measures. In this study, we model the impacts of climate change on muddy flooding for a hillslope in the Melsterbeek catchment where mitigation measures have been implemented, enabling us to quantify the threat which climate change poses to their effectiveness. The Water Erosion Prediction Project (WEPP) was employed. Model data for present-day conditions were perturbed with future climate change parameters derived from statistical downscaling methods

  2. Modelling spatial and temporal variability of hydrologic impacts under climate changes over the Nenjiang River Basin, China

    Science.gov (United States)

    Chen, Hao; Zhang, Wanchang

    2017-10-01

    The Variable Infiltration Capacity (VIC) hydrologic model was adopted for investigating spatial and temporal variability of hydrologic impacts of climate change over the Nenjiang River Basin (NRB) based on a set of gridded forcing dataset at 1/12th degree resolution from 1970 to 2013. Basin-scale changes in the input forcing data and the simulated hydrological variables of the NRB, as well as station-scale changes in discharges for three major hydrometric stations were examined, which suggested that the model was performed fairly satisfactory in reproducing the observed discharges, meanwhile, the snow cover and evapotranspiration in temporal and spatial patterns were simulated reasonably corresponded to the remotely sensed ones. Wetland maps produced by multi-sources satellite images covering the entire basin between 1978 and 2008 were also utilized for investigating the responses and feedbacks of hydrological regimes on wetland dynamics. Results revealed that significant decreasing trends appeared in annual, spring and autumn streamflow demonstrated strong affection of precipitation and temperature changes over the study watershed, and the effects of climate change on the runoff reduction varied in the sub-basin area over different time scales. The proportion of evapotranspiration to precipitation characterized several severe fluctuations in droughts and floods took place in the region, which implied the enhanced sensitiveness and vulnerability of hydrologic regimes to changing environment of the region. Furthermore, it was found that the different types of wetlands undergone quite unique variation features with the varied hydro-meteorological conditions over the region, such as precipitation, evapotranspiration and soil moisture. This study provided effective scientific basis for water resource managers to develop effective eco-environment management plans and strategies that address the consequences of climate changes.

  3. Coupled socioeconomic-crop modelling for the participatory local analysis of climate change impacts on smallholder farmers in Guatemala

    Science.gov (United States)

    Malard, J. J.; Adamowski, J. F.; Wang, L. Y.; Rojas, M.; Carrera, J.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.

    2015-12-01

    The modelling of the impacts of climate change on agriculture requires the inclusion of socio-economic factors. However, while cropping models and economic models of agricultural systems are common, dynamically coupled socio-economic-biophysical models have not received as much success. A promising methodology for modelling the socioeconomic aspects of coupled natural-human systems is participatory system dynamics modelling, in which stakeholders develop mental maps of the socio-economic system that are then turned into quantified simulation models. This methodology has been successful in the water resources management field. However, while the stocks and flows of water resources have also been represented within the system dynamics modelling framework and thus coupled to the socioeconomic portion of the model, cropping models are ill-suited for such reformulation. In addition, most of these system dynamics models were developed without stakeholder input, limiting the scope for the adoption and implementation of their results. We therefore propose a new methodology for the analysis of climate change variability on agroecosystems which uses dynamically coupled system dynamics (socio-economic) and biophysical (cropping) models to represent both physical and socioeconomic aspects of the agricultural system, using two case studies (intensive market-based agricultural development versus subsistence crop-based development) from rural Guatemala. The system dynamics model component is developed with relevant governmental and NGO stakeholders from rural and agricultural development in the case study regions and includes such processes as education, poverty and food security. Common variables with the cropping models (yield and agricultural management choices) are then used to dynamically couple the two models together, allowing for the analysis of the agroeconomic system's response to and resilience against various climatic and socioeconomic shocks.

  4. Calibration-induced uncertainty of the EPIC model to estimate climate change impact on global maize yield

    Science.gov (United States)

    Xiong, Wei; Skalský, Rastislav; Porter, Cheryl H.; Balkovič, Juraj; Jones, James W.; Yang, Di

    2016-09-01

    Understanding the interactions between agricultural production and climate is necessary for sound decision-making in climate policy. Gridded and high-resolution crop simulation has emerged as a useful tool for building this understanding. Large uncertainty exists in this utilization, obstructing its capacity as a tool to devise adaptation strategies. Increasing focus has been given to sources of uncertainties for climate scenarios, input-data, and model, but uncertainties due to model parameter or calibration are still unknown. Here, we use publicly available geographical data sets as input to the Environmental Policy Integrated Climate model (EPIC) for simulating global-gridded maize yield. Impacts of climate change are assessed up to the year 2099 under a climate scenario generated by HadEM2-ES under RCP 8.5. We apply five strategies by shifting one specific parameter in each simulation to calibrate the model and understand the effects of calibration. Regionalizing crop phenology or harvest index appears effective to calibrate the model for the globe, but using various values of phenology generates pronounced difference in estimated climate impact. However, projected impacts of climate change on global maize production are consistently negative regardless of the parameter being adjusted. Different values of model parameter result in a modest uncertainty at global level, with difference of the global yield change less than 30% by the 2080s. The uncertainty subjects to decrease if applying model calibration or input data quality control. Calibration has a larger effect at local scales, implying the possible types and locations for adaptation.

  5. Climate Change Impacts at Department of Defense

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, Rao [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Jiali [Argonne National Lab. (ANL), Argonne, IL (United States); Zoebel, Zach [Univ. of Illinois, Urbana, IL (United States); Wuebbles, Don [Univ. of Illinois, Urbana, IL (United States); Hayhoe, Katharine [Texas Tech Univ., Lubbock, TX (United States); Stein, Michael [Univ. of Chicago, IL (United States); Changnon, David [Northern Illinois Univ., DeKalb, IL (United States)

    2017-06-16

    This project is aimed at providing the U.S. Department of Defense (DoD) with a comprehensive analysis of the uncertainty associated with generating climate projections at the regional scale that can be used by stakeholders and decision makers to quantify and plan for the impacts of future climate change at specific locations. The merits and limitations of commonly used downscaling models, ranging from simple to complex, are compared, and their appropriateness for application at installation scales is evaluated. Downscaled climate projections are generated at selected DoD installations using dynamic and statistical methods with an emphasis on generating probability distributions of climate variables and their associated uncertainties. The sites selection and selection of variables and parameters for downscaling was based on a comprehensive understanding of the current and projected roles that weather and climate play in operating, maintaining, and planning DoD facilities and installations.

  6. Climate change impact on flood hazard

    Directory of Open Access Journals (Sweden)

    M. Brilly

    2014-09-01

    Full Text Available Climate changes have a high impact on river discharges and therefore on floods. There are a few different methods we can use to predict discharge changes in the future. In this paper we used the complex HBV model for the Vipava River and simple correlation between discharge and precipitation data for the Soča River. The discharge prediction is based on the E-OBS precipitation data for three future time periods (2011–2040, 2041–2070 and 2071–2100. Estimated discharges for those three future periods are presented for both rivers. But a special situation occurs at the confluence where the two rivers with rather different catchments unite, and this requires an additional probability analysis.

  7. Impacts of climate change on Ontario's forests. Forest research information paper number 143

    International Nuclear Information System (INIS)

    Buse, L.J.; Colombo, S.J.

    1998-01-01

    Reviews literature concerning the effects of global climate change on forest plants and communities, and provides opinions on the potential impacts that climate change may have on Ontario forests. Sections of the review discuss the following: The climate of Ontario in the 21st century as predicted by climate models; forest hydrology in relation to climate change; insects and climate change; impacts on fungi in the forest ecosystem; impacts on forest fires and their management; plant physiological responses; genetic implications of climate change; forest vegetation dynamics; the use of models in global climate change studies; and forest management responses to climate change

  8. A discrete-continuous choice model of climate change impacts on energy

    International Nuclear Information System (INIS)

    Morrison, W.N.; Mendelsohn, R.

    1998-01-01

    This paper estimates a discrete-continuous fuel choice model in order to explore climate impacts on the energy sector. The model is estimated on a national data set of firms and households. The results reveal that actors switch from oil in cold climates to electricity and natural gas in warm climates and that fuel-specific expenditures follow a U-shaped relationship with respect to temperature. The model implies that warming will increase American energy expenditures, reflecting a sizable welfare damage

  9. Research highlights: modelling to assess climate change impacts and promote development.

    Science.gov (United States)

    Luxem, Katja E; Lin, Vivian S

    2015-08-01

    We highlight four recent articles on biophysical modelling for the Ecosystem Services and Poverty Alleviation (ESPA) Deltas project in the Ganges-Brahmaputra-Meghna (GBM) delta system. These publications are part of a themed collection in Environmental Science: Processes & Impacts and contribute to a larger body of collaborative work that aims to assess the impacts of changing climate, policy, and development efforts on vulnerable populations in the GBM delta.

  10. Model study of the impacts of future climate change on the hydrology of Ganges-Brahmaputra-Meghna basin

    Science.gov (United States)

    Masood, M.; Yeh, P. J.-F.; Hanasaki, N.; Takeuchi, K.

    2015-02-01

    The intensity, duration, and geographic extent of floods in Bangladesh mostly depend on the combined influences of three river systems, the Ganges, Brahmaputra and Meghna (GBM). In addition, climate change is likely to have significant effects on the hydrology and water resources of the GBM basin and may ultimately lead to more serious floods in Bangladesh. However, the assessment of climate change impacts on the basin-scale hydrology by using well-calibrated hydrologic modeling has seldom been conducted in the GBM basin due to the lack of observed data for calibration and validation. In this study, a macroscale hydrologic model H08 has been applied over the basin at a relatively fine grid resolution (10 km) by integrating the fine-resolution DEM (digital elevation model) data for accurate river networks delineation. The model has been calibrated via the analysis of model parameter sensitivity and validated based on long-term observed daily streamflow data. The impacts of climate change (considering a high-emissions path) on runoff, evapotranspiration, and soil moisture are assessed by using five CMIP5 (Coupled Model Intercomparison Project Phase 5) GCMs (global circulation models) through three time-slice experiments; the present-day (1979-2003), the near-future (2015-2039), and the far-future (2075-2099) periods. Results show that, by the end of 21st century, (a) the entire GBM basin is projected to be warmed by ~4.3 °C; (b) the changes of mean precipitation (runoff) are projected to be +16.3% (+16.2%), +19.8% (+33.1%), and +29.6% (+39.7%) in the Brahmaputra, Ganges, and Meghna, respectively; and (c) evapotranspiration is projected to increase for the entire GBM (Brahmaputra: +16.4%, Ganges: +13.6%, Meghna: +12.9%) due to increased net radiation as well as warmer temperature. Future changes of hydrologic variables are larger in the dry season (November-April) than in the wet season (May-October). Amongst the three basins, the Meghna shows the highest increase in

  11. A New Model Hierarchy to Understand the Impact of Radiation and Convection on the Extratropical Circulation Response to Climate Change

    Science.gov (United States)

    Tan, Z.; Shaw, T.

    2017-12-01

    State-of-the-art climate models exhibit a large spread in the magnitude of projected poleward jet shift and Hadley cell expansion in response to warming. Interestingly, some idealized gray radiation models with simplified convective schemes produce an equatorward jet shift in response to warming. In order to understand the impact of radiation and convection on the circulation response and resolve the discrepancies across the model hierarchy, we introduce a new model radiation-convection hierarchy. The hierarchy spans idealized (gray) through sophisticated (RRTMG) radiation, and idealized (Betts-Miller) through sophisticated (eddy-diffusivity mass-flux scheme) convection schemes in the same general circulation model. It is used to systematically explore the impact of radiation and convection on the extratropical circulation response to climate change independent of mean surface temperature and meridional temperature gradient responses. With a gray radiation scheme, the jet stream shift depends on the prescribed stratospheric optical depth, which controls the climatological jet regime. A large optical depth leads to a split jet and an equatorward shift. A small optical depth leads to a poleward shift. The different shifts are connected to the vertical extent of tropical long wave cooling that impacts the subtropical jet and Hadley circulation. In spite of these sensitivities, the storm track position, defined by the meridonal eddy heat flux and moist static energy flux maxima, shifts robustly poleward. In contrast to gray radiation, with a comprehensive radiation scheme, the jet and storm track shift robustly poleward irrespective of radiative assumptions (clear sky versus cloudy sky, ozone versus no ozone). This response is reproduced by adding more spectral bands and including the water vapor feedback in the gray scheme. Dynamical sensitivities to convective assumption are also explored. Overall the new hierarchy highlights the importance of radiative and

  12. The impact of climate change on hydro-electricity generation

    International Nuclear Information System (INIS)

    Musy, A.; Music, B.; Roy, R.

    2008-01-01

    Hydropower is the leading source of electrical production in many countries. It is a clean and renewable source and certainly will continue to play an important role in the future energy supply. However, the effects of climate change on this valuable resource remain questionable. In order to identify the potential initiatives that the hydropower industry may undertake, it is important to determine the current state of knowledge of the impacts of climate change on hydrological variables at regional and local scales. Usually, the following steps are taken. First, general circulation models (GCMs) are used to simulate future climate under assumed greenhouse gas emission scenarios. Then, different techniques (statistical downscaling/regional climate models) are applied to downscale the GCM outputs to the appropriate scales of hydrological models. Finally, hydrologic models are employed to simulate the effects of climate change at regional and local scales. Outputs from these models serve as inputs to water management models that give more details about hydropower production. In the present study, realized by OURANOS upon the request of CEATI, a critical review of the methods used to determine impact of climate change on water resources and hydropower generation is carried out. The major results from recent studies worldwide are reported and future scientific actions to better understand climate change impacts on the hydrological regime are identified. The study is expected to provide direction for the hydropower industry to mitigate the impacts of climate change. (author)

  13. assessing climate change impacts on river hydrology

    Indian Academy of Sciences (India)

    71

    Statistical downscaling using pre-defined statistical relationship or dynamical. 17 downscaling using a regional climate ... Given the importance of west coast region in India, in terms of population, growth and. 9 industrialization, studies on impact of ..... Climate Change in Himalayan Basins. Springer Science+Business. 2.

  14. Climate change impacts on global agriculture

    NARCIS (Netherlands)

    Calzadilla, Alvaro; Rehdanz, Katrin; Betts, Richard; Falloon, Pete; Wiltshire, Andy; Tol, Richard S J

    Based on predicted changes in the magnitude and distribution of global precipitation, temperature and river flow under the IPCC SRES A1B and A2 scenarios, this study assesses the potential impacts of climate change and CO2 fertilization on global agriculture. The analysis uses the new version of the

  15. Macroeconomic impacts of climate change mitigation in Latin America: A cross-model comparison

    International Nuclear Information System (INIS)

    Kober, Tom; Summerton, Philip; Pollitt, Hector; Chewpreecha, Unnada; Ren, Xiaolin; Wills, William; Octaviano, Claudia; McFarland, James; Beach, Robert; Cai, Yongxia; Calderon, Silvia; Fisher-Vanden, Karen; Rodriguez, Ana Maria Loboguerrero

    2016-01-01

    In this paper we analyse macroeconomic consequences of greenhouse gas emission mitigation in Latin America up to 2050 through a multi-model comparison approach undertaken in the context of the CLIMACAP–LAMP research project. We compare two carbon tax scenarios with a business-as-usual scenario of anticipated future energy demand. In the short term, with carbon prices reaching around $15/tCO 2 by 2030, most models agree that the reduction in consumer spending, as a proxy for welfare, is limited to about 0.3%. By 2050, at carbon prices of $165/tCO 2 , there is much more divergence in the estimated impact on consumer spending as well as GDP across models and regions, which reflects uncertainties about technology costs and substitution opportunities between technologies. We observe that the consequences of increasingly higher carbon prices, in terms of reduced consumer spending and GDP, tend to be fairly linear with the carbon price in our CGE models. However, the consequences are divergent and nonlinear in our econometric model, that is linked to an energy system model that simulates step-changes in technology substitution. The results of one model show that climate policy measures can have positive effects on consumer spending and GDP, which results from an investment stimulus and the redistribution of carbon price revenues to consumers. - Highlights: • Depending on the model approach negative and positive macro-economic impacts are possible if carbon taxes are introduced. • Limited impact of moderate carbon taxes (up to $15/tCO 2 by 2030) on consumer spending in the medium-term • Impact of High CO 2 prices (around $165/tCO 2 in 2050) on GDP 5% at most in the long-term

  16. The impact of climate change on the European energy system

    International Nuclear Information System (INIS)

    Dowling, Paul

    2013-01-01

    Climate change can affect the economy via many different channels in many different sectors. The POLES global energy model has been modified to widen the coverage of climate change impacts on the European energy system. The impacts considered are changes in heating and cooling demand in the residential and services sector, changes in the efficiency of thermal power plants, and changes in hydro, wind (both on- and off-shore) and solar PV electricity output. Results of the impacts of six scenarios on the European energy system are presented, and the implications for European energy security and energy imports are presented. Main findings include: demand side impacts (heating and cooling in the residential and services sector) are larger than supply side impacts; power generation from fossil-fuel and nuclear sources decreases and renewable energy increases; and impacts are larger in Southern Europe than in Northern Europe. There remain many more climate change impacts on the energy sector that cannot currently be captured due to a variety of issues including: lack of climate data, difficulties translating climate data into energy-system-relevant data, lack of detail in energy system models where climate impacts act. This paper does not attempt to provide an exhaustive analysis of climate change impacts in the energy sector, it is rather another step towards an increasing coverage of possible impacts. - Highlights: • Expanded coverage of climate change impacts on European energy system. • Demand side impacts are larger than supply side impacts. • Power from fossil and nuclear sources decreases, renewable energy increases. • Impacts are larger in Southern Europe than in Northern Europe. • Synergies exist between climate change mitigation and climate change adaptation

  17. Model study of the impacts of future climate change on the hydrology of Ganges-Brahmaputra-Meghna (GBM) basin

    Science.gov (United States)

    Masood, M.; Yeh, P. J.-F.; Hanasaki, N.; Takeuchi, K.

    2014-06-01

    The intensity, duration, and geographic extent of floods in Bangladesh mostly depend on the combined influences of three river systems, Ganges, Brahmaputra and Meghna (GBM). In addition, climate change is likely to have significant effects on the hydrology and water resources of the GBM basins and might ultimately lead to more serious floods in Bangladesh. However, the assessment of climate change impacts on basin-scale hydrology by using well-constrained hydrologic modelling has rarely been conducted for GBM basins due to the lack of data for model calibration and validation. In this study, a macro-scale hydrologic model H08 has been applied regionally over the basin at a relatively fine grid resolution (10 km) by integrating the fine-resolution (~0.5 km) DEM data for accurate river networks delineation. The model has been calibrated via analyzing model parameter sensitivity and validated based on a long-term observed daily streamflow data. The impact of climate change on not only the runoff, but also the basin-scale hydrology including evapotranspiration, soil moisture and net radiation have been assessed in this study through three time-slice experiments; present-day (1979-2003), near-future (2015-2039) and far-future (2075-2099) periods. Results shows that, by the end of 21st century (a) the entire GBM basin is projected to be warmed by ~3°C (b) the changes of mean precipitation are projected to be +14.0, +10.4, and +15.2%, and the changes of mean runoff to be +14, +15, and +18% in the Brahmaputra, Ganges and Meghna basin respectively (c) evapotranspiration is predicted to increase significantly for the entire GBM basins (Brahmaputra: +14.4%, Ganges: +9.4%, Meghna: +8.8%) due to increased net radiation (Brahmaputra: +6%, Ganges: +5.9%, Meghna: +3.3%) as well as warmer air temperature. Changes of hydrologic variables will be larger in dry season (November-April) than that in wet season (May-October). Amongst three basins, Meghna shows the largest hydrological

  18. Estimating impacts of climate change policy on land use: an agent-based modelling approach.

    Science.gov (United States)

    Morgan, Fraser J; Daigneault, Adam J

    2015-01-01

    Agriculture is important to New Zealand's economy. Like other primary producers, New Zealand strives to increase agricultural output while maintaining environmental integrity. Utilising modelling to explore the economic, environmental and land use impacts of policy is critical to understand the likely effects on the sector. Key deficiencies within existing land use and land cover change models are the lack of heterogeneity in farmers and their behaviour, the role that social networks play in information transfer, and the abstraction of the global and regional economic aspects within local-scale approaches. To resolve these issues we developed the Agent-based Rural Land Use New Zealand model. The model utilises a partial equilibrium economic model and an agent-based decision-making framework to explore how the cumulative effects of individual farmer's decisions affect farm conversion and the resulting land use at a catchment scale. The model is intended to assist in the development of policy to shape agricultural land use intensification in New Zealand. We illustrate the model, by modelling the impact of a greenhouse gas price on farm-level land use, net revenue, and environmental indicators such as nutrient losses and soil erosion for key enterprises in the Hurunui and Waiau catchments of North Canterbury in New Zealand. Key results from the model show that farm net revenue is estimated to increase over time regardless of the greenhouse gas price. Net greenhouse gas emissions are estimated to decline over time, even under a no GHG price baseline, due to an expansion of forestry on low productivity land. Higher GHG prices provide a greater net reduction of emissions. While social and geographic network effects have minimal impact on net revenue and environmental outputs for the catchment, they do have an effect on the spatial arrangement of land use and in particular the clustering of enterprises.

  19. Enhanced science-stakeholder communication to improve ecosystem model performances for climate change impact assessments

    DEFF Research Database (Denmark)

    Jonsson, Anna Maria; Anderbrant, Olle; Holmer, Jennie

    2015-01-01

    In recent years, climate impact assessments of relevance to the agricultural and forestry sectors have received considerable attention. Current ecosystem models commonly capture the effect of a warmer climate on biomass production, but they rarely sufficiently capture potential losses caused...... modelling with policy and strategies for sustainable management. In this paper we give a brief overview of different ecosystem modelling methods, discuss how to include ecological and management aspects, and highlight the importance of science–stakeholder communication. By this, we hope to stimulate...

  20. Modelling climate change and malaria transmission.

    Science.gov (United States)

    Parham, Paul E; Michael, Edwin

    2010-01-01

    The impact of climate change on human health has received increasing attention in recent years, with potential impacts due to vector-borne diseases only now beginning to be understood. As the most severe vector-borne disease, with one million deaths globally in 2006, malaria is thought most likely to be affected by changes in climate variables due to the sensitivity of its transmission dynamics to environmental conditions. While considerable research has been carried out using statistical models to better assess the relationship between changes in environmental variables and malaria incidence, less progress has been made on developing process-based climate-driven mathematical models with greater explanatory power. Here, we develop a simple model of malaria transmission linked to climate which permits useful insights into the sensitivity of disease transmission to changes in rainfall and temperature variables. Both the impact of changes in the mean values of these key external variables and importantly temporal variation in these values are explored. We show that the development and analysis of such dynamic climate-driven transmission models will be crucial to understanding the rate at which P. falciparum and P. vivax may either infect, expand into or go extinct in populations as local environmental conditions change. Malaria becomes endemic in a population when the basic reproduction number R0 is greater than unity and we identify an optimum climate-driven transmission window for the disease, thus providing a useful indicator for determing how transmission risk may change as climate changes. Overall, our results indicate that considerable work is required to better understand ways in which global malaria incidence and distribution may alter with climate change. In particular, we show that the roles of seasonality, stochasticity and variability in environmental variables, as well as ultimately anthropogenic effects, require further study. The work presented here

  1. Impacts of Irrigation and Climate Change on Water Security: Using Stakeholder Engagement to Inform a Process-based Crop Model

    Science.gov (United States)

    Leonard, A.; Flores, A. N.; Han, B.; Som Castellano, R.; Steimke, A.

    2016-12-01

    Irrigation is an essential component for agricultural production in arid and semi-arid regions, accounting for a majority of global freshwater withdrawals used for human consumption. Since climate change affects both the spatiotemporal demand and availability of water in irrigated areas, agricultural productivity and water efficiency depend critically on how producers adapt and respond to climate change. It is necessary, therefore, to understand the coevolution and feedbacks between humans and agricultural systems. Integration of social and hydrologic processes can be achieved by active engagement with local stakeholders and applying their expertise to models of coupled human-environment systems. Here, we use a process based crop simulation model (EPIC) informed by stakeholder engagement to determine how both farm management and climate change influence regional agricultural water use and production in the Lower Boise River Basin (LBRB) of southwest Idaho. Specifically, we investigate how a shift from flood to sprinkler fed irrigation would impact a watershed's overall agricultural water use under RCP 4.5 and RCP 8.5 climate scenarios. The LBRB comprises about 3500 km2, of which 20% is dedicated to irrigated crops and another 40% to grass/pasture grazing land. Via interviews of stakeholders in the LBRB, we have determined that approximately 70% of irrigated lands in the region are flood irrigated. We model four common crops produced in the LBRB (alfalfa, corn, winter wheat, and sugarbeets) to investigate both hydrologic and agricultural impacts of irrigation and climatic drivers. Factors influencing farmers' decision to switch from flood to sprinkler irrigation include potential economic benefits, external financial incentives, and providing a buffer against future water shortages. These two irrigation practices are associated with significantly different surface water and energy budgets, and large-scale shifts in practice could substantially impact regional

  2. Climate change impacts on food system

    Science.gov (United States)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  3. A modelling framework to assess climate change and adaptation impact on heterogeneous crop-livestock farming communities

    NARCIS (Netherlands)

    Descheemaeker, K.K.E.; Masikati, P.; Homann-Kee Tui, S.; Chibwana, G.A.; Crespo, O.

    2015-01-01

    Climate change will impact the productivity of maize-based crop-livestock systems and the livelihoods of smallholders depending on them in semi-arid Zimbabwe. The large diversity in resource endowment and production objectives in rural communities differentially influences this impact and the

  4. An integrated modelling methodology to study the impacts of nutrients on coastal aquatic ecosystems in the context of climate change

    Science.gov (United States)

    Pesce, Marco; Critto, Andrea; Torresan, Silvia; Santini, Monia; Giubilato, Elisa; Pizzol, Lisa; Mercogliano, Paola; Zirino, Alberto; Wei, Ouyang; Marcomini, Antonio

    2017-04-01

    It has been recognized that the increase of atmospheric greenhouse gases (GHG) due to anthropogenic activities is causing changes in Earth's climate. Global mean temperatures are expected to rise by 0.3 to 4.8 °C by the end of the 21st century, and the water cycle to alter because of changes in global atmospheric moisture. Coastal waterbodies such as estuaries, bays and lagoons together with the ecological and socio-economic services they provide, could be among those most affected by the ongoing changes on climate. Because of their position at the land-sea interface, they are subjected to the combined changes in the physico-chemical processes of atmosphere, upstream land and coastal waters. Particularly, climate change is expected to alter phytoplankton communities by changing their climate and environmental drivers, such as temperature, precipitation, wind, solar radiation and nutrient loadings, and to exacerbate the symptoms of eutrophication events, such as hypoxia, harmful algal blooms (HAB) and loss of habitat. A better understanding of the links between climate-related drivers and phytoplankton is therefore necessary for predicting climate change impacts on aquatic ecosystems. In this context, the integration of climate scenarios and environmental models can become a valuable tool for the investigation and prediction of phytoplankton ecosystem dynamics under climate change conditions. In the last decade, the effects of climate change on the environmental distribution of nutrients and the resulting effects on aquatic ecosystems encouraged the conduction of modeling studies at a catchment scale, even though mainly are related to lake ecosystem. The further development of integrated modeling approaches and their application to other types of waterbodies such as coastal waters can be a useful contribution to increase the availability of management tools for ecological conservation and adaptation policies. Here we present the case study of the Zero river basin

  5. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Science.gov (United States)

    Gosling, S. N.; Taylor, R. G.; Arnell, N. W.; Todd, M. C.

    2011-01-01

    We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM) and catchment-scale hydrological models (CHM). Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and developmental conditions. These include the Liard (Canada), Mekong (SE Asia), Okavango (SW Africa), Rio Grande (Brazil), Xiangxi (China) and Harper's Brook (UK). A single GHM (Mac-PDM.09) is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs include SLURP v. 12.2 (Liard), SLURP v. 12.7 (Mekong), Pitman (Okavango), MGB-IPH (Rio Grande), AV-SWAT-X 2005 (Xiangxi) and Cat-PDM (Harper's Brook). The CHMs typically simulate water resource impacts based on a more explicit representation of catchment water resources than that available from the GHM and the CHMs include river routing, whereas the GHM does not. Simulations of mean annual runoff, mean monthly runoff and high (Q5) and low (Q95) monthly runoff under baseline (1961-1990) and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1) prescribed increases in global-mean air temperature of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 °C relative to baseline from the UKMO HadCM3 Global Climate Model (GCM) to explore response to different amounts of climate forcing, and (2) a prescribed increase in global-mean air temperature of 2.0 °C relative to baseline for seven GCMs to explore response to climate model structural uncertainty. We find that the differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM (e.g. an absolute GHM-CHM difference in mean annual runoff percentage change for UKMO HadCM3 2 °C warming of up to 25%), and they are generally larger for indicators of high and low monthly runoff. However

  6. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Directory of Open Access Journals (Sweden)

    S. N. Gosling

    2011-01-01

    Full Text Available We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM and catchment-scale hydrological models (CHM. Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and developmental conditions. These include the Liard (Canada, Mekong (SE Asia, Okavango (SW Africa, Rio Grande (Brazil, Xiangxi (China and Harper's Brook (UK. A single GHM (Mac-PDM.09 is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs include SLURP v. 12.2 (Liard, SLURP v. 12.7 (Mekong, Pitman (Okavango, MGB-IPH (Rio Grande, AV-SWAT-X 2005 (Xiangxi and Cat-PDM (Harper's Brook. The CHMs typically simulate water resource impacts based on a more explicit representation of catchment water resources than that available from the GHM and the CHMs include river routing, whereas the GHM does not. Simulations of mean annual runoff, mean monthly runoff and high (Q5 and low (Q95 monthly runoff under baseline (1961–1990 and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1 prescribed increases in global-mean air temperature of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 °C relative to baseline from the UKMO HadCM3 Global Climate Model (GCM to explore response to different amounts of climate forcing, and (2 a prescribed increase in global-mean air temperature of 2.0 °C relative to baseline for seven GCMs to explore response to climate model structural uncertainty.

    We find that the differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM (e.g. an absolute GHM-CHM difference in mean annual runoff percentage change for UKMO HadCM3 2 °C warming of up to 25%, and they are generally larger for indicators of high and low monthly runoff

  7. Estimating climate model systematic errors in a climate change impact study of the Okavango River basin, southwestern Africa using a mesoscale model

    Science.gov (United States)

    Raghavan, S. V.; Todd, M.

    2007-12-01

    Simulating the impact of future climate variability and change on hydrological systems requires estimates of climate at high spatial resolution compatible with hydrological models. Here we present initial results of a project to simulate future climate over the Okavango River basin and delta in Southwestern Africa. Given the significance of the delta to biodiversity and as a resource to the local population, there is considerable concern regarding the sensitivity of the system to future climate change. An important component of climate variability/change impact studies is an assessment of errors in the modeling suite. Here, we attempt to quantify errors and uncertainties involved in regional climate modelling that will impact on hydrological simulations. The study determines the ability of the MM5 Regional Climate Model to simulate the present day regional climate at the high resolution required by the hydrological models and the effectiveness of the RCM in downscaling GCM outputs to study regional climate change and impacts.

  8. Assessing the likely impacts of climate change on infrastructure

    International Nuclear Information System (INIS)

    Holper, Paul; Nolan, Michael

    2007-01-01

    Full text: In 2005, the Victorian Government contracted CSIRO, Maunsell Australia and Phillips Fox to undertake an overview assessment of the likely impacts of climate change on the State's infrastructure, establish the categories of infrastructure most at risk and outline opportunities for adaptation responses. The Government released the assessment in May 2007. Climate change poses a significant risk to infrastructure and its owners, managers and long-term operators. The work was undertaken on the basis that it should not be assumed that future climate and its impacts will simply be an extension of what has been experienced in the past. Major infrastructure items have long useful life spans (20-100 years). A bridge built today is expected to still be in use in tens, if not hundreds, of years. This means that recognition of likely climate change impacts and appropriate adaptation measures should occur now. Recognition of the risks associated with climate change is a valuable first step towards better planning of new infrastructure investments and reducing potential damage to existing infrastructure.lnfrastructure types examined were water, power, telecommunications, transport and buildings. The climate change projections used in this report are based on CSIRO climate modelling, supported by findings from the Intergovernmental Panel on Climate Change. Climatic and other variables considered were temperature, rainfall, available moisture, humidity, winds, fire-weather frequency and intensity, solar radiation levels and sea-level rise. For each climate change variable identified, we described a worst-case impact for low and high climate change projections for the years 2030 and 2070. The assessment was made on the basis of 'business as usual' with no adaptation responses to climate change. The report also details the current governance structures associated with each infrastructure type. Overall, the report assessed the likely impact of climate change on

  9. Impacts of Climate Change and Land Subsidence on Inundation Risk

    OpenAIRE

    Ching-Nuo Chen; Samkele S. Tfwala

    2018-01-01

    In this study, a physiographic drainage-inundation model was used to analyse the impacts of land subsidence and climate change on inundation disaster and risk in a land subsidence area. The results indicated that for land subsidence and land subsidence combined with climate change, inundation area, and volume increased under one- and two-day storms for 2-, 5-, 10-, 25-, 50-, 100-, and 200-year return periods. Moreover, locations that originally had high inundation depth showed even greater in...

  10. About climate changes impact on the Kazakhstan pastures

    International Nuclear Information System (INIS)

    Lebed', L.V.; Belenkova, Z.S.; Turbacheva, T.P.

    1997-01-01

    Assessment of arid pastures vulnerability situated under direct influence of regional climate change related with greenhouse effect is carried out on Northern Aral Sea area as example. Climate change variants calculated with future prospects for on Kazakhstan territory with use up-to-date models of GFDL (USA), CCCM (Canada) climate theory are used. Number of protective measures are proposed for mitigation of consequences of possible vulnerability of pastures during simultaneous impact of complex of anthropogenic and natural factors. (author)

  11. ECONOMIC IMPACTS OF CLIMATE CHANGE IN SYRIA

    OpenAIRE

    CLEMENS BREISINGER; TINGJU ZHU; PERRIHAN AL RIFFAI; GERALD NELSON; RICHARD ROBERTSON; JOSE FUNES; DORTE VERNER

    2013-01-01

    There is broad consensus among scientists that climate change is altering weather patterns around the world. However, economists are only beginning to develop comprehensive tools that allow for the quantification of such weather changes on countries' economies and people. This paper presents a modeling suite that links the downscaling of global climate models, crop modeling, global economic modeling, and sub-national-level dynamic computable equilibrium modeling. Important to note is that thi...

  12. Assessing climate change impacts on wheat production (a case study

    Directory of Open Access Journals (Sweden)

    J. Valizadeh

    2014-06-01

    Full Text Available Climate change is one of the major challenges facing humanity in the future and effect of climate change has been detrimental to agricultural industry. The aim of this study was to simulate the effects of climate change on the maturity period, leaf area index (LAI, biomass and grain yield of wheat under future climate change for the Sistan and Baluchestan region in Iran. For this purpose, two general circulation models HadCM3 and IPCM4 under three scenarios A1B, B1 and A2 in three time periods 2020, 2050 and 2080 were used. LARS-WG model was used for simulating climatic parameters for each period and CERES-Wheat model was used to simulate wheat growth. The results of model evaluation showed that LARS-WG had appropriate prediction for climatic parameters and simulation of stochastic growing season in future climate change conditions for the studied region. Wheat growing season period in all scenarios of climate change was reduced compared to the current situation. Possible reasons were the increase in temperature rate and the accelerated growth stages of wheat. This reduction in B1 scenario was less than A1B and A2 scenarios. Maximum wheat LAI in all scenarios, except scenario A1B in 2050, is decreased compared to the current situation. Yield and biological yield of wheat in both general circulation models under all scenarios and all times were reduced in comparison with current conditions and the lowest reduction was related to B1 scenario. In general, the results showed that wheat production in the future will be affected by climate change and will decrease in the studied region. To reduce these risks, the impact of climate change mitigation strategies and management systems for crop adaptation to climate change conditions should be considered.

  13. Assessment of climate change impact on the fates of polycyclic aromatic hydrocarbons in the multimedia environment based on model prediction.

    Science.gov (United States)

    Cai, Juan Juan; Song, Jee Hey; Lee, Yunah; Lee, Dong Soo

    2014-02-01

    The objective was to quantitatively understand the impacts of climate change (CC) under the A1B scenario on the contamination levels of 11 polycyclic aromatic hydrocarbons (PAHs) from pyrogenic sources in the environmental media based on model prediction. To predict the impacts of CC in South Korea, a revised version of KoEFT-PBTs, a dynamic multimedia model for persistent organic pollutants in South Korea, was used. Simulations were conducted for the period from 2000 to 2049 under the A1B scenario with the emission data for 2009 and the results for Seoul and Kangwon were compared to those under no climate change (NCC) scenario. Due to CC, the average of annual or monthly average concentration changes within a factor of two for the PAHs in air, soil and water. Time dependent comparison indicates that the maximum increase induced by CC in the monthly average concentration ranges from 10 to 10(2) in air and water. Change in advective flux due to wind speed difference between A1B and NCC dictates the change of the atmospheric PAHs levels while wet particle deposition due to rain rate difference contributes to some extent to the change of 5 and 6 ring PAHs. Whether the concentration change is positive or not depends primarily on the emission strength of internal sources relative to those in surrounding areas. The CC induced changes in atmospheric depositions and degradation rate in soil play a leading role in the change of soil concentration. In water, runoff and degradation are the key processes to the CC induced concentration change. Both in soil and water, the relative importance of individual key processes varies with PAHs. The difference between the two scenarios in wind speed and in rain rate shows stronger correlations with the concentration change than the temperature change. © 2013 Elsevier B.V. All rights reserved.

  14. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins.

    Science.gov (United States)

    Gampe, David; Nikulin, Grigory; Ludwig, Ralf

    2016-12-15

    Climate change will likely increase pressure on the water balances of Mediterranean basins due to decreasing precipitation and rising temperatures. To overcome the issue of data scarcity the hydrological relevant variables total runoff, surface evaporation, precipitation and air temperature are taken from climate model simulations. The ensemble applied in this study consists of 22 simulations, derived from different combinations of four General Circulation Models (GCMs) forcing different Regional Climate Models (RCMs) and two Representative Concentration Pathways (RCPs) at ~12km horizontal resolution provided through the EURO-CORDEX initiative. Four river basins (Adige, Ebro, Evrotas and Sava) are selected and climate change signals for the future period 2035-2065 as compared to the reference period 1981-2010 are investigated. Decreased runoff and evaporation indicate increased water scarcity over the Ebro and the Evrotas, as well as the southern parts of the Adige and the Sava, resulting from a temperature increase of 1-3° and precipitation decrease of up to 30%. Most severe changes are projected for the summer months indicating further pressure on the river basins already at least partly characterized by flow intermittency. The widely used Falkenmark indicator is presented and confirms this tendency and shows the necessity for spatially distributed analysis and high resolution projections. Related uncertainties are addressed by the means of a variance decomposition and model agreement to determine the robustness of the projections. The study highlights the importance of high resolution climate projections and represents a feasible approach to assess climate impacts on water scarcity also in regions that suffer from data scarcity. Copyright © 2016. Published by Elsevier B.V.

  15. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multi model linear feedback analysis

    International Nuclear Information System (INIS)

    Roy, Tilla; Bopp, Laurent; Gehlen, Marion; Cadule, Patricia

    2011-01-01

    The increase in atmospheric CO 2 over this century depends on the evolution of the oceanic air-sea CO 2 uptake, which will be driven by the combined response to rising atmospheric CO 2 itself and climate change. Here, the future oceanic CO 2 uptake is simulated using an ensemble of coupled climate-carbon cycle models. The models are driven by CO 2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010-2100) oceanic CO 2 uptake into a CO 2 -induced component, due to rising atmospheric CO 2 concentrations, and a climate-induced component, due to global warming. The models capture the observation based magnitude and distribution of anthropogenic CO 2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO 2 uptake in the sub-polar Southern Ocean and the equatorial regions, owing to decreased CO 2 solubility; and reduced CO 2 uptake in the mid latitudes, owing to decreased CO 2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extra tropics, to large freshwater fluxes in the extra tropical North Atlantic Ocean, and to small changes in the CO 2 solubility in the equatorial regions. In key anthropogenic CO 2 uptake regions, the climate-induced component offsets the CO 2 - induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extra tropics and 25% in the southern extra tropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO 2 uptake may be difficult without monitoring additional tracers, such as oxygen. (authors)

  16. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multi model linear feedback analysis

    International Nuclear Information System (INIS)

    Roy, Tilla; Bopp, Laurent; Gehlen, Marion; Cadule, Patricia; Schneider, Birgit; Frolicher, Thomas L.; Segschneider, Joachim; Tjiputra, Jerry; Heinze, Christoph; Joos, Fortunat

    2011-01-01

    The increase in atmospheric CO 2 over this century depends on the evolution of the oceanic air-sea CO 2 uptake, which will be driven by the combined response to rising atmospheric CO 2 itself and climate change. Here, the future oceanic CO 2 uptake is simulated using an ensemble of coupled climate-carbon cycle models. The models are driven by CO 2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010-2100) oceanic CO 2 uptake into a CO 2 -induced component, due to rising atmospheric CO 2 concentrations, and a climate-induced component, due to global warming. The models capture the observation based magnitude and distribution of anthropogenic CO 2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO 2 uptake in the sub polar Southern Ocean and the equatorial regions, owing to decreased CO 2 solubility; and reduced CO 2 uptake in the mid-latitudes, owing to decreased CO 2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extra-tropics, to large freshwater fluxes in the extra-tropical North Atlantic Ocean, and to small changes in the CO 2 solubility in the equatorial regions. In key anthropogenic CO 2 uptake regions, the climate-induced component offsets the CO 2 - induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extra-tropics and 25% in the southern extra-tropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO 2 uptake may be difficult without monitoring additional tracers, such as oxygen. (authors)

  17. Climate change impacts: an Ontario perspective

    International Nuclear Information System (INIS)

    Mortsch, L.

    1995-11-01

    Significant changes in the climate system which are likely to affect biophysical, social and economic systems in various ways, were discussed. Trends in greenhouse gas levels show that during the 20. century, human activity has changed the make-up of the atmosphere and its greenhouse effect properties. A pilot study on the impacts of climate change identified changes in the water regime such as declines in net basin supply, lake levels and outflows, as important concerns. These changes would have impacts on water quality, wetlands, municipal water supply, hydroelectric power generation, commercial shipping, tourism and recreation, and to a lesser extent, on food productions. Climate impact assessments suggest that world conditions will change significantly as a result. Those with less resources are likely to be most affected by climate change, and the impacts on other regions of the world will be more significant to Ontario than the direct impacts on Ontario itself. In an effort to keep pace with global changes, Ontario will have to limit emissions, conduct research in innovative technology and develop greater awareness of the risk of climate change. refs., tabs., figs

  18. CERES-Maize model-based simulation of climate change impacts on maize yields and potential adaptive measures in Heilongjiang Province, China.

    Science.gov (United States)

    Lin, Yumei; Wu, Wenxiang; Ge, Quansheng

    2015-11-01

    Climate change would cause negative impacts on future agricultural production and food security. Adaptive measures should be taken to mitigate the adverse effects. The objectives of this study were to simulate the potential effects of climate change on maize yields in Heilongjiang Province and to evaluate two selected typical household-level autonomous adaptive measures (cultivar changes and planting time adjustments) for mitigating the risks of climate change based on the CERES-Maize model. The results showed that flowering duration and maturity duration of maize would be shortened in the future climate and thus maize yield would reduce by 11-46% during 2011-2099 relative to 1981-2010. Increased CO2 concentration would not benefit maize production significantly. However, substituting local cultivars with later-maturing ones and delaying the planting date could increase yields as the climate changes. The results provide insight regarding the likely impacts of climate change on maize yields and the efficacy of selected adaptive measures by presenting evidence-based implications and mitigation strategies for the potential negative impacts of future climate change. © 2014 Society of Chemical Industry.

  19. Modeling framework for estimating impacts of climate change on electricity demand at regional level: Case of Greece

    International Nuclear Information System (INIS)

    Mirasgedis, S.; Sarafidis, Y.; Georgopoulou, E.; Kotroni, V.; Lagouvardos, K.; Lalas, D.P.

    2007-01-01

    This paper focuses on the potential upcoming impacts of climate change in the 21st century on electricity demand at regional/national levels for regions where topography and location result in large differences in local climate. To address this issue, a regional climate model, PRECIS, has been used to predict future climatic conditions under different emissions scenarios (namely A2 and B2 of the IPCC special report on emissions scenarios (SRES)) as an input to a multiple regression model of the sensitivity of electricity demand in the Greek interconnected power system to climate and socio-economic factors. The economic development input to the multiple regression model follows the same storylines of the SRES scenarios upto 2100 and includes sub-scenarios to cover larger and smaller economic development rates. The results of the analysis indicate an increase of the annual electricity demand attributable solely to climate change of 3.6-5.5% under all scenarios examined, most of which results from increased annual variability with substantial increases during the summer period that outweighs moderate declines estimated for the winter period. This becomes more pronounced if inter-annual variability, especially of summer months, is taken into consideration. It was also found that in the long run, economic development will have a strong effect on future electricity demand, thus increasing substantially the total amount of energy consumed for cooling and heating purposes. This substantial increase in energy demand with strong annual variability will lead to the need for inordinate increases of installed capacity, a large percentage of which will be under utilized. Thus, appropriate adaptation strategies (e.g. new investments, interconnections with other power systems, energy saving programmes, etc.) need to be developed at the state level in order to ensure the security of energy supply. (author)

  20. Linking species- and ecosystem-level impacts of climate change in lakes with a complex and a minimal model

    NARCIS (Netherlands)

    Mooij, W.M.; De Senerpont Domis, L.N.; Janse, J.H.

    2009-01-01

    To study the interaction between species- and ecosystem-level impacts of climate change, we focus on the question of how climate-induced shifts in key species affect the positive feedback loops that lock shallow lakes either in a transparent, macrophyte-dominated state or, alternatively, in a

  1. Assessment of Climate Change Impact on River Discharge using Reduced Uncertainty Ensemble Modeling Framewor

    Science.gov (United States)

    Kumar, A.; Singh, R.; Mishra, A.; Chatterjee, C.

    2015-12-01

    A reduced uncertainty ensemble modeling framework is used to analyze the impact of changing climate on discharge variations in a sub-catchment of Mahanadi River Basin in India. An ensemble of five hydrological models, comprising of one distributed physically based and four lumped conceptual hydrological models, developed using weighted average method was chosen as the best-performing ensemble, based on categorical and temporal assessment of several ensembles developed using eight hydrological models and eight ensemble methods. The member models of the chosen ensemble were then used to simulate the river discharge over 2006 - 2050, using the projected climatic data of two regional climate models (RegCM4 and HadGEM3) under two emission scenarios (RCP 4.5 and RCP 8.5). The trend analysis of the ensemble discharge using Mann Kendall test shows that monthly peak discharge and mean monthly discharge are increasing in the first and last months of the monsoon season (June and September) and decreasing in the middle two months (July and August) in case of RCP 4.5. In case of RCP 8.5, however, the monthly peak discharge and mean monthly discharge show a decreasing trend in the starting two months (June - July) and an increasing trend in the last two months. The analysis of monthly proportion of annual yield shows that there is a persistent decrease in the percent yield after monsoon to the next monsoon in case of RCP 4.5, though the condition is less serious in case of RCP 8.5 due to alternate increasing and decreasing trend in various months. The annual yield, however, is found to be decreasing and increasing in case of RCP 4.5 and RCP 8.5 respectively. We further quantified the rate of change using Sen's slope method followed by analysis of temporal change in dependable flow at different levels under both the emission scenarios, and found that dependable flow is increasing with atmospheric CO2 concentration level at almost all times of exceedance.

  2. Climate change impacts on coffee rust disease

    Science.gov (United States)

    Alfonsi, W. M. V.; Koga-Vicente, A.; Pinto, H. S.; Alfonsi, E. L., Sr.; Coltri, P. P.; Zullo, J., Jr.; Patricio, F. R.; Avila, A. M. H. D.; Gonçalves, R. R. D. V.

    2016-12-01

    Changes in climate conditions and in extreme weather events may affect the food security due to impacts in agricultural production. Despite several researches have been assessed the impacts of extremes in yield crops in climate change scenarios, there is the need to consider the effects in pests and diseases which increase losses in the sector. Coffee Arabica is an important commodity in world and plays a key role in Brazilian agricultural exports. Although the coffee crop has a world highlight, its yield is affected by several factors abiotic or biotic. The weather as well pests and diseases directly influence the development and coffee crop yield. These problems may cause serious damage with significant economic impacts. The coffee rust, caused by the fungus Hemileia vastarix,is among the diseases of greatest impact for the crop. The disease emerged in Brazil in the 70s and is widely spread in all producing regions of coffee in Brazil, and in the world. Regions with favorable weather conditions for the pathogen may exhibit losses ranging from 30% to 50% of the total grain production. The evaluation of extreme weather events of coffee rust disease in futures scenarios was carried out using the climatic data from CMIP5 models, data field of coffee rust disease incidence and, incubation period simulation data for Brazilian municipalities. Two Regional Climate Models were selected, Eta-HadGEM2-ES and Eta-MIROC5, and the Representative Concentration Pathways 8.5 w/m2 was adopted. The outcomes pointed out that in these scenarios the period of incubation tends to decrease affecting the coffee rust disease incidence, which tends to increase. Nevertheless, the changing in average trends tends to benefit the reproduction of the pathogen. Once the temperature threshold for the disease reaches the adverse conditions it may be unfavorable for the incidence.

  3. How Will Climate Change Impact Cholera Outbreaks?

    Science.gov (United States)

    Nasr Azadani, F.; Jutla, A.; Rahimikolu, J.; Akanda, A. S.; Huq, A.; Colwell, R. R.

    2014-12-01

    Environmental parameters associated with cholera are well documented. However, cholera continues to be a global public health threat. Uncertainty in defining environmental processes affecting growth and multiplication of the cholera bacteria can be affected significantly by changing climate at different temporal and spatial scales, either through amplification of the hydroclimatic cycle or by enhanced variability of large scale geophysical processes. Endemic cholera in the Bengal Delta region of South Asia has a unique pattern of two seasonal peaks and there are associated with asymmetric and episodic variability in river discharge. The first cholera outbreak in spring is related with intrusion of bacteria laden coastal seawater during low river discharge. Cholera occurring during the fall season is hypothesized to be associated with high river discharge related to a cross-contamination of water resources and, therefore, a second wave of disease, a phenomenon characteristic primarily in the inland regions. Because of difficulties in establishing linkage between coarse resolutions of the Global Climate Model (GCM) output and localized disease outbreaks, the impact of climate change on diarrheal disease has not been explored. Here using the downscaling method of Support Vector Machines from HADCM3 and ECHAM models, we show how cholera outbreak patterns are changing in the Bengal Delta. Our preliminary results indicate statistically significant changes in both seasonality and magnitude in the occurrence of cholera over the next century. Endemic cholera is likely to transform into epidemic forms and new geographical areas will be at risk for cholera outbreaks.

  4. Economic impacts of climate change on agriculture: a comparison of process-based and statistical yield models

    Science.gov (United States)

    Moore, Frances C.; Baldos, Uris Lantz C.; Hertel, Thomas

    2017-06-01

    A large number of studies have been published examining the implications of climate change for agricultural productivity that, broadly speaking, can be divided into process-based modeling and statistical approaches. Despite a general perception that results from these methods differ substantially, there have been few direct comparisons. Here we use a data-base of yield impact studies compiled for the IPCC Fifth Assessment Report (Porter et al 2014) to systematically compare results from process-based and empirical studies. Controlling for differences in representation of CO2 fertilization between the two methods, we find little evidence for differences in the yield response to warming. The magnitude of CO2 fertilization is instead a much larger source of uncertainty. Based on this set of impact results, we find a very limited potential for on-farm adaptation to reduce yield impacts. We use the Global Trade Analysis Project (GTAP) global economic model to estimate welfare consequences of yield changes and find negligible welfare changes for warming of 1 °C-2 °C if CO2 fertilization is included and large negative effects on welfare without CO2. Uncertainty bounds on welfare changes are highly asymmetric, showing substantial probability of large declines in welfare for warming of 2 °C-3 °C even including the CO2 fertilization effect.

  5. Climate Change Impacts on River Floods : Uncertainty and Adaptation

    NARCIS (Netherlands)

    Wang, L.

    2015-01-01

    The modelling frameworks, which include greenhouse gas emission scenarios, climate models, downscaling methods and hydrological models, are generally used to assess climate change impacts on river floods. In this research, the uncertainty associated with each component of the modelling framework is

  6. Impacts of climate change in the Netherlands

    International Nuclear Information System (INIS)

    Bresser, A.H.M.; Berk, M.M.; Van den Born, G.J.; Van Bree, L.; Van Gaalen, F.W.; Ligtvoet, W.; Van Minnen, J.G.; Witmer, M.C.H.

    2005-10-01

    The main conclusion of the study on the title subject is that the impacts of climatic change in the Netherlands are still limited. However, the impacts will be stronger in the next decades and will be even problematic at the end of this century. In this book an overview is given of probable changes in the climate for the Netherlands, danger for flooding in specific areas of the Netherlands, changes of the nature, impacts for agriculture, tourism and recreation, and industry and businesses, and risks for public health [nl

  7. Impact of climate change and agriculture adaptation

    International Nuclear Information System (INIS)

    Seguin, Bernard

    2010-01-01

    The author outlines and discusses the various impacts climate change can have on agriculture, notably due to the increase of CO 2 and other greenhouse gases in the atmosphere, to temperature increase, to the modification of rainfalls, and therefore to differences in evaporation, drainage, run-off, cloud cover. He notably discusses the impact in terms of photosynthesis, of crop production in tempered or tropical regions. He also discusses the impact of extreme events (notably frost), comments how recent evolutions noticed by farmers could prefigure the future. He addresses the issue of adaptation which could mean a change of local practices or a displacement of activities

  8. Climate change evolution of the hydrological balance of the Mediterranean, Black and Caspian Seas: impact of climate model resolution

    Science.gov (United States)

    Elguindi, Nellie; Somot, S.; Déqué, M.; Ludwig, W.

    2011-01-01

    In this study we have evaluated the ability of the CNRM-ARPEGE CLIMATE V4 general circulation model (GCM) to estimate the present-day hydrological budget components [precipitation minus evaporation over the sea ( P - E) and fresh water runoff ( R)] over the Mediterranean, Black and Caspian sea basins. Three simulations were performed which were exactly identical except for horizontal resolution, allowing for a unique opportunity to isolate and study the effects of resolution on simulating the hydrological components. Model calculated values of runoff and P - E were compared to a variety of data sources and show that the model's performance improves significantly with increased resolution, especially in regions with mountainous terrain. Corresponding future climate simulations (following the IPCC A2 scenario) were also performed and indicate that while resolution does not seem to have a significant effect on the qualitative impacts of future climate change on the hydrologic balance, quantitatively the results vary significantly among the models. These results suggests that high resolution global models, or downscaling models such as RCMs, are necessary in order to assess the magnitude of future changes in the hydrological components of these basins.

  9. The Impacts of Policies To Meet The UK Climate Change Act Target on Air Quality - An Explicit Modelling Study

    Science.gov (United States)

    Williams, M.; Beevers, S.; Lott, M. C.; Kitwiroon, N.

    2016-12-01

    This paper presents a preliminary analysis of different pathways to meet the UK Climate Change Act target for 2050, of an 80% reduction in carbon dioxide equivalent emissions on a base year of 1990. The pathways can result in low levels of air pollution emissions through the use of renewables and nuclear power. But large increases in biomass burning and the continued use of diesel cars they can result in larger air quality impacts. The work evaluated the air quality impacts in several pathways using an energy system optimisation model (UK TIMES) and a chemical transport model (CMAQ). The work described in this paper goes beyond the `damage cost' approach where only emissions in each are assessed. In this work we used scenarios produced by the UK TIMES model which we converted into air pollution emissions. Emissions of ammonia from agriculture are not attributed to the energy system and are thus not captured by energy system models, yet are crucial in forming PM2.5, acknowledged to be currently the most important pollutant associated with premature deaths. Our model includes these emissions and other non-energy sources of hydrocarbons which lead to the formation of ozone, another significant cause of air pollution health impacts. A key policy issue is how much biogenic hydrocarbons contribute to ozone formation compared with man-made emissions. We modelled pollution concentrations at a resolution of 7 km across the UK and at 2km in urban areas. These results allow us to estimate changes in premature mortality and morbidity associated with the changes in air pollution and subsequently the economic cost of the impacts on public health. The work shows that in the `clean' scenario, urban exposures to particles (PM2.5) and NO2 could decrease by very large amounts, but ozone exposures are likely to increase without further significant reductions world-wide. Large increases in biomass use however could lead to increases in urban levels of carcinogens and primary PM.

  10. The Climate Change Impact On Grapevine Productivity

    Directory of Open Access Journals (Sweden)

    Maria Nedealcov

    2015-10-01

    Full Text Available The viticulture, a traditional branch of the national economy, is closely related to climatic conditions because the Republic of Moldova territory represents the northern border of its territorial location. Therefore the knowledge of regional particularities of grapevine productivity formation in dependence of current agro-climatic conditions is of particular interest. Along with accelerated climate change in last decades over the Republic of Moldova territory, we find that are essential changes concerning agro-meteorological conditions, at the same time comprehensive researches that would reflect the actual impact of climate change on grapevine are limited. There are known researches, but in the context of changes that occur at regional level it is necessary to supplement permanently the database in order to elaborate an appropriate estimation of current climate conditions. The above reported facts show the importance of parameters influencing the grapevine productivity time and space study in Republic of Moldova.

  11. Climate change impacts of US reactive nitrogen.

    Science.gov (United States)

    Pinder, Robert W; Davidson, Eric A; Goodale, Christine L; Greaver, Tara L; Herrick, Jeffrey D; Liu, Lingli

    2012-05-15

    Fossil fuel combustion and fertilizer application in the United States have substantially altered the nitrogen cycle, with serious effects on climate change. The climate effects can be short-lived, by impacting the chemistry of the atmosphere, or long-lived, by altering ecosystem greenhouse gas fluxes. Here we develop a coherent framework for assessing the climate change impacts of US reactive nitrogen emissions, including oxides of nitrogen, ammonia, and nitrous oxide (N(2)O). We use the global temperature potential (GTP), calculated at 20 and 100 y, in units of CO(2) equivalents (CO(2)e), as a common metric. The largest cooling effects are due to combustion sources of oxides of nitrogen altering tropospheric ozone and methane concentrations and enhancing carbon sequestration in forests. The combined cooling effects are estimated at -290 to -510 Tg CO(2)e on a GTP(20) basis. However, these effects are largely short-lived. On a GTP(100) basis, combustion contributes just -16 to -95 Tg CO(2)e. Agriculture contributes to warming on both the 20-y and 100-y timescales, primarily through N(2)O emissions from soils. Under current conditions, these warming and cooling effects partially offset each other. However, recent trends show decreasing emissions from combustion sources. To prevent warming from US reactive nitrogen, reductions in agricultural N(2)O emissions are needed. Substantial progress toward this goal is possible using current technology. Without such actions, even greater CO(2) emission reductions will be required to avoid dangerous climate change.

  12. Investigation of Climate Change Impacts to the Coastal Aquifer of North Germany: A 3D Modelling Study

    Science.gov (United States)

    Ptak, T.; Yang, J.; Graf, T.

    2014-12-01

    Climate change is expected to induce sea level rise in the German Bight, which is part of the North Sea, Germany. Climate change may also modify discharge of the river Weser flowing into the German Bight, which will alter both water levels and salinity distributions along the coast. To study the long-term effects of sea level rise and discharge variations to the salinity distribution, a 3D seawater intrusion model was designed using the fully coupled surface-subsurface numerical model HydroGeoSphere. The model simulates the coastal aquifer as an integral system considering complexities such as variable-density groundwater flow, surface-subsurface interaction, irregular land topography and anthropogenic structures (e.g. dykes, drainage canals, water gates). Using PEST, steady state groundwater flow of year 2009 is calibrated. In addition, 3 climate change scenarios are simulated based on the calibrated model: (i) sea level rise of 1 m, (ii) the salinity of the seaside boundary increased by 25 %, and (iii) the salinity of the seaside boundary decreased by 70 %. Results demonstrate the changes of fresh groundwater resources, surface water depths and salinity distribution. The obtained results are useful for coastal engineering practices, drinking water resources management and for the development of climate change adaptation strategies.

  13. Climate challenge 2012: growth and climate change - Socio-economical impacts of climate change. Conference proceedings

    International Nuclear Information System (INIS)

    Orange-Louboutin, Mylene; Robinet, Olivier; Delalande, Daniel; Reysset, Bertrand; De Perthuis, Christian; Le Treut, Herve; Cottenceau, Jean-Baptiste; Ayong, Alain; Daubaire, Aurelien; Gaudin, Thomas

    2012-01-01

    The contributions of this conference session proposed comments and discussion on the relationship between climate change and 'green' growth, on the status of scientific knowledge on climate change (from global to local), on the way to perform carbon print assessment and to decide which actions to implement, on the costs and opportunity of impacts of climate change, on the economy of adaptation, on the benefits and costs of the adaptation policy, and on impacts of climate change on employment in quantitative terms and in terms of profession types

  14. Overview of the Special Issue: A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Waldhoff, Stephanie T.; Martinich, Jeremy; Sarofim, Marcus; DeAngelo, B. J.; McFarland, Jim; Jantarasami, Lesley; Shouse, Kate C.; Crimmins, Allison; Ohrel, Sara; Li, Jia

    2015-07-01

    The Climate Change Impacts and Risk Analysis (CIRA) modeling exercise is a unique contribution to the scientific literature on climate change impacts, economic damages, and risk analysis that brings together multiple, national-scale models of impacts and damages in an integrated and consistent fashion to estimate climate change impacts, damages, and the benefits of greenhouse gas (GHG) mitigation actions in the United States. The CIRA project uses three consistent socioeconomic, emissions, and climate scenarios across all models to estimate the benefits of GHG mitigation policies: a Business As Usual (BAU) and two policy scenarios with radiative forcing (RF) stabilization targets of 4.5 W/m2 and 3.7 W/m2 in 2100. CIRA was also designed to specifically examine the sensitivity of results to uncertainties around climate sensitivity and differences in model structure. The goals of CIRA project are to 1) build a multi-model framework to produce estimates of multiple risks and impacts in the U.S., 2) determine to what degree risks and damages across sectors may be lowered from a BAU to policy scenarios, 3) evaluate key sources of uncertainty along the causal chain, and 4) provide information for multiple audiences and clearly communicate the risks and damages of climate change and the potential benefits of mitigation. This paper describes the motivations, goals, and design of the CIRA modeling exercise and introduces the subsequent papers in this special issue.

  15. Modelling climate change impacts on tourism demand: A comparative study from Sardinia (Italy) and Cap Bon (Tunisia).

    Science.gov (United States)

    Köberl, Judith; Prettenthaler, Franz; Bird, David Neil

    2016-02-01

    Tourism represents an important source of income and employment in many Mediterranean regions, including the island of Sardinia (Italy) and the Cap Bon peninsula (Tunisia). Climate change may however impact tourism in both regions, for example, by altering the regions' climatic suitability for common tourism types or affecting water availability. This paper assesses the potential impacts of climate change on tourism in the case study regions of Sardinia and Cap Bon. Direct impacts are studied in a quantitative way by applying a range of climate scenario data on the empirically estimated relationship between climatic conditions and tourism demand, using two different approaches. Results indicate a potential for climate-induced tourism revenue gains especially in the shoulder seasons during spring and autumn, but also a threat of climate-induced revenue losses in the summer months due to increased heat stress. Annual direct net impacts are nevertheless suggested to be (slightly) positive in both case study regions. Significant climate-induced reductions in total available water may however somewhat counteract the positive direct impacts of climate change by putting additional water costs on the tourism industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Climate change impact on river flows in Chitral watershed

    International Nuclear Information System (INIS)

    Shakir, A.S.; Rehman, H.U.; Ehsan, S.

    2010-01-01

    The impact of climate change has always been very important for water resources in the world. In countries like Pakistan where different weather conditions exist, the effects of climate change can be more crucial. Generally, the climate changes are considered in terms of global warming i.e. increase in the average temperature of earth's near surface air. The global warming can have a strong impact on river flows in Pakistan. This may be due to the melting of snow and glaciers at a higher rate and changes in precipitation patterns. Glaciers in Pakistan cover about 13,680 km/sup 2/, which is 13% of the mountainous regions of the Upper Indus Basin. Glacier and Snow melt water from these glaciers contributes significantly to the river flows in Pakistan. Due to climate change, the changes in temperature and the amount of precipitation could have diversified effects on river flows of arid and semi-arid regions of Pakistan. This paper reviews the existing research studies on climate change impact on water resources of Pakistan. The past trend of river flows in Pakistan has been discussed with respect to the available data. Further, different projections about future climate changes in terms of glacier melting and changes in temperature and precipitation have also been taken into consideration in order to qualitatively assess the future trend of river flows in Pakistan. As a case study, the flows were generated for the Chitral watershed using UBC Watershed Model. Model was calibrated for the year 2002, which is an average flow year. Model results show good agreement between simulated and observed flows. UBC watershed model was applied to a climate change scenario of 1 deg. C increase in temperature and 15% decrease in glaciated area. Results of the study reveal that the flows were decreased by about 4.2 %. (author)

  17. Climate Change Impact Assessments for International Market Systems (CLIMARK)

    Science.gov (United States)

    Winkler, J. A.; Andresen, J.; Black, J.; Bujdoso, G.; Chmielewski, F.; Kirschke, D.; Kurlus, R.; Liszewska, M.; Loveridge, S.; Niedzwiedz, T.; Nizalov, D.; Rothwell, N.; Tan, P.; Ustrnul, Z.; von Witzke, H.; Zavalloni, C.; Zhao, J.; Zhong, S.

    2012-12-01

    The vast majority of climate change impact assessments evaluate how local or regional systems and processes may be affected by a future climate. Alternative strategies that extend beyond the local or regional scale are needed when assessing the potential impacts of climate change on international market systems, including agricultural commodities. These industries have multiple production regions that are distributed worldwide and are likely to be differentially impacted by climate change. Furthermore, for many industries and market systems, especially those with long-term climate-dependent investments, temporal dynamics need to be incorporated into the assessment process, including changing patterns of international trade, consumption and production, and evolving adaptation strategies by industry stakeholder groups. A framework for conducting climate change assessments for international market systems, developed as part of the CLIMARK (Climate Change and International Markets) project is outlined, and progress toward applying the framework for an impact assessment for the international tart cherry industry is described. The tart cherry industry was selected for analysis in part because tart cherries are a perennial crop requiring long-term investments by the producer. Components of the project include the preparation of fine resolution climate scenarios, evaluation of phenological models for diverse production regions, the development of a yield model for tart cherry production, new methods for incorporating individual decision making and adaptation options into impact assessments, and modification of international trade models for use in impact studies. Innovative aspects of the project include linkages between model components and evaluation of the mega-uncertainty surrounding the assessment outcomes. Incorporation of spatial and temporal dynamics provides a more comprehensive evaluation of climate change impacts and an assessment product of potentially greater

  18. Improved hydrological model parametrization for climate change impact assessment under data scarcity - The potential of field monitoring techniques and geostatistics.

    Science.gov (United States)

    Meyer, Swen; Blaschek, Michael; Duttmann, Rainer; Ludwig, Ralf

    2016-02-01

    According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The Water Simulation Model (WaSiM) was set up to model current and future hydrological conditions. The availability of measured meteorological and hydrological data is poor as it is common for many Mediterranean catchments. In this study we conducted a soil sampling campaign in the Rio Mannu catchment. We tested different deterministic and hybrid geostatistical interpolation methods on soil textures and tested the performance of the applied models. We calculated a new soil texture map based on the best prediction method. The soil model in WaSiM was set up with the improved new soil information. The simulation results were compared to standard soil parametrization. WaSiMs was validated with spatial evapotranspiration rates using the triangle method (Jiang and Islam, 1999). WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. The climate change impact was assessed based on differences between reference and future time series. The simulated results show a reduction of all hydrological quantities in the future in the spring season. Furthermore simulation results reveal an earlier onset of dry conditions in the catchment. We show that a solid soil model setup based on short-term field measurements can improve long-term modeling results, which is especially important

  19. The regional impacts of climate change: an assessment of vulnerability

    National Research Council Canada - National Science Library

    Zinyowera, Marufu C; Moss, Richard H; Watson, R. T

    1998-01-01

    .... The Regional Impacts of Climate Change: An Assessment of Vulnerability reviews state-of-the-art information on potential impacts of climate change for ecological systems, water supply, food production, coastal infrastructure, human health...

  20. Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology modelo.

    Science.gov (United States)

    Amin, M Z M; Shaaban, A J; Ercan, A; Ishida, K; Kavvas, M L; Chen, Z Q; Jang, S

    2017-01-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model utilizing an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century was dynamically downscaled to 6km resolution over Peninsular Malaysia by a regional climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over Muda and Dungun watersheds. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions in the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant from April to May and from July to October at Muda watershed. Also, the increase in mean monthly flows is shown to be significant in November during 2030-2070 and from November to December during 2070-2100 at Dungun watershed. In other words, the impact of the expected climate change will be significant during the northeast and southwest monsoon seasons at Muda watershed and during the northeast monsoon season at Dungun watershed. Furthermore, the flood frequency analyses for both watersheds indicated an overall increasing trend in the second half of the 21st century. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Using stochastic population process models to predict the impact of climate change.

    NARCIS (Netherlands)

    van der Meer, J.; Beukema, J.J.; Dekker, R.

    2013-01-01

    More than ten years ago a paper was published in which stochastic population process models were fitted to time series of two marine polychaete species in the western Wadden Sea, The Netherlands (Van der Meer et al., 2000). For the predator species, model fits pointed to a strong effect of average

  2. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods

    Science.gov (United States)

    Teutschbein, Claudia; Seibert, Jan

    2012-08-01

    SummaryDespite the increasing use of regional climate model (RCM) simulations in hydrological climate-change impact studies, their application is challenging due to the risk of considerable biases. To deal with these biases, several bias correction methods have been developed recently, ranging from simple scaling to rather sophisticated approaches. This paper provides a review of available bias correction methods and demonstrates how they can be used to correct for deviations in an ensemble of 11 different RCM-simulated temperature and precipitation series. The performance of all methods was assessed in several ways: At first, differently corrected RCM data was compared to observed climate data. The second evaluation was based on the combined influence of corrected RCM-simulated temperature and precipitation on hydrological simulations of monthly mean streamflow as well as spring and autumn flood peaks for five catchments in Sweden under current (1961-1990) climate conditions. Finally, the impact on hydrological simulations based on projected future (2021-2050) climate conditions was compared for the different bias correction methods. Improvement of uncorrected RCM climate variables was achieved with all bias correction approaches. While all methods were able to correct the mean values, there were clear differences in their ability to correct other statistical properties such as standard deviation or percentiles. Simulated streamflow characteristics were sensitive to the quality of driving input data: Simulations driven with bias-corrected RCM variables fitted observed values better than simulations forced with uncorrected RCM climate variables and had more narrow variability bounds.

  3. Future flooding impacts on transportation infrastructure and traffic patterns resulting from climate change.

    Science.gov (United States)

    2011-11-01

    "This study investigated potential impacts of climate change on travel disruption resulting from road closures in two urban watersheds in the : Portland metropolitan area. We used ensemble climate change scenarios, a hydrologic model, stream channel ...

  4. A framework for using niche models to estimate impacts of climate change on species distributions.

    Science.gov (United States)

    Anderson, Robert P

    2013-09-01

    Predicting species geographic distributions in the future is an important yet exceptionally challenging endeavor. Overall, it requires a two-step process: (1) a niche model characterizing suitability, applied to projections of future conditions and linked to (2) a dispersal/demographic simulation estimating the species' future occupied distribution. Despite limitations, for the vast majority of species, correlative approaches are the most feasible avenue for building niche models. In addition to myriad technical issues regarding model building, researchers should follow critical principles for selecting predictor variables and occurrence data, demonstrating effective performance in prediction across space, and extrapolating into nonanalog conditions. Many of these principles relate directly to the niche space, dispersal/demographic noise, biotic noise, and human noise assumptions defined here. Issues requiring progress include modeling interactions between abiotic variables, integrating biotic variables, considering genetic heterogeneity, and quantifying uncertainty. Once built, the niche model identifying currently suitable conditions must be processed to approximate the areas that the species occupies. That estimate serves as a seed for the simulation of persistence, dispersal, and establishment in future suitable areas. The dispersal/demographic simulation also requires data regarding the species' dispersal ability and demography, scenarios for future land use, and the capability of considering multiple interacting species simultaneously. © 2013 New York Academy of Sciences.

  5. Modelling climate change impacts on the seasonality of water resources in the Upper Ca River Watershed in Southeast Asia.

    Science.gov (United States)

    Giang, Pham Quy; Toshiki, Kosuke; Sakata, Masahiro; Kunikane, Shoichi; Vinh, Tran Quoc

    2014-01-01

    The impact of climate change on the seasonality of water resources in the Upper Ca River Watershed in mainland Southeast Asia was assessed using downscaled global climate models coupled with the SWAT model. The results indicated that temperature and evapotranspiration will increase in all months of future years. The area could warm as much as 3.4(°)C in the 2090 s, with an increase of annual evapotranspiration of up to 23% in the same period. We found an increase in the seasonality of precipitation (both an increase in the wet season and a decrease in the dry season). The greatest monthly increase of up to 29% and the greatest monthly decrease of up to 30% are expected in the 2090 s. As a result, decreases in dry season discharge and increases in wet season discharge are expected, with a span of ± 25% for the highest monthly changes in the 2090 s. This is expected to exacerbate the problem of seasonally uneven distribution of water resources: a large volume of water in the wet season and a scarcity of water in the dry season, a pattern that indicates the possibility of more frequent floods in the wet season and droughts in the dry season.

  6. An empirical perspective for understanding climate change impacts in Switzerland

    Science.gov (United States)

    Henne, Paul; Bigalke, Moritz; Büntgen, Ulf; Colombaroli, Daniele; Conedera, Marco; Feller, Urs; Frank, David; Fuhrer, Jürg; Grosjean, Martin; Heiri, Oliver; Luterbacher, Jürg; Mestrot, Adrien; Rigling, Andreas; Rössler, Ole; Rohr, Christian; Rutishauser, This; Schwikowski, Margit; Stampfli, Andreas; Szidat, Sönke; Theurillat, Jean-Paul; Weingartner, Rolf; Wilcke, Wolfgan; Tinner, Willy

    2018-01-01

    Planning for the future requires a detailed understanding of how climate change affects a wide range of systems at spatial scales that are relevant to humans. Understanding of climate change impacts can be gained from observational and reconstruction approaches and from numerical models that apply existing knowledge to climate change scenarios. Although modeling approaches are prominent in climate change assessments, observations and reconstructions provide insights that cannot be derived from simulations alone, especially at local to regional scales where climate adaptation policies are implemented. Here, we review the wealth of understanding that emerged from observations and reconstructions of ongoing and past climate change impacts in Switzerland, with wider applicability in Europe. We draw examples from hydrological, alpine, forest, and agricultural systems, which are of paramount societal importance, and are projected to undergo important changes by the end of this century. For each system, we review existing model-based projections, present what is known from observations, and discuss how empirical evidence may help improve future projections. A particular focus is given to better understanding thresholds, tipping points and feedbacks that may operate on different time scales. Observational approaches provide the grounding in evidence that is needed to develop local to regional climate adaptation strategies. Our review demonstrates that observational approaches should ideally have a synergistic relationship with modeling in identifying inconsistencies in projections as well as avenues for improvement. They are critical for uncovering unexpected relationships between climate and agricultural, natural, and hydrological systems that will be important to society in the future.

  7. Modeling the Impact of White-Plague Coral Disease in Climate Change Scenarios.

    Science.gov (United States)

    Zvuloni, Assaf; Artzy-Randrup, Yael; Katriel, Guy; Loya, Yossi; Stone, Lewi

    2015-06-01

    Coral reefs are in global decline, with coral diseases increasing both in prevalence and in space, a situation that is expected only to worsen as future thermal stressors increase. Through intense surveillance, we have collected a unique and highly resolved dataset from the coral reef of Eilat (Israel, Red Sea), that documents the spatiotemporal dynamics of a White Plague Disease (WPD) outbreak over the course of a full season. Based on modern statistical methodologies, we develop a novel spatial epidemiological model that uses a maximum-likelihood procedure to fit the data and assess the transmission pattern of WPD. We link the model to sea surface temperature (SST) and test the possible effect of increasing temperatures on disease dynamics. Our results reveal that the likelihood of a susceptible coral to become infected is governed both by SST and by its spatial location relative to nearby infected corals. The model shows that the magnitude of WPD epidemics strongly depends on demographic circumstances; under one extreme, when recruitment is free-space regulated and coral density remains relatively constant, even an increase of only 0.5°C in SST can cause epidemics to double in magnitude. In reality, however, the spatial nature of transmission can effectively protect the community, restricting the magnitude of annual epidemics. This is because the probability of susceptible corals to become infected is negatively associated with coral density. Based on our findings, we expect that infectious diseases having a significant spatial component, such as Red-Sea WPD, will never lead to a complete destruction of the coral community under increased thermal stress. However, this also implies that signs of recovery of local coral communities may be misleading; indicative more of spatial dynamics than true rehabilitation of these communities. In contrast to earlier generic models, our approach captures dynamics of WPD both in space and time, accounting for the highly

  8. The Impact Of Climate Change On Production Of Multiple Food Crops In The 21st Century- An Analysis Based On Two Land Surface Models

    Science.gov (United States)

    Song, Y.; Jain, A. K.; Lawrence, P.; Kheshgi, H. S.

    2015-12-01

    Climate change presents potential risks to global food supply. To date, understanding of climate change effects on crop production remains uncertain due to (1) uncertainties in projected climate change trends and their spatial and temporal variability; (2) uncertainties in the physiological, genetic and molecular basis of crop adaptation to climate change and adaptive management practices and (3) uncertainties in current land surface models to estimate crop adaptation to climate change. We apply the process-based land surface model, the Integrated Science Assessment model (ISAM), to assess the impact of climate change on the production of row crops (corn, soybean, rice, cotton, sugarcane and wheat) at global and regional scales. The results are compared to the corresponding simulations performed with the crop model in the Community Land Model (CLM4.5). Three questions are addressed: (1) what is the impact of different climate change projections on global crop production; (2) what is the effect of crop adaptation and adaptive management practices on projected crop production; and (3) how do model differences in ISAM and CLM4.5 impact projected global crop production and adaptive management practices over the 21st century. ISAM and CLM4.5 have been included in the Agricultural Model Intercomparison and Improvement Project (AgMIP). Both models consider the effects of temperature, light and soil water and nitrogen availability on crop photosynthesis and temperature control on crop phenology and carbon allocation. ISAM also considers the adaptation of crop phenology, carbon allocation and structures growth to drought, light stress and N stress. The effects of model differences on projected crop production are evaluated by performing the following experiments. Each model is driven with historical atmospheric forcing data (1901-2005) and projected atmospheric forcing data (2006-2100) under RCP 4.5 or RCP 8.5 from CESM CMIP5 simulations to estimate the effects of different

  9. Climate Change Impact on Neotropical Social Wasps

    Science.gov (United States)

    Dejean, Alain; Céréghino, Régis; Carpenter, James M.; Corbara, Bruno; Hérault, Bruno; Rossi, Vivien; Leponce, Maurice; Orivel, Jérome; Bonal, Damien

    2011-01-01

    Establishing a direct link between climate change and fluctuations in animal populations through long-term monitoring is difficult given the paucity of baseline data. We hypothesized that social wasps are sensitive to climatic variations, and thus studied the impact of ENSO events on social wasp populations in French Guiana. We noted that during the 2000 La Niña year there was a 77.1% decrease in their nest abundance along ca. 5 km of forest edges, and that 70.5% of the species were no longer present. Two simultaneous 13-year surveys (1997–2009) confirmed the decrease in social wasps during La Niña years (2000 and 2006), while an increase occurred during the 2009 El Niño year. A 30-year weather survey showed that these phenomena corresponded to particularly high levels of rainfall, and that temperature, humidity and global solar radiation were correlated with rainfall. Using the Self-Organizing Map algorithm, we show that heavy rainfall during an entire rainy season has a negative impact on social wasps. Strong contrasts in rainfall between the dry season and the short rainy season exacerbate this effect. Social wasp populations never recovered to their pre-2000 levels. This is probably because these conditions occurred over four years; heavy rainfall during the major rainy seasons during four other years also had a detrimental effect. On the contrary, low levels of rainfall during the major rainy season in 2009 spurred an increase in social wasp populations. We conclude that recent climatic changes have likely resulted in fewer social wasp colonies because they have lowered the wasps' resistance to parasitoids and pathogens. These results imply that Neotropical social wasps can be regarded as bio-indicators because they highlight the impact of climatic changes not yet perceptible in plants and other animals. PMID:22073236

  10. Impact of Climate Change on Water Resources in Taiwan

    OpenAIRE

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future wat...

  11. Climate change impacts on the future distribution of date palms: a modeling exercise using CLIMEX.

    Directory of Open Access Journals (Sweden)

    Farzin Shabani

    Full Text Available Climate is changing and, as a consequence, some areas that are climatically suitable for date palm (Phoenix dactylifera L. cultivation at the present time will become unsuitable in the future. In contrast, some areas that are unsuitable under the current climate will become suitable in the future. Consequently, countries that are dependent on date fruit export will experience economic decline, while other countries' economies could improve. Knowledge of the likely potential distribution of this economically important crop under current and future climate scenarios will be useful in planning better strategies to manage such issues. This study used CLIMEX to estimate potential date palm distribution under current and future climate models by using one emission scenario (A2 with two different global climate models (GCMs, CSIRO-Mk3.0 (CS and MIROC-H (MR. The results indicate that in North Africa, many areas with a suitable climate for this species are projected to become climatically unsuitable by 2100. In North and South America, locations such as south-eastern Bolivia and northern Venezuela will become climatically more suitable. By 2070, Saudi Arabia, Iraq and western Iran are projected to have a reduction in climate suitability. The results indicate that cold and dry stresses will play an important role in date palm distribution in the future. These results can inform strategic planning by government and agricultural organizations by identifying new areas in which to cultivate this economically important crop in the future and those areas that will need greater attention due to becoming marginal regions for continued date palm cultivation.

  12. A mechanistic-bioclimatic modeling analysis of the potential impact of climate change on biomes of the Tibetan Plateau.

    Science.gov (United States)

    Ye, Jian-Sheng; Reynolds, James F; Li, Feng-Min

    2014-08-01

    The Tibetan Plateau (TP) is experiencing high rates of climatic change. We present a novel combined mechanistic-bioclimatic modeling approach to determine how changes in precipitation and temperature on the TP may impact net primary production (NPP) in four major biomes (forest, shrub, grass, desert) and if there exists a maximum rain use efficiency (RUE(MAX)) that represents Huxman et al.'s "boundary that constrain[s] site-level productivity and efficiency." We used a daily mechanistic ecosystem model to generate 40-yr outputs using observed climatic data for scenarios of decreased precipitation (25-100%); increased air temperature (1 degrees - 6 degrees C); simultaneous changes in both precipitation (+/- 50%, +/- 25%) and air temperature (+1 to +6 degrees C) and increased interannual variability (IAV) of precipitation (+1 sigma to +3 sigma, with fixed means, where sigma is SD). We fitted model output from these scenarios to Huxman et al.'s RUE(MAX) bioclimatic model, NPP = alpha + RUE x PPT (where alpha is the intercept, RUE is rain use efficiency, and PPT is annual precipitation). Based on these analyses, we conclude that there is strong support (when not explicit, then trend-wise) for Huxman et al.'s assertion that biomes converge to a common RUE(MAX) during the driest years at a site, thus representing the boundary for highest rain use efficiency; the interactive effects of simultaneously decreasing precipitation and increasing temperature on NPP for the TP is smaller than might be expected from additive, single-factor changes in these drivers; and that increasing IAV of precipitation may ultimately have a larger impact on biomes of the Tibetan Plateau than changing amounts of rainfall and air temperature alone.

  13. Projected environmental shifts under climate change: European trends and regional impacts

    NARCIS (Netherlands)

    Metzger, M.J.; Bunce, R.G.H.; Leemans, R.; Viner, D.

    2008-01-01

    Potential impacts of climate change on ecosystems and the environment are generally assessed by summarizing climate change scenarios for broad regions (for example countries), or by specific modelling exercises. This paper presents an alternative approach for summarizing climate change impacts on

  14. Potential Impacts of Climate Change in Kenya

    International Nuclear Information System (INIS)

    Ogola, J.S.; Abira, M.A.; Awuor, V.O.

    1997-01-01

    According to the United Nations Framework Convention on Climate Change (UNFCCC), climate change is attributed directly or indirectly to human activities that alter the composition of the global atmosphere. It is a phenomenon that is still inadequately understood by the general public. Planners, policy makers and even within institutions of learning, but one which is bound to affect our environment and development activities. There is therefore need for information dissemination, systematic research, policy formulation, and development of strategies for managing climate change. The book is divided into five parts, Part I presents basic information on climate change; Part II looks at climatic change and natural resources; Part III discusses implications of climate change; Part IV presents ethical issues related to climatic change; and Part V deals with responses to climate change

  15. Climate Change Impacts on Migration in the Vulnerable Countries

    Science.gov (United States)

    An, Nazan; Incealtin, Gamze; Kurnaz, M. Levent; Şengün Ucal, Meltem

    2014-05-01

    This work focuses on the economic, demographic and environmental drivers of migration related with the sustainable development in underdeveloped and developed countries, which are the most vulnerable to the climate change impacts through the Climate-Development Modeling including climate modeling and panel logit data analysis. We have studied some countries namely Bangladesh, Netherlands, Morocco, Malaysia, Ethiopia and Bolivia. We have analyzed these countries according to their economic, demographic and environmental indicators related with the determinants of migration, and we tried to indicate that their conditions differ according to all these factors concerning with the climate change impacts. This modeling covers some explanatory variables, which have the relationship with the migration, including GDP per capita, population, temperature and precipitation, which indicate the seasonal differences according to the years, the occurrence of natural hazards over the years, coastal location of countries, permanent cropland areas and fish capture which represents the amount of capturing over the years. We analyzed that whether there is a relationship between the migration and these explanatory variables. In order to achieve sustainable development by preventing or decreasing environmental migration due to climate change impacts or related other factors, these countries need to maintain economic, social, political, demographic, and in particular environmental performance. There are some significant risks stemming from climate change, which is not under control. When the economic and environmental conditions are considered, we have to regard climate change to be the more destructive force for those who are less defensible against all of these risks and impacts of uncontrolled climate change. This work was supported by the BU Research Fund under the project number 6990. One of the authors (MLK) was partially supported by Mercator-IPC Fellowship Program.

  16. Fish Farmers' Perception of Climate change impact on fish ...

    African Journals Online (AJOL)

    ... be a consequence of the negative impact of climate change. This study concluded that there's a need for the active involvement of stakeholders in developing policies relating to climate change mitigation and beneficial response strategies to global warming. Keywords: Climate change, fish farming, impact and perception.

  17. Assessing the observed impact of anthropogenic climate change

    NARCIS (Netherlands)

    Hansen, G.E.

    2015-01-01

    Assessing the observed impact of anthropogenic climate change Gerrit Hansen Global climate change is unequivocal, and greenhouse gas emissions continue rising despite international mitigation efforts. Hence whether and to what extent the impacts of human induced climate change are

  18. Impact of Climate Change on Food Security in Nigeria | Osuafor ...

    African Journals Online (AJOL)

    Impact of Climate Change on Food Security in Nigeria. ... AFRREV STECH: An International Journal of Science and Technology ... climate change on food security in Nigeria with a view to making suggestions on strategies to mitigate the impact of climate change on the environment generally and food security in particular.

  19. Impacts of climate change on fisheries

    Science.gov (United States)

    Brander, Keith

    2010-02-01

    Evidence of the impacts of anthropogenic climate change on marine ecosystems is accumulating, but must be evaluated in the context of the "normal" climate cycles and variability which have caused fluctuations in fisheries throughout human history. The impacts on fisheries are due to a variety of direct and indirect effects of a number of physical and chemical factors, which include temperature, winds, vertical mixing, salinity, oxygen, pH and others. The direct effects act on the physiology, development rates, reproduction, behaviour and survival of individuals and can in some cases be studied experimentally and in controlled conditions. Indirect effects act via ecosystem processes and changes in the production of food or abundance of competitors, predators and pathogens. Recent studies of the effects of climate on primary production are reviewed and the consequences for fisheries production are evaluated through regional examples. Regional examples are also used to show changes in distribution and phenology of plankton and fish, which are attributed to climate. The role of discontinuous and extreme events (regime shifts, exceptional warm periods) is discussed. Changes in fish population processes can be investigated in experiments and by analysis of field data, particularly by assembling comparative data from regional examples. Although our existing knowledge is in many respects incomplete it nevertheless provides an adequate basis for improved management of fisheries and of marine ecosystems and for adapting to climate change. In order to adapt to changing climate, future monitoring and research must be closely linked to responsive, flexible and reflexive management systems.

  20. Projected impacts of climate change on marine fish and fisheries

    DEFF Research Database (Denmark)

    Hollowed, Anne B.; Barange, Manuel; Beamish, Richard J.

    2013-01-01

    This paper reviews current literature on the projected effects of climate change on marine fish and shellfish, their fisheries, and fishery-dependent communities throughout the northern hemisphere. The review addresses the following issues: (i) expected impacts on ecosystem productivity and habitat......) implications for food security and associated changes; and (v) uncertainty and modelling skill assessment. Climate change will impact fish and shellfish, their fisheries, and fishery-dependent communities through a complex suite of linked processes. Integrated interdisciplinary research teams are forming...... in many regions to project these complex responses. National and international marine research organizations serve a key role in the coordination and integration of research to accelerate the production of projections of the effects of climate change on marine ecosystems and to move towards a future where...

  1. Climate change impact on future ocean acidification

    International Nuclear Information System (INIS)

    McNeil, Ben

    2007-01-01

    Full text: Elevated atmospheric C02 levels and associated uptake by the ocean is changing its carbon chemistry, leading to an acidification. The implications of future ocean acidification on the marine ecosystem are unclear but seemingly detrimental particularly to those organisms and phytoplankton that secrete calcium carbonate (like corals). Here we present new results from the Australian CSIRO General Circulation Model that predicts the changing nature of oceanic carbon chemistry in response to future climate change feedbacks (circulation, temperature and biological). We will discuss the implications of future ocean acidification and the potential implications on Australia's marine ecosystems

  2. Climate Change Impacts on Rainfall Extremes and Urban Drainage: a State-of-the-Art Review

    DEFF Research Database (Denmark)

    Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten

    2013-01-01

    to anthropogenic climate change. Current practices have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend or impact results. The review (Willems et al., 2012) considers the following aspects: analysis of long-term historical trends...... due to anthropogenic climate change, analysis of long-term future trends due to anthropogenic climate change, and implications for urban drainage infrastructure design and management. A summary is provided in this paper....

  3. Simulating Climate Change Impact on Soil Erosion using RUSLE ...

    Indian Academy of Sciences (India)

    30

    station). This projected rainfall data was used to compute projected rainfall erosivity and further estimate the soil erosion employing RUSLE model over the three periods: 2020 (2011-2040),. 2050 (2041-2070), 2080 (2071-2099). The study will provide a preliminary evaluation of the potential impact of future climate change ...

  4. Impact of Climate Change on India's Monsoonal Climate: Present ...

    Indian Academy of Sciences (India)

    Table of contents. Impact of Climate Change on India's Monsoonal Climate: Present Status and Outstanding Issues · Slide 2 · Slide 3 ... GFDL CM2.1 Global Coupled Ocean-Atmosphere Model Water Hosing Experiment with 1 Sv equivalent of Freshening Control Expt: 100 yrs After Hosing: 300 yrs · Uncertainties · Slide 28.

  5. Climate change, ecosystem impacts, and management for Pacific salmon

    Science.gov (United States)

    D.E. Schindler; X. Augerot; E. Fleishman; N.J. Mantua; B. Riddell; M. Ruckelshaus; J. Seeb; M. Webster

    2008-01-01

    As climate change intensifies, there is increasing interest in developing models that reduce uncertainties in projections of global climate and refine these projections to finer spatial scales. Forecasts of climate impacts on ecosystems are far more challenging and their uncertainties even larger because of a limited understanding of physical controls on biological...

  6. Uncertainty in climate change impacts on low flows

    NARCIS (Netherlands)

    Booij, Martijn J.; Huisjes, Martijn; Hoekstra, Arjen Ysbert; Demuth, Siegfried; Gustard, Alan; Planos, Eduardo; Scatena, Fred; Servat, Eric

    2006-01-01

    It is crucial for low flow management that information about the impacts of climate change on low flows and the uncertainties therein becomes available. This has been achieved by using information from different Regional Climate Models for different emission scenarios to assess the uncertainty in

  7. Evaluation of climate change impact on extreme hydrological event ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This study assesses the potential impact of climate change on extreme hydrological events in the Akaki River catchment area in and around Addis Ababa city. Projection of future climate variables is calculated by using a General Circulation Model (GCM), an advanced tool for estimating future climatic conditions. The climate ...

  8. What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M. L.; Rajagopalan, K.; Chung, S. H.; Jiang, X.; Harrison, J. H.; Nergui, T.; Guenther, Alex B.; Miller, C.; Reyes, J.; Tague, C. L.; Choate, J. S.; Salathe, E.; Stockle, Claudio O.; Adam, J. C.

    2014-05-16

    Regional climate change impact (CCI) studies have widely involved downscaling and bias-correcting (BC) Global Climate Model (GCM)-projected climate for driving land surface models. However, BC may cause uncertainties in projecting hydrologic and biogeochemical responses to future climate due to the impaired spatiotemporal covariance of climate variables and a breakdown of physical conservation principles. Here we quantify the impact of BC on simulated climate-driven changes in water variables(evapotranspiration, ET; runoff; snow water equivalent, SWE; and water demand for irrigation), crop yield, biogenic volatile organic compounds (BVOC), nitric oxide (NO) emissions, and dissolved inorganic nitrogen (DIN) export over the Pacific Northwest (PNW) Region. We also quantify the impacts on net primary production (NPP) over a small watershed in the region (HJ Andrews). Simulation results from the coupled ECHAM5/MPI-OM model with A1B emission scenario were firstly dynamically downscaled to 12 km resolutions with WRF model. Then a quantile mapping based statistical downscaling model was used to downscale them into 1/16th degree resolution daily climate data over historical and future periods. Two series climate data were generated according to the option of bias-correction (i.e. with bias-correction (BC) and without bias-correction, NBC). Impact models were then applied to estimate hydrologic and biogeochemical responses to both BC and NBC meteorological datasets. These im20 pact models include a macro-scale hydrologic model (VIC), a coupled cropping system model (VIC-CropSyst), an ecohydrologic model (RHESSys), a biogenic emissions model (MEGAN), and a nutrient export model (Global-NEWS). Results demonstrate that the BC and NBC climate data provide consistent estimates of the climate-driven changes in water fluxes (ET, runoff, and water demand), VOCs (isoprene and monoterpenes) and NO emissions, mean crop yield, and river DIN export over the PNW domain. However

  9. The Perils of Modelling How Migration Responds to Climate Change

    OpenAIRE

    Feng, Bo; Partridge, Mark; Rembert, Mark

    2016-01-01

    The impact of climate change has drawn growing interests from both researchers and policymakers. Yet, relatively little is known with respect to its influence on interregional migration. The surge of extreme weather conditions could lead to the increase of forced migration from coastal to inland regions, which normally follows different patterns than voluntary migration. However, recent migration models tend to predict unrealistic migration trends under climate change in that migration would ...

  10. Terrestrial Water Cycle and the Impact of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Fulu Tao; Erda Lin [Chinese Academy of Agricultural Sciences, Beijing (China). Agrometeorology Inst.; Yokozawa, Masayuki; Hayashi, Yousay [National Inst. for Agro-Environmental Sciences, Tsukuba (Japan)

    2003-06-01

    The terrestrial water cycle and the impact of climate change are critical for agricultural and natural ecosystems. In this paper, we assess both by running a macro-scale water balance model under a baseline condition and 2 General Circulation Model (GCM)-based climate change scenarios. The results show that in 2021-2030, water demand will increase worldwide due to climate change. Water shortage is expected to worsen in western Asia, the Arabian Peninsula, northern and southern Africa, northeastern Australia, southwestern North America, and central South America. A significant increase in surface runoff is expected in southern Asia and a significant decrease is expected in northern South America. These changes will have implications for regional environment and socio-economics.

  11. Terrestrial water cycle and the impact of climate change.

    Science.gov (United States)

    Tao, Fulu; Yokozawa, Masayuki; Hayashi, Yousay; Lin, Erda

    2003-06-01

    The terrestrial water cycle and the impact of climate change are critical for agricultural and natural ecosystems. In this paper, we assess both by running a macro-scale water balance model under a baseline condition and 2 General Circulation Model (GCM)-based climate change scenarios. The results show that in 2021-2030, water demand will increase worldwide due to climate change. Water shortage is expected to worsen in western Asia, the Arabian Peninsula, northern and southern Africa, northeastern Australia, southwestern North America, and central South America. A significant increase in surface runoff is expected in southern Asia and a significant decrease is expected in northern South America. These changes will have implications for regional environment and socioeconomics.

  12. Australian climate change impacts, adaptation and vulnerability

    International Nuclear Information System (INIS)

    Hennessy, K.; Fitzharris, B.

    2007-01-01

    Full text: Full text: The IPCC Fourth Assessment Report on impacts, adaptation and vulnerability made the following conclusions about Australia (Hennessy et al., 2007): Regional climate change has occurred. Since 1950, there has been 0.7 0 C warming, with more heat waves, fewer frosts, more rain in north-west Australia, less rain in southern and eastern Australia, an increase in the intensity of Australian droughts and a rise in sea level of about 70 mm. Australia is already experiencing impacts from recent climate change. These are now evident in increasing stresses on water supply and agriculture, changed natural ecosystems, and reduced seasonal snow cover. Some adaptation has already occurred in response to observed climate change. Examples come from sectors such as water, natural ecosystems, agriculture, horticulture and coasts. However, ongoing vulnerability to extreme events is demonstrated by substantial economic losses caused by droughts, floods, fire, tropical cyclones and hail. The climate of the 21st century is virtually certain to be warmer, with changes in extreme events. Heat waves and fires are virtually certain to increase in intensity and frequency. Floods, landslides, droughts and storm surges are very likely to become more frequent and intense, and snow and frost are very likely to become less frequent. Large areas of mainland Australia are likely to have less soil moisture. Potential impacts of climate change are likely to be substantial without further adaptation; As a result of reduced precipitation and increased evaporation, water security problems are projected to intensify by 2030 in southern and eastern Australia; Ongoing coastal development and population growth, in areas such as Cairns and south-east Queensland, are projected to exacerbate risks from sea level rise and increases in the severity and frequency of storms and coastal flooding by 2050. Significant loss of biodiversity is projected to occur by 2020 in some ecologically rich

  13. Impacts of climate change on fisheries

    DEFF Research Database (Denmark)

    Brander, Keith

    2010-01-01

    Evidence of the impacts of anthropogenic climate change on marine ecosystems is accumulating, but must be evaluated in the context of the "normal" climate cycles and variability which have caused fluctuations in fisheries throughout human history. The impacts on fisheries are due to a variety...... experimentally and in controlled conditions. Indirect effects act via ecosystem processes and changes in the production of food or abundance of competitors, predators and pathogens. Recent studies of the effects of climate on primary production are reviewed and the consequences for fisheries production...... are evaluated through regional examples. Regional examples are also used to show changes in distribution and phenology of plankton and fish, which are attributed to climate. The role of discontinuous and extreme events (regime shifts, exceptional warm periods) is discussed. Changes in fish population processes...

  14. Impacts of Climate Change on Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Melillo, Jerry M. [Marine Biological Laboratory, Woods Hole, MA (United States)

    2014-04-30

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and consideration of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.

  15. Climate Change Impacts on Worldwide Coffee Production

    Science.gov (United States)

    Foreman, T.; Rising, J. A.

    2015-12-01

    Coffee (Coffea arabica and Coffea canephora) plays a vital role in many countries' economies, providing necessary income to 25 million members of tropical countries, and supporting a $81 billion industry, making it one of the most valuable commodities in the world. At the same time, coffee is at the center of many issues of sustainability. It is vulnerable to climate change, with disease outbreaks becoming more common and suitable regions beginning to shift. We develop a statistical production model for coffee which incorporates temperature, precipitation, frost, and humidity effects using a new database of worldwide coffee production. We then use this model to project coffee yields and production into the future based on a variety of climate forecasts. This model can then be used together with a market model to forecast the locations of future coffee production as well as future prices, supply, and demand.

  16. Economic impacts of climate change in the U.S

    International Nuclear Information System (INIS)

    Neumann, J.

    1997-01-01

    Results of a long-term research project funded by EPRI to study the economic impacts of climate change in the U.S. were described. In 1992, Industrial Economics Inc., began an assessment of the impact of climate change in key natural resource sectors. A wide range of uniform climate scenarios were used to assess sensitivity across different temperature and precipitation gradients. Estimates were developed for the 2060 economy, using dynamic models to understand what was happening along the transient. It was projected that the greatest impact of climate change would be on the agricultural sector because of projected gains in productivity, mainly due to increased precipitation. Similar scenarios were developed for the economic impact of climate change on timber and coastal structures, including the loss of value of coastal property. Key limitations of the study, and future directions in research (e.g. extending the study to health and non-market impacts, including other developed and developing countries) were also outlined

  17. The poverty impact of climate change in Mexico

    OpenAIRE

    de la Fuente, Alejandro; Villarroel, Marcelo Olivera

    2013-01-01

    This paper examines the effects of climate change on poverty through the relationship between indicators of climate change (temperature and rainfall change) and municipal level gross domestic product, and subsequently between gross domestic product and poverty. The evidence suggests that climate change could have a negative impact on poverty by 2030. The paper proposes a two-stage least sq...

  18. Fish Farmers' Perception of Climate change impact on fish ...

    African Journals Online (AJOL)

    Michael Madukwe

    This study concluded that there's a need for the active involvement of stakeholders in developing policies relating to climate change mitigation and beneficial response strategies to global warming. Keywords: Climate change, fish farming, impact and perception. Introduction. The Intergovernmental Panel on Climate Change ...

  19. Fish Farmers' Perception of Climate change impact on fish ...

    African Journals Online (AJOL)

    Michael Madukwe

    presence of pests, diseases and weeds. Factors Contributing to Climate Change and Variability. At the farmer level, knowledge on agricultural impacts and contribution to climate change is fairly good in terms of linking their farming practices to climate change effects. In Southwest Nigeria, 65% of the farmers felt that farming ...

  20. Modelling the impacts of European emission and climate change scenarios on acid-sensitive catchments in Finland

    Directory of Open Access Journals (Sweden)

    M. Posch

    2008-03-01

    Full Text Available The dynamic hydro-chemical Model of Acidification of Groundwater in Catchments (MAGIC was used to predict the response of 163 Finnish lake catchments to future acidic deposition and climatic change scenarios. Future deposition was assumed to follow current European emission reduction policies and a scenario based on maximum (technologically feasible reductions (MFR. Future climate (temperature and precipitation was derived from the HadAM3 and ECHAM4/OPYC3 general circulation models under two global scenarios of the Intergovernmental Panel on Climate Change (IPCC: A2 and B2. The combinations resulting in the widest range of future changes were used for simulations, i.e., the A2 scenario results from ECHAM4/OPYC3 (highest predicted change and B2 results from HadAM3 (lowest predicted change. Future scenarios for catchment runoff were obtained from the Finnish watershed simulation and forecasting system. The potential influence of future changes in surface water organic carbon concentrations was also explored using simple empirical relationships based on temperature and sulphate deposition. Surprisingly, current emission reduction policies hardly show any future recovery; however, significant chemical recovery of soil and surface water from acidification was predicted under the MFR emission scenario. The direct influence of climate change (temperate and precipitation on recovery was negligible, as runoff hardly changed; greater precipitation is offset by increased evapotranspiration due to higher temperatures. However, two exploratory empirical DOC models indicated that changes in sulphur deposition or temperature could have a confounding influence on the recovery of surface waters from acidification, and that the corresponding increases in DOC concentrations may offset the recovery in pH due to reductions in acidifying depositions.

  1. Modelling the impacts of climate change on hydrology and water quality in a mediterranean limno-reservoir

    DEFF Research Database (Denmark)

    Molina-Navarro, Euginio; Trolle, Dennis; Martinez-Pérez, Silvia

    Water scarcity and water pollution constitute a big challenge for water managers in the Mediterranean region today and will exacerbate in a projected future warmer world, making a holistic approach for water resources management at the catchment scale essential. We expanded the Soil and Water...... Assessment Tool (SWAT) model developed for a small Mediterranean catchment to quantify the potential effects of various climate change scenarios on catchment hydrology as well as the trophic state of a new kind of waterbody, a limno-reservoir (Pareja Limno-reservoir), created for environmental...

  2. Macrophyte growth module for the SWAT modelimpact of climate change and management on stream ecology

    DEFF Research Database (Denmark)

    Lu, Shenglan; Trolle, Dennis; Erfurt, Jytte

    To access how multiple stressors affect the water quantity and quality and stream ecology at catchment scale under various management and climate change scenarios, we implemented macrophyte growth modules for the Soil and Water Assessment Tool version 2012 (SWAT). The macrophyte growth module...... originates from the INCA-P model (Wade et al. 2002) with an addition of nitrogen stress. In addition, a benthic sediment layer and interaction of nutrients between sediment layer and water column were implemented. The new modules were validated against macrophyte biomass measurements in several Danish...

  3. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem.

    Science.gov (United States)

    Seely, Brad; Welham, Clive; Scoullar, Kim

    2015-01-01

    Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine) for established stands due to increased moisture stress mortality.

  4. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem.

    Directory of Open Access Journals (Sweden)

    Brad Seely

    Full Text Available Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine for established stands due to increased moisture stress mortality.

  5. Impacts of climate change on runoffs in East Azerbaijan, Iran

    Science.gov (United States)

    Zarghami, Mahdi; Abdi, Amin; Babaeian, Iman; Hassanzadeh, Yousef; Kanani, Reza

    2011-08-01

    Changes in temperature and precipitation patterns have serious impacts on the quantity and quality of water supply, especially in arid regions. In recent years, frequent climatic droughts have threatened the water supply in East Azerbaijan Province, Iran. Because of the increasing demand for water, studying the potential climate change and its impacts on water resources is necessary. To predict the climate change based on the General Circulation Models (GCM), the successful downscaling tool of LARS-WG is applied. This stochastic weather generator downscaled the climate change of six synoptic stations in the province by using the HADCM3 model and three emission scenarios, A1B, A2 and B1, with the horizons 2020, 2055 and 2090. The research outcomes, based on the A2 scenario, show an average annual temperature rise of ~ 2.3 °C and an annual precipitation reduction of ~ 3% in the middle of this century. These changes shift the climate of the province from semi-arid to arid based on the De Martonne aridity index. Using the artificial neural network (ANN), a model was then built to simulate the effects of climate change on the runoffs in three watersheds; the results showed dramatic reductions in the flows. The results of this study could advise the designers and managers of this region to take suitable actions in securing the water supply.

  6. Integrated assessment models of global climate change

    International Nuclear Information System (INIS)

    Parson, E.A.; Fisher-Vanden, K.

    1997-01-01

    The authors review recent work in the integrated assessment modeling of global climate change. This field has grown rapidly since 1990. Integrated assessment models seek to combine knowledge from multiple disciplines in formal integrated representations; inform policy-making, structure knowledge, and prioritize key uncertainties; and advance knowledge of broad system linkages and feedbacks, particularly between socio-economic and bio-physical processes. They may combine simplified representations of the socio-economic determinants of greenhouse gas emissions, the atmosphere and oceans, impacts on human activities and ecosystems, and potential policies and responses. The authors summarize current projects, grouping them according to whether they emphasize the dynamics of emissions control and optimal policy-making, uncertainty, or spatial detail. They review the few significant insights that have been claimed from work to date and identify important challenges for integrated assessment modeling in its relationships to disciplinary knowledge and to broader assessment seeking to inform policy- and decision-making. 192 refs., 2 figs

  7. IMPACT OF CLIMATE CHANGE ON AGRICULTURE

    OpenAIRE

    Kanchan Joshi; Preeti Chaturvedi

    2013-01-01

    Climate change has materialized as the leading global environmental concern. Agriculture is one of the zones most critically distressed by climate alteration. As global temperature rises and climate conditions become more erratic posing threat to the vegetation, biodiversity, biological progression and have enduring effect on food security as well as human health. The present review emphasizes multiple consequences of climate change on agricultural productivity.

  8. Modelling the long term impact of climate change on the carbon budget of Lake Simcoe, Ontario using INCA-C.

    Science.gov (United States)

    Oni, S K; Futter, M N; Molot, L A; Dillon, P J

    2012-01-01

    This study presents a process-based model of dissolved organic carbon concentration ([DOC]) in catchments draining into Lake Simcoe, Ontario. INCA-C, the Integrated Catchment model for Carbon, incorporates carbon biogeochemical processes in a terrestrial system with hydrologic flow paths to simulate watershed wide [DOC]. The model successfully simulates present-day inter-annual and seasonal [DOC] dynamics in tributaries draining catchments with mixed or contrasting land cover in the Lake Simcoe watershed (LSW). The sensitivity of INCA-C to soil moisture, hydrologic controls and land uses within a watershed demonstrates its significance as a tool to explore pertinent environmental issues specific to the LSW. Projections of climate change under A1B and A2 SRES scenarios suggest a continuous monotonic increase in [DOC] in surface waters draining into Lake Simcoe. Large variations in seasonal DOC dynamics are predicted to occur during summer with a possibility of displacement of summer [DOC] maxima towards winter and a prolongation of summer [DOC] levels into the autumn. INCA-C also predicts possible increases in dissolved inorganic carbon in some tributaries with rising temperature suggesting increased CO(2) emissions from rivers as climate changes. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Impacts of climate change on electricity network business

    International Nuclear Information System (INIS)

    Martikainen, A.

    2006-04-01

    Climate has a significant impact on the electricity network business. The electricity network is under the weather pressure all the time and it is planned and constructed to withstand normal climatic stresses. The electricity network that has been planned and constructed now, is expected to be in operation next 40 years. If climatic stresses change in this period, it can cause significant impacts on electricity network business. If the impacts of climate change are figured out in advance, it is possible to mitigate negative points of climate change and exploit the positive points. In this paper the impact of climate change on electricity network business is presented. The results are based on RCAO climate model scenarios. The climate predictions were composed to the period 2016. 2045. The period 1960.1990 was used as a control period. The climate predictions were composed for precipitation, temperature, hoarfrost, thunder, ground frost and wind. The impacts of the change of the climate variables on electricity network business were estimated from technical and economical points of view. The estimation was based on the change predictions of the climate variables. It is expected that climate change will cause more damages than benefits on the electricity network business. The increase of the number of network faults will be the most significant and demanding disadvantage caused by climate change. If networks are not improved to be more resistant for faults, then thunder, heavy snow and wind cause more damages especially to overhead lines in medium voltage network. Increasing precipitation and decreasing amount of ground frost weaken the strength of soil. The construction work will be more difficult with the present vehicles because wet and unfrozen ground can not carry heavy vehicles. As a consequence of increasing temperature, the demand of heating energy will decrease and the demand of cooling energy will increase. This is significant for the electricity

  10. Potential impact of global climate change on malaria risk

    Energy Technology Data Exchange (ETDEWEB)

    Martens, W.J.M.; Rotmans, J. [National Institute of Public Health and Environmental Protection, Bilthoven (Netherlands)]|[Univ. of Limburg, Maastricht (Netherlands); Niessen, L.W. [National Institute of Public Health and Environmental Protection, Bilthoven (Netherlands); Jetten, T.H. [Wageningen Agricultural Univ. (Netherlands); McMichael, A.J. [London School of Hygiene and Tropical Medicine (United Kingdom)

    1995-05-01

    The biological activity and geographic distribution of the malarial parasite and its vector are sensitive to climatic influences, especially temperature and precipitation. We have incorporated General Circulation Model-based scenarios of anthropogenic global climate change in an integrated linked-system model for predicting changes in malaria epidemic potential in the next century. The concept of the disability-adjusted life years is included to arrive at a single measure of the effect of anthropogenic climate change on the health impact of malaria. Assessment of the potential impact of global climate change on the incidence of malaria suggests a widespread increase of risk due to expansion of the areas suitable for malaria transmission. This predicted increase is most pronounced at the borders of endemic malaria areas and at higher altitudes within malarial areas. The incidence of infection is sensitive to climate changes in areas of Southeast Asia, South America, and parts of Africa where the disease is less endemic; in these regions the numbers of years of healthy life lost may increase significantly. However, the simulated changes in malaria risk must be interpreted on the basis of local environmental conditions, the effects of socioeconomic developments, and malaria control programs or capabilities. 33 refs., 5 figs., 1 tab.

  11. Using a coupled groundwater/surfacewater model to predict climate-change impacts to lakes in the Trout Lake watershed, Northern Wisconsin

    Science.gov (United States)

    Walker, John F.; Hunt, Randall J.; Markstrom, Steven L.; Hay, Lauren E.; Doherty, John

    2009-01-01

    A major focus of the U.S. Geological Survey’s Trout Lake Water, Energy, and Biogeochemical Budgets (WEBB) project is the development of a watershed model to allow predictions of hydrologic response to future conditions including land-use and climate change. The coupled groundwater/surface-water model GSFLOW was chosen for this purpose because it could easily incorporate an existing groundwater flow model and it provides for simulation of surface-water processes. The Trout Lake watershed in northern Wisconsin is underlain by a highly conductive outwash sand aquifer. In this area, streamflow is dominated by groundwater contributions; however, surface runoff occurs during intense rainfall periods and spring snowmelt. Surface runoff also occurs locally near stream/lake areas where the unsaturated zone is thin. A diverse data set, collected from 1992 to 2007 for the Trout Lake WEBB project and the co-located and NSF-funded North Temperate Lakes LTER project, includes snowpack, solar radiation, potential evapotranspiration, lake levels, groundwater levels, and streamflow. The timeseries processing software TSPROC (Doherty 2003) was used to distill the large time series data set to a smaller set of observations and summary statistics that captured the salient hydrologic information. The timeseries processing reduced hundreds of thousands of observations to less than 5,000. Model calibration included specific predictions for several lakes in the study area using the PEST parameter estimation suite of software (Doherty 2007). The calibrated model was used to simulate the hydrologic response in the study lakes to a variety of climate change scenarios culled from the IPCC Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon et al. 2007). Results from the simulations indicate climate change could result in substantial changes to the lake levels and components of the hydrologic budget of a seepage lake in the flow system. For a drainage lake

  12. Modeling the impact of climate change in Germany with biosphere models for long-term safety assessment of nuclear waste repositories

    International Nuclear Information System (INIS)

    Staudt, C.; Semiochkina, N.; Kaiser, J.C.; Pröhl, G.

    2013-01-01

    Biosphere models are used to evaluate the exposure of populations to radionuclides from a deep geological repository. Since the time frame for assessments of long-time disposal safety is 1 million years, potential future climate changes need to be accounted for. Potential future climate conditions were defined for northern Germany according to model results from the BIOCLIM project. Nine present day reference climate regions were defined to cover those future climate conditions. A biosphere model was developed according to the BIOMASS methodology of the IAEA and model parameters were adjusted to the conditions at the reference climate regions. The model includes exposure pathways common to those reference climate regions in a stylized biosphere and relevant to the exposure of a hypothetical self-sustaining population at the site of potential radionuclide contamination from a deep geological repository. The end points of the model are Biosphere Dose Conversion factors (BDCF) for a range of radionuclides and scenarios normalized for a constant radionuclide concentration in near-surface groundwater. Model results suggest an increased exposure of in dry climate regions with a high impact of drinking water consumption rates and the amount of irrigation water used for agriculture. - Highlights: ► We model Biosphere Dose Conversion Factors for a representative group exposed to radionuclides from a waste repository. ► The BDCF are modeled for different soil types. ► One model is used for the assessment of the influence of climate change during the disposal time frame.

  13. Uncertainty in projected impacts of climate change on biodiversity

    DEFF Research Database (Denmark)

    Garcia, Raquel A.

    , uncertainty is inherent to both projected climate changes and their effects on biodiversity, and needs to be understood before projections can be used. This thesis seeks to elucidate some of the uncertainties clouding assessments of biodiversity impacts from climate change, and explores ways to address them...... models, are shown to be affected by multiple uncertainties. Different model algorithms produce different outputs, as do alternative future climate models and scenarios of future emissions of greenhouse gases. Another uncertainty arises due to omission of species with small sample sizes, which...... are difficult to model. The effect of such bias against narrow-ranging species is often overlooked in assessments of biodiversity impacts, but our results for sub-Saharan African amphibians show that it trickles down to conservation strategies. Finally, assumptions about the climatic tolerance of species...

  14. Public health impacts of climate change in Nepal.

    Science.gov (United States)

    Joshi, H D; Dhimal, B; Dhimal, M; Bhusal, C L

    2011-04-01

    Climate change is a global issue in this century which has challenged the survival of living creatures affecting the life supporting systems of the earth: atmosphere, hydrosphere and lithosphere. Scientists have reached in a consensus that climate change is happening. The anthropogenic emission of greenhouse gases is responsible for global warming and therefore climate change. Climate change may directly or indirectly affect human health through a range of pathways related to temperature and precipitation. The aim of this article is to share knowledge on how climate change can affect public health in Nepal based on scientific evidence from global studies and experience gained locally. In this review attempt has been made to critically analyze the scientific studies as well as policy documents of Nepalese Government and shed light on public health impact of climate change in the context of Nepal. Detailed scientific study is recommended to discern impact of climate change on public health problems in Nepal.

  15. Integrated Modeling of Crop Growth and Water Resource Management to Project Climate Change Impacts on Crop Production and Irrigation Water Supply and Demand in African Nations

    Science.gov (United States)

    Dale, A. L.; Boehlert, B.; Reisenauer, M.; Strzepek, K. M.; Solomon, S.

    2017-12-01

    Climate change poses substantial risks to African agriculture. These risks are exacerbated by concurrent risks to water resources, with water demand for irrigation comprising 80 to 90% of water withdrawals across the continent. Process-based crop growth models are able to estimate both crop demand for irrigation water and crop yields, and are therefore well-suited to analyses of climate change impacts at the food-water nexus. Unfortunately, impact assessments based on these models generally focus on either yields or water demand, rarely both. For this work, we coupled a crop model to a water resource management model in order to predict national trends in the impact of climate change on crop production, irrigation water demand, and the availability of water for irrigation across Africa. The crop model FAO AquaCrop-OS was run at 2ox2o resolution for 17 different climate futures from the CMIP5 archive, nine for Representative Concentration Pathway (RCP) 4.5 and eight for RCP8.5. Percent changes in annual rainfed and irrigated crop production and temporal shifts in monthly irrigation water demand were estimated for the years 2030, 2050, 2070, and 2090 for maize, sorghum, rice, wheat, cotton, sugarcane, fruits & vegetables, roots & tubers, and legumes & soybeans. AquaCrop was then coupled to a water management model (WEAP) in order to project changes in the ability of seven major river basins (the Congo, Niger, Nile, Senegal, Upper Orange, Volta, and Zambezi) to meet irrigation water demand out to 2050 in both average and dry years in the face of both climate change and irrigation expansion. Spatial and temporal trends were identified and interpreted through the lens of potential risk management strategies. Uncertainty in model estimates is reported and discussed.

  16. Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum using hydrological and geophysical methods

    OpenAIRE

    H. Sulzbacher; H. Wiederhold; B. Siemon; M. Grinat; J. Igel; T. Burschil; T. Günther; K. Hinsby

    2012-01-01

    A numerical, density dependent groundwater model is set up for the North Sea Island of Borkum to estimate climate change impacts on coastal aquifers and especially the situation of barrier islands in the Wadden Sea. The database includes information from boreholes, a seismic survey, a helicopter-borne electromagnetic (HEM) survey, monitoring of the freshwater-saltwater boundary by vertical electrode chains in two boreholes, measurements of groundwater table, pumping and slug tests, as well as...

  17. Climate change impacts on marine ecosystems.

    Science.gov (United States)

    Doney, Scott C; Ruckelshaus, Mary; Duffy, J Emmett; Barry, James P; Chan, Francis; English, Chad A; Galindo, Heather M; Grebmeier, Jacqueline M; Hollowed, Anne B; Knowlton, Nancy; Polovina, Jeffrey; Rabalais, Nancy N; Sydeman, William J; Talley, Lynne D

    2012-01-01

    In marine ecosystems, rising atmospheric CO2 and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wide-ranging biological effects. Population-level shifts are occurring because of physiological intolerance to new environments, altered dispersal patterns, and changes in species interactions. Together with local climate-driven invasion and extinction, these processes result in altered community structure and diversity, including possible emergence of novel ecosystems. Impacts are particularly striking for the poles and the tropics, because of the sensitivity of polar ecosystems to sea-ice retreat and poleward species migrations as well as the sensitivity of coral-algal symbiosis to minor increases in temperature. Midlatitude upwelling systems, like the California Current, exhibit strong linkages between climate and species distributions, phenology, and demography. Aggregated effects may modify energy and material flows as well as biogeochemical cycles, eventually impacting the overall ecosystem functioning and services upon which people and societies depend.

  18. Climate Change Impacts on Marine Ecosystems

    Science.gov (United States)

    Doney, Scott C.; Ruckelshaus, Mary; Emmett Duffy, J.; Barry, James P.; Chan, Francis; English, Chad A.; Galindo, Heather M.; Grebmeier, Jacqueline M.; Hollowed, Anne B.; Knowlton, Nancy; Polovina, Jeffrey; Rabalais, Nancy N.; Sydeman, William J.; Talley, Lynne D.

    2012-01-01

    In marine ecosystems, rising atmospheric CO2 and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wide-ranging biological effects. Population-level shifts are occurring because of physiological intolerance to new environments, altered dispersal patterns, and changes in species interactions. Together with local climate-driven invasion and extinction, these processes result in altered community structure and diversity, including possible emergence of novel ecosystems. Impacts are particularly striking for the poles and the tropics, because of the sensitivity of polar ecosystems to sea-ice retreat and poleward species migrations as well as the sensitivity of coral-algal symbiosis to minor increases in temperature. Midlatitude upwelling systems, like the California Current, exhibit strong linkages between climate and species distributions, phenology, and demography. Aggregated effects may modify energy and material flows as well as biogeochemical cycles, eventually impacting the overall ecosystem functioning and services upon which people and societies depend.

  19. How is climate change impacting precipitation?

    Science.gov (United States)

    Heidari, A.; Houser, P. R.

    2015-12-01

    Water is an integrating component of the climate, energy and geochemical cycles, regulating biological and ecological activities at all spatial and temporal scales. The most significant climate warming manifestation would be a change in the distribution of precipitation and evaporation, and the exacerbation of extreme hydrologic events. Due to this phenomenon and the fact that precipitation is the most important component of the water cycle, the assumption of its stationarity for water management and engineering design should be examined closely. The precipitation Annual Maximum Series (AMS) over some stations in Virginia based on in situ data were been used as a starting point to examine this important issue. We analyzed the AMS precipitation on NOAA data for the stations close to Fairfax VA, looked for trends in extreme values, and applied our new method of Generalized Extreme Value (GEV) theory based on quadratic forms to address changes in those extreme values and to quantify non-stationarities. It is very important to address the extreme values of precipitation based on several statistical tests to have better understanding of climate change impact on the extreme water cycle events. In our study we compared our results with the conclusion on NOAA atlas 14 Ap.3 which found no sign of precipitation non-stationarity. We then assessed the impact of this uncertainty in IDF curves on the flood map of Fairfax and compared the results with the classic IDF curves.

  20. The impact of climate change on agriculture

    OpenAIRE

    Quiggin, John

    2008-01-01

    It is now virtually certain that Australia and the world will experience significant climate change over the next century, as a result of human-caused emissions of carbon dioxide (CO2) and other greenhouse gases. This note is a brief discussion of the projected effects of climate change on agriculture, under ‘business as usual’ conditions in which global concentrations of CO2 grow steadily and under the assumption that a global mitigation effort successfully stabilises global concentrations o...

  1. The Impact Of Climate Change On Agriculture

    OpenAIRE

    K, Sudarkodi; K, Sathyabama

    2011-01-01

    The unimpeded growth of greenhouse gas emissions is raising the earth’s temperature. The consequences include melting glaciers, more precipitation, more and more extreme weather events, and shifting seasons. The accelerating pace of climate change, combined with global population and income growth, threatens food security everywhere. Agriculture is extremely vulnerable to climate change. Higher temperatures eventually reduce yields of desirable crops while encouraging weed and pest proliferat...

  2. Climate Change and Food Security: Health Impacts in Developed Countries

    OpenAIRE

    Lake, Iain R.; Hooper, Lee; Abdelhamid, Asmaa; Bentham, Graham; Boxall, Alistair B.A.; Draper, Alizon; Fairweather-Tait, Susan; Hulme, Mike; Hunter, Paul R.; Nichols, Gordon; Waldron, Keith W.

    2012-01-01

    Background: Anthropogenic climate change will affect global food production, with uncertain consequences for human health in developed countries. Objectives: We investigated the potential impact of climate change on food security (nutrition and food safety) and the implications for human health in developed countries. Methods: Expert input and structured literature searches were conducted and synthesized to produce overall assessments of the likely impacts of climate change on global food pro...

  3. The Impact of Climate Change on Tourism in Spain

    OpenAIRE

    Hein, Lars

    2007-01-01

    The tourism sector will be particularly affected by climate change, but there have been few studies specifying the impacts of climate change on tourism for a certain country. This paper considers the impacts of climate change on tourism in Spain. Tourism is a key economic sector in Spain, and it is strongly weather dependent. The paper analyses how the suitability of the Spanish climate for tourism will change, and how this will affect tourism flows to Spain. The suitability of the climate fo...

  4. Climate Change Impacts at Department of Defense Installations

    Science.gov (United States)

    2017-06-16

    Christensen, N.S., A.W. Wood, N. Voisin, D.P. Lettenmaier, and R.N. Palmer, 2004: The effects of climate change on the hydrology and water resources...ANL/EVS-17/9 Climate Change Impacts at Department of Defense Installations Environmental Science Division About...LLC. June 16, 2017 ANL/EVS-17/9 Climate Change Impacts at Department of Defense Installations prepared by Rao Kotamarthi

  5. Resilience to Drought Impacts of Climate Change in Mexico

    Science.gov (United States)

    Brenkert, A. L.; Ibarrarán, M. E.; Malone, E. L.

    2007-05-01

    Countries and states within countries have a different vulnerability and resilience to the effects of climate change. Although many aspects determine relative vulnerability and resilience, we look at socioeconomic and environmental information to assess the relative ranking of Mexican states to climate change, both establishing baselines in the year 2000 and then looking at projections once particular effects such as drought intensify throughout the country. We employ the modeling analysis framework of the Vulnerability-Resilience Indicator Model (VRIM) that shows considerable variation among states in comparative resilience to climate change and in the sources of that resilience. The VRIM uses 18 proxy indicators, grouped into 8 sectors, to assess on a quantitative basis the comparative potential vulnerability and resilience of countries to climate change. The model integrates detailed socioeconomic and environmental information such as land use, crop production, water availability, per capita GDP, inequality, and health status. A multiple-scale analysis was performed. Mexico as a country ranks in the second-highest quartile of the 160 countries ranked; for comparison purposes, Brazil, the Czech Republic, and Turkey are also in this quartile. Mexico and Mexican states were compared using national and state data; the comparisons show that resilience to climate change does not depend on location as much as on the combination of socio-economic and environmental aspects of a state. When drought was added as a stressor affecting most proxy variables, the overall and projected resilience changed only slightly; to gain insight into the impacts of drought, case studies are needed to complement model results.

  6. Chapter 1. Impacts of the oceans on climate change.

    Science.gov (United States)

    Reid, Philip C; Fischer, Astrid C; Lewis-Brown, Emily; Meredith, Michael P; Sparrow, Mike; Andersson, Andreas J; Antia, Avan; Bates, Nicholas R; Bathmann, Ulrich; Beaugrand, Gregory; Brix, Holger; Dye, Stephen; Edwards, Martin; Furevik, Tore; Gangstø, Reidun; Hátún, Hjálmar; Hopcroft, Russell R; Kendall, Mike; Kasten, Sabine; Keeling, Ralph; Le Quéré, Corinne; Mackenzie, Fred T; Malin, Gill; Mauritzen, Cecilie; Olafsson, Jón; Paull, Charlie; Rignot, Eric; Shimada, Koji; Vogt, Meike; Wallace, Craig; Wang, Zhaomin; Washington, Richard

    2009-01-01

    further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO2 and limit temperature rise over the next century will be underestimated.

  7. The impact of climate change on hydro-electricity generation

    International Nuclear Information System (INIS)

    Musy, A.; Music, B.; Roy, R.

    2008-01-01

    Hydroelectricity is a clean and renewable energy source for many countries, and is expected to play an important role in future energy supplies. However, the impact of climatic change on hydroelectricity resources is not yet understood. This study provided a critical review of current methods used to determine the potential impacts of climatic change on hydroelectric power production. General circulation models (GCMs) are used to predict future climate conditions under various greenhouse gas (GHG) emissions scenarios. Statistical techniques are then used to down-scale GCM outputs to the appropriate scales needed for hydrological models, which are then used to simulate the effects of climatic change at regional and local scales. Outputs from the models are then used to develop water management models for hydroelectric power production. Observed linear trends in annual precipitation during the twentieth century were provided. The theoretical advantages and disadvantages of various modelling techniques were reviewed. Risk assessment strategies for Hydro-Quebec were also outlined and results of the study will be used to guide research programs for the hydroelectric power industry. refs., tabs., figs

  8. Finnish food chain impacts on climate change

    OpenAIRE

    Kurppa, Sirpa; Virtanen, Yrjö

    2010-01-01

    The evaluation of the food chain’s environmental impacts was conducted using an environmentalaccounting model developed specifically for the Finnish food chain. The model is based on production and environmental impact data from year 2005. The model considers both Finnish production and Finnish imports in addition to their transport. The targets of the evaluation were the environmental impacts, in 2005, stemming from production. Environmental impacts of the end-use phase were not assessed....

  9. Potential impacts of climatic change upon geographical distributions of birds

    DEFF Research Database (Denmark)

    Huntley, Brian; Collingham, Yvonne C.; Green, Rhys E.

    2006-01-01

    biodiversity. Birds, in common with other terrestrial organisms, are expected to exhibit one of two general responses to climatic change: they may adapt to the changed conditions without shifting location, or they may show a spatial response, adjusting their geographical distribution in response...... to achieve a sufficient response by either or both of these mechanisms will be at risk of extinction; the Quaternary record documents examples of such extinctions. Relationships between the geographical distributions of birds and present climate have been modelled for species breeding in both Europe...... and Africa. The resulting models have very high goodness-of-fit and provide a basis for assessing the potential impacts of anthropogenic climatic changes upon avian species richness in the two continents. Simulations made for a range of general circulation model projections of late 21st century climate lead...

  10. Economic and welfare impacts of climate change on developing countries

    International Nuclear Information System (INIS)

    Winters, P.; Murgai, R.; Sadoulet, E.; De Janvry, A.; Frisvold, G.

    1998-01-01

    The impact of global climate change on developing countries is analyzed using CGE-multimarket models for three archetype economies representing the poor cereal importing nations of Africa, Asia, and Latin America. The objective is to compare the effects of climate change on the macroeconomic performance, sectoral resource allocation, and household welfare across continents. Simulations help identify those underlying structural features of economies which are the primary determinants of differential impacts; these are suggestive of policy instruments to countervail undesirable effects. Results show that all these countries will potentially suffer income and production losses. However, Africa, with its low substitution possibilities between imported and domestic foods, fares worst in terms of income losses and the drop in consumption of low income households. Countervailing policies to mitigate negative effects should focus on integration in the international market and the production of food crops in Africa, and on the production of export crops in Latin America and Asia. 46 refs

  11. A GIS-model for predicting the impact of climate change on shore erosion in hydroelectric reservoirs

    International Nuclear Information System (INIS)

    Penner, L.A.; Zimmer, T.A.M.; St Laurent, M.

    2008-01-01

    Shoreline erosion affects inland lakes and hydroelectric reservoirs in several ways. This poster described a vector-based geographic information system (GIS) model designed to predict changes in shore zone geometry, top-of-bluff recession, and eroded sediment volumes. The model was designed for use in Manitoba Hydro's reservoirs in northern Manitoba, and simulated near-shore downcutting and bank recession caused by wind-generated waves. Parameters for the model included deep water wave energy, and water level fluctuations. Effective wave energy was seen as a function of the water level fluctuation range, wave conditions, and near-shore slope. The model was validated by field monitoring studies that included repeated shore zone transect surveys and sediment coring studies. Results of the study showed that the model provides a systematic method of predicting potential changes in erosion associated with climatic change. The volume and mass of eroded sediment predicted for the different modelling scenarios will be used as input data for future sedimentation models. tabs., figs

  12. Impacts of Climate Change on Inequities in Child Health

    Directory of Open Access Journals (Sweden)

    Charmian M. Bennett

    2014-12-01

    Full Text Available This paper addresses an often overlooked aspect of climate change impacts on child health: the amplification of existing child health inequities by climate change. Although the effects of climate change on child health will likely be negative, the distribution of these impacts across populations will be uneven. The burden of climate change-related ill-health will fall heavily on the world’s poorest and socially-disadvantaged children, who already have poor survival rates and low life expectancies due to issues including poverty, endemic disease, undernutrition, inadequate living conditions and socio-economic disadvantage. Climate change will exacerbate these existing inequities to disproportionately affect disadvantaged children. We discuss heat stress, extreme weather events, vector-borne diseases and undernutrition as exemplars of the complex interactions between climate change and inequities in child health.

  13. Impacts of Climate Change on Inequities in Child Health.

    Science.gov (United States)

    Bennett, Charmian M; Friel, Sharon

    2014-12-03

    This paper addresses an often overlooked aspect of climate change impacts on child health: the amplification of existing child health inequities by climate change. Although the effects of climate change on child health will likely be negative, the distribution of these impacts across populations will be uneven. The burden of climate change-related ill-health will fall heavily on the world's poorest and socially-disadvantaged children, who already have poor survival rates and low life expectancies due to issues including poverty, endemic disease, undernutrition, inadequate living conditions and socio-economic disadvantage. Climate change will exacerbate these existing inequities to disproportionately affect disadvantaged children. We discuss heat stress, extreme weather events, vector-borne diseases and undernutrition as exemplars of the complex interactions between climate change and inequities in child health.

  14. Simulating climate change impact on soil erosion using RUSLE ...

    Indian Academy of Sciences (India)

    Climate change, particularly due to the changed precipitation trend, can have a severe impact on soil erosion. The effect is more pronounced on the higher slopes of the Himalayan region. The goal of this study was to estimate the impact of climate change on soil erosion in a watershed of the Himalayan region using ...

  15. Costs of climate change impacts on output of cassava among ...

    African Journals Online (AJOL)

    The challenge of climate change in the face of rising food insecurity makes it imperative to analyze the cost impact of climate change on the output of cassava farming households in south eastern, Nigeria. The cost of the impacts and adaptation measures was used to realize with net returns. The study employed primary ...

  16. Climate Change Impact on Togo's Agriculture Performance: A ...

    African Journals Online (AJOL)

    Climate Change Impact on Togo's Agriculture Performance: A Ricardian Analysis Based on Time Series Data. ... Ethiopian Journal of Environmental Studies and Management ... Conclusively, the impact of climate change on agriculture seems to be varied with the temperature and precipitation in different seasons. Climate ...

  17. Potential impacts of climate change and variability on groundwater ...

    African Journals Online (AJOL)

    Aizebeokhai

    This paper attempts to assess the potential impacts of climate change and variability on groundwater resources availability and sustainability in Nigeria. Key words: Climate change, climate variability, hydrological systems, groundwater resources, potential impacts, vulnerability. INTRODUCTION. All life on Earth, water and ...

  18. Climate change and agricultural water demand: Impacts and ...

    African Journals Online (AJOL)

    Global climate change related to natural and anthropogenic processes has been the topic of concern and interest world - wide. One of the most significant impacts of the 'greenhouse effect' is anticipated to be on water resources. Thus, the impact of climate change appears to be an additional component on top of the large ...

  19. Integrated Climate Change Impacts Assessment in California

    Science.gov (United States)

    Cayan, D. R.; Franco, G.; Meyer, R.; Anderson, M.; Bromirski, P. D.

    2014-12-01

    This paper summarizes lessons learned from an ongoing series of climate change assessments for California, conducted by the scientific community and State and local agencies. A series of three Assessments have considered vulnerability and adaptation issues for both managed and natural systems. California's vulnerability is many faceted, arising because of an exceptionally drought prone climate, open coast and large estuary exposure to sea level rise, sensitive ecosystems and complex human footprint and economy. Key elements of the assessments have been a common set of climate and sea-level rise scenarios, based upon IPCC GCM simulations. Regionalized and localized output from GCM projections was provided to research teams investigating water supply, agriculture, coastal resources, ecosystem services, forestry, public health, and energy demand and hydropower generation. The assessment results are helping to investigate the broad range of uncertainty that is inherent in climate projections, and users are becoming better equipped to process an envelope of potential climate and impacts. Some projections suggest that without changes in California's present fresh-water delivery system, serious water shortages would take place, but that technical solutions are possible. Under a warmer climate, wildfire vulnerability is heightened markedly in some areas--estimated increases in burned area by the end of the 21st Century exceed 100% of the historical area burned in much of the forested areas of Northern California Along California coast and estuaries, projected rise in mean sea level will accelerate flooding occurrences, prompting the need for better education and preparedness. Many policymakers and agency personnel in California are factoring in results from the assessments and recognize the need for a sustained assessment process. An ongoing challenge, of course, is to achieve more engagement with a broader community of decision makers, and notably with the private sector.

  20. The Impacts of Climate Change Mitigation Strategies on Animal Welfare

    OpenAIRE

    Shields, Sara; Orme-Evans, Geoffrey

    2015-01-01

    Simple Summary Climate change is probably the most important environmental issue of our time. Raising animals for food contributes to the production of greenhouse gases implicated in the global warming that is causing climate change. To combat this ecological disaster, a number of mitigation strategies involving changes to agricultural practices have been proposed. However, some of these changes will impact the welfare of farmed animals. This paper reviews selected climate change mitigation s...

  1. A Model for Collaborative Learning in Undergraduate Climate Change Courses

    Science.gov (United States)

    Teranes, J. L.

    2008-12-01

    Like several colleges and universities across the nation, the University of California, San Diego, has introduced climate change topics into many existing and new undergraduate courses. I have administered a program in this area at UCSD and have also developed and taught a new lower-division UCSD course entitled "Climate Change and Society", a general education course for non-majors. This class covers the basics of climate change, such as the science that explains it, the causes of climate change, climate change impacts, and mitigation strategies. The teaching methods for this course stress interdisciplinary approaches. I find that inquiry-based and collaborative modes of learning are particularly effective when applied to science-based climate, environmental and sustainability topics. Undergraduate education is often dominated by a competitive and individualistic approach to learning. In this approach, individual success is frequently perceived as contingent on others being less successful. Such a model is at odds with commonly stated goals of teaching climate change and sustainability, which are to equip students to contribute to the debate on global environmental change and societal adaptation strategies; and to help students become better informed citizens and decision makers. I present classroom-tested strategies for developing collaborative forms of learning in climate change and environmental courses, including team projects, group presentations and group assessment exercises. I show how critical thinking skills and long-term retention of information can benefit in the collaborative mode of learning. I find that a collaborative learning model is especially appropriate to general education courses in which the enrolled student body represents a wide diversity of majors, class level and expertise. I also connect collaborative coursework in interdisciplinary environmental topics directly to applications in the field, where so much "real-world" achievement in

  2. Strengthening the link between climate, hydrological and species distribution modeling to assess the impacts of climate change on freshwater biodiversity.

    Science.gov (United States)

    Tisseuil, C; Vrac, M; Grenouillet, G; Wade, A J; Gevrey, M; Oberdorff, T; Grodwohl, J-B; Lek, S

    2012-05-01

    To understand the resilience of aquatic ecosystems to environmental change, it is important to determine how multiple, related environmental factors, such as near-surface air temperature and river flow, will change during the next century. This study develops a novel methodology that combines statistical downscaling and fish species distribution modeling, to enhance the understanding of how global climate changes (modeled by global climate models at coarse-resolution) may affect local riverine fish diversity. The novelty of this work is the downscaling framework developed to provide suitable future projections of fish habitat descriptors, focusing particularly on the hydrology which has been rarely considered in previous studies. The proposed modeling framework was developed and tested in a major European system, the Adour-Garonne river basin (SW France, 116,000 km(2)), which covers distinct hydrological and thermal regions from the Pyrenees to the Atlantic coast. The simulations suggest that, by 2100, the mean annual stream flow is projected to decrease by approximately 15% and temperature to increase by approximately 1.2 °C, on average. As consequence, the majority of cool- and warm-water fish species is projected to expand their geographical range within the basin while the few cold-water species will experience a reduction in their distribution. The limitations and potential benefits of the proposed modeling approach are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Robust negative impacts of climate change on African agriculture

    International Nuclear Information System (INIS)

    Schlenker, Wolfram; Lobell, David B

    2010-01-01

    There is widespread interest in the impacts of climate change on agriculture in Sub-Saharan Africa (SSA), and on the most effective investments to assist adaptation to these changes, yet the scientific basis for estimating production risks and prioritizing investments has been quite limited. Here we show that by combining historical crop production and weather data into a panel analysis, a robust model of yield response to climate change emerges for several key African crops. By mid-century, the mean estimates of aggregate production changes in SSA under our preferred model specification are - 22, - 17, - 17, - 18, and - 8% for maize, sorghum, millet, groundnut, and cassava, respectively. In all cases except cassava, there is a 95% probability that damages exceed 7%, and a 5% probability that they exceed 27%. Moreover, countries with the highest average yields have the largest projected yield losses, suggesting that well-fertilized modern seed varieties are more susceptible to heat related losses.

  4. Assessing climate change impacts on winter cover crop nitrate uptake efficiency on the coastal plain of the Chesapeake Bay watershed using the SWAT model

    Science.gov (United States)

    Climate change is expected to exacerbate water quality degradation in the Chesapeake Bay watershed (CBW). Winter cover crops (WCCs) have been widely implemented in this region owing to their high effectiveness at reducing nitrate loads. However, little is known about climate change impacts on the ef...

  5. A probabilistic assessment of climate change impacts on yield and nitrogen leaching from winter wheat in Denmark

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Olesen, Jørgen E

    2011-01-01

    Climate change will impact agricultural production both directly and indirectly, but uncertainties related to likely impacts constrain current political decision making on adaptation. This analysis focuses on a methodology for applying probabilistic climate change projections to assess modelled...... impact and the uncertainty of the climate change projections were analysed. Combining probability density functions of climate change projections with crop model simulations, the uncertainty and trends in nitrogen (N) leaching and grain yields with climate change were quantified. The uncertainty...... the importance of including soil information for regional studies of climate change impacts on cropping systems....

  6. Modelling impact of climate change on atmospheric transport and fate of persistent organic pollutants in the Arctic

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Silver, J. D.; Brandt, J.

    2015-03-01

    The Danish Eulerian Hemispheric Model (DEHM) was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs) to the Artic and their environmental fate within the Arctic. Two sets of simulations were performed, one with initial environmental concentrations from a 20 year spin-up simulation and one with initial environmental concentrations set to zero. Each set of simulations consisted of two ten-year time slices representing the present (1990-2000) and future (2090-2100) climate conditions. The same POP emissions were applied in all simulations to ensure that the difference in predicted concentrations for each set of simulations only arises from the difference in climate input. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 20% higher across the Northern Hemisphere. The mass of HCHs within the Arctic was predicted to be up to 39% higher, whereas the change in mass of the PCBs was predicted to range from 14% lower to 17% higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depend on the physical-chemical properties of the compounds. Previous model studies have predicted that the effect of a changed climate on

  7. Modelling the impact of climate change on the atmospheric transport and the fate of persistent organic pollutants in the Arctic

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Silver, J. D.; Brandt, J.

    2015-06-01

    The Danish Eulerian Hemispheric Model (DEHM) was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs) to the Arctic and their environmental fate within the Arctic. Three sets of simulations were performed, one with present day emissions and initial environmental concentrations from a 20-year spin-up simulation, one with present day emissions and with initial environmental concentrations set to zero and one without emissions but with initial environmental concentrations from the 20-year spin-up simulation. Each set of simulations consisted of two 10-year time slices representing the present (1990-2000) and future (2090-2100) climate conditions. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES (Special Report on Emissions Scenarios) A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 55 % lower across the Northern Hemisphere at the end of the 2090s than in the 1990s. The mass of HCHs within the Arctic was predicted to be up to 38 % higher, whereas the change in mass of the PCBs was predicted to range from 38 % lower to 17 % higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depends on the physical-chemical properties of the compounds. Previous model

  8. Methodologies for assessing socio-economic impacts of climate change

    International Nuclear Information System (INIS)

    Smit, B.

    1993-01-01

    Much of the studies on climate change impacts have focused on physical and biological impacts, yet a knowledge of the social and economic impacts of climate change is likely to have a greater impact on the public and on policymakers. A conventional assessment of the impacts of climate change begins with scenarios of future climate, commonly derived from global climate models translated to a regional scale. Estimates of biophysical conditions provided by such scenarios provide a basis for analyses of human impacts, usually considered sector by sector. The scenario approach, although having considerable merit and appeal, has some noteworthy limitations. It encourages consideration of only a small set of scenarios, requires bold assumptions to be made about adjustments in human systems, provides little direct analysis of sensitivities of human social and economic systems to climate perturbations, and usually invokes the assumption that all factors other than climate are stable and have no synergistic effects on human systems. Conventional studies concentrate on average climate, yet climate is inherently variable. A common response to this situation is to propose further development of climate models, but this is not a sufficient or necessary condition for good and useful assessments of impacts on human activities. Different approaches to socioeconomic impact analysis are needed, and approaches should be considered that include identification of sensitivities in a social or ecological system, identification of critical threshold levels or critical speeds of change in variables, and exploration of alternative methodologies such as process studies, spatial and temporal analogues, and socio-economic systems modelling. 5 refs., 3 figs

  9. Climate Change Impacts on the Mediterranean Coastal Zones

    International Nuclear Information System (INIS)

    Brochier, F.; Ramieri, E.

    2001-04-01

    The main objective of this paper is to highlight the potential impacts of changes in climatic conditions and in related variables, which could affect coastal areas, as well as to identify potential response measures which could reduce the vulnerability of coastal systems and enhance their adaptability. Attention will be focused on the Mediterranean basin which is in the climate change context, a zone of great interest and of recent concern at the world scale by some features: strong ocean-atmosphere-land interactions; contrast between the small size of the sea and its significant role in the global climate system; possibility to use it at a scaled down model for the monitoring of environmental and climate evolution; critical environmental conditions of some areas and high human pressure; and strong geographical, socio-economic and climatic contrasts. The first section provides an introduction to the climate change issue, the past trends and the projections of future climate at the global scale. The second section presents the main features of the Mediterranean basin and some relevant regional projections of future climatic variables. The third section focuses on the main likely impacts on the Mediterranean coasts. Different coastal systems - such as islands, deltas, estuaries, coastal wetlands and coastal cities - and different climate change impacts - such as inundation, increased flooding, salinisation, salt water intrusion, desertification, and increased erosion - are addressed in this section. Finally the last section brings some conclusions and identify some strategies of adaptations and directions for future research aimed at improving our ability to predict and assess the local impacts of climate change in the region

  10. Uncertainty analysis of impacts of climate change on snow processes: Case study of interactions of GCM uncertainty and an impact model

    Science.gov (United States)

    Kudo, Ryoji; Yoshida, Takeo; Masumoto, Takao

    2017-05-01

    The impact of climate change on snow water equivalent (SWE) and its uncertainty were investigated in snowy areas of subarctic and temperate climate zones in Japan by using a snow process model and climate projections derived from general circulation models (GCMs). In particular, we examined how the uncertainty due to GCMs propagated through the snow model, which contained nonlinear processes defined by thresholds, as an example of the uncertainty caused by interactions among multiple sources of uncertainty. An assessment based on the climate projections in Coupled Model Intercomparison Project Phase 5 indicated that heavy-snowfall areas in the temperate zone (especially in low-elevation areas) were markedly vulnerable to temperature change, showing a large SWE reduction even under slight changes in winter temperature. The uncertainty analysis demonstrated that the uncertainty associated with snow processes (1) can be accounted for mainly by the interactions between GCM uncertainty (in particular, the differences of projected temperature changes between GCMs) and the nonlinear responses of the snow model and (2) depends on the balance between the magnitude of projected temperature changes and present climates dominated largely by climate zones and elevation. Specifically, when the peaks of the distributions of daily mean temperature projected by GCMs cross the key thresholds set in the model, the GCM uncertainty, even if tiny, can be amplified by the nonlinear propagation through the snow process model. This amplification results in large uncertainty in projections of CC impact on snow processes.

  11. Cross-sectoral conflicts for water under climate change: the need to include water quality impacts

    OpenAIRE

    Vliet, van, M.T.H.; Ludwig, F.; Kabat, P.

    2013-01-01

    Climate change is expected to increase pressures on water use between different sectors (e.g. agriculture, energy, industry, domestic uses) and ecosystems. While climate change impacts on water availability have been studied widely, less work has been done to assess impacts on water quality. This study proposes a modelling framework to incorporate water quality in analyses of cross-sectoral conflicts for water between human uses and ecosystems under climate change and socio-economic changes. ...

  12. Potential impacts of climate change on birds and trees of the eastern United States: newest climate scenarios and species abundance modelling techniques

    Science.gov (United States)

    L.R. Iverson; A.M. Prasad; S.N. Matthews; M.P. Peters

    2007-01-01

    Climate change is affecting an increasing number of species the world over, and evidence is mounting that these changes will continue to accelerate. There have been many studies that use a modelling approach to predict the effects of future climatic change on ecological systems, including by us (Iverson et al. 1999, Matthews et al. 2004); this modelling approach uses a...

  13. Nation-wide assessment of climate change impacts on crops in the Philippines and Peru as part of multi-disciplinary modelling framework

    Science.gov (United States)

    Fujisawa, Mariko; Kanamaru, Hideki

    2016-04-01

    Agriculture is vulnerable to environmental changes, and climate change has been recognized as one of the most devastating factors. In many developing countries, however, few studies have focused on nation-wide assessment of crop yield and crop suitability in the future, and hence there is a large pressure on science to provide policy makers with solid predictions for major crops in the countries in support of climate risk management policies and programmes. FAO has developed the tool MOSAICC (Modelling System for Agricultural Impacts of Climate Change) where statistical climate downscaling is combined with crop yield projections under climate change scenarios. Three steps are required to get the results: 1. The historical meteorological data such as temperature and precipitation for about 30 years were collected, and future climates were statistically downscaled to the local scale, 2. The historical crop yield data were collected and regression functions were made to estimate the yield by using observed climatic data and water balance during the growing period for each crop, and 3. The yield changes in the future were estimated by using the future climate data, produced by the first step, as an input to the yield regression functions. The yield was first simulated at sub-national scale and aggregated to national scale, which is intended to provide national policies with adaptation options. The methodology considers future changes in characteristics of extreme weather events as the climate projections are on daily scale while crop simulations are on 10-daily scale. Yields were simulated with two greenhouse gas concentration pathways (RCPs) for three GCMs per crop to account for uncertainties in projections. The crop assessment constitutes a larger multi-disciplinary assessment of climate change impacts on agriculture and vulnerability of livelihoods in terms of food security (e.g. water resources, agriculture market, household-level food security from socio

  14. Regional Scale Analyses of Climate Change Impacts on Agriculture

    Science.gov (United States)

    Wolfe, D. W.; Hayhoe, K.

    2006-12-01

    New statistically downscaled climate modeling techniques provide an opportunity for improved regional analysis of climate change impacts on agriculture. Climate modeling outputs can often simultaneously meet the needs of those studying impacts on natural as well as managed ecosystems. Climate outputs can be used to drive existing forest or crop models, or livestock models (e.g., temperature-humidity index model predicting dairy milk production) for improved information on regional impact. High spatial resolution climate forecasts, combined with knowledge of seasonal temperatures or rainfall constraining species ranges, can be used to predict shifts in suitable habitat for invasive weeds, insects, and pathogens, as well as cash crops. Examples of climate thresholds affecting species range and species composition include: minimum winter temperature, duration of winter chilling (vernalization) hours (e.g., hours below 7.2 C), frost-free period, and frequency of high temperature stress days in summer. High resolution climate outputs can also be used to drive existing integrated pest management models predicting crop insect and disease pressure. Collectively, these analyses can be used to test hypotheses or provide insight into the impact of future climate change scenarios on species range shifts and threat from invasives, shifts in crop production zones, and timing and regional variation in economic impacts.

  15. Informing Public Perceptions About Climate Change: A 'Mental Models' Approach.

    Science.gov (United States)

    Wong-Parodi, Gabrielle; Bruine de Bruin, Wändi

    2017-10-01

    As the specter of climate change looms on the horizon, people will face complex decisions about whether to support climate change policies and how to cope with climate change impacts on their lives. Without some grasp of the relevant science, they may find it hard to make informed decisions. Climate experts therefore face the ethical need to effectively communicate to non-expert audiences. Unfortunately, climate experts may inadvertently violate the maxims of effective communication, which require sharing communications that are truthful, brief, relevant, clear, and tested for effectiveness. Here, we discuss the 'mental models' approach towards developing communications, which aims to help experts to meet the maxims of effective communications, and to better inform the judgments and decisions of non-expert audiences.

  16. [Climate change impacts on yield of Cordyceps sinensis and research on yield prediction model of C. sinensis].

    Science.gov (United States)

    Zhu, Shou-Dong; Huang, Lu-Qi; Guo, Lan-Ping; Ma, Xing-Tian; Hao, Qing-Xiu; Le, Zhi-Yong; Zhang, Xiao-Bo; Yang, Guang; Zhang, Yan; Chen, Mei-Lan

    2017-04-01

    Cordyceps sinensis is a Chinese unique precious herbal material, its genuine producing areas covering Naqu, Changdu in Qinghai Tibet Plateau, Yushu in Qinghai province and other regions. In recent 10 years, C. sinensis resources is decreasing as a result of the blindly and excessively perennial dug. How to rationally protect, develop and utilize of the valuable resources of C. sinensis has been referred to an important field of research on C. sinensis. The ecological environment and climate change trend of Qinghai Tibet plateau happens prior to other regions, which means that the distribution and evolution of C. sinensis are more obvious and intense than those of the other populations. Based on RS (remote sensing)/GIS(geographic information system) technology, this paper utilized the relationship between the snowline elevation, the average temperature, precipitation and sunshine hours in harvest period (April and may) of C. sinensis and the actual production of C. sinensis to establish a weighted geometric mean model. The model's prediction accuracy can reach 82.16% at least in forecasting C. sinensis year yield in Naqu area in every early June. This study can provide basic datum and information for supporting the C. sinensis industry healthful, sustainable development. Copyright© by the Chinese Pharmaceutical Association.

  17. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates.

    Science.gov (United States)

    Guse, Björn; Kail, Jochem; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Hering, Daniel; Wolter, Christian; Fohrer, Nicola

    2015-11-15

    Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on

  18. Assessment of the impact of climate change on spatiotemporal variability of blue and green water resources under CMIP3 and CMIP5 models in a highly mountainous watershed

    Science.gov (United States)

    Fazeli Farsani, Iman; Farzaneh, M. R.; Besalatpour, A. A.; Salehi, M. H.; Faramarzi, M.

    2018-04-01

    The variability and uncertainty of water resources associated with climate change are critical issues in arid and semi-arid regions. In this study, we used the soil and water assessment tool (SWAT) to evaluate the impact of climate change on the spatial and temporal variability of water resources in the Bazoft watershed, Iran. The analysis was based on changes of blue water flow, green water flow, and green water storage for a future period (2010-2099) compared to a historical period (1992-2008). The r-factor, p-factor, R 2, and Nash-Sutcliff coefficients for discharge were 1.02, 0.89, 0.80, and 0.80 for the calibration period and 1.03, 0.76, 0.57, and 0.59 for the validation period, respectively. General circulation models (GCMs) under 18 emission scenarios from the IPCC's Fourth (AR4) and Fifth (AR5) Assessment Reports were fed into the SWAT model. At the sub-basin level, blue water tended to decrease, while green water flow tended to increase in the future scenario, and green water storage was predicted to continue its historical trend into the future. At the monthly time scale, the 95% prediction uncertainty bands (95PPUs) of blue and green water flows varied widely in the watershed. A large number (18) of climate change scenarios fell within the estimated uncertainty band of the historical period. The large differences among scenarios indicated high levels of uncertainty in the watershed. Our results reveal that the spatial patterns of water resource components and their uncertainties in the context of climate change are notably different between IPCC AR4 and AR5 in the Bazoft watershed. This study provides a strong basis for water supply-demand analyses, and the general analytical framework can be applied to other study areas with similar challenges.

  19. Socio-Economic Impacts of Climate Change in Africa | Igbokwe ...

    African Journals Online (AJOL)

    This paper examined the arguments for and against the climate change phenomenon and attempted to weigh in with presentation of available evidence. It finally drew from literature and reviewed possible impacts of climate change in Africa. It concluded by calling for a wakening and preparedness by African governments ...

  20. The impacts of climate change on tribal traditional foods

    Science.gov (United States)

    Kathy Lynn; John Daigle; Jennie Hoffman; Frank Lake; Natalie Michelle; Darren Ranco; Carson Viles; Garrit Voggesser; Paul. Williams

    2013-01-01

    American Indian and Alaska Native tribes are uniquely affected by climate change. Indigenous peoples have depended on a wide variety of native fungi, plant and animal species for food, medicine, ceremonies, community and economic health for countless generations. Climate change stands to impact the species and ecosystems that constitute tribal traditional foods that...

  1. EFFECTS OF CLIMATE CHANGE AND THEIR INDELIBLE IMPACT ...

    African Journals Online (AJOL)

    User

    IMPACT OF CLIMATE CHANGE. Climate change is causing unprecedented, unpredictable and irreversible changes to the earth's ecosystem at an alarming rate (Sugirtha& Little Flower, 2015). It affects a wide range of sustainable development issues such as health, food security, employment, livelihoods, gender equality, ...

  2. Extended impacts of climate change on health and wellbeing

    DEFF Research Database (Denmark)

    Thomas, Felicity; Sabel, Clive E.; Morton, Katherine

    2014-01-01

    Anthropogenic climate change is progressively transforming the environment despite political and technological attempts to reduce greenhouse gas emissions to tackle global warming. Here we propose that greater insight and understanding of the health-related impacts of climate change can be gained...

  3. Climate change impacts health in Tunisia | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-03-26

    Mar 26, 2012 ... Research is showing that climate change is having major impacts on human health. Weather-related disasters are on the rise and water- and vector-borne diseases are spreading. Strategies to adapt to the effects of climate change may also pose unforeseen health risks. Read more about a project in ...

  4. Impacts of climate change and adaptation strategies in rural ...

    African Journals Online (AJOL)

    Impacts of climate change and adaptation strategies in rural communities of Kaduna State, Nigeria. ... Ethiopian Journal of Environmental Studies and Management ... of some selected rural communities of Kaduna state, and the adaptation strategies employed by the people to ameliorate the scourge of climate change.

  5. Fish Farmers' Perception of Climate change impact on fish ...

    African Journals Online (AJOL)

    Michael Madukwe

    Keywords: Climate change, fish farming, impact and perception. Introduction ... to global warming. According to Raymond and Victoria (2008), climate change has the potential to affect all natural systems thereby becoming a threat to human ... decline and deal with emerging issues such as demand for renewable energy.

  6. Global climate change impacts in the United States

    Science.gov (United States)

    2009-06-01

    This report summarizes the science of climate change and the impacts of climate change on the United States, now and in the future. It is largely based on results of the U.S. Global Change Research Program (USGCRP), a and integrates those results wit...

  7. Fish Farmers' Perception of Climate change impact on fish ...

    African Journals Online (AJOL)

    Michael Madukwe

    Given the devastating effects of climate change on agriculture, It's differential impact across gender and the roles agricultural extension will play in this regard especially in helping farmers to mitigate and adapt to climate change, it becomes pertinent to assess male and female extension workers awareness and perceptions ...

  8. Climate Change and Nigerian Soils: Vulnerability, Impact and ...

    African Journals Online (AJOL)

    This article reviewed the impact of climate change on our soils and suggested measures to combat or mitigate its negative effects on sustainable soil productivity. Climate change occurs when a situation in which a change in climate continues in one direction at a rapid rate and for an unusual long period of time. The article ...

  9. Enhancing Resilience to Water-Related Impacts of Climate Change ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Enhancing Resilience to Water-Related Impacts of Climate Change in Uganda's Cattle Corridor. The cattle corridor covers approximately 40% of Uganda's land surface, and is one of the country's most fragile ecosystems. It is particularly vulnerable to climate change. This project will provide relevant information to help ...

  10. Potential impacts of climate change and variability on groundwater ...

    African Journals Online (AJOL)

    Potential impacts of climate change and variability on groundwater resources in Nigeria. ... African Journal of Environmental Science and Technology ... Climate change observed over the past decades has been consistently associated with modifications of components of the hydrological systems such as precipitation ...

  11. The potential impacts of climate change on hydropower: An ...

    African Journals Online (AJOL)

    The potential impacts of climate change on hydropower: An assessment of Lujeri micro hydropower scheme, Malawi. ... African Journal of Environmental Science and Technology ... Climate change has the potential to affect hydropower generation by either increasing or reducing flows (discharge) and the head. This paper ...

  12. Projected climate change impacts in rainfall erosivity over Brazil

    Science.gov (United States)

    Climate change projections and historical analyses have shown alterations in global precipitation dynamics, and therefore, it is also expected that there will be associated changes to soil erosion rates. The impacts of climate change on soil erosion may bring serious economic, social, and environmen...

  13. Modelling impacts of climate change on water resources in ungauged and data-scarce watersheds. Application to the Siurana catchment (NE Spain).

    Science.gov (United States)

    Candela, Lucila; Tamoh, Karim; Olivares, Gonzalo; Gomez, Manuel

    2012-12-01

    Gaining knowledge on potential climate change impacts on water resources is a complex process which depends on numerical models capable of describing these processes in quantitative terms. Under limited data or ungauged basin conditions, which constrain the modelling approach, a physically based coherent methodological approach is required. The traditional approach to assess flow regime and groundwater recharge impacts, based on coupling general atmosphere-ocean circulation models (GCM) and hydrologic models, has been investigated in the Siurana ungauged catchment (NE Spain). The future A2 (medium-high) and B1 (medium-low) greenhouse gas scenarios and time slices 2013-2037 (2025) and 2038-2062 (2050), developed by the Intergovernmental Panel on Climate Change (IPCC, 2001), have been selected. For scenario simulations, coupled GCM ECHAM5 scenarios, stochastically downscaled outputs and surface-subsurface modelling to simulate changes in water resources were applied to the catchment. Flow regime analysis was assessed by HEC-HMS, a physically based hydrologic model to assess rainfall-runoff in a catchment, while recharge was estimated with VisualBALAN, a distributed model for natural recharge estimation. Simulations show that the projected climate change at the catchment will affect the entire hydrological system with a maximum of 56% reduction of water resources. While subtle changes are observed for the 2025 time slice, the temperature and precipitation forecast for 2050 shows a maximum increase of 2.2 °C and a decreased precipitation volume of 11.3% in relation to historical values. Regarding historical values, runoff output shows a maximum 20% decrease, and 18% decrease of natural recharge with a certain delay in relation to runoff and rainfall data. According to the results, the most important parameters conditioning future water resources are changes in climatic parameters, but they are highly dependent on soil moisture conditions. Copyright © 2012 Elsevier B

  14. Impacts of climate change on electricity network business

    International Nuclear Information System (INIS)

    Auvinen, O.; Martikainen, A.

    2006-01-01

    In this project the impact of climate change on electricity network business was study. The results are based on RCAO climate model scenarios. The climate predictions were composed to the period 2016- 2045. The period 1960-1990 was used as a control period. The climate predictions were composed for precipitation, temperature, hoarfrost, thunder, ground frost and wind. Impacts of the change of the climate variables on electricity network business were estimated from technical and economical points of view. It is expected that climate change will cause more damages than benefits on the electricity network business. The increase of the number of network faults will be the most significant and demanding disadvantage caused by climate change in distribution network. If networks are not improved to be more resistant for faults, then thunder, heavy snow and wind cause more damages especially to overhead lines in medium voltage network. Increasing precipitation and decreasing amount of ground frost weaken the strength of soil. The construction work will be more difficult with the present vehicles because wet and unfrozen ground can not carry heavy vehicles. As a consequence of increasing temperature, the demand of heating energy will decrease and the demand of cooling energy will increase. This is significant for the electricity consumption and the peak load of temperature-dependent electricity users. (orig.)

  15. A probabilistic model of ecosystem response to climate change

    International Nuclear Information System (INIS)

    Shevliakova, E.; Dowlatabadi, H.

    1994-01-01

    Anthropogenic activities are leading to rapid changes in land cover and emissions of greenhouse gases into the atmosphere. These changes can bring about climate change typified by average global temperatures rising by 1--5 C over the next century. Climate change of this magnitude is likely to alter the distribution of terrestrial ecosystems on a large scale. Options available for dealing with such change are abatement of emissions, adaptation, and geoengineering. The integrated assessment of climate change demands that frameworks be developed where all the elements of the climate problem are present (from economic activity to climate change and its impacts on market and non-market goods and services). Integrated climate assessment requires multiple impact metrics and multi-attribute utility functions to simulate the response of different key actors/decision-makers to the actual physical impacts (rather than a dollar value) of the climate-damage vs. policy-cost debate. This necessitates direct modeling of ecosystem impacts of climate change. The authors have developed a probabilistic model of ecosystem response to global change. This model differs from previous efforts in that it is statistically estimated using actual ecosystem and climate data yielding a joint multivariate probability of prevalence for each ecosystem, given climatic conditions. The authors expect this approach to permit simulation of inertia and competition which have, so far, been absent in transfer models of continental-scale ecosystem response to global change. Thus, although the probability of one ecotype will dominate others at a given point, others would have the possibility of establishing an early foothold

  16. Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: results of a modeling study to support better resource management

    Directory of Open Access Journals (Sweden)

    L. M. Mango

    2011-07-01

    Full Text Available Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 % accompanied by increases in temperature (2.5–3.5 °C. Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 % and high (+25 % extremes of projected precipitation changes, but under median projections (+7 % there is little impact on annual water yields or mean discharge. Modest increases in precipitation

  17. Impacts of anthropogenic activities on climate change in arid and semiarid areas based on CMIP5 models

    Science.gov (United States)

    Zhao, T.; LI, C.

    2014-12-01

    Based on all (ALL) forcing and single-forcing runs from CMIP5 (Coupled Model Intercomparison Project Phase 5) simulations, the present paper examines the anthropogenic influence of greenhouse gases (GHG), anthropogenic aerosols (AA), land use (LU) and combined anthropogenic (Ant) effects on climate change in global arid and semiarid regions. Significant warming is a robust feature over the global land as a response to Ant and GHG forcings, and the warming rate from the latter forcing is two to three times that of ALL forcing results over the past 60 years. AA produces remarkable cooling over the global land surface, whereas LU leads to slight cooling in most arid and semiarid areas. GHG- and Ant-driven increases of precipitation are found in most land areas, especially in arid and semiarid regions. AA and LU produce substantial variation of precipitation over various areas, and current uncertainties are relatively great in AA and LU forcing runs. Ensemble Empirical Mode Decomposition (EEMD) is used to analyze temporal scales of annual temperature and precipitation. The results show that interdecadal and multidecadal variations of temperature and precipitation are attributable to combined natural and anthropogenic forcings in most arid and semiarid regions, where AA dominates variations of both temperature and precipitation on multidecadal timescales. Both GHG and LU have positive effects on multidecadal changes of precipitation over arid and semiarid regions globally. However, the latter significantly prevents multidecadal changes of temperature over arid and semiarid regions of Australia.

  18. Modelling impacts of climate change on water resources in ungauged and data-scarce watersheds. Application to the Siurana catchment (NE Spain)

    International Nuclear Information System (INIS)

    Candela, Lucila; Tamoh, Karim; Olivares, Gonzalo; Gomez, Manuel

    2012-01-01

    Gaining knowledge on potential climate change impacts on water resources is a complex process which depends on numerical models capable of describing these processes in quantitative terms. Under limited data or ungauged basin conditions, which constrain the modelling approach, a physically based coherent methodological approach is required. The traditional approach to assess flow regime and groundwater recharge impacts, based on coupling general atmosphere–ocean circulation models (GCM) and hydrologic models, has been investigated in the Siurana ungauged catchment (NE Spain). The future A2 (medium-high) and B1 (medium-low) greenhouse gas scenarios and time slices 2013–2037 (2025) and 2038–2062 (2050), developed by the Intergovernmental Panel on Climate Change (IPCC, 2001), have been selected. For scenario simulations, coupled GCM ECHAM5 scenarios, stochastically downscaled outputs and surface–subsurface modelling to simulate changes in water resources were applied to the catchment. Flow regime analysis was assessed by HEC-HMS, a physically based hydrologic model to assess rainfall–runoff in a catchment, while recharge was estimated with VisualBALAN, a distributed model for natural recharge estimation. Simulations show that the projected climate change at the catchment will affect the entire hydrological system with a maximum of 56% reduction of water resources. While subtle changes are observed for the 2025 time slice, the temperature and precipitation forecast for 2050 shows a maximum increase of 2.2 °C and a decreased precipitation volume of 11.3% in relation to historical values. Regarding historical values, runoff output shows a maximum 20% decrease, and 18% decrease of natural recharge with a certain delay in relation to runoff and rainfall data. According to the results, the most important parameters conditioning future water resources are changes in climatic parameters, but they are highly dependent on soil moisture conditions. -- Highlights:

  19. Climate Change Impacts on Crop Production in Nigeria

    Science.gov (United States)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2011-12-01

    The agricultural sector in Nigeria is particularly important for the country's food security, natural resources, and growth agenda. The cultivable areas comprise more than 70% of the total area; however, the cultivated area is about the 35% of the total area. The most important components in the food basket of the nation are cereals and tubers, which include rice, maize, corn, millet, sorghum, yam, and cassava. These crops represent about 80% of the total agricultural product in Nigeria (from NPAFS). The major crops grown in the country can be divided into food crops (produced for consumption) and export products. Despite the importance of the export crops, the primary policy of agriculture is to make Nigeria self-sufficient in its food and fiber requirements. The projected impacts of future climate change on agriculture and water resources are expected to be adverse and extensive in these area. This implies the need for actions and measures to adapt to climate change impacts, and especially as they affect agriculture, the primary sector for Nigerian economy. In the framework of the Project Climate Risk Analysis in Nigeria (founded by World Bank Contract n.7157826), a study was made to assess the potential impact of climate change on the main crops that characterize Nigerian agriculture. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT are tools that simulate physiological processes of crop growth, development and production by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were calibrated to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output was "perturbed" with 10 Global Climate Models to have

  20. Climate Change Student Summits: A Model that Works (Invited)

    Science.gov (United States)

    Huffman, L. T.

    2013-12-01

    The C2S2: Climate Change Student Summit project has completed four years of activities plus a year-long longitudinal evaluation with demonstrated positive impacts beyond the life of the project on both students and teachers. This presentation will share the lessons learned about implementing this climate change science education program and suggest that it is a successful model that can be used to scale up from its Midwestern roots to achieve measurable national impact. A NOAA Environmental Literacy grant allowed ANDRILL (ANtarctic geological DRILLing) to grow a 2008 pilot program involving 2 Midwestern sites, to a program 4 years later involving 10 sites. The excellent geographical coverage included 9 of the U.S. National Climate Assessment regions defined by the U.S. Global Change Research Program. Through the delivery of two professional development (PD) workshops, a unique opportunity was provided for both formal and informal educators to engage their classrooms/audiences in understanding the complexities of climate change. For maximum contact hours, the PD experience was extended throughout the school year through the use of an online grouphub. Student teams were involved in a creative investigative science research and presentation experience culminating in a Climate Change Student Summit, an on-site capstone event including a videoconference connecting all sites. The success of this program was based on combining multiple aspects, such as encouraging the active involvement of scientists and early career researchers both in the professional development workshops and in the Student Summit. Another key factor was the close working relationships between informal and formal science entities, including involvement of informal science learning facilities and informal science education leaders. The program also created cutting-edge curriculum materials titled the ELF, (Environmental Literacy Framework with a focus on climate change), providing an earth systems

  1. Impact of the use of a CO2 responsive land surface model in simulating the effect of climate change on the hydrology of French Mediterranean basins

    Science.gov (United States)

    Queguiner, S.; Martin, E.; Lafont, S.; Calvet, J.-C.; Faroux, S.; Quintana-Seguí, P.

    2011-10-01

    In order to evaluate the uncertainty associated with the impact model in climate change studies, a CO2 responsive version of the land surface model ISBA (ISBA-A-gs) is compared with its standard version in a climate impact assessment study. The study is performed over the French Mediterranean basin using the Safran-Isba-Modcou chain. A downscaled A2 regional climate scenario is used to force both versions of ISBA, and the results of the two land surface models are compared for the present climate and for that at the end of the century. Reasonable agreement is found between models and with discharge observations. However, ISBA-A-gs has a lower mean evapotranspiration and a higher discharge than ISBA-Standard. Results for the impact of climate change are coherent on a yearly basis for evapotranspiration, total runoff, and discharge. However, the two versions of ISBA present contrasting seasonal variations. ISBA-A-gs develops a different vegetation cycle. The growth of the vegetation begins earlier and reaches a slightly lower maximum than in the present climate. This maximum is followed by a rapid decrease in summertime. In consequence, the springtime evapotranspiration is significantly increased when compared to ISBA-Standard, while the autumn evapotranspiration is lower. On average, discharge changes are more significant at the regional scale with ISBA-A-gs.

  2. The relative impact of climate change mitigation policies and socioeconomic drivers on water scarcity - An integrated assessment modeling approach

    Science.gov (United States)

    Hejazi, M. I.; Edmonds, J. A.; Clarke, L. E.; Kyle, P.; Davies, E. G.; Chaturvedi, V.; Patel, P.; Eom, J.; Wise, M.; Kim, S.; Calvin, K. V.; Moss, R. H.

    2012-12-01

    We investigate the relative effects of climate emission mitigation policies and socioeconomic drivers on water scarcity conditions over the 21st century both globally and regionally, by estimating both water availability and demand within a technologically-detailed global integrated assessment model of energy, agriculture, and climate change - the Global Change Assessment Model (GCAM). We first develop a global gridded monthly hydrologic model that reproduces historical streamflow observations and simulates the future availability of freshwater under both a changing climate and an evolving landscape, and incorporate this model into GCAM. We then develop and incorporate technologically oriented representations of water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. To perform the water scarcity analysis at the grid scale, the global water demands for the six demand sectors are spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. The water scarcity index (WSI) compares total water demand to the total amount of renewable water available, and defines extreme water scarcity in any region as demand greater than 40% of total water availability. Using a reference scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 by 2095 and a global population of 14 billion, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demands for water exceed the total

  3. Hydrological modeling of stream flow in small Mediterranean dams and impact of climate change : case study of wadi Rmel catchment

    Science.gov (United States)

    Habaieb, Hamadi; Hermassi, Taoufik; Moncef Masmoudi, Mohamed; Ben Mechlia, Nétij

    2015-04-01

    horizons 2025, 2055 and 2085 will be presented. Key words: Hydrogical modeling, streamflow, Rmel dam, Tunisia, climate change.

  4. Linked models to assess the impacts of climate change on nitrogen in a Norwegian river basin and fjord system

    International Nuclear Information System (INIS)

    Kaste, O.; Wright, R.F.; Barkved, L.J.; Bjerkeng, B.; Engen-Skaugen, T.; Magnusson, J.; Saelthun, N.R.

    2006-01-01

    Dynamically downscaled data from two Atmosphere-Ocean General Circulation Models (AOGCMs), ECHAM4 from the Max-Planck Institute (MPI), Germany and HadAm3H from the Hadley Centre (HAD), UK, driven with two scenarios of greenhouse gas emissions (IS92a and A2, respectively) were used to make climate change projections. These projections were then used to drive four effect models linked to assess the effects on hydrology, and nitrogen (N) concentrations and fluxes, in the Bjerkreim river basin (685-km 2 ) and its coastal fjord, southwestern Norway. The four effect models were the hydrological model HBV, the water quality models MAGIC, INCA-N and the NIVA FJORD model. The downscaled climate scenarios project a general temperature increase in the study region of approximately 1 deg. C by 2030-2049 (MPI IS92a) and approximately 3 deg. C by 2071-2100 (HAD A2). Both scenarios imply increased winter precipitation, whereas the projections of summer and autumn precipitation are quite different, with the MPI scenario projecting a slight increase and the HAD scenario a significant decrease. As a response to increased winter temperature, the HBV model simulates a dramatic reduction of snow accumulation in the upper parts of the catchment, which in turn lead to higher runoff during winter and lower runoff during snowmelt in the spring. With the HAD scenario, runoff in summer and early autumn is substantially reduced as a result of reduced precipitation, increased temperatures and thereby increased evapotranspiration. The water quality models, MAGIC and INCA-N project no major changes in nitrate (NO 3 - ) concentrations and fluxes within the MPI scenario, but a significant increase in concentrations and a 40-50% increase in fluxes in the HAD scenario. As a consequence, the acidification of the river could increase, thus offsetting ongoing recovery from acidification due to reductions in acid deposition. Additionally, the increased N loading may stimulate growth of N-limited benthic

  5. Downscaling a global climate model to simulate climate change impacts on US regional and urban air quality

    Science.gov (United States)

    Trail, M.; Tsimpidi, A. P.; Liu, P.; Tsigaridis, K.; Hu, Y.; Nenes, A.; Russell, A. G.

    2013-04-01

    Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with WRF to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the continental United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF RCM to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12 km by 12 km resolution, as well as the effect of evolving climate conditions on the air quality at major US cities. The high resolution simulations produce somewhat different results than the coarse resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the US during fall (Western US, Texas, Northeastern, and Southeastern US), one region during summer (Texas), and one region where changes potentially would lead to better air quality during spring (northeast). We also find that daily peak temperatures tend to increase in most major cities in the US which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air pollutants.

  6. Downscaling a Global Climate Model to Simulate Climate Change Impacts on U.S. Regional and Urban Air Quality

    Science.gov (United States)

    Trail, M.; Tsimpidi, A. P.; Liu, P.; Tsigaridis, K.; Hu, Y.; Nenes, A.; Russell, A. G.

    2013-01-01

    Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with WRF to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the continental United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF RCM to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12km by 12km resolution, as well as the effect of evolving climate conditions on the air quality at major U.S. cities. The high resolution simulations produce somewhat different results than the coarse resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the U.S. during fall (Western U.S., Texas, Northeastern, and Southeastern U.S), one region during summer (Texas), and one region where changes potentially would lead to better air quality during spring (Northeast). We also find that daily peak temperatures tend to increase in most major cities in the U.S. which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air pollutants.

  7. Uncertainties in projecting climate-change impacts in marine ecosystems

    DEFF Research Database (Denmark)

    Payne, Mark; Barange, Manuel; Cheung, William W. L.

    2016-01-01

    Projections of the impacts of climate change on marine ecosystems are a key prerequisite for the planning of adaptation strategies, yet they are inevitably associated with uncertainty. Identifying, quantifying, and communicating this uncertainty is key to both evaluating the risk associated...... with a projection and building confidence in its robustness. We review how uncertainties in such projections are handled in marine science. We employ an approach developed in climate modelling by breaking uncertainty down into (i) structural (model) uncertainty, (ii) initialization and internal variability...... of uncertainty. Finally, marine science should strive to reach the point where scenario uncertainty is the dominant uncertainty in our projections...

  8. Modelling the impact of future socio-economic and climate change scenarios on river microbial water quality

    NARCIS (Netherlands)

    Islam, M.M.M.; Iqbal, Muhammad Shahid; Leemans, Rik; Hofstra, Nynke

    2018-01-01

    Microbial surface water quality is important, as it is related to health risk when the population is exposed through drinking, recreation or consumption of irrigated vegetables. The microbial surface water quality is expected to change with socio-economic development and climate change. This study

  9. Regional integrated modelling of climate change impacts on natural resources and resource usage in semi-arid Norhteast Brazil

    NARCIS (Netherlands)

    Krol, Martinus S.; Bronstert, Axel

    2007-01-01

    Semi-arid regions are characterised by a high vulnerability of natural resources to climate change, pronounced climatic variability and often by water scarcity and related social stress. The analysis of the dynamics of natural conditions and the assessment of possible strategies to cope with

  10. The impact of climate change on tourism in Germany, the UK and Ireland: A simulation study

    OpenAIRE

    Hamilton, Jacqueline M.; Tol, Richard S. J.

    2006-01-01

    We downscale the results of a global tourism simulation model at a national resolution to a regional resolution. We use this to investigate the impact of climate change on the regions of Germany, Ireland and the UK. Because of climate change, tourists from all three countries would spend more holidays in the home country. In all three countries, climate change would first reduce the number of international arrivals – as Western European international tourist demand falls – but later increase ...

  11. Climate Change Impacts on South African Wind Energy Resources ...

    African Journals Online (AJOL)

    Consideration of the potential risks posed by climate change to the wind energy sector is critical for its development in South Africa. This study determines if future wind speeds might change under two climate change projections by employing climate model data at 0.44°latitude (~45km)×0.44ºlongitude (~50km) resolution.

  12. Potential impacts of climate change on neotropical migrants: management implications

    Science.gov (United States)

    Jeff T. Price; Terry L. Root

    2005-01-01

    The world is warming. Over the last 100 years, the global average temperature has increased by approximately 0.7°C. The United Nations Intergovernmental Panel on Climate Change projects a further increase in global mean temperatures of between 1.4° - 5.8° C by the year 2100. How will climate change affect Neotropical migrants? Models of changes...

  13. Analysis of potential impacts of climate change on forests of the United States Pacific Northwest

    Science.gov (United States)

    Gregory Latta; Hailemariam Temesgen; Darius Adams; Tara Barrett

    2010-01-01

    As global climate changes over the next century, forest productivity is expected to change as well. Using PRISM climate and productivity data measured on a grid of 3356 plots, we developed a simultaneous autoregressive model to estimate the impacts of climate change on potential productivity of Pacific Northwest forests of the United States. The model, coupled with...

  14. Investigating the Impact of Climate Change on the Robustness of Index-Based Microinsurance in Malawi

    OpenAIRE

    Hochrainer, S.; Mechler, R.; Pflug, G.; Lotsch, A.

    2008-01-01

    This analysis explores the potential impact of climate change on the viability of the Malawi weather insurance program making use of scenarios of climate change-induced variations in rainfall patterns. The analysis is important from a methodological and policy perspective. By combining catastrophe insurance modeling with climate modeling, the methodology demonstrates the feasibility, albei...

  15. Evaluation of climate change impacts on energy demand

    DEFF Research Database (Denmark)

    Taseska, Verica; Markovska, Natasa; Callaway, John M.

    2012-01-01

    change and the energy demand in Macedonia. The analyses are conducted using the MARKAL (MARKet ALlocation)-Macedonia model, with a focus on energy demand in commercial and residential sectors (mainly for heating and cooling). Three different cases are developed: 1) Base Case, which gives the optimal...... electricity production mix, taking into account country’s development plans (without climate change); 2) Climate Change Damage Case, which introduces the climate changes by adjusting the heating and cooling degree days inputs, consistent with the existing national climate scenarios; and 3) Climate Change...... Adaptation Case, in which the optimal electricity generation mix is determined by allowing for endogenous capacity adjustments in the model. This modeling exercise will identify the changes in the energy demand and in electricity generation mix in the Adaptation Case, as well as climate change damages...

  16. A new dataset for systematic assessments of climate change impacts as a function of global warming

    Science.gov (United States)

    Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; M{ü}ller, C.; Gerten, D.; Meinshausen, M.; Lucht, W.

    2012-11-01

    In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a~narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalized patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilize a simplified relationships betweenΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  17. Mediterranean climate modelling: variability and climate change scenarios

    International Nuclear Information System (INIS)

    Somot, S.

    2005-12-01

    Air-sea fluxes, open-sea deep convection and cyclo-genesis are studied in the Mediterranean with the development of a regional coupled model (AORCM). It accurately simulates these processes and their climate variabilities are quantified and studied. The regional coupling shows a significant impact on the number of winter intense cyclo-genesis as well as on associated air-sea fluxes and precipitation. A lower inter-annual variability than in non-coupled models is simulated for fluxes and deep convection. The feedbacks driving this variability are understood. The climate change response is then analysed for the 21. century with the non-coupled models: cyclo-genesis decreases, associated precipitation increases in spring and autumn and decreases in summer. Moreover, a warming and salting of the Mediterranean as well as a strong weakening of its thermohaline circulation occur. This study also concludes with the necessity of using AORCMs to assess climate change impacts on the Mediterranean. (author)

  18. Climate change and health: temperature and health impacts

    CSIR Research Space (South Africa)

    Matooane, M

    2009-03-01

    Full Text Available Climate change is anticipated to have serious adverse health effects, particularly in developing countries. Impacts will be exacerbated by poor or non-existent social, technological and financial adaptation and/or mitigation measures. In South...

  19. Impact of climate change on insect pests of trees

    NARCIS (Netherlands)

    Moraal, L.G.; Jagers op Akkerhuis, L.; Jagers op Akkerhuis, G.A.J.M.

    2008-01-01

    There are many interactions and it is exetremely difficult to predict the impact of climate change on insect pests in the future, but we may expect an increase of certain primary pests as well as secondary pests and invasive species

  20. Testing the impact of virus importation rates and future climate change on dengue activity in Malaysia using a mechanistic entomology and disease model.

    Science.gov (United States)

    Williams, C R; Gill, B S; Mincham, G; Mohd Zaki, A H; Abdullah, N; Mahiyuddin, W R W; Ahmad, R; Shahar, M K; Harley, D; Viennet, E; Azil, A; Kamaluddin, A

    2015-10-01

    We aimed to reparameterize and validate an existing dengue model, comprising an entomological component (CIMSiM) and a disease component (DENSiM) for application in Malaysia. With the model we aimed to measure the effect of importation rate on dengue incidence, and to determine the potential impact of moderate climate change (a 1 °C temperature increase) on dengue activity. Dengue models (comprising CIMSiM and DENSiM) were reparameterized for a simulated Malaysian village of 10 000 people, and validated against monthly dengue case data from the district of Petaling Jaya in the state of Selangor. Simulations were also performed for 2008-2012 for variable virus importation rates (ranging from 1 to 25 per week) and dengue incidence determined. Dengue incidence in the period 2010-2012 was modelled, twice, with observed daily weather and with a 1 °C increase, the latter to simulate moderate climate change. Strong concordance between simulated and observed monthly dengue cases was observed (up to r = 0·72). There was a linear relationship between importation and incidence. However, a doubling of dengue importation did not equate to a doubling of dengue activity. The largest individual dengue outbreak was observed with the lowest dengue importation rate. Moderate climate change resulted in an overall decrease in dengue activity over a 3-year period, linked to high human seroprevalence early on in the simulation. Our results suggest that moderate reductions in importation with control programmes may not reduce the frequency of large outbreaks. Moderate increases in temperature do not necessarily lead to greater dengue incidence.

  1. Extended impacts of climate change on health and wellbeing

    International Nuclear Information System (INIS)

    Thomas, Felicity; Sabel, Clive E.; Morton, Katherine; Hiscock, Rosemary; Depledge, Michael H.

    2014-01-01

    Highlights: • Incorporates wellbeing into understandings of climate change impacts on health. • Considers a range of secondary impacts of climate change on health and wellbeing. • Examines co-benefits and dis-benefits of climate change adaptation and mitigation strategies for health and wellbeing. • Emphasises the spatially and socially differentiated repercussions of adaptation and mitigation measures. - Abstract: Anthropogenic climate change is progressively transforming the environment despite political and technological attempts to reduce greenhouse gas emissions to tackle global warming. Here we propose that greater insight and understanding of the health-related impacts of climate change can be gained by integrating the positivist approaches used in public health and epidemiology, with holistic social science perspectives on health in which the concept of ‘wellbeing’ is more explicitly recognised. Such an approach enables us to acknowledge and explore a wide range of more subtle, yet important health-related outcomes of climate change. At the same time, incorporating notions of wellbeing enables recognition of both the health co-benefits and dis-benefits of climate change adaptation and mitigation strategies across different population groups and geographical contexts. The paper recommends that future adaptation and mitigation policies seek to ensure that benefits are available for all since current evidence suggests that they are spatially and socially differentiated, and their accessibility is dependent on a range of contextually specific socio-cultural factors

  2. Preparing for climate change impacts in Norway's built environment

    International Nuclear Information System (INIS)

    Robert Lisoe, K.; Aandahl, G.; Eriksen, S.; Alfsen, K.

    2003-01-01

    This paper provides an overview of the Norwegian climate policy and of the practical implications of preparing Norway for climate change, with special emphasis on the challenges confronting the built environment. Although the Norwegian government has been relatively proactive in instituting measures aimed at halting global climate change, less attention has been paid to the challenge of adapting to climate change. The global climate system is likely to undergo changes, regardless of the implementation of abatement policies under the Kyoto Protocol or other regimes. The full range of impacts resulting from these changes is still uncertain; however, it is becoming increasingly clear that adaptation to climate change is necessary and inevitable within several sectors. The potential impacts of climate change in the built environment are now being addressed. Both the functionality of the existing built environment and the design of future buildings are likely to be altered by climate change impacts, and the expected implications of these new conditions are now investigated. However, measures aimed at adjustments within individual sectors, such as altering the criteria and codes of practice for the design and construction of buildings, constitute only a partial adaptation to climate change. In order to adapt effectively, larger societal and intersectoral adjustments are necessary. (author)

  3. Modeling the impact of climate change in Germany with biosphere models for long-term safety assessment of nuclear waste repositories.

    Science.gov (United States)

    Staudt, C; Semiochkina, N; Kaiser, J C; Pröhl, G

    2013-01-01

    Biosphere models are used to evaluate the exposure of populations to radionuclides from a deep geological repository. Since the time frame for assessments of long-time disposal safety is 1 million years, potential future climate changes need to be accounted for. Potential future climate conditions were defined for northern Germany according to model results from the BIOCLIM project. Nine present day reference climate regions were defined to cover those future climate conditions. A biosphere model was developed according to the BIOMASS methodology of the IAEA and model parameters were adjusted to the conditions at the reference climate regions. The model includes exposure pathways common to those reference climate regions in a stylized biosphere and relevant to the exposure of a hypothetical self-sustaining population at the site of potential radionuclide contamination from a deep geological repository. The end points of the model are Biosphere Dose Conversion factors (BDCF) for a range of radionuclides and scenarios normalized for a constant radionuclide concentration in near-surface groundwater. Model results suggest an increased exposure of in dry climate regions with a high impact of drinking water consumption rates and the amount of irrigation water used for agriculture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Climate Change Impacts on Flooding in Southeastern Austria

    Science.gov (United States)

    Switanek, Matt; Truhetz, Heimo; Reszler, Christian

    2015-04-01

    Floods in southeastern Austria can cause significant damage to life, property and infrastructure. These flood events are often the result of extreme precipitation from small-scale convective storms. In order to more accurately model the changes to flood magnitude and frequency, Regional Climate Models (RCMs) must be able to simulate small-scale convective storms similar to those that have been observed. Even as computational resources have increased, RCMs are just now achieving the high spatial and temporal scales necessary to physically resolve the processes that govern small-scale convection. With increased resolution, RCMs can rely on their internal physics to model convective precipitation and need not depend on parameterization. This study uses historical and future scenarios of Regional Climate Models (RCMs) run at a spatial scale of 3 km and temporal scale of 1 hr. In order to subsequently force a hydrological flood model, the sub-daily precipitation and temperature data from the RCMs are first bias corrected. A newly proposed bias correction method is presented and compared to the commonly used quantile mapping. The proposed bias correction method performs better in its ability to preserve the model projected climate change signal (measured by changes in mean and variance). Lastly, the changes in the quantity and frequency of projected extreme precipitation, at the watershed level, are analyzed with respect to the historic time period. With these improvements in dynamical modeling and bias correction methods, a clearer picture emerges revealing the more likely impacts climate change will have on floods in southeastern Austria.

  5. Climate change impacts and adaptation : a Canadian perspective

    International Nuclear Information System (INIS)

    Lemmen, D.S.; Warren, F.J.

    2004-01-01

    This book summarizes the research that has been conducted in Canada over the past five years on the issue of climate change impacts on key sectors such as water resources, agriculture, forestry, fisheries, coastal zones, transportation, and human health and well-being. The book refers to the growing evidence that climate change is occurring. The Intergovernmental Panel on Climate Change (IPCC) believes that these changes have already contributed to increases in annual precipitation, cloud cover and extreme temperatures over the last 50 years. It suggests that it in order to develop an effective strategy for adaptation, it is necessary to understand the vulnerability of each sector to climate change in terms of the nature of climate change, the climatic sensitivity of the region being considered, and the capacity to adapt to the changes. Adaptation will require a reduction in greenhouse gas emissions in order to lower the rate of climate change. Problems associated with water resources include water quality issues that relate to water shortages from droughts, or excesses from floods. The impacts of climate change on agriculture will vary depending on precipitation changes, soil conditions, and land use. Some studies have suggested that higher temperatures would benefit the forestry sector by improving the growth rate of trees, but the increase in the frequency and severity of moisture stress and forest disturbances would create other problems. Adaptations in the fisheries sector may have implications for the water resources, transportation, tourism and human health sectors. The impact of climate change in the coastal zone may include changes in water levels, wave patterns, storm surges, and thickness of seasonal ice cover. The areas that seem most vulnerable to climate change in the transportation sector include northern ice roads, Great Lakes shipping, coastal infrastructure threatened by sea-level rise, and infrastructure located on permafrost

  6. Impact of Climate Change on Employment in Nigeria

    Directory of Open Access Journals (Sweden)

    Taiwo Adewale Muritala

    2013-04-01

    Full Text Available Nigeria as a developing country in African continent is one of the major suppliers of crude oil in the world and the effect of climate change on her employment status cannot be over-emphasized. Employment debates have been of high discussion in the world news. Nigeria, due to its vulnerability to climate change is moving towards investing on the renewable energy industry so as to militate the effects of climate change as well as economic advancement. This paper through the use of exploratory methods, aims to explore the existing literatures to examine the impact of climate change on employment, be it – in the short; medium and long term. The results were presented through statistical charts. However, this study discovered that effects of climate change was felt over the longer term when technical change and innovation would lead to more job creation, productivity improvements and growth. The study therefore recommends that all the stakeholders should raise awareness on the environmental effects of climate change and focus on policies that militate against the adverse effect of climate change and inevitably having impact on jobs, working conditions and incomes in many sectors.

  7. Application of General Circulation Models to Assess the Potential Impact of Climate Change on Potential Distribution and Relative Abundance of Melanoplus sanguinipes (Fabricius (Orthoptera: Acrididae in North America

    Directory of Open Access Journals (Sweden)

    O. Olfert

    2011-01-01

    Full Text Available Climate is the dominant factor determining the distribution and abundance of most insect species. In recent years, the issue of climatic changes caused by human activities and the effects on agriculture has raised concern. General circulation model scenarios were applied to a bioclimatic model of Melanoplus sanguinipes to assess the potential impact of global warming on its distribution and relative abundance. Native to North America and widely distributed, M. sanguinipes is one of the grasshopper species of the continent most responsible for economic damage to grain, oilseed, pulse, and forage crops. Compared to predicted range and distribution under current climate conditions, model results indicated that M. sanguinipes would have increased range and relative abundance under the three general circulation model scenarios in more northern regions of North America. Conversely, model output predicted that the range of this crop pest could contract in regions where climate conditions became limiting.

  8. Climate Change Impacts in a Colombian Andean Tropical Basin

    Science.gov (United States)

    Ocampo, O. L.; Vélez, J. J.; Londoño, A.

    2012-12-01

    Latitude, at the south central region of Caldas, Colombia. It rises in the National Natural Park Los Nevados at 5400 meters above sea level and flows into the Cauca River at 800 meters above sea level. All thermal floors are found in this Basin which has an extension of only 1050 km2. This project sets out the main impacts of climate change and climate variability for Chinchina River Basin, with important impacts on water availability. The status of water resources in Colombian Andean Basins has been changing for the last decades, through more or less rainfall and changed timing of rainfall and the accelerated melting of the tropical Andean glaciers, these changes are found in the Chinchina River Basin. Besides, changes in land use and land cover affect water balance. Using the IPCC projections for the period 2010-2039 and statistical downscaling by the delta method with resolution of 1 km x 1 km, different models (HADCHM3, CSIRO y CCMA) predict different climate change trends in the Basin for scenarios A2 and B2, increasing in temperature whereas mean precipitation exhibit both positive and negative trends, which are consistent with PRECIS Regional Model. The physically based conceptual model Tetis estimated reductions in water supply, which vary depending on scenarios. If the models are correct, growing conflict over the distribution of water resources is very likely, particularly during the dry season.

  9. Adapting to and Coping with the Threat and Impacts of Climate Change

    Science.gov (United States)

    Reser, Joseph P.; Swim, Janet K.

    2011-01-01

    This article addresses the nature and challenge of adaptation in the context of global climate change. The complexity of "climate change" as threat, environmental stressor, risk domain, and impacting process with dramatic environmental and human consequences requires a synthesis of perspectives and models from diverse areas of psychology to…

  10. The impact of climate change on tourism in Germany, the UK, and Ireland: A simulation study

    NARCIS (Netherlands)

    Hamilton, J.M.; Tol, R.S.J.

    2007-01-01

    We downscale the results of a global tourism simulation model at a national resolution to a regional resolution. We use this to investigate the impact of climate change on the regions of Germany, Ireland and the UK. Because of climate change, tourists from all three countries would spend more

  11. The impact of climate change on tourism in Germany, the UK and Ireland: a simulation study

    NARCIS (Netherlands)

    Hamilton, Jacqueline; Tol, Richard

    2007-01-01

    We downscale the results of a global tourism simulation model at a national resolution to a regional resolution. We use this to investigate the impact of climate change on the regions of Germany, Ireland and the UK. Because of climate change, tourists from all three countries would spend more

  12. Impact of Climate Change Effects on Contamination of Cereal Grains with Deoxynivalenol

    NARCIS (Netherlands)

    Fels-Klerx, van der H.J.; Asselt, van E.D.; Madsen, M.S.; Olesen, J.E.

    2013-01-01

    Climate change is expected to aggravate feed and food safety problems of crops; however, quantitative estimates are scarce. This study aimed to estimate impacts of climate change effects on deoxynivalenol contamination of wheat and maize grown in the Netherlands by 2040. Quantitative modelling was

  13. Projected climate change impacts in rainfall erosivity over Brazil.

    Science.gov (United States)

    Almagro, André; Oliveira, Paulo Tarso S; Nearing, Mark A; Hagemann, Stefan

    2017-08-15

    The impacts of climate change on soil erosion may bring serious economic, social and environmental problems. However, few studies have investigated these impacts on continental scales. Here we assessed the influence of climate change on rainfall erosivity across Brazil. We used observed rainfall data and downscaled climate model output based on Hadley Center Global Environment Model version 2 (HadGEM2-ES) and Model for Interdisciplinary Research On Climate version 5 (MIROC5), forced by Representative Concentration Pathway 4.5 and 8.5, to estimate and map rainfall erosivity and its projected changes across Brazil. We estimated mean values of 10,437 mm ha -1  h -1 year -1 for observed data (1980-2013) and 10,089 MJ mm ha -1  h -1 year -1 and 10,585 MJ mm ha -1  h -1 year -1 for HadGEM2-ES and MIROC5, respectively (1961-2005). Our analysis suggests that the most affected regions, with projected rainfall erosivity increases ranging up to 109% in the period 2007-2040, are northeastern and southern Brazil. Future decreases of as much as -71% in the 2071-2099 period were estimated for the southeastern, central and northwestern parts of the country. Our results provide an overview of rainfall erosivity in Brazil that may be useful for planning soil and water conservation, and for promoting water and food security.

  14. Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas.

    Science.gov (United States)

    Lozano, Olga M; Salis, Michele; Ager, Alan A; Arca, Bachisio; Alcasena, Fermin J; Monteiro, Antonio T; Finney, Mark A; Del Giudice, Liliana; Scoccimarro, Enrico; Spano, Donatella

    2017-10-01

    We used simulation modeling to assess potential climate change impacts on wildfire exposure in Italy and Corsica (France). Weather data were obtained from a regional climate model for the period 1981-2070 using the IPCC A1B emissions scenario. Wildfire simulations were performed with the minimum travel time fire spread algorithm using predicted fuel moisture, wind speed, and wind direction to simulate expected changes in weather for three climatic periods (1981-2010, 2011-2040, and 2041-2070). Overall, the wildfire simulations showed very slight changes in flame length, while other outputs such as burn probability and fire size increased significantly in the second future period (2041-2070), especially in the southern portion of the study area. The projected changes fuel moisture could result in a lengthening of the fire season for the entire study area. This work represents the first application in Europe of a methodology based on high resolution (250 m) landscape wildfire modeling to assess potential impacts of climate changes on wildfire exposure at a national scale. The findings can provide information and support in wildfire management planning and fire risk mitigation activities. © 2016 Society for Risk Analysis.

  15. Uncertainty in projected impacts of climate change on biodiversity

    DEFF Research Database (Denmark)

    Garcia, Raquel A.

    are difficult to model. The effect of such bias against narrow-ranging species is often overlooked in assessments of biodiversity impacts, but our results for sub-Saharan African amphibians show that it trickles down to conservation strategies. Finally, assumptions about the climatic tolerance of species...... the conservation of biodiversity under changing climates in Africa and elsewhere. Explicitly addressing all uncertainties of projected impacts appears overwhelming. Yet, if model projections are to be useful for conservation planners, they must be as transparent as possible by including an honest description......Evidence for shifts in the phenologies and distributions of species over recent decades has often been attributed to climate change. The prospect of greater and faster changes in climate during the 21st century has spurred a stream of studies anticipating future biodiversity impacts. Yet...

  16. Feasibility of coupled empirical and dynamic modeling to assess climate change and air pollution impacts on temperate forest vegetation of the eastern United States.

    Science.gov (United States)

    McDonnell, T C; Reinds, G J; Sullivan, T J; Clark, C M; Bonten, L T C; Mol-Dijkstra, J P; Wamelink, G W W; Dovciak, M

    2018-03-01

    Changes in climate and atmospheric nitrogen (N) deposition caused pronounced changes in soil conditions and habitat suitability for many plant species over the latter half of the previous century. Such changes are expected to continue in the future with anticipated further changing air temperature and precipitation that will likely influence the effects of N deposition. To investigate the potential long-term impacts of atmospheric N deposition on hardwood forest ecosystems in the eastern United States in the context of climate change, application of the coupled biogeochemical and vegetation community model VSD+PROPS was explored at three sites in New Hampshire, Virginia, and Tennessee. This represents the first application of VSD+PROPS to forest ecosystems in the United States. Climate change and elevated (above mid-19th century) N deposition were simulated to be important factors for determining habitat suitability. Although simulation results suggested that the suitability of these forests to support the continued presence of their characteristic understory plant species might decline by the year 2100, low data availability for building vegetation response models with PROPS resulted in uncertain results at the extremes of simulated N deposition. Future PROPS model development in the United States should focus on inclusion of additional foundational data or alternate candidate predictor variables to reduce these uncertainties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Data driven approaches vs. qualitative approaches in climate change impact and vulnerability assessment.

    Science.gov (United States)

    Zebisch, Marc; Schneiderbauer, Stefan; Petitta, Marcello

    2015-04-01

    In the last decade the scope of climate change science has broadened significantly. 15 years ago the focus was mainly on understanding climate change, providing climate change scenarios and giving ideas about potential climate change impacts. Today, adaptation to climate change has become an increasingly important field of politics and one role of science is to inform and consult this process. Therefore, climate change science is not anymore focusing on data driven approaches only (such as climate or climate impact models) but is progressively applying and relying on qualitative approaches including opinion and expertise acquired through interactive processes with local stakeholders and decision maker. Furthermore, climate change science is facing the challenge of normative questions, such us 'how important is a decrease of yield in a developed country where agriculture only represents 3% of the GDP and the supply with agricultural products is strongly linked to global markets and less depending on local production?'. In this talk we will present examples from various applied research and consultancy projects on climate change vulnerabilities including data driven methods (e.g. remote sensing and modelling) to semi-quantitative and qualitative assessment approaches. Furthermore, we will discuss bottlenecks, pitfalls and opportunities in transferring climate change science to policy and decision maker oriented climate services.

  18. Analysis of the impact of climate change on groundwater related hydrological fluxes: a multi-model approach including different downscaling methods

    Directory of Open Access Journals (Sweden)

    S. Stoll

    2011-01-01

    Full Text Available Climate change related modifications in the spatio-temporal distribution of precipitation and evapotranspiration will have an impact on groundwater resources. This study presents a modelling approach exploiting the advantages of integrated hydrological modelling and a broad climate model basis. We applied the integrated MIKE SHE model on a perialpine, small catchment in northern Switzerland near Zurich. To examine the impact of climate change we forced the hydrological model with data from eight GCM-RCM combinations showing systematic biases which are corrected by three different statistical downscaling methods, not only for precipitation but also for the variables that govern potential evapotranspiration. The downscaling methods are evaluated in a split sample test and the sensitivity of the downscaling procedure on the hydrological fluxes is analyzed. The RCMs resulted in very different projections of potential evapotranspiration and, especially, precipitation. All three downscaling methods reduced the differences between the predictions of the RCMs and all corrected predictions showed no future groundwater stress which can be related to an expected increase in precipitation during winter. It turned out that especially the timing of the precipitation and thus recharge is very important for the future development of the groundwater levels. However, the simulation experiments revealed the weaknesses of the downscaling methods which directly influence the predicted hydrological fluxes, and thus also the predicted groundwater levels. The downscaling process is identified as an important source of uncertainty in hydrological impact studies, which has to be accounted for. Therefore it is strongly recommended to test different downscaling methods by using verification data before applying them to climate model data.

  19. Assessment of the Health Impacts of Climate Change in Kiribati

    Directory of Open Access Journals (Sweden)

    Lachlan McIver

    2014-05-01

    Full Text Available Kiribati—a low-lying, resource-poor Pacific atoll nation—is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest priority adaptation responses. This paper identifies advantages and disadvantages in the process that was followed, lays out a future direction of climate change and health adaptation work in Kiribati, and proposes lessons that may be applicable to other small, developing island nations as they prepare for and adapt to the impacts of climate change on health.

  20. Assessment of the Health Impacts of Climate Change in Kiribati

    Science.gov (United States)

    McIver, Lachlan; Woodward, Alistair; Davies, Seren; Tibwe, Tebikau; Iddings, Steven

    2014-01-01

    Kiribati—a low-lying, resource-poor Pacific atoll nation—is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest priority adaptation responses. This paper identifies advantages and disadvantages in the process that was followed, lays out a future direction of climate change and health adaptation work in Kiribati, and proposes lessons that may be applicable to other small, developing island nations as they prepare for and adapt to the impacts of climate change on health. PMID:24830452

  1. Global modelling of river water quality under climate change

    Science.gov (United States)

    van Vliet, Michelle T. H.; Franssen, Wietse H. P.; Yearsley, John R.

    2017-04-01

    Climate change will pose challenges on the quality of freshwater resources for human use and ecosystems for instance by changing the dilution capacity and by affecting the rate of chemical processes in rivers. Here we assess the impacts of climate change and induced streamflow changes on a selection of water quality parameters for river basins globally. We used the Variable Infiltration Capacity (VIC) model and a newly developed global water quality module for salinity, temperature, dissolved oxygen and biochemical oxygen demand. The modelling framework was validated using observed records of streamflow, water temperature, chloride, electrical conductivity, dissolved oxygen and biochemical oxygen demand for 1981-2010. VIC and the water quality module were then forced with an ensemble of bias-corrected General Circulation Model (GCM) output for the representative concentration pathways RCP2.6 and RCP8.5 to study water quality trends and identify critical regions (hotspots) of water quality deterioration for the 21st century.

  2. Web-based Data Visualization of the MGClimDeX Climate Model Output: An Integrated Perspective of Climate Change Impact on Natural Resources in Highly Vulnerable Regions.

    Science.gov (United States)

    Martinez-Rey, J.; Brockmann, P.; Cadule, P.; Nangini, C.

    2016-12-01

    Earth System Models allow us to understand the interactions between climate and biogeological processes. These models generate a very large amount of data. These data are usually reduced to a few number of static figures shown in highly specialized scientific publications. However, the potential impacts of climate change demand a broader perspective regarding the ways in which climate model results of this kind are disseminated, particularly in the amount and variety of data, and the target audience. This issue is of great importance particularly for scientific projects that seek a large broadcast with different audiences on their key results. The MGClimDeX project, which assesses the climate change impact on La Martinique island in the Lesser Antilles, will provide tools and means to help the key stakeholders -responsible for addressing the critical social, economic, and environmental issues- to take the appropriate adaptation and mitigation measures in order to prevent future risks associated with climate variability and change, and its role on human activities. The MGClimDeX project will do so by using model output and data visualization techniques within the next year, showing the cross-connected impacts of climate change on various sectors (agriculture, forestry, ecosystems, water resources and fisheries). To address this challenge of representing large sets of data from model output, we use back-end data processing and front-end web-based visualization techniques, going from the conventional netCDF model output stored on hub servers to highly interactive web-based data-powered visualizations on browsers. We use the well-known javascript library D3.js extended with DC.js -a dimensional charting library for all the front-end interactive filtering-, in combination with Bokeh, a Python library to synthesize the data, all framed in the essential HTML+CSS scripts. The resulting websites exist as standalone information units or embedded into journals or scientific

  3. Impact of Climate Change on Water Resources in Taiwan

    Directory of Open Access Journals (Sweden)

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    Full Text Available This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future water needs, regional reservoir effective capacity and renewable water resource volume. This paper uses three water resource assessment indicators: the annual water utilization ratio indicator, the water shortage indicator and the extreme event occurrence indicator. Through fuzzy comprehensive assessment, we divide the evaluation set into five levels: very good (L1, good (L2, fair (L3, poor (L4 and very poor (L5. Results indicate that, given the effects of future climate change (2080 - 2099 and the increase in water demand, future water resources conditions in northern and eastern Taiwan will not be significantly different from historical levels (1979 - 1998 and will maintain a ¡§good¡¨ level (L2, while the conditions in southern Taiwan will visibly deteriorate from its historical ¡§fair¡¨ level (L3 to ¡§poor¡¨ (L4; and the future conditions for central Taiwan will be ¡§poor¡¨ (L4. The initiation of adaptation options for water management in southern and central Taiwan would be needed by increasing reservoir capacity and reducing overall water use.

  4. Climate change impacts on agriculture in Apulia

    Science.gov (United States)

    Lionello, Piero; Congedi, Letizia; Reale, Marco; Scarascia, Luca; Tanzarella, Annalisa

    2013-04-01

    This study describes the evolution of climate from recent past to the next decades in Apulia, a region in Southern Italy, and estimates its future impacts on its main agricultural products. The analysis is based on instrumental data, on an ensemble of climate projections and on a linear regression model linking typical Mediterranean products (wheat, olive oil and wine) to seasonal values of temperature and precipitation. In the past decades, wheat, olive oil and wine production records (the three main agricultural products in Apulia) show large inter-annual variabilityand an important fraction of it is explained by past climate variability. Regional Climate Model simulations show a large acceleration of the warming rate and a decrease of precipitation in the period 2001-2050. Results (considering no adaptation of crops) suggest that climate evolution in the first half of the 21st century would decrease wine production, have a small effect on wheat and increase olive oil production.

  5. Model-based assessments of climate change effects on forests

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C.; LeBlanc, D.C. [Argonne National Lab., IL (United States)]|[Ball State Univ., Muncie, IN (United States)

    1995-06-01

    The potential effects of climate change on forests are of increasing concern. A number of studies based on forest simulation models predict substantial alteration of forest composition, forest dieback, or even loss of forest cover in response to increased temperatures associated with increasing atmospheric carbon dioxide concentrations. However, the structure of these computer models may cause them to overemphasize the role of climate in controlling tree growth and mortality. Model functions that represent the influence of climate on tree growth are based on the geographic range limits of a species, predicting maximal growth in the center of the range and zero growth (100% mortality) at the range limits and beyond. Many tree species can survive in climatic conditions outside their present range limits and can tolerate widely fluctuating climate regimes. Hence, there is reason to suspect that published projections of forest responses to climate change may exaggerate the direct impact of climate on tree growth and mortality. We propose that forest simulation models be reformulated with more realistic representations of growth responses to temperature, moisture, mortality and dispersal. We believe that only when these models more accurately reflect the physiological bases of the responses of tree species to climate variables can they be used to simulate responses of forests to rapid changes in climate. We argue that direct forest responses to climate change projected by such a reformulated model may be less traumatic and more gradual than those projected by current models.

  6. Modeling Potential Impacts of Climate Change on Streamflow Using Projections of the 5th Assessment Report for the Bernam River Basin, Malaysia

    Directory of Open Access Journals (Sweden)

    Nkululeko Simeon Dlamini

    2017-03-01

    Full Text Available Potential impacts of climate change on the streamflow of the Bernam River Basin in Malaysia are assessed using ten Global Climate Models (GCMs under three Representative Concentration Pathways (RCP4.5, RCP6.0 and RCP8.5. A graphical user interface was developed that integrates all of the common procedures of assessing climate change impacts, to generate high resolution climate variables (e.g., rainfall, temperature, etc. at the local scale from large-scale climate models. These are linked in one executable module to generate future climate sequences that can be used as inputs to various models, including hydrological and crop models. The generated outputs were used as inputs to the SWAT hydrological model to simulate the hydrological processes. The evaluation results indicated that the model performed well for the watershed with a monthly R2, Nash–Sutcliffe Efficiency (NSE and Percent Bias (PBIAS values of 0.67, 0.62 and −9.4 and 0.62, 0.61 and −4.2 for the calibration and validation periods, respectively. The multi-model projections show an increase in future temperature (tmax and tmin in all respective scenarios, up to an average of 2.5 °C for under the worst-case scenario (RC8.5. Rainfall is also predicted to change with clear variations between the dry and wet season. Streamflow projections also followed rainfall pattern to a great extent with a distinct change between the dry and wet season possibly due to the increase in evapotranspiration in the watershed. In principle, the interface can be customized for the application to other watersheds by incorporating GCMs’ baseline data and their corresponding future data for those particular stations in the new watershed. Methodological limitations of the study are also discussed.

  7. Combining Satellite Data and Models to Assess Vulnerability to Climate Change and Its Impact on Food Security in Morocco

    Directory of Open Access Journals (Sweden)

    Saloua Rochdane

    2014-04-01

    Full Text Available This work analyzes satellite and socioeconomic data to explore the relationship between food and wood demand and supply, expressed in terms of net primary production (NPP, in Morocco. A vulnerability index is defined as the ratio of demand to supply as influenced by population, affluence, technology and climate indicators. The present situation (1995–2007, as well as projections of demand and supply, following the Intergovernmental Panel on Climate Change, Scenarios A2 and B2, are analyzed for a 2025 horizon. We find that the food NPP demand increased by 34.5%, whereas the wood consumption NPP demand decreased by 19.3% between 1995 and 2007. The annual NPP required to support the population’s food and wood appropriation was 29.73 million tons of carbon (MTC in 2007, while the landscape NPP production for the same year was 60.24 MTC; indicating that the population appropriates about 50% of the total NPP resources. Both scenarios show increases in demand and decreases in supply. Under A2, it would take more than 1.25 years for terrestrial ecosystems in Morocco to produce the NPP appropriated by populations in one year. This number is 0.70 years under B2. This already high vulnerability for food and wood products is likely to be exacerbated with climate changes and population increase.

  8. Climate change and food security: health impacts in developed countries.

    Science.gov (United States)

    Lake, Iain R; Hooper, Lee; Abdelhamid, Asmaa; Bentham, Graham; Boxall, Alistair B A; Draper, Alizon; Fairweather-Tait, Susan; Hulme, Mike; Hunter, Paul R; Nichols, Gordon; Waldron, Keith W

    2012-11-01

    Anthropogenic climate change will affect global food production, with uncertain consequences for human health in developed countries. We investigated the potential impact of climate change on food security (nutrition and food safety) and the implications for human health in developed countries. Expert input and structured literature searches were conducted and synthesized to produce overall assessments of the likely impacts of climate change on global food production and recommendations for future research and policy changes. Increasing food prices may lower the nutritional quality of dietary intakes, exacerbate obesity, and amplify health inequalities. Altered conditions for food production may result in emerging pathogens, new crop and livestock species, and altered use of pesticides and veterinary medicines, and affect the main transfer mechanisms through which contaminants move from the environment into food. All these have implications for food safety and the nutritional content of food. Climate change mitigation may increase consumption of foods whose production reduces greenhouse gas emissions. Impacts may include reduced red meat consumption (with positive effects on saturated fat, but negative impacts on zinc and iron intake) and reduced winter fruit and vegetable consumption. Developed countries have complex structures in place that may be used to adapt to the food safety consequences of climate change, although their effectiveness will vary between countries, and the ability to respond to nutritional challenges is less certain. Climate change will have notable impacts upon nutrition and food safety in developed countries, but further research is necessary to accurately quantify these impacts. Uncertainty about future impacts, coupled with evidence that climate change may lead to more variable food quality, emphasizes the need to maintain and strengthen existing structures and policies to regulate food production, monitor food quality and safety, and

  9. Planning for climate change: The need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases.

    Science.gov (United States)

    Mellor, Jonathan E; Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara

    2016-04-01

    Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Climate change impacts on southeastern U.S. basins

    Science.gov (United States)

    Georgakakos, Aris P.; Yao, Huaming

    2000-01-01

    The work described herein aims to assess the impacts of potential climate change on the Apalachicola-Chattahoochee-Flint (ACF) and Alabama-Coosa-Talapoosa (ACT) river basins in the Southeastern US. The assessment addresses the potential impacts on watershed hydrology (soil moisture and streamflow) and on major water uses including water supply, drought management, hydropower, environmental and ecological protection, recreation, and navigation. This investigation develops new methods, establishes and uses an integrated modeling framework, and reaches several important conclusions that bear upon river basin planning and management. Although the specific impacts vary significantly with the choice of the GCM scenario, some general conclusions are that (1) soil moisture and streamflow variability is expected to increase, and (2) flexible and adaptive water sharing agreements, management strategies, and institutional processes are best suited to cope with the uncertainty associated with future climate scenarios.

  11. Modelling regional climate change and urban planning scenarios and their impacts on the urban environment in two cities with WRF-ACASA

    Science.gov (United States)

    Falk, M.; Pyles, R. D.; Marras, S.; Spano, D.; Paw U, K. T.

    2011-12-01

    The number of urban metabolism studies has increased in recent years, due to the important impact that energy, water and carbon exchange over urban areas have on climate change. Urban modeling is therefore crucial in the future design and management of cities. This study presents the ACASA model coupled to the Weather Research and Forecasting (WRF-ARW) mesoscale model to simulate urban fluxes at a horizontal resolution of 200 meters for urban areas of roughly 100 km^2. As part of the European Project "BRIDGE", these regional simulations were used in combination with remotely sensed data to provide constraints on the land surface types and the exchange of carbon and energy fluxes from urban centers. Surface-atmosphere exchanges of mass and energy were simulated using the Advanced Canopy Atmosphere Soil Algorithm (ACASA). ACASA is a multi-layer high-order closure model, recently modified to work over natural, agricultural as well as urban environments. In particular, improvements were made to account for the anthropogenic contribution to heat and carbon production. For two cities four climate change and four urban planning scenarios were simulated: The climate change scenarios include a base scenario (Sc0: 2008 Commit in IPCC), a medium emission scenario (Sc1: IPCC A2), a worst case emission scenario (Sce2: IPCC A1F1) and finally a best case emission scenario (Sce3: IPCC B1). The urban planning scenarios include different development scenarios such as smart growth. The two cities are a high latitude city, Helsinki (Finland) and an historic city, Florence (Italy). Helsinki is characterized by recent, rapid urbanization that requires a substantial amount of energy for heating, while Florence is representative of cities in lower latitudes, with substantial cultural heritage and a comparatively constant architectural footprint over time. In general, simulated fluxes matched the point observations well and showed consistent improvement in the energy partitioning over

  12. Climate change and Public health: vulnerability, impacts, and adaptation

    Science.gov (United States)

    Guzzone, F.; Setegn, S.

    2013-12-01

    Climate Change plays a significant role in public health. Changes in climate affect weather conditions that we are accustomed to. Increases in the frequency or severity of extreme weather events such as storms could increase the risk of dangerous flooding, high winds, and other direct threats to people and property. Changes in temperature, precipitation patterns, and extreme events could enhance the spread of some diseases. According to studies by EPA, the impacts of climate change on health will depend on many factors. These factors include the effectiveness of a community's public health and safety systems to address or prepare for the risk and the behavior, age, gender, and economic status of individuals affected. Impacts will likely vary by region, the sensitivity of populations, the extent and length of exposure to climate change impacts, and society's ability to adapt to change. Transmissions of infectious disease have been associated with social, economic, ecological, health care access, and climatic factors. Some vector-borne diseases typically exhibit seasonal patterns in which the role of temperature and rainfall is well documented. Some of the infectious diseases that have been documented by previous studies, include the correlation between rainfall and drought in the occurrence of malaria, the influence of the dry season on epidemic meningococcal disease in the sub-Saharan African, and the importance of warm ocean waters in driving cholera occurrence in the Ganges River delta in Asia The rise of climate change has been a major concern in the public health sector. Climate change mainly affects vulnerable populations especially in developing countries; therefore, it's important that public health advocates are involve in the decision-making process in order to provide resources and preventative measures for the challenges that are associated with climate change. The main objective of this study is to assess the vulnerability and impact of climate change

  13. Vulnerability and adaptation to potential impacts of climate change

    International Nuclear Information System (INIS)

    Omenda, T.O.; Kariuki, J.G.; Mbuthi, P.N.

    1998-01-01

    Climate in Kenya is controlled by the seasonal southward and northward movements of the Inter-Tropical Convergence zone (ITCZ).The effects of ITCZ produces two rainy seasons namely the 'long rains' in April/May and the 'short rains' in October/November. Following the build up of greenhouse gases such as carborn dioxide and methane in the earth's atmosphere, a variety of changes is expected in climatic conditions. The study analyses the sensivity of the lower Tana Basin to climate change while specific objectives include: to determine the effects of climate change on water supply in Tana River Basin; to assess the posible effect of climate change on the ground water resourse in the basin; to make some suggestions on possible adaptation measures that may be adopted to cope with the possible impacts of climate change for the Tana Basin

  14. Predicting Climate Change Impacts to the Canadian Boreal Forest

    Directory of Open Access Journals (Sweden)

    Trisalyn A. Nelson

    2014-03-01

    Full Text Available Climate change is expected to alter temperature, precipitation, and seasonality with potentially acute impacts on Canada’s boreal. In this research we predicted future spatial distributions of biodiversity in Canada’s boreal for 2020, 2050, and 2080 using indirect indicators derived from remote sensing and based on vegetation productivity. Vegetation productivity indices, representing annual amounts and variability of greenness, have been shown to relate to tree and wildlife richness in Canada’s boreal. Relationships between historical satellite-derived productivity and climate data were applied to modelled scenarios of future climate to predict and map potential future vegetation productivity for 592 regions across Canada. Results indicated that the pattern of vegetation productivity will become more homogenous, particularly west of Hudson Bay. We expect climate change to impact biodiversity along north/south gradients and by 2080 vegetation distributions will be dominated by processes of seasonality in the north and a combination of cumulative greenness and minimum cover in the south. The Hudson Plains, which host the world’s largest and most contiguous wetland, are predicted to experience less seasonality and more greenness. The spatial distribution of predicted trends in vegetation productivity was emphasized over absolute values, in order to support regional biodiversity assessments and conservation planning.

  15. Comparison of two potato simulation models under climate change. II Application of climate change scenarios.

    NARCIS (Netherlands)

    Wolf, J.

    2002-01-01

    The effects of climate change (for the year 2050 compared to ambient climate) and change in climatic variability on potato growth and production at 6 sites in Europe were calculated. These calculations were done with both a simple growth model, POTATOS, and a comprehensive model, NPOTATO. Comparison

  16. Comparison of two soya bean simulation models under climate change : II Application of climate change scenarios

    NARCIS (Netherlands)

    Wolf, J.

    2002-01-01

    The effects of climate change (for 2050 compared to ambient climate) and change in climatic variability on soya bean growth and production at 3 sites in the EU have been calculated. These calculations have been done with both a simple growth model, SOYBEANW, and a comprehensive model, CROPGRO.

  17. Integrated science model for assessment of climate change. Revision 1

    International Nuclear Information System (INIS)

    Jain, A.K.; Wuebbles, D.J.; Kheshgi, H.S.

    1994-04-01

    Past measurements show that greenhouse gas concentrations, many of which are affected by human related activities, are increasing in the atmosphere. There is wide consensus that this increase influences related activities, are increasing the earth's energy balance and concern that this will cause significant change in climate. Many different policies could be adopted in response to the prospects of greenhouse warming. Models are used by policy markers to analyze the range of possible policy options developed as a response to concerns about climate change. A fully integrated assessment model that spans the many aspects of climate change, including economics, energy options, effects of climate, and impacts of climate change, would be a useful tool. With this goal in mind, the science modules which estimate the effect of emissions of greenhouse gasses on global temperature and sea level are being developed. This is a report of the current characteristics and performance of an Integrated Science Model which consists of coupled modules for carbon cycle, atmospheric chemistry of other trace gases, radiative forcing by greenhouse gases, energy balance model for global temperature, and a model for sea level response

  18. Simulating climate change impact on soil erosion using RUSLE model - A case study in a watershed of mid-Himalayan landscape

    Science.gov (United States)

    Gupta, Surya; Kumar, Suresh

    2017-06-01

    Climate change, particularly due to the changed precipitation trend, can have a severe impact on soil erosion. The effect is more pronounced on the higher slopes of the Himalayan region. The goal of this study was to estimate the impact of climate change on soil erosion in a watershed of the Himalayan region using RUSLE model. The GCM (general circulation model) derived emission scenarios (HadCM3 A2a and B2a SRES) were used for climate projection. The statistical downscaling model (SDSM) was used to downscale the precipitation for three future periods, 2011-2040, 2041-2070, and 2071-2099, at large scale. Rainfall erosivity ( R) was calculated for future periods using the SDSM downscaled precipitation data. ASTER digital elevation model (DEM) and Indian Remote Sensing data - IRS LISS IV satellite data were used to generate the spatial input parameters required by RUSLE model. A digital soil-landscape map was prepared to generate spatially distributed soil erodibility ( K) factor map of the watershed. Topographic factors, slope length ( L) and steepness ( S) were derived from DEM. Normalised difference vegetation index (NDVI) derived from the satellite data was used to represent spatial variation vegetation density and condition under various land use/land cover. This variation was used to represent spatial vegetation cover factor. Analysis revealed that the average annual soil loss may increase by 28.38, 25.64 and 20.33% in the 2020s, 2050s and 2080s, respectively under A2 scenario, while under B2 scenario, it may increase by 27.06, 25.31 and 23.38% in the 2020s, 2050s and 2080s, respectively, from the base period (1985-2013). The study provides a comprehensive understanding of the possible future scenario of soil erosion in the mid-Himalaya for scientists and policy makers.

  19. Detection and Attribution of Anthropogenic Climate Change Impacts

    Science.gov (United States)

    Rosenzweig, Cynthia; Neofotis, Peter

    2013-01-01

    Human-influenced climate change is an observed phenomenon affecting physical and biological systems across the globe. The majority of observed impacts are related to temperature changes and are located in the northern high- and midlatitudes. However, new evidence is emerging that demonstrates that impacts are related to precipitation changes as well as temperature, and that climate change is impacting systems and sectors beyond the Northern Hemisphere. In this paper, we highlight some of this new evidence-focusing on regions and sectors that the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) noted as under-represented-in the context of observed climate change impacts, direct and indirect drivers of change (including carbon dioxide itself), and methods of detection. We also present methods and studies attributing observed impacts to anthropogenic forcing. We argue that the expansion of methods of detection (in terms of a broader array of climate variables and data sources, inclusion of the major modes of climate variability, and incorporation of other drivers of change) is key to discerning the climate sensitivities of sectors and systems in regions where the impacts of climate change currently remain elusive. Attributing such changes to human forcing of the climate system, where possible, is important for development of effective mitigation and adaptation. Current challenges in documenting adaptation and the role of indigenous knowledge in detection and attribution are described.

  20. Climate change and livestock: Impacts, adaptation, and mitigation

    Directory of Open Access Journals (Sweden)

    M. Melissa Rojas-Downing

    2017-01-01

    Full Text Available Global demand for livestock products is expected to double by 2050, mainly due to improvement in the worldwide standard of living. Meanwhile, climate change is a threat to livestock production because of the impact on quality of feed crop and forage, water availability, animal and milk production, livestock diseases, animal reproduction, and biodiversity. This study reviews the global impacts of climate change on livestock production, the contribution of livestock production to climate change, and specific climate change adaptation and mitigation strategies in the livestock sector. Livestock production will be limited by climate variability as animal water consumption is expected to increase by a factor of three, demand for agricultural lands increase due to need for 70% growth in production, and food security concern since about one-third of the global cereal harvest is used for livestock feed. Meanwhile, the livestock sector contributes 14.5% of global greenhouse gas (GHG emissions, driving further climate change. Consequently, the livestock sector will be a key player in the mitigation of GHG emissions and improving global food security. Therefore, in the transition to sustainable livestock production, there is a need for: a assessments related to the use of adaptation and mitigation measures tailored to the location and livestock production system in use, and b policies that support and facilitate the implementation of climate change adaptation and mitigation measures.

  1. Health Care Facilities Resilient to Climate Change Impacts

    Directory of Open Access Journals (Sweden)

    Jaclyn Paterson

    2014-12-01

    Full Text Available Climate change will increase the frequency and magnitude of extreme weather events and create risks that will impact health care facilities. Health care facilities will need to assess climate change risks and adopt adaptive management strategies to be resilient, but guidance tools are lacking. In this study, a toolkit was developed for health care facility officials to assess the resiliency of their facility to climate change impacts. A mixed methods approach was used to develop climate change resiliency indicators to inform the development of the toolkit. The toolkit consists of a checklist for officials who work in areas of emergency management, facilities management and health care services and supply chain management, a facilitator’s guide for administering the checklist, and a resource guidebook to inform adaptation. Six health care facilities representing three provinces in Canada piloted the checklist. Senior level officials with expertise in the aforementioned areas were invited to review the checklist, provide feedback during qualitative interviews and review the final toolkit at a stakeholder workshop. The toolkit helps health care facility officials identify gaps in climate change preparedness, direct allocation of adaptation resources and inform strategic planning to increase resiliency to climate change.

  2. Health Care Facilities Resilient to Climate Change Impacts

    Science.gov (United States)

    Paterson, Jaclyn; Berry, Peter; Ebi, Kristie; Varangu, Linda

    2014-01-01

    Climate change will increase the frequency and magnitude of extreme weather events and create risks that will impact health care facilities. Health care facilities will need to assess climate change risks and adopt adaptive management strategies to be resilient, but guidance tools are lacking. In this study, a toolkit was developed for health care facility officials to assess the resiliency of their facility to climate change impacts. A mixed methods approach was used to develop climate change resiliency indicators to inform the development of the toolkit. The toolkit consists of a checklist for officials who work in areas of emergency management, facilities management and health care services and supply chain management, a facilitator’s guide for administering the checklist, and a resource guidebook to inform adaptation. Six health care facilities representing three provinces in Canada piloted the checklist. Senior level officials with expertise in the aforementioned areas were invited to review the checklist, provide feedback during qualitative interviews and review the final toolkit at a stakeholder workshop. The toolkit helps health care facility officials identify gaps in climate change preparedness, direct allocation of adaptation resources and inform strategic planning to increase resiliency to climate change. PMID:25522050

  3. Criteria for assessing climate change impacts on ecosystems.

    Science.gov (United States)

    Loehle, Craig

    2011-09-01

    There is concern about the potential impacts of climate change on species and ecosystems. To address this concern, a large body of literature has developed in which these impacts are assessed. In this study, criteria for conducting reliable and useful assessments of impacts of future climate are suggested. The major decisions involve: clearly defining an emissions scenario; selecting a climate model; evaluating climate model skill and bias; quantifying General Circulation Model (GCM) between-model variability; selecting an ecosystem model and assessing uncertainty; properly considering transient versus equilibrium responses; including effects of CO(2) on plant response; evaluating implications of simplifying assumptions; and considering animal linkage with vegetation. A sample of the literature was surveyed in light of these criteria. Many of the studies used climate simulations that were >10 years old and not representative of best current models. Future effects of elevated CO(2) on plant drought resistance and productivity were generally included in growth model studies but not in niche (habitat suitability) studies, causing the latter to forecast greater future adverse impacts. Overly simplified spatial representation was frequent and caused the existence of refugia to be underestimated. Few studies compared multiple climate simulations and ecosystem models (including parametric uncertainty), leading to a false impression of precision and potentially arbitrary results due to high between-model variance. No study assessed climate model retrodictive skill or bias. Overall, most current studies fail to meet all of the proposed criteria. Suggestions for improving assessments are provided.

  4. Climate Change: Socio-Economic impacts and violent conflict

    NARCIS (Netherlands)

    Ierland EC; Klaassen MG; Nierop T; van der Wusten H; PB-NOP; LUW

    1996-01-01

    This report contains a literature study on the socio economic impacts of climate change and the possibilities of violent conflicts enhanced by the greenhouse effect. The socio economic impacts are classified according to the economic sectors in chapter 2 of the study. The impacts on property,

  5. Climate Change Impacts on the Congo Basin Region

    NARCIS (Netherlands)

    Ludwig, F.; Franssen, W.; Jans, W.W.P.; Kruijt, B.; Supit, I.

    2012-01-01

    This report presents analyses of climate change impacts in the Congo Basin on water for agriculture and hydropower, forest ecosystem functioning and carbon storage and impacts of climate variability and change on future economic development. To quantify the impacts of future climate we developed a

  6. Climate change impact on wetland forest plants of SNR Zasavica

    Directory of Open Access Journals (Sweden)

    Čavlović Dragana

    2012-01-01

    Full Text Available Wetlands are among the most vulnerable habitats on the planet. Very complex forest ecosystems are also parts of wetlands. Research and analysis of forest vegetation elements, leads to a conclusion about ecological conditions of wetlands. The aim of the paper is detail forest vegetation study, and analyzing the impact of climate changes on wetland forest vegetations of the strict protection area at the SNR Zasavica Ramsar site. Field research was carried out by using Braun-Blanquet’s Zurich-Montpelier school method. Phytogeographical elements and life forms of plants were determined subsequently, in order to get indicator values of wetland plants. Coupled Regional Climate Model (CRCM, EBU-POM was used for the climate simulations. Exact climatic variables for the site were determined by downscaling method. Climatic variables reference values were taken for the period of 1961-1990, and climate change simulations for the period 2071-2100 (A1B and A2. Indicator values of forest plants taken into consideration were humidity and temperature; therefore, ecological optimums were determined in scales of humidity and temperature. Regional Climate Model shows that there will be a long and intensive dry period in the future, with high temperatures from April till October. Continental winter will be more humid, with higher precipitation, especially in February. Based on the analysis of results it was concluded that wetlands are transitional habitats, also very variable and therefore vulnerable to changes. The changes may lead to the extinction of some plant species.

  7. On The Impact of Climate Change to Agricultural Productivity in East Java

    Science.gov (United States)

    Kuswanto, Heri; Salamah, Mutiah; Mumpuni Retnaningsih, Sri; Dwi Prastyo, Dedy

    2018-03-01

    Many researches showed that climate change has significant impact on agricultural sector, which threats the food security especially in developing countries. It has been observed also that the climate change increases the intensity of extreme events. This research investigated the impact climate to the agricultural productivity in East Java, as one of the main rice producers in Indonesia. Standard regression as well as panel regression models have been performed in order to find the best model which is able to describe the climate change impact. The analysis found that the fixed effect model of panel regression outperforms the others showing that climate change had negatively impacted the rice productivity in East Java. The effect in Malang and Pasuruan were almost the same, while the impact in Sumenep was the least one compared to other districts.

  8. Regional Risk Assessment for climate change impacts on coastal aquifers.

    Science.gov (United States)

    Iyalomhe, F; Rizzi, J; Pasini, S; Torresan, S; Critto, A; Marcomini, A

    2015-12-15

    Coastal aquifers have been identified as particularly vulnerable to impacts on water quantity and quality due to the high density of socio-economic activities and human assets in coastal regions and to the projected rising sea levels, contributing to the process of saltwater intrusion. This paper proposes a Regional Risk Assessment (RRA) methodology integrated with a chain of numerical models to evaluate potential climate change-related impacts on coastal aquifers and linked natural and human systems (i.e., wells, river, agricultural areas, lakes, forests and semi-natural environments). The RRA methodology employs Multi Criteria Decision Analysis methods and Geographic Information Systems functionalities to integrate heterogeneous spatial data on hazard, susceptibility and risk for saltwater intrusion and groundwater level variation. The proposed approach was applied on the Esino River basin (Italy) using future climate hazard scenarios based on a chain of climate, hydrological, hydraulic and groundwater system models running at different spatial scales. Models were forced with the IPCC SRES A1B emission scenario for the period 2071-2100 over four seasons (i.e., winter, spring, summer and autumn). Results indicate that in future seasons, climate change will cause few impacts on the lower Esino River valley. Groundwater level decrease will have limited effects: agricultural areas, forests and semi-natural environments will be at risk only in a region close to the coastline which covers less than 5% of the total surface of the considered receptors; less than 3.5% of the wells will be exposed in the worst scenario. Saltwater intrusion impact in future scenarios will be restricted to a narrow region close to the coastline (only few hundred meters), and thus it is expected to have very limited effects on the Esino coastal aquifer with no consequences on the considered natural and human systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Modeling the Impacts of Historic Climate Change and Extreme Droughts on Water Yield and Productivity of National Forests over the Conterminous U.S

    Science.gov (United States)

    Sun, S.; Sun, G.; Caldwell, P. V.; McNulty, S. G.; Zhang, Y.

    2014-12-01

    Quantifying the impacts of droughts on the U.S National Forests (NFs) is necessary to develop sound forest management plans to mitigate and adapt to climate change. This study applied a water balance model (WaSSI) to 170 National Forests (NFs) over the conterminous U.S to examine how long-term climatic change and extreme climate events impacted forest water yield and productivity. Our model predicted that mean water yield decreased by 5% while mean productivity increased by 10% between 1961-2012 across the NFs. Overall 32% of NFs showed a significant increasing trend in forest gross ecosystem productivity (GEP), while 5% of the NFs had a significant decreasing trend. This study also suggested that the extent and severity of drought events occurring in the NFs had an increasing trend during the past 50 years. Taking the 170 NFs as a whole, the top-five droughts were characterized by a 261 mm/yr (or 30%) reduction in precipitation, that resulted in reductions in evapotranspiration by 55 mm/yr (or 10%), water yield by 154 mm/yr (or 49%) and GEP by 121 gC/m2/yr (or 10%). However, distribution of these changes varied spatially due to differences in vegetation types, weather, and geography. Overall, this study provided an assessment of historical impacts of droughts on forest watershed hydrology and productivity across diverse geographic regions using a consistent database. The study also identified forest watersheds that were severely influenced by historical drought, and provided a reference to develop appropriate adaptation strategies for potential future extreme droughts on the forest ecosystem services of NFs.

  10. Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum using hydrological and geophysical methods

    Science.gov (United States)

    Sulzbacher, H.; Wiederhold, H.; Siemon, B.; Grinat, M.; Igel, J.; Burschil, T.; Günther, T.; Hinsby, K.

    2012-10-01

    A numerical, density dependent groundwater model is set up for the North Sea Island of Borkum to estimate climate change impacts on coastal aquifers and especially the situation of barrier islands in the Wadden Sea. The database includes information from boreholes, a seismic survey, a helicopter-borne electromagnetic (HEM) survey, monitoring of the freshwater-saltwater boundary by vertical electrode chains in two boreholes, measurements of groundwater table, pumping and slug tests, as well as water samples. Based on a statistical analysis of borehole columns, seismic sections and HEM, a hydrogeological model is set up. The groundwater model is developed using the finite-element programme FEFLOW. The density dependent groundwater model is calibrated on the basis of hydraulic, hydrological and geophysical data, in particular spatial HEM and local monitoring data. Verification runs with the calibrated model show good agreement between measured and computed hydraulic heads. A good agreement is also obtained between measured and computed density or total dissolved solids data for both the entire freshwater lens on a large scale and in the area of the well fields on a small scale. For simulating future changes in this coastal groundwater system until the end of the current century, we use the climate scenario A2, specified by the Intergovernmental Panel on Climate Change and, in particular, the data for the German North Sea coast. Simulation runs show proceeding salinisation with time beneath the well fields of the two waterworks Waterdelle and Ostland. The modelling study shows that the spreading of well fields is an appropriate protection measure against excessive salinisation of the water supply until the end of the current century.

  11. Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum using hydrological and geophysical methods

    Directory of Open Access Journals (Sweden)

    H. Sulzbacher

    2012-10-01

    Full Text Available A numerical, density dependent groundwater model is set up for the North Sea Island of Borkum to estimate climate change impacts on coastal aquifers and especially the situation of barrier islands in the Wadden Sea. The database includes information from boreholes, a seismic survey, a helicopter-borne electromagnetic (HEM survey, monitoring of the freshwater-saltwater boundary by vertical electrode chains in two boreholes, measurements of groundwater table, pumping and slug tests, as well as water samples. Based on a statistical analysis of borehole columns, seismic sections and HEM, a hydrogeological model is set up. The groundwater model is developed using the finite-element programme FEFLOW. The density dependent groundwater model is calibrated on the basis of hydraulic, hydrological and geophysical data, in particular spatial HEM and local monitoring data. Verification runs with the calibrated model show good agreement between measured and computed hydraulic heads. A good agreement is also obtained between measured and computed density or total dissolved solids data for both the entire freshwater lens on a large scale and in the area of the well fields on a small scale.

    For simulating future changes in this coastal groundwater system until the end of the current century, we use the climate scenario A2, specified by the Intergovernmental Panel on Climate Change and, in particular, the data for the German North Sea coast. Simulation runs show proceeding salinisation with time beneath the well fields of the two waterworks Waterdelle and Ostland.

    The modelling study shows that the spreading of well fields is an appropriate protection measure against excessive salinisation of the water supply until the end of the current century.

  12. A model for climate change education in formal and informal settings--C2S2 Climate Change Student Summit

    Science.gov (United States)

    Huffman, L. T.; Lynds, S. E.; Rack, F. R.

    2012-12-01

    Through a NOAA Environmental Literacy grant, ANDRILL (ANtarctic geological DRILLing) created a unique opportunity for both formal and informal educators to engage their classrooms/audiences in understanding the complexities of climate change. The program, entitled C2S2: Climate Change Student Summits, included excellent geographical coverage through an exceptional two-workshop professional development series for teachers in each of nine different regions representing the U.S. National Climate Assessment regions defined by the U.S. Global Change Research Program. The program also included a creative, investigative science research and presentation experience for teams of students in each region, culminating in the Climate Change Student Summit, an on-site capstone event including a videoconference connecting all sites. The success of this program is based on combining multiple aspects, such as providing professional development for educators and encouraging the active involvement of research scientists, both in the professional development workshops and in the Student Summit. Another key factor is the close working relationships between informal and formal education entities, including the involvement of informal science learning facilities and informal science education leaders. The program includes the creation and use of cutting-edge curriculum materials available in the ELF, (Environmental Literacy Framework with a focus on climate change) and hands-on resources for teachers and students that provide an earth systems approach to climate change education, which have been successfully used in grades 5-12 as well as at numerous science museums. The C2S2 project has completed four years of activities with demonstrated positive impacts on both students and teachers. This presentation will share the lessons learned about implementing this climate change science education program and suggest that it is a successful model that can be used to scale up this project from

  13. Economic Evaluation of Climate Change Impacts and Adaptation in Italy

    International Nuclear Information System (INIS)

    Gambarelli, G.; Goria, A.

    2004-07-01

    The paper deals with the social and economic dimensions of climate change impacts and adaptation in Italy. The ultimate aim of the paper is to provide policy makers and experts with a conceptual framework, as well as methodological and operational tools for dealing with climate change impacts and adaptation from an economic perspective. In order to do so, first a conceptual and theoretical framework of the economic assessment of climate change impacts is presented and the state of the art about impact assessment studies is briefly analysed. Then, the Italian case is taken into account, by underlying the main impacts and adaptation challenges that are likely to be implied by climate change in the next decades. The analysis of the Italian case is particularly addressed through the description of the methodology and results of two case studies. The first one, dealing mainly with impact assessment, is carried out at the national level and is part of a EC funded project on Weather Impacts on Natural, Social and Economic Systems (WISE). The second one is carried out at the local level and focuses on sea level rise impacts and adaptation in a plane south of Rome. The two case studies allow to propose simple and flexible methodologies for the economic impact assessment and the economic valuation of adaptation strategies

  14. Impact of climate change on carbon cycle in freshwater ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Kankaala, P.; Ojala, A.; Tulonen, T.; Haapamaeki, J.; Arvola, L. [Helsinki Univ., Lammi (Finland). Lammi Biological Station

    1996-12-31

    The impacts of the expected climate change on Finnish lake ecosystems were studied with the biota of the mesohumic Lake Paeaejaervi, southern Finland. Experimental conditions, from small-scale experiments on single species level to a large-scale ecosystem manipulation, were established to simulate directly the future climate and/or loading of nutrients and dissolved organic matter (DOM) from the drainage area. The experimental studies were accomplished by modelling the carbon flow in the pelagic food web as well as the growth of littoral macrophytes. The main hypothese tested were as follows: As a consequence of the climate change (rising temperature and increasing precipitation) the loading of nutrients and dissolved organic matter (DOM) from the drainage area to the lake will increase. In the pelagic zone this will be first reflected i higher productivity of primary producers and bacteria, but will later affect the entire food chain. Increase in atmospheric CO{sub 2} concentration and ambient temperature as well as longer growing season will enhance the overall productivity of littoral macrophytes. The higher productivity of the littoral zone will be reflected in the pelagic zone an thus may change the whole ecosystem of the lake

  15. Misleading prioritizations from modelling range shifts under climate change

    Science.gov (United States)

    Sofaer, Helen R.; Jarnevich, Catherine S.; Flather, Curtis H.

    2018-01-01

    AimConservation planning requires the prioritization of a subset of taxa and geographical locations to focus monitoring and management efforts. Integration of the threats and opportunities posed by climate change often relies on predictions from species distribution models, particularly for assessments of vulnerability or invasion risk for multiple taxa. We evaluated whether species distribution models could reliably rank changes in species range size under climate and land use change.LocationConterminous U.S.A.Time period1977–2014.Major taxa studiedPasserine birds.MethodsWe estimated ensembles of species distribution models based on historical North American Breeding Bird Survey occurrences for 190 songbirds, and generated predictions to recent years given c. 35 years of observed land use and climate change. We evaluated model predictions using standard metrics of discrimination performance and a more detailed assessment of the ability of models to rank species vulnerability to climate change based on predicted range loss, range gain, and overall change in range size.ResultsSpecies distribution models yielded unreliable and misleading assessments of relative vulnerability to climate and land use change. Models could not accurately predict range expansion or contraction, and therefore failed to anticipate patterns of range change among species. These failures occurred despite excellent overall discrimination ability and transferability to the validation time period, which reflected strong performance at the majority of locations that were either always or never occupied by each species.Main conclusionsModels failed for the questions and at the locations of greatest interest to conservation and management. This highlights potential pitfalls of multi-taxa impact assessments under global change; in our case, models provided misleading rankings of the most impacted species, and spatial information about range changes was not credible. As modelling methods and

  16. The Significance of Shifts in Precipitation Patterns: Modelling the Impacts of Climate Change and Glacier Retreat on Extreme Flood Events in Denali National Park, Alaska

    Science.gov (United States)

    Crossman, Jill; Futter, Martyn N.; Whitehead, Paul G.

    2013-01-01

    In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21st century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21st century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff. PMID

  17. The significance of shifts in precipitation patterns: modelling the impacts of climate change and glacier retreat on extreme flood events in Denali National Park, Alaska.

    Science.gov (United States)

    Crossman, Jill; Futter, Martyn N; Whitehead, Paul G

    2013-01-01

    In glacier-fed systems climate change may have various effects over a range of time scales, including increasing river discharge, flood frequency and magnitude. This study uses a combination of empirical monitoring and modelling to project the impacts of climate change on the glacial-fed Middle Fork Toklat River, Denali National Park, Alaska. We use a regional calibration of the model HBV to account for a paucity of long term observed flow data, validating a local application using glacial mass balance data and summer flow records. Two Global Climate Models (HADCM3 and CGCM2) and two IPCC scenarios (A2 and B2) are used to ascertain potential changes in meteorological conditions, river discharge, flood frequency and flood magnitude. Using remote sensing methods this study refines existing estimates of glacial recession rates, finding that since 2000, rates have increased from 24 m per year to 68.5m per year, with associated increases in ablation zone ice loss. GCM projections indicate that over the 21(st) century these rates will increase still further, most extensively under the CGCM2 model, and A2 scenarios. Due to greater winter precipitation and ice and snow accumulation, glaciers release increasing meltwater quantities throughout the 21(st) century. Despite increases in glacial melt, results indicate that it is predominantly precipitation that affects river discharge. Three of the four IPCC scenarios project increases in flood frequency and magnitude, events which were primarily associated with changing precipitation patterns, rather than extreme temperature increases or meltwater release. Results suggest that although increasing temperatures will significantly increase glacial melt and winter baseflow, meltwater alone does not pose a significant flood hazard to the Toklat River catchment. Projected changes in precipitation are the primary concern, both through changing snow volumes available for melt, and more directly through increasing catchment runoff.

  18. Impacts of climate change and variability, and adaptation strategies ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    13 mai 2011 ... Given this overdependence on rainfed agriculture, farmers are highly vulnerable to climate change. ... evidence of climate-related impacts on crop production, local communities' perceptions of these impacts, and current adaptation strategies in two central Tanzanian villages: Kamenyanga and Kintinku.

  19. Climate Change in Environmental Impact Assessment of Renewable Energy Projects

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2012-01-01

    Many renewable energy projects are subject to EIA. However a question that surfaces is what use an impact assessment is when the project is ‘good for the environment’? One of the current topics receiving much attention in impact assessment is climate change and how this factor is integrated in im...

  20. Assessment of the phenology impact on SVAT modelling through a crop growth model over a Mediterranean crop site : Consequences on the water balance under climate change conditions.

    Science.gov (United States)

    Moulin, S.; Garrigues, S.; Olioso, A.; Ruget, F.; Desfonds, V.; Bertrand, N.; Lecharpentier, P.; Ripoche, D.; Launay, M.; Brisson, N.

    2012-04-01

    In the coming years, water resources and vegetation production of Mediterranean areas will be drastically affected by climate changes as well as intense and rapid changes in the land use. The impact of climate and land-use changes on water balance and vegetation production can be analysed and predicted through land surface models, provided that the uncertainties associated to these models and to the data used to run them are evaluated. Vegetation phenology is generally poorly taken into account in land surface models and may be a substantial source of uncertainties for global change scenario studies. In this paper, we discuss the improvement obtained in Soil Vegetation Atmosphere Transfer (SVAT) modelling by taking into account the phenology using a crop growth model, focusing on the water budget, over a Mediterranean crop site. The STICS model (Brisson et al, 1998) is used to simulate crop processes (growth and development, taking into account water and nitrogen exchanges between the environment and the crop). STICS describes the vegetation phenology very accurately and was validated for many types of crop and various pedoclimatic conditions. The SVAT model being analyzed is the a-gs version (Calvet et al., 1998) of the ISBA model (Noilhan et al, 1989), which simulates the photosynthesis and calculates the plant biomass and the Leaf Area Index (LAI) using a simple growth model. In STICS, the phenology is driven by the sum of daily air temperatures, which is quite realistic, while in ISBA, the phenology is driven by the plant carbon assimilation. Measurements (vegetation characteristics, soil properties, agricultural practises, energy and water balance) performed in the lower Rhone valley experimental area (Avignon, France) are used as well as long series of climatic data (past records and future simulations). In a first step, by running STICS and ISBA for maize and wheat crops with long series of climatic data, including future scenarios of climate (CLIMATOR

  1. Impact-Induced Climate Change on Titan

    Science.gov (United States)

    Zahnle, Kevin; Korycansky, Donald

    2012-01-01

    Titan's thick atmosphere and volatile surface cause it to respond to big impacts like the one that produced the prominent Menrva impact basin in a somewhat Earth-like manner. Menrva was big enough to raise the surface temperature by 100 K. If methane in the regolith is generally as abundant as it was at the Huygens landing site, Menrva would have been big enough to double the amount of methane in the atmosphere. The extra methane would have drizzled out of the atmosphere over hundreds of years. Conditions may have been favorable for clathrating volatiles such as ethane. Impacts can also create local crater lakes set in warm ice but these quickly sink below the warm ice; whether the cryptic waters quickly freeze by mixing with the ice crust or whether they long endure under the ice remains a open question. Bigger impacts can create shallow liquid water oceans at the surface. If Titan's crust is made of water ice, the putative Hotei impact (a possible 800-1200 km diameter basin, Soderblom et al 2009) would have raised the average surface temperature to 350-400 K. Water rain would have fallen and global meltwaters would have averaged 50 m to as much as 500 m deep. The meltwaters may not have lasted more than a few decades or centuries at most, but are interesting to consider given Titan's organic wealth.

  2. Consideration of climate change on environmental impact assessment in Spain

    International Nuclear Information System (INIS)

    Enríquez-de-Salamanca, Álvaro; Martín-Aranda, Rosa M.; Díaz-Sierra, Rubén

    2016-01-01

    Most of the projects subject to environmental impact assessment (EIA) are closely related to climate change, as they contribute to or are affected by it. The growing certainty about climate change and its impacts makes its consideration an essential part of the EIA process, as well as in strategic environmental assessment (SEA). This paper examines how climate change (CC) has been taken into account in EIA in Spain through the analysis of 1713 environmental records of decision (RODs) of projects submitted for EIA. In 2013 Spain approved one of the most advanced laws in terms of CC consideration in environmental assessment, although it had not yet accumulated extensive practice on the issue. This contrasts with the situation of countries like Canada or the USA, which have a significant body of experience without specific legal requirements. Only 14% of the RODs analysed included references to CC, and in more than half of the cases it was a mere citation. Thermal power plants, which are subject to specific GHG regulations, show the highest consideration, while transport infrastructures, which are important contributors to CC, show a very low consideration. Almost all the references are related to their contribution to CC, while consideration of the effects of CC is minimal. The increasingly common incorporation of CC into SEA, should not imply its exclusion from EIA, because both processes have different aims and uses. Including the obligation to consider CC in the EIA regulations is highly desirable, but probably not enough without other measures, such as practical guidance, training and motivational programmes for practitioners and evaluators. But even these actions cannot ensure effective and adequate assessments of CC. Probably more resources should be spent on creating greater awareness in all the agents involved in EIA. - Highlights: • We analyse how the climate change is considered in EIA in Spain. • Few projects seriously assess climate change.

  3. Consideration of climate change on environmental impact assessment in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Enríquez-de-Salamanca, Álvaro, E-mail: aenriquez@draba.org [Escuela de Doctorado, Universidad Nacional de Educación a Distancia, UNED, Draba Ingeniería y Consultoría Medioambiental, Cañada Nueva, 29, 28200 San Lorenzo de El Escorial (Spain); Martín-Aranda, Rosa M., E-mail: rmartin@ccia.uned.es [Departamento de Química Inorgánica y Química Técnica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo Senda del Rey, 9, 28040, Madrid (Spain); Díaz-Sierra, Rubén, E-mail: sierra@dfmf.uned.es [Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo Senda del Rey, 9, 28040, Madrid (Spain)

    2016-02-15

    Most of the projects subject to environmental impact assessment (EIA) are closely related to climate change, as they contribute to or are affected by it. The growing certainty about climate change and its impacts makes its consideration an essential part of the EIA process, as well as in strategic environmental assessment (SEA). This paper examines how climate change (CC) has been taken into account in EIA in Spain through the analysis of 1713 environmental records of decision (RODs) of projects submitted for EIA. In 2013 Spain approved one of the most advanced laws in terms of CC consideration in environmental assessment, although it had not yet accumulated extensive practice on the issue. This contrasts with the situation of countries like Canada or the USA, which have a significant body of experience without specific legal requirements. Only 14% of the RODs analysed included references to CC, and in more than half of the cases it was a mere citation. Thermal power plants, which are subject to specific GHG regulations, show the highest consideration, while transport infrastructures, which are important contributors to CC, show a very low consideration. Almost all the references are related to their contribution to CC, while consideration of the effects of CC is minimal. The increasingly common incorporation of CC into SEA, should not imply its exclusion from EIA, because both processes have different aims and uses. Including the obligation to consider CC in the EIA regulations is highly desirable, but probably not enough without other measures, such as practical guidance, training and motivational programmes for practitioners and evaluators. But even these actions cannot ensure effective and adequate assessments of CC. Probably more resources should be spent on creating greater awareness in all the agents involved in EIA. - Highlights: • We analyse how the climate change is considered in EIA in Spain. • Few projects seriously assess climate change.

  4. Little auks buffer the impact of current Arctic climate change

    DEFF Research Database (Denmark)

    Grémillet, David; Welcker, Jorg; Karnovsky, Nina J.

    2012-01-01

    in this region that are potentially highly susceptible to climatic effects. Using an integrative study of their behaviour, physiology and fitness at three study sites, we evaluated the impact of ocean warming on little auks across the Greenland Sea in 2005-2007. Contrary to our hypothesis, the birds responded...... to a wide range of sea surface temperatures via plasticity of their foraging behaviour, allowing them to maintain their fitness levels unchanged. Predicted effects of climate change are significantly attenuated by such plasticity, confounding attempts to forecast future impacts of climate change by envelope...

  5. Impact of climate change on Antarctic krill

    NARCIS (Netherlands)

    Florentino De Souza Silva, A.P.; Atkinson, A.; Kawaguchi, S.; Bravo Rebolledo, E.; Franeker, van J.A.

    2012-01-01

    Antarctic krill Euphausia superba (hereafter ‘krill’) occur in regions undergoing rapid environmental change, particularly loss of winter sea ice. During recent years, harvesting of krill has increased, possibly enhancing stress on krill and Antarctic ecosystems. Here we review the overall impact of

  6. Impact of climate change on the Hii River basin and salinity in Lake Shinji: a case study using the SWAT model and a regression curve

    Science.gov (United States)

    The impacts of climate change on water resources were analysed for the Hii River basin and downstream Lake Shinji. The variation between saline and fresh water within these systems means that they encompass diverse ecosystems. Changes in evapotranspiration (ET), snow water equivalent, discharge into...

  7. Climate change impacts in Iran: assessing our current knowledge

    Science.gov (United States)

    Rahimi, Jaber; Malekian, Arash; Khalili, Ali

    2018-02-01

    During recent years, various studies have focused on investigating the direct and indirect impacts of climate changes in Iran while the noteworthy fact is the achievement gained by these researches. Furthermore, what should be taken into consideration is whether these studies have been able to provide appropriate opportunities for improving further studies in this particular field or not. To address these questions, this study systematically reviewed and summarized the current available literature (n = 150) regarding the impacts of climate change on temperature and precipitation in Iran to assess our current state of knowledge. The results revealed that while all studies discuss the probable changes in temperature and precipitation over the next decades, serious contradictions could be seen in their results; also, the general pattern of changes was different in most of the cases. This matter may have a significant effect on public beliefs in climate change, which can be a serious warning for the activists in this realm.

  8. Climate change and its gendered impacts on agriculture in Vietnam

    Directory of Open Access Journals (Sweden)

    Trung, P.T

    2013-03-01

    Full Text Available Studies have shown that Vietnam is one of the countries that most affected by climate change because of its geographical and natural conditions together with its fast but massive and unplanned urbanization. There are many research and studies that have been conducted to assess the impacts of climate change on different sectors in Vietnam. Agriculture plays an important role in the country’s economy in terms of poverty reduction, food security, employment and export but projected to be heavily affected because of sea level rise, floods or droughts etc. A large proportion of Vietnam’s population, especially women, involves with agricultural works and production. So, this paper using a gender perspective will examine possible impacts that climate change has been causing to women and men differently in order to propose some solutions for the facing problems. Since the paper only utilizes available resources, it can serve as a concept note for further works in the future.

  9. IPCC Fourth Assessment Report (AR4) Observed Climate Change Impacts Database

    Data.gov (United States)

    National Aeronautics and Space Administration — The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessement Report (AR4) Observed Climate Change Impacts Database contains observed responses to climate...

  10. European information on climate change impacts, vulnerability and adaptation

    Science.gov (United States)

    Jol, A.; Isoard, S.

    2010-09-01

    Vulnerability to natural and technological disasters is increasing due to a combination of intensifying land use, increasing industrial development, further urban expansion and expanding infrastructure and also climate change. At EU level the European Commission's White Paper on adaptation to climate change (published in 2009) highlights that adaptation actions should be focused on the most vulnerable areas and communities in Europe (e.g. mountains, coastal areas, river flood prone areas, Mediterranean, Arctic). Mainstreaming of climate change into existing EU policies will be a key policy, including within the Water Framework Directive, Marine Strategy Framework Directive, Nature protection and biodiversity policies, integrated coastal zone management, other (sectoral) policies (agriculture, forestry, energy, transport, health) and disaster risk prevention. 2010 is the international year on biodiversity and the Conference of Parties of the biodiversity convention will meet in autumn 2010 (Japan) to discuss amongst other post-2010 strategies, objectives and indicators. Both within the Biodiversity Convention (CBD) and the Climate Change Convention (UNFCCC) there is increasing recognition of the need for integration of biodiversity conservation into climate change mitigation and adaptation activities. Furthermore a number of European countries and also some regions have started to prepare and/or have adopted national adaptation plans or frameworks. Sharing of good practices on climate change vulnerability methods and adaptation actions is so far limited, but is essential to improve such plans, at national, sub national and local level where much of the adaptation action is already taking place and will be expanding in future, also involving increasingly the business community. The EU Clearinghouse on CC impacts, vulnerability and adaptation should address these needs and it is planned to be operational end of 2011. The EEA is expected to have a role in its

  11. Synthetic Scenarios from CMIP5 Model Simulations for Climate Change Impact Assessments in Managed Ecosystems and Water Resources: Case Study in South Asian Countries

    Science.gov (United States)

    Anandhi, A.; Omani, N.; Chaubey, I.; Horton, R.; Bader, D.; Nanjundiah, R. S.

    2017-01-01

    Increasing population, urbanization, and associated demand for food production compounded by climate change and variability have important implications for the managed ecosystems and water resources of a region. This is particularly true for south Asia, which supports one quarter of the global population, half of whom live below the poverty line. This region is largely dependent on monsoon precipitation for water. Given the limited resources of the developing countries in this region, the objective of our study was to empirically explore climate change in south Asia up to the year 2099 using monthly simulations from 35 global climate models (GCMs) participating in the fifth phase of the Climate Model Inter-comparison Project (CMIP5) for two future emission scenarios (representative concentration pathways RCP4.5 and RCP8.5) and provide a wide range of potential climate change outcomes. This was carried out using a three-step procedure: calculating the mean annual, monsoon, and non-monsoon precipitation and temperatures; estimating the percent change from historical conditions; and developing scenario funnels and synthetic scenarios. This methodology was applied for the entire south Asia region; however, the percent change information generated at 1.5deg grid scale can be used to generate scenarios at finer spatial scales. Our results showed a high variability in the future change in precipitation (-23% to 52%, maximum in the non-monsoon season) and temperature (0.8% to 2.1%) in the region. Temperatures in the region consistently increased, especially in the Himalayan region, which could have impacts including a faster retreat of glaciers and increased floods. It could also change rivers from perennial to seasonal, leading to significant challenges in water management. Increasing temperatures could further stress groundwater reservoirs, leading to withdrawal rates that become even more unsustainable. The high precipitation variability (with higher propensity for

  12. Assessing climate change impacts on river flows and environmental flow requirements at catchment scale

    DEFF Research Database (Denmark)

    Gül, G.O.; Rosbjerg, Dan; Gül, A.

    2010-01-01

    The fourth assessment report of Intergovernmental Panel on Climate Change (IPCC) suggests studies that increase the spatial resolution to solve the scale mismatch between large-scale climatic models and the catchment scale while addressing climate change impacts on aquatic ecosystems. Impacts occur....... In this Study, the regional impacts of climate change on river flow and environmental flow requirement. which is a negotiated trade-off between water uses, are analysed for a lowland catchment in Denmark through MIKE SHE/MIKE 11 coupling. The Coupled model possesses an important capacity for simulating stream...... flows and groundwater head levels in a dynamic system. Although the simulation results from different global circulation models (GCMs) indicate different responses in flows to the climate change, there are obvious deviations of the river flows and environmental flow potentials computed for all...

  13. Anticipating Climate Change Impacts on Army Installations

    Science.gov (United States)

    2011-10-01

    3.1 35.6 2.0 NCAR CSM 2.2 36.9 2.7 35.6 2.0 ERDC SR-11-1 25 Figure 9 shows a comparison of the 16 models for temperatures and pre- cipitation...Research Activities in Atmospheric and Oceanic Modelling. Report No. 21, WMO/ TD -No. 665. World Meteorological Organization, Geneva, Switzerland...Modelling. Report No. 21, WMO/ TD -No. 665. World Meteorological Organization, Geneva, Switzerland. Cai, W., M. A. Collier, P. D. Durack, H. B

  14. Climate Change Impacts on Fort Bragg, NC

    Science.gov (United States)

    2013-10-15

    may remain a common resident at Fort Bragg ................. 57 B12 Fort Bragg is currently on the edge of the range of the Pond pine (Pinus...Forest migration changes near Fort Bragg. Ranges likely to increase to better include Fort Bragg: Loblolly bay Longleaf pine Pond pine Loblolly...various model scenario combinations while the most significant mini - mums are set by the A1B/giss_model_er arrangement. ERDC/CERL TR-13-22 45 Figure

  15. Collared Pikas as a Model Species for Studying the Biological Impacts of Climate Change in Alpine Ecosystems

    Science.gov (United States)

    O'Donovan, K. S.; Hik, D.

    2007-12-01

    Climate models suggest that global temperatures could rise between 1.4° C and 5.8° C over the next 100 years, and that these effects will be most extreme in northern mountain regions. Pikas (Ochotona, Lagomorpha) are widespread small mammals in the alpine environments of Asia and North America. They are cold adapted and consequently sensitive to warming global temperatures. Considerable research has shown a poleward migration of many species as a result of rising temperatures, but high alpine dwelling species, like the pika, may already be trapped at the top of mountains. Little is known about the threshold values of environmental conditions under which pikas either persist or disappear. Collared pikas (Ochotona collaris) inhabit alpine meadows in the Kluane region of the southwest Yukon. Sites located along an environmental gradient from nunataks in the St Elias Icefields to the Ruby Range Mountains have experienced different climatic and glacial histories. Using baseline data from the long-term study in the Ruby Ranges, we report on differences in the ecological and climatic conditions of sites along this gradient and how this translates into differences in the behavioural and population ecology of the pikas living there. By looking at these differences we can infer the potential impacts of a warming climate, and the subsequent ecological changes on collared pika populations in order to clarify the causes of local extinction and allow us to develop models for predicting ecological responses as conditions change under future climate regimes.

  16. Impacts of climate change for Swiss winter and summer tourism: a general equilibrium analysis

    OpenAIRE

    Thurm, Boris; Vielle, Marc; Vöhringer, Frank

    2017-01-01

    Tourism could be greatly affected by climate change due to its strong dependence on weather. In Switzerland, the sector represents an appreciable share of the economy. Thus, studying climate effects on tourism is necessary for developing adequate adaptation strategies. While most of the studies focused on winter tourism, we investigate the climate change impacts on both winter and summer tourism in Switzerland. Using a computable general equilibrium (CGE) model, we simulate the impacts of tem...

  17. assessing climate change impacts on river hydrology

    Indian Academy of Sciences (India)

    71

    Hydrologists and water management planners are in a quandary over the availability of. 6 water. ... The quality. 7 and quantity of water is affected by activities such as land-mining, agriculture, urban. 8 development and other anthropogenic activities within a watershed. Since the .... The digital elevation model (DEM). 8.

  18. Modeling Uncertainty in Climate Change: A Multi-Model Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Gillingham, Kenneth; Nordhaus, William; Anthoff, David; Blanford, Geoffrey J.; Bosetti, Valentina; Christensen, Peter; McJeon, Haewon C.; Reilly, J. M.; Sztorc, Paul

    2015-10-01

    The economics of climate change involves a vast array of uncertainties, complicating both the analysis and development of climate policy. This study presents the results of the first comprehensive study of uncertainty in climate change using multiple integrated assessment models. The study looks at model and parametric uncertainties for population, total factor productivity, and climate sensitivity and estimates the pdfs of key output variables, including CO2 concentrations, temperature, damages, and the social cost of carbon (SCC). One key finding is that parametric uncertainty is more important than uncertainty in model structure. Our resulting pdfs also provide insight on tail events.

  19. Assessment of climate change impacts on rainfall using large scale ...

    Indian Academy of Sciences (India)

    In this model, using the outputs from GCM, the rainfall of Zayandehrood dam is projected under two climate change scenarios. Most effective variables have been identified among 26 predictor variables. Comparison of the results of the two models shows that the developed SVM model has lesser errors in monthly rainfall ...

  20. Assessment of climate change impacts on rainfall using large scale

    Indian Academy of Sciences (India)

    In this model, using the outputs from GCM, the rainfall of Zayandehrood dam is projected under two climate change scenarios. Most effective variables have been identified among 26 predictor variables. Comparison of the results of the two models shows that the developed SVM model has lesser errors in monthly rainfall ...

  1. Challenges and priorities for modelling livestock health and pathogens in the context of climate change

    NARCIS (Netherlands)

    Özkan, Şeyda; Vitali, Andrea; Lacetera, Nicola; Amon, Barbara; Bannink, André; Bartley, Dave J.; Blanco-penedo, Isabel; Haas, De Yvette; Dufrasne, Isabelle; Elliott, John; Eory, Vera; Fox, Naomi J.; Garnsworthy, Phil C.; Gengler, Nicolas; Hammami, Hedi; Kyriazakis, Ilias; Leclère, David; Lessire, Françoise; Macleod, Michael; Robinson, Timothy P.; Ruete, Alejandro; Sandars, Daniel L.; Shrestha, Shailesh; Stott, Alistair W.; Twardy, Stanislaw; Vanrobays, Marie-Laure; Ahmadi, Bouda Vosough; Weindl, Isabelle; Wheelhouse, Nick; Williams, Adrian G.; Williams, Hefin W.; Wilson, Anthony J.; Østergaard, Søren; Kipling, Richard P.

    2016-01-01

    Climate change has the potential to impair livestock health, with consequences for animal welfare, productivity, greenhouse gas emissions, and human livelihoods and health. Modelling has an important role in assessing the impacts of climate change on livestock systems and the efficacy of potential

  2. Climate change adaptation impact cost assessment in France

    International Nuclear Information System (INIS)

    2009-01-01

    This document reports the works of an inter-departmental group and of sector-based and transverse groups which aimed at assessing the impacts of climate change. After a first contribution about the assessment methodology, the works of sector-based groups and transverse groups are reported. These groups are dealing with agriculture, forest, infrastructures and built environment, tourism, energy, health, water, natural risks (and insurance and adaptation to climatic change in metropolitan France), biodiversity and land. For each of them, challenges, assessment approaches, first results and perspectives are discussed

  3. Climate change impact on economical and industrial activities

    Science.gov (United States)

    Parey, Sylvie; Bernardara, Pietro; Donat, Markus G.

    2010-05-01

    Climate change is underway and even if mitigation measures are successfully implemented, societies will have to adapt to new climatic conditions in the near future and further. This session had been proposed to gather different studies dedicated to the climate change impact on some human activities, and discuss the possible ways of adaptation. Climate change is often presented in terms of global mean temperature evolutions, but what is important for adaptation concerns the local evolutions, and rather of the variability and extremes than of the mean of the involved meteorological parameters. In the session, studies and applications will be presented, covering different economical and industrial activities, such as energy production, (re-) insurance and risk assessment, water management or tourism.

  4. Climate Change and Bangladesh: Geographical and Socio-economic Impacts

    Directory of Open Access Journals (Sweden)

    Farjana Jahan

    2014-05-01

    Full Text Available Climate change, the effects of greenhouse effect and global warming, is out to alter the global map with its devouring prospects of sending a number of countries under the waves. Unfortunately yet unavoidably, Bangladesh stands at the forefront of climate forays. Its land, water and weather are being severely affected by undesirable climatic changes. Alarmingly, the dangers are to be intensified unless the trend is reversed. However, local initiative will hardly be enough to offset the grave concerns of unintended climatic changes in Bangladesh. The changes will also impact the socio-economic conditions of the country, putting the future of the nation on the line. Some ominous signs are already there for the concerned to respond with required amount of fervour. DOI: http://dx.doi.org/10.3126/dsaj.v7i0.10439 Dhaulagiri Journal of Sociology and Anthropology Vol. 7, 2013; 113-132

  5. Impacts of climate change on the global forest sector

    Science.gov (United States)

    Perez-Garcia, J.; Joyce, L.A.; McGuire, A.D.; Xiao, X.

    2002-01-01

    The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors

  6. Potential Impacts of Accelerated Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Leung, L. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vail, L. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-31

    This research project is part of the U.S. Nuclear Regulatory Commission’s (NRC’s) Probabilistic Flood Hazard Assessment (PFHA) Research plan in support of developing a risk-informed licensing framework for flood hazards and design standards at proposed new facilities and significance determination tools for evaluating potential deficiencies related to flood protection at operating facilities. The PFHA plan aims to build upon recent advances in deterministic, probabilistic, and statistical modeling of extreme precipitation events to develop regulatory tools and guidance for NRC staff with regard to PFHA for nuclear facilities. The tools and guidance developed under the PFHA plan will support and enhance NRC’s capacity to perform thorough and efficient reviews of license applications and license amendment requests. They will also support risk-informed significance determination of inspection findings, unusual events, and other oversight activities.

  7. Climate change impact on the limnology of Lake Kariba, Zambia ...

    African Journals Online (AJOL)

    Climate change impact on the limnology of Lake Kariba, Zambia–Zimbabwe. ... Warming was not accompanied by more pronounced stratification or upward shift in the thermocline, but instead there was a downward transfer of heat that caused the thermocline to descend and weaken, thus reducing thermal stability.

  8. Climate Change Impacts on the Built Environment in Nigeria

    African Journals Online (AJOL)

    Toshiba

    Abstract. The populations, infrastructure and ecology of cities are at risk from the impacts of climate change which affect urban ventilation and cooling, urban drainage and flood risk and water resources. Built areas exert considerable influence over their local climate and environment, and urban populations are already ...

  9. Impacts of Climate Change on Food Security and Poverty Reduction ...

    African Journals Online (AJOL)

    This paper focuses on three of these driving forces – climate change, animal disease and plant pests. We have concentrated on their implications for food security, but have also given concentrations to their impact on human health as this is another important factor determining human well being/poverty levels. Keywords: ...

  10. Adapting to the Impacts of Climate Change on Water Resources ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The project's main objective is to support capacity for adapting to the impacts of climate change on water resources in Canada, Morocco, and Niger. This will involve improving human health and the resilience of natural and human systems while also promoting the communication and application of knowledge about ...

  11. Potential climate-change impacts on the Chesapeake Bay

    Science.gov (United States)

    Raymond G. Najjar; Christopher R. Pyke; Mary Beth Adams; Denise Breitburg; Carl Hershner; Michael Kemp; Robert Howarth; Margaret R. Mulholland; Michael Paolisso; David Secor; Kevin Sellner; Denice Wardrop; Robert. Wood

    2010-01-01

    We review current understanding of the potential impact of climate change on the Chesapeake Bay. Scenarios for CO2 emissions indicate that by the end of the 21st century the Bay region will experience significant changes in climate forcings with respect to historical conditions, including increases in CO2 concentrations,...

  12. Climate change's impact on Morocco's northeast coast | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-04-25

    Apr 25, 2016 ... The Mediterranean is a global climate-change hotspot. Morocco's Mediterranean coast is particularly vulnerable due to the low-lying deltaic plain of the Moulouya River. Here, climate impacts could be disastrous given the river's ecological and economic importance. The Moulouya is the main water source ...

  13. The impact of climate change and anthropogenic factors on ...

    African Journals Online (AJOL)

    This paper examines the impact of climate change and anthropogenic factors on desertification in the semi-arid region of Nigeria. Climatic data (Temperature and rainfall) for 52 years (1950 – 2001) from 25 meteorological stations were collected and analysed. Questionnaires were also used to solicit respondents' ...

  14. Impacts of Climate Change and Climate Variability on Cocoa ...

    African Journals Online (AJOL)

    Impacts of Climate Change and Climate Variability on Cocoa ( Theobroma Cacao ) Yields in Meme Division, South West Region of Cameroon. ... Farm selection was based on age, consistency of sizes and management practices in an attempt to keep the factors affecting cocoa yield constant. Data on cocoa yield, flowering, ...

  15. Farmers' Perceptions of Climate Change and Its Agricultural Impacts ...

    African Journals Online (AJOL)

    This article presents an assessment of farmers' perceptions of climate change and its agricultural impacts in the Ethiopian portion of the Nile and Baro-Akobo river basins. A total of 500 randomly selected households were interviewed from 15 kebeles in five woredas, three each from dega, woina-dega and kolla ...

  16. Climate Change Impacts on the Built Environment in Nigeria ...

    African Journals Online (AJOL)

    The populations, infrastructure and ecology of cities are at risk from the impacts of climate change which affect urban ventilation and cooling, urban drainage and flood risk and water resources. Built areas exert considerable influence over their local climate and environment, and urban populations are already facing a ...

  17. Climate change impact assessment and adaptation under uncertainty

    NARCIS (Netherlands)

    Wardekker, J.A.

    2011-01-01

    Expected impacts of climate change are associated with large uncertainties, particularly at the local level. Adaptation scientists, practitioners, and decision-makers will need to find ways to cope with these uncertainties. Several approaches have been suggested as ‘uncertainty-proof’ to some

  18. Impacts of climatic changes on small mammal communities in the ...

    African Journals Online (AJOL)

    To evaluate the impact of climatic change on rodent sahelian communities, we analysed the contents of over 2500 barn owl (Tyto alba) pellets collected along the Senegal river between 1989 and 2003, and from the Ferlo sahelian area in 2003. These results are compared with data from the 1970s and 1980s in the same ...

  19. The implication of irrigation in climate change impact assessment

    NARCIS (Netherlands)

    Zhao, Gang; Webber, Heidi; Hoffmann, Holger; Wolf, Joost; Siebert, Stefan; Ewert, Frank

    2015-01-01

    This study evaluates the impacts of projected climate change on irrigation requirements and yields of six crops (winter wheat, winter barley, rapeseed, grain maize, potato, and sugar beet) in Europe. Furthermore, the uncertainty deriving from consideration of irrigation, CO2 effects on

  20. Climate Change Vulnerability, Impact, and Adaptation in the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    They will work with two Nigerian NGOs: the Intervention Council for Women in Africa and the Community Projects Against Poverty. The study will help both TTI grantees design appropriate management strategies for the impact of climate change. It will also provide additional scientific data to help us better understand the ...

  1. Impacts of climate change, variability and adaptation strategies on ...

    African Journals Online (AJOL)

    Impacts of climate change, variability and adaptation strategies on agriculture in semi arid areas of Tanzania: The case of Manyoni District in Singida Region, Tanzania. ... The changes have affected crops and livestock in a number of ways resulting in reduced productivity. Empirical analysis of rainfall suggest decreasing ...

  2. Assessing climate change impacts and adaptation strategies for ...

    African Journals Online (AJOL)

    Assessing climate change impacts and adaptation strategies for smallholder agricultural systems in Uganda. ... from encroaching on swamps, which is one of the reported adaptation strategies to climate related stresses. Improving productivity of important crops (bananas for southwest, and sweet potatoes and bananas

  3. Projected impacts of climate change on Indian agriculture

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Projected impacts of climate change on Indian agriculture. Increase in CO2 to 550 ppm increases yields of rice, wheat, legumes and oilseeds by 10-20%. A 1oC increase in temperature may reduce yields of wheat, soybean, mustard, groundnut, and potato by 3-7%.

  4. Regional Climate Change Impacts in the United States

    Science.gov (United States)

    Hayhoe, K.; Burkett, V.; Grimm, N.; McCarthy, J.; Miles, E.; Overpeck, J.; Shea, E.; Wuebbles, D.

    2009-05-01

    Climate change will affect one region differently from another. For that reason, the U.S. Unified Synthesis Product "Global Climate Change Impacts in the United States" broke down its assessment of climate change impacts on the country into 8 regions. Key highlights include: In the Northeast, agricultural production, including dairy, fruit, and maple syrup, will be increasingly affected as favorable climates shift northward. In the Southeast, accelerated sea-level rise and increased hurricane intensity will have serious impacts. In the Midwest, under higher emissions scenarios, significant reductions in Great Lakes water levels will impact shipping, infrastructure, beaches, and ecosystems. In the Great Plains, projected increases in temperature, evaporation, and drought frequency exacerbate concerns regarding the region's declining water resources. In the Southwest, water supplies will become increasingly scarce, calling for trade-offs among competing uses, and potentially leading to conflict. In the Northwest, salmon and other cold-water species will experience additional stresses as a result of rising water temperatures and declining summer streamflows. In Alaska, thawing permafrost damages roads, runways, water and sewer systems, and other infrastructure. And in the U.S. islands in the Caribbean and Pacific, climate changes affecting coastal and marine ecosystems will have major implications for tourism and fisheries. In addition, significant sea-level rise and storm surge will affect coastal cities and ecosystems around the nation; low-lying and subsiding areas are most vulnerable.

  5. Climate Change Vulnerability, Impact, and Adaptation in the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... the Community Projects Against Poverty. The study will help both TTI grantees design appropriate management strategies for the impact of climate change. It will also provide additional scientific data to help us better understand the extent of past, current, and future climate variability and change in the Niger Delta region.

  6. Potential Impacts of Climate Change on Waste Management in Ilorin ...

    African Journals Online (AJOL)

    A lot of health incidence resulting from water, air and pest borne diseases are not uncommon within areas where prevalence of effluents prevailed. Current problems of poor waste management upon the government efforts is as a result of the potential impacts of climate change on the natural world, and with wide effects ...

  7. Potential impacts of climate change on the climatically suitable ...

    African Journals Online (AJOL)

    Potential impacts of climate change on the climatically suitable growth areas of Pinus and Eucalyptus : results from a sensitivity study in South Africa. ... annual temperature and mean annual rainfall to assess climatically optimum, moderate- and high-risk growth areas, as well as unsuitable growth areas over southern Africa.

  8. An Exploratory Analysis of the Impact of Climate Change on Macedonian Agriculture

    Directory of Open Access Journals (Sweden)

    Jordan Hristov

    2017-12-01

    Full Text Available Using a mixed input–output model, this study examines potential changes in sector output and water requirements in Macedonia arising from climate change. By defining three climate change scenarios and exogenously specifying the warming shocks for five key agricultural sub-sectors, the effects on the economy were quantified. The results indicated that except for cereals and grapes, agricultural production would benefit from the low climate change scenario due to moderate changes in precipitation and temperature and longer cropping period, while there would be negligible effects on the rest of the economy. Contrary, the medium and high climate change scenarios would negatively affect agriculture due to increase in temperature and decline in precipitation, with severe losses in grape, apple and cereal production, but again with low effects on other economic sectors. As a result, water consumption by agriculture sector will increase by around 6% in the low climate change scenario, and decrease by around 8% and 16% in the medium and high climate change scenarios, respectively, relative to the current agriculture water consumption. Capital investment in irrigation equipment could mitigate the negative climate change impacts in the medium and high climate change scenarios. However, it would impose additional stresses on the existing limited water resource over time.

  9. Intercomparison of regional-scale hydrological models and climate change impacts projected for 12 large river basins worldwide—a synthesis

    Science.gov (United States)

    Krysanova, Valentina; Vetter, Tobias; Eisner, Stephanie; Huang, Shaochun; Pechlivanidis, Ilias; Strauch, Michael; Gelfan, Alexander; Kumar, Rohini; Aich, Valentin; Arheimer, Berit; Chamorro, Alejandro; van Griensven, Ann; Kundu, Dipangkar; Lobanova, Anastasia; Mishra, Vimal; Plötner, Stefan; Reinhardt, Julia; Seidou, Ousmane; Wang, Xiaoyan; Wortmann, Michel; Zeng, Xiaofan; Hattermann, Fred F.

    2017-10-01

    An intercomparison of climate change impacts projected by nine regional-scale hydrological models for 12 large river basins on all continents was performed, and sources of uncertainty were quantified in the framework of the ISIMIP project. The models ECOMAG, HBV, HYMOD, HYPE, mHM, SWAT, SWIM, VIC and WaterGAP3 were applied in the following basins: Rhine and Tagus in Europe, Niger and Blue Nile in Africa, Ganges, Lena, Upper Yellow and Upper Yangtze in Asia, Upper Mississippi, MacKenzie and Upper Amazon in America, and Darling in Australia. The model calibration and validation was done using WATCH climate data for the period 1971-2000. The results, evaluated with 14 criteria, are mostly satisfactory, except for the low flow. Climate change impacts were analyzed using proje