WorldWideScience

Sample records for modelling climate-change impacts

  1. Modelling climate change impacts on mycotoxin contamination

    NARCIS (Netherlands)

    Fels, van der Ine; Liu, C.; Battilani, P.

    2016-01-01

    Projected climate change effects will influence primary agricultural systems and thus food security, directly via impacts on yields, and indirectly via impacts on its safety, with mycotoxins considered as crucial hazards. Mycotoxins are produced by a wide variety of fungal species, each having their

  2. Modelling climate change impacts on mycotoxin contamination

    NARCIS (Netherlands)

    Fels, van der Ine; Liu, C.; Battilani, P.

    2016-01-01

    Projected climate change effects will influence primary agricultural systems and thus food security, directly via impacts on yields, and indirectly via impacts on its safety, with mycotoxins considered as crucial hazards. Mycotoxins are produced by a wide variety of fungal species, each having their

  3. Conceptual Model of Climate Change Impacts at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual model of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).

  4. Modeling climate change impacts on water trading.

    Science.gov (United States)

    Luo, Bin; Maqsood, Imran; Gong, Yazhen

    2010-04-01

    This paper presents a new method of evaluating the impacts of climate change on the long-term performance of water trading programs, through designing an indicator to measure the mean of periodic water volume that can be released by trading through a water-use system. The indicator is computed with a stochastic optimization model which can reflect the random uncertainty of water availability. The developed method was demonstrated in the Swift Current Creek watershed of Prairie Canada under two future scenarios simulated by a Canadian Regional Climate Model, in which total water availabilities under future scenarios were estimated using a monthly water balance model. Frequency analysis was performed to obtain the best probability distributions for both observed and simulated water quantity data. Results from the case study indicate that the performance of a trading system is highly scenario-dependent in future climate, with trading effectiveness highly optimistic or undesirable under different future scenarios. Trading effectiveness also largely depends on trading costs, with high costs resulting in failure of the trading program.

  5. Selection of climate change scenario data for impact modelling

    DEFF Research Database (Denmark)

    Sloth Madsen, M; Fox Maule, C; MacKellar, N

    2012-01-01

    Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study...... illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make...... the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented...

  6. Modeling Impacts of Climate Change on Giant Panda Habitat

    Directory of Open Access Journals (Sweden)

    Melissa Songer

    2012-01-01

    Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

  7. Modelling impacts of climate change on arable crop diseases: progress, challenges and applications.

    Science.gov (United States)

    Newbery, Fay; Qi, Aiming; Fitt, Bruce Dl

    2016-08-01

    Combining climate change, crop growth and crop disease models to predict impacts of climate change on crop diseases can guide planning of climate change adaptation strategies to ensure future food security. This review summarises recent developments in modelling climate change impacts on crop diseases, emphasises some major challenges and highlights recent trends. The use of multi-model ensembles in climate change modelling and crop modelling is contributing towards measures of uncertainty in climate change impact projections but other aspects of uncertainty remain largely unexplored. Impact assessments are still concentrated on few crops and few diseases but are beginning to investigate arable crop disease dynamics at the landscape level.

  8. Modeling climate change impacts on overwintering bald eagles

    OpenAIRE

    Chris J. Harvey; Moriarty, Pamela E.; Salathé Jr, Eric P

    2012-01-01

    Bald eagles (Haliaeetus leucocephalus) are recovering from severe population declines, and are exerting pressure on food resources in some areas. Thousands of bald eagles overwinter near Puget Sound, primarily to feed on chum salmon (Oncorhynchus keta) carcasses. We used modeling techniques to examine how anticipated climate changes will affect energetic demands of overwintering bald eagles. We applied a regional downscaling method to two global climate change models to obtain hourly temperat...

  9. Developing Conceptual Models for Assessing Climate Change Impacts to Contaminant Availability in Terrestrial Ecosystems

    Science.gov (United States)

    2015-03-01

    Approved for public release; distribution is unlimited. ERDC/EL TN-15-1 March 2015 Developing Conceptual Models for Assessing Climate Change ...about climate change , contaminant availability, and TER-S conservation on installations. CONCEPTUAL MODEL BACKGROUND: Conceptual models are... Conceptual Models for Assessing Climate Change Impacts to Contaminant Availability in Terrestrial Ecosystems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  10. Modeling Climate Change Impacts on the US Agricultural Exports

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-quan; CAI Yong-xia; Beach Robert H; McCARL Bruce A

    2014-01-01

    Climate change is expected to have substantial effects on agricultural productivity worldwide. However, these impacts will differ across commodities, locations and time periods. As a result, landowners will see changes in relative returns that are likely to induce modiifcations in production practices and land allocation. In addition, regional variations in impacts can alter relative competitiveness across countries and lead to adjustments in international trade patterns. Thus in climate change impact studies it is likely useful to account for worldwide productivity effects. In this study, we investigate the implications of considering rest of world climate impacts on projections of the US agricultural exports. We chose to focus on the US because it is one of the largest agricultural exporters. To conduct our analyses, we consider four alternative climate scenarios, both with and without rest of world climate change impacts. Our results show that considering/ignoring rest of world climate impacts causes signiifcant changes in the US production and exports projections. Thus we feel climate change impact studies should account not only for climate impacts in the country of focus but also on productivity in the rest of the world in order to capture effects on commodity markets and trade potential.

  11. Translating Climate-Change Probabilities into Impact Risks - Overcoming the Impact- Model Bottleneck

    Science.gov (United States)

    Dettinger, M.

    2008-12-01

    Projections of climate change in response to increasing greenhouse-gas concentrations are uncertain and likely to remain so for the foreseeable future. As more projections become available for analysts, we are increasingly able to characterize the probabilities of obtaining various levels of climate change in current projections. However, the probabilities of most interest in impact assessments are not the probabilities of climate changes, but rather the probabilities (or risks) of various levels and kinds of climate-change impact. These risks can be difficult to estimate even if the climate-change probabilities are well known. The difficulty arises because, frequently, impact models and assessments are computationally demanding or time consuming of hands-on, human expert analyses, so that severe limits are placed on the numbers of climate- change scenarios from which detailed impacts can be assessed. Estimation of risks of various impacts is generally difficult with the few resulting examples. However, real-world examples from the water-resources sector will be used to show that, by applying several different "derived distributions" approaches for estimating the risks of various impacts from known climate-change probabilities to just a few impact-model simulations, risks can be estimated along with indications of how accurate are the impact-risk estimates. The prospects for a priori selection of a few climate-change scenarios (from a larger ensemble of available projections) that will allow the best, most economical estimates of impact risks will be explored with a simple but real-world example.

  12. Assessing climate change impact by integrated hydrological modelling

    Science.gov (United States)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    showed some unexpected results, where climate models predicting the largest increase in net precipitation did not result in the largest increase in groundwater heads. This was found to be the result of different initial conditions (1990 - 2010) for the various climate models. In some areas a combination of a high initial groundwater head and an increase in precipitation towards 2021 - 2050 resulted in a groundwater head raise that reached the drainage or the surface water system. This will increase the exchange from the groundwater to the surface water system, but reduce the raise in groundwater heads. An alternative climate model, with a lower initial head can thus predict a higher increase in the groundwater head, although the increase in precipitation is lower. This illustrates an extra dimension in the uncertainty assessment, namely the climate models capability of simulating the current climatic conditions in a way that can reproduce the observed hydrological response. Højberg, AL, Troldborg, L, Stisen, S, et al. (2012) Stakeholder driven update and improvement of a national water resources model - http://www.sciencedirect.com/science/article/pii/S1364815212002423 Seaby, LP, Refsgaard, JC, Sonnenborg, TO, et al. (2012) Assessment of robustness and significance of climate change signals for an ensemble of distribution-based scaled climate projections (submitted) Journal of Hydrology Stisen, S, Højberg, AL, Troldborg, L et al., (2012): On the importance of appropriate rain-gauge catch correction for hydrological modelling at mid to high latitudes - http://www.hydrol-earth-syst-sci.net/16/4157/2012/

  13. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    NARCIS (Netherlands)

    Hagemann, S.; Chen, Cui; Clark, D.B.; Folwell, S.; Gosling, S.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.

    2013-01-01

    Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three) and hydrological 5 models (eight) were used to systematically

  14. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    NARCIS (Netherlands)

    Hagemann, S.; Chen, Cui; Clark, D.B.; Folwell, S.; Gosling, S.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.

    2013-01-01

    Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three) and hydrological 5 models (eight) were used to systematically

  15. Selecting representative climate models for climate change impact studies : An advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; ter Maat, Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.|info:eu-repo/dai/nl/290472113

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change

  16. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; Maat, ter Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change

  17. Selecting representative climate models for climate change impact studies : An advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; ter Maat, Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change impa

  18. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; Maat, ter Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change impa

  19. Quantifying the impact of model inaccuracy in climate change impact assessment studies using an agro-hydrological model

    NARCIS (Netherlands)

    Droogers, P.; Loon, van A.F.; Immerzeel, W.W.

    2008-01-01

    Numerical simulation models are frequently applied to assess the impact of climate change on hydrology and agriculture. A common hypothesis is that unavoidable model errors are reflected in the reference situation as well as in the climate change situation so that by comparing reference to scenario

  20. Quantifying the impact of model inaccuracy in climate change impact assessment studies using an agro-hydrological model

    Directory of Open Access Journals (Sweden)

    P. Droogers

    2008-04-01

    Full Text Available Numerical simulation models are frequently applied to assess the impact of climate change on hydrology and agriculture. A common hypothesis is that unavoidable model errors are reflected in the reference situation as well as in the climate change situation so that by comparing reference to scenario model errors will level out. For a polder in The Netherlands an innovative procedure has been introduced, referred to as the Model-Scenario-Ratio (MSR, to express model inaccuracy on climate change impact assessment studies based on simulation models comparing a reference situation to a climate change situation. The SWAP (Soil Water Atmosphere Plant model was used for the case study and the reference situation was compared to two climate change scenarios. MSR values close to 1, indicating that impact assessment is mainly a function of the scenario itself rather than of the quality of the model, were found for most indicators evaluated. A climate change scenario with enhanced drought conditions and indicators based on threshold values showed lower MSR values, indicating that model accuracy is an important component of the climate change impact assessment. It was concluded that the MSR approach can be applied easily and will lead to more robust impact assessment analyses.

  1. Impact of climate change on crop yield and role of model for achieving food security.

    Science.gov (United States)

    Kumar, Manoj

    2016-08-01

    In recent times, several studies around the globe indicate that climatic changes are likely to impact the food production and poses serious challenge to food security. In the face of climate change, agricultural systems need to adapt measures for not only increasing food supply catering to the growing population worldwide with changing dietary patterns but also to negate the negative environmental impacts on the earth. Crop simulation models are the primary tools available to assess the potential consequences of climate change on crop production and informative adaptive strategies in agriculture risk management. In consideration with the important issue, this is an attempt to provide a review on the relationship between climate change impacts and crop production. It also emphasizes the role of crop simulation models in achieving food security. Significant progress has been made in understanding the potential consequences of environment-related temperature and precipitation effect on agricultural production during the last half century. Increased CO2 fertilization has enhanced the potential impacts of climate change, but its feasibility is still in doubt and debates among researchers. To assess the potential consequences of climate change on agriculture, different crop simulation models have been developed, to provide informative strategies to avoid risks and understand the physical and biological processes. Furthermore, they can help in crop improvement programmes by identifying appropriate future crop management practises and recognizing the traits having the greatest impact on yield. Nonetheless, climate change assessment through model is subjected to a range of uncertainties. The prediction uncertainty can be reduced by using multimodel, incorporating crop modelling with plant physiology, biochemistry and gene-based modelling. For devloping new model, there is a need to generate and compile high-quality field data for model testing. Therefore, assessment of

  2. Modelling climate change impacts on stream habitat conditions

    DEFF Research Database (Denmark)

    Boegh, Eva; Conallin, John; Karthikeyan, Matheswaran;

    , climate impacts on stream ecological conditions were quantified by combining a heat and mass stream flow with a habitat suitability modelling approach. Habitat suitability indices were developed for stream velocity, water depth, water temperature and substrate. Generally, water depth was found...

  3. Impacts of Participatory Modeling on Climate Change-related Water Management Impacts in Sonora, Mexico

    Science.gov (United States)

    Halvorsen, K. E.; Kossak, D. J.; Mayer, A. S.; Vivoni, E. R.; Robles-Morua, A.; Gamez Molina, V.; Dana, K.; Mirchi, A.

    2013-12-01

    Climate change-related impacts on water resources are expected to be particularly severe in the arid developing world. As a result, we conducted a series of participatory modeling workshops on hydrologic and water resources systems modeling in the face of climate change in Sonora, Mexico. Pre-surveys were administered to participants on Day 1 of a series of four workshops spaced out over three months in 2013. Post-surveys repeated many pre-survey questions and included questions assessing the quality of the workshops and models. We report on significant changes in participant perceptions of water resource models and problems and their assessment of the workshops. These findings will be of great value to future participatory modeling efforts, particularly within the developing world.

  4. Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios

    Science.gov (United States)

    Goderniaux, Pascal; BrouyèRe, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley J.; Orban, Philippe; Dassargues, Alain

    2011-12-01

    Several studies have highlighted the potential negative impact of climate change on groundwater reserves, but additional work is required to help water managers plan for future changes. In particular, existing studies provide projections for a stationary climate representative of the end of the century, although information is demanded for the near future. Such time-slice experiments fail to account for the transient nature of climatic changes over the century. Moreover, uncertainty linked to natural climate variability is not explicitly considered in previous studies. In this study we substantially improve upon the state-of-the-art by using a sophisticated transient weather generator in combination with an integrated surface-subsurface hydrological model (Geer basin, Belgium) developed with the finite element modeling software "HydroGeoSphere." This version of the weather generator enables the stochastic generation of large numbers of equiprobable climatic time series, representing transient climate change, and used to assess impacts in a probabilistic way. For the Geer basin, 30 equiprobable climate change scenarios from 2010 to 2085 have been generated for each of six different regional climate models (RCMs). Results show that although the 95% confidence intervals calculated around projected groundwater levels remain large, the climate change signal becomes stronger than that of natural climate variability by 2085. Additionally, the weather generator's ability to simulate transient climate change enabled the assessment of the likely time scale and associated uncertainty of a specific impact, providing managers with additional information when planning further investment. This methodology constitutes a real improvement in the field of groundwater projections under climate change conditions.

  5. A Modeling Tool for Evaluating Climate Change Impacts on Water Supply System

    Science.gov (United States)

    Chuang, L.; Tung, C.; Liu, T.

    2009-12-01

    Climate change may exacerbate short-term climate variability and more extreme hydrological events, and then may impact on human society and natural environment. Socioeconomic development is dependent on adequate water resources, but climate change may impact on such supply system, including available streamflow, groundwater, irrigation water demand. The purpose of this study is to apply an integrated modeling tool to assess the climate change impacts on regional water supply systems and then to propose response strategies to strengthen adaptive capacity to achieve sustainable water uses. The modeling tool integrates the functions of downscaling, weather generation, hydrological modeling, and an interface for linking system dynamics models. The Touchien river basin in Taiwan is chosen as a study area, which has a high-tech industry park. The vulnerability of the water supply system was evaluated for present and future conditions. The results demonstrated that the water supply system could meet current water demand, but might be subjected to serious water shortage due to future climate change and increasing water demand. At last, this study provides suggestions to government agency to develop better water resources management strategies to mitigate the impacts of changing climate.

  6. Integrated Modelling of Climate Change Impacts in an Irrigated, Semi-arid Catchment

    Science.gov (United States)

    Haslauer, C. P.; von Gunten, D.; Wöhling, T.; Rudolph, D. L.; Cirpka, O. A.

    2015-12-01

    Predicting the impacts of climate change on hydrological processes is a central challenge for water management. Commonly, studies on climate-change effects focus on surface flow and feed-backs between surface and subsurface flows are neglected frequently. Furthermore, changes in hydrological processes are generally not distributed realistically. Integrated catchment models, based on partial-differential-equations, have the potential of overcoming these difficulties. However, these models are complicated to use in realistic settings, notably because of their long simulation time. In this presentation, we demonstrate a successful application of an integrated catchment model (HydroGeoSphere) in a semi-arid catchment in north-east Spain. The study area recently underwent a transition to irrigated agriculture, which is reflected in our model evaluations conducted under varying irrigation conditions. To accelerate model calibration, we developed a novel calibration method based on a hierarchy of computational grids. The climate scenarios for the region are based on four regional climate models, which are downscaled using a weather generator. These scenarios are used to estimate climate change impacts on hydrologic parameters in different irrigation settings. The effects of climate change strongly depend on the presence of irrigation. Water table depth and low flows are more sensitive to climate change when irrigation is present, while peak flows exhibit a more pronounced response to climate in scenarios without irrigation. In addition to the climatic means, we examined the impacts of changes in drought conditions. We compare the outcomes of droughts predicted by our hydrological model with simpler approaches based on drought indices. We show that drought indices oversimplify future hydrological impacts of droughts and can result in biased estimation of drought impacts, especially if drought indices do not take temperature changes into account.

  7. Climate change impact on freshwater resources in a deltaic environment: A groundwater modeling study

    Science.gov (United States)

    Matiatos, Ioannis; Alexopoulos, John D.; Panagopoulos, Andreas; Nastos, Panagiotis T.; Kotsopoulos, Spyros; Ghionis, George; Poulos, Serafim

    2016-04-01

    Climate change is expected to affect the hydrological cycle, altering seawater level and groundwater recharge to coastal aquifers with various other associated impacts on natural ecosystems and human activities. As the sustainable use of groundwater resources is a great challenge for many countries in the world, groundwater modeling has become a very useful and well established tool for studying groundwater management problems. This study investigates the impacts of climate change on the groundwater of the deltaic plain of River Pinios (Central Greece). Geophysical data processing indicates that the phreatic aquifer extends mainly in the central and northern parts of the region. A one-layer transient groundwater flow and contaminant mass transport model of the aquifer system is calibrated and validated. Impacts of climate change were evaluated by incorporating the estimated recharge input and sea level change of different future scenarios within the simulation models. The most noticeable and consistent result of the climate change impact simulations is a prominent sea water intrusion in the coastal aquifer mainly as a result of sea level change which underlines the need for a more effective planning of environmental measures.

  8. The cascade of uncertainty in modeling the impacts of climate change on Europe's forests

    Science.gov (United States)

    Reyer, Christopher; Lasch-Born, Petra; Suckow, Felicitas; Gutsch, Martin

    2015-04-01

    Projecting the impacts of global change on forest ecosystems is a cornerstone for designing sustainable forest management strategies and paramount for assessing the potential of Europe's forest to contribute to the EU bioeconomy. Research on climate change impacts on forests relies to a large extent on model applications along a model chain from Integrated Assessment Models to General and Regional Circulation Models that provide important driving variables for forest models. Or to decision support systems that synthesize findings of more detailed forest models to inform forest managers. At each step in the model chain, model-specific uncertainties about, amongst others, parameter values, input data or model structure accumulate, leading to a cascade of uncertainty. For example, climate change impacts on forests strongly depend on the in- or exclusion of CO2-effects or on the use of an ensemble of climate models rather than relying on one particular climate model. In the past, these uncertainties have not or only partly been considered in studies of climate change impacts on forests. This has left managers and decision-makers in doubt of how robust the projected impacts on forest ecosystems are. We deal with this cascade of uncertainty in a structured way and the objective of this presentation is to assess how different types of uncertainties affect projections of the effects of climate change on forest ecosystems. To address this objective we synthesized a large body of scientific literature on modeled productivity changes and the effects of extreme events on plant processes. Furthermore, we apply the process-based forest growth model 4C to forest stands all over Europe and assess how different climate models, emission scenarios and assumptions about the parameters and structure of 4C affect the uncertainty of the model projections. We show that there are consistent regional changes in forest productivity such as an increase in NPP in cold and wet regions while

  9. Assessing impacts of climate change on forests: The state of biological modeling

    Energy Technology Data Exchange (ETDEWEB)

    Dale, V.H. [Oak Ridge National Lab., TN (United States); Rauscher, H.M. [Forest Service, Grand Rapids, MI (United States). North Central Forest Experiment Station

    1993-04-06

    Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

  10. Assessing Impacts of Climate Change on Forests: The State of Biological Modeling

    Science.gov (United States)

    Dale, V. H.; Rauscher, H. M.

    1993-04-06

    Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

  11. Significance of hydrological model choice and land use changes when doing climate change impact assessment

    Science.gov (United States)

    Bjørnholt Karlsson, Ida; Obel Sonnenborg, Torben; Refsgaard, Jens Christian; Høgh Jensen, Karsten

    2014-05-01

    Uncertainty in impact studies arises both from Global Climate Models (GCM), emission projections, statistical downscaling, Regional Climate Models (RCM), hydrological models and calibration techniques (Refsgaard et al. 2013). Some of these uncertainties have been evaluated several times in the literature; however few studies have investigated the effect of hydrological model choice on the assessment results (Boorman & Sefton 1997; Jiang et al. 2007; Bastola et al. 2011). These studies have found that model choice results in large differences, up to 70%, in the predicted discharge changes depending on the climate input. The objective of the study is to investigate the impact of climate change on hydrology of the Odense catchment, Denmark both in response to (a) different climate projections (GCM-RCM combinations); (b) different hydrological models and (c) different land use scenarios. This includes: 1. Separation of the climate model signal; the hydrological model signal and the land use signal 2. How do the different hydrological components react under different climate and land use conditions for the different models 3. What land use scenario seems to provide the best adaptation for the challenges of the different future climate change scenarios from a hydrological perspective? Four climate models from the ENSEMBLES project (Hewitt & Griggs 2004): ECHAM5 - HIRHAM5, ECHAM5 - RCA3, ARPEGE - RM5.1 and HadCM3 - HadRM3 are used, assessing the climate change impact in three periods: 1991-2010 (present), 2041-2060 (near future) and 2081-2100 (far future). The four climate models are used in combination with three hydrological models with different conceptual layout: NAM, SWAT and MIKE SHE. Bastola, S., C. Murphy and J. Sweeney (2011). "The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments." Advances in Water Resources 34: 562-576. Boorman, D. B. and C. E. M. Sefton (1997). "Recognising the uncertainty in the

  12. Assessing climate change impacts on the Iberian power system using a coupled water-power model

    DEFF Research Database (Denmark)

    Cardenal, Silvio Javier Pereira; Madsen, Henrik; Arnbjerg-Nielsen, Karsten;

    2014-01-01

    , these impacts have not yet been evaluated at the peninsular level. We coupled a hydrological model with a power market model to study three impacts of climate change on the current Iberian power system: changes in hydropower production caused by changes in precipitation and temperature, changes in temporal......Climate change is expected to have a negative impact on the power system of the Iberian Peninsula; changes in river runoff are expected to reduce hydropower generation, while higher temperatures are expected to increase summer electricity demand, when water resources are already limited. However...... patterns of electricity demand caused by temperature changes, and changes in irrigation water use caused by temperature and precipitation changes. A stochastic dynamic programming approach was used to develop operating rules for the integrated system given hydrological uncertainty. We found that changes...

  13. Modeling climate change impact in hospitality sector, using building resources consumption signature

    Science.gov (United States)

    Pinto, Armando; Bernardino, Mariana; Silva Santos, António; Pimpão Silva, Álvaro; Espírito Santo, Fátima

    2016-04-01

    Hotels are one of building types that consumes more energy and water per person and are vulnerable to climate change because in the occurrence of extreme events (heat waves, water stress) same failures could compromise the hotel services (comfort) and increase energy cost or compromise the landscape and amenities due to water use restrictions. Climate impact assessments and the development of adaptation strategies require the knowledge about critical climatic variables and also the behaviour of building. To study the risk and vulnerability of buildings and hotels to climate change regarding resources consumption (energy and water), previous studies used building energy modelling simulation (BEMS) tools to study the variation in energy and water consumption. In general, the climate change impact in building is evaluated studying the energy and water demand of the building for future climate scenarios. But, hotels are complex buildings, quite different from each other and assumption done in simplified BEMS aren't calibrated and usually neglect some important hotel features leading to projected estimates that do not usually match hotel sector understanding and practice. Taking account all uncertainties, the use of building signature (statistical method) could be helpful to assess, in a more clear way, the impact of Climate Change in the hospitality sector and using a broad sample. Statistical analysis of the global energy consumption obtained from bills shows that the energy consumption may be predicted within 90% confidence interval only with the outdoor temperature. In this article a simplified methodology is presented and applied to identify the climate change impact in hospitality sector using the building energy and water signature. This methodology is applied to sixteen hotels (nine in Lisbon and seven in Algarve) with four and five stars rating. The results show that is expect an increase in water and electricity consumption (manly due to the increase in

  14. Integrated Modelling on Flow and Water Quality Under the Impacts of Climate Change and Agricultural Activities

    Science.gov (United States)

    SHI, J.

    2014-12-01

    Climate change is expected to have a significant impact on flooding in the UK, inducing more intense and prolonged storms. Frequent flooding due to climate change already exacerbates catchment water quality. Land use is another contributing factor to poor water quality. For example, the move to intensive farming could cause an increase in faecal coliforms entering the water courses. In an effort to understand better the effects on water quality from land use and climate change, the hydrological and estuarine processes are being modelled using SWAT (Soil and Water Assessment Tool), linked to a 2-D hydrodynamic model DIVAST(Depth Integrated Velocity and Solute Transport). The coupled model is able to quantify how much of each pollutant from the catchment reaches the harbour and the impact on water quality within the harbour. The work is focused on the transportation and decay of faecal coliforms from agricultural runoff into the rivers Frome and Piddle in the UK. The impact from the agricultural land use and activities on the catchment river hydrology and water quality are evaluated. The coupled model calibration and validation showed the good model performance on flow and faecal coliform in the watershed and estuary.

  15. Climate change impact of biochar cook stoves in western Kenyan farm households: system dynamics model analysis.

    Science.gov (United States)

    Whitman, Thea; Nicholson, Charles F; Torres, Dorisel; Lehmann, Johannes

    2011-04-15

    Cook stoves that produce biochar as well as heat for cooking could help mitigate indoor air pollution from cooking fires and could enhance local soils, while their potential reductions in carbon (C) emissions and increases in soil C sequestration could offer access to C market financing. We use system dynamics modeling to (i) investigate the climate change impact of prototype and refined biochar-producing pyrolytic cook stoves and improved combustion cook stoves in comparison to conventional cook stoves; (ii) assess the relative sensitivity of the stoves' climate change impacts to key parameters; and (iii) quantify the effects of different climate change impact accounting decisions. Simulated reductions in mean greenhouse gas (GHG) impact from a traditional, 3-stone cook stove baseline are 3.50 tCO(2)e/household/year for the improved combustion stove and 3.69-4.33 tCO(2)e/household/year for the pyrolytic stoves, of which biochar directly accounts for 26-42%. The magnitude of these reductions is about 2-5 times more sensitive to baseline wood fuel use and the fraction of nonrenewable biomass (fNRB) of off-farm wood that is used as fuel than to soil fertility improvement or stability of biochar. Improved cookstoves with higher wood demand are less sensitive to changes in baseline fuel use and rely on biochar for a greater proportion of their reductions.

  16. Modeling climate change impacts on overwintering of Spodoptera exigua Hübner in regions of China

    Directory of Open Access Journals (Sweden)

    Xia-Lin Zheng

    2015-09-01

    Full Text Available Inferential models are usually used to evaluate the effect of winter warming on range expansion of insects. Generally, correlative approaches used to predict changes in the distributions of organisms are based on the assumption that climatic boundaries are fixed. Spodoptera exigua Htibner (Lepidoptera: Noctuidae overwinters as larvae or pupae in China regions. To understand the climate change impacts on overwintering of this species in regions of China, CLIMEX and Arc-GIS models were used to predict possible changes of distribution based on temperature. The climate change projection clearly indicated that the northern boundary of overwintering for S. exigua will shift northward from current distribution. Thus, the ongoing winter warming is likely to increase the frequency of S. exigua outbreaks.

  17. Coupled water-energy modelling to assess climate change impacts on the Iberian Power System

    DEFF Research Database (Denmark)

    Pereira Cardenal, Silvio Javier; Madsen, H.; Riegels, N.

    are expected to reduce hydropower generation and cooling water availability for thermal power generation; and higher temperatures are expected to increase (decrease) summer (winter) electricity demand, when water resources are already constrained. We use coupled hydrological and power system models to study......Water resources systems and power systems are strongly linked; water is needed for most power generation technologies, and electricity is required in every stage of water usage. In the Iberian Peninsula, climate change is expected to have a negative impact on the power system: changes in runoff...... the effects of climate change on the current Iberian power system. The Iberian power system is a competitive power market where power price is determined by power supply and demand, and which can be simulated by a market equilibrium model considering the power demand function and the installed capacities...

  18. Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach.

    Science.gov (United States)

    Luo, Yuzhou; Ficklin, Darren L; Liu, Xiaomang; Zhang, Minghua

    2013-04-15

    The assessment of hydrologic responses to climate change is required in watershed management and planning to protect water resources and environmental quality. This study is designed to evaluate and enhance watershed modeling approach in characterizing climate change impacts on water supply and ecosystem stressors. Soil and Water Assessment Tool (SWAT) was selected as a base model, and improved for the CO2 dependence of potential evapotranspiration and stream temperature prediction. The updated model was applied to quantify the impacts of projected 21st century climate change in the northern Coastal Ranges and western Sierra Nevada, which are important water source areas and aquatic habitats of California. Evapotranspiration response to CO2 concentration varied with vegetation type. For the forest-dominated watersheds in this study, only moderate (1-3%) reductions on evapotranspiration were predicted by solely elevating CO2 concentration under emission scenarios A2 and B1. Modeling results suggested increases in annual average stream temperature proportional to the projected increases in air temperature. Although no temporal trend was confirmed for annual precipitation in California, increases of precipitation and streamflow during winter months and decreases in summers were predicted. Decreased streamflow during summertime, together with the higher projected air temperature in summer than in winter, would increase stream temperature during those months and result in unfavorable conditions for cold-water species. Compared to the present-day conditions, 30-60 more days per year were predicted with average stream temperature >20°C during 2090s. Overall, the hydrologic cycle and water quality of headwater drainage basins of California, especially their seasonality, are very sensitive to projected climate change. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Modelling the Impacts of Climate Change on Tropospheric Ozone over three Centuries

    Science.gov (United States)

    Brandt Hedegaard, Gitte; Brandt, Jørgen; Christensen, Jesper H.; Gross, Allan; May, Wihelm; Hansen, Kaj M.; Skjøth, Carsten A.

    2010-05-01

    So far reduction of the anthropogenic emissions of chemical species to the atmosphere has been profoundly investigated. However, new research indicates that climate change on its own also has a significant impact on the future air pollution levels. Climate Change and its impact on air pollution levels are currently studied by a number of research groups using, global, hemispherical and regional modelling systems. In the Department of Atmospheric Environment, National Environmental Research Institute (NERI), Aarhus University, in Denmark, we have developed a hemispherical model system which is based on the DEHM model (Christensen, 1997; Frohn et al., 2002a; Frohn et al., 2002b). In the DEHM modelling system an option for modelling the impacts of climate change has been included by using meteorological input from global climate models. Here we present results by using climate data that are provided by the ECHAM5/MPI-OM Atmosphere-Ocean General Circulation Model (May, 2008; Roeckner et al., 2003). In the current experiment the anthropogenic emissions in the chemistry model DEHM are kept constant on a 2000 level to separate out the signal of climate change on air pollutants while the meteorological drivers simulated by the ECHAM5/MPI-OM climate model is based on the IPCC SRES A1B Scenario. To save computing time the experiment is carried out in time-slices representing four centuries (1890s, 1990s, 2090s and the 2190s). The results show that the dominating impacts from climate change on a large number of the chemical species are related to the predicted temperature increase. This temperature affects chemistry as well as emissions from nature. The largest changes in both meteorology and air quality is found to happen in the 21st century. However, significant changes are also found in some parameters including tropospheric ozone in the following century. In general the background ozone concentrations is predicted to decrease at surface level however in the densely

  20. A framework for testing the ability of models to project climate change and its impacts

    DEFF Research Database (Denmark)

    Refsgaard, J. C.; Madsen, H.; Andréassian, V.

    2014-01-01

    Models used for climate change impact projections are typically not tested for simulation beyond current climate conditions. Since we have no data truly reflecting future conditions, a key challenge in this respect is to rigorously test models using proxies of future conditions. This paper presents...... to their application for projections by use of single models, ensemble modelling and space-time-substitution and in relation to use of different data from historical time series, paleo data and controlled experiments. We recommend that differential-split sample tests should be performed with best available proxy data...

  1. Climate change and hydropower production in the Swiss Alps: quantification of potential impacts and related modelling uncertainties

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available This paper addresses two major challenges in climate change impact analysis on water resources systems: (i incorporation of a large range of potential climate change scenarios and (ii quantification of related modelling uncertainties. The methodology of climate change impact modelling is developed and illustrated through application to a hydropower plant in the Swiss Alps that uses the discharge of a highly glacierised catchment. The potential climate change impacts are analysed in terms of system performance for the control period (1961–1990 and for the future period (2070–2099 under a range of climate change scenarios. The system performance is simulated through a set of four model types, including the production of regional climate change scenarios based on global-mean warming scenarios, the corresponding discharge model, the model of glacier surface evolution and the hydropower management model. The modelling uncertainties inherent in each model type are characterised and quantified separately. The overall modelling uncertainty is simulated through Monte Carlo simulations of the system behaviour for the control and the future period. The results obtained for both periods lead to the conclusion that potential climate change has a statistically significant negative impact on the system performance.

  2. VIC distributed hydrological model to predict climate change impact in the Hanjiang Basin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The climate impact studies in hydrology often rely on climate change information at fine spatial resolution. However, the general circulation model (GCM), which is widely used to simulate future climate scenario, operates on a coarse scale and does not provide reliable data on local or regional scale for hydrological modeling. Therefore the outputs from GCM have to be downscaled to obtain the information fit for hydrologic studies. The variable infiltration capacity (VIC) distributed hydrological model with 9×9 km2 grid resolution was applied and calibrated in the Hanjiang Basin. Validation results show that SSVM can approximate observed precipitation and temperature data reasonably well, and that the VIC model can simulate runoff hydrograph with high model efficiency and low relative error. By applying the SSVM model, the trends of precipitation and temperature (including daily mean temperature, daily maximum temperature and daily minimum temperature) projected from CGCM2 under A2 and B2 scenarios will decrease in the 2020s (2011―2040), and increase in the 2080s (2071―2100). However, in the 2050s (2041―2070), the precipitation will be decreased under A2 scenario and no significant changes under B2 scenario, but the temperature will be not obviously changed under both climate change scenarios. Under both climate change scenarios, the impact analysis of runoff, made with the downscaled precipitation and temperature time series as input of the VIC distributed model, has resulted in a decreasing trend for the 2020s and 2050s, and an overall increasing trend for the 2080s.

  3. VIC distributed hydrological model to predict climate change impact in the Hanjiang Basin

    Institute of Scientific and Technical Information of China (English)

    GUO ShengLian; GUO Jing; ZHANG Jun; CHEN Hua

    2009-01-01

    The climate Impact studies In hydrology often rely on climate change information at fine spatial resolu-tion.However, the general circulation model (GCM), which is widely used to simulate future climate scenario, operates on a coarse scale and does not provide reliable data on local or regional scale for hydrological modeling.Therefore the outputs from GCM have to be downscaled to obtain the informa-tion fit for hydrologic studies.The variable infiltration capacity (VIC) distributed hydrological model with 9×9 km~2 grid resolution was applied and calibrated in the Hanjiang Basin.Validation results show that SSVM can approximate observed precipitation and temperature data reasonably well, and that the VIC model can simulate runoff hydrograph with high model efficiency and low relative error.By apply-Ing the SSVM model, the trends of precipitation and temperature (including daily mean temperature, daily maximum temperature and daily minimum temperature) projected from CGCM2 under A2 and B2 scenarios will decrease in the 2020s (2011-2040), and Increase in the 2080s (2071-2100).However, in the 2050s (2041-2070), the precipitation will be decreased under A2 scenario and no significant changes under B2 scenario, but the temperature will be not obviously changed under both climate change scenarios.Under both climate change scenarios, the impact analysis of runoff, made with the downscaled precipitation and temperature time series as input of the VIC distributed model, has re-sulted in a decreasing trend for the 2020s and 2050s, and an overall increasing trend for the 2080s.

  4. Climate Change Impacts on US Water Quality Using Two Models: HAWQS and US Basins

    Directory of Open Access Journals (Sweden)

    Charles Fant

    2017-02-01

    Full Text Available Climate change and freshwater quality are well-linked. Changes in climate result in changes in streamflow and rising water temperatures, which impact biochemical reaction rates and increase stratification in lakes and reservoirs. Using two water quality modeling systems (the Hydrologic and Water Quality System; HAWQS and US Basins, five climate models, and two greenhouse gas (GHG mitigation policies, we assess future water quality in the continental U.S. to 2100 considering four water quality parameters: water temperature, dissolved oxygen, total nitrogen, and total phosphorus. Once these parameters are aggregated into a water quality index, we find that, while the water quality models differ under the baseline, there is more agreement between future projections. In addition, we find that the difference in national-scale economic benefits across climate models is generally larger than the difference between the two water quality models. Both water quality models find that water quality will more likely worsen in the East than in the West. Under the business-as-usual emissions scenario, we find that climate change is likely to cause economic impacts ranging from 1.2 to 2.3 (2005 billion USD/year in 2050 and 2.7 to 4.8 in 2090 across all climate and water quality models.

  5. Improving models to assess impacts of climate change on Mediterranean water resources

    Science.gov (United States)

    Rocha, João; Carvalho Santos, Cláudia; Keizer, Jan Jacob; Alexandre Diogo, Paulo; Nunes, João Pedro

    2016-04-01

    In recent decades, water availability for human consumption has faced major constraints due to increasing pollution and reduced water availability. Water resources availability can gain additional stresses and pressures in the context of potential climate change scenarios. For the last decades, the climate change paradigm has been the scope of many researchers and the focus of decision makers, policies and environmental/climate legislation. Decision-makers face a wide range of constrains, as they are forced to define new strategies that merge planning, management and climate change adaptations. In turn, decision-makers must create integrated strategies aiming at the sustainable use of resources. There are multiple uncertainties associated with climate change impact assessment and water resources. Typically, most studies have dealt with uncertainties in emission scenarios and resulting socio-economic conditions, including land-use and water use. Less frequently, studies have address the disparities between the future climates generated by climate models for the same greenhouse gas concentrations; and the uncertainties related with the limited knowledge of how watersheds work, which also limits the capacity to simulate them with models. Therefore, the objective of this study is to apply the SWAT (Soil and Water Assessment Tool) hydrological model to a catchment in Alentejo, southern Portugal; and to evaluate the uncertainty associated both to the calibration of hydrological models and the use of different climate change scenarios and models (a combination of 4 GCM (General Circulation Models) and 1 RCM (Regional Circulation Models) for the scenarios RCP 4.5 and 8.5. The Alentejo region is highly vulnerable to the effects of potential climate changes with particular focus on water resources availability, despite several reservoirs used for freshwater supply and agriculture irrigation (e.g. the Alqueva reservoir - the largest artificial lake of the Iberian Peninsula

  6. A climate robust integrated modelling framework for regional impact assessment of climate change

    Science.gov (United States)

    Janssen, Gijs; Bakker, Alexander; van Ek, Remco; Groot, Annemarie; Kroes, Joop; Kuiper, Marijn; Schipper, Peter; van Walsum, Paul; Wamelink, Wieger; Mol, Janet

    2013-04-01

    Decision making towards climate proofing the water management of regional catchments can benefit greatly from the availability of a climate robust integrated modelling framework, capable of a consistent assessment of climate change impacts on the various interests present in the catchments. In the Netherlands, much effort has been devoted to developing state-of-the-art regional dynamic groundwater models with a very high spatial resolution (25x25 m2). Still, these models are not completely satisfactory to decision makers because the modelling concepts do not take into account feedbacks between meteorology, vegetation/crop growth, and hydrology. This introduces uncertainties in forecasting the effects of climate change on groundwater, surface water, agricultural yields, and development of groundwater dependent terrestrial ecosystems. These uncertainties add to the uncertainties about the predictions on climate change itself. In order to create an integrated, climate robust modelling framework, we coupled existing model codes on hydrology, agriculture and nature that are currently in use at the different research institutes in the Netherlands. The modelling framework consists of the model codes MODFLOW (groundwater flow), MetaSWAP (vadose zone), WOFOST (crop growth), SMART2-SUMO2 (soil-vegetation) and NTM3 (nature valuation). MODFLOW, MetaSWAP and WOFOST are coupled online (i.e. exchange information on time step basis). Thus, changes in meteorology and CO2-concentrations affect crop growth and feedbacks between crop growth, vadose zone water movement and groundwater recharge are accounted for. The model chain WOFOST-MetaSWAP-MODFLOW generates hydrological input for the ecological prediction model combination SMART2-SUMO2-NTM3. The modelling framework was used to support the regional water management decision making process in the 267 km2 Baakse Beek-Veengoot catchment in the east of the Netherlands. Computations were performed for regionalized 30-year climate change

  7. Climate change impacts on carbon stocks of Mediterranean soils: a CarboSOIL model application

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Jordán, Antonio; Zavala, Lorena M.; de la Rosa, Diego; González-Peñaloza, Félix A.; Kotb Abd-Elmabod, Sameh; Anaya-Romero, María

    2013-04-01

    The Mediterranean area is among the most sensible regions to climate change and large increases in temperature as well as drought periods and heavy rainfall events have been forecasted in the next decades. Soil organic C (SOC) prevents from soil erosion and desertification and enhances bio-diversity. Therefore, soil C accumulation capacity should be considered regarding to adaptation strategies to climate change in view of the high resilience of soils with an adequate level of organic C to a warming, drying climate. In this research we propose a new methodology to predict SOC contents and changes under different climate change scenarios: CarboSoil model. CarboSOIL model is part of the land evaluation decision support system MicroLEIS DSS and was designed as a GIS tool to predict SOC stored at different depths (0-25, 25-50, 50-75 and 0-75 cm). The model includes site, land use, climate and soil variables, and was trained and validated in two Mediterranean areas (Andalusia, S Spain, and Valencia, E Spain, respectively) and applied in different IPCC scenarios (A1B, A2 and B1) according to different Global Climate Models (BCCR-BCM2, CNRMCM3 and ECHAM5) downscaled for the region of Andalusia. Output data were linked to spatial datasets (soil and land use) and spatial analysis was performed to quantify organic C stocks for different soil types under a range of land uses. Results highlight the negative impact of climate change on SOC. In particular, SOC contents are expected to decrease severely in the medium-high emissions A2 scenario by 2100. There is an overall trend towards decreasing of organic C stocks in the upper soil sections (0-25 cm and 25-50 cm) of most soil types. In Regosols under "open spaces" 80.4% of the current SOC is predicted to be lost in 2100 under the A2 scenario. CarboSOIL has proved its ability to predict the short, intermediate and long-term trends (2040s, 2070s and 2100s) of SOC dynamics and sequestration under projected future scenarios of

  8. The impacts of climate change on energy: An aggregate expenditure model for the US

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, W. [Boston Univ., MA (United States); Mendelsohn, R. [Yale Univ., New Haven, CT (United States). School of Forestry and Environmental Studies

    1998-09-01

    This paper develops a theoretical model to measure the climate change impacts to the energy sector. Welfare effects are approximately equal to the resulting change in expenditures on energy and buildings. Using micro data on individuals and firms across the United States, energy expenditures are regressed on climate and other control variables to estimate both short-run and long-run climate response functions. The analysis suggests that energy expenditures have a quadratic U-shaped relationship with respect to temperature. Future warming of 2 C is predicted to cause annual damages of about $6 billion but increases of 5 C would increase damages to almost $30 billion.

  9. Enhanced science-stakeholder communication to improve ecosystem model performances for climate change impact assessments

    DEFF Research Database (Denmark)

    Jonsson, Anna Maria; Anderbrant, Olle; Holmer, Jennie;

    2015-01-01

    In recent years, climate impact assessments of relevance to the agricultural and forestry sectors have received considerable attention. Current ecosystem models commonly capture the effect of a warmer climate on biomass production, but they rarely sufficiently capture potential losses caused...... a discussion among the science–stakeholder communities on how to quantify the potential for climate change adaptation by improving the realism in the models....... by pests, pathogens and extreme weather events. In addition, alternative management regimes may not be integrated in the models. A way to improve the quality of climate impact assessments is to increase the science–stakeholder collaboration, and in a two-way dialog link empirical experience and impact...

  10. Climate change impact assessment on hydrology of a small watershed using semi-distributed model

    Science.gov (United States)

    Pandey, Brij Kishor; Gosain, A. K.; Paul, George; Khare, Deepak

    2016-02-01

    This study is an attempt to quantify the impact of climate change on the hydrology of Armur watershed in Godavari river basin, India. A GIS-based semi-distributed hydrological model, soil and water assessment tool (SWAT) has been employed to estimate the water balance components on the basis of unique combinations of slope, soil and land cover classes for the base line (1961-1990) and future climate scenarios (2071-2100). Sensitivity analysis of the model has been performed to identify the most critical parameters of the watershed. Average monthly calibration (1987-1994) and validation (1995-2000) have been performed using the observed discharge data. Coefficient of determination (R2 ), Nash-Sutcliffe efficiency (ENS) and root mean square error (RMSE) were used to evaluate the model performance. Calibrated SWAT setup has been used to evaluate the changes in water balance components of future projection over the study area. HadRM3, a regional climatic data, have been used as input of the hydrological model for climate change impact studies. In results, it was found that changes in average annual temperature (+3.25 °C), average annual rainfall (+28 %), evapotranspiration (28 %) and water yield (49 %) increased for GHG scenarios with respect to the base line scenario.

  11. Climate change impact assessment on hydrology of a small watershed using semi-distributed model

    Science.gov (United States)

    Pandey, Brij Kishor; Gosain, A. K.; Paul, George; Khare, Deepak

    2017-07-01

    This study is an attempt to quantify the impact of climate change on the hydrology of Armur watershed in Godavari river basin, India. A GIS-based semi-distributed hydrological model, soil and water assessment tool (SWAT) has been employed to estimate the water balance components on the basis of unique combinations of slope, soil and land cover classes for the base line (1961-1990) and future climate scenarios (2071-2100). Sensitivity analysis of the model has been performed to identify the most critical parameters of the watershed. Average monthly calibration (1987-1994) and validation (1995-2000) have been performed using the observed discharge data. Coefficient of determination (R2), Nash-Sutcliffe efficiency (ENS) and root mean square error (RMSE) were used to evaluate the model performance. Calibrated SWAT setup has been used to evaluate the changes in water balance components of future projection over the study area. HadRM3, a regional climatic data, have been used as input of the hydrological model for climate change impact studies. In results, it was found that changes in average annual temperature (+3.25 °C), average annual rainfall (+28 %), evapotranspiration (28 %) and water yield (49 %) increased for GHG scenarios with respect to the base line scenario.

  12. Modeling suspended sediment transport and assessing the impacts of climate change in a karstic Mediterranean watershed.

    Science.gov (United States)

    Nerantzaki, S D; Giannakis, G V; Efstathiou, D; Nikolaidis, N P; Sibetheros, I Α; Karatzas, G P; Zacharias, I

    2015-12-15

    Mediterranean semi-arid watersheds are characterized by a climate type with long periods of drought and infrequent but high-intensity rainfalls. These factors lead to the formation of temporary flow tributaries which present flashy hydrographs with response times ranging from minutes to hours and high erosion rates with significant sediment transport. Modeling of suspended sediment concentration in such watersheds is of utmost importance due to flash flood phenomena, during which, large quantities of sediments and pollutants are carried downstream. The aim of this study is to develop a modeling framework for suspended sediment transport in a karstic watershed and assess the impact of climate change on flow, soil erosion and sediment transport in a hydrologically complex and intensively managed Mediterranean watershed. The Soil and Water Assessment Tool (SWAT) model was coupled with a karstic flow and suspended sediment model in order to simulate the hydrology and sediment yield of the karstic springs and the whole watershed. Both daily flow data (2005-2014) and monthly sediment concentration data (2011-2014) were used for model calibration. The results showed good agreement between observed and modeled values for both flow and sediment concentration. Flash flood events account for 63-70% of the annual sediment export depending on a wet or dry year. Simulation results for a set of IPCC "A1B" climate change scenarios suggested that major decreases in surface flow (69.6%) and in the flow of the springs (76.5%) take place between the 2010-2049 and 2050-2090 time periods. An assessment of the future ecological flows revealed that the frequency of minimum flow events increases over the years. The trend of surface sediment export during these periods is also decreasing (54.5%) but the difference is not statistically significant due to the variability of the sediment. On the other hand, sediment originating from the springs is not affected significantly by climate change.

  13. Curonian Lagoon drainage basin modelling and assessment of climate change impact

    Directory of Open Access Journals (Sweden)

    Natalja Čerkasova

    2016-04-01

    Full Text Available The Curonian Lagoon, which is the largest European coastal lagoon with a surface area of 1578 km2 and a drainage area of 100,458 km2, is facing a severe eutrophication problem. With its increasing water management difficulties, the need for a sophisticated hydrological model of the Curonian Lagoon's drainage area arose, in order to assess possible changes resulting from local and global processes. In this study, we developed and calibrated a sophisticated hydrological model with the required accuracy, as an initial step for the future development of a modelling framework that aims to correctly predict the movement of pesticides, sediments or nutrients, and to evaluate water-management practices. The Soil and Water Assessment Tool was used to implement a model of the study area and to assess the impact of climate-change scenarios on the run-off of the Nemunas River and the Minija River, which are located in the Curonian Lagoons drainage basin. The models calibration and validation were performed using monthly streamflow data, and evaluated using the coefficient of determination (R2 and the Nash-Sutcliffe model efficiency coefficient (NSE. The calculated values of the R2 and NSE for the Nemunas and Minija Rivers stations were 0.81 and 0.79 for the calibration, and 0.679 and 0.602 for the validation period. Two potential climate-change scenarios were developed within the general patterns of near-term climate projections, as defined by the Intergovernmental Panel on Climate Change Fifth Assessment Report: both pessimistic (substantial changes in precipitation and temperature and optimistic (insubstantial changes in precipitation and temperature. Both simulations produce similar general patterns in river-discharge change: a strong increase (up to 22% in the winter months, especially in February, a decrease during the spring (up to 10% and summer (up to 18%, and a slight increase during the autumn (up to 10%.

  14. Exploring climate change impacts and adaptation options for maize production in the Central Rift Valley of Ethiopia using different climate change scenarios and crop models

    NARCIS (Netherlands)

    Kassie, B.T.; Asseng, S.; Rotter, R.P.; Hengsdijk, H.; Ruane, A.C.; Ittersum, van M.K.

    2015-01-01

    Exploring adaptation strategies for different climate change scenarios to support agricultural production and food security is a major concern to vulnerable regions, including Ethiopia. This study assesses the potential impacts of climate change on maize yield and explores specific adaptation option

  15. Multi-model assessment of hydrologic impacts of climate change in a small Mediterranean basin

    Science.gov (United States)

    Perra, Enrica; Piras, Monica; Deidda, Roberto; Paniconi, Claudio; Mascaro, Giuseppe; Vivoni, Enrique R.; Cau, Pierluigi; Marras, Pier Andrea; Meyer, Swen; Ludwig, Ralf

    2017-04-01

    Assessing the hydrologic impacts of climate change is of great importance in the Mediterranean region, which is characterized by high precipitation variablitity and complex interactions within the water cycle. In this work we focus on the hydrological response of the Rio Mannu catchment, a small basin located in southern Sardinia (Italy) and characterized by a semi-arid climate. Specifically, we investigate inter-model variability and uncertainty by comparing the results of five distributed hydrologic models, namely CATchment HYdrology (CATHY), Soil and Water Assessment Tool (SWAT), TOPographic Kinematic APproximation and Integration eXtended (TOPKAPI-X), TIN-based Real time Integrated Basin Simulator (tRIBS), and WAter flow and balance SIMulation (WASIM), that differ greatly in their representation of terrain features, physical processes, and numerical complexity. The hydrological models were independently calibrated and validated on observed meteorological and hydrological time series, and then forced by the output of four combinations of global and regional climate models (properly bias-corrected and downscaled) in order to evaluate the effects of climate change for a reference (1971-2000) and a future (2041-2070) period. Notwithstanding their differences, the five hydrologic models responded similarly to the reduced precipitation and increased temperatures predicted by the climate models, and lend strong support to a future scenario of increased water shortages. The multi-model framework allows estimation of the uncertainty associated with these hydrologic simulations and this aspect will also be discussed.

  16. Enhanced science-stakeholder communication to improve ecosystem model performances for climate change impact assessments

    DEFF Research Database (Denmark)

    Jonsson, Anna Maria; Anderbrant, Olle; Holmer, Jennie

    2015-01-01

    by pests, pathogens and extreme weather events. In addition, alternative management regimes may not be integrated in the models. A way to improve the quality of climate impact assessments is to increase the science–stakeholder collaboration, and in a two-way dialog link empirical experience and impact...... modelling with policy and strategies for sustainable management. In this paper we give a brief overview of different ecosystem modelling methods, discuss how to include ecological and management aspects, and highlight the importance of science–stakeholder communication. By this, we hope to stimulate...... a discussion among the science–stakeholder communities on how to quantify the potential for climate change adaptation by improving the realism in the models....

  17. Comparing estimates of climate change impacts from process-based and statistical crop models

    Science.gov (United States)

    Lobell, David B.; Asseng, Senthold

    2017-01-01

    The potential impacts of climate change on crop productivity are of widespread interest to those concerned with addressing climate change and improving global food security. Two common approaches to assess these impacts are process-based simulation models, which attempt to represent key dynamic processes affecting crop yields, and statistical models, which estimate functional relationships between historical observations of weather and yields. Examples of both approaches are increasingly found in the scientific literature, although often published in different disciplinary journals. Here we compare published sensitivities to changes in temperature, precipitation, carbon dioxide (CO2), and ozone from each approach for the subset of crops, locations, and climate scenarios for which both have been applied. Despite a common perception that statistical models are more pessimistic, we find no systematic differences between the predicted sensitivities to warming from process-based and statistical models up to +2 °C, with limited evidence at higher levels of warming. For precipitation, there are many reasons why estimates could be expected to differ, but few estimates exist to develop robust comparisons, and precipitation changes are rarely the dominant factor for predicting impacts given the prominent role of temperature, CO2, and ozone changes. A common difference between process-based and statistical studies is that the former tend to include the effects of CO2 increases that accompany warming, whereas statistical models typically do not. Major needs moving forward include incorporating CO2 effects into statistical studies, improving both approaches’ treatment of ozone, and increasing the use of both methods within the same study. At the same time, those who fund or use crop model projections should understand that in the short-term, both approaches when done well are likely to provide similar estimates of warming impacts, with statistical models generally

  18. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    DEFF Research Database (Denmark)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian;

    2016-01-01

    Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes...... use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared...... to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice...

  19. Evaluating the impacts of climate change on diurnal wind power cycles using multiple regional climate models

    KAUST Repository

    Goddard, Scott D.

    2015-05-01

    Electrical utility system operators must plan resources so that electricity supply matches demand throughout the day. As the proportion of wind-generated electricity in the US grows, changes in daily wind patterns have the potential either to disrupt the utility or increase the value of wind to the system over time. Wind power projects are designed to last many years, so at this timescale, climate change may become an influential factor on wind patterns. We examine the potential effects of climate change on the average diurnal power production cycles at 12 locations in North America by analyzing averaged and individual output from nine high-resolution regional climate models comprising historical (1971–1999) and future (2041–2069) periods. A semi-parametric mixed model is fit using cubic B-splines, and model diagnostics are checked. Then, a likelihood ratio test is applied to test for differences between the time periods in the seasonal daily averaged cycles, and agreement among the individual regional climate models is assessed. We investigate the significant changes by combining boxplots with a differencing approach and identify broad categories of changes in the amplitude, shape, and position of the average daily cycles. We then discuss the potential impact of these changes on wind power production.

  20. Impact of spatial resolution of ocean models in depicting climate change patterns of the North Sea.

    Science.gov (United States)

    Narayan, Nikesh; Klein, Birgit; Mathis, Moritz; Klein, Holger; Mikolajewicz, Uwe

    2016-04-01

    The impact of enhanced spatial resolution of models in simulating large scale climate change has been of interest for the modeling community for quite some time. It has been noticed in previous studies that the pattern of Sea Surface Temperature anomalies are better captured by higher resolution models. Significant changes in simulating sea-ice loss associated with global warming was also noticed when the spatial resolution of climate models were enhanced. Spatial resolution is a particular important issue in climate change scenarios of shelf seas such as the North Sea. The North Sea is strongly influenced by its water mass exchanges with North Atlantic to the west and north and Baltic Sea to east. Furthermore, local forcing and changes in advected water masses significantly affect the thermodynamics and stratification patterns in the North Sea, making it a challenging area to study. Under the newly started RACE2 project we are looking at global simulations of Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 at lower and higher resolutions, performed using the Max Planck Institute Earth System Model (MPIESM). The model resolution is non uniform and achieves the highest resolution over the European Seas by shifting the model poles over Chicago and Central Europe. In the high resolution run, the grid reaches up to a spatial resolution of up to 4 km in part of the German Bight and close to 20 km in the Northern part of North Sea. The placement of model poles at specific locations enables the global model to obtain higher resolution at regional scales (North Sea), without the inherent complications of open boundary conditions. High and low resolution simulations will be compared to determine differences in spatial and temporal pattern of temperature anomalies, fresh water intrusion from the Baltic Sea to North Sea etc. Also taken into consideration will be the changes in simulating local sea level change and response to basin scale oscillations like NAO.

  1. Climate change impact modelling needs to include cross-sectoral interactions

    Science.gov (United States)

    Harrison, Paula A.; Dunford, Robert W.; Holman, Ian P.; Rounsevell, Mark D. A.

    2016-09-01

    Climate change impact assessments often apply models of individual sectors such as agriculture, forestry and water use without considering interactions between these sectors. This is likely to lead to misrepresentation of impacts, and consequently to poor decisions about climate adaptation. However, no published research assesses the differences between impacts simulated by single-sector and integrated models. Here we compare 14 indicators derived from a set of impact models run within single-sector and integrated frameworks across a range of climate and socio-economic scenarios in Europe. We show that single-sector studies misrepresent the spatial pattern, direction and magnitude of most impacts because they omit the complex interdependencies within human and environmental systems. The discrepancies are particularly pronounced for indicators such as food production and water exploitation, which are highly influenced by other sectors through changes in demand, land suitability and resource competition. Furthermore, the discrepancies are greater under different socio-economic scenarios than different climate scenarios, and at the sub-regional rather than Europe-wide scale.

  2. Climate change, crop yields, and undernutrition: development of a model to quantify the impact of climate scenarios on child undernutrition.

    Science.gov (United States)

    Lloyd, Simon J; Kovats, R Sari; Chalabi, Zaid

    2011-12-01

    Global climate change is anticipated to reduce future cereal yields and threaten food security, thus potentially increasing the risk of undernutrition. The causation of undernutrition is complex, and there is a need to develop models that better quantify the potential impacts of climate change on population health. We developed a model for estimating future undernutrition that accounts for food and nonfood (socioeconomic) causes and can be linked to available regional scenario data. We estimated child stunting attributable to climate change in five regions in South Asia and sub-Saharan Africa (SSA) in 2050. We used current national food availability and undernutrition data to parameterize and validate a global model, using a process-driven approach based on estimations of the physiological relationship between a lack of food and stunting. We estimated stunting in 2050 using published modeled national calorie availability under two climate scenarios and a reference scenario (no climate change). We estimated that climate change will lead to a relative increase in moderate stunting of 1-29% in 2050 compared with a future without climate change. Climate change will have a greater impact on rates of severe stunting, which we estimated will increase by 23% (central SSA) to 62% (South Asia). Climate change is likely to impair future efforts to reduce child malnutrition in South Asia and SSA, even when economic growth is taken into account. Our model suggests that to reduce and prevent future undernutrition, it is necessary to both increase food access and improve socioeconomic conditions, as well as reduce greenhouse gas emissions.

  3. Making the case for cumulative impacts assessment : modelling the potential impacts of climate change, harvesting, oil and gas, and fire

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, S.H.; Duchesneau, R.; Doyon, F. [Inst. quebecois d' Amenagement de la Foret feuillue, Ripon, PQ (Canada); Russell, J.S. [Millar Western Forest Products Ltd., Whitecourt, AB (Canada); Gooding, T. [Forestry Corp., Edmonton, AB (Canada)

    2008-05-15

    Oil and gas activities and wildfires are altering the composition, age-class structure, and spatial configuration of Alberta's forests. Climate change may also be modifying forest dynamics which will lead to important changes in the future. This paper presented a landscape model designed to simulate the long-term cumulative effects of forestry, oil and gas activities, climate change, wildlife, and demographic change for the Whitecourt forest management area. Various landscape scenarios were presented for the forest, and key indicators for biodiversity and forest productivity were evaluated. Multiple disturbance agents were simulated in order to detect potential interactions among disturbance agents. Results of the study showed that climate and demographic changes will intensify the impacts of fires on timber supplies. It was concluded that cumulative impacts assessments and spatial and temporal stochastic modelling should be included in forest management practices. 34 refs., 2 tabs., 22 figs.

  4. Icy rivers heating up : Modelling hydrological impacts of climate change in the (sub)arctic

    OpenAIRE

    2003-01-01

    The Arctic is considered to be particularly sensitive to global climate change. Global warming will seriously affect the components of the water balance in northern regions and changes in precipitation and temperature have immediate as well as long term effects on river systems. The main goal of this thesis was to assess the potential impact of climate change on the water balance and river discharge in the (sub)arctic Usa basin, East-European Russia on an annual, monthly and 5-daily basis. Th...

  5. Improving assessment and modelling of climate change impacts on global terrestrial biodiversity.

    Science.gov (United States)

    McMahon, Sean M; Harrison, Sandy P; Armbruster, W Scott; Bartlein, Patrick J; Beale, Colin M; Edwards, Mary E; Kattge, Jens; Midgley, Guy; Morin, Xavier; Prentice, I Colin

    2011-05-01

    Understanding how species and ecosystems respond to climate change has become a major focus of ecology and conservation biology. Modelling approaches provide important tools for making future projections, but current models of the climate-biosphere interface remain overly simplistic, undermining the credibility of projections. We identify five ways in which substantial advances could be made in the next few years: (i) improving the accessibility and efficiency of biodiversity monitoring data, (ii) quantifying the main determinants of the sensitivity of species to climate change, (iii) incorporating community dynamics into projections of biodiversity responses, (iv) accounting for the influence of evolutionary processes on the response of species to climate change, and (v) improving the biophysical rule sets that define functional groupings of species in global models. Published by Elsevier Ltd.

  6. Assessing the impacts of climate change on natural resource systems

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, K.D.; Rosenberg, N.J. [eds.

    1994-11-30

    This volume is a collection of papers addressing the theme of potential impacts of climatic change. Papers are entitled Integrated Assessments of the Impacts of Climatic Change on Natural Resources: An Introductory Editorial; Framework for Integrated Assessments of Global Warming Impacts; Modeling Land Use and Cover as Part of Global Environmental Change; Assessing Impacts of Climatic Change on Forests: The State of Biological Modeling; Integrating Climatic Change and Forests: Economic and Ecological Assessments; Environmental Change in Grasslands: Assessment using Models; Assessing the Socio-economic Impacts of Climatic Change on Grazinglands; Modeling the Effects of Climatic Change on Water Resources- A Review; Assessing the Socioeconomic Consequences of Climate Change on Water Resources; and Conclusions, Remaining Issues, and Next Steps.

  7. Modeling the impact of climate change on wild Piper nigrum (Black Pepper) in Western Ghats, India using ecological niche models.

    Science.gov (United States)

    Sen, Sandeep; Gode, Ameya; Ramanujam, Srirama; Ravikanth, G; Aravind, N A

    2016-11-01

    The center of diversity of Piper nigrum L. (Black Pepper), one of the highly valued spice crops is reported to be from India. Black pepper is naturally distributed in India in the Western Ghats biodiversity hotspot and is the only known existing source of its wild germplasm in the world. We used ecological niche models to predict the potential distribution of wild P. nigrum in the present and two future climate change scenarios viz (A1B) and (A2A) for the year 2080. Three topographic and nine uncorrelated bioclim variables were used to develop the niche models. The environmental variables influencing the distribution of wild P. nigrum across different climate change scenarios were identified. We also assessed the direction and magnitude of the niche centroid shift and the change in niche breadth to estimate the impact of projected climate change on the distribution of P. nigrum. The study shows a niche centroid shift in the future climate scenarios. Both the projected future climate scenarios predicted a reduction in the habitat of P. nigrum in Southern Western Ghats, which harbors many wild accessions of P. nigrum. Our results highlight the impact of future climate change on P. nigrum and provide useful information for designing sound germplasm conservation strategies for P. nigrum.

  8. Climate Change Impacts on Electricity Demand and Supply in the United States: A Multi-Model Comparison

    Science.gov (United States)

    This paper compares the climate change impacts on U.S. electricity demand and supply from three models: the Integrated Planning Model (IPM), the Regional Energy Deployment System (ReEDS) model, and GCAM. Rising temperatures cause an appreciable net increase in electricity demand....

  9. Modeling the Impacts of Urbanization on Regional Climate Change: A Case Study in the Beijing-Tianjin-Tangshan Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Jinyan Zhan

    2013-01-01

    Full Text Available China has experienced rapid urbanization since 1978, and the dramatic change in land cover is expected to have significant impacts on the climate change. Some models have been used to simulate the relationship between land use and land cover change and climate change; however, there is still no sufficient evidence for the impacts of urbanization on the regional climate. This study aims to identify the impact of urban land use change on regional temperature and precipitation in summer in the Beijing-Tianjin-Tangshan Metropolitan area during 2030–2040 based on the analysis of the simulation results of WRF model. Firstly, we analyzed the land use change and climate change during 1995–2005 in the study area. The impacts of future urbanization on regional climate change were then simulated. The results indicate that urbanization in this area has affected the regional climate and has the potential to increase temperature and precipitation in the summer of 2030–2040. These research results can offer decision-making support information related to future planning strategies in urban environments in consideration of regional climate change.

  10. Climate change: potential impact on plant diseases.

    Science.gov (United States)

    Chakraborty, S; Tiedemann, A V; Teng, P S

    2000-06-01

    Global climate has changed since pre-industrial times. Atmospheric CO(2), a major greenhouse gas, has increased by nearly 30% and temperature has risen by 0.3 to 0.6 degrees C. The intergovernmental panel on climate change predicts that with the current emission scenario, global mean temperature would rise between 0.9 and 3.5 degrees C by the year 2100. There are, however, many uncertainties that influence these predictions. Despite the significance of weather on plant diseases, comprehensive analysis of how climate change will influence plant diseases that impact primary production in agricultural systems is presently unavailable. Evaluation of the limited literature in this area suggests that the most likely impact of climate change will be felt in three areas: in losses from plant diseases, in the efficacy of disease management strategies and in the geographical distribution of plant diseases. Climate change could have positive, negative or no impact on individual plant diseases. More research is needed to obtain base-line information on different disease systems. Most plant disease models use different climatic variables and operate at a different spatial and temporal scale than do the global climate models. Improvements in methodology are necessary to realistically assess disease impacts at a global scale.

  11. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    Energy Technology Data Exchange (ETDEWEB)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Flörke, M.; Huang, S.; Motovilov, Y.; Buda, S.; Yang, T.; Müller, C.; Leng, G.; Tang, Q.; Portmann, F. T.; Hagemann, S.; Gerten, D.; Wada, Y.; Masaki, Y.; Alemayehu, T.; Satoh, Y.; Samaniego, L.

    2017-01-04

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.

  12. Projected Climate Change Impacts on Pennsylvania

    Science.gov (United States)

    Najjar, R.; Shortle, J.; Abler, D.; Blumsack, S.; Crane, R.; Kaufman, Z.; McDill, M.; Ready, R.; Rydzik, M.; Wagener, T.; Wardrop, D.; Wilson, T.

    2009-05-01

    We present an assessment of the potential impacts of human-induced climate change on the commonwealth of Pennsylvania, U.S.A. We first assess a suite of 21 global climate models for the state, rating them based on their ability to simulate the climate of Pennsylvania on time scales ranging from submonthly to interannual. The multi-model mean is superior to any individual model. Median projections by late century are 2-4 degrees C warming and 5-10 percent precipitation increases (B1 and A2 scenarios), with larger precipitation increases in winter and spring. Impacts on the commonwealth's aquatic and terrestrial ecosystems, water resources, agriculture, forests, energy, outdoor recreation, tourism, and human health, are evaluated. We also examine barriers and opportunities for Pennsylvania created by climate change mitigation. This assessment was sponsored by the Pennsylvania Department of Environmental Protection which, pursuant to the Pennsylvania Climate Change Act, Act 70 of 2008, is required to develop a report on the potential scientific and economic impacts of climate change to Pennsylvania.

  13. A georeferenced Agent-Based Model to analyze the climate change impacts on the Andorra winter tourism

    CERN Document Server

    Pons-Pons, M; Rosas-Casals, M; Sureda, B; Jover, E

    2011-01-01

    This study presents a georeferenced agent-based model to analyze the climate change impacts on the ski industry in Andorra and the effect of snowmaking as future adaptation strategy. The present study is the first attempt to analyze the ski industry in the Pyrenees region and will contribute to a better understanding of the vulnerability of Andorran ski resorts and the suitability of snowmaking as potential adaptation strategy to climate change. The resulting model can be used as a planning support tool to help local stakeholders understand the vulnerability and potential impacts of climate change. This model can be used in the decision-making process of designing and developing appropriate sustainable adaptation strategies to future climate variability.

  14. A new model to simulate climate-change impacts on forest succession for local land management.

    Science.gov (United States)

    Yospin, Gabriel I; Bridgham, Scott D; Neilson, Ronald P; Bolte, John P; Bachelet, Dominique M; Gould, Peter J; Harrington, Constance A; Kertis, Jane A; Evers, Cody; Johnson, Bart R

    2015-01-01

    We developed a new climate-sensitive vegetation state-and-transition simulation model (CV-STSM) to simulate future vegetation at a fine spatial grain commensurate with the scales of human land-use decisions, and under the joint influences of changing climate, site productivity, and disturbance. CV-STSM integrates outputs from four different modeling systems. Successional changes in tree species composition and stand structure were represented as transition probabilities and organized into a state-and-transition simulation model. States were characterized based on assessments of both current vegetation and of projected future vegetation from a dynamic global vegetation model (DGVM). State definitions included sufficient detail to support the integration of CV-STSM with an agent-based model of land-use decisions and a mechanistic model of fire behavior and spread. Transition probabilities were parameterized using output from a stand biometric model run across a wide range of site productivities. Biogeographic and biogeochemical projections from the DGVM were used to adjust the transition probabilities to account for the impacts of climate change on site productivity and potential vegetation type. We conducted experimental simulations in the Willamette Valley, Oregon, USA. Our simulation landscape incorporated detailed new assessments of critically imperiled Oregon white oak (Quercus garryana) savanna and prairie habitats among the suite of existing and future vegetation types. The experimental design fully crossed four future climate scenarios with three disturbance scenarios. CV-STSM showed strong interactions between climate and disturbance scenarios. All disturbance scenarios increased the abundance of oak savanna habitat, but an interaction between the most intense disturbance and climate-change scenarios also increased the abundance of subtropical tree species. Even so, subtropical tree species were far less abundant at the end of simulations in CV-STSM than in

  15. The Impact of Climate Change on the European Energy System

    OpenAIRE

    DOWLING PAUL

    2012-01-01

    Climate change can affect the economy via many different channels in many different sectors. Most studies investigating the impact of climate change on the energy system have concentrated on the impact of changes in heating and cooling demand, but there are many energy sector impacts that remain unanalysed. The POLES global energy model has been modified to widen the coverage of climate change impacts on the European energy system. The impacts considered are changes in heating and cooling...

  16. Modeling the Impact of Climate Change on Water Resources in the Senegal River Basin

    Science.gov (United States)

    Mbaye, M. L.

    2015-12-01

    In this study we assess the impact of climate change on water resources by using uncorrected and bias corrected data from the regional climate model REMO simulations over the Senegal River Basin. Both simulations were used as input of the Max Planck Institute for Meteorology - Hydrological Model over the Upper Senegal Basin.Applying the bias correction simulations of present day climate (1971-2000) substantially improved for both temporal and spatial variations of the analyzed climate parameters (precipitation, temperature) when compared to observations and independent station data. Additionally, the bias corrected input give better representation of the mean river flow, the low flows (10th percentile) and the high flows (90thpercentile) at the outlet of the USB.For the future, the regional climate model projections for precipitation show a general decrease by the end of 21stcentury (2071-2100) for both scenarios RCP4.5 and RCP8.5 and datasets in the majority of the basin, except the Guinean highlands where a slight increase is found. In case of the potential changes of the maximum consecutive number of dry days and wet days, the northern basin is likely to face the most pronounced increase of dry days and decrease of wet days, although slight increase of heavy rainfall is found with similar spatial patterns in both data. Furthermore, a general temperature increase is projected over the entire basin for both scenarios, but more pronounced under the RCP8.5 scenario. Warm night's percent is found to be higher than warm day's percent. As for the potential changes of the basin's hydrology, a general decrease of river discharge, runoff, actual evapotranspiration, soil moisture is found under RCP4.5 and RCP8.5 in all simulations. The decrease is higher under RCP8.5 with uncorrected data in the northern basin. However, there are some localized increases of runoff in some parts of the basin. Furthermore, the available water resources are projected to substantially decrease

  17. Impacts of Future Climate Change on California Perennial Crop Yields: Model Projections with Climate and Crop Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Lobell, D; Field, C; Cahill, K; Bonfils, C

    2006-01-10

    Most research on the agricultural impacts of climate change has focused on the major annual crops, yet perennial cropping systems are less adaptable and thus potentially more susceptible to damage. Improved assessments of yield responses to future climate are needed to prioritize adaptation strategies in the many regions where perennial crops are economically and culturally important. These impact assessments, in turn, must rely on climate and crop models that contain often poorly defined uncertainties. We evaluated the impact of climate change on six major perennial crops in California: wine grapes, almonds, table grapes, oranges, walnuts, and avocados. Outputs from multiple climate models were used to evaluate climate uncertainty, while multiple statistical crop models, derived by resampling historical databases, were used to address crop response uncertainties. We find that, despite these uncertainties, climate change in California is very likely to put downward pressure on yields of almonds, walnuts, avocados, and table grapes by 2050. Without CO{sub 2} fertilization or adaptation measures, projected losses range from 0 to >40% depending on the crop and the trajectory of climate change. Climate change uncertainty generally had a larger impact on projections than crop model uncertainty, although the latter was substantial for several crops. Opportunities for expansion into cooler regions are identified, but this adaptation would require substantial investments and may be limited by non-climatic constraints. Given the long time scales for growth and production of orchards and vineyards ({approx}30 years), climate change should be an important factor in selecting perennial varieties and deciding whether and where perennials should be planted.

  18. Modelling the impact of climate change on South Pacific albacore tuna

    Science.gov (United States)

    Lehodey, Patrick; Senina, Inna; Nicol, Simon; Hampton, John

    2015-03-01

    The potential impact of climate change under the IPCC AR4-A2 scenario (close to the AR5-RCP8.5 scenario) on south Pacific albacore tuna (Thunnus alalunga) is simulated with the Spatial Ecosystem And Population Dynamics Model (SEAPODYM) and environmental forcing variables provided by the Earth Climate model IPSL-CM4. Parameters controlling the habitat and dynamics of the population were optimized by fitting the model, using maximum likelihood, to a complete fishing data set for the historical fishing period since 1950. Albacore undertake clear seasonal migrations between feeding and spawning grounds, as evidenced by seasonal catch and size composition changes. This seasonality was well predicted by the SEAPODYM albacore simulations. The total biomass estimate of south Pacific albacore was predicted to have decreased from ~1.8 million tonnes (Mt) at the beginning of industrial fisheries in 1950 to 1.25 Mt in 2006, in good agreement with an independent estimate from stock assessment analysis. A simulation without fishing indicated an equivalent contribution of environmental variability and fishing to the historical decrease of the stock biomass. The parameterized SEAPODYM model was used to project the dynamics of the population until the end of the 21st century with an average fishing effort based on recent years. Under this fishing and climate change scenario, the population was predicted to decrease and to stabilize after 2035 just below 0.8 Mt, i.e., 55% below the initial biomass of 1960. After 2080 however, the trend was reversed when a new spawning ground emerged in the north Tasman Sea. A test simulation highlighted the sensitivity of the model results to projected dissolved oxygen concentration for which there is large uncertainty in the tropical region. A second test simulation showed that genetic selection favouring albacore with preferences for higher optimal ambient spawning temperature would maintain a reduced level of spawning in current tropical spawning

  19. Modeling climate change impacts on hydrological variability using an efficient multi-site GCM downscaling method

    Science.gov (United States)

    LI, Z.; Lü, Z.

    2014-12-01

    The coarse resolution of GCM outputs cannot match the high resolution input requirement of hydrological models and thus are inappropriate for impact assessment of climate change. Though numerous downscaling techniques have been used to gap the mismatch, the methods based on single site cannot be used by the distributed hydrological models for hydrological extreme simulation since the flood in one subbasin can be offset by the adjacent ones due to the ignorance of multi-site spatiotemporal correlation of meteorological variables. This study developed a multi-site downscaling method based on a two-stage weather generator (TSWG) through three steps: (i) spatially downscaling GCMs with a transfer function method; (ii) temporally downscaling GCMs with a single-site weather generator; (iii) reconstructing the spatiotemporal correlations with a post-processing and nonparametric shuffle procedure. Five GCMs (CanESM2, CSIRO_3.6.0, GFDL_CM3, HadGEM2-AO and MPI-ESM-LR) under four RCPs (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) were used to generate climate scenarios for the period of 2011-2040. The hydrological simulation was carried out by SWAT in the Jing River catchment on the Loess Plateau. Future annual mean precipitation would change by -7.7% to 9.2%, annual mean maximum and minimum temperature would increase by 1.4-1.8 ℃ and 1.1-1.4 ℃, respectively. Overall, future climate tended to be warmer and drier under most GCMs and RCPs, and this trend would be more significant for flood season; however, the variations of monthly precipitation would be greater than present. The annual mean streamflow would change by -18% to 38% and be more variable. The monthly streamflow would be more variable for most months due to the increase of monthly maximum streamflow and decrease of monthly minimum streamflow. Therefore, the stremflow in the Jing River should be paid more attention for its possible disasters. The multi-site downscaling method proposed in this study is efficient and

  20. Climate change impacts on groundwater resources: modelled deficits in a chalky aquifer, Geer basin, Belgium

    Science.gov (United States)

    Brouyère, Serge; Carabin, Guy; Dassargues, Alain

    An integrated hydrological model (MOHISE) was developed in order to study the impact of climate change on the hydrological cycle in representative water basins in Belgium. This model considers most hydrological processes in a physically consistent way, more particularly groundwater flows which are modelled using a spatially distributed, finite-element approach. Thanks to this accurate numerical tool, after detailed calibration and validation, quantitative interpretations can be drawn from the groundwater model results. Considering IPCC climate change scenarios, the integrated approach was applied to evaluate the impact of climate change on the water cycle in the Geer basin in Belgium. The groundwater model is described in detail, and results are discussed in terms of climate change impact on the evolution of groundwater levels and groundwater reserves. From the modelling application on the Geer basin, it appears that, on a pluri-annual basis, most tested scenarios predict a decrease in groundwater levels and reserves in relation to variations in climatic conditions. However, for this aquifer, the tested scenarios show no enhancement of the seasonal changes in groundwater levels. Un modèle hydrologique intégré (MOHISE) a été développé afin d'étudier l'impact du changement climatique sur le cycle hydrologique de bassins versants représentatifs de Belgique. Ce modèle prend en compte tous les processus hydrologiques d'une manière physiquement consistante, plus particulièrement les écoulements souterrains qui sont modélisés par une approche spatialement distribuée aux éléments finis. Grâce à cet outil numérique précis, après une calibration et une validation détaillées, des interprétations quantitatives peuvent être réalisées à partir des résultats du modèle de nappe. Considérant des scénarios de changements climatiques de l'IPCC, l'approche intégrée a été appliquée pour évaluer l'impact du changement climatique sur le cycle de l

  1. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    Science.gov (United States)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian; Trolle, Dennis; Børgesen, Christen Duus; Olesen, Jørgen E.; Jeppesen, Erik; Jensen, Karsten H.

    2016-04-01

    Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes on hydrology for a 486 km2 catchment in Denmark and to evaluate the sensitivity of the results to the choice of hydrological model. Three hydrological models, NAM, SWAT and MIKE SHE, were constructed and calibrated using similar methods. Each model was forced with results from four climate models and four land use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice remained the dominant factor for mean discharge, low and high flows as well as hydraulic head at the end of the century.

  2. A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    Science.gov (United States)

    Sarofim, M. C.; Martinich, J.; Waldhoff, S.; DeAngelo, B. J.; McFarland, J.; Jantarasami, L.; Shouse, K.; Crimmins, A.; Li, J.

    2014-12-01

    The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the physical impacts, economic damages, and risks from climate change. The primary goal of this framework is to estimate the degree to which climate change impacts and damages in the United States are avoided or reduced in the 21st century under multiple greenhouse gas (GHG) emissions mitigation scenarios. The first phase of the CIRA project is a modeling exercise that included two integrated assessment models and 15 sectoral models encompassing five broad impacts sectors: water resources, electric power, infrastructure, human health, and ecosystems. Three consistent socioeconomic and climate scenarios are used to analyze the benefits of global GHG mitigation targets: a reference scenario and two policy scenarios with total radiative forcing targets in 2100 of 4.5 W/m2 and 3.7 W/m2. In this exercise, the implications of key uncertainties are explored, including climate sensitivity, climate model, natural variability, and model structures and parameters. This presentation describes the motivations and goals of the CIRA project; the design and academic contribution of the first CIRA modeling exercise; and briefly summarizes several papers published in a special issue of Climatic Change. The results across impact sectors show that GHG mitigation provides benefits to the United States that increase over time, the effects of climate change can be strongly influenced by near-term policy choices, adaptation can reduce net damages, and impacts exhibit spatial and temporal patterns that may inform mitigation and adaptation policy discussions.

  3. Updating Known Distribution Models for Forecasting Climate Change Impact on Endangered Species

    Science.gov (United States)

    Muñoz, Antonio-Román; Márquez, Ana Luz; Real, Raimundo

    2013-01-01

    To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their distributional response to climate change, especially under the current situation of rapid change. However, these predictions are customarily done by relating de novo the distribution of the species with climatic conditions with no regard of previously available knowledge about the factors affecting the species distribution. We propose to take advantage of known species distribution models, but proceeding to update them with the variables yielded by climatic models before projecting them to the future. To exemplify our proposal, the availability of suitable habitat across Spain for the endangered Bonelli's Eagle (Aquila fasciata) was modelled by updating a pre-existing model based on current climate and topography to a combination of different general circulation models and Special Report on Emissions Scenarios. Our results suggested that the main threat for this endangered species would not be climate change, since all forecasting models show that its distribution will be maintained and increased in mainland Spain for all the XXI century. We remark on the importance of linking conservation biology with distribution modelling by updating existing models, frequently available for endangered species, considering all the known factors conditioning the species' distribution, instead of building new models that are based on climate change variables only. PMID:23840330

  4. Updating known distribution models for forecasting climate change impact on endangered species.

    Science.gov (United States)

    Muñoz, Antonio-Román; Márquez, Ana Luz; Real, Raimundo

    2013-01-01

    To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their distributional response to climate change, especially under the current situation of rapid change. However, these predictions are customarily done by relating de novo the distribution of the species with climatic conditions with no regard of previously available knowledge about the factors affecting the species distribution. We propose to take advantage of known species distribution models, but proceeding to update them with the variables yielded by climatic models before projecting them to the future. To exemplify our proposal, the availability of suitable habitat across Spain for the endangered Bonelli's Eagle (Aquila fasciata) was modelled by updating a pre-existing model based on current climate and topography to a combination of different general circulation models and Special Report on Emissions Scenarios. Our results suggested that the main threat for this endangered species would not be climate change, since all forecasting models show that its distribution will be maintained and increased in mainland Spain for all the XXI century. We remark on the importance of linking conservation biology with distribution modelling by updating existing models, frequently available for endangered species, considering all the known factors conditioning the species' distribution, instead of building new models that are based on climate change variables only.

  5. Modeling the Impact of Climate Change on the Dynamics of Rift Valley Fever

    Directory of Open Access Journals (Sweden)

    Saul C. Mpeshe

    2014-01-01

    Full Text Available A deterministic SEIR model of rift valley fever (RVF with climate change parameters was considered to compute the basic reproduction number ℛ0 and investigate the impact of temperature and precipitation on ℛ0. To study the effect of model parameters to ℛ0, sensitivity and elasticity analysis of ℛ0 were performed. When temperature and precipitation effects are not considered, ℛ0 is more sensitive to the expected number of infected Aedes spp. due to one infected livestock and more elastic to the expected number of infected livestock due to one infected Aedes spp. When climatic data are used, ℛ0 is found to be more sensitive and elastic to the expected number of infected eggs laid by Aedes spp. via transovarial transmission, followed by the expected number of infected livestock due to one infected Aedes spp. and the expected number of infected Aedes spp. due to one infected livestock for both regions Arusha and Dodoma. These results call for attention to parameters regarding incubation period, the adequate contact rate of Aedes spp. and livestock, the infective periods of livestock and Aedes spp., and the vertical transmission in Aedes species.

  6. Cross - Scale Intercomparison of Climate Change Impacts Simulated by Regional and Global Hydrological Models in Eleven Large River Basins

    Science.gov (United States)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Florke, M.; Huang, S.; Motovilov, Y.; Buda, S.; Wada, Y.

    2017-01-01

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used.

  7. Modeling the impacts of climate change on stream water temperature across scales

    Science.gov (United States)

    Segura, C.; Caldwell, P. V.; Cohen, E.; Sun, G.; McNulty, S. G.

    2015-12-01

    Water temperature is a critical variable to aquatic ecosystems because it controls metabolic rates and the distribution of aquatic organisms. Therefore, understanding the impacts of future climate on stream water temperature is relevant to sustainable management of water resources. Empirical models based on the statistical relation between air and steam water temperature offer a powerful tool for prediction at large scales. We will demonstrate how simple linear regression models based on short-term historical stream temperature (ts) observations and readily available interpolated air temperature (ta) estimates can be used for rapid assessment of historical and future changes in ts. This methodology was applied to 61 sites in the Southeast region of the US. We found that between 2011 and 2060, all sites were projected to experience increases in ts under the three evaluated climate projections (mean of +0.41 °C per decade). We also developed continental scale models to predict mean and maximum ts in ungauged locations across the US. The models linearly describe site relationships between monthly mean and maximum ta and ts as a function of climatic, hydrologic, and land cover variables. The empirical models were derived using data from 171 reference sites. These sites drain areas spanning four orders of magnitude and are located in 32 states and 16 hydrologic regions. Model performances yielded average Nash-Sutcliffe efficiency coefficients between 0.78 and 0.85. These models were incorporated into the Water Supply Stress Index (WaSSI) Ecosystem Services Model developed by the U.S. Forest Service to predict mean and maximum ts under different climatic projections and land cover changes at the USGS 8 digit hydrologic unit code watershed resolution across the US. The results identify regions in the country where significant increases in ts may occur, potentially causing stress to aquatic ecosystems as climate change progresses.

  8. Modeling climate change impacts on combined sewer overflow using synthetic precipitation time series.

    Science.gov (United States)

    Bendel, David; Beck, Ferdinand; Dittmer, Ulrich

    2013-01-01

    In the presented study climate change impacts on combined sewer overflows (CSOs) in Baden-Wuerttemberg, Southern Germany, were assessed based on continuous long-term rainfall-runoff simulations. As input data, synthetic rainfall time series were used. The applied precipitation generator NiedSim-Klima accounts for climate change effects on precipitation patterns. Time series for the past (1961-1990) and future (2041-2050) were generated for various locations. Comparing the simulated CSO activity of both periods we observe significantly higher overflow frequencies for the future. Changes in overflow volume and overflow duration depend on the type of overflow structure. Both values will increase at simple CSO structures that merely divide the flow, whereas they will decrease when the CSO structure is combined with a storage tank. However, there is a wide variation between the results of different precipitation time series (representative for different locations).

  9. Impact of climate Change on Groundwater Recharge in the Tiber River Basin (Central Italy) Using Regional Climate model Outputs

    Science.gov (United States)

    Muluneh, F. B.; Setegn, S. G.; Melesse, A. M.; Fiori, A.

    2011-12-01

    Quantification of the various components of hydrological processes in a watershed remains a challenging topic as the hydrological system is altered by many internal and external drivers. Changes in climate variables can affect the quantity and quality of various components of hydrological cycle. Among others, the local effects of climate change on groundwater resources were not fully studied in different part of the world as compared to the surface water. Moreover, understanding the potential impact of climate change on groundwater is more complex than surface water. The main objective of this study is to analyze the potential impact of climate change on Groundwater recharge in the Tiber River Basin using outputs from Regional Climate model. In this study, a physically-based watershed model called Soil Water Assessment Tool (SWAT) was used to estimate recharge characteristics and its response to climate change in Tiber River Basin (central Italy). The SWAT model was successfully calibrated and validated using observed weather and flow data for the period of 1963-1970 and 1971-1978 respectively. During calibration, the model was highly sensitivity to groundwater flow parameters. Dynamically downscaled rainfall and temperature datasets from ten Regional Climate Models (RCM) archived in 'Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects (PRUDENCE)' were used to force the model to assess the climate change impact on the study area. A quantile-mapping statistical correction procedure was applied to the RCM dataset to correct the inherent systematic biases. The climate change analysis indicated that by the end of 2080s the rainfall was found to decrease nearly up to 40% in dry period and there was an increase in temperature that could reach as high as 3 to 5 oC. By the end of 2080s the ground water recharge shows a decreasing trend as a response to changes in rainfall. However as the timing of both precipitation and

  10. Modelling the impacts of projected future climate change on water resources in north-west England

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Over the last two decades, the frequency of water resource drought in the UK, coupled with the more recent pan-European drought of 2003, has increased concern over changes in climate. Using the UKCIP02 Medium-High (SRES A2 scenario for 2070–2100, this study investigates the impact of climate change on the operation of the Integrated Resource Zone (IRZ, a complex conjunctive-use water supply system in north-western England. The results indicate that the contribution of individual sources to yield may change substantially but that overall yield is reduced by only 18%. Notwithstanding this significant effect on water supply, the flexibility of the system enables it to meet modelled demand for much of the time under the future climate scenario, even without a change in system management, but at significant expense for pumping additional abstraction from lake and borehole sources. This research provides a basis for the future planning and management of the complex water resource system in the north-west of England.

  11. Welfare impacts of climate change

    NARCIS (Netherlands)

    Hof, Andries F.

    2015-01-01

    Climate change can affect well-being in poor economies more than previously shown if its effect on economic growth, and not only on current production, is considered. But this result does not necessarily suggest greater mitigation efforts are required.

  12. Welfare impacts of climate change

    NARCIS (Netherlands)

    Hof, Andries F.

    2015-01-01

    Climate change can affect well-being in poor economies more than previously shown if its effect on economic growth, and not only on current production, is considered. But this result does not necessarily suggest greater mitigation efforts are required.

  13. Assessing climate change impacts on runoff from karstic watersheds: NASA/GISS land-surface model improvement

    Science.gov (United States)

    Blake, Reginald Alexander

    The off-line version of the Goddard Institute for Space Studies (GISS) land-surface hydrological model over- predicted run-off from the karstic Rio Cobre watershed in Jamaica. To assess possible climate change impacts on runoff from the watershed, the model's simulation of observed runoff was improved by adding to it a karst component that has pipe flow features. The improved model was tested on two other karstic watersheds (Yangtze - China and Rio Grande - USA) and the results were encouraging. The impacts that possible climate change may have on the three karstic watersheds were then assessed. The assessment indicates that in a doubled carbon dioxide climate, the Rio Cobre and the Rio Grande may experience decreases in runoff, especially in low flow periods. The Yangtze, on the other hand, may not experience decreases in total runoff, but its peak flow which now occurs in July may be attenuated and shifted to September. The results of the study also show that climate feedbacks convolute climate change assessments and that different results can be obtained from the same climate change scenario depending on the choice of the modeling methodology-that is, on whether the models are coupled or uncoupled.

  14. A Water Resources Management Model to Evaluate Climate Change Impacts in North-Patagonia, Argentina

    Science.gov (United States)

    Bucciarelli, L. F.; Losano, F. T.; Marizza, M.; Cello, P.; Forni, L.; Young, C. A.; Girardin, L. O.; Nadal, G.; Lallana, F.; Godoy, S.; Vallejos, R.

    2014-12-01

    Most recently developed climate scenarios indicate a potential future increase in water stress in the region of Comahue, located in the North-Patagonia, Argentina. This region covers about 140,000 km2 where the Limay River and the Neuquén River converge into the Negro River, constituting the largest integrated basins in Argentina providing various uses of water resources: a) hydropower generation, contributing 15% of the national electricity market; b) fruit-horticultural products for local markets and export; c) human and industrial water supply; d) mining and oil exploitation, including Vaca Muerta, second world largest reserves of shale gas and fourth world largest reserves of shale-oil. The span of multiple jurisdictions and the convergence of various uses of water resources are a challenge for integrated understanding of economically and politically driven resource use activities on the natural system. The impacts of climate change on the system could lead to water resource conflicts between the different political actors and stakeholders. This paper presents the results of a hydrological simulation of the Limay river and Neuquén river basins using WEAP (Water Evaluation and Planning) considering the operation of artificial reservoirs located downstream at a monthly time step. This study aims to support policy makers via integrated tools for water-energy planning under climate uncertainties, and to facilitate the formulation of water policy-related actions for future water stress adaptation. The value of the integrated resource use model is that it can support local policy makers understand the implications of resource use trade-offs under a changing climate: 1) water availability to meet future growing demand for irrigated areas; 2) water supply for hydropower production; 3) increasing demand of water for mining and extraction of unconventional oil; 4) potential resource use conflicts and impacts on vulnerable populations.

  15. Theoretical models of the impact of climate change on natural populations, communities and ecosystems. Final report, 1989--1992

    Energy Technology Data Exchange (ETDEWEB)

    Wiegert, R.

    1992-12-31

    Land use change is a relatively understudied aspect of global change. In many cases, the impact of land use on plant and animal species may be far greater than the impact of climate change per se. As an integral part of our long-term studies of the response of animal populations to global change, we have focused on land use change as a dominant driving force. Climate change, no doubt, will also play a role in determining the future abundance and distribution of many species, but, for many species, the signal from climate change per se may be difficult to detect if we do not first understand the impact of land use change. This formed the dominant theme of the research by the PI (Pulliam). Both land use change and year to year climate change can directly affect other populations and two examples of this formed the focus of the remaining research, models of invertebrates in Carolina Bays and a model of a commercial estuarine population of blue crabs.

  16. Modeling the impact of climate change on watershed discharge and sediment yield in the black soil region, northeastern China

    Science.gov (United States)

    Li, Zhiying; Fang, Haiyan

    2017-09-01

    Climate change is expected to impact discharge and sediment yield in watersheds. The purpose of this paper is to assess the potential impacts of climate change on water discharge and sediment yield for the Yi'an watershed of the black soil region, northeastern China, based on the newly released Representative Concentration Pathways (RCPs) during 2071-2099. For this purpose, the TETIS model was implemented to simulate the hydrological and sedimentological responses to climate change. The model calibration (1971-1977) and validation (1978-1987) performances were rated as satisfactory. The modeling results for the four RCP scenarios relative to the control scenario under the same land use configuration indicated an increase in discharge of 16.3% (RCP 2.6), 14.3% (RCP 4.5), 36.7% (RCP 6.0) and 71.4% (RCP 8.5) and an increase in the sediment yield of 16.5% (RCP 2.6), 32.4% (RCP 4.5), 81.8% (RCP 6.0) and 170% (RCP 8.5). This implies that the negative impact of climate change on sediment yield is generally greater than that on discharge. At the monthly scale, both discharge and sediment yield increased dramatically in April to June and August to September. A more vigorous hydrological cycle and an increase in high values of sediment yield are also expected. These changes in annual discharge and sediment yield were closely linked with changes in precipitation, whereas monthly changes in late spring and autumn were mainly related to temperature. This study highlights the possible adverse impact of climate change on discharge and sediment yield in the black soil region of northeastern China and could provide scientific basis for adaptive management.

  17. Impacts of Climate Change on Stream Flow in the Upper Mississippi River Basin: A Regional Climate Model Perspective, The

    OpenAIRE

    Manoj Jha; Zaitao Pan; Takle, Eugene S.; Roy Gu

    2003-01-01

    We evaluate the impact of climate change on stream flow in the Upper Mississippi River Basin (UMRB) by using a regional climate model (RCM) coupled with a hydrologic model, the Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated and validated against measured stream flow data using observed weather data and inputs from the Environmental Protection Agency's BASINS (Better Assessment Science Integrating Point and Nonpoint Sources) geographical information/database system. The c...

  18. Assessing Climate Change Impacts on Water Resources and Colorado Agriculture Using an Equilibrium Displacement Mathematical Programming Model

    OpenAIRE

    Eihab Fathelrahman; Amalia Davies; Stephen Davies; James Pritchett

    2014-01-01

    This research models selected impacts of climate change on Colorado agriculture several decades in the future, using an Economic Displacement Mathematical Programming model. The agricultural economy in Colorado is dominated by livestock, which accounts for 67% of total receipts. Crops, including feed grains and forages, account for the remainder. Most agriculture is based on irrigated production, which depends on both groundwater, especially from the Ogallala aquifer, and surface water that c...

  19. Possible impact of climate change on meningitis in northwest Nigeria: an assessment using CMIP5 climate model simulations

    Science.gov (United States)

    Abdussalam, Auwal; Monaghan, Andrew; Steinhoff, Daniel; Dukic, Vanja; Hayden, Mary; Hopson, Thomas; Thornes, John; Leckebusch, Gregor

    2014-05-01

    Meningitis remains a major health burden throughout Sahelian Africa, especially in heavily-populated northwest Nigeria. Cases exhibit strong sensitivity to intra- and inter-annual climate variability, peaking during the hot and dry boreal spring months, raising concern that future climate change may increase the incidence of meningitis in the region. The impact of future climate change on meningitis risk in northwest Nigeria is assessed by forcing an empirical model of meningitis with monthly simulations from an ensemble of thirteen statistically downscaled global climate model projections from the Coupled Model Intercomparison Experiment Phase 5 (CMIP5) for RCPs 2.6, 6.0 and 8.5 scenarios. The results suggest future temperature increases due to climate change has the potential to significantly increase meningitis cases in both the early and late 21st century, and to increase the length of the meningitis season in the late century. March cases may increase from 23 per 100,000 people for present day (1990-2005), to 29-30 per 100,000 (p<0.01) in the early century (2020-2035) and 31-42 per 100,000 (p<0.01) in the late century (2060-2075), the range being dependent on the emissions scenario. It is noteworthy that these results represent the climatological potential for increased cases due to climate change, as we assume current prevention and treatment strategies remain similar in the future.

  20. Stability and Persistence of an Avian Influenza Epidemic Model with Impacts of Climate Change

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Zhao

    2016-01-01

    Full Text Available The growing number of reported avian influenza cases has prompted awareness of the importance of research methods to control the spread of the disease. Seasonal variation is one of the important factors that affect the spread of avian influenza. This paper presents a “nonautonomous” model to analyze the transmission dynamics of avian influenza with the effects of climate change. We obtain and discuss the global stability conditions of the disease-free equilibrium; the threshold conditions for persistence, permanence, and extinction of the disease; and the parameters with periodicity for controlling and eliminating the avian influenza.

  1. Climate change impact assessment on Veneto and Friuli Plain groundwater. Part I: an integrated modeling approach for hazard scenario construction.

    Science.gov (United States)

    Baruffi, F; Cisotto, A; Cimolino, A; Ferri, M; Monego, M; Norbiato, D; Cappelletto, M; Bisaglia, M; Pretner, A; Galli, A; Scarinci, A; Marsala, V; Panelli, C; Gualdi, S; Bucchignani, E; Torresan, S; Pasini, S; Critto, A; Marcomini, A

    2012-12-01

    Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life+ project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961-1990 and the projection period 2010-2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071-2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble produced

  2. Betting and Belief: Modeling the Impact of Prediction Markets on Public Attribution of Climate Change

    Science.gov (United States)

    Gilligan, J. M.; Nay, J. J.; van der Linden, M.

    2016-12-01

    Despite overwhelming scientific evidence and an almost complete consensus among scientists, a large fraction of the American public is not convinced that global warming is anthropogenic. This doubt correlates strongly with political, ideological, and cultural orientation. [1] It has been proposed that people who do not trust climate scientists tend to trust markets, so prediction markets might be able to influence their beliefs about the causes of climate change. [2] We present results from an agent-based simulation of a prediction market in which traders invest based on their beliefs about what drives global temperature change (here, either CO2 concentration or total solar irradiance (TSI), which is a popular hypothesis among many who doubt the dominant role of CO2). At each time step, traders use historical and observed temperatures and projected future forcings (CO2 or TSI) to update Bayesian posterior probability distributions for future temperatures, conditional on their belief about what drives climate change. Traders then bet on future temperatures by trading in climate futures. Trading proceeds by a continuous double auction. Traders are randomly assigned initial beliefs about climate change, and they have some probability of changing their beliefs to match those of the most successful traders in their social network. We simulate two alternate realities in which the global temperature is controlled either by CO2 or by TSI, with stochastic noise. In both cases traders' beliefs converge, with a large majority reaching agreement on the actual cause of climate change. This convergence is robust, but the speed with which consensus emerges depends on characteristics of the traders' psychology and the structure of the market. Our model can serve as a test-bed for studying how beliefs might evolve under different market structures and different modes of decision-making and belief-change. We will report progress on studying alternate models of belief-change. This

  3. Modelling the impacts of climate change on tropospheric ozone over three centuries

    Directory of Open Access Journals (Sweden)

    G. B. Hedegaard

    2011-02-01

    Full Text Available The ozone chemistry over three centuries has been simulated based on climate prediction from a global climate model and constant anthropogenic emissions in order to separate out the effects on air pollution from climate change. Four decades in different centuries has been simulated using the chemistry version of the atmospheric long-range transport model; the Danish Eulerian Hemispheric Model (DEHM forced with meteorology predicted by the ECHAM5/MPI-OM coupled Atmosphere-Ocean General Circulation Model. The largest changes in both meteorology, ozone and its precursors is found in the 21st century, however, also significant changes are found in the 22nd century. At surface level the ozone concentration is predicted to increase due to climate change in the areas where substantial amounts of ozone precursors are emitted. Elsewhere a significant decrease is predicted at the surface. In the free troposphere a general increase is found in the entire Northern Hemisphere except in the tropics, where the ozone concentration is decreasing. In the Arctic the ozone concentration will increase in the entire air column, which most likely is due to changes in transport. The change in temperature, humidity and the naturally emitted Volatile Organic Compounds (VOCs are governing with respect to changes in ozone both in the past, present and future century.

  4. Modelling the impact of climate change and atmospheric N deposition on French forests biodiversity.

    Science.gov (United States)

    Rizzetto, Simon; Belyazid, Salim; Gégout, Jean-Claude; Nicolas, Manuel; Alard, Didier; Corcket, Emmanuel; Gaudio, Noémie; Sverdrup, Harald; Probst, Anne

    2016-06-01

    A dynamic coupled biogeochemical-ecological model was used to simulate the effects of nitrogen deposition and climate change on plant communities at three forest sites in France. The three sites had different forest covers (sessile oak, Norway spruce and silver fir), three nitrogen loads ranging from relatively low to high, different climatic regions and different soil types. Both the availability of vegetation time series and the environmental niches of the understory species allowed to evaluate the model for predicting the composition of the three plant communities. The calibration of the environmental niches was successful, with a model performance consistently reasonably high throughout the three sites. The model simulations of two climatic and two deposition scenarios showed that climate change may entirely compromise the eventual recovery from eutrophication of the simulated plant communities in response to the reductions in nitrogen deposition. The interplay between climate and deposition was strongly governed by site characteristics and histories in the long term, while forest management remained the main driver of change in the short term.

  5. CLIMATE CHANGES: CAUSES AND IMPACT

    Directory of Open Access Journals (Sweden)

    Camelia Slave

    2013-07-01

    Full Text Available Present brings several environmental problems for people. Many of these are closely related, but by far the most important problem is the climate change. In the course of Earth evolution, climate has changed many times, sometimes dramatically. Warmer eras always replaced and were in turn replaced by glacial ones. However, the climate of the past almost ten thousand years has been very stable. During this period human civilization has also developed. In the past nearly 100 years - since the beginning of industrialization - the global average temperature has increased by approx. 0.6 ° C (after IPCC (Intergovernmental Panel on Climate Change, faster than at any time in the last 1000 years.

  6. Investigation of climate change impact on water resources for an Alpine basin in northern Italy: implications for evapotranspiration modeling complexity.

    Science.gov (United States)

    Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco

    2014-01-01

    Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required because of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied.

  7. From Global Climate Model Projections to Local Impacts Assessments: Analyses in Support of Planning for Climate Change

    Science.gov (United States)

    Snover, A. K.; Littell, J. S.; Mantua, N. J.; Salathe, E. P.; Hamlet, A. F.; McGuire Elsner, M.; Tohver, I.; Lee, S.

    2010-12-01

    Assessing and planning for the impacts of climate change require regionally-specific information. Information is required not only about projected changes in climate but also the resultant changes in natural and human systems at the temporal and spatial scales of management and decision making. Therefore, climate impacts assessment typically results in a series of analyses, in which relatively coarse-resolution global climate model projections of changes in regional climate are downscaled to provide appropriate input to local impacts models. This talk will describe recent examples in which coarse-resolution (~150 to 300km) GCM output was “translated” into information requested by decision makers at relatively small (watershed) and large (multi-state) scales using regional climate modeling, statistical downscaling, hydrologic modeling, and sector-specific impacts modeling. Projected changes in local air temperature, precipitation, streamflow, and stream temperature were developed to support Seattle City Light’s assessment of climate change impacts on hydroelectric operations, future electricity load, and resident fish populations. A state-wide assessment of climate impacts on eight sectors (agriculture, coasts, energy, forests, human health, hydrology and water resources, salmon, and urban stormwater infrastructure) was developed for Washington State to aid adaptation planning. Hydro-climate change scenarios for approximately 300 streamflow locations in the Columbia River basin and selected coastal drainages west of the Cascades were developed in partnership with major water management agencies in the Pacific Northwest to allow planners to consider how hydrologic changes may affect management objectives. Treatment of uncertainty in these assessments included: using “bracketing” scenarios to describe a range of impacts, using ensemble averages to characterize the central estimate of future conditions (given an emissions scenario), and explicitly assessing

  8. An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources

    Directory of Open Access Journals (Sweden)

    J. A. Velázquez

    2013-02-01

    Full Text Available Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e., lumped, semi distributed and distributed models. The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada and one in Southern Bavaria (Germany. Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by global climate models over a reference (1971–2000 and a future (2041–2070 period. The results show that, for our hydrological model ensemble, the choice of model strongly affects the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model.

  9. An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources

    Directory of Open Access Journals (Sweden)

    J. A. Velázquez

    2012-06-01

    Full Text Available Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e. lumped, semi distributed and distributed models. The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada and one in Southern Bavaria (Germany. Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by a given number of GCMs' members over a reference (1971–2000 and a future (2041–2070 periods. The results show that the choice of the hydrological model does strongly affect the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model. Therefore, the computationally less demanding models (usually simple, lumped and conceptual give a significant level of trust for high and overall mean flows.

  10. Model uncertainty in economic impacts of climate change: Bernoulli versus Lotka Volterra dynamics.

    Science.gov (United States)

    Cooke, Roger M

    2013-01-01

    The dynamic economic behavior in most integrated assessment models linking economic growth to climate change involves a differential equation solved by Jacob Bernoulli in 1695. Using the dynamic integrated climate economy (DICE) model and freezing exogenous variables at initial values, this dynamic is shown to produce implausible projections on a 60-year time frame. If world capital started at US$1, after 60 years the world economy would be indistinguishable from one starting with 10 times the current capitalization. Such behavior points to uncertainty at the level of the fundamental dynamics, and suggests that discussions of discounting, utility, damage functions, and ethics should be conducted within a more general modeling vocabulary. Lotka Volterra dynamics is proposed as an alternative with greater prime facie plausibility. With near universality, economists assume that economic growth will go on forever. Lotka Volterra dynamics alert us to the possibility of collapse.

  11. Climate change impact assessment on Veneto and Friuli plain groundwater. Part I: An integrated modeling approach for hazard scenario construction

    Energy Technology Data Exchange (ETDEWEB)

    Baruffi, F. [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Cisotto, A., E-mail: segreteria@adbve.it [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Cimolino, A.; Ferri, M.; Monego, M.; Norbiato, D.; Cappelletto, M.; Bisaglia, M. [Autorita di Bacino dei Fiumi dell' Alto Adriatico, Cannaregio 4314, 30121 Venice (Italy); Pretner, A.; Galli, A. [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Scarinci, A., E-mail: andrea.scarinci@sgi-spa.it [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Marsala, V.; Panelli, C. [SGI Studio Galli Ingegneria, via della Provvidenza 13, 35030 Sarmeola di Rubano (PD) (Italy); Gualdi, S., E-mail: silvio.gualdi@bo.ingv.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Bucchignani, E., E-mail: e.bucchignani@cira.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Torresan, S., E-mail: torresan@cmcc.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Pasini, S., E-mail: sara.pasini@stud.unive.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga S. Marta 2137, 30123 Venice (Italy); Critto, A., E-mail: critto@unive.it [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100 Lecce (Italy); Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Calle Larga S. Marta 2137, 30123 Venice (Italy); and others

    2012-12-01

    Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life + project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961-1990 and the projection period 2010-2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071-2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble produced

  12. Can Impacts of Climate Change and Agricultural Adaptation Strategies Be Accurately Quantified if Crop Models Are Annually Re-Initialized?

    Science.gov (United States)

    Basso, Bruno; Hyndman, David W; Kendall, Anthony D; Grace, Peter R; Robertson, G Philip

    2015-01-01

    Estimates of climate change impacts on global food production are generally based on statistical or process-based models. Process-based models can provide robust predictions of agricultural yield responses to changing climate and management. However, applications of these models often suffer from bias due to the common practice of re-initializing soil conditions to the same state for each year of the forecast period. If simulations neglect to include year-to-year changes in initial soil conditions and water content related to agronomic management, adaptation and mitigation strategies designed to maintain stable yields under climate change cannot be properly evaluated. We apply a process-based crop system model that avoids re-initialization bias to demonstrate the importance of simulating both year-to-year and cumulative changes in pre-season soil carbon, nutrient, and water availability. Results are contrasted with simulations using annual re-initialization, and differences are striking. We then demonstrate the potential for the most likely adaptation strategy to offset climate change impacts on yields using continuous simulations through the end of the 21st century. Simulations that annually re-initialize pre-season soil carbon and water contents introduce an inappropriate yield bias that obscures the potential for agricultural management to ameliorate the deleterious effects of rising temperatures and greater rainfall variability.

  13. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe.

    Science.gov (United States)

    Fraga, Helder; García de Cortázar Atauri, Iñaki; Malheiro, Aureliano C; Santos, João A

    2016-11-01

    Viticulture is a key socio-economic sector in Europe. Owing to the strong sensitivity of grapevines to atmospheric factors, climate change may represent an important challenge for this sector. This study analyses viticultural suitability, yield, phenology, and water and nitrogen stress indices in Europe, for present climates (1980-2005) and future (2041-2070) climate change scenarios (RCP4.5 and 8.5). The STICS crop model is coupled with climate, soil and terrain databases, also taking into account CO2 physiological effects, and simulations are validated against observational data sets. A clear agreement between simulated and observed phenology, leaf area index, yield and water and nitrogen stress indices, including the spatial differences throughout Europe, is shown. The projected changes highlight an extension of the climatic suitability for grapevines up to 55°N, which may represent the emergence of new winemaking regions. Despite strong regional heterogeneity, mean phenological timings (budburst, flowering, veraison and harvest) are projected to undergo significant advancements (e.g. budburst/harvest can be >1 month earlier), with implications also in the corresponding phenophase intervals. Enhanced dryness throughout Europe is also projected, with severe water stress over several regions in southern regions (e.g. southern Iberia and Italy), locally reducing yield and leaf area. Increased atmospheric CO2 partially offsets dryness effects, promoting yield and leaf area index increases in central/northern Europe. Future biomass changes may lead to modifications in nitrogen demands, with higher stress in northern/central Europe and weaker stress in southern Europe. These findings are critical decision support systems for stakeholders from the European winemaking sector.

  14. Climate Change Impacts on the Stability of Small Tidal Inlets: A Numerical Modelling Study Using the Realistic Analogue Approach

    Directory of Open Access Journals (Sweden)

    Trang Minh Duong

    2012-09-01

    Full Text Available Tidal inlets are of great societal importance as they are often associated with ports and harbours, industry, tourism, recreation and prime waterfront real estate. Their behaviour is governed by the delicate balance of oceanic processes (tides, waves and mean sea level, and fluvial/estuarine processes (riverflow and heat fluxes, all of which can be significantly affected by climate change (CC processes. This study investigates the potential range of CC impacts on the stability (closed/open state and locational stability via the application of a sophisticated process based morphodynamic model (Delft3D to strategically selected schematized inlet morphologies and forcing conditions. Results show that, under worst case scenario conditions, the integrated effect of climate change driven increase in mean sea level, wave height and wave angle may significantly change inlet stability condition.

  15. The use of multi-model ensembles from global climate models for impact assessment of climate change

    Science.gov (United States)

    Semenov, M. A.

    2009-04-01

    The IPCC 4th Assessment Report was based on large datasets of projections of future climate produced by eighteen modelling groups worldwide who performed a set of coordinated climate experiments in which numerous global climate models (GCMs) have been run for a common set of experiments and various emission scenarios. These datasets are freely available form the IPCC Data Distribution Centre (www.ipcc-data.org) and can be used by the research community to assess the impact of changing climate on various systems of interest including impacts on agricultural crops and natural ecosystems, biodiversity and plant diseases. Multi-model ensembles (MME) emphasize the uncertainty in climate predictions resulting from structural differences in the global climate model design as well as uncertainty to variations of initial conditions or model parameters. This paper describes a methodology based on a stochastic weather generator for linking MME of predictions from GCMs with process-based impact models to assess impacts of climate change on biological or ecological systems. The latest version of the LARS-WG weather generator is described which allows seamlessly generating daily site-specific climate scenarios worldwide by utilising local daily weather and MME from GCMs. Examples of impacts on wheat in Europe, based on MME, are discussed, including changes in severity of drought and heat stress around flowering.

  16. Using the UKCP09 probabilistic scenarios to model the amplified impact of climate change on river basin sediment yield

    Directory of Open Access Journals (Sweden)

    T. J. Coulthard

    2012-07-01

    Full Text Available Precipitation intensities and the frequency of extreme events are projected to increase under climate change. These rainfall changes will lead to increases in the magnitude and frequency of flood events that will, in turn, affect patterns of erosion and deposition within river basins. These geomorphic changes to river systems may affect flood conveyance, infrastructure resilience, channel pattern, and habitat status, as well as sediment, nutrient and carbon fluxes. Previous research modelling climatic influences on geomorphic changes has been limited by how climate variability and change are represented by downscaling from Global or Regional Climate Models. Furthermore, the non-linearity of the climatic, hydrological and geomorphic systems involved generate large uncertainties at each stage of the modelling process creating an uncertainty "cascade".

    This study integrates state-of-the-art approaches from the climate change and geomorphic communities to address these issues in a probabilistic modelling study of the Swale catchment, UK. The UKCP09 weather generator is used to simulate hourly rainfall for the baseline and climate change scenarios up to 2099, and used to drive the CAESAR landscape evolution model to simulate geomorphic change. Results show that winter rainfall is projected to increase, with larger increases at the extremes. The impact of the increasing rainfall is amplified through the translation into catchment runoff and in turn sediment yield with a 100% increase in catchment mean sediment yield predicted between the baseline and the 2070–2099 High emissions scenario. Significant increases are shown between all climate change scenarios and baseline values. Analysis of extreme events also shows the amplification effect from rainfall to sediment delivery with even greater amplification associated with higher return period events. Furthermore, for the 2070–2099 High emissions scenario, sediment discharges from 50 yr

  17. Using the UKCP09 probabilistic scenarios to model the amplified impact of climate change on drainage basin sediment yield

    Directory of Open Access Journals (Sweden)

    T. J. Coulthard

    2012-11-01

    Full Text Available Precipitation intensities and the frequency of extreme events are projected to increase under climate change. These rainfall changes will lead to increases in the magnitude and frequency of flood events that will, in turn, affect patterns of erosion and deposition within river basins. These geomorphic changes to river systems may affect flood conveyance, infrastructure resilience, channel pattern, and habitat status as well as sediment, nutrient and carbon fluxes. Previous research modelling climatic influences on geomorphic changes has been limited by how climate variability and change are represented by downscaling from global or regional climate models. Furthermore, the non-linearity of the climatic, hydrological and geomorphic systems involved generate large uncertainties at each stage of the modelling process creating an uncertainty "cascade".

    This study integrates state-of-the-art approaches from the climate change and geomorphic communities to address these issues in a probabilistic modelling study of the Swale catchment, UK. The UKCP09 weather generator is used to simulate hourly rainfall for the baseline and climate change scenarios up to 2099, and used to drive the CAESAR landscape evolution model to simulate geomorphic change. Results show that winter rainfall is projected to increase, with larger increases at the extremes. The impact of the increasing rainfall is amplified through the translation into catchment runoff and in turn sediment yield with a 100% increase in catchment mean sediment yield predicted between the baseline and the 2070–2099 High emissions scenario. Significant increases are shown between all climate change scenarios and baseline values. Analysis of extreme events also shows the amplification effect from rainfall to sediment delivery with even greater amplification associated with higher return period events. Furthermore, for the 2070–2099 High emissions scenario, sediment discharges from 50-yr

  18. Climate change impacts on global food security.

    Science.gov (United States)

    Wheeler, Tim; von Braun, Joachim

    2013-08-02

    Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a "climate-smart food system" that is more resilient to climate change influences on food security.

  19. Advances in Observation and Estimation of Land Use Impacts on Climate Changes: Improved Data, Upgraded Models, and Case Studies

    Directory of Open Access Journals (Sweden)

    R. B. Singh

    2014-01-01

    Full Text Available Global land use and land cover pattern has greatly changed in the past 50 years, which exerts direct or indirect influence on the climate change remarkably at both regional and global scales. Therefore, observing and estimating the land use impacts on surface climate is essential and has been continuously promoted by researchers. This paper explores the advancement in the models, data, and application for observing and estimating the land use impacts on surface climate and points out further research needs and priorities, which hopefully will provide some references for related studies.

  20. Updating known distribution models for forecasting climate change impact on endangered species

    National Research Council Canada - National Science Library

    Muñoz, Antonio-Román; Márquez, Ana Luz; Real, Raimundo

    2013-01-01

    To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their distributional response to climate change, especially under the current situation of rapid change...

  1. Updating Known Distribution Models for Forecasting Climate Change Impact on Endangered Species: e65462

    National Research Council Canada - National Science Library

    Antonio-Román Muñoz; Ana Luz Márquez; Raimundo Real

    2013-01-01

      To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their distributional response to climate change, especially under the current situation of rapid change...

  2. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling

    Science.gov (United States)

    Khanum, Rizwana; Mumtaz, A. S.; Kumar, Sunil

    2013-05-01

    Maximum entropy (Maxent) modeling was used to predict the potential climatic niches of three medicinally important Asclepiad species: Pentatropis spiralis, Tylophora hirsuta, and Vincetoxicum arnottianum. All three species are members of the Asclepiad plant family, yet they differ in ecological requirements, biogeographic importance, and conservation value. Occurrence data were collected from herbarium specimens held in major herbaria of Pakistan and two years (2010 and 2011) of field surveys. The Maxent model performed better than random for the three species with an average test AUC value of 0.74 for P. spiralis, 0.84 for V. arnottianum, and 0.59 for T. hirsuta. Under the future climate change scenario, the Maxent model predicted habitat gains for P. spiralis in southern Punjab and Balochistan, and loss of habitat in south-eastern Sindh. Vincetoxicum arnottianum as well as T. hirsuta would gain habitat in upper Peaks of northern parts of Pakistan. T. hirsuta is predicted to lose most of the habitats in northern Punjab and in parches from lower peaks of Galliat, Zhob, Qalat etc. The predictive modeling approach presented here may be applied to other rare Asclepiad species, especially those under constant extinction threat.

  3. A statistical modeling framework for projecting future ambient ozone and its health impact due to climate change

    Science.gov (United States)

    Chang, Howard H.; Hao, Hua; Sarnat, Stefanie Ebelt

    2014-06-01

    The adverse health effects of ambient ozone are well established. Given the high sensitivity of ambient ozone concentrations to meteorological conditions, the impacts of future climate change on ozone concentrations and its associated health effects are of concern. We describe a statistical modeling framework for projecting future ozone levels and its health impacts under a changing climate. This is motivated by the continual effort to evaluate projection uncertainties to inform public health risk assessment. The proposed approach was applied to the 20-county Atlanta metropolitan area using regional climate model (RCM) simulations from the North American Regional Climate Change Assessment Program. Future ozone levels and ozone-related excesses in asthma emergency department (ED) visits were examined for the period 2041-2070. The computationally efficient approach allowed us to consider 8 sets of climate model outputs based on different combinations of 4 RCMs and 4 general circulation models. Compared to the historical period of 1999-2004, we found consistent projections across climate models of an average 11.5% higher ozone levels (range: 4.8%, 16.2%), and an average 8.3% (range: -7%-24%) higher number of ozone exceedance days. Assuming no change in the at-risk population, this corresponds to excess ozone-related ED visits ranging from 267 to 466 visits per year. Health impact projection uncertainty was driven predominantly by uncertainty in the health effect association and climate model variability. Calibrating climate simulations with historical observations reduced differences in projections across climate models.

  4. Investigating the Capacity of Hydrological Models to Project Impacts of Climate Change in the Context of Water Allocation

    Science.gov (United States)

    Velez, Carlos; Maroy, Edith; Rocabado, Ivan; Pereira, Fernando

    2017-04-01

    To analyse the impacts of climate changes, hydrological models are used to project the hydrology responds under future conditions that normally differ from those for which they were calibrated. The challenge is to assess the validity of the projected effects when there is not data to validate it. A framework for testing the ability of models to project climate change was proposed by Refsgaard et al., (2014). The authors recommend the use of the differential-split sample test (DSST) in order to build confidence in the model projections. The method follow three steps: 1. A small number of sub-periods are selected according to one climate characteristics, 2. The calibration - validation test is applied on these periods, 3. The validation performances are compered to evaluate whether they vary significantly when climatic characteristics differ between calibration and validation. DSST rely on the existing records of climate and hydrological variables; and performances are estimated based on indicators of error between observed and simulated variables. Other authors suggest that, since climate models are not able to reproduce single events but rather statistical properties describing the climate, this should be reflected when testing hydrological models. Thus, performance criteria such as RMSE should be replaced by for instance flow duration curves or other distribution functions. Using this type of performance criteria, Van Steenbergen and Willems, (2012) proposed a method to test the validity of hydrological models in a climate changing context. The method is based on the evaluation of peak flow increases due to different levels of rainfall increases. In contrast to DSST, this method use the projected climate variability and it is especially useful to compare different modelling tools. In the framework of a water allocation project for the region of Flanders (Belgium) we calibrated three hydrological models: NAM, PDM and VHM; for 67 gauged sub-catchments with approx

  5. Modelling of anthropogenic and natural climate changes

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, H.; Mikolajewicz, U.; Bakan, S. (Max Planck Institute of Meteorology, Hamburg (Germany))

    1993-06-01

    The delay of anthropogenic climate change caused by oceans and other slowly reacting climate system components forces us to numerical modeling as the basis of decisions. For three three-dimensional numerical examples, namely transient coupled ocean-atmosphere models for the additional greenhouse effect, internal ocean-atmosphere variability, and disturbance by soot particles from burning oil wells, the present-day status is described. From all anthropogenic impacts on the radiative balance, the contribution from trace gases is the most important.

  6. Modelling the impact of climate change on regional hydrological processes in a data-scarce mountainous region

    Science.gov (United States)

    Yang, Jing; Fang, Gonghuan

    2017-04-01

    Water resources are essential to the ecosystem and social economy worldwide, especially in the desert and oasis of the Tarim River Basin (with an area of 1,102,000 km2), whose headwater originates from the Tienshan and Kunlun Mountains. This basin is characterized by complicated hydrologic processes while scarce meteorological observations. In this study, we analyzed the impact of climate change in Tarim River Basin through an integrated hydrological model SWAT (Soil and Water Assessment Tool). Important hydrologic processes were identified spatially through a multiple objective (global) sensitivity analysis approach, and the model was calibrated through a multiple objective optimization, with long term observed flow data at 32 stations. The calibrated model was then used to analyze the spatial distributed hydrologic response to climate change through future climate forcing obtained by applying BMA (Bayesian Model Averaging) technique to an ensemble of 21-GCM (General Circulation Model) simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under RCP4.5 and RCP8.5. Results indicate: 1) sub-watersheds in the catchment can be divided into several groups: groundwater dominated, snowmelt controlled, surface-water influenced, or combined; 2) the use of large-scale, physically-based hydrological models together with the multi-objective sensitivity analysis and optimization enables consistent and comprehensive examination of the dominant hydrological processes of each headwater of the Tarim River; 3) runoff shows an overall increasing trend in the near future but will decrease at the end of the 21st century. The integrated models provided robust information for the water resources management in the Tarim River Basin and served as a basis for assessment of the impact of climate change on future water availability.

  7. A Refined Methodology for Modelling Climate Change Impacts on Snow Sports Tourism

    Science.gov (United States)

    Demiroglu, O. Cenk; Turp, M. Tufan; Ozturk, Tugba; An, Nazan; Kurnaz, M. Levent

    2015-04-01

    Nature-based tourism is one of the most vulnerable sectors of the economy against climate change. Among its types, winter tourism stands out as the most critical due to the relatively high exposure and sensitivity of snow cover to the anthropogenic warming trends. In this study, we aim at improving previous works by Ozturk et al. where snow reliability of ski resorts have been examined through projections based on regional climate model outputs downscaled from various GCMs. Major improvements to these studies will be related to increasing the resolution, obtaining snow depth values from snow-water equivalent outputs, and hourly, instead of the daily, calculations of wet bulb temperatures. Daily snow depth values will be utilized for 100-days rule that looks for at least 100 days of snow cover at a minimum of 30 cm in order for a ski resort to be viable, whereas the wet bulb temperatures below -7 oC will indicate the snowmaking capacity. The domain of analysis will be the Balkans, the Middle East and the Caucasus. Therefore the spatial gap in the mostly Euro- and Amero-centric literature will also be improved. The domain will be modelled through RegCM 4.4.2 of the International Centre for Theoretical Physics basing its resolution on MPI-ESM-MR of Max Planck Institut für Meteorologie and the concentration scenario RCP 4.5 for a realistic tourism development future of 2020-2050.

  8. Distributed modelling of climate change impacts on snow sublimation in Northern Mongolia

    Directory of Open Access Journals (Sweden)

    L. Menzel

    2009-08-01

    Full Text Available Sublimation of snow is an important factor of the hydrological cycle in Mongolia and is likely to increase according to future climate projections. In this study the hydrological model TRAIN was used to assess spatially distributed current and future sublimation rates based on interpolated daily data of precipitation, air temperature, air humidity, wind speed and solar radiation. An automated procedure for the interpolation of the input data is provided. Depending on the meteorological parameter and the data availability for the individual days, the most appropriate interpolation method is chosen automatically from inverse distance weighting, Ordinary Least Squares interpolation, Ordinary or Universal Kriging. Depending on elevation simulated annual sublimation in the period 1986–2006 was 23 to 35 mm, i.e. approximately 80% of total snowfall. Moreover, future climate projections for 2071–2100 of ECHAM5 and HadCM3, based on the A1B emission scenario of the Intergovernmental Panel on Climate Change, were analysed with TRAIN. In the case of ECHAM5 simulated sublimation increases by up to 17% (26...41 mm while it remains at the same level for HadCM3 (24...34 mm. The differences are mainly due to a distinct increase in winter precipitation for ECHAM5. Simulated changes of the all-season hydrological conditions, e.g. the sublimation-to-precipitation ratio, were ambiguous due to diverse precipitation patterns derived by the global circulation models.

  9. Mechanisms of shrub encroachment into Northern Chihuahuan Desert grasslands and impacts of climate change investigated using a cellular automata model

    Science.gov (United States)

    Caracciolo, Domenico; Istanbulluoglu, Erkan; Noto, Leonardo Valerio; Collins, Scott L.

    2016-05-01

    Arid and semiarid grasslands of southwestern North America have changed dramatically over the last 150 years as a result of woody plant encroachment. Overgrazing, reduced fire frequency, and climate change are known drivers of woody plant encroachment into grasslands. In this study, relatively simple algorithms for encroachment factors (i.e., grazing, grassland fires, and seed dispersal by grazers) are proposed and implemented in the ecohydrological Cellular-Automata Tree Grass Shrub Simulator (CATGraSS). CATGraSS is used in a 7.3 km2 rectangular domain located in central New Mexico along a zone of grassland to shrubland transition, where shrub encroachment is currently active. CATGraSS is calibrated and used to investigate the relative contributions of grazing, fire frequency, seed dispersal by herbivores and climate change on shrub abundance over a 150-year period of historical shrub encroachment. The impact of future climate change is examined using a model output that realistically represents current vegetation cover as initial condition, in a series of stochastic CATGraSS future climate simulations. Model simulations are found to be highly sensitive to the initial distribution of shrub cover. Encroachment factors more actively lead to shrub propagation within the domain when the model starts with randomly distributed individual shrubs. However, when shrubs are naturally evolved into clusters, the model response to encroachment factors is muted unless the effect of seed dispersal by herbivores is amplified. The relative contribution of different drivers on modeled shrub encroachment varied based on the initial shrub cover condition used in the model. When historical weather data is used, CATGraSS predicted loss of shrub and grass cover during the 1950 s drought. While future climate change is found to amplify shrub encroachment (∼13% more shrub cover by 2100), grazing remains the dominant factor promoting shrub encroachment. When we modeled future climate

  10. Climate change, tropospheric ozone and particulate matter, and health impacts.

    Science.gov (United States)

    Ebi, Kristie L; McGregor, Glenn

    2008-11-01

    Because the state of the atmosphere determines the development, transport, dispersion, and deposition of air pollutants, there is concern that climate change could affect morbidity and mortality associated with elevated concentrations of these gases and fine particles. We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health. We review studies projecting the impacts of climate change on air quality and studies projecting the impacts of these changes on morbidity and mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty include the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given these uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, which would increase morbidity and mortality. Few projections are available for low- and middle-income countries. The evidence is less robust for PM, primarily because few studies have been conducted. Additional research is needed to better understand the possible impacts of climate change on air pollution-related health impacts. If improved models continue to project higher ozone concentrations with climate change, then reducing greenhouse gas emissions would enhance the health of current and future generations.

  11. MeteoCrop DB: an agro-meteorological database coupled with crop models for studying climate change impacts on rice in Japan

    National Research Council Canada - National Science Library

    KUWAGATA, Tsuneo; YOSHIMOTO, Mayumi; ISHIGOOKA, Yasushi; HASEGAWA, Toshihiro; UTSUMI, Misako; NISHIMORI, Motoki; MASAKI, Yoshimitsu; SAITO, Osamu

    2011-01-01

    An agro-meteorological database coupled with crop models (MeteoCrop DB) has been developed for studying the impacts of climate change on rice (Oryza sativa L.) in Japan (http://MeteoCrop.dc.affrc.go.jp...

  12. Modeling daily flowering probabilities: expected impact of climate change on Japanese cherry phenology.

    Science.gov (United States)

    Allen, Jenica M; Terres, Maria A; Katsuki, Toshio; Iwamoto, Kojiro; Kobori, Hiromi; Higuchi, Hiroyoshi; Primack, Richard B; Wilson, Adam M; Gelfand, Alan; Silander, John A

    2014-04-01

    Understanding the drivers of phenological events is vital for forecasting species' responses to climate change. We developed flexible Bayesian survival regression models to assess a 29-year, individual-level time series of flowering phenology from four taxa of Japanese cherry trees (Prunus spachiana, Prunus × yedoensis, Prunus jamasakura, and Prunus lannesiana), from the Tama Forest Cherry Preservation Garden in Hachioji, Japan. Our modeling framework used time-varying (chill and heat units) and time-invariant (slope, aspect, and elevation) factors. We found limited differences among taxa in sensitivity to chill, but earlier flowering taxa, such as P. spachiana, were more sensitive to heat than later flowering taxa, such as P. lannesiana. Using an ensemble of three downscaled regional climate models under the A1B emissions scenario, we projected shifts in flowering timing by 2100. Projections suggest that each taxa will flower about 30 days earlier on average by 2100 with 2-6 days greater uncertainty around the species mean flowering date. Dramatic shifts in the flowering times of cherry trees may have implications for economically important cultural festivals in Japan and East Asia. The survival models used here provide a mechanistic modeling approach and are broadly applicable to any time-to-event phenological data, such as plant leafing, bird arrival time, and insect emergence. The ability to explicitly quantify uncertainty, examine phenological responses on a fine time scale, and incorporate conditions leading up to an event may provide future insight into phenologically driven changes in carbon balance and ecological mismatches of plants and pollinators in natural populations and horticultural crops.

  13. Comparing climate change impacts on crops in Belgium based on CMIP3 and EU-ENSEMBLES multi-model ensembles

    Science.gov (United States)

    Vanuytrecht, E.; Raes, D.; Willems, P.; Semenov, M.

    2012-04-01

    Global Circulation Models (GCMs) are sophisticated tools to study the future evolution of the climate. Yet, the coarse scale of GCMs of hundreds of kilometers raises questions about the suitability for agricultural impact assessments. These assessments are often made at field level and require consideration of interactions at sub-GCM grid scale (e.g., elevation-dependent climatic changes). Regional climate models (RCMs) were developed to provide climate projections at a spatial scale of 25-50 km for limited regions, e.g. Europe (Giorgi and Mearns, 1991). Climate projections from GCMs or RCMs are available as multi-model ensembles. These ensembles are based on large data sets of simulations produced by modelling groups worldwide, who performed a set of coordinated climate experiments in which climate models were run for a common set of experiments and various emissions scenarios (Knutti et al., 2010). The use of multi-model ensembles in climate change studies is an important step in quantifying uncertainty in impact predictions, which will underpin more informed decisions for adaptation and mitigation to changing climate (Semenov and Stratonovitch, 2010). The objective of our study was to evaluate the effect of the spatial scale of climate projections on climate change impacts for cereals in Belgium. Climate scenarios were based on two multi-model ensembles, one comprising 15 GCMs of the Coupled Model Intercomparison Project phase 3 (CMIP3; Meehl et al., 2007) with spatial resolution of 200-300 km, the other comprising 9 RCMs of the EU-ENSEMBLES project (van der Linden and Mitchell, 2009) with spatial resolution of 25 km. To be useful for agricultural impact assessments, the projections of GCMs and RCMs were downscaled to the field level. Long series (240 cropping seasons) of local-scale climate scenarios were generated by the LARS-WG weather generator (Semenov et al., 2010) via statistical inference. Crop growth and development were simulated with the Aqua

  14. Salmon Population Summary - Impacts of climate change on Pacific salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This work involves 1) synthesizing information from the literature and 2) modeling impacts of climate change on specific aspects of salmon life history and...

  15. Using statistical model to simulate the impact of climate change on maize yield with climate and crop uncertainties

    Science.gov (United States)

    Zhang, Yi; Zhao, Yanxia; Wang, Chunyi; Chen, Sining

    2016-09-01

    Assessment of the impact of climate change on crop productions with considering uncertainties is essential for properly identifying and decision-making agricultural practices that are sustainable. In this study, we employed 24 climate projections consisting of the combinations of eight GCMs and three emission scenarios representing the climate projections uncertainty, and two crop statistical models with 100 sets of parameters in each model representing parameter uncertainty within the crop models. The goal of this study was to evaluate the impact of climate change on maize (Zea mays L.) yield at three locations (Benxi, Changling, and Hailun) across Northeast China (NEC) in periods 2010-2039 and 2040-2069, taking 1976-2005 as the baseline period. The multi-models ensembles method is an effective way to deal with the uncertainties. The results of ensemble simulations showed that maize yield reductions were less than 5 % in both future periods relative to the baseline. To further understand the contributions of individual sources of uncertainty, such as climate projections and crop model parameters, in ensemble yield simulations, variance decomposition was performed. The results indicated that the uncertainty from climate projections was much larger than that contributed by crop model parameters. Increased ensemble yield variance revealed the increasing uncertainty in the yield simulation in the future periods.

  16. Comparison of Hydrological Impacts of Climate Change Simulated by WASMOD and HBV Models in Different Climatic Zones China, Ethiopia, and Norway

    OpenAIRE

    Eregno, Fasil Ejigu

    2009-01-01

    Abstract Recent advances in hydrological impact studies points that the response of specific catchments to climate change scenario using a single model approach is questionable. Based on this hypothesis, this study was aimed at investigating the impact of climate change on the hydrological regime of river basins in three different climatic zones (China, Ethiopia and Norway) using WASMOD and HBV hydrological models. Specifically the objectives include (i) examining and comparing the hydrolo...

  17. CLIMATE CHANGE IMPACTS ON WATER RESOURCES

    Directory of Open Access Journals (Sweden)

    T.M. CORNEA

    2011-03-01

    Full Text Available Climate change impacts on water resources – The most recent scientific assessment by the Intergovernmental Panel on Climate Change (IPCC [6] concludes that, since the late 19th century, anthropogenic induced emissions of greenhouse gases have contributed to an increase in global surface temperatures of about 0.3 to 0.6o C. Based on the IPCC’s scenario of future greenhouse gas emissions and aerosols a further increase of 2o C is expected by the year 2100. Plants, animals, natural and managed ecosystems, and human settlements are susceptible to variations in the storage, fluxes, and quality of water and sensitive to climate change. From urban and agricultural water supplies to flood management and aquatic ecosystem protection, global warming is affecting all aspects of water resource management. Rising temperatures, loss of snowpack, escalating size and frequency of flood events, and rising sea levels are just some of the impacts of climate change that have broad implications for the management of water resources. With robust scientific evidence showing that human-induced climate change is occurring, it is critical to understand how water quantity and quality might be affected. The purpose of this paper is to highlight the environmental risks caused by climate anomalies on water resources, to examine the negative impacts of a greenhouse warming on the supply and demand for water and the resulting socio-economic implications.

  18. Icy rivers heating up : Modelling hydrological impacts of climate change in the (sub)arctic

    NARCIS (Netherlands)

    Linden, Sandra van der

    2003-01-01

    The Arctic is considered to be particularly sensitive to global climate change. Global warming will seriously affect the components of the water balance in northern regions and changes in precipitation and temperature have immediate as well as long term effects on river systems. The main goal of thi

  19. Assessment of climate change impacts on climate variables using probabilistic ensemble modeling and trend analysis

    Science.gov (United States)

    Safavi, Hamid R.; Sajjadi, Sayed Mahdi; Raghibi, Vahid

    2016-08-01

    Water resources in snow-dependent regions have undergone significant changes due to climate change. Snow measurements in these regions have revealed alarming declines in snowfall over the past few years. The Zayandeh-Rud River in central Iran chiefly depends on winter falls as snow for supplying water from wet regions in high Zagrous Mountains to the downstream, (semi-)arid, low-lying lands. In this study, the historical records (baseline: 1971-2000) of climate variables (temperature and precipitation) in the wet region were chosen to construct a probabilistic ensemble model using 15 GCMs in order to forecast future trends and changes while the Long Ashton Research Station Weather Generator (LARS-WG) was utilized to project climate variables under two A2 and B1 scenarios to a future period (2015-2044). Since future snow water equivalent (SWE) forecasts by GCMs were not available for the study area, an artificial neural network (ANN) was implemented to build a relationship between climate variables and snow water equivalent for the baseline period to estimate future snowfall amounts. As a last step, homogeneity and trend tests were performed to evaluate the robustness of the data series and changes were examined to detect past and future variations. Results indicate different characteristics of the climate variables at upstream stations. A shift is observed in the type of precipitation from snow to rain as well as in its quantities across the subregions. The key role in these shifts and the subsequent side effects such as water losses is played by temperature.

  20. US Food Security and Climate Change: Mid-Century Projections of Commodity Crop Production by the IMPACT Model

    Science.gov (United States)

    Takle, E. S.; Gustafson, D. I.; Beachy, R.; Nelson, G. C.; Mason-D'Croz, D.; Palazzo, A.

    2013-12-01

    Agreement is developing among agricultural scientists on the emerging inability of agriculture to meet growing global food demands. The lack of additional arable land and availability of freshwater have long been constraints on agriculture. Changes in trends of weather conditions that challenge physiological limits of crops, as projected by global climate models, are expected to exacerbate the global food challenge toward the middle of the 21st century. These climate- and constraint-driven crop production challenges are interconnected within a complex global economy, where diverse factors add to price volatility and food scarcity. We use the DSSAT crop modeling suite, together with mid-century projections of four AR4 global models, as input to the International Food Policy Research Institute IMPACT model to project the impact of climate change on food security through the year 2050 for internationally traded crops. IMPACT is an iterative model that responds to endogenous and exogenous drivers to dynamically solve for the world prices that ensure global supply equals global demand. The modeling methodology reconciles the limited spatial resolution of macro-level economic models that operate through equilibrium-driven relationships at a national level with detailed models of biophysical processes at high spatial resolution. The analysis presented here suggests that climate change in the first half of the 21st century does not represent a near-term threat to food security in the US due to the availability of adaptation strategies (e.g., loss of current growing regions is balanced by gain of new growing regions). However, as climate continues to trend away from 20th century norms current adaptation measures will not be sufficient to enable agriculture to meet growing food demand. Climate scenarios from higher-level carbon emissions exacerbate the food shortfall, although uncertainty in climate model projections (particularly precipitation) is a limitation to impact

  1. Modelling and mapping climate change impacts on permafrost at high spatial resolution for an Arctic region with complex terrain

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2013-07-01

    Full Text Available Most spatial modelling of climate change impacts on permafrost has been conducted at half-degree latitude/longitude or coarser spatial resolution. At such coarse resolution, topographic effects on insolation cannot be considered accurately and the results are not suitable for land-use planning and ecological assessment. Here we mapped climate change impacts on permafrost from 1968 to 2100 at 10 m resolution using a process-based model for Ivvavik National Park, an Arctic region with complex terrain in northern Yukon, Canada. Soil and drainage conditions were defined based on ecosystem types, which were mapped using SPOT imagery. Leaf area indices were mapped using Landsat imagery and the ecosystem map. Climate distribution was estimated based on elevation and station observations, and the effects of topography on insolation were calculated based on slope, aspect and viewshed. To reduce computation time, we clustered climate distribution and topographic effects on insolation into discrete types. The modelled active-layer thickness and permafrost distribution were comparable with field observations and other studies. The map portrayed large variations in active-layer thickness, with ecosystem types being the most important controlling variable, followed by climate, including topographic effects on insolation. The results show deepening in active-layer thickness and progressive degradation of permafrost, although permafrost will persist in most of the park during the 21st century. This study also shows that ground conditions and climate scenarios are the major sources of uncertainty for high-resolution permafrost mapping.

  2. Modelling climate change, land-use change and phosphorus reduction impacts on phytoplankton in the River Thames (UK)

    Science.gov (United States)

    Bussi, Gianbattista; Whitehead, Paul; Dadson, Simon

    2016-04-01

    In this study, we assess the impact of changes in precipitation and temperature on the phytoplankton concentration of the River Thames (UK) by means of a physically-based model. A scenario-neutral approach was employed to evaluate the effects of climate variability on flow, phosphorus concentration and phytoplankton concentration. In particular, the impact of uniform changes in precipitation and temperature on five groups of phytoplankton (diatoms and large chlorophytes, other chlorophytes, picoalgae, Microcystis-like cyanobacteria and other cyanobacteria) was assessed under three different land-use/land-management scenarios (1 - current land use and phosphorus reduction practices; 2 - expansion of agricultural land and current phosphorus reduction practices; 3 - expansion of agricultural land and optimal phosphorus reduction practices). The model results were assessed within the framework of future climate projections, using the UK Climate Projections 09 (UKCP09) for the 2030s. The results of the model demonstrate that an increase in average phytoplankton concentration due to climate change is highly likely to occur, and its magnitude varies depending on the river reach. Cyanobacteria show significant increases under future climate change and land-use change. An expansion of intensive agriculture accentuates the growth in phytoplankton, especially in the upper reaches of the River Thames. However, an optimal phosphorus removal mitigation strategy, which combines reduction of fertiliser application and phosphorus removal from wastewater, can help to reduce this increase in phytoplankton concentration, and in some cases, compensate for the effect of rising temperature.

  3. The Indiana Climate Change Impacts Assessment

    Science.gov (United States)

    Dukes, J. S.; Widhalm, M.

    2016-12-01

    With coordination from the Purdue Climate Change Research Center, experts and stakeholders from across Indiana are working together to develop a state-focused assessment to inform decision makers, policy makers, and interested citizens about the likely impacts of climate change in Indiana. While this assessment is not intended to provide policy recommendations, we anticipate it will elevate conversations about climate change risks within a state that is not traditionally focused on these issues, and provide the baseline data needed for moving forward with improved planning and actions. Our guiding principal throughout this process is creating information that matters. We are connecting with stakeholders before, during, and after the assessment process to understand key vulnerabilities, risks, and reasons for concern so we can ensure the Indiana Climate Change Impacts Assessment (IN CCIA) includes relevant information that is usable by state and local decision makers.The IN CCIA is building a statewide network of experts and stakeholders interested in climate change that can serve as a foundation for a sustained assessment process. This presentation will describe the grassroots, collaborative approach being followed as we conduct this assessment, and discuss the opportunities and challenges encountered along the way.

  4. Climate change impacts on fisheries in West Africa: implications for ...

    African Journals Online (AJOL)

    Climate change impacts on fisheries in West Africa: implications for ... as one of the most vulnerable regions to climate change in previous global analyses. ... of the region through economics and food security of West Africa to climate change.

  5. Climate change impact assessment on mountain snow hydrology by water and energy budget-based distributed hydrological model

    Science.gov (United States)

    Bhatti, Asif M.; Koike, Toshio; Shrestha, Maheswor

    2016-12-01

    A water and energy budget-based distributed hydrological model with improved snow physics (WEB-DHM-S) was applied to elucidate the impact of climate change on mountain snow hydrology in the Shubuto River basin, Hokkaido, Japan. The simulated spatial distribution of snow cover was evaluated using the Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day maximum snow-cover extent (MOD10A2) product, which revealed the model's capability for capturing the spatiotemporal variations in snow cover within the study area. Four Atmosphere Ocean General Circulation Models (AOGCMs) were selected and the SRESA1B emission scenario of the Intergovernmental Panel on Climate Change was used to describe climate predictions in the basin. All AOGCMs predict a future decrease in snowmelt contribution to total discharge 11-22% and an average decrease in SWE of 36%, with a shift in peak SWE by 4-14 days. The shift in runoff regime is broadly consistent between the AOGCMs with snowmelt-induced peak discharge expected to occur on average about two weeks earlier in the future hydrological year. The warming climate will drive a shift in runoff regime from a combined rainfall- and snowmelt-driven regime to one with a reduced contribution from snowmelt. The results of the study revealed that the model could be successfully applicable on the basin scale to simulate river discharge and snow processes and to investigate the effect of climate change on hydrological processes. This research contributes to improve the understanding of basin hydrological responses and the pace of change associated with climate variability.

  6. Climate Change Impacts at Department of Defense

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, Rao [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Jiali [Argonne National Lab. (ANL), Argonne, IL (United States); Zoebel, Zach [Univ. of Illinois, Urbana, IL (United States); Wuebbles, Don [Univ. of Illinois, Urbana, IL (United States); Hayhoe, Katharine [Texas Tech Univ., Lubbock, TX (United States); Stein, Michael [Univ. of Chicago, IL (United States); Changnon, David [Northern Illinois Univ., DeKalb, IL (United States)

    2017-06-16

    This project is aimed at providing the U.S. Department of Defense (DoD) with a comprehensive analysis of the uncertainty associated with generating climate projections at the regional scale that can be used by stakeholders and decision makers to quantify and plan for the impacts of future climate change at specific locations. The merits and limitations of commonly used downscaling models, ranging from simple to complex, are compared, and their appropriateness for application at installation scales is evaluated. Downscaled climate projections are generated at selected DoD installations using dynamic and statistical methods with an emphasis on generating probability distributions of climate variables and their associated uncertainties. The sites selection and selection of variables and parameters for downscaling was based on a comprehensive understanding of the current and projected roles that weather and climate play in operating, maintaining, and planning DoD facilities and installations.

  7. Climate change impact on flood hazard

    Directory of Open Access Journals (Sweden)

    M. Brilly

    2014-09-01

    Full Text Available Climate changes have a high impact on river discharges and therefore on floods. There are a few different methods we can use to predict discharge changes in the future. In this paper we used the complex HBV model for the Vipava River and simple correlation between discharge and precipitation data for the Soča River. The discharge prediction is based on the E-OBS precipitation data for three future time periods (2011–2040, 2041–2070 and 2071–2100. Estimated discharges for those three future periods are presented for both rivers. But a special situation occurs at the confluence where the two rivers with rather different catchments unite, and this requires an additional probability analysis.

  8. Modelling climate change impact on the spatial distribution of fresh water snails hosting trematodes in Zimbabwe.

    Science.gov (United States)

    Pedersen, Ulrik B; Stendel, Martin; Midzi, Nicholas; Mduluza, Takafira; Soko, White; Stensgaard, Anna-Sofie; Vennervald, Birgitte J; Mukaratirwa, Samson; Kristensen, Thomas K

    2014-12-12

    - suitability areas and that temperature may be the main driving factor. It is concluded that future climate change in Zimbabwe may cause a reduced spatial distribution of suitable habitat of host snails with a probable exception of Bi. pfeifferi, the intermediate host for intestinal schistosomiasis that may increase around 2055 before declining towards 2100.

  9. Estimates of Climate Change Impact on River Discharge in Japan Based on a Super-High-Resolution Climate Model

    Directory of Open Access Journals (Sweden)

    Yoshinobu Sato

    2012-01-01

    Full Text Available The impact of climate change on river discharge was assessed by hydrological simulations for several major river basins in Japan using the latest version of a super-high-resolution atmospheric general circulation model (AGCM with a horizontal resolution of about 20 km. Projections were made using two different datasets, one representing the present climate (1980 - 1999 and the other representing the end of the 21st century (2080 - 2099 assuming the SRES A1B scenario. River discharge was estimated by a distributed hydrological model calibrated against observed river discharge in advance. The results showed that even if the amount of precipitation does not change much in the future, river discharge will change significantly because of the increase in rainfall, decrease in snowmelt, and increase in evapotranspiration with higher air temperature. The impact of climate change on river discharge will be more significant in the northern part of Japan, especially in the Tohoku and Hokuriku regions. In these regions, the monthly average river discharge at the end of the 21st century was projected to be more than 200% higher in February and approximately 50 - 60% lower in May compared with the present flow. These results imply that the increase in air temperature has important consequences for the hydrological cycle, particularly in regions where the water supply is currently dominated by snowmelt.

  10. Modeling the impacts of climate change on stream water temperature across the Conterminous U.S

    Science.gov (United States)

    Segura, C.; Caldwell, P.; Sun, G.; McNulty, D.; Zhang, Y.

    2013-12-01

    Water temperature is a critical variable to aquatic ecosystems because it controls metabolic rates and distribution of aquatic organisms. In this work, we present an empirical model to investigate the effects of climate change on stream water temperature and apply the model across the conterminous U.S. (CONUS). The model linearly describes site relationships between monthly-mean air (ta) temperature and stream water temperature (ts) as a function of climatic, hydrologic, and land cover characteristics. We found that more complex models to fit the relation between ta and ts at individual sites did not improve fitting accuracy. The empirical model was derived using data from 171 reference sites selected from the Geospatial Attributes of Gages for Evaluating Streamflow (GAGES) data base, version II. These sites drain basins with areas spanning four orders of magnitude and are located in 32 states and 16 hydrologic regions. The model predicts slope and intercept of the linear relation between ta and ts. The slopes of the linear relations are computed as a function of drainage area, base flow index, elevation, forest cover, and mean annual precipitation. While it was not possible to derive a single generalized model for the intercept, we found that by dividing the sites into three elevation categories, we obtained a robust model in which most of the variance is explained by mean annual precipitation (for sites > 1200 m elevation), drainage area and elevation (for sites between 200-1200 m elevation), and drainage area and mean annual temperature (for sites 0.8. The model is stronger at predicting the slope (r2=0.55) than the intercept (r2=0.26-0.47). The mean normalized gross error for slope was below 10% for 60% of the sites and below 25% for 77% of the sites. Absolute errors for the intercept were below 1°C in ts for 63% of the sites and less than 2°C in ts for 90% of the sites. Validation of the calculated slope and intercept of the ts vs. ta relation at 89 non

  11. Calibration-induced uncertainty of the EPIC model to estimate climate change impact on global maize yield

    Science.gov (United States)

    Xiong, Wei; Skalský, Rastislav; Porter, Cheryl H.; Balkovič, Juraj; Jones, James W.; Yang, Di

    2016-09-01

    Understanding the interactions between agricultural production and climate is necessary for sound decision-making in climate policy. Gridded and high-resolution crop simulation has emerged as a useful tool for building this understanding. Large uncertainty exists in this utilization, obstructing its capacity as a tool to devise adaptation strategies. Increasing focus has been given to sources of uncertainties for climate scenarios, input-data, and model, but uncertainties due to model parameter or calibration are still unknown. Here, we use publicly available geographical data sets as input to the Environmental Policy Integrated Climate model (EPIC) for simulating global-gridded maize yield. Impacts of climate change are assessed up to the year 2099 under a climate scenario generated by HadEM2-ES under RCP 8.5. We apply five strategies by shifting one specific parameter in each simulation to calibrate the model and understand the effects of calibration. Regionalizing crop phenology or harvest index appears effective to calibrate the model for the globe, but using various values of phenology generates pronounced difference in estimated climate impact. However, projected impacts of climate change on global maize production are consistently negative regardless of the parameter being adjusted. Different values of model parameter result in a modest uncertainty at global level, with difference of the global yield change less than 30% by the 2080s. The uncertainty subjects to decrease if applying model calibration or input data quality control. Calibration has a larger effect at local scales, implying the possible types and locations for adaptation.

  12. Coupled socioeconomic-crop modelling for the participatory local analysis of climate change impacts on smallholder farmers in Guatemala

    Science.gov (United States)

    Malard, J. J.; Adamowski, J. F.; Wang, L. Y.; Rojas, M.; Carrera, J.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.

    2015-12-01

    The modelling of the impacts of climate change on agriculture requires the inclusion of socio-economic factors. However, while cropping models and economic models of agricultural systems are common, dynamically coupled socio-economic-biophysical models have not received as much success. A promising methodology for modelling the socioeconomic aspects of coupled natural-human systems is participatory system dynamics modelling, in which stakeholders develop mental maps of the socio-economic system that are then turned into quantified simulation models. This methodology has been successful in the water resources management field. However, while the stocks and flows of water resources have also been represented within the system dynamics modelling framework and thus coupled to the socioeconomic portion of the model, cropping models are ill-suited for such reformulation. In addition, most of these system dynamics models were developed without stakeholder input, limiting the scope for the adoption and implementation of their results. We therefore propose a new methodology for the analysis of climate change variability on agroecosystems which uses dynamically coupled system dynamics (socio-economic) and biophysical (cropping) models to represent both physical and socioeconomic aspects of the agricultural system, using two case studies (intensive market-based agricultural development versus subsistence crop-based development) from rural Guatemala. The system dynamics model component is developed with relevant governmental and NGO stakeholders from rural and agricultural development in the case study regions and includes such processes as education, poverty and food security. Common variables with the cropping models (yield and agricultural management choices) are then used to dynamically couple the two models together, allowing for the analysis of the agroeconomic system's response to and resilience against various climatic and socioeconomic shocks.

  13. Global climate change impacts on forests and markets

    Science.gov (United States)

    Tian, Xiaohui; Sohngen, Brent; Kim, John B.; Ohrel, Sara; Cole, Jefferson

    2016-03-01

    This paper develops an economic analysis of climate change impacts in the global forest sector. It illustrates how potential future climate change impacts can be integrated into a dynamic forestry economics model using data from a global dynamic vegetation model, the MC2 model. The results suggest that climate change will cause forest outputs (such as timber) to increase by approximately 30% over the century. Aboveground forest carbon storage also is projected to increase, by approximately 26 Pg C by 2115, as a result of climate change, potentially providing an offset to emissions from other sectors. The effects of climate mitigation policies in the energy sector are then examined. When climate mitigation in the energy sector reduces warming, we project a smaller increase in forest outputs over the timeframe of the analysis, and we project a reduction in the sink capacity of forests of around 12 Pg C by 2115.

  14. Projected climate change impact on oceanic acidification

    Directory of Open Access Journals (Sweden)

    McNeil Ben I

    2006-06-01

    Full Text Available Abstract Background Anthropogenic CO2 uptake by the ocean decreases the pH of seawater, leading to an 'acidification' which may have potential detrimental consequences on marine organisms 1. Ocean warming or circulation alterations induced by climate change has the potential to slowdown the rate of acidification of ocean waters by decreasing the amount of CO2 uptake by the ocean 2. However, a recent study showed that climate change affected the decrease in pH insignificantly 3. Here, we examine the sensitivity of future oceanic acidification to climate change feedbacks within a coupled atmosphere-ocean model and find that ocean warming dominates the climate change feedbacks. Results Our results show that the direct decrease in pH due to ocean warming is approximately equal to but opposite in magnitude to the indirect increase in pH associated with ocean warming (ie reduced DIC concentration of the upper ocean caused by lower solubility of CO2. Conclusion As climate change feedbacks on pH approximately cancel, future oceanic acidification will closely follow future atmospheric CO2 concentrations. This suggests the only way to slowdown or mitigate the potential biological consequences of future ocean acidification is to significantly reduce fossil-fuel emissions of CO2 to the atmosphere.

  15. Climate change impacts on food system

    Science.gov (United States)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  16. Influence of hydrological modelling strategies on the diagnosis of the impact of climate change on water resources

    Science.gov (United States)

    Seiller, Grégory; Roy, René; Anctil, François

    2016-04-01

    Uncertainties related to the assessment of the impacts of climate change on water resources are large, from multiple sources, and lead to diagnoses sometimes difficult to interpret. Therefore, the quantification of these uncertainties is a key element to yield confidence in the analyses and to provide water managers with valuable information. This research specifically evaluates the sensitivity of future water resources projections to the choice of hydrological modelling strategies, on thirty-seven watersheds in the Province of Québec, Canada. These modelling strategies mainly focus on calibration and hydrological model choices, as well as individual versus ensemble approaches. Twenty lumped hydrological models, representing a wide range of operational options, are calibrated with three objective functions on six historical calibration periods. The hydrological models are forced with 122 climate simulations corresponding to four RCP and twenty-nine GCM from CMIP5 (Coupled Model Intercomparison Project phase 5), provided by the Canadian consortium Ouranos. Two bias correction techniques are also evaluated and lead to future projections in the 2041-2070 period. Results show that the diagnosis of the impacts of climate change on water resources are quite sensitive to the hydrological models selection and calibration strategies. This statement is particularly true when evaluating changes in an absolute way. Multimodel approaches offer the best options in terms of calibration performance and robustness on contrasted climate conditions. Hydrological indicators, dedicated to water management, are sensitive to the calibration objective functions and period selection. Overall, these results illustrate the need to provide water managers with detailed information on relative changes analysis, but also absolute changes values, especially for hydrological indicators acting as security policy thresholds.

  17. Impact of Climate Change on Riverbank Erosion

    Directory of Open Access Journals (Sweden)

    Most. Nazneen Aktar

    2014-04-01

    Full Text Available Bangladesh is one of the most climate vulnerable countries in the world. This country is highly vulnerable to climate change because of a number of hydro-geological and socio-economic factors such as geographical location, topography, extreme climate variability, high population density, poverty incidence and dependency of agriculture on climate. Presently this country has been experiencing different hydro-meteorological disastrous events that have never been experienced before. Along with other natural disasters, floods are expected to be impacted by climate change in the future. Since floods are always associated with riverbank erosion, it is essential to assess the impact of climate change on bank erosion. Riverbank erosion is also a serious hazard that directly or indirectly causes the suffering of millions of people. Beyond that, most of the old cities and important infrastructures in this country are situated on riverbanks since once upon a time waterway transportation was the main mode of travel. Moreover, people like to reside near rivers because of their dependency on river water for irrigation purposes. So a major part of the total population of this country lives near riverbanks, which frequently makes them victims of riverbank erosion. The major rivers, the Jamuna, the Ganges and the Padma, annually erode thousand hectares of floodplain land and damage or destroy infrastructures. Consequently, this natural disaster has become a major social hazard. This study aims to find out the relationship between floods and bank erosion; and hence the impact of climate changes on riverbank erosion. Since there is no record on riverbank erosion, this study attempts to measure it with the help of satellite images. It has been found in this study that climate change will play a significant role in riverbank erosion. On an average, the riverbank erosion along the major three rivers will be increased by 13% by 2050 and it will be increased by 18% by

  18. A modelling framework to assess climate change and adaptation impact on heterogeneous crop-livestock farming communities

    NARCIS (Netherlands)

    Descheemaeker, K.K.E.; Masikati, P.; Homann-Kee Tui, S.; Chibwana, G.A.; Crespo, O.

    2015-01-01

    Climate change will impact the productivity of maize-based crop-livestock systems and the livelihoods of smallholders depending on them in semi-arid Zimbabwe. The large diversity in resource endowment and production objectives in rural communities differentially influences this impact and the adapta

  19. A modelling framework to assess climate change and adaptation impact on heterogeneous crop-livestock farming communities

    NARCIS (Netherlands)

    Descheemaeker, K.K.E.; Masikati, P.; Homann-Kee Tui, S.; Chibwana, G.A.; Crespo, O.

    2015-01-01

    Climate change will impact the productivity of maize-based crop-livestock systems and the livelihoods of smallholders depending on them in semi-arid Zimbabwe. The large diversity in resource endowment and production objectives in rural communities differentially influences this impact and the adapta

  20. Impacts of Irrigation and Climate Change on Water Security: Using Stakeholder Engagement to Inform a Process-based Crop Model

    Science.gov (United States)

    Leonard, A.; Flores, A. N.; Han, B.; Som Castellano, R.; Steimke, A.

    2016-12-01

    Irrigation is an essential component for agricultural production in arid and semi-arid regions, accounting for a majority of global freshwater withdrawals used for human consumption. Since climate change affects both the spatiotemporal demand and availability of water in irrigated areas, agricultural productivity and water efficiency depend critically on how producers adapt and respond to climate change. It is necessary, therefore, to understand the coevolution and feedbacks between humans and agricultural systems. Integration of social and hydrologic processes can be achieved by active engagement with local stakeholders and applying their expertise to models of coupled human-environment systems. Here, we use a process based crop simulation model (EPIC) informed by stakeholder engagement to determine how both farm management and climate change influence regional agricultural water use and production in the Lower Boise River Basin (LBRB) of southwest Idaho. Specifically, we investigate how a shift from flood to sprinkler fed irrigation would impact a watershed's overall agricultural water use under RCP 4.5 and RCP 8.5 climate scenarios. The LBRB comprises about 3500 km2, of which 20% is dedicated to irrigated crops and another 40% to grass/pasture grazing land. Via interviews of stakeholders in the LBRB, we have determined that approximately 70% of irrigated lands in the region are flood irrigated. We model four common crops produced in the LBRB (alfalfa, corn, winter wheat, and sugarbeets) to investigate both hydrologic and agricultural impacts of irrigation and climatic drivers. Factors influencing farmers' decision to switch from flood to sprinkler irrigation include potential economic benefits, external financial incentives, and providing a buffer against future water shortages. These two irrigation practices are associated with significantly different surface water and energy budgets, and large-scale shifts in practice could substantially impact regional

  1. Estimating impacts of climate change policy on land use: an agent-based modelling approach.

    Science.gov (United States)

    Morgan, Fraser J; Daigneault, Adam J

    2015-01-01

    Agriculture is important to New Zealand's economy. Like other primary producers, New Zealand strives to increase agricultural output while maintaining environmental integrity. Utilising modelling to explore the economic, environmental and land use impacts of policy is critical to understand the likely effects on the sector. Key deficiencies within existing land use and land cover change models are the lack of heterogeneity in farmers and their behaviour, the role that social networks play in information transfer, and the abstraction of the global and regional economic aspects within local-scale approaches. To resolve these issues we developed the Agent-based Rural Land Use New Zealand model. The model utilises a partial equilibrium economic model and an agent-based decision-making framework to explore how the cumulative effects of individual farmer's decisions affect farm conversion and the resulting land use at a catchment scale. The model is intended to assist in the development of policy to shape agricultural land use intensification in New Zealand. We illustrate the model, by modelling the impact of a greenhouse gas price on farm-level land use, net revenue, and environmental indicators such as nutrient losses and soil erosion for key enterprises in the Hurunui and Waiau catchments of North Canterbury in New Zealand. Key results from the model show that farm net revenue is estimated to increase over time regardless of the greenhouse gas price. Net greenhouse gas emissions are estimated to decline over time, even under a no GHG price baseline, due to an expansion of forestry on low productivity land. Higher GHG prices provide a greater net reduction of emissions. While social and geographic network effects have minimal impact on net revenue and environmental outputs for the catchment, they do have an effect on the spatial arrangement of land use and in particular the clustering of enterprises.

  2. Estimating impacts of climate change policy on land use: an agent-based modelling approach.

    Directory of Open Access Journals (Sweden)

    Fraser J Morgan

    Full Text Available Agriculture is important to New Zealand's economy. Like other primary producers, New Zealand strives to increase agricultural output while maintaining environmental integrity. Utilising modelling to explore the economic, environmental and land use impacts of policy is critical to understand the likely effects on the sector. Key deficiencies within existing land use and land cover change models are the lack of heterogeneity in farmers and their behaviour, the role that social networks play in information transfer, and the abstraction of the global and regional economic aspects within local-scale approaches. To resolve these issues we developed the Agent-based Rural Land Use New Zealand model. The model utilises a partial equilibrium economic model and an agent-based decision-making framework to explore how the cumulative effects of individual farmer's decisions affect farm conversion and the resulting land use at a catchment scale. The model is intended to assist in the development of policy to shape agricultural land use intensification in New Zealand. We illustrate the model, by modelling the impact of a greenhouse gas price on farm-level land use, net revenue, and environmental indicators such as nutrient losses and soil erosion for key enterprises in the Hurunui and Waiau catchments of North Canterbury in New Zealand. Key results from the model show that farm net revenue is estimated to increase over time regardless of the greenhouse gas price. Net greenhouse gas emissions are estimated to decline over time, even under a no GHG price baseline, due to an expansion of forestry on low productivity land. Higher GHG prices provide a greater net reduction of emissions. While social and geographic network effects have minimal impact on net revenue and environmental outputs for the catchment, they do have an effect on the spatial arrangement of land use and in particular the clustering of enterprises.

  3. The direct impact of climate change on regional labour productivity

    OpenAIRE

    Kjellstrom, Tord; Kovats, R Sari; Simon J. Lloyd; Holt, Tom; Richard S.J. Tol

    2008-01-01

    Global climate change will increase outdoor and indoor heat loads, and may impair health and productivity for millions of working people. This study applies physiological evidence about effects of heat, climate guidelines for safe work environments, climate modelling and global distributions of working populations, to estimate the impact of two climate scenarios on future labour productivity. In most regions, climate change will decrease labour productivity, under the simple assumption of no ...

  4. An integrated modelling methodology to study the impacts of nutrients on coastal aquatic ecosystems in the context of climate change

    Science.gov (United States)

    Pesce, Marco; Critto, Andrea; Torresan, Silvia; Santini, Monia; Giubilato, Elisa; Pizzol, Lisa; Mercogliano, Paola; Zirino, Alberto; Wei, Ouyang; Marcomini, Antonio

    2017-04-01

    It has been recognized that the increase of atmospheric greenhouse gases (GHG) due to anthropogenic activities is causing changes in Earth's climate. Global mean temperatures are expected to rise by 0.3 to 4.8 °C by the end of the 21st century, and the water cycle to alter because of changes in global atmospheric moisture. Coastal waterbodies such as estuaries, bays and lagoons together with the ecological and socio-economic services they provide, could be among those most affected by the ongoing changes on climate. Because of their position at the land-sea interface, they are subjected to the combined changes in the physico-chemical processes of atmosphere, upstream land and coastal waters. Particularly, climate change is expected to alter phytoplankton communities by changing their climate and environmental drivers, such as temperature, precipitation, wind, solar radiation and nutrient loadings, and to exacerbate the symptoms of eutrophication events, such as hypoxia, harmful algal blooms (HAB) and loss of habitat. A better understanding of the links between climate-related drivers and phytoplankton is therefore necessary for predicting climate change impacts on aquatic ecosystems. In this context, the integration of climate scenarios and environmental models can become a valuable tool for the investigation and prediction of phytoplankton ecosystem dynamics under climate change conditions. In the last decade, the effects of climate change on the environmental distribution of nutrients and the resulting effects on aquatic ecosystems encouraged the conduction of modeling studies at a catchment scale, even though mainly are related to lake ecosystem. The further development of integrated modeling approaches and their application to other types of waterbodies such as coastal waters can be a useful contribution to increase the availability of management tools for ecological conservation and adaptation policies. Here we present the case study of the Zero river basin

  5. Assessing Climate Change Impacts on Global Hydropower

    Directory of Open Access Journals (Sweden)

    Aanund Killingtveit

    2012-02-01

    Full Text Available Currently, hydropower accounts for close to 16% of the world’s total power supply and is the world’s most dominant (86% source of renewable electrical energy. The key resource for hydropower generation is runoff, which is dependent on precipitation. The future global climate is uncertain and thus poses some risk for the hydropower generation sector. The crucial question and challenge then is what will be the impact of climate change on global hydropower generation and what are the resulting regional variations in hydropower generation potential? This paper is a study that aims to evaluate the changes in global hydropower generation resulting from predicted changes in climate. The study uses an ensemble of simulations of regional patterns of changes in runoff, computed from global circulation models (GCM simulations with 12 different models. Based on these runoff changes, hydropower generation is estimated by relating the runoff changes to hydropower generation potential through geographical information system (GIS, based on 2005 hydropower generation. Hydropower data obtained from EIA (energy generation, national sites, FAO (water resources and UNEP were used in the analysis. The countries/states were used as computational units to reduce the complexities of the analysis. The results indicate that there are large variations of changes (increases/decreases in hydropower generation across regions and even within regions. Globally, hydropower generation is predicted to change very little by the year 2050 for the hydropower system in operation today. This change amounts to an increase of less than 1% of the current (2005 generation level although it is necessary to carry out basin level detailed assessment for local impacts which may differ from the country based values. There are many regions where runoff and hydropower generation will increase due to increasing precipitation, but also many regions where there will be a decrease. Based on this

  6. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Directory of Open Access Journals (Sweden)

    S. N. Gosling

    2011-01-01

    Full Text Available We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM and catchment-scale hydrological models (CHM. Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and developmental conditions. These include the Liard (Canada, Mekong (SE Asia, Okavango (SW Africa, Rio Grande (Brazil, Xiangxi (China and Harper's Brook (UK. A single GHM (Mac-PDM.09 is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs include SLURP v. 12.2 (Liard, SLURP v. 12.7 (Mekong, Pitman (Okavango, MGB-IPH (Rio Grande, AV-SWAT-X 2005 (Xiangxi and Cat-PDM (Harper's Brook. The CHMs typically simulate water resource impacts based on a more explicit representation of catchment water resources than that available from the GHM and the CHMs include river routing, whereas the GHM does not. Simulations of mean annual runoff, mean monthly runoff and high (Q5 and low (Q95 monthly runoff under baseline (1961–1990 and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1 prescribed increases in global-mean air temperature of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 °C relative to baseline from the UKMO HadCM3 Global Climate Model (GCM to explore response to different amounts of climate forcing, and (2 a prescribed increase in global-mean air temperature of 2.0 °C relative to baseline for seven GCMs to explore response to climate model structural uncertainty.

    We find that the differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM (e.g. an absolute GHM-CHM difference in mean annual runoff percentage change for UKMO HadCM3 2 °C warming of up to 25%, and they are generally larger for indicators of high and low monthly runoff

  7. Evaluating the Contribution of Natural Variability and Climate Model Response to Uncertainty in Projections of Climate Change Impacts on U.S. Air Quality

    Science.gov (United States)

    We examine the effects of internal variability and model response in projections of climate impacts on U.S. ground-level ozone across the 21st century using integrated global system modeling and global atmospheric chemistry simulations. The impact of climate change on air polluti...

  8. Assessment of climate change impact on the fates of polycyclic aromatic hydrocarbons in the multimedia environment based on model prediction.

    Science.gov (United States)

    Cai, Juan Juan; Song, Jee Hey; Lee, Yunah; Lee, Dong Soo

    2014-02-01

    The objective was to quantitatively understand the impacts of climate change (CC) under the A1B scenario on the contamination levels of 11 polycyclic aromatic hydrocarbons (PAHs) from pyrogenic sources in the environmental media based on model prediction. To predict the impacts of CC in South Korea, a revised version of KoEFT-PBTs, a dynamic multimedia model for persistent organic pollutants in South Korea, was used. Simulations were conducted for the period from 2000 to 2049 under the A1B scenario with the emission data for 2009 and the results for Seoul and Kangwon were compared to those under no climate change (NCC) scenario. Due to CC, the average of annual or monthly average concentration changes within a factor of two for the PAHs in air, soil and water. Time dependent comparison indicates that the maximum increase induced by CC in the monthly average concentration ranges from 10 to 10(2) in air and water. Change in advective flux due to wind speed difference between A1B and NCC dictates the change of the atmospheric PAHs levels while wet particle deposition due to rain rate difference contributes to some extent to the change of 5 and 6 ring PAHs. Whether the concentration change is positive or not depends primarily on the emission strength of internal sources relative to those in surrounding areas. The CC induced changes in atmospheric depositions and degradation rate in soil play a leading role in the change of soil concentration. In water, runoff and degradation are the key processes to the CC induced concentration change. Both in soil and water, the relative importance of individual key processes varies with PAHs. The difference between the two scenarios in wind speed and in rain rate shows stronger correlations with the concentration change than the temperature change. © 2013 Elsevier B.V. All rights reserved.

  9. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models

    Directory of Open Access Journals (Sweden)

    S. N. Gosling

    2010-09-01

    Full Text Available We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM and catchment-scale hydrological models (CHM. Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and developmental conditions. These include the Liard (Canada, Mekong (SE Asia, Okavango (SW Africa, Rio Grande (Brazil, Xiangxi (China and Harper's Brook (UK. A single GHM (Mac-PDM.09 is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs include SLURP v. 12.2 (Liard, SLURP v. 12.7 (Mekong, Pitman (Okavango, MGB-IPH (Rio Grande, AV-SWAT-X 2005 (Xiangxi and Cat-PDM (Harper's Brook. Simulations of mean annual runoff, mean monthly runoff and high (Q5 and low (Q95 monthly runoff under baseline (1961–1990 and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1 prescribed increases in global-mean air temperature of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 °C relative to baseline from the UKMO HadCM3 Global Climate Model (GCM to explore response to different amounts of climate forcing, and (2 a prescribed increase in global-mean air temperature of 2.0 °C relative to baseline for seven GCMs to explore response to climate model structural uncertainty.

    We find that the differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM, and they are generally larger for indicators of high and low monthly runoff. However, they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff

  10. Climate change impact on shallow groundwater conditions in Hungary: Conclusions from a regional modelling study

    Science.gov (United States)

    Kovács, Attila; Marton, Annamária; Tóth, György; Szöcs, Teodóra

    2016-04-01

    A quantitative methodology has been developed for the calculation of groundwater table based on measured and simulated climate parameters. The aim of the study was to develop a toolset which can be used for the calculation of shallow groundwater conditions for various climate scenarios. This was done with the goal of facilitating the assessment of climate impact and vulnerability of shallow groundwater resources. The simulated groundwater table distributions are representative of groundwater conditions at the regional scale. The introduced methodology is valid for modelling purposes at various scales and thus represents a versatile tool for the assessment of climate vulnerability of shallow groundwater bodies. The calculation modules include the following: 1. A toolset to calculate climate zonation from climate parameter grids, 2. Delineation of recharge zones (Hydrological Response Units, HRUs) based on geology, landuse and slope conditions, 3. Calculation of percolation (recharge) rates using 1D analytical hydrological models, 4. Simulation of the groundwater table using numerical groundwater flow models. The applied methodology provides a quantitative link between climate conditions and shallow groundwater conditions, and thus can be used for assessing climate impacts. The climate data source applied in our calculation comprised interpolated daily climate data of the Central European CARPATCLIM database. Climate zones were determined making use of the Thorntwaite climate zonation scheme. Recharge zones (HRUs) were determined based on surface geology, landuse and slope conditions. The HELP hydrological model was used for the calculation of 1D water balance for hydrological response units. The MODFLOW numerical groundwater modelling code was used for the calculation of the water table. The developed methodology was demonstrated through the simulation of regional groundwater table using spatially averaged climate data and hydrogeological properties for various time

  11. Climate change impacts on coffee rust disease

    Science.gov (United States)

    Alfonsi, W. M. V.; Koga-Vicente, A.; Pinto, H. S.; Alfonsi, E. L., Sr.; Coltri, P. P.; Zullo, J., Jr.; Patricio, F. R.; Avila, A. M. H. D.; Gonçalves, R. R. D. V.

    2016-12-01

    Changes in climate conditions and in extreme weather events may affect the food security due to impacts in agricultural production. Despite several researches have been assessed the impacts of extremes in yield crops in climate change scenarios, there is the need to consider the effects in pests and diseases which increase losses in the sector. Coffee Arabica is an important commodity in world and plays a key role in Brazilian agricultural exports. Although the coffee crop has a world highlight, its yield is affected by several factors abiotic or biotic. The weather as well pests and diseases directly influence the development and coffee crop yield. These problems may cause serious damage with significant economic impacts. The coffee rust, caused by the fungus Hemileia vastarix,is among the diseases of greatest impact for the crop. The disease emerged in Brazil in the 70s and is widely spread in all producing regions of coffee in Brazil, and in the world. Regions with favorable weather conditions for the pathogen may exhibit losses ranging from 30% to 50% of the total grain production. The evaluation of extreme weather events of coffee rust disease in futures scenarios was carried out using the climatic data from CMIP5 models, data field of coffee rust disease incidence and, incubation period simulation data for Brazilian municipalities. Two Regional Climate Models were selected, Eta-HadGEM2-ES and Eta-MIROC5, and the Representative Concentration Pathways 8.5 w/m2 was adopted. The outcomes pointed out that in these scenarios the period of incubation tends to decrease affecting the coffee rust disease incidence, which tends to increase. Nevertheless, the changing in average trends tends to benefit the reproduction of the pathogen. Once the temperature threshold for the disease reaches the adverse conditions it may be unfavorable for the incidence.

  12. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins.

    Science.gov (United States)

    Gampe, David; Nikulin, Grigory; Ludwig, Ralf

    2016-12-15

    Climate change will likely increase pressure on the water balances of Mediterranean basins due to decreasing precipitation and rising temperatures. To overcome the issue of data scarcity the hydrological relevant variables total runoff, surface evaporation, precipitation and air temperature are taken from climate model simulations. The ensemble applied in this study consists of 22 simulations, derived from different combinations of four General Circulation Models (GCMs) forcing different Regional Climate Models (RCMs) and two Representative Concentration Pathways (RCPs) at ~12km horizontal resolution provided through the EURO-CORDEX initiative. Four river basins (Adige, Ebro, Evrotas and Sava) are selected and climate change signals for the future period 2035-2065 as compared to the reference period 1981-2010 are investigated. Decreased runoff and evaporation indicate increased water scarcity over the Ebro and the Evrotas, as well as the southern parts of the Adige and the Sava, resulting from a temperature increase of 1-3° and precipitation decrease of up to 30%. Most severe changes are projected for the summer months indicating further pressure on the river basins already at least partly characterized by flow intermittency. The widely used Falkenmark indicator is presented and confirms this tendency and shows the necessity for spatially distributed analysis and high resolution projections. Related uncertainties are addressed by the means of a variance decomposition and model agreement to determine the robustness of the projections. The study highlights the importance of high resolution climate projections and represents a feasible approach to assess climate impacts on water scarcity also in regions that suffer from data scarcity.

  13. Linking species- and ecosystem-level impacts of climate change in lakes with a complex and a minimal model

    NARCIS (Netherlands)

    Mooij, W.M.; De Senerpont Domis, L.N.; Janse, J.H.

    2009-01-01

    To study the interaction between species- and ecosystem-level impacts of climate change, we focus on the question of how climate-induced shifts in key species affect the positive feedback loops that lock shallow lakes either in a transparent, macrophyte-dominated state or, alternatively, in a turbid

  14. How Will Climate Change Impact Cholera Outbreaks?

    Science.gov (United States)

    Nasr Azadani, F.; Jutla, A.; Rahimikolu, J.; Akanda, A. S.; Huq, A.; Colwell, R. R.

    2014-12-01

    Environmental parameters associated with cholera are well documented. However, cholera continues to be a global public health threat. Uncertainty in defining environmental processes affecting growth and multiplication of the cholera bacteria can be affected significantly by changing climate at different temporal and spatial scales, either through amplification of the hydroclimatic cycle or by enhanced variability of large scale geophysical processes. Endemic cholera in the Bengal Delta region of South Asia has a unique pattern of two seasonal peaks and there are associated with asymmetric and episodic variability in river discharge. The first cholera outbreak in spring is related with intrusion of bacteria laden coastal seawater during low river discharge. Cholera occurring during the fall season is hypothesized to be associated with high river discharge related to a cross-contamination of water resources and, therefore, a second wave of disease, a phenomenon characteristic primarily in the inland regions. Because of difficulties in establishing linkage between coarse resolutions of the Global Climate Model (GCM) output and localized disease outbreaks, the impact of climate change on diarrheal disease has not been explored. Here using the downscaling method of Support Vector Machines from HADCM3 and ECHAM models, we show how cholera outbreak patterns are changing in the Bengal Delta. Our preliminary results indicate statistically significant changes in both seasonality and magnitude in the occurrence of cholera over the next century. Endemic cholera is likely to transform into epidemic forms and new geographical areas will be at risk for cholera outbreaks.

  15. An example of model result correction to study the impact of climate change on electricity consumption

    Science.gov (United States)

    Parey, S.; Galloy, G.; Nogaj, M.

    2012-04-01

    Climate is changing and temperature evolutions are thought to impact electricity consumption in the future. In order to estimate these possible shifts, climate model results for two future periods: 2050 and 2100 are considered. However, the use of the electricity consumption forecast model with climate model outputs for the current period give unrealistic results compared to forecasts made with observations. As a matter of fact, consumption is forecasted using a taylor-designed mean of French temperatures. Therefore, it is necessary for the model results to be as close as possible to this observed mean. The first studies had been made using the so-called "delta method", which consists in adding future changes to the observations. This however supposes that there is no variance change, which is not necessarily valid. Thus, in a second step, the percentile correction method has been used, firstly considering the whole annual distribution. This is however not satisfactory, as the seasonal distributions remain too much biased. Thus, the correction had to be applied on a monthly basis. The method and results of the correction will be presented for this example of France.

  16. Climate Change Impacts on River Floods: Uncertainty and Adaptation

    NARCIS (Netherlands)

    Wang, L.

    2015-01-01

    The modelling frameworks, which include greenhouse gas emission scenarios, climate models, downscaling methods and hydrological models, are generally used to assess climate change impacts on river floods. In this research, the uncertainty associated with each component of the modelling framework is

  17. Abrupt climate change: Mechanisms, patterns, and impacts

    Science.gov (United States)

    Schultz, Colin

    2012-08-01

    In the span of only a few decades, the global temperature can soar by more than a dozen degrees Celsius, a feat that 20 years ago was considered improbable, if not impossible. But recent research in the nascent field of rapid climate change has upended the dominant views of decades past. Focusing primarily on events during and after the most recent glaciation, from 80,000 years ago, the AGU monograph Abrupt Climate Change: Mechanisms, Patterns, and Impacts, edited by Harunur Rashid, Leonid Polyak, and Ellen Mosley-Thompson, explores the transient climate transitions that were only recently uncovered in climate proxies around the world. In this interview, Eos talks to Harunur Rashid about piecing together ancient climes, the effect of abrupt change on historical civilizations, and why younger researchers may be more worried about modern warming than their teachers.

  18. Modelling the impacts of climate change on hydrology and water quality in a mediterranean limno-reservoir

    DEFF Research Database (Denmark)

    Molina-Navarro, Euginio; Trolle, Dennis; Martinez-Pérez, Silvia

    Assessment Tool (SWAT) model developed for a small Mediterranean catchment to quantify the potential effects of various climate change scenarios on catchment hydrology as well as the trophic state of a new kind of waterbody, a limno-reservoir (Pareja Limno-reservoir), created for environmental...... in the Pareja Limno-reservoir and a switch from an oligo-mesotrophic to a mesotrophic state, which may threaten the maintenance of a favourable water quality. Our model framework may help water managers to assess and manage how climate change affects aquatic ecosystems....

  19. Economic impacts of climate change on agriculture: a comparison of process-based and statistical yield models

    Science.gov (United States)

    Moore, Frances C.; Baldos, Uris Lantz C.; Hertel, Thomas

    2017-06-01

    A large number of studies have been published examining the implications of climate change for agricultural productivity that, broadly speaking, can be divided into process-based modeling and statistical approaches. Despite a general perception that results from these methods differ substantially, there have been few direct comparisons. Here we use a data-base of yield impact studies compiled for the IPCC Fifth Assessment Report (Porter et al 2014) to systematically compare results from process-based and empirical studies. Controlling for differences in representation of CO2 fertilization between the two methods, we find little evidence for differences in the yield response to warming. The magnitude of CO2 fertilization is instead a much larger source of uncertainty. Based on this set of impact results, we find a very limited potential for on-farm adaptation to reduce yield impacts. We use the Global Trade Analysis Project (GTAP) global economic model to estimate welfare consequences of yield changes and find negligible welfare changes for warming of 1 °C-2 °C if CO2 fertilization is included and large negative effects on welfare without CO2. Uncertainty bounds on welfare changes are highly asymmetric, showing substantial probability of large declines in welfare for warming of 2 °C-3 °C even including the CO2 fertilization effect.

  20. Climate Change Impact Assessments for International Market Systems (CLIMARK)

    Science.gov (United States)

    Winkler, J. A.; Andresen, J.; Black, J.; Bujdoso, G.; Chmielewski, F.; Kirschke, D.; Kurlus, R.; Liszewska, M.; Loveridge, S.; Niedzwiedz, T.; Nizalov, D.; Rothwell, N.; Tan, P.; Ustrnul, Z.; von Witzke, H.; Zavalloni, C.; Zhao, J.; Zhong, S.

    2012-12-01

    The vast majority of climate change impact assessments evaluate how local or regional systems and processes may be affected by a future climate. Alternative strategies that extend beyond the local or regional scale are needed when assessing the potential impacts of climate change on international market systems, including agricultural commodities. These industries have multiple production regions that are distributed worldwide and are likely to be differentially impacted by climate change. Furthermore, for many industries and market systems, especially those with long-term climate-dependent investments, temporal dynamics need to be incorporated into the assessment process, including changing patterns of international trade, consumption and production, and evolving adaptation strategies by industry stakeholder groups. A framework for conducting climate change assessments for international market systems, developed as part of the CLIMARK (Climate Change and International Markets) project is outlined, and progress toward applying the framework for an impact assessment for the international tart cherry industry is described. The tart cherry industry was selected for analysis in part because tart cherries are a perennial crop requiring long-term investments by the producer. Components of the project include the preparation of fine resolution climate scenarios, evaluation of phenological models for diverse production regions, the development of a yield model for tart cherry production, new methods for incorporating individual decision making and adaptation options into impact assessments, and modification of international trade models for use in impact studies. Innovative aspects of the project include linkages between model components and evaluation of the mega-uncertainty surrounding the assessment outcomes. Incorporation of spatial and temporal dynamics provides a more comprehensive evaluation of climate change impacts and an assessment product of potentially greater

  1. Assessing Climate Change Impacts on Water Resources and Colorado Agriculture Using an Equilibrium Displacement Mathematical Programming Model

    Directory of Open Access Journals (Sweden)

    Eihab Fathelrahman

    2014-06-01

    Full Text Available This research models selected impacts of climate change on Colorado agriculture several decades in the future, using an Economic Displacement Mathematical Programming model. The agricultural economy in Colorado is dominated by livestock, which accounts for 67% of total receipts. Crops, including feed grains and forages, account for the remainder. Most agriculture is based on irrigated production, which depends on both groundwater, especially from the Ogallala aquifer, and surface water that comes from runoff derived from snowpack in the Rocky Mountains. The analysis is composed of a Base simulation, designed to represent selected features of the agricultural economy several decades in the future, and then three alternative climatic scenarios are run. The Base starts with a reduction in agricultural water by 10.3% from increased municipal and industrial water demand, and assumes a 75% increase in corn extracted-ethanol production. From this, the first simulation (S1 reduces agricultural water availability by a further 14.0%, for a combined decrease of 24.3%, due to climatic factors and related groundwater depletion. The second simulation (S2-WET describes wet year conditions, which negatively affect yields of irrigated corn and milking cows, but improves yields for important crops such as non-irrigated wheat and forages. In contrast, the third simulation (S3-DRY describes a drought year, which leads to reduced dairy output and reduced corn and wheat. Consumer and producer surplus losses are approximately $10 million in this simulation. The simulation results also demonstrate the importance of the modeling trade when studying climate change in a small open economy, and of linking crop and livestock activities to quantify overall sector effects. This model has not taken into account farmers’ adaptation strategies, which would reduce the climate impact on yields, nor has it reflected climate-induced shifts in planting decisions and production

  2. Assessment of Climate Change Impacts on Water Quality in a Tidal Estuarine System Using a Three-Dimensional Model

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Liu

    2016-02-01

    Full Text Available Climate change is one of the key factors affecting the future quality and quantity of water in rivers and tidal estuaries. A coupled three-dimensional hydrodynamic and water quality model has been developed and applied to the Danshuei River estuarine system in northern Taiwan to predict the influences of climate change on water quality. The water quality model considers state variables including nitrogen, phosphorus, organic carbon, and phytoplankton as well as dissolved oxygen, and is driven by a three-dimensional hydrodynamic model. The hydrodynamic water quality model was validated with observational salinity distribution and water quality state variables. According to the analyses of statistical error, predictions of salinity, dissolved oxygen, and nutrients from the model simulation quantitatively agreed with the observed data. The validated model was then applied to predict water quality conditions as a result of projected climate change effects. The simulated results indicated that the dissolved oxygen concentration was projected to significantly decrease whereas nutrients will increase because of climate change. Moreover, the dissolved oxygen concentration was lower than 2 mg/L in the main stream of the Danshuei River estuary and failed to meet the water quality standard. An appropriate strategy for effective water quality management for tidal estuaries is needed given the projected persistent climate trends.

  3. The Impacts of Policies To Meet The UK Climate Change Act Target on Air Quality - An Explicit Modelling Study

    Science.gov (United States)

    Williams, M.; Beevers, S.; Lott, M. C.; Kitwiroon, N.

    2016-12-01

    This paper presents a preliminary analysis of different pathways to meet the UK Climate Change Act target for 2050, of an 80% reduction in carbon dioxide equivalent emissions on a base year of 1990. The pathways can result in low levels of air pollution emissions through the use of renewables and nuclear power. But large increases in biomass burning and the continued use of diesel cars they can result in larger air quality impacts. The work evaluated the air quality impacts in several pathways using an energy system optimisation model (UK TIMES) and a chemical transport model (CMAQ). The work described in this paper goes beyond the `damage cost' approach where only emissions in each are assessed. In this work we used scenarios produced by the UK TIMES model which we converted into air pollution emissions. Emissions of ammonia from agriculture are not attributed to the energy system and are thus not captured by energy system models, yet are crucial in forming PM2.5, acknowledged to be currently the most important pollutant associated with premature deaths. Our model includes these emissions and other non-energy sources of hydrocarbons which lead to the formation of ozone, another significant cause of air pollution health impacts. A key policy issue is how much biogenic hydrocarbons contribute to ozone formation compared with man-made emissions. We modelled pollution concentrations at a resolution of 7 km across the UK and at 2km in urban areas. These results allow us to estimate changes in premature mortality and morbidity associated with the changes in air pollution and subsequently the economic cost of the impacts on public health. The work shows that in the `clean' scenario, urban exposures to particles (PM2.5) and NO2 could decrease by very large amounts, but ozone exposures are likely to increase without further significant reductions world-wide. Large increases in biomass use however could lead to increases in urban levels of carcinogens and primary PM.

  4. Hydrological Model Parameter (In)stability - Implications for the Assessment of Climate Change Impacts on Flood Seasonality

    Science.gov (United States)

    Vormoor, K.; Lawrence, D.; Heistermann, M.; Bronstert, A.

    2014-12-01

    Using a multi-model/multi-parameter ensemble consisting of (i) eight combinations of global and regional climate models, (ii) two statistical downscaling methods, and (iii) the HBV hydrological model with 25 calibrated parameter sets, we simulated daily discharge for a control (1961-1990) and future period (2071-2099) to investigate the potential impacts of climate change on flood seasonality and flood generating processes (FGPs) in six catchments with mixed snowmelt-rainfall regimes in Norway. For the catchments in northern and south-eastern Norway, we found more frequent autumn and winter events (partly also of higher magnitude) leading to possible shifts in the current flood regime from spring and early summer to autumn and winter. The possible shifts in flood regimes correspond to an increasing importance of rainfall as a FGP in all catchments considered, while rainfall replaces snowmelt as the dominant FGP in those catchments showing the largest changes in flood seasonality. The analysis of the relative role of the single ensemble components in contributing to overall uncertainty show that hydrological model parameter uncertainty is highest in those catchments showing the largest shifts in flood seasonality and FGPs. This points to difficulties in the time-transferability of the calibrated hydrological parameter sets under changing hydrometeorological conditions and highlights the need of alternative calibration approaches. In this study, we detect time periods in the observation data sets of catchments showing changes in observed hydrometeorological conditions and differing phases of predominant flood seasonality. The HBV model is calibrated for the detected time periods using the Dynamically Dimensioned Search (DDS) global optimization algorithm, and split sampling tests are applied to study the role of the calibrated hydrological parameter sets under changing conditions. Preliminary results show that the hydrological model parameters are sensitive to the

  5. Limitations and pitfalls of climate change impact analysis on urban rainfall extremes

    DEFF Research Database (Denmark)

    Willems, P.; Olsson, J.; Arnbjerg-Nielsen, Karsten;

    to anthropogenic climate change. Current practices have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. Climate change may well be the driver that ensures that changes in urban drainage paradigms are identified...... and suitable solutions implemented. Design and optimization of urban drainage infrastructure considering climate change impacts and co-optimizing with other objectives will become ever more important to keep our cities liveable into the future....

  6. Modelling the impacts of climate change on hydrology and water quality in a mediterranean limno-reservoir

    DEFF Research Database (Denmark)

    Molina-Navarro, Euginio; Trolle, Dennis; Martinez-Pérez, Silvia

    Assessment Tool (SWAT) model developed for a small Mediterranean catchment to quantify the potential effects of various climate change scenarios on catchment hydrology as well as the trophic state of a new kind of waterbody, a limno-reservoir (Pareja Limno-reservoir), created for environmental...

  7. Overview of the Special Issue: A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Waldhoff, Stephanie T.; Martinich, Jeremy; Sarofim, Marcus; DeAngelo, B. J.; McFarland, Jim; Jantarasami, Lesley; Shouse, Kate C.; Crimmins, Allison; Ohrel, Sara; Li, Jia

    2015-07-01

    The Climate Change Impacts and Risk Analysis (CIRA) modeling exercise is a unique contribution to the scientific literature on climate change impacts, economic damages, and risk analysis that brings together multiple, national-scale models of impacts and damages in an integrated and consistent fashion to estimate climate change impacts, damages, and the benefits of greenhouse gas (GHG) mitigation actions in the United States. The CIRA project uses three consistent socioeconomic, emissions, and climate scenarios across all models to estimate the benefits of GHG mitigation policies: a Business As Usual (BAU) and two policy scenarios with radiative forcing (RF) stabilization targets of 4.5 W/m2 and 3.7 W/m2 in 2100. CIRA was also designed to specifically examine the sensitivity of results to uncertainties around climate sensitivity and differences in model structure. The goals of CIRA project are to 1) build a multi-model framework to produce estimates of multiple risks and impacts in the U.S., 2) determine to what degree risks and damages across sectors may be lowered from a BAU to policy scenarios, 3) evaluate key sources of uncertainty along the causal chain, and 4) provide information for multiple audiences and clearly communicate the risks and damages of climate change and the potential benefits of mitigation. This paper describes the motivations, goals, and design of the CIRA modeling exercise and introduces the subsequent papers in this special issue.

  8. Modelling climate change impacts on tourism demand: A comparative study from Sardinia (Italy) and Cap Bon (Tunisia).

    Science.gov (United States)

    Köberl, Judith; Prettenthaler, Franz; Bird, David Neil

    2016-02-01

    Tourism represents an important source of income and employment in many Mediterranean regions, including the island of Sardinia (Italy) and the Cap Bon peninsula (Tunisia). Climate change may however impact tourism in both regions, for example, by altering the regions' climatic suitability for common tourism types or affecting water availability. This paper assesses the potential impacts of climate change on tourism in the case study regions of Sardinia and Cap Bon. Direct impacts are studied in a quantitative way by applying a range of climate scenario data on the empirically estimated relationship between climatic conditions and tourism demand, using two different approaches. Results indicate a potential for climate-induced tourism revenue gains especially in the shoulder seasons during spring and autumn, but also a threat of climate-induced revenue losses in the summer months due to increased heat stress. Annual direct net impacts are nevertheless suggested to be (slightly) positive in both case study regions. Significant climate-induced reductions in total available water may however somewhat counteract the positive direct impacts of climate change by putting additional water costs on the tourism industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling

    Directory of Open Access Journals (Sweden)

    Iulii Didovets

    2017-03-01

    Full Text Available The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, Upper Western Bug, and Samara characteristic for different geographical zones. The catchment scale watershed model—Soil and Water Integrated Model (SWIM—was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.

  10. Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology modelo.

    Science.gov (United States)

    Amin, M Z M; Shaaban, A J; Ercan, A; Ishida, K; Kavvas, M L; Chen, Z Q; Jang, S

    2017-01-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model utilizing an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century was dynamically downscaled to 6km resolution over Peninsular Malaysia by a regional climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over Muda and Dungun watersheds. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions in the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant from April to May and from July to October at Muda watershed. Also, the increase in mean monthly flows is shown to be significant in November during 2030-2070 and from November to December during 2070-2100 at Dungun watershed. In other words, the impact of the expected climate change will be significant during the northeast and southwest monsoon seasons at Muda watershed and during the northeast monsoon season at Dungun watershed. Furthermore, the flood frequency analyses for both watersheds indicated an overall increasing trend in the second half of the 21st century. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. An empirical perspective for understanding climate change impacts in Switzerland

    Science.gov (United States)

    Henne, Paul; Bigalke, Moritz; Büntgen, Ulf; Colombaroli, Daniele; Conedera, Marco; Feller, Urs; Frank, David; Fuhrer, Jürg; Grosjean, Martin; Heiri, Oliver; Luterbacher, Jürg; Mestrot, Adrien; Rigling, Andreas; Rössler, Ole; Rohr, Christian; Rutishauser, This; Schwikowski, Margit; Stampfli, Andreas; Szidat, Sönke; Theurillat, Jean-Paul; Weingartner, Rolf; Wilcke, Wolfgan; Tinner, Willy

    2017-01-01

    Planning for the future requires a detailed understanding of how climate change affects a wide range of systems at spatial scales that are relevant to humans. Understanding of climate change impacts can be gained from observational and reconstruction approaches and from numerical models that apply existing knowledge to climate change scenarios. Although modeling approaches are prominent in climate change assessments, observations and reconstructions provide insights that cannot be derived from simulations alone, especially at local to regional scales where climate adaptation policies are implemented. Here, we review the wealth of understanding that emerged from observations and reconstructions of ongoing and past climate change impacts in Switzerland, with wider applicability in Europe. We draw examples from hydrological, alpine, forest, and agricultural systems, which are of paramount societal importance, and are projected to undergo important changes by the end of this century. For each system, we review existing model-based projections, present what is known from observations, and discuss how empirical evidence may help improve future projections. A particular focus is given to better understanding thresholds, tipping points and feedbacks that may operate on different time scales. Observational approaches provide the grounding in evidence that is needed to develop local to regional climate adaptation strategies. Our review demonstrates that observational approaches should ideally have a synergistic relationship with modeling in identifying inconsistencies in projections as well as avenues for improvement. They are critical for uncovering unexpected relationships between climate and agricultural, natural, and hydrological systems that will be important to society in the future.

  12. Improved hydrological model parametrization for climate change impact assessment under data scarcity - The potential of field monitoring techniques and geostatistics.

    Science.gov (United States)

    Meyer, Swen; Blaschek, Michael; Duttmann, Rainer; Ludwig, Ralf

    2016-02-01

    According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The Water Simulation Model (WaSiM) was set up to model current and future hydrological conditions. The availability of measured meteorological and hydrological data is poor as it is common for many Mediterranean catchments. In this study we conducted a soil sampling campaign in the Rio Mannu catchment. We tested different deterministic and hybrid geostatistical interpolation methods on soil textures and tested the performance of the applied models. We calculated a new soil texture map based on the best prediction method. The soil model in WaSiM was set up with the improved new soil information. The simulation results were compared to standard soil parametrization. WaSiMs was validated with spatial evapotranspiration rates using the triangle method (Jiang and Islam, 1999). WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. The climate change impact was assessed based on differences between reference and future time series. The simulated results show a reduction of all hydrological quantities in the future in the spring season. Furthermore simulation results reveal an earlier onset of dry conditions in the catchment. We show that a solid soil model setup based on short-term field measurements can improve long-term modeling results, which is especially important

  13. Climate model based consensus on the hydrologic impacts of climate change to the Rio Lempa basin of Central America

    Directory of Open Access Journals (Sweden)

    E. P. Maurer

    2009-02-01

    Full Text Available Temperature and precipitation from 16 climate models each using two emissions scenarios (lower B1 and mid-high A2 were used to characterize the range of potential climate changes for the Rio Lempa basin of Central America during the middle (2040–2069 and end (2070–2099 of the 21st century. A land surface model was applied to investigate the hydrologic impacts of these changes, focusing on inflow to two major hydropower reservoirs. By 2070–2099 the median warming relative to 1961–1990 was 1.9°C and 3.4°C under B1 and A2 emissions, respectively. For the same periods, the models project median precipitation decreases of 5.0% (B1 and 10.4% (A2. Median changes by 2070–2099 in reservoir inflow were 13% (B1 and 24% (A2, with largest flow reductions during the rising limb of the seasonal hydrograph, from June through September. Frequency of low flow years increases, implying decreases in firm hydropower capacity of 33% to 53% by 2070–2099.

  14. A Model for Climate Change Adaptation

    Science.gov (United States)

    Pasqualini, D.; Keating, G. N.

    2009-12-01

    Climate models predict serious impacts on the western U.S. in the next few decades, including increased temperatures and reduced precipitation. In combination, these changes are linked to profound impacts on fundamental systems, such as water and energy supplies, agriculture, population stability, and the economy. Global and national imperatives for climate change mitigation and adaptation are made actionable at the state level, for instance through greenhouse gas (GHG) emission regulations and incentives for renewable energy sources. However, adaptation occurs at the local level, where energy and water usage can be understood relative to local patterns of agriculture, industry, and culture. In response to the greenhouse gas emission reductions required by California’s Assembly Bill 32 (2006), Sonoma County has committed to sharp emissions reductions across several sectors, including water, energy, and transportation. To assist Sonoma County develop a renewable energy (RE) portfolio to achieve this goal we have developed an integrated assessment model, CLEAR (CLimate-Energy Assessment for Resiliency) model. Building on Sonoma County’s existing baseline studies of energy use, carbon emissions and potential RE sources, the CLEAR model simulates the complex interactions among technology deployment, economics and social behavior. This model enables assessment of these and other components with specific analysis of their coupling and feedbacks because, due to the complex nature of the problem, the interrelated sectors cannot be studied independently. The goal is an approach to climate change mitigation and adaptation that is replicable for use by other interested communities. The model user interfaces helps stakeholders and policymakers understand options for technology implementation.

  15. Climate change impact on groundwater levels: ensemble modelling of extreme values

    Directory of Open Access Journals (Sweden)

    J. Kidmose

    2012-06-01

    Full Text Available This paper presents a first attempt to estimate future groundwater levels by applying extreme value statistics on predictions from a hydrological model. Climate for the future period, 2081–2100, are represented by projections from nine combinations of three global climate models and six regional climate models, and downscaled with two different methods. An integrated surface water/groundwater model is forced with precipitation, temperature, and evapotranspiration from the 18 model – and downscaling combinations. Extreme value analyses are performed on the hydraulic head changes from a control period (1991–2010 to the future period for the 18 combinations. Hydraulic heads for return periods of 21, 50 and 100 yr (T21–100 are estimated. Three uncertainty sources are evaluated; climate models, downscaling and extreme value statistics. Of these sources, downscaling dominates for the higher return periods of 50 and 100 yr, whereas uncertainty from climate models and downscaling are similar for lower return periods. Uncertainty from the extreme value statistics only contribute up to around 10% of the uncertainty from the three sources.

  16. Climate Change Modelling and Its Roles to Chinese Crops Yield

    Institute of Scientific and Technical Information of China (English)

    JU Hui; LIN Er-da; Tim Wheeler; Andrew Challinor; JIANG Shuai

    2013-01-01

    Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and climate variability. Understanding the interactions between climate change and agricultural production is essential for society stable development of China. The first mission is to fully understand how to predict future climate and link it with agriculture production system. In this paper, recent studies both domestic and international are reviewed in order to provide an overall image of the progress in climate change researches. The methods for climate change scenarios construction are introduced. The pivotal techniques linking crop model and climate models are systematically assessed and climate change impacts on Chinese crops yield among model results are summarized. The study found that simulated productions of grain crop inherit uncertainty from using different climate models, emission scenarios and the crops simulation models. Moreover, studies have different spatial resolutions, and methods for general circulation model (GCM) downscaling which increase the uncertainty for regional impacts assessment. However, the magnitude of change in crop production due to climate change (at 700 ppm CO2 eq correct) appears within ±10%for China in these assessments. In most literatures, the three cereal crop yields showed decline under climate change scenarios and only wheat in some region showed increase. Finally, the paper points out several gaps in current researches which need more studies to shorten the distance for objective recognizing the impacts of climate change on crops. The uncertainty for crop yield projection is associated with climate change scenarios, CO2 fertilization effects and adaptation options. Therefore, more studies on the fields such as free air CO2 enrichment experiment and practical adaptations implemented need to be carried out.

  17. Climate Change Impacts at Department of Defense Installations

    Science.gov (United States)

    2017-06-16

    ANL/EVS-17/9 Climate Change Impacts at Department of Defense Installations Environmental Science Division About...LLC. June 16, 2017 ANL/EVS-17/9 Climate Change Impacts at Department of Defense Installations prepared by Rao Kotamarthi...7 3.2 Use of Weather Data and Views on Climate Change among the DoD Site Contacts

  18. Assessing the observed impact of anthropogenic climate change

    NARCIS (Netherlands)

    Hansen, G.E.

    2015-01-01

    Assessing the observed impact of anthropogenic climate change Gerrit Hansen Global climate change is unequivocal, and greenhouse gas emissions continue rising despite international mitigation efforts. Hence whether and to what extent the impacts of human induced climate change are a

  19. Regression model for generating time series of daily precipitation amounts for climate change impact studies

    Science.gov (United States)

    Buishand, T. A.; Klein Tank, A. M. G.

    1996-05-01

    The precipitation amounts on wet days at De Bilt (the Netherlands) are linked to temperature and surface air pressure through advanced regression techniques. Temperature is chosen as a covariate to use the model for generating synthetic time series of daily precipitation in a CO2 induced warmer climate. The precipitation-temperature dependence can partly be ascribed to the phenomenon that warmer air can contain more moisture. Spline functions are introduced to reproduce the non-monotonous change of the mean daily precipitation amount with temperature. Because the model is non-linear and the variance of the errors depends on the expected response, an iteratively reweighted least-squares technique is needed to estimate the regression coefficients. A representative rainfall sequence for the situation of a systematic temperature rise is obtained by multiplying the precipitation amounts in the observed record with a temperature dependent factor based on a fitted regression model. For a temperature change of 3°C (reasonable guess for a doubled CO2 climate according to the present-day general circulation models) this results in an increase in the annual average amount of 9% (20% in winter and 4% in summer). An extended model with both temperature and surface air pressure is presented which makes it possible to study the additional effects of a potential systematic change in surface air pressure on precipitation.

  20. The optimal choice of hydrodynamic models to assess the impact of climate change on the cryosphere

    Directory of Open Access Journals (Sweden)

    O. A. Anisimov

    2013-01-01

    Full Text Available This study is targeted at narrowing the range of uncertainties in predictive cryospheric modeling associated with climatic projections. We used the output from 36 CMIP5 GCM runs for the period 1976–2005 and calculated trends of several climatic characteristics that largely govern the state of the cryosphere, i.e. seasonal and mean annual air temperature, thawing degree-day sums, annual and winter precipitation sums. Data from 744 weather stations were used to identify and delineate 17 regions, which demonstrate coherent temperature changes in the past decades. Results from GCMs and observations were averaged over the «coherent regions» and compared with each other. Ultimately, we evaluated the skills of individual CMIP5 GCMs, ranked them in the specific context of predictive cryospheric modeling, identified top-end models in each of the 17 regions and eliminated the outliers. Selected top-end GCMs were used to compose optimal regional ensembles that were compared with the ensemble consisting of all available models. An optimal ensemble was also constructed for the area underlain by permafrost in Russia. Results indicate that the all-model ensemble in most regions underestimates the projected temperature changes compared to the optimal ensemble. Elimination of the outliers narrows the range of uncertainty in regional climate projection by 5–20%.

  1. Modelling Climate Change Impacts on the Seasonality of Water Resources in the Upper Ca River Watershed in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Pham Quy Giang

    2014-01-01

    Full Text Available The impact of climate change on the seasonality of water resources in the Upper Ca River Watershed in mainland Southeast Asia was assessed using downscaled global climate models coupled with the SWAT model. The results indicated that temperature and evapotranspiration will increase in all months of future years. The area could warm as much as 3.4°C in the 2090s, with an increase of annual evapotranspiration of up to 23% in the same period. We found an increase in the seasonality of precipitation (both an increase in the wet season and a decrease in the dry season. The greatest monthly increase of up to 29% and the greatest monthly decrease of up to 30% are expected in the 2090s. As a result, decreases in dry season discharge and increases in wet season discharge are expected, with a span of ±25% for the highest monthly changes in the 2090s. This is expected to exacerbate the problem of seasonally uneven distribution of water resources: a large volume of water in the wet season and a scarcity of water in the dry season, a pattern that indicates the possibility of more frequent floods in the wet season and droughts in the dry season.

  2. Modelling climate change impacts on the seasonality of water resources in the Upper Ca River Watershed in Southeast Asia.

    Science.gov (United States)

    Giang, Pham Quy; Toshiki, Kosuke; Sakata, Masahiro; Kunikane, Shoichi; Vinh, Tran Quoc

    2014-01-01

    The impact of climate change on the seasonality of water resources in the Upper Ca River Watershed in mainland Southeast Asia was assessed using downscaled global climate models coupled with the SWAT model. The results indicated that temperature and evapotranspiration will increase in all months of future years. The area could warm as much as 3.4(°)C in the 2090 s, with an increase of annual evapotranspiration of up to 23% in the same period. We found an increase in the seasonality of precipitation (both an increase in the wet season and a decrease in the dry season). The greatest monthly increase of up to 29% and the greatest monthly decrease of up to 30% are expected in the 2090 s. As a result, decreases in dry season discharge and increases in wet season discharge are expected, with a span of ± 25% for the highest monthly changes in the 2090 s. This is expected to exacerbate the problem of seasonally uneven distribution of water resources: a large volume of water in the wet season and a scarcity of water in the dry season, a pattern that indicates the possibility of more frequent floods in the wet season and droughts in the dry season.

  3. Integrated snow and hydrology modeling for climate change impact assessment in Oregon Cascades

    Science.gov (United States)

    Safeeq, M.; Grant, G.; Lewis, S.; Nolin, A. W.; Hempel, L. A.; Cooper, M.; Tague, C.

    2014-12-01

    In the Pacific Northwest (PNW), increasing temperatures are expected to alter the hydrologic regimes of streams by shifting precipitation from snow to rain and forcing earlier snowmelt. How are such changes likely to affect peak flows across the region? Shifts in peak flows have obvious implications for changing flood risk, but are also likely to affect channel morphology, sediment transport, aquatic habitat, and water quality, issues with potentially high economic and environmental cost. Our goal, then, is to rigorously evaluate sensitivity to potential peak flow changes across the PNW. We address this by developing a detailed representation of snowpack and streamflow evolution under varying climate scenarios using a cascade-modeling approach. We have identified paired watersheds located on the east (Metolius River) and west (McKenzie River) sides of the Cascades, representing dry and wet climatic regimes, respectively. The tributaries of these two rivers are comprised of contrasting hydrologic regimes: surface-runoff dominated western cascades and deep-groundwater dominated high-cascades systems. We use a detailed hydro-ecological model (RHESSys) in conjunction with a spatially distributed snowpack evolution model (SnowModel) to characterize the peak flow behavior under present and future climate. We first calibrated and validated the SnowModel using observed temperature, precipitation, snow water equivalent, and manual snow survey data sets. We then employed a multi-objective calibration strategy for RHESSys using the simulated snow accumulation and melt from SnowModel and observed streamflow. The Nash-Sutcliffe Efficiency between observed and simulated streamflow varies between 0.5 in groundwater and 0.71 in surface-runoff dominated systems. The initial results indicate enhanced peak flow under future climate across all basins, but the magnitude of increase varies by the level of snowpack and deep-groundwater contribution in the watershed. Our continuing effort

  4. The Impact Of Climate Change On Production Of Multiple Food Crops In The 21st Century- An Analysis Based On Two Land Surface Models

    Science.gov (United States)

    Song, Y.; Jain, A. K.; Lawrence, P.; Kheshgi, H. S.

    2015-12-01

    Climate change presents potential risks to global food supply. To date, understanding of climate change effects on crop production remains uncertain due to (1) uncertainties in projected climate change trends and their spatial and temporal variability; (2) uncertainties in the physiological, genetic and molecular basis of crop adaptation to climate change and adaptive management practices and (3) uncertainties in current land surface models to estimate crop adaptation to climate change. We apply the process-based land surface model, the Integrated Science Assessment model (ISAM), to assess the impact of climate change on the production of row crops (corn, soybean, rice, cotton, sugarcane and wheat) at global and regional scales. The results are compared to the corresponding simulations performed with the crop model in the Community Land Model (CLM4.5). Three questions are addressed: (1) what is the impact of different climate change projections on global crop production; (2) what is the effect of crop adaptation and adaptive management practices on projected crop production; and (3) how do model differences in ISAM and CLM4.5 impact projected global crop production and adaptive management practices over the 21st century. ISAM and CLM4.5 have been included in the Agricultural Model Intercomparison and Improvement Project (AgMIP). Both models consider the effects of temperature, light and soil water and nitrogen availability on crop photosynthesis and temperature control on crop phenology and carbon allocation. ISAM also considers the adaptation of crop phenology, carbon allocation and structures growth to drought, light stress and N stress. The effects of model differences on projected crop production are evaluated by performing the following experiments. Each model is driven with historical atmospheric forcing data (1901-2005) and projected atmospheric forcing data (2006-2100) under RCP 4.5 or RCP 8.5 from CESM CMIP5 simulations to estimate the effects of different

  5. THE IMPACT OF CLIMATE CHANGE UPON WINTER RAINFALL

    Directory of Open Access Journals (Sweden)

    Numan Shehadeh

    2013-01-01

    Full Text Available Climatic models that project the impact of climate change upon rainfall in the Eastern Mediterranean region predict that the negative impact will be more pronounced upon winter rainfall rather than Fall or Spring rainfall where instability conditions become more pronounced. Those models, also, predict that, due to the great geographical diversity, projected rainfall trends in the above region will show great spatial variability. Therefore, this study aims to analyze the possible impact of climate change upon winter rainfall (December, January and February in Jordan. Data from six meteorological stations that represent well the spatial variation of rainfall in the country is used. Various statistical techniques are applied in this study including, linear regression, t- test, moving averages and CUSUM charts. Results of the analysis reveal a decreasing rainfall trend in all the sample stations. However, the decreasing trends are significant at the 0.05 level in three stations only (Salt, Amman and Irbid. The negative impact of climate change upon winter rainfall totals in the northern and central parts of Jordan, where most of winter rainfall is associated with Mediterranean depressions, is statistically significant at the 0.05 level. However, such impact is not significant in the southern and eastern parts of the country, where a greater portion of winter rainfall is associated with khamasini depressions and instability conditions. Further research analyzing the impact of climate change upon other climatic elements such as temperature, relative humidity and dust storms is needed.

  6. Climate Change Impacts on Migration in the Vulnerable Countries

    Science.gov (United States)

    An, Nazan; Incealtin, Gamze; Kurnaz, M. Levent; Şengün Ucal, Meltem

    2014-05-01

    This work focuses on the economic, demographic and environmental drivers of migration related with the sustainable development in underdeveloped and developed countries, which are the most vulnerable to the climate change impacts through the Climate-Development Modeling including climate modeling and panel logit data analysis. We have studied some countries namely Bangladesh, Netherlands, Morocco, Malaysia, Ethiopia and Bolivia. We have analyzed these countries according to their economic, demographic and environmental indicators related with the determinants of migration, and we tried to indicate that their conditions differ according to all these factors concerning with the climate change impacts. This modeling covers some explanatory variables, which have the relationship with the migration, including GDP per capita, population, temperature and precipitation, which indicate the seasonal differences according to the years, the occurrence of natural hazards over the years, coastal location of countries, permanent cropland areas and fish capture which represents the amount of capturing over the years. We analyzed that whether there is a relationship between the migration and these explanatory variables. In order to achieve sustainable development by preventing or decreasing environmental migration due to climate change impacts or related other factors, these countries need to maintain economic, social, political, demographic, and in particular environmental performance. There are some significant risks stemming from climate change, which is not under control. When the economic and environmental conditions are considered, we have to regard climate change to be the more destructive force for those who are less defensible against all of these risks and impacts of uncontrolled climate change. This work was supported by the BU Research Fund under the project number 6990. One of the authors (MLK) was partially supported by Mercator-IPC Fellowship Program.

  7. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach.

    Science.gov (United States)

    Zhai, Shiyan; Song, Genxin; Qin, Yaochen; Ye, Xinyue; Lee, Jay

    2017-01-01

    This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June) led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention.

  8. Modeling the Impact of White-Plague Coral Disease in Climate Change Scenarios.

    Directory of Open Access Journals (Sweden)

    Assaf Zvuloni

    2015-06-01

    Full Text Available Coral reefs are in global decline, with coral diseases increasing both in prevalence and in space, a situation that is expected only to worsen as future thermal stressors increase. Through intense surveillance, we have collected a unique and highly resolved dataset from the coral reef of Eilat (Israel, Red Sea, that documents the spatiotemporal dynamics of a White Plague Disease (WPD outbreak over the course of a full season. Based on modern statistical methodologies, we develop a novel spatial epidemiological model that uses a maximum-likelihood procedure to fit the data and assess the transmission pattern of WPD. We link the model to sea surface temperature (SST and test the possible effect of increasing temperatures on disease dynamics. Our results reveal that the likelihood of a susceptible coral to become infected is governed both by SST and by its spatial location relative to nearby infected corals. The model shows that the magnitude of WPD epidemics strongly depends on demographic circumstances; under one extreme, when recruitment is free-space regulated and coral density remains relatively constant, even an increase of only 0.5°C in SST can cause epidemics to double in magnitude. In reality, however, the spatial nature of transmission can effectively protect the community, restricting the magnitude of annual epidemics. This is because the probability of susceptible corals to become infected is negatively associated with coral density. Based on our findings, we expect that infectious diseases having a significant spatial component, such as Red-Sea WPD, will never lead to a complete destruction of the coral community under increased thermal stress. However, this also implies that signs of recovery of local coral communities may be misleading; indicative more of spatial dynamics than true rehabilitation of these communities. In contrast to earlier generic models, our approach captures dynamics of WPD both in space and time, accounting for

  9. Modeling the Impact of White-Plague Coral Disease in Climate Change Scenarios.

    Science.gov (United States)

    Zvuloni, Assaf; Artzy-Randrup, Yael; Katriel, Guy; Loya, Yossi; Stone, Lewi

    2015-06-01

    Coral reefs are in global decline, with coral diseases increasing both in prevalence and in space, a situation that is expected only to worsen as future thermal stressors increase. Through intense surveillance, we have collected a unique and highly resolved dataset from the coral reef of Eilat (Israel, Red Sea), that documents the spatiotemporal dynamics of a White Plague Disease (WPD) outbreak over the course of a full season. Based on modern statistical methodologies, we develop a novel spatial epidemiological model that uses a maximum-likelihood procedure to fit the data and assess the transmission pattern of WPD. We link the model to sea surface temperature (SST) and test the possible effect of increasing temperatures on disease dynamics. Our results reveal that the likelihood of a susceptible coral to become infected is governed both by SST and by its spatial location relative to nearby infected corals. The model shows that the magnitude of WPD epidemics strongly depends on demographic circumstances; under one extreme, when recruitment is free-space regulated and coral density remains relatively constant, even an increase of only 0.5°C in SST can cause epidemics to double in magnitude. In reality, however, the spatial nature of transmission can effectively protect the community, restricting the magnitude of annual epidemics. This is because the probability of susceptible corals to become infected is negatively associated with coral density. Based on our findings, we expect that infectious diseases having a significant spatial component, such as Red-Sea WPD, will never lead to a complete destruction of the coral community under increased thermal stress. However, this also implies that signs of recovery of local coral communities may be misleading; indicative more of spatial dynamics than true rehabilitation of these communities. In contrast to earlier generic models, our approach captures dynamics of WPD both in space and time, accounting for the highly

  10. Climate Change Impacts on Rainfall Extremes and Urban Drainage: a State-of-the-Art Review

    DEFF Research Database (Denmark)

    Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten;

    2013-01-01

    to anthropogenic climate change. Current practices have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend or impact results. The review (Willems et al., 2012) considers the following aspects: analysis of long-term historical trends...... due to anthropogenic climate change, analysis of long-term future trends due to anthropogenic climate change, and implications for urban drainage infrastructure design and management. A summary is provided in this paper....

  11. A mechanistic-bioclimatic modeling analysis of the potential impact of climate change on biomes of the Tibetan Plateau.

    Science.gov (United States)

    Ye, Jian-Sheng; Reynolds, James F; Li, Feng-Min

    2014-08-01

    The Tibetan Plateau (TP) is experiencing high rates of climatic change. We present a novel combined mechanistic-bioclimatic modeling approach to determine how changes in precipitation and temperature on the TP may impact net primary production (NPP) in four major biomes (forest, shrub, grass, desert) and if there exists a maximum rain use efficiency (RUE(MAX)) that represents Huxman et al.'s "boundary that constrain[s] site-level productivity and efficiency." We used a daily mechanistic ecosystem model to generate 40-yr outputs using observed climatic data for scenarios of decreased precipitation (25-100%); increased air temperature (1 degrees - 6 degrees C); simultaneous changes in both precipitation (+/- 50%, +/- 25%) and air temperature (+1 to +6 degrees C) and increased interannual variability (IAV) of precipitation (+1 sigma to +3 sigma, with fixed means, where sigma is SD). We fitted model output from these scenarios to Huxman et al.'s RUE(MAX) bioclimatic model, NPP = alpha + RUE x PPT (where alpha is the intercept, RUE is rain use efficiency, and PPT is annual precipitation). Based on these analyses, we conclude that there is strong support (when not explicit, then trend-wise) for Huxman et al.'s assertion that biomes converge to a common RUE(MAX) during the driest years at a site, thus representing the boundary for highest rain use efficiency; the interactive effects of simultaneously decreasing precipitation and increasing temperature on NPP for the TP is smaller than might be expected from additive, single-factor changes in these drivers; and that increasing IAV of precipitation may ultimately have a larger impact on biomes of the Tibetan Plateau than changing amounts of rainfall and air temperature alone.

  12. Uncertainty in climate change impacts on low flows

    NARCIS (Netherlands)

    Booij, Martijn J.; Huisjes, Martijn; Hoekstra, Arjen Ysbert; Demuth, Siegfried; Gustard, Alan; Planos, Eduardo; Scatena, Fred; Servat, Eric

    2006-01-01

    It is crucial for low flow management that information about the impacts of climate change on low flows and the uncertainties therein becomes available. This has been achieved by using information from different Regional Climate Models for different emission scenarios to assess the uncertainty in

  13. Uncertainty in climate change impacts on low flows

    NARCIS (Netherlands)

    Booij, Martijn J.; Huisjes, Martijn; Hoekstra, Arjen Y.; Demuth, Siegfried; Gustard, Alan; Planos, Eduardo; Scatena, Fred; Servat, Eric

    2006-01-01

    It is crucial for low flow management that information about the impacts of climate change on low flows and the uncertainties therein becomes available. This has been achieved by using information from different Regional Climate Models for different emission scenarios to assess the uncertainty in cl

  14. Climate change, ecosystem impacts, and management for Pacific salmon

    Science.gov (United States)

    D.E. Schindler; X. Augerot; E. Fleishman; N.J. Mantua; B. Riddell; M. Ruckelshaus; J. Seeb; M. Webster

    2008-01-01

    As climate change intensifies, there is increasing interest in developing models that reduce uncertainties in projections of global climate and refine these projections to finer spatial scales. Forecasts of climate impacts on ecosystems are far more challenging and their uncertainties even larger because of a limited understanding of physical controls on biological...

  15. Climate change impacts on the future distribution of date palms: a modeling exercise using CLIMEX.

    Directory of Open Access Journals (Sweden)

    Farzin Shabani

    Full Text Available Climate is changing and, as a consequence, some areas that are climatically suitable for date palm (Phoenix dactylifera L. cultivation at the present time will become unsuitable in the future. In contrast, some areas that are unsuitable under the current climate will become suitable in the future. Consequently, countries that are dependent on date fruit export will experience economic decline, while other countries' economies could improve. Knowledge of the likely potential distribution of this economically important crop under current and future climate scenarios will be useful in planning better strategies to manage such issues. This study used CLIMEX to estimate potential date palm distribution under current and future climate models by using one emission scenario (A2 with two different global climate models (GCMs, CSIRO-Mk3.0 (CS and MIROC-H (MR. The results indicate that in North Africa, many areas with a suitable climate for this species are projected to become climatically unsuitable by 2100. In North and South America, locations such as south-eastern Bolivia and northern Venezuela will become climatically more suitable. By 2070, Saudi Arabia, Iraq and western Iran are projected to have a reduction in climate suitability. The results indicate that cold and dry stresses will play an important role in date palm distribution in the future. These results can inform strategic planning by government and agricultural organizations by identifying new areas in which to cultivate this economically important crop in the future and those areas that will need greater attention due to becoming marginal regions for continued date palm cultivation.

  16. Climate change impacts on the future distribution of date palms: a modeling exercise using CLIMEX.

    Science.gov (United States)

    Shabani, Farzin; Kumar, Lalit; Taylor, Subhashni

    2012-01-01

    Climate is changing and, as a consequence, some areas that are climatically suitable for date palm (Phoenix dactylifera L.) cultivation at the present time will become unsuitable in the future. In contrast, some areas that are unsuitable under the current climate will become suitable in the future. Consequently, countries that are dependent on date fruit export will experience economic decline, while other countries' economies could improve. Knowledge of the likely potential distribution of this economically important crop under current and future climate scenarios will be useful in planning better strategies to manage such issues. This study used CLIMEX to estimate potential date palm distribution under current and future climate models by using one emission scenario (A2) with two different global climate models (GCMs), CSIRO-Mk3.0 (CS) and MIROC-H (MR). The results indicate that in North Africa, many areas with a suitable climate for this species are projected to become climatically unsuitable by 2100. In North and South America, locations such as south-eastern Bolivia and northern Venezuela will become climatically more suitable. By 2070, Saudi Arabia, Iraq and western Iran are projected to have a reduction in climate suitability. The results indicate that cold and dry stresses will play an important role in date palm distribution in the future. These results can inform strategic planning by government and agricultural organizations by identifying new areas in which to cultivate this economically important crop in the future and those areas that will need greater attention due to becoming marginal regions for continued date palm cultivation.

  17. Terrestrial water cycle and the impact of climate change.

    Science.gov (United States)

    Tao, Fulu; Yokozawa, Masayuki; Hayashi, Yousay; Lin, Erda

    2003-06-01

    The terrestrial water cycle and the impact of climate change are critical for agricultural and natural ecosystems. In this paper, we assess both by running a macro-scale water balance model under a baseline condition and 2 General Circulation Model (GCM)-based climate change scenarios. The results show that in 2021-2030, water demand will increase worldwide due to climate change. Water shortage is expected to worsen in western Asia, the Arabian Peninsula, northern and southern Africa, northeastern Australia, southwestern North America, and central South America. A significant increase in surface runoff is expected in southern Asia and a significant decrease is expected in northern South America. These changes will have implications for regional environment and socioeconomics.

  18. Terrestrial Water Cycle and the Impact of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Fulu Tao; Erda Lin [Chinese Academy of Agricultural Sciences, Beijing (China). Agrometeorology Inst.; Yokozawa, Masayuki; Hayashi, Yousay [National Inst. for Agro-Environmental Sciences, Tsukuba (Japan)

    2003-06-01

    The terrestrial water cycle and the impact of climate change are critical for agricultural and natural ecosystems. In this paper, we assess both by running a macro-scale water balance model under a baseline condition and 2 General Circulation Model (GCM)-based climate change scenarios. The results show that in 2021-2030, water demand will increase worldwide due to climate change. Water shortage is expected to worsen in western Asia, the Arabian Peninsula, northern and southern Africa, northeastern Australia, southwestern North America, and central South America. A significant increase in surface runoff is expected in southern Asia and a significant decrease is expected in northern South America. These changes will have implications for regional environment and socio-economics.

  19. Modeling impacts of climate change on the potential distribution of the carcinogenic liver fluke, Opisthorchis viverrini, in Thailand.

    Science.gov (United States)

    Suwannatrai, A; Pratumchart, K; Suwannatrai, K; Thinkhamrop, K; Chaiyos, J; Kim, C S; Suwanweerakamtorn, R; Boonmars, T; Wongsaroj, T; Sripa, B

    2017-01-01

    Global climate change is now regarded as imposing a significant threat of enhancing transmission of parasitic diseases. Maximum entropy species distribution modeling (MaxEnt) was used to explore how projected climate change could affect the potential distribution of the carcinogenic liver fluke, Opisthorchis viverrini, in Thailand. A range of climate variables was used: the Hadley Global Environment Model 2-Earth System (HadGEM2-ES) climate change model and also the IPCC scenarios A2a for 2050 and 2070. Occurrence data from surveys conducted in 2009 and 2014 were obtained from the Department of Disease Control, Ministry of Public Health, Thailand. The MaxEnt model performed better than random for O. viverrini with training AUC values greater than 0.8 under current and future climatic conditions. The current distribution of O. viverrini is significantly affected by precipitation and minimum temperature. According to current conditions, parts of Thailand climatically suitable for O. viverrini are mostly in the northeast and north, but the parasite is largely absent from southern Thailand. Under future climate change scenarios, the distribution of O. viverrini in 2050 should be significantly affected by precipitation, maximum temperature, and mean temperature of the wettest quarter, whereas in 2070, significant factors are likely to be precipitation during the coldest quarter, maximum, and minimum temperatures. Maps of predicted future distribution revealed a drastic decrease in presence of O. viverrini in the northeast region. The information gained from this study should be a useful reference for implementing long-term prevention and control strategies for O. viverrini in Thailand.

  20. Modelling the impacts of European emission and climate change scenarios on acid-sensitive catchments in Finland

    Directory of Open Access Journals (Sweden)

    M. Posch

    2007-09-01

    Full Text Available The dynamic hydro-chemical Model of Acidification of Groundwater in Catchments (MAGIC was used to predict the response of 163 Finnish lake catchments to future acidic deposition and climatic change scenarios. Future deposition was assumed to follow current European emission reduction policies and a scenario based on maximum (technologically feasible reductions (MFR. Future climate (temperature and precipitation was derived from the HadAM3 and ECHAM4/OPYC3 general circulation models under two global scenarios of the Intergovernmental Panel on Climate Change (IPCC: A2 and B2. The combinations resulting in the widest range of future changes were used for simulations, i.e., the A2 scenario results from ECHAM4/OPYC3 (highest predicted change and B2 results from HadAM3 (lowest predicted change. Future scenarios for catchment runoff were obtained from the Finnish watershed simulation and forecasting system. The potential influence of future changes in surface water organic carbon concentrations was also explored using simple empirical relationships based on temperature and sulphate deposition. Surprisingly, current emission reduction policies hardly show any future recovery; however, significant chemical recovery of soil and surface water from acidification was predicted under the MFR emission scenario. The direct influence of climate change (temperate and precipitation on recovery was negligible, as runoff hardly changed; greater precipitation is offset by increased evapotranspiration due to higher temperatures. Predicted changes in dissolved organic carbon induced by reductions in acid deposition or increases in temperature may potentially influence the recovery of surface waters from acidification and may offset the increase in pH resulting from S deposition reductions. However, many climate-induced changes in processes are generally not incorporated in current versions of acidification models. To allow more reliable forecasts, the mechanisms by

  1. Projected impacts of climate change on marine fish and fisheries

    DEFF Research Database (Denmark)

    Hollowed, Anne B.; Barange, Manuel; Beamish, Richard J.;

    2013-01-01

    ) implications for food security and associated changes; and (v) uncertainty and modelling skill assessment. Climate change will impact fish and shellfish, their fisheries, and fishery-dependent communities through a complex suite of linked processes. Integrated interdisciplinary research teams are forming...... in many regions to project these complex responses. National and international marine research organizations serve a key role in the coordination and integration of research to accelerate the production of projections of the effects of climate change on marine ecosystems and to move towards a future where...

  2. Modelling Hydrological Consequences of Climate Change-Progress and Challenges

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases,(2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods)for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales.Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.

  3. Modelling rainfall erosion resulting from climate change

    Science.gov (United States)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  4. Impacts of Climate Change on Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Melillo, Jerry M. [Marine Biological Laboratory, Woods Hole, MA (United States)

    2014-04-30

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and consideration of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.

  5. Climate Change Impacts on Worldwide Coffee Production

    Science.gov (United States)

    Foreman, T.; Rising, J. A.

    2015-12-01

    Coffee (Coffea arabica and Coffea canephora) plays a vital role in many countries' economies, providing necessary income to 25 million members of tropical countries, and supporting a $81 billion industry, making it one of the most valuable commodities in the world. At the same time, coffee is at the center of many issues of sustainability. It is vulnerable to climate change, with disease outbreaks becoming more common and suitable regions beginning to shift. We develop a statistical production model for coffee which incorporates temperature, precipitation, frost, and humidity effects using a new database of worldwide coffee production. We then use this model to project coffee yields and production into the future based on a variety of climate forecasts. This model can then be used together with a market model to forecast the locations of future coffee production as well as future prices, supply, and demand.

  6. Impact of climate change on the stream flow of lower Brahmaputra: trends in high and low flows based on discharge- weighted ensemble modelling

    Directory of Open Access Journals (Sweden)

    A. K. Gain

    2011-01-01

    Full Text Available Climate change is likely to have significant effects on the hydrology. The Ganges-Brahmaputra river basin is one of the most vulnerable areas in the world as it is subject to the combined effects of glacier melt, extreme monsoon rainfall and sea level rise. To what extent climate change will impact river flow in the Brahmaputra basin is yet unclear, as climate model studies show ambiguous results. In this study we investigate the effect of climate change on both low and high flows of the lower Brahmaputra. We apply a novel method of discharge-weighted ensemble modeling using model outputs from a global hydrological models forced with 12 different global climate models (GCMs. Based on the GCM outputs and long-term records of observed flow at Bahadurabad station, our method results in a multi-model weighted ensemble of transient stream flow for the period 1961–2100. Using the constructed transients, we subsequently project future trends in low and high river flow. The analysis shows that extreme low flow conditions are likely to occur less frequent in the future. However a very strong increase in peak flows is projected, which may, in combination with projected sea level change, have devastating effects for Bangladesh. The methods presented in this study are more widely applicable, in that existing multi-model streamflow simulations from global hydrological models can be weighted against observed streamflow data to assess at first order the effects of climate change for specific river basins.

  7. Modelingthe impacts of climate change on China's agriculture

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The impacts of climate change on China's agriculture are measured based on Ricardian model. By using county-level cross-sectional data on agricultural net revenue, climate, and other economic and geographical data for 1275 agriculture-dominated counties in the period of 1985-1991, we find that both higher temperature and more precipitation will have overall positive impact on China's agriculture. However, the impacts vary seasonally and regionally. Higher temperature in all seasons except spring increases agricultural net revenue while more precipitation is beneficial in winter but is harmful in summer. Applying the model to five climate scenarios in the 2020s and 2050s shows that the North, the Northeast, the Northwest, and the Qinghai-Tibet Plateau would always benefit from climate change while the South and the Southwest may be negatively affected. For the East and the Central China, most scenarios show that they may benefit from climate change. In conclusion, climate change would be beneficial to the whole China.

  8. Climate change impacts on hydrological processes in Norway based on two methods for transferring regional climate model results to meteorological station sites

    OpenAIRE

    Beldring, Stein; Engen-Skaugen, Torill; Førland, Eirik J.; Roald, Lars A.

    2008-01-01

    Climate change impacts on hydrological processes in Norway have been estimated through combination of results from the IPCC SRES A2 and B2 emission scenarios, global climate models from the Hadley Centre and the Max-Planck Institute, and dynamical downscaling using the RegClim HIRHAM regional climate model. Temperature and precipitation simulations from the regional climate model were transferred to meteorological station sites using two different approaches, the delta change or perturbation ...

  9. Local impact analysis of climate change on precipitation extremes: are high-resolution climate models needed for realistic simulations?

    Science.gov (United States)

    Tabari, Hossein; De Troch, Rozemien; Giot, Olivier; Hamdi, Rafiq; Termonia, Piet; Saeed, Sajjad; Brisson, Erwan; Van Lipzig, Nicole; Willems, Patrick

    2016-09-01

    This study explores whether climate models with higher spatial resolutions provide higher accuracy for precipitation simulations and/or different climate change signals. The outputs from two convection-permitting climate models (ALARO and CCLM) with a spatial resolution of 3-4 km are compared with those from the coarse-scale driving models or reanalysis data for simulating/projecting daily and sub-daily precipitation quantiles. Validation of historical design precipitation statistics derived from intensity-duration-frequency (IDF) curves shows a better match of the convection-permitting model results with the observations-based IDF statistics compared to the driving GCMs and reanalysis data. This is the case for simulation of local sub-daily precipitation extremes during the summer season, while the convection-permitting models do not appear to bring added value to simulation of daily precipitation extremes. Results moreover indicate that one has to be careful in assuming spatial-scale independency of climate change signals for the delta change downscaling method, as high-resolution models may show larger changes in extreme precipitation. These larger changes appear to be dependent on the timescale, since such intensification is not observed for daily timescales for both the ALARO and CCLM models.

  10. Comparing the impacts of land-use management and climate change on soil erosion: a modeling exercise for humid and dry Mediterranean regions in Portugal

    Science.gov (United States)

    Nunes, João Pedro; Carvalho-Santos, Cláudia

    2015-04-01

    Climate change could impact soil erosion rates in the Mediterranean, either directly via the concentration of rainfall in a smaller number of winter events, or indirectly through changes in vegetation cover. In particular, climate-induced changes in land-use management and associated agro-forestry practices could lead to much greater impacts than the ones expected from climate change alone. This work compares how future climate and land-use changes could impact soil erosion. The Soil and Water Assessment Tool (SWAT) model was applied to two contrasting watersheds in Portugal. The Vez has a humid Mediterranean climate (1500 mm/yr average rainfall) and is presently covered by plantation forests and shrublands. The Xarrama has a dry Mediterranean climate (600 mm/yr annual rainfall) and is presently occupied mostly by an agroforestry system consisting of pasture and evergreen oaks. Both watersheds currently experience very low erosion rates due to the landcover type. In both cases, climate scenarios presuppose a small decrease in rainfall (-4% in the Vez, -9% in the Xarrama) but more concentrated in winter, where an increase is expected. Possible future land-use scenarios could lead to an intensification of agriculture, due to the expansion of vineyard areas in the humid region and the plantation of sunflowers for biofuel production in the dry region (up to c. 45% of the watershed in both cases). The results for both study sites were similar. The impacts of climate change itself were an increase in erosion, of 28% in the Vez and 18% in the Xarrama, which still resulted in low erosion rates. However, the impacts of land-use change were much higher: an erosion increase of 529% in the Vez and 120% in the Xarrama, leading to important erosion rates in the new agricultural areas. Despite the different changes, which could be to a large degree attributed to the higher erosion rates usually found in vineyards, the conclusions in both sites point to the much higher impact of

  11. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem.

    Directory of Open Access Journals (Sweden)

    Brad Seely

    Full Text Available Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine for established stands due to increased moisture stress mortality.

  12. Public health impacts of climate change in Nepal.

    Science.gov (United States)

    Joshi, H D; Dhimal, B; Dhimal, M; Bhusal, C L

    2011-04-01

    Climate change is a global issue in this century which has challenged the survival of living creatures affecting the life supporting systems of the earth: atmosphere, hydrosphere and lithosphere. Scientists have reached in a consensus that climate change is happening. The anthropogenic emission of greenhouse gases is responsible for global warming and therefore climate change. Climate change may directly or indirectly affect human health through a range of pathways related to temperature and precipitation. The aim of this article is to share knowledge on how climate change can affect public health in Nepal based on scientific evidence from global studies and experience gained locally. In this review attempt has been made to critically analyze the scientific studies as well as policy documents of Nepalese Government and shed light on public health impact of climate change in the context of Nepal. Detailed scientific study is recommended to discern impact of climate change on public health problems in Nepal.

  13. Modelling the impacts of European emission and climate change scenarios on acid-sensitive catchments in Finland

    Directory of Open Access Journals (Sweden)

    M. Posch

    2008-03-01

    Full Text Available The dynamic hydro-chemical Model of Acidification of Groundwater in Catchments (MAGIC was used to predict the response of 163 Finnish lake catchments to future acidic deposition and climatic change scenarios. Future deposition was assumed to follow current European emission reduction policies and a scenario based on maximum (technologically feasible reductions (MFR. Future climate (temperature and precipitation was derived from the HadAM3 and ECHAM4/OPYC3 general circulation models under two global scenarios of the Intergovernmental Panel on Climate Change (IPCC: A2 and B2. The combinations resulting in the widest range of future changes were used for simulations, i.e., the A2 scenario results from ECHAM4/OPYC3 (highest predicted change and B2 results from HadAM3 (lowest predicted change. Future scenarios for catchment runoff were obtained from the Finnish watershed simulation and forecasting system. The potential influence of future changes in surface water organic carbon concentrations was also explored using simple empirical relationships based on temperature and sulphate deposition. Surprisingly, current emission reduction policies hardly show any future recovery; however, significant chemical recovery of soil and surface water from acidification was predicted under the MFR emission scenario. The direct influence of climate change (temperate and precipitation on recovery was negligible, as runoff hardly changed; greater precipitation is offset by increased evapotranspiration due to higher temperatures. However, two exploratory empirical DOC models indicated that changes in sulphur deposition or temperature could have a confounding influence on the recovery of surface waters from acidification, and that the corresponding increases in DOC concentrations may offset the recovery in pH due to reductions in acidifying depositions.

  14. Modeling the impacts of climate change and agricultural management practices on surface erosion in a dryland agricultural basin

    Science.gov (United States)

    Ottenbreit, E.; Adam, J. C.; Barber, M. E.

    2010-12-01

    The objective of this study is to investigate the effects of climate change and agricultural management practices on suspended sediment concentrations in the Potlach River basin in northwestern Idaho. Suspended sediment is a pollutant in many water systems and contributes to the impairment of streams. Conventional tillage practices and rain-on-snow events in the Palouse region of northern Idaho and eastern Washington can produce some of the highest sediment losses per acre in the United States. Climate change may lead to further problems as more frequent and intense winter storm events are predicted to occur. Many hydrological models have been developed which examine suspended sediment in river systems. The Potlatch River basin near Julietta, ID was examined using the Distributed Hydrology Soil Vegetation Model (DHSVM), which has a sediment module that includes surface erosion and channel sediment transport. DHSVM was calibrated and evaluated over the historical period of streamflow observations and was used to predict soil erosion rates and suspended sediment concentrations using a range of downscaled Global Climate Models (GCMs) emissions scenarios for the year 2045. Furthermore, the sensitivity of suspended sediment concentrations to conventional versus convservative tillage practices was explored. The results show that as the projected climate-driven intensity of storms increase, more sediment is predicted in the Potlatch River. Suspended sediment and streamflow are predicted to increase during the late fall through the early spring. This increase occurs during times of heightened runoff when suspended sediment concentration in the river is highest. Three tillage scenarios were incorporated into DHSVM for winter wheat: conventional till, reduced till, and no till. Erosion and suspended sediment were higher during storm events under conventional agricultural tillage scenarios. In the long-term, this research can lead to examination of the effects of climate

  15. Impact Assessment of Climate Change on Forestry Development in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Forestry and forest ecosystem are highly sensitive to climate change.At present,studies about the responses of forests to climate change in China are more focused on physical influences of climate change.This paper firstly divided the key impact factors of climate change on forest and forestry developing into direct factors and indirect factors,and then made an assessment on climate change affecting future forestry development from the aspect of forest products and ecological services.On this basis,the adap...

  16. Climate change impacts on marine ecosystems.

    Science.gov (United States)

    Doney, Scott C; Ruckelshaus, Mary; Duffy, J Emmett; Barry, James P; Chan, Francis; English, Chad A; Galindo, Heather M; Grebmeier, Jacqueline M; Hollowed, Anne B; Knowlton, Nancy; Polovina, Jeffrey; Rabalais, Nancy N; Sydeman, William J; Talley, Lynne D

    2012-01-01

    In marine ecosystems, rising atmospheric CO2 and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wide-ranging biological effects. Population-level shifts are occurring because of physiological intolerance to new environments, altered dispersal patterns, and changes in species interactions. Together with local climate-driven invasion and extinction, these processes result in altered community structure and diversity, including possible emergence of novel ecosystems. Impacts are particularly striking for the poles and the tropics, because of the sensitivity of polar ecosystems to sea-ice retreat and poleward species migrations as well as the sensitivity of coral-algal symbiosis to minor increases in temperature. Midlatitude upwelling systems, like the California Current, exhibit strong linkages between climate and species distributions, phenology, and demography. Aggregated effects may modify energy and material flows as well as biogeochemical cycles, eventually impacting the overall ecosystem functioning and services upon which people and societies depend.

  17. Expansion of an Existing Water Management Model for the Analysis of Opportunities and Impacts of Agricultural Irrigation under Climate Change Conditions

    Directory of Open Access Journals (Sweden)

    Jörg Steidl

    2015-11-01

    Full Text Available The impact of climate change and increased irrigation area on future hydrologic and agro-economic conditions was analysed for a representative basin in northeastern Germany using an expanded version of the WBalMO (water balance model for water management. The model expansion represents various temporally and spatially differentiated irrigation water use processes, including agricultural irrigation, as part of a river basin’s water management. We show that climate changes lead to increased irrigation water demands in the future, which will not always be able to be met. The resulting water deficits were shown for different crops depending on their irrigation priority and the water available. With an increased irrigation area, water deficits will rise. This may limit the profitability of agricultural irrigation. The impacts of climate change on low-flow conditions in the river are much higher than those of the increase in irrigated area alone. Therefore, any additional increases of irrigation will require careful monitoring of water availability to avoid critical impacts on river flows. The expanded model was able to replicate the processes of agricultural irrigation water use and can thus be used to test the impact of policies such as the certification of new irrigation permits.

  18. Using a coupled groundwater/surfacewater model to predict climate-change impacts to lakes in the Trout Lake watershed, Northern Wisconsin

    Science.gov (United States)

    Walker, John F.; Hunt, Randall J.; Markstrom, Steven L.; Hay, Lauren E.; Doherty, John

    2009-01-01

    A major focus of the U.S. Geological Survey’s Trout Lake Water, Energy, and Biogeochemical Budgets (WEBB) project is the development of a watershed model to allow predictions of hydrologic response to future conditions including land-use and climate change. The coupled groundwater/surface-water model GSFLOW was chosen for this purpose because it could easily incorporate an existing groundwater flow model and it provides for simulation of surface-water processes. The Trout Lake watershed in northern Wisconsin is underlain by a highly conductive outwash sand aquifer. In this area, streamflow is dominated by groundwater contributions; however, surface runoff occurs during intense rainfall periods and spring snowmelt. Surface runoff also occurs locally near stream/lake areas where the unsaturated zone is thin. A diverse data set, collected from 1992 to 2007 for the Trout Lake WEBB project and the co-located and NSF-funded North Temperate Lakes LTER project, includes snowpack, solar radiation, potential evapotranspiration, lake levels, groundwater levels, and streamflow. The timeseries processing software TSPROC (Doherty 2003) was used to distill the large time series data set to a smaller set of observations and summary statistics that captured the salient hydrologic information. The timeseries processing reduced hundreds of thousands of observations to less than 5,000. Model calibration included specific predictions for several lakes in the study area using the PEST parameter estimation suite of software (Doherty 2007). The calibrated model was used to simulate the hydrologic response in the study lakes to a variety of climate change scenarios culled from the IPCC Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon et al. 2007). Results from the simulations indicate climate change could result in substantial changes to the lake levels and components of the hydrologic budget of a seepage lake in the flow system. For a drainage lake

  19. Modelling the long term impact of climate change on the carbon budget of Lake Simcoe, Ontario using INCA-C.

    Science.gov (United States)

    Oni, S K; Futter, M N; Molot, L A; Dillon, P J

    2012-01-01

    This study presents a process-based model of dissolved organic carbon concentration ([DOC]) in catchments draining into Lake Simcoe, Ontario. INCA-C, the Integrated Catchment model for Carbon, incorporates carbon biogeochemical processes in a terrestrial system with hydrologic flow paths to simulate watershed wide [DOC]. The model successfully simulates present-day inter-annual and seasonal [DOC] dynamics in tributaries draining catchments with mixed or contrasting land cover in the Lake Simcoe watershed (LSW). The sensitivity of INCA-C to soil moisture, hydrologic controls and land uses within a watershed demonstrates its significance as a tool to explore pertinent environmental issues specific to the LSW. Projections of climate change under A1B and A2 SRES scenarios suggest a continuous monotonic increase in [DOC] in surface waters draining into Lake Simcoe. Large variations in seasonal DOC dynamics are predicted to occur during summer with a possibility of displacement of summer [DOC] maxima towards winter and a prolongation of summer [DOC] levels into the autumn. INCA-C also predicts possible increases in dissolved inorganic carbon in some tributaries with rising temperature suggesting increased CO(2) emissions from rivers as climate changes. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Public health impacts of city policies to reduce climate change

    DEFF Research Database (Denmark)

    Sabel, Clive E; Hiscock, Rosemary; Asikainen, Arja;

    2016-01-01

    Background: Climate change is a global threat to health and wellbeing. Here we provide findings of an international research project investigating the health and wellbeing impacts of policies to reduce greenhouse gas emissions in urban environments. Methods:  Five European and two Chinese city...... authorities and partner academic organisations formed the project consortium. The methodology involved modelling the impact of adopted urban climate-change mitigation transport, buildings and energy policy scenarios, usually for the year 2020 and comparing them with business as usual (BAU) scenarios (where...... policies had not been adopted). Carbon dioxide emissions, health impacting exposures (air pollution, noise and physical activity), health (cardiovascular, respiratory, cancer and leukaemia) and wellbeing (including noise related wellbeing, overall wellbeing, economic wellbeing and inequalities) were...

  1. A conceptual model for the impact of climate change on fox rabies in Alaska, 1980-2010.

    Science.gov (United States)

    Kim, B I; Blanton, J D; Gilbert, A; Castrodale, L; Hueffer, K; Slate, D; Rupprecht, C E

    2014-02-01

    The direct and interactive effects of climate change on host species and infectious disease dynamics are likely to initially manifest\\ at latitudinal extremes. As such, Alaska represents a region in the United States for introspection on climate change and disease. Rabies is enzootic among arctic foxes (Vulpes lagopus) throughout the northern polar region. In Alaska, arctic and red foxes (Vulpes vulpes) are reservoirs for rabies, with most domestic animal and wildlife cases reported from northern and western coastal Alaska. Based on passive surveillance, a pronounced seasonal trend in rabid foxes occurs in Alaska, with a peak in winter and spring. This study describes climatic factors that may be associated with reported cyclic rabies occurrence. Based upon probabilistic modelling, a stronger seasonal effect in reported fox rabies cases appears at higher latitudes in Alaska, and rabies in arctic foxes appear disproportionately affected by climatic factors in comparison with red foxes. As temperatures continue a warming trend, a decrease in reported rabid arctic foxes may be expected. The overall epidemiology of rabies in Alaska is likely to shift to increased viral transmission among red foxes as the primary reservoir in the region. Information on fox and lemming demographics, in addition to enhanced rabies surveillance among foxes at finer geographic scales, will be critical to develop more comprehensive models for rabies virus transmission in the region.

  2. Climate Change in Myanmar: Impacts and Adaptation

    Science.gov (United States)

    2014-12-01

    complex field of study developed from a rather simple idea. Climate, as described by Harun Rashid and Bimal Paul, can be defined as...Harun Rashid and Bimal Paul, Climate Change in Bangladesh: Confronting Impending Disasters (Lanham, MD: Lexington Books, 2014), 3–4. 43 “Climate...El Nino seasons, the warming trend has continued in a positive 44 Rashid and Paul, Climate Change

  3. IMPACT OF CLIMATE CHANGE ON AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Kanchan Joshi

    2013-03-01

    Full Text Available Climate change has materialized as the leading global environmental concern. Agriculture is one of the zones most critically distressed by climate alteration. As global temperature rises and climate conditions become more erratic posing threat to the vegetation, biodiversity, biological progression and have enduring effect on food security as well as human health. The present review emphasizes multiple consequences of climate change on agricultural productivity.

  4. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models

    Science.gov (United States)

    Fu, Weiwei; Randerson, James T.; Moore, J. Keith

    2016-09-01

    We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth system models (ESMs) performed in the framework of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Global NPP and EP are reduced by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, NPP in the 2090s is reduced by 2-16 % and EP by 7-18 %. The models with the largest increases in stratification (and largest relative declines in NPP and EP) also show the largest positive biases in stratification for the contemporary period, suggesting overestimation of climate change impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface-ocean warming and freshening, which is accompanied by decreases in surface nutrients, NPP and EP. There is considerable variability across the models in the magnitudes of NPP, EP, surface nutrient concentrations and their perturbations by climate change. The negative response of NPP and EP to increasing stratification reflects primarily a bottom-up control, as upward nutrient flux declines at the global scale. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This pattern is driven by phytoplankton community composition shifts, with reductions in productivity by large phytoplankton as smaller phytoplankton (which export less efficiently) are favored under the increasing nutrient stress. Thus, the projections of the NPP response to climate change are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump and the resulting levels of regenerated production, which vary widely across the models. Community structure is represented simply in the CMIP5 models, and should be expanded to better capture the spatial patterns and climate-driven changes in export

  5. Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe

    DEFF Research Database (Denmark)

    Thuiller, Wilfried; Lavorel, Sandra; Sykes, Martin T.

    2006-01-01

    role in the future of different European regions. Temperate areas were projected to lose both species richness and functional diversity due to the loss of broadleaved deciduous trees. These were projected to migrate to boreal forests, thereby increasing their species richness and functional diversity....... Atlantic areas provided an intermediate case, with a predicted reduction in the numbers of species and occasional predicted gains in functional diversity. This resulted from a loss in species within the broadleaved deciduous FT, but overall maintenance of the group. Our results illustrate the fact...... that both species-specific predictions and functional patterns should be examined separately in order to assess the impacts of climate change on biodiversity and gain insights into future ecosystem functioning....

  6. Chapter 1. Impacts of the oceans on climate change.

    Science.gov (United States)

    Reid, Philip C; Fischer, Astrid C; Lewis-Brown, Emily; Meredith, Michael P; Sparrow, Mike; Andersson, Andreas J; Antia, Avan; Bates, Nicholas R; Bathmann, Ulrich; Beaugrand, Gregory; Brix, Holger; Dye, Stephen; Edwards, Martin; Furevik, Tore; Gangstø, Reidun; Hátún, Hjálmar; Hopcroft, Russell R; Kendall, Mike; Kasten, Sabine; Keeling, Ralph; Le Quéré, Corinne; Mackenzie, Fred T; Malin, Gill; Mauritzen, Cecilie; Olafsson, Jón; Paull, Charlie; Rignot, Eric; Shimada, Koji; Vogt, Meike; Wallace, Craig; Wang, Zhaomin; Washington, Richard

    2009-01-01

    further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO2 and limit temperature rise over the next century will be underestimated.

  7. Impacts and adaptation for climate change in urban forests

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, M. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2006-07-01

    Changes to urban trees as a result of climate change were reviewed in order to aid urban forest managers in the development of adaptive climate change strategies. Various climate change models have predicted that winter and spring temperatures will increase. Higher amounts of precipitation are also anticipated. Higher temperatures will results in evapotranspiration, which will cause soil moisture levels to decline. Climatologists have also suggested that very hot days, winter storms and high rainfall events will increase in frequency. In addition, higher levels of atmospheric carbon dioxide (CO{sub 2}) will affect photosynthesis, with associated impacts on urban tree growth. Higher temperatures and longer growing seasons will allow insect populations to build up to higher levels, and warmer and dryer summers are likely to bring longer fire seasons and more severe fires. Urban trees under stress from drought and higher temperatures will be increasingly vulnerable to existing urban stressors such as air pollution and soil compaction. However, the ecological services provided by trees will become more valuable under future climate change regimes, particularly for shading and space cooling, as well as soil aeration and stabilization and the uptake of storm water. It was suggested that future tree growth may be enhanced on sites with adequate water and nutrients, but will probably decline in areas that are already marginal. It was recommended that urban forest managers assess the present vulnerability of trees to climate-related events in order to prepare for future change. Managers should also assess their capacity to implement various strategies through municipal and provincial partnerships. It was observed that decisions taken now about forest management will play out over several decades. It was concluded that maintaining a flexible and resilient urban forest management system is the best defence, as specific climate change impacts cannot be predicted. 18 refs., 4

  8. Climate Change Impacts on Precipitation and Groundwater Recharge in Denmark: A Distributed Hydrological Modeling Study using Multiple Downscaling Methods on the Climate Inputs

    Science.gov (United States)

    Seaby, L. P.; Refsgaard, J.; Sonnenborg, T.; Jensen, K. H.

    2011-12-01

    Model (DK-model), delineated based on natural hydrological boundaries. The MIKE-SHE based DK-model is composed of a relatively simple root zone component for estimating net precipitation, a comprehensive three-dimensional groundwater component for estimating recharge and hydraulic head in different geological layers, and a river component for stream flow routing and calculating stream-aquifer interaction. The downscaled climate change scenarios are used to force DK-model simulations of hydrogeological outputs for all of Denmark. Precipitation changes and differences in rainfall intensity under the two downscaling methods are analyzed for all 11 scenarios. The impact of climate change on groundwater recharge and the relationship with rainfall intensity and potential evapotranspiration is analyzed across the seven sub-regions in Denmark and between all climate scenarios using both downscaling methods.

  9. Impacts of Climate Change on Inequities in Child Health.

    Science.gov (United States)

    Bennett, Charmian M; Friel, Sharon

    2014-12-03

    This paper addresses an often overlooked aspect of climate change impacts on child health: the amplification of existing child health inequities by climate change. Although the effects of climate change on child health will likely be negative, the distribution of these impacts across populations will be uneven. The burden of climate change-related ill-health will fall heavily on the world's poorest and socially-disadvantaged children, who already have poor survival rates and low life expectancies due to issues including poverty, endemic disease, undernutrition, inadequate living conditions and socio-economic disadvantage. Climate change will exacerbate these existing inequities to disproportionately affect disadvantaged children. We discuss heat stress, extreme weather events, vector-borne diseases and undernutrition as exemplars of the complex interactions between climate change and inequities in child health.

  10. Impacts of Climate Change on Inequities in Child Health

    Directory of Open Access Journals (Sweden)

    Charmian M. Bennett

    2014-12-01

    Full Text Available This paper addresses an often overlooked aspect of climate change impacts on child health: the amplification of existing child health inequities by climate change. Although the effects of climate change on child health will likely be negative, the distribution of these impacts across populations will be uneven. The burden of climate change-related ill-health will fall heavily on the world’s poorest and socially-disadvantaged children, who already have poor survival rates and low life expectancies due to issues including poverty, endemic disease, undernutrition, inadequate living conditions and socio-economic disadvantage. Climate change will exacerbate these existing inequities to disproportionately affect disadvantaged children. We discuss heat stress, extreme weather events, vector-borne diseases and undernutrition as exemplars of the complex interactions between climate change and inequities in child health.

  11. Modelling the impacts of climate change on wheat yield and field water balance over the Murray-Darling Basin in Australia

    Science.gov (United States)

    Wang, Jing; Wang, Enli; Liu, De Li

    2011-06-01

    The study used a modelling approach to assess the potential impacts of likely climate change and increase in CO2 concentration on the wheat growth and water balance in Murray-Darling Basin in Australia. Impacts of individual changes in temperature, rainfall or CO2 concentration as, well as the 2050 and 2070 climate change scenarios, were analysed. Along an E-W transect, wheat yield at western sites (warmer and drier) was simulated to be more sensitive to temperature increase than that at eastern sites; along the S-N transect, wheat yield at northern warmer sites was simulated to be more sensitive to temperature increase, within 1-3°C temperature increase. Along the E-W and S-N transects, wheat at drier sites would benefit more from elevated [CO2] than at wetter sites, but more sensitive to the decline in rainfall. The increase in temperature only did not have much impact on water balance. Elevated [CO2] increased the drainage in all the sites, whilst rainfall reduction decreased evapotranspiration, runoff and drainage, especially at drier sites. In 2050, wheat yield would increase by 1-10% under all climate change scenarios along the S-N transect, except for the northernmost site (Dalby). Along the E-W transect, the most obvious increase of wheat yields under all climate change scenarios occurred in cooler and wetter eastern sites (Yass and Young), with an average increase rate of 7%. The biggest loss occurred at the driest sites (Griffith and Swan Hill) under A1FI and B2 scenarios, ranging from -5% to -16%. In 2070, there would be an increased risk of yield loss in general, except for the cool and wet sites. Water use efficiency was simulated to increase at most of the study sites under all the climate change scenarios, except for the driest site. Yield variability would increase at drier sites (Ardlethan, Griffith and Swan Hill). Soil types would also impact on the response of wheat yield and water balance to future climate change.

  12. Integrated Climate Change Impacts Assessment in California

    Science.gov (United States)

    Cayan, D. R.; Franco, G.; Meyer, R.; Anderson, M.; Bromirski, P. D.

    2014-12-01

    This paper summarizes lessons learned from an ongoing series of climate change assessments for California, conducted by the scientific community and State and local agencies. A series of three Assessments have considered vulnerability and adaptation issues for both managed and natural systems. California's vulnerability is many faceted, arising because of an exceptionally drought prone climate, open coast and large estuary exposure to sea level rise, sensitive ecosystems and complex human footprint and economy. Key elements of the assessments have been a common set of climate and sea-level rise scenarios, based upon IPCC GCM simulations. Regionalized and localized output from GCM projections was provided to research teams investigating water supply, agriculture, coastal resources, ecosystem services, forestry, public health, and energy demand and hydropower generation. The assessment results are helping to investigate the broad range of uncertainty that is inherent in climate projections, and users are becoming better equipped to process an envelope of potential climate and impacts. Some projections suggest that without changes in California's present fresh-water delivery system, serious water shortages would take place, but that technical solutions are possible. Under a warmer climate, wildfire vulnerability is heightened markedly in some areas--estimated increases in burned area by the end of the 21st Century exceed 100% of the historical area burned in much of the forested areas of Northern California Along California coast and estuaries, projected rise in mean sea level will accelerate flooding occurrences, prompting the need for better education and preparedness. Many policymakers and agency personnel in California are factoring in results from the assessments and recognize the need for a sustained assessment process. An ongoing challenge, of course, is to achieve more engagement with a broader community of decision makers, and notably with the private sector.

  13. Impact of climate change on the stream flow of the lower Brahmaputra: trends in high and low flows based on discharge-weighted ensemble modelling

    Directory of Open Access Journals (Sweden)

    A. K. Gain

    2011-05-01

    Full Text Available Climate change is likely to have significant effects on the hydrology. The Ganges-Brahmaputra river basin is one of the most vulnerable areas in the world as it is subject to the combined effects of glacier melt, extreme monsoon rainfall and sea level rise. To what extent climate change will impact river flow in the Brahmaputra basin is yet unclear, as climate model studies show ambiguous results. In this study we investigate the effect of climate change on both low and high flows of the lower Brahmaputra. We apply a novel method of discharge-weighted ensemble modeling using model outputs from a global hydrological models forced with 12 different global climate models (GCMs. Our analysis shows that only a limited number of GCMs are required to reconstruct observed discharge. Based on the GCM outputs and long-term records of observed flow at Bahadurabad station, our method results in a multi-model weighted ensemble of transient stream flow for the period 1961–2100. Using the constructed transients, we subsequently project future trends in low and high river flow. The analysis shows that extreme low flow conditions are likely to occur less frequent in the future. However a very strong increase in peak flows is projected, which may, in combination with projected sea level change, have devastating effects for Bangladesh. The methods presented in this study are more widely applicable, in that existing multi-model streamflow simulations from global hydrological models can be weighted against observed streamflow data to assess at first order the effects of climate change for specific river basins.

  14. Modeling the impact of climate change on sediment transport and morphology in coupled watershed-coast systems:A case study using an integrated approach

    Institute of Scientific and Technical Information of China (English)

    Achilleas GSAMARAS; Christopher GKOUTITAS

    2014-01-01

    Climate change is an issue of major concern nowadays. Its impact on the natural and human environment is studied intensively, as the expected shift in climate will be significant in the next few decades. Recent experience shows that the effects will be critical in coastal areas, resulting in erosion and inundation phenomena worldwide. In addition to that, coastal areas are subject to"pressures"from upstream watersheds in terms of water quality and sediment transport. The present paper studies the impact of climate change on sediment transport and morphology in the aforementioned coupled system. The study regards a sandy coast and its upstream watershed in Chalkidiki, North Greece; it is based on: (a) an integrated approach for the quantitative correlation of the two through numerical modeling, developed by the authors, and (b) a calibrated application of the relevant models Soil and Water Assessment Tool (SWAT) and PELNCON-M, applied to the watershed and the coastal zone, respectively. The examined climate change scenarios focus on a shift of the rainfall distribution towards fewer and more extreme rainfall events, and an increased frequency of occurrence of extreme wave events. Results indicate the significance of climatic pressures in wide-scale sediment dynamics, and are deemed to provide a useful perspective for researchers and policy planners involved in the study of coastal morphology evolution in a changing climate.

  15. The local impacts of climate change in the Ferlo, Western Sahel

    NARCIS (Netherlands)

    Hein, L.G.; Metzger, M.J.; Leemans, R.

    2009-01-01

    Recent increases in the accuracy of climate models have enhanced the possibilities for analyzing the impacts of climate change on society. This paper explores how the local, economic impacts of climate change can be modeled for a specific eco-region, the Western Sahel. The people in the Sahel are hi

  16. Cross-sectoral conflicts for water under climate change: the need to include water quality impacts

    OpenAIRE

    Vliet, van, A.J.H.; Ludwig, F.; P. Kabat

    2013-01-01

    Climate change is expected to increase pressures on water use between different sectors (e.g. agriculture, energy, industry, domestic uses) and ecosystems. While climate change impacts on water availability have been studied widely, less work has been done to assess impacts on water quality. This study proposes a modelling framework to incorporate water quality in analyses of cross-sectoral conflicts for water between human uses and ecosystems under climate change and socio-economic changes. ...

  17. Air Quality: its impact on climate change

    CSIR Research Space (South Africa)

    Thambiran, Tirusha

    2012-07-01

    Full Text Available on the global climate. As a result of these differences, the policies to deal with air quality and climate change issues have also been developed at different scales. Policy to deal with air pollution is generally developed at a national level...

  18. Climate Change Impacts on Fort Bragg, NC

    Science.gov (United States)

    2013-10-15

    Many boundaries between vegeta- tion types are generally determined by summer warmth , which is expected to increase. Rainfall affects the balance of...Panel on Climate Change2007: the Physical Science Basis. Cambridge, UK and New York, NY: Cambridge University Press, http://ipcc-wg1.ucar.edu/wg1

  19. Climate Change Impacts of Irrigation on the Central High Plains

    Science.gov (United States)

    Cotterman, K. A.; Kendall, A. D.; Basso, B.; Hyndman, D. W.

    2015-12-01

    Since the 1940s, the High Plains Aquifer (HPA) has been pivotal for irrigation over the Central High Plains (CHP), a region spanning parts of five states in the central U.S.. Today after decades of over-pumping, many areas of the CHP are no longer able to irrigate due to localized depletion of the HPA. With a range of global climate models predicting an increase in temperature and decrease in growing-season precipitation for the CHP, demand for irrigation is likely to increase and exacerbate drawdown and depletion of the aquifer. Here we apply the Landscape Hydrology Model (LHM) coupled with the crop simulation model SALUS to simulate irrigation water use in response to historical climate and land use. This model is validated using historical groundwater levels. We then simulate future climate scenarios to predict how irrigation demand and water availability will alter the hydrology of the CHP. This study provides a predictive relationship of future irrigation demand linked to both climate change and agricultural management, and presents a modeling approach to answer two questions: How will future climate change affect irrigation demand? How will climate change and irrigation demand affect groundwater availability for the future? Different climate scenarios based on the representative concentration pathways (RCPs) are used to simulate the impact of different projected future climate conditions through the year 2100. By examining predicted groundwater levels along with saturated thickness we analyze where irrigation is likely to be viable in the future and compare this to current irrigation extent.

  20. Modeling Impact of Climate Change on Water Resources and Agriculture Demand in the Volta Basin and other Basin Systems in Ghana

    Directory of Open Access Journals (Sweden)

    Barnabas A. Amisigo

    2015-05-01

    Full Text Available An assessment of the impacts of projected climate change on water availability and crop production in the Volta Basin and the southwestern and coastal basin systems of Ghana has been undertaken as a component of the impacts and adaptation study for Ghana by UNU-WIDER and the University of Ghana. Four climate change scenarios were considered in addition to a reference (no change scenario—two dry and two wet scenarios. To conduct the analysis, a portion of a special framework using three water models was used; the framework is called the Strategic Analysis of Climate resilient Development (SACReD. First, the CliRun water balance model was used to simulate catchment runoffs using projected rainfall and temperature under the scenarios. Second, climate impacts on yields of the economically important Ghana crops were modeled using the AquaCrop software. Third, the Water Evaluation and Planning (WEAP software was used for the water allocation modeling. The results show that all water demands (municipal, hydropower, and agriculture cannot be simultaneously met currently, or under any of the scenarios used, including the wet scenarios. This calls for an evaluation of groundwater as an additional source of water supply and an integrated water resources management plan in the catchments to balance demand with supply and ensure sustainable socio-economic development. In addition, the AquaCrop model forecasts negative impacts for the crop yields studied, with some crops and regions seeing larger impacts than others.

  1. Impact of climate change on the stream flow of the lower Brahmaputra: Trends in high and low flows based on discharge-weighted ensemble modelling

    NARCIS (Netherlands)

    Gain, A.K.; Immerzeel, W.W.; Sperna Weiland, F.C.; Bierkens, M.F.P.

    2011-01-01

    Climate change is likely to have significant effects on the hydrology. The Ganges-Brahmaputra river basin is one of the most vulnerable areas in the world as it is subject to the combined effects of glacier melt, extreme monsoon rainfall and sea level rise. To what extent climate change will impact

  2. The impacts of climate change on tribal traditional foods

    Science.gov (United States)

    Kathy Lynn; John Daigle; Jennie Hoffman; Frank Lake; Natalie Michelle; Darren Ranco; Carson Viles; Garrit Voggesser; Paul. Williams

    2013-01-01

    American Indian and Alaska Native tribes are uniquely affected by climate change. Indigenous peoples have depended on a wide variety of native fungi, plant and animal species for food, medicine, ceremonies, community and economic health for countless generations. Climate change stands to impact the species and ecosystems that constitute tribal traditional foods that...

  3. Extended impacts of climate change on health and wellbeing

    DEFF Research Database (Denmark)

    Thomas, Felicity; Sabel, Clive E.; Morton, Katherine

    2014-01-01

    Anthropogenic climate change is progressively transforming the environment despite political and technological attempts to reduce greenhouse gas emissions to tackle global warming. Here we propose that greater insight and understanding of the health-related impacts of climate change can be gained...

  4. Strengthening the link between climate, hydrological and species distribution modeling to assess the impacts of climate change on freshwater biodiversity.

    Science.gov (United States)

    Tisseuil, C; Vrac, M; Grenouillet, G; Wade, A J; Gevrey, M; Oberdorff, T; Grodwohl, J-B; Lek, S

    2012-05-01

    To understand the resilience of aquatic ecosystems to environmental change, it is important to determine how multiple, related environmental factors, such as near-surface air temperature and river flow, will change during the next century. This study develops a novel methodology that combines statistical downscaling and fish species distribution modeling, to enhance the understanding of how global climate changes (modeled by global climate models at coarse-resolution) may affect local riverine fish diversity. The novelty of this work is the downscaling framework developed to provide suitable future projections of fish habitat descriptors, focusing particularly on the hydrology which has been rarely considered in previous studies. The proposed modeling framework was developed and tested in a major European system, the Adour-Garonne river basin (SW France, 116,000 km(2)), which covers distinct hydrological and thermal regions from the Pyrenees to the Atlantic coast. The simulations suggest that, by 2100, the mean annual stream flow is projected to decrease by approximately 15% and temperature to increase by approximately 1.2 °C, on average. As consequence, the majority of cool- and warm-water fish species is projected to expand their geographical range within the basin while the few cold-water species will experience a reduction in their distribution. The limitations and potential benefits of the proposed modeling approach are discussed.

  5. A Model for Collaborative Learning in Undergraduate Climate Change Courses

    Science.gov (United States)

    Teranes, J. L.

    2008-12-01

    Like several colleges and universities across the nation, the University of California, San Diego, has introduced climate change topics into many existing and new undergraduate courses. I have administered a program in this area at UCSD and have also developed and taught a new lower-division UCSD course entitled "Climate Change and Society", a general education course for non-majors. This class covers the basics of climate change, such as the science that explains it, the causes of climate change, climate change impacts, and mitigation strategies. The teaching methods for this course stress interdisciplinary approaches. I find that inquiry-based and collaborative modes of learning are particularly effective when applied to science-based climate, environmental and sustainability topics. Undergraduate education is often dominated by a competitive and individualistic approach to learning. In this approach, individual success is frequently perceived as contingent on others being less successful. Such a model is at odds with commonly stated goals of teaching climate change and sustainability, which are to equip students to contribute to the debate on global environmental change and societal adaptation strategies; and to help students become better informed citizens and decision makers. I present classroom-tested strategies for developing collaborative forms of learning in climate change and environmental courses, including team projects, group presentations and group assessment exercises. I show how critical thinking skills and long-term retention of information can benefit in the collaborative mode of learning. I find that a collaborative learning model is especially appropriate to general education courses in which the enrolled student body represents a wide diversity of majors, class level and expertise. I also connect collaborative coursework in interdisciplinary environmental topics directly to applications in the field, where so much "real-world" achievement in

  6. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Science.gov (United States)

    Karmalkar, Ambarish V.; Bradley, Raymond S.; Diaz, Henry F.

    2011-08-01

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Niño events in recent decades that adversely affected species in the region.

  7. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Energy Technology Data Exchange (ETDEWEB)

    Karmalkar, Ambarish V. [University of Oxford, School of Geography and the Environment, Oxford (United Kingdom); Bradley, Raymond S. [University of Massachusetts, Department of Geosciences, Amherst, MA (United States); Diaz, Henry F. [NOAA/ESRL/CIRES, Boulder, CO (United States)

    2011-08-15

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Nino events in recent decades that adversely affected species in the region. (orig.)

  8. Assessment of climate change impacts on rainfall using large scale climate variables and downscaling models – A case study

    Indian Academy of Sciences (India)

    Azadeh Ahmadi; Ali Moridi; Elham Kakaei Lafdani; Ghasem Kianpisheh

    2014-10-01

    Many of the applied techniques in water resources management can be directly or indirectly influenced by hydro-climatology predictions. In recent decades, utilizing the large scale climate variables as predictors of hydrological phenomena and downscaling numerical weather ensemble forecasts has revolutionized the long-lead predictions. In this study, two types of rainfall prediction models are developed to predict the rainfall of the Zayandehrood dam basin located in the central part of Iran. The first seasonal model is based on large scale climate signals data around the world. In order to determine the inputs of the seasonal rainfall prediction model, the correlation coefficient analysis and the new Gamma Test (GT) method are utilized. Comparison of modelling results shows that the Gamma test method improves the Nash–Sutcliffe efficiency coefficient of modelling performance as 8% and 10% for dry and wet seasons, respectively. In this study, Support Vector Machine (SVM) model for predicting rainfall in the region has been used and its results are compared with the benchmark models such as K-nearest neighbours (KNN) and Artificial Neural Network (ANN). The results show better performance of the SVM model at testing stage. In the second model, statistical downscaling model (SDSM) as a popular downscaling tool has been used. In this model, using the outputs from GCM, the rainfall of Zayandehrood dam is projected under two climate change scenarios. Most effective variables have been identified among 26 predictor variables. Comparison of the results of the two models shows that the developed SVM model has lesser errors in monthly rainfall estimation. The results show that the rainfall in the future wet periods are more than historical values and it is lower than historical values in the dry periods. The highest monthly uncertainty of future rainfall occurs in March and the lowest in July.

  9. Reservoir performance under uncertainty in hydrologic impacts of climate change

    Science.gov (United States)

    Raje, Deepashree; Mujumdar, P. P.

    2010-03-01

    Relatively few studies have addressed water management and adaptation measures in the face of changing water balances due to climate change. The current work studies climate change impact on a multipurpose reservoir performance and derives adaptive policies for possible future scenarios. The method developed in this work is illustrated with a case study of Hirakud reservoir on the Mahanadi river in Orissa, India, which is a multipurpose reservoir serving flood control, irrigation and power generation. Climate change effects on annual hydropower generation and four performance indices (reliability with respect to three reservoir functions, viz. hydropower, irrigation and flood control, resiliency, vulnerability and deficit ratio with respect to hydropower) are studied. Outputs from three general circulation models (GCMs) for three scenarios each are downscaled to monsoon streamflow in the Mahanadi river for two future time slices, 2045-65 and 2075-95. Increased irrigation demands, rule curves dictated by increased need for flood storage and downscaled projections of streamflow from the ensemble of GCMs and scenarios are used for projecting future hydrologic scenarios. It is seen that hydropower generation and reliability with respect to hydropower and irrigation are likely to show a decrease in future in most scenarios, whereas the deficit ratio and vulnerability are likely to increase as a result of climate change if the standard operating policy (SOP) using current rule curves for flood protection is employed. An optimal monthly operating policy is then derived using stochastic dynamic programming (SDP) as an adaptive policy for mitigating impacts of climate change on reservoir operation. The objective of this policy is to maximize reliabilities with respect to multiple reservoir functions of hydropower, irrigation and flood control. In variations to this adaptive policy, increasingly more weightage is given to the purpose of maximizing reliability with respect to

  10. Impact of climate change on flood characteristics in Brahmaputra basin using a macro-scale distributed hydrological model

    Indian Academy of Sciences (India)

    Shyamal Ghosh; Subashisa Dutta

    2012-06-01

    Being the highest specific discharge river system in the world, the Brahmaputra river experiences a number of long-duration flood waves during the monsoon season annually. In order to assess the flood characteristics at the basin and tributary scales, a physically based macro-scale distributed hydrological model (DHM) has been calibrated and validated for 9 wet years. The model performance has been evaluated in terms of prediction of the flood characteristics such as peak discharge, flood duration, arrival time of flood wave, timing of the peak flow and number of flood waves per season. Future changes in the flood wave characteristics of the basin have been evaluated using the validated model with bias-corrected future-projected meteorological scenario from a regional climate model (RCM). Likelihood analysis of the simulated flow time series reveals that significant increase in both peak discharge and flood duration is expected for both the pre-monsoonal and monsoonal seasons in the basin, but the number of flood waves per season would be reduced. Under the projected climate change scenario, it is expected that there will be more catastrophic floods in the basin.

  11. Modelling impact of climate change on atmospheric transport and fate of persistent organic pollutants in the Arctic

    Directory of Open Access Journals (Sweden)

    K. M. Hansen

    2015-03-01

    Full Text Available The Danish Eulerian Hemispheric Model (DEHM was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs to the Artic and their environmental fate within the Arctic. Two sets of simulations were performed, one with initial environmental concentrations from a 20 year spin-up simulation and one with initial environmental concentrations set to zero. Each set of simulations consisted of two ten-year time slices representing the present (1990–2000 and future (2090–2100 climate conditions. The same POP emissions were applied in all simulations to ensure that the difference in predicted concentrations for each set of simulations only arises from the difference in climate input. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 20% higher across the Northern Hemisphere. The mass of HCHs within the Arctic was predicted to be up to 39% higher, whereas the change in mass of the PCBs was predicted to range from 14% lower to 17% higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depend on the physical-chemical properties of the compounds. Previous model studies have predicted that the effect of

  12. Modelling impact of climate change on atmospheric transport and fate of persistent organic pollutants in the Arctic

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Silver, J. D.; Brandt, J.

    2015-03-01

    The Danish Eulerian Hemispheric Model (DEHM) was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs) to the Artic and their environmental fate within the Arctic. Two sets of simulations were performed, one with initial environmental concentrations from a 20 year spin-up simulation and one with initial environmental concentrations set to zero. Each set of simulations consisted of two ten-year time slices representing the present (1990-2000) and future (2090-2100) climate conditions. The same POP emissions were applied in all simulations to ensure that the difference in predicted concentrations for each set of simulations only arises from the difference in climate input. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 20% higher across the Northern Hemisphere. The mass of HCHs within the Arctic was predicted to be up to 39% higher, whereas the change in mass of the PCBs was predicted to range from 14% lower to 17% higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depend on the physical-chemical properties of the compounds. Previous model studies have predicted that the effect of a changed climate on

  13. Nation-wide assessment of climate change impacts on crops in the Philippines and Peru as part of multi-disciplinary modelling framework

    Science.gov (United States)

    Fujisawa, Mariko; Kanamaru, Hideki

    2016-04-01

    Agriculture is vulnerable to environmental changes, and climate change has been recognized as one of the most devastating factors. In many developing countries, however, few studies have focused on nation-wide assessment of crop yield and crop suitability in the future, and hence there is a large pressure on science to provide policy makers with solid predictions for major crops in the countries in support of climate risk management policies and programmes. FAO has developed the tool MOSAICC (Modelling System for Agricultural Impacts of Climate Change) where statistical climate downscaling is combined with crop yield projections under climate change scenarios. Three steps are required to get the results: 1. The historical meteorological data such as temperature and precipitation for about 30 years were collected, and future climates were statistically downscaled to the local scale, 2. The historical crop yield data were collected and regression functions were made to estimate the yield by using observed climatic data and water balance during the growing period for each crop, and 3. The yield changes in the future were estimated by using the future climate data, produced by the first step, as an input to the yield regression functions. The yield was first simulated at sub-national scale and aggregated to national scale, which is intended to provide national policies with adaptation options. The methodology considers future changes in characteristics of extreme weather events as the climate projections are on daily scale while crop simulations are on 10-daily scale. Yields were simulated with two greenhouse gas concentration pathways (RCPs) for three GCMs per crop to account for uncertainties in projections. The crop assessment constitutes a larger multi-disciplinary assessment of climate change impacts on agriculture and vulnerability of livelihoods in terms of food security (e.g. water resources, agriculture market, household-level food security from socio

  14. Climate change hotspots in the CMIP5 global climate model ensemble

    OpenAIRE

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-01

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots thro...

  15. Climate Change Impacts on Crop Production in Nigeria

    Science.gov (United States)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2011-12-01

    The agricultural sector in Nigeria is particularly important for the country's food security, natural resources, and growth agenda. The cultivable areas comprise more than 70% of the total area; however, the cultivated area is about the 35% of the total area. The most important components in the food basket of the nation are cereals and tubers, which include rice, maize, corn, millet, sorghum, yam, and cassava. These crops represent about 80% of the total agricultural product in Nigeria (from NPAFS). The major crops grown in the country can be divided into food crops (produced for consumption) and export products. Despite the importance of the export crops, the primary policy of agriculture is to make Nigeria self-sufficient in its food and fiber requirements. The projected impacts of future climate change on agriculture and water resources are expected to be adverse and extensive in these area. This implies the need for actions and measures to adapt to climate change impacts, and especially as they affect agriculture, the primary sector for Nigerian economy. In the framework of the Project Climate Risk Analysis in Nigeria (founded by World Bank Contract n.7157826), a study was made to assess the potential impact of climate change on the main crops that characterize Nigerian agriculture. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT are tools that simulate physiological processes of crop growth, development and production by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were calibrated to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output was "perturbed" with 10 Global Climate Models to have

  16. Climate Change 2007: Impacts, Adaptation and Vulnerability.

    OpenAIRE

    Schiavon, Stefano; Zecchin, Roberto

    2007-01-01

    Impatti, adattamento e vulnerabilità Le cause e le responsabilità dei cambiamenti climatici sono state trattate sul numero di ottobre della rivista Cda. Approfondiamo l’argomento presentando il documento: “Cambiamenti climatici 2007: impatti, adattamento e vulnerabilità” votato ad aprile 2007 dal secondo gruppo di lavoro del Comitato Intergovernativo sui Cambiamenti Climatici (Intergovernmental Panel on Climate Change). Si tratta del secondo di tre documenti che compongono il quarto rapporto ...

  17. Potential Impact of Climate Change on Rained Agriculture of Ningxia

    Directory of Open Access Journals (Sweden)

    Zhenning Ma Hongxiang Chen

    2013-07-01

    Full Text Available Rain fed agriculture in Ningxia is one of the most vulnerable sector to climate change, as the available water and land resources are limited and most of the province’s land is arid. In this study, a crop simulation model (DSSAT was used to assess the impact of climate change scenario on rainfed maize and potato in the southern mountain areas in Ningxia. Analysis of observed crop data showed differences between cultivated and harvested areas for both crops in the study area with variations among years. Results from DSSAT model for years showed that it was able to capture the trend of yield over the years realistically well. The model predicted an average yield of maize of 5450 kg/ha, which was close to the average (5446kg/ha yield reported by the Department of statistics of Ningxia (DOSN and an average predicted yield of potato was 2350 kg/ha while the DOSN average was 2358 kg/ha, with higher RMSE for maize (1046kg/ha than for potato (358kg/ha. Predictions of future yield for both crops showed that the responses of maize and potato were different under different climate changes scenarios. The reduction of rainfall by 10-20% reduced the expected yield by 7-12% for maize and 9-18% for potato, respectively. The increase in rainfall by 10-20% increased the expected yield by5-9% for maize and 10-20% for potato, respectively. The increase of air temperature by 1,2,3 and 4°C resulted in deviation from expected yield by -3.3, -0.27,+6.1 and +12.5 % for maize and -18.4, -15.7, -8 and +0.4 % for potato, respectively. These results indicated that potato would be more negatively affected by the climate changes scenarios and therefore adaptation plans should prioritize the areas cultivated with this crop.

  18. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates.

    Science.gov (United States)

    Guse, Björn; Kail, Jochem; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Hering, Daniel; Wolter, Christian; Fohrer, Nicola

    2015-11-15

    Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on

  19. Congressional Briefing on Climate Change Impacts and Adaptation

    Science.gov (United States)

    Landau, Elizabeth

    2010-01-01

    During an 8 January 2010 congressional briefing on climate change cosponsored by AGU, speakers discussed the impacts of climate change in the United States and the ability of society to cope with these impacts. More than 200 congressional and federal agency staff attended the briefing, which featured Michael MacCracken, chief scientist for climate change programs at the Climate Institute; Kristie Ebi, executive director of the Intergovernmental Panel on Climate Change Working Group 2 Technical Support Unit; Katharine Jacobs, professor at the University of Arizona's Soil, Water and Environmental Science Department; and Susanne Moser, director and principal researcher at Susanne Moser Research and Consulting. The briefing was jointly sponsored by AGU, the American Association for the Advancement of Science, American Meteorological Society, Ecological Society of America, and Pew Center on Global Climate Change. For more information about AGU's science policy program, visit http://www.agu.org/sci_pol/.

  20. Climate Change in Environmental Impact Assessment of Renewable Energy Projects

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2012-01-01

    Many renewable energy projects are subject to EIA. However a question that surfaces is what use an impact assessment is when the project is ‘good for the environment’? One of the current topics receiving much attention in impact assessment is climate change and how this factor is integrated...... in impact assessments. This warrants the question: How do we assess the climate change related impacts of a project that inherently has a positive effect on climate? This paper is based on a document study of EIA reports from Denmark. The results show that climate change is included in most of the EIA...... reports reviewed, and that only climate change mitigation is in focus while adaptation is absent. Also the results point to focus on positive impacts, while the indirect negative impacts are less apparent. This leads to a discussion of the results in the light of the purpose of EIA....

  1. Climate Change in Environmental Impact Assessment of Renewable Energy Projects

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2012-01-01

    reports reviewed, and that only climate change mitigation is in focus while adaptation is absent. Also the results point to focus on positive impacts, while the indirect negative impacts are less apparent. This leads to a discussion of the results in the light of the purpose of EIA.......Many renewable energy projects are subject to EIA. However a question that surfaces is what use an impact assessment is when the project is ‘good for the environment’? One of the current topics receiving much attention in impact assessment is climate change and how this factor is integrated...... in impact assessments. This warrants the question: How do we assess the climate change related impacts of a project that inherently has a positive effect on climate? This paper is based on a document study of EIA reports from Denmark. The results show that climate change is included in most of the EIA...

  2. Assessing the Potential Impacts of Four Climate Change Scenarios on the Discharge of the Simiyu River, Tanzania Using the SWAT Model

    OpenAIRE

    Lubini, Alain; Adamowski, Jan

    2013-01-01

    The Soil and Water Assessment Tool (SWAT) was used to explore the potential impact of four climate change scenarios on discharge from the Simiyu River in Tanzania, located in the Lake Victoria watershed in Africa. The SWAT model used in this study was calibrated and verified by comparing model output with historic stream flow data for 1973-1976 as well as 1970-1971. SWAT was operated at daily and monthly time steps during both calibration and verification. For the daily-time step verification...

  3. On the impact of the choice of the evapotranspiration equation in a crop model : climate data error propagation and climate change impact projection

    Science.gov (United States)

    Ramarohetra, J.; Sultan, B.

    2013-12-01

    As it enables the understanding and the quantification of the transfer of water in ecosystems and from ecosystems to the atmosphere, evapotranspiration is a key component to assess climate impact on hydrology and agriculture. In crop models, the estimation of the evapotranspiration rate requires first calculating potential or reference evapotranspiration from climate data. To compute reference evapotranspiration different formulas requiring more or less climate data are used. The choice of the formulation of this key process is very likely to have an impact on calculated crop yield. The FAO recommends using the Penman-Monteith (PM) equation if all the climate data required for this equation are available and using Hargreaves (H) equation when climate data, especially net radiation, are missing. The Priestley-Taylor equation is also widely used in crop models. Which of these equations is the most accurate when all the climate data required are available but contain errors ? Does the choice of the evapotranspiration equation have an impact on crop yield projection in a context of climate change ? Does the use of some equations induce more pessimistic crop yield projection ? We studied the impact of the reference evapotranspiration equations on simulated crop yield using climate data with errors. 4 equations (PM, H and 2 versions of the Priestley-Taylor equation - PT) were tested simulating pearl millet over 12 stations in Senegal. In this case, we found that the use of a PT equation may introduce a percent mean bias error of more than -35% on simulated crop yield while it is limited to 2% when using the H equation. The influence of the evapotranspiration equation on the quantification of climate change impact on crop yield is examined applying the AgMIP C3MP protocol over the 12 stations in Senegal then analyzing ISI-AgMIP GGCM Intercomparison fast-track project outputs over the world. Our preliminary results show that crop yields computed using a PT equation are

  4. Modelling impacts of climate change on water resources in ungauged and data-scarce watersheds. Application to the Siurana catchment (NE Spain).

    Science.gov (United States)

    Candela, Lucila; Tamoh, Karim; Olivares, Gonzalo; Gomez, Manuel

    2012-12-01

    Gaining knowledge on potential climate change impacts on water resources is a complex process which depends on numerical models capable of describing these processes in quantitative terms. Under limited data or ungauged basin conditions, which constrain the modelling approach, a physically based coherent methodological approach is required. The traditional approach to assess flow regime and groundwater recharge impacts, based on coupling general atmosphere-ocean circulation models (GCM) and hydrologic models, has been investigated in the Siurana ungauged catchment (NE Spain). The future A2 (medium-high) and B1 (medium-low) greenhouse gas scenarios and time slices 2013-2037 (2025) and 2038-2062 (2050), developed by the Intergovernmental Panel on Climate Change (IPCC, 2001), have been selected. For scenario simulations, coupled GCM ECHAM5 scenarios, stochastically downscaled outputs and surface-subsurface modelling to simulate changes in water resources were applied to the catchment. Flow regime analysis was assessed by HEC-HMS, a physically based hydrologic model to assess rainfall-runoff in a catchment, while recharge was estimated with VisualBALAN, a distributed model for natural recharge estimation. Simulations show that the projected climate change at the catchment will affect the entire hydrological system with a maximum of 56% reduction of water resources. While subtle changes are observed for the 2025 time slice, the temperature and precipitation forecast for 2050 shows a maximum increase of 2.2 °C and a decreased precipitation volume of 11.3% in relation to historical values. Regarding historical values, runoff output shows a maximum 20% decrease, and 18% decrease of natural recharge with a certain delay in relation to runoff and rainfall data. According to the results, the most important parameters conditioning future water resources are changes in climatic parameters, but they are highly dependent on soil moisture conditions.

  5. Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: results of a modeling study to support better resource management

    Directory of Open Access Journals (Sweden)

    L. M. Mango

    2011-07-01

    Full Text Available Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 % accompanied by increases in temperature (2.5–3.5 °C. Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 % and high (+25 % extremes of projected precipitation changes, but under median projections (+7 % there is little impact on annual water yields or mean discharge. Modest increases in precipitation

  6. Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: results of a modeling study to support better resource management

    Science.gov (United States)

    Mango, L. M.; Melesse, A. M.; McClain, M. E.; Gann, D.; Setegn, S. G.

    2011-07-01

    Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5-10 %) accompanied by increases in temperature (2.5-3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (-3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned

  7. Emissions pathways, climate change, and impacts on California

    Science.gov (United States)

    Hayhoe, K.; Cayan, D.; Field, C.B.; Frumhoff, P.C.; Maurer, E.P.; Miller, N.L.; Moser, S.C.; Schneider, S.H.; Cahill, K.N.; Cleland, E.E.; Dale, L.; Drapek, R.; Hanemann, R.M.; Kalkstein, L.S.; Lenihan, J.; Lunch, C.K.; Neilson, R.P.; Sheridan, S.C.; Verville, J.H.

    2004-01-01

    The magnitude of future climate change depends substantially on the greenhouse gas emission pathways we choose. Here we explore the implications of the highest and lowest Intergovernmental Panel on Climate Change emissions pathways for climate change and associated impacts in California. Based on climate projections from two state-of-the-art climate models with low and medium sensitivity (Parallel Climate Model and Hadley Centre Climate Model, version 3, respectively), we find that annual temperature increases nearly double from the lower B1 to the higher A1fi emissions scenario before 2100. Three of four simulations also show greater increases in summer temperatures as compared with winter. Extreme heat and the associated impacts on a range of temperature-sensitive sectors are substantially greater under the higher emissions scenario, with some interscenario differences apparent before midcentury. By the end of the century under the B1 scenario, heatwaves and extreme heat in Los Angeles quadruple in frequency while heat-related mortality increases two to three times; alpine/subalpine forests are reduced by 50-75%; and Sierra snowpack is reduced 30-70%. Under A1fi, heatwaves in Los Angeles are six to eight times more frequent, with heat-related excess mortality increasing five to seven times; alpine/subalpine forests are reduced by 75-90%; and snowpack declines 73-90%, with cascading impacts on runoff and streamflow that, combined with projected modest declines in winter precipitation, could fundamentally disrupt California's water rights system. Although interscenario differences in climate impacts and costs of adaptation emerge mainly in the second half of the century, they are strongly dependent on emissions from preceding decades.

  8. Modelling impacts of climate change on water resources in ungauged and data-scarce watersheds. Application to the Siurana catchment (NE Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Candela, Lucila, E-mail: lucila.candela@upc.edu [Department of Geotechnical Engineering and Geoscience, Technical University of Catalonia-UPC, 08034, Barcelona (Spain); Tamoh, Karim [Department of Geotechnical Engineering and Geoscience, Technical University of Catalonia-UPC, 08034, Barcelona (Spain); Olivares, Gonzalo; Gomez, Manuel [Flumen Research Institute, UPC Gran Capitan s.n. Barcelona (Spain)

    2012-12-01

    Gaining knowledge on potential climate change impacts on water resources is a complex process which depends on numerical models capable of describing these processes in quantitative terms. Under limited data or ungauged basin conditions, which constrain the modelling approach, a physically based coherent methodological approach is required. The traditional approach to assess flow regime and groundwater recharge impacts, based on coupling general atmosphere-ocean circulation models (GCM) and hydrologic models, has been investigated in the Siurana ungauged catchment (NE Spain). The future A2 (medium-high) and B1 (medium-low) greenhouse gas scenarios and time slices 2013-2037 (2025) and 2038-2062 (2050), developed by the Intergovernmental Panel on Climate Change (IPCC, 2001), have been selected. For scenario simulations, coupled GCM ECHAM5 scenarios, stochastically downscaled outputs and surface-subsurface modelling to simulate changes in water resources were applied to the catchment. Flow regime analysis was assessed by HEC-HMS, a physically based hydrologic model to assess rainfall-runoff in a catchment, while recharge was estimated with VisualBALAN, a distributed model for natural recharge estimation. Simulations show that the projected climate change at the catchment will affect the entire hydrological system with a maximum of 56% reduction of water resources. While subtle changes are observed for the 2025 time slice, the temperature and precipitation forecast for 2050 shows a maximum increase of 2.2 Degree-Sign C and a decreased precipitation volume of 11.3% in relation to historical values. Regarding historical values, runoff output shows a maximum 20% decrease, and 18% decrease of natural recharge with a certain delay in relation to runoff and rainfall data. According to the results, the most important parameters conditioning future water resources are changes in climatic parameters, but they are highly dependent on soil moisture conditions. -- Highlights

  9. Human Interventions versus Climate Change: Impacts on Water Management

    Science.gov (United States)

    Gautam, M. R.; Acharya, K.

    2009-12-01

    Water availability and occurrence of water induced disasters are impacted by both natural and human centric drivers. Climate change is considered to be one of the noted drivers in this regard. Human interventions through land use/land cover change, stream and floodplain regulations via dams, weirs, and embankments could be other equally important group of drivers. Unlike developed countries that have both resources and capabilities to adapt and mitigate the impact of such drivers, developing countries are increasingly at more risk. Identifying roles of such drivers are fundamental to the formulation of any adaptation and mitigation plans for their impacts for developing countries. In this study, we present a few examples from three regions of Nepal- a developing country in South Asia generally considered as a water rich country. Through results of modeling and statistical analyses, we show which driver is in control in different watersheds. Preliminary results show that climate change impact appears to be more prominent in large snow-fed river basins. In the smaller non-snow-fed watersheds originating from the middle hill, the impacts are not explicit despite perception of local people about changes in the water availability. In the southern belt bordering India, the impacts of river regulation on downstream areas are found to be the principal cause of flooding/inundation.

  10. The impact of climate change on tourism in Germany, the UK and Ireland: a simulation study

    OpenAIRE

    Hamilton, Jacqueline; Tol, Richard

    2007-01-01

    We downscale the results of a global tourism simulation model at a national resolution to a regional resolution. We use this to investigate the impact of climate change on the regions of Germany, Ireland and the UK. Because of climate change, tourists from all three countries would spend more holidays in the home country. In all three countries, climate change would first reduce the number of international arrivals - as Western European international tourist demand falls - but later increase ...

  11. Risk-based climate-change impact assessment for the water industry.

    Science.gov (United States)

    Thorne, O M; Fenner, R A

    2009-01-01

    In response to a rapidly changing and highly variable climate, engineers are being asked to perform climate-change impact assessments on existing water industry systems. There is currently no single method of best practice for engineers to interpret output from global climate models (GCMs) and calculate probabilistic distributions of future climate changes as required for risk-based impact assessments. The simplified climate change impact assessment tool (SCIAT) has been developed to address the specific needs of the water industry and provides a tool to translate climate change projections into 'real world' impacts or for detailed statistical analysis. Through the use of SCIAT, water system operators are provided with knowledge of potential impacts and an associated probability of occurrence, enabling them to make informed, risk-based adaptation and planning decisions. This paper demonstrates the application of SCIAT to the consideration of the impacts of climate change on reservoir water quality under future climate scenarios.

  12. Climate change impacts on hydrological processes in Norway based on two methods for transferring regional climate model results to meteorological station sites

    Science.gov (United States)

    Beldring, Stein; Engen-Skaugen, Torill; Førland, Eirik J.; Roald, Lars A.

    2008-05-01

    Climate change impacts on hydrological processes in Norway have been estimated through combination of results from the IPCC SRES A2 and B2 emission scenarios, global climate models from the Hadley Centre and the Max-Planck Institute, and dynamical downscaling using the RegClim HIRHAM regional climate model. Temperature and precipitation simulations from the regional climate model were transferred to meteorological station sites using two different approaches, the delta change or perturbation method and an empirical adjustment procedure that reproduces observed monthly means and standard deviations for the control period. These climate scenarios were used for driving a spatially distributed version of the HBV hydrological model, yielding a set of simulations for the baseline period 1961-1990 and projections of climate change impacts on hydrological processes for the period 2071-2100. A comparison between the two methods used for transferring regional climate model results to meteorological station sites is provided by comparing the results from the hydrological model for basins located in different parts of Norway. Projected changes in runoff are linked to changes in the snow regime. Snow cover will be more unstable and the snowmelt flood will occur earlier in the year. Increased rainfall leads to higher runoff in the autumn and winter.

  13. Climate change impacts on hydrological processes in Norway based on two methods for transferring regional climate model results to meteorological station sites

    Energy Technology Data Exchange (ETDEWEB)

    Beldring, Stein; Roald, Lars A. (Norwegian Water Resources and Energy Directorate, PO Box 5091 Majorstua, 0301 Oslo (Norway)). e-mail: stein.beldring@nve.no; Engen-Skaugen, Torill; Foerland, Eirik J. (Norwegian Meteorological Inst., PO Box 43 Blindern, 0313 Oslo (Norway))

    2008-07-01

    Climate change impacts on hydrological processes in Norway have been estimated through combination of results from the IPCC SRES A2 and B2 emission scenarios, global climate models from the Hadley Centre and the Max- Planck Institute, and dynamical downscaling using the RegClim HIRHAM regional climate model. Temperature and precipitation simulations from the regional climate model were transferred to meteorological station sites using two different approaches, the delta change or perturbation method and an empirical adjustment procedure that reproduces observed monthly means and standard deviations for the control period. These climate scenarios were used for driving a spatially distributed version of the HBV hydrological model, yielding a set of simulations for the baseline period 1961- 1990 and projections of climate change impacts on hydrological processes for the period 2071-2100. A comparison between the two methods used for transferring regional climate model results to meteorological station sites is provided by comparing the results from the hydrological model for basins located in different parts of Norway. Projected changes in runoff are linked to changes in the snow regime. Snow cover will be more unstable and the snow melt flood will occur earlier in the year. Increased rainfall leads to higher runoff in the autumn and winter

  14. Climate Change Student Summits: A Model that Works (Invited)

    Science.gov (United States)

    Huffman, L. T.

    2013-12-01

    The C2S2: Climate Change Student Summit project has completed four years of activities plus a year-long longitudinal evaluation with demonstrated positive impacts beyond the life of the project on both students and teachers. This presentation will share the lessons learned about implementing this climate change science education program and suggest that it is a successful model that can be used to scale up from its Midwestern roots to achieve measurable national impact. A NOAA Environmental Literacy grant allowed ANDRILL (ANtarctic geological DRILLing) to grow a 2008 pilot program involving 2 Midwestern sites, to a program 4 years later involving 10 sites. The excellent geographical coverage included 9 of the U.S. National Climate Assessment regions defined by the U.S. Global Change Research Program. Through the delivery of two professional development (PD) workshops, a unique opportunity was provided for both formal and informal educators to engage their classrooms/audiences in understanding the complexities of climate change. For maximum contact hours, the PD experience was extended throughout the school year through the use of an online grouphub. Student teams were involved in a creative investigative science research and presentation experience culminating in a Climate Change Student Summit, an on-site capstone event including a videoconference connecting all sites. The success of this program was based on combining multiple aspects, such as encouraging the active involvement of scientists and early career researchers both in the professional development workshops and in the Student Summit. Another key factor was the close working relationships between informal and formal science entities, including involvement of informal science learning facilities and informal science education leaders. The program also created cutting-edge curriculum materials titled the ELF, (Environmental Literacy Framework with a focus on climate change), providing an earth systems

  15. Fish Farmers' Perception of Climate change impact on fish ...

    African Journals Online (AJOL)

    Michael Madukwe

    Climate Change Vulnerability and the Use of Indigenous ... century and these show that global warming will continue and even accelerate. The best ...... change and its impacts on the economy, agriculture, health and community livelihoods ...

  16. The impact of climate change and anthropogenic factors on ...

    African Journals Online (AJOL)

    The impact of climate change and anthropogenic factors on desertification in the ... Currently, approximately 22.6% of the country's landmass is being affected by ... production, ecological degradation and emigration of people and animals.

  17. Impact of climate change on insect pests of trees

    NARCIS (Netherlands)

    Moraal, L.G.; Jagers op Akkerhuis, L.; Jagers op Akkerhuis, G.A.J.M.

    2008-01-01

    There are many interactions and it is exetremely difficult to predict the impact of climate change on insect pests in the future, but we may expect an increase of certain primary pests as well as secondary pests and invasive species

  18. THE IMPACT OF THERMAL ENGINEERING RESEARCH ON GLOBAL CLIMATE CHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, Patrick [Arizona State University; Abdelaziz, Omar [ORNL; Otanicar, Todd [University of Tulsa; Phelan, Bernadette [Phelan Research Solutions, Inc.; Prasher, Ravi [Arizona State University; Taylor, Robert [University of New South Wales, Sydney, Australia; Tyagi, Himanshu [Indian Institute of Technology Ropar, India

    2014-01-01

    Global climate change is recognized by many people around the world as being one of the most pressing issues facing our society today. The thermal engineering research community clearly plays an important role in addressing this critical issue, but what kind of thermal engineering research is, or will be, most impactful? In other words, in what directions should thermal engineering research be targeted in order to derive the greatest benefit with respect to global climate change? To answer this question we consider the potential reduction in greenhouse gas (GHG) emissions, coupled with potential economic impacts, resulting from thermal engineering research. Here a new model framework is introduced that allows a technological, sector-by-sector analysis of GHG emissions avoidance. For each sector, we consider the maximum reduction in CO2 emissions due to such research, and the cost effectiveness of the new efficient technologies. The results are normalized on a country-by-country basis, where we consider the USA, the European Union, China, India, and Australia as representative countries or regions. Among energy supply-side technologies, improvements in coal-burning power generation are seen as having the most beneficial CO2 and economic impacts. The one demand-side technology considered, residential space cooling, offers positive but limited impacts. The proposed framework can be extended to include additional technologies and impacts, such as water consumption.

  19. Credibility of Hydrologic Models in the Context of Climate Change Impact Studies - A Case Study in the Olifants Basin, South Africa

    Science.gov (United States)

    Wagener, Thorsten; van Werkhoven, Kathryn; Singh, Riddhi

    2010-05-01

    A major challenge for hydrologic research in the coming years will be the assessment of climate change impacts on regional water resources. While more and more impact studies are being performed, the assessment of hydrologic changes across a region, particularly in less developed countries, is often severely limited by the lack of streamflow gauges to calibrate watershed models and hence large uncertainties of model predictions. Further, one has to ask the general question of how we can increase the credibility of watershed models in the context of climate change studies, where, by definition, the model's credibility cannot simply be derived from its performance in reproducing historical observations. The study region is the Olifants basin in South Africa, a UNESCO HELP basin that is characterized by severe water insecurity and regular hydrologic extreme events. We will demonstrate how we can trade space-for-time by using spatial gradients as first order approximation of temporal changes in watershed behavior to derive ensemble predictions at both gauged and ungauged sites. In general, there is an urgent need to re-think how we identify, use and evaluate hydrological models under non-stationary conditions to increase the value of studies such as this one for water resource planning and decision making.

  20. The relative impact of climate change mitigation policies and socioeconomic drivers on water scarcity - An integrated assessment modeling approach

    Science.gov (United States)

    Hejazi, M. I.; Edmonds, J. A.; Clarke, L. E.; Kyle, P.; Davies, E. G.; Chaturvedi, V.; Patel, P.; Eom, J.; Wise, M.; Kim, S.; Calvin, K. V.; Moss, R. H.

    2012-12-01

    We investigate the relative effects of climate emission mitigation policies and socioeconomic drivers on water scarcity conditions over the 21st century both globally and regionally, by estimating both water availability and demand within a technologically-detailed global integrated assessment model of energy, agriculture, and climate change - the Global Change Assessment Model (GCAM). We first develop a global gridded monthly hydrologic model that reproduces historical streamflow observations and simulates the future availability of freshwater under both a changing climate and an evolving landscape, and incorporate this model into GCAM. We then develop and incorporate technologically oriented representations of water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. To perform the water scarcity analysis at the grid scale, the global water demands for the six demand sectors are spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. The water scarcity index (WSI) compares total water demand to the total amount of renewable water available, and defines extreme water scarcity in any region as demand greater than 40% of total water availability. Using a reference scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 by 2095 and a global population of 14 billion, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demands for water exceed the total

  1. The Impact of Climate Change on Agriculture in Asia

    Institute of Scientific and Technical Information of China (English)

    Robert Mendelsohn

    2014-01-01

    Asian agriculture is responsible for two thirds of global agricultural GDP. There have been numerous studies exploring the impact of climate change on crops in speciifc locations in Asia but no study has yet analyzed crops across the entire continent. This study relies on a Ricardian study of China that estimated climate coefifcients for Chinese crops. These coefifcients are then used to interpolate potential climate damages across the continent. With carbon fertilization, the model predicts small aggregate effects with a 1.5°C warming but damages of about US$84 billion with 3°C warming. India is predicted to be especially vulnerable.

  2. Downscaling a Global Climate Model to Simulate Climate Change Impacts on U.S. Regional and Urban Air Quality

    Science.gov (United States)

    Trail, M.; Tsimpidi, A. P.; Liu, P.; Tsigaridis, K.; Hu, Y.; Nenes, A.; Russell, A. G.

    2013-01-01

    Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with WRF to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the continental United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF RCM to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12km by 12km resolution, as well as the effect of evolving climate conditions on the air quality at major U.S. cities. The high resolution simulations produce somewhat different results than the coarse resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the U.S. during fall (Western U.S., Texas, Northeastern, and Southeastern U.S), one region during summer (Texas), and one region where changes potentially would lead to better air quality during spring (Northeast). We also find that daily peak temperatures tend to increase in most major cities in the U.S. which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air pollutants.

  3. Linked models to assess the impacts of climate change on nitrogen in a Norwegian river basin and fjord system

    Energy Technology Data Exchange (ETDEWEB)

    Kaste, OE. [Norwegian Institute for Water Research, Southern Branch, Televeien 3, N-4879 Grimstad (Norway); Wright, R.F.; Barkved, L.J.; Bjerkeng, B.; Magnusson, J.; Saelthun, N.R. [Norwegian Institute for Water Research, P.O. Box 173, N-0411 Oslo (Norway); Engen-Skaugen, T. [Norwegian Meteorological Institute, P.O. Box 43 Blindern, N-0313 Oslo (Norway)

    2006-07-15

    Dynamically downscaled data from two Atmosphere-Ocean General Circulation Models (AOGCMs), ECHAM4 from the Max-Planck Institute (MPI), Germany and HadAm3H from the Hadley Centre (HAD), UK, driven with two scenarios of greenhouse gas emissions (IS92a and A2, respectively) were used to make climate change projections. These projections were then used to drive four effect models linked to assess the effects on hydrology, and nitrogen (N) concentrations and fluxes, in the Bjerkreim river basin (685-km{sup 2}) and its coastal fjord, southwestern Norway. The four effect models were the hydrological model HBV, the water quality models MAGIC, INCA-N and the NIVA FJORD model. The downscaled climate scenarios project a general temperature increase in the study region of approximately 1{sup o}C by 2030-2049 (MPI IS92a) and approximately 3{sup o}C by 2071-2100 (HAD A2). Both scenarios imply increased winter precipitation, whereas the projections of summer and autumn precipitation are quite different, with the MPI scenario projecting a slight increase and the HAD scenario a significant decrease. As a response to increased winter temperature, the HBV model simulates a dramatic reduction of snow accumulation in the upper parts of the catchment, which in turn lead to higher runoff during winter and lower runoff during snowmelt in the spring. With the HAD scenario, runoff in summer and early autumn is substantially reduced as a result of reduced precipitation, increased temperatures and thereby increased evapotranspiration. The water quality models, MAGIC and INCA-N project no major changes in nitrate (NO{sub 3}{sup -}) concentrations and fluxes within the MPI scenario, but a significant increase in concentrations and a 40-50% increase in fluxes in the HAD scenario. As a consequence, the acidification of the river could increase, thus offsetting ongoing recovery from acidification due to reductions in acid deposition. Additionally, the increased N loading may stimulate growth of N

  4. Linked models to assess the impacts of climate change on nitrogen in a Norwegian river basin and FJORD system.

    Science.gov (United States)

    Kaste, Ø; Wright, R F; Barkved, L J; Bjerkeng, B; Engen-Skaugen, T; Magnusson, J; Saelthun, N R

    2006-07-15

    Dynamically downscaled data from two Atmosphere-Ocean General Circulation Models (AOGCMs), ECHAM4 from the Max-Planck Institute (MPI), Germany and HadAm3H from the Hadley Centre (HAD), UK, driven with two scenarios of greenhouse gas emissions (IS92a and A2, respectively) were used to make climate change projections. These projections were then used to drive four effect models linked to assess the effects on hydrology, and nitrogen (N) concentrations and fluxes, in the Bjerkreim river basin (685-km(2)) and its coastal fjord, southwestern Norway. The four effect models were the hydrological model HBV, the water quality models MAGIC, INCA-N and the NIVA FJORD model. The downscaled climate scenarios project a general temperature increase in the study region of approximately 1 degrees C by 2030-2049 (MPI IS92a) and approximately 3 degrees C by 2071-2100 (HAD A2). Both scenarios imply increased winter precipitation, whereas the projections of summer and autumn precipitation are quite different, with the MPI scenario projecting a slight increase and the HAD scenario a significant decrease. As a response to increased winter temperature, the HBV model simulates a dramatic reduction of snow accumulation in the upper parts of the catchment, which in turn lead to higher runoff during winter and lower runoff during snowmelt in the spring. With the HAD scenario, runoff in summer and early autumn is substantially reduced as a result of reduced precipitation, increased temperatures and thereby increased evapotranspiration. The water quality models, MAGIC and INCA-N project no major changes in nitrate (NO(3)(-)) concentrations and fluxes within the MPI scenario, but a significant increase in concentrations and a 40-50% increase in fluxes in the HAD scenario. As a consequence, the acidification of the river could increase, thus offsetting ongoing recovery from acidification due to reductions in acid deposition. Additionally, the increased N loading may stimulate growth of N

  5. Regional integrated modelling of climate change impacts on natural resources and resource usage in semi-arid Northeast Brazil

    NARCIS (Netherlands)

    Krol, Maarten S.; Bronstert, Axel

    2007-01-01

    Semi-arid regions are characterised by a high vulnerability of natural resources to climate change, pronounced climatic variability and often by water scarcity and related social stress. The analysis of the dynamics of natural conditions and the assessment of possible strategies to cope with drought

  6. Regional integrated modelling of climate change impacts on natural resources and resource usage in semi-arid Norhteast Brazil

    NARCIS (Netherlands)

    Krol, Martinus S.; Bronstert, Axel

    2007-01-01

    Semi-arid regions are characterised by a high vulnerability of natural resources to climate change, pronounced climatic variability and often by water scarcity and related social stress. The analysis of the dynamics of natural conditions and the assessment of possible strategies to cope with

  7. What "they" Think: Perspectives of Stakeholders Contributing to the Co-Production of Climate Change Impact Modeling

    Science.gov (United States)

    Arnott, J. C.; Kirchhoff, C.

    2016-12-01

    Co-production, a theory of and approach to knowledge production that accommodates joint effort between scientists and non-scientists in one or more stages of research process, is increasingly identified as a strategy to improve the usability of global change research. However, little research has been done to obtain perspectives of non-scientist participants that contribute to coproduced research projects on the process of co-production itself. The result is that it is often unclear if coproduced research achieves its intended objectives for stakeholders that contribute to it. An added irony is that designs and approaches to co-production often do not in themselves reflect input from non-scientist participants. To meet this gap, this paper reports on an analysis of semi-structured interviews of practitioners that participated in a NOAA-funded study addressing the impacts of climate change on harmful algal blooms in the Western Lake Erie Basin. The interviews solicited responses from these participants about their motivation for participating in the project, the impact to their work as a result of participation, and their suggestions for how to improve the experience in the future. Results indicate that non-scientist participants in research projects possess a very broad range of reasons for participation and a diverse set of attitudes about their experiences and perceived benefits. These findings should add evidence of and perspective to a growing area of recognition that information end-users (e.g., stakeholders, practitioners, decision-makers) are not a homogenous set of actors, and therefore strategies for engaging with them on knowledge production need to adjust accordingly. We reflect on these findings to conclude that future co-production efforts would be better served by considering the work of co-production as more than just bringing together two different but internally similar communities (e.g., "scientists" and "stakeholders") and instead treating its

  8. Uncertainty in projected impacts of climate change on biodiversity

    DEFF Research Database (Denmark)

    Garcia, Raquel A.

    here, and the picture that emerges is one of multifaceted changes in climate, with unequal spatial patterns around the world. To help interpret the diversity of climate change metrics, a conceptual framework is proposed for using them in biodiversity impact assessments. Early testing of this framework......Evidence for shifts in the phenologies and distributions of species over recent decades has often been attributed to climate change. The prospect of greater and faster changes in climate during the 21st century has spurred a stream of studies anticipating future biodiversity impacts. Yet......, uncertainty is inherent to both projected climate changes and their effects on biodiversity, and needs to be understood before projections can be used. This thesis seeks to elucidate some of the uncertainties clouding assessments of biodiversity impacts from climate change, and explores ways to address them...

  9. A~simple model for predicting the global distribution of the N2 fixing host genus Alnus Mill.: impact of climate change on the global distribution in 2100

    Directory of Open Access Journals (Sweden)

    A. Sakalli

    2013-08-01

    Full Text Available The importance of N2-fixing plants has increased in last decades. Alnus (alder is an important plant group because of its nitrogen fixation ability. Alders are generally distributed in humid locations of boreal, temperate and tropical climate zones, where the nitrogen fixation is an important nitrogen source for other plants. To model the nitrogen fixation by alder, data about the global distribution of alder is absolutely required. In this study a new method and model to predict the distribution of N2-fixing genus on global scale is presented. Three linear functions were defined for the determination of climate area of alder locations. The distribution model was improved with the aid of the soil units from FAO-Unesco Soil Database, and vegetation types from Schmithüsen's biogeographical atlas. The model (Alnus-Distribution-Model, ADM was also developed to predict the impact of climate change on alder distribution by using climate data of five relevant climate models (PCM, ECHam4, HadCM3, CSIRO2 and CGCM2, and four IPCC climate scenarios (i.e. A1FI, A2, B1 and B2 in 2100. The model covered basic approaches to understand the climate change effect on plant migration in the future.

  10. Impacts of climate change on fisheries

    DEFF Research Database (Denmark)

    Brander, Keith

    2010-01-01

    experimentally and in controlled conditions. Indirect effects act via ecosystem processes and changes in the production of food or abundance of competitors, predators and pathogens. Recent studies of the effects of climate on primary production are reviewed and the consequences for fisheries production...... are evaluated through regional examples. Regional examples are also used to show changes in distribution and phenology of plankton and fish, which are attributed to climate. The role of discontinuous and extreme events (regime shifts, exceptional warm periods) is discussed. Changes in fish population processes...... and for adapting to climate change. in order to adapt to changing climate, future monitoring and research must be closely linked to responsive, flexible and reflexive management systems. (C) 2009 Elsevier B.V. All rights reserved....

  11. Impact on human health of climate changes.

    Science.gov (United States)

    Franchini, Massimo; Mannucci, Pier Mannuccio

    2015-01-01

    There is increasing evidence that climate is rapidly changing. These changes, which are mainly driven by the dramatic increase of greenhouse gas emissions from anthropogenic activities, have the potential to affect human health in several ways. These include a global rise in average temperature, an increased frequency of heat waves, of weather events such as hurricanes, cyclones and drought periods, plus an altered distribution of allergens and vector-borne infectious diseases. The cardiopulmonary system and the gastrointestinal tract are particularly vulnerable to the adverse effects of global warming. Moreover, some infectious diseases and their animal vectors are influenced by climate changes, resulting in higher risk of typhus, cholera, malaria, dengue and West Nile virus infection. On the other hand, at mid latitudes warming may reduce the rate of diseases related to cold temperatures (such as pneumonia, bronchitis and arthritis), but these benefits are unlikely to rebalance the risks associated to warming.

  12. Modeling the eco-hydrologic response of a Mediterranean type ecosystem to the combined impacts of projected climate change and altered fire frequencies

    DEFF Research Database (Denmark)

    Tague, Christina; Seaby, Lauren Paige; Hope, Allen

    2009-01-01

    Global Climate Models (GCMs) project moderate warming along with increases in atmospheric CO2 for California Mediterranean type ecosystems (MTEs). In water-limited ecosystems, vegetation acts as an important control on streamflow and responds to soil moisture availability. Fires are also key...... and precipitation scenarios using RHESSys, a spatially distributed model of carbon–water interactions. We examine the direct impacts of temperature and precipitation on vegetation productivity and impacts associated with higher water-use efficiency under elevated atmospheric CO2. Results suggest that for most...... frequency will also impact summer streamflow but these will be small relative to changes due to vegetation productivity. Results suggest that monitoring vegetation responses to a changing climate should be a focus of climate change assessment for California MTEs....

  13. Adapting to Climate Change in the Great Lakes Region: The Wisconsin Initiative on Climate Change Impacts

    Science.gov (United States)

    Vimont, D.; Liebl, D.

    2012-12-01

    The mission of the Wisconsin Initiative on Climate Change Impacts (WICCI; http://www.wicci.wisc.edu) is to assess the impacts of climate change on Wisconsin's natural, human, and built environments; and to assist in developing, recommending, and implementing climate adaptation strategies in Wisconsin. WICCI originated in 2007 as a partnership between the University of Wisconsin Nelson Institute and the Wisconsin Department of Natural Resources, and has since grown to include numerous other state, public, and private institutions. In 2011, WICCI released its First Assessment Report, which documents the efforts of over 200 individuals around the state in assessing vulnerability and estimating the risk that regional climate change poses to Wisconsin. The success of WICCI as an organization can be traced to its existence as a partnership between academic and state institutions, and as a boundary organization that catalyzes cross-disciplinary efforts between science and policy. WICCI's organizational structure and its past success at assessing climate impacts in Wisconsin will be briefly discussed. As WICCI moves into its second phase, it is increasing its emphasis on the second part of its mission: development, and implementation of adaptation strategies. Towards these goals WICCI has expanded its organizational structure to include a Communications and Outreach Committee that further ensures a necessary two-way communication of information between stakeholders / decision makers, and scientific efforts. WICCI is also increasing its focus on place-based efforts that include climate change information as one part of an integrated effort at sustainable development. The talk will include a discussion of current outreach and education efforts, as well as future directions for WICCI efforts.

  14. Climate Change Impacts in a Colombian Andean Tropical Basin

    Science.gov (United States)

    Ocampo, O. L.; Vélez, J. J.; Londoño, A.

    2012-12-01

    Latitude, at the south central region of Caldas, Colombia. It rises in the National Natural Park Los Nevados at 5400 meters above sea level and flows into the Cauca River at 800 meters above sea level. All thermal floors are found in this Basin which has an extension of only 1050 km2. This project sets out the main impacts of climate change and climate variability for Chinchina River Basin, with important impacts on water availability. The status of water resources in Colombian Andean Basins has been changing for the last decades, through more or less rainfall and changed timing of rainfall and the accelerated melting of the tropical Andean glaciers, these changes are found in the Chinchina River Basin. Besides, changes in land use and land cover affect water balance. Using the IPCC projections for the period 2010-2039 and statistical downscaling by the delta method with resolution of 1 km x 1 km, different models (HADCHM3, CSIRO y CCMA) predict different climate change trends in the Basin for scenarios A2 and B2, increasing in temperature whereas mean precipitation exhibit both positive and negative trends, which are consistent with PRECIS Regional Model. The physically based conceptual model Tetis estimated reductions in water supply, which vary depending on scenarios. If the models are correct, growing conflict over the distribution of water resources is very likely, particularly during the dry season.

  15. Adapting to and Coping with the Threat and Impacts of Climate Change

    Science.gov (United States)

    Reser, Joseph P.; Swim, Janet K.

    2011-01-01

    This article addresses the nature and challenge of adaptation in the context of global climate change. The complexity of "climate change" as threat, environmental stressor, risk domain, and impacting process with dramatic environmental and human consequences requires a synthesis of perspectives and models from diverse areas of psychology to…

  16. The impact of climate change on tourism in Germany, the UK and Ireland: a simulation study

    NARCIS (Netherlands)

    Hamilton, Jacqueline; Tol, Richard

    2007-01-01

    We downscale the results of a global tourism simulation model at a national resolution to a regional resolution. We use this to investigate the impact of climate change on the regions of Germany, Ireland and the UK. Because of climate change, tourists from all three countries would spend more holi

  17. Adapting to and Coping with the Threat and Impacts of Climate Change

    Science.gov (United States)

    Reser, Joseph P.; Swim, Janet K.

    2011-01-01

    This article addresses the nature and challenge of adaptation in the context of global climate change. The complexity of "climate change" as threat, environmental stressor, risk domain, and impacting process with dramatic environmental and human consequences requires a synthesis of perspectives and models from diverse areas of psychology to…

  18. Testing the impact of virus importation rates and future climate change on dengue activity in Malaysia using a mechanistic entomology and disease model.

    Science.gov (United States)

    Williams, C R; Gill, B S; Mincham, G; Mohd Zaki, A H; Abdullah, N; Mahiyuddin, W R W; Ahmad, R; Shahar, M K; Harley, D; Viennet, E; Azil, A; Kamaluddin, A

    2015-10-01

    We aimed to reparameterize and validate an existing dengue model, comprising an entomological component (CIMSiM) and a disease component (DENSiM) for application in Malaysia. With the model we aimed to measure the effect of importation rate on dengue incidence, and to determine the potential impact of moderate climate change (a 1 °C temperature increase) on dengue activity. Dengue models (comprising CIMSiM and DENSiM) were reparameterized for a simulated Malaysian village of 10 000 people, and validated against monthly dengue case data from the district of Petaling Jaya in the state of Selangor. Simulations were also performed for 2008-2012 for variable virus importation rates (ranging from 1 to 25 per week) and dengue incidence determined. Dengue incidence in the period 2010-2012 was modelled, twice, with observed daily weather and with a 1 °C increase, the latter to simulate moderate climate change. Strong concordance between simulated and observed monthly dengue cases was observed (up to r = 0·72). There was a linear relationship between importation and incidence. However, a doubling of dengue importation did not equate to a doubling of dengue activity. The largest individual dengue outbreak was observed with the lowest dengue importation rate. Moderate climate change resulted in an overall decrease in dengue activity over a 3-year period, linked to high human seroprevalence early on in the simulation. Our results suggest that moderate reductions in importation with control programmes may not reduce the frequency of large outbreaks. Moderate increases in temperature do not necessarily lead to greater dengue incidence.

  19. Projected climate change impacts in rainfall erosivity over Brazil.

    Science.gov (United States)

    Almagro, André; Oliveira, Paulo Tarso S; Nearing, Mark A; Hagemann, Stefan

    2017-08-15

    The impacts of climate change on soil erosion may bring serious economic, social and environmental problems. However, few studies have investigated these impacts on continental scales. Here we assessed the influence of climate change on rainfall erosivity across Brazil. We used observed rainfall data and downscaled climate model output based on Hadley Center Global Environment Model version 2 (HadGEM2-ES) and Model for Interdisciplinary Research On Climate version 5 (MIROC5), forced by Representative Concentration Pathway 4.5 and 8.5, to estimate and map rainfall erosivity and its projected changes across Brazil. We estimated mean values of 10,437 mm ha(-1) h(-1) year(-1) for observed data (1980-2013) and 10,089 MJ mm ha(-1) h(-1) year(-1) and 10,585 MJ mm ha(-1) h(-1) year(-1) for HadGEM2-ES and MIROC5, respectively (1961-2005). Our analysis suggests that the most affected regions, with projected rainfall erosivity increases ranging up to 109% in the period 2007-2040, are northeastern and southern Brazil. Future decreases of as much as -71% in the 2071-2099 period were estimated for the southeastern, central and northwestern parts of the country. Our results provide an overview of rainfall erosivity in Brazil that may be useful for planning soil and water conservation, and for promoting water and food security.

  20. Data driven approaches vs. qualitative approaches in climate change impact and vulnerability assessment.

    Science.gov (United States)

    Zebisch, Marc; Schneiderbauer, Stefan; Petitta, Marcello

    2015-04-01

    In the last decade the scope of climate change science has broadened significantly. 15 years ago the focus was mainly on understanding climate change, providing climate change scenarios and giving ideas about potential climate change impacts. Today, adaptation to climate change has become an increasingly important field of politics and one role of science is to inform and consult this process. Therefore, climate change science is not anymore focusing on data driven approaches only (such as climate or climate impact models) but is progressively applying and relying on qualitative approaches including opinion and expertise acquired through interactive processes with local stakeholders and decision maker. Furthermore, climate change science is facing the challenge of normative questions, such us 'how important is a decrease of yield in a developed country where agriculture only represents 3% of the GDP and the supply with agricultural products is strongly linked to global markets and less depending on local production?'. In this talk we will present examples from various applied research and consultancy projects on climate change vulnerabilities including data driven methods (e.g. remote sensing and modelling) to semi-quantitative and qualitative assessment approaches. Furthermore, we will discuss bottlenecks, pitfalls and opportunities in transferring climate change science to policy and decision maker oriented climate services.

  1. A modeling approach to determine the impacts of land use and climate change scenarios on the water flux of the upper Mara River

    Directory of Open Access Journals (Sweden)

    L. M. Mango

    2010-08-01

    Full Text Available With the flow of the Mara River becoming increasingly erratic especially in the upper reaches, attention has been directed to land use change as the major cause of this problem. The semi-distributed hydrological model Soil and Water Assessment Tool (SWAT and Landsat imagery were utilized in the upper Mara River Basin in order to 1 map existing field scale land use practices in order to determine their impact 2 determine the impacts of land use change on water flux; and 3 determine the impacts of rainfall (0%, ±10% and ±20% and air temperature variations (0% and +5% based on the Intergovernmental Panel on Climate Change projections on the water flux of the upper Mara River.

    This study found that the different scenarios impacted on the water balance components differently. Land use changes resulted in a slightly more erratic discharge while rainfall and air temperature changes had a more predictable impact on the discharge and water balance components. These findings demonstrate that the model results show the flow was more sensitive to the rainfall changes than land use changes. It was also shown that land use changes can reduce dry season flow which is the most important problem in the basin. The model shows also deforestation in the Mau Forest increased the peak flows which can also lead to high sediment loading in the Mara River. The effect of the land use and climate change scenarios on the sediment and water quality of the river needs a thorough understanding of the sediment transport processes in addition to observed sediment and water quality data for validation of modeling results.

  2. A modeling approach to determine the impacts of land use and climate change scenarios on the water flux of the upper Mara River

    Science.gov (United States)

    Mango, L. M.; Melesse, A. M.; McClain, M. E.; Gann, D.; Setegn, S. G.

    2010-08-01

    With the flow of the Mara River becoming increasingly erratic especially in the upper reaches, attention has been directed to land use change as the major cause of this problem. The semi-distributed hydrological model Soil and Water Assessment Tool (SWAT) and Landsat imagery were utilized in the upper Mara River Basin in order to 1) map existing field scale land use practices in order to determine their impact 2) determine the impacts of land use change on water flux; and 3) determine the impacts of rainfall (0%, ±10% and ±20%) and air temperature variations (0% and +5%) based on the Intergovernmental Panel on Climate Change projections on the water flux of the upper Mara River. This study found that the different scenarios impacted on the water balance components differently. Land use changes resulted in a slightly more erratic discharge while rainfall and air temperature changes had a more predictable impact on the discharge and water balance components. These findings demonstrate that the model results show the flow was more sensitive to the rainfall changes than land use changes. It was also shown that land use changes can reduce dry season flow which is the most important problem in the basin. The model shows also deforestation in the Mau Forest increased the peak flows which can also lead to high sediment loading in the Mara River. The effect of the land use and climate change scenarios on the sediment and water quality of the river needs a thorough understanding of the sediment transport processes in addition to observed sediment and water quality data for validation of modeling results.

  3. Impact of climate change on global malaria distribution.

    Science.gov (United States)

    Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M; Morse, Andrew P; Colón-González, Felipe J; Stenlund, Hans; Martens, Pim; Lloyd, Simon J

    2014-03-04

    Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution.

  4. India: The Impact of Climate Change to 2030 Geopolitical Implications

    Science.gov (United States)

    2009-05-01

    standards and regulations on climate change mitigation be voluntary mId take development targets into account. • India perceives the United States and other...greatest direct impact from climate change. Agriculture generates less than 18 percent ofIndia’s GDP, and this figure is rapidly declining. The decline in...saltwater intrusion rendering soil infertile . hlcreased seasonal flooding is already affecting productivity in the state of Bihar, and more frequent

  5. Modeling the impact of climate change in Germany with biosphere models for long-term safety assessment of nuclear waste repositories.

    Science.gov (United States)

    Staudt, C; Semiochkina, N; Kaiser, J C; Pröhl, G

    2013-01-01

    Biosphere models are used to evaluate the exposure of populations to radionuclides from a deep geological repository. Since the time frame for assessments of long-time disposal safety is 1 million years, potential future climate changes need to be accounted for. Potential future climate conditions were defined for northern Germany according to model results from the BIOCLIM project. Nine present day reference climate regions were defined to cover those future climate conditions. A biosphere model was developed according to the BIOMASS methodology of the IAEA and model parameters were adjusted to the conditions at the reference climate regions. The model includes exposure pathways common to those reference climate regions in a stylized biosphere and relevant to the exposure of a hypothetical self-sustaining population at the site of potential radionuclide contamination from a deep geological repository. The end points of the model are Biosphere Dose Conversion factors (BDCF) for a range of radionuclides and scenarios normalized for a constant radionuclide concentration in near-surface groundwater. Model results suggest an increased exposure of in dry climate regions with a high impact of drinking water consumption rates and the amount of irrigation water used for agriculture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Application of General Circulation Models to Assess the Potential Impact of Climate Change on Potential Distribution and Relative Abundance of Melanoplus sanguinipes (Fabricius (Orthoptera: Acrididae in North America

    Directory of Open Access Journals (Sweden)

    O. Olfert

    2011-01-01

    Full Text Available Climate is the dominant factor determining the distribution and abundance of most insect species. In recent years, the issue of climatic changes caused by human activities and the effects on agriculture has raised concern. General circulation model scenarios were applied to a bioclimatic model of Melanoplus sanguinipes to assess the potential impact of global warming on its distribution and relative abundance. Native to North America and widely distributed, M. sanguinipes is one of the grasshopper species of the continent most responsible for economic damage to grain, oilseed, pulse, and forage crops. Compared to predicted range and distribution under current climate conditions, model results indicated that M. sanguinipes would have increased range and relative abundance under the three general circulation model scenarios in more northern regions of North America. Conversely, model output predicted that the range of this crop pest could contract in regions where climate conditions became limiting.

  7. Impact of Climate Change on Water Resources in Taiwan

    Directory of Open Access Journals (Sweden)

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    Full Text Available This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future water needs, regional reservoir effective capacity and renewable water resource volume. This paper uses three water resource assessment indicators: the annual water utilization ratio indicator, the water shortage indicator and the extreme event occurrence indicator. Through fuzzy comprehensive assessment, we divide the evaluation set into five levels: very good (L1, good (L2, fair (L3, poor (L4 and very poor (L5. Results indicate that, given the effects of future climate change (2080 - 2099 and the increase in water demand, future water resources conditions in northern and eastern Taiwan will not be significantly different from historical levels (1979 - 1998 and will maintain a ¡§good¡¨ level (L2, while the conditions in southern Taiwan will visibly deteriorate from its historical ¡§fair¡¨ level (L3 to ¡§poor¡¨ (L4; and the future conditions for central Taiwan will be ¡§poor¡¨ (L4. The initiation of adaptation options for water management in southern and central Taiwan would be needed by increasing reservoir capacity and reducing overall water use.

  8. Climate change and food security: health impacts in developed countries.

    Science.gov (United States)

    Lake, Iain R; Hooper, Lee; Abdelhamid, Asmaa; Bentham, Graham; Boxall, Alistair B A; Draper, Alizon; Fairweather-Tait, Susan; Hulme, Mike; Hunter, Paul R; Nichols, Gordon; Waldron, Keith W

    2012-11-01

    Anthropogenic climate change will affect global food production, with uncertain consequences for human health in developed countries. We investigated the potential impact of climate change on food security (nutrition and food safety) and the implications for human health in developed countries. Expert input and structured literature searches were conducted and synthesized to produce overall assessments of the likely impacts of climate change on global food production and recommendations for future research and policy changes. Increasing food prices may lower the nutritional quality of dietary intakes, exacerbate obesity, and amplify health inequalities. Altered conditions for food production may result in emerging pathogens, new crop and livestock species, and altered use of pesticides and veterinary medicines, and affect the main transfer mechanisms through which contaminants move from the environment into food. All these have implications for food safety and the nutritional content of food. Climate change mitigation may increase consumption of foods whose production reduces greenhouse gas emissions. Impacts may include reduced red meat consumption (with positive effects on saturated fat, but negative impacts on zinc and iron intake) and reduced winter fruit and vegetable consumption. Developed countries have complex structures in place that may be used to adapt to the food safety consequences of climate change, although their effectiveness will vary between countries, and the ability to respond to nutritional challenges is less certain. Climate change will have notable impacts upon nutrition and food safety in developed countries, but further research is necessary to accurately quantify these impacts. Uncertainty about future impacts, coupled with evidence that climate change may lead to more variable food quality, emphasizes the need to maintain and strengthen existing structures and policies to regulate food production, monitor food quality and safety, and

  9. Impacts of climate change on water resources in southern Africa: A review

    Science.gov (United States)

    Kusangaya, Samuel; Warburton, Michele L.; Archer van Garderen, Emma; Jewitt, Graham P. W.

    The Intergovernmental Panel on Climate Change concluded that there is consensus that the increase of atmospheric greenhouse gases will result in climate change which will cause the sea level to rise, increased frequency of extreme climatic events including intense storms, heavy rainfall events and droughts. This will increase the frequency of climate-related hazards, causing loss of life, social disruption and economic hardships. There is less consensus on the magnitude of change of climatic variables, but several studies have shown that climate change will impact on the availability and demand for water resources. In southern Africa, climate change is likely to affect nearly every aspect of human well-being, from agricultural productivity and energy use to flood control, municipal and industrial water supply to wildlife management, since the region is characterised by highly spatial and temporally variable rainfall and, in some cases, scarce water resources. Vulnerability is exacerbated by the region's low adaptive capacity, widespread poverty and low technology uptake. This paper reviews the potential impacts of climate change on water resources in southern Africa. The outcomes of this review include highlighting studies on detected climate changes particularly focusing on temperature and rainfall. Additionally, the impacts of climate change are highlighted, and respective studies on hydrological responses to climate change are examined. The review also discusses the challenges in climate change impact analysis, which inevitably represents existing research and knowledge gaps. Finally the paper concludes by outlining possible research areas in the realm of climate change impacts on water resources, particularly knowledge gaps in uncertainty analysis for both climate change and hydrological modelling.

  10. Climate change and Public health: vulnerability, impacts, and adaptation

    Science.gov (United States)

    Guzzone, F.; Setegn, S.

    2013-12-01

    Climate Change plays a significant role in public health. Changes in climate affect weather conditions that we are accustomed to. Increases in the frequency or severity of extreme weather events such as storms could increase the risk of dangerous flooding, high winds, and other direct threats to people and property. Changes in temperature, precipitation patterns, and extreme events could enhance the spread of some diseases. According to studies by EPA, the impacts of climate change on health will depend on many factors. These factors include the effectiveness of a community's public health and safety systems to address or prepare for the risk and the behavior, age, gender, and economic status of individuals affected. Impacts will likely vary by region, the sensitivity of populations, the extent and length of exposure to climate change impacts, and society's ability to adapt to change. Transmissions of infectious disease have been associated with social, economic, ecological, health care access, and climatic factors. Some vector-borne diseases typically exhibit seasonal patterns in which the role of temperature and rainfall is well documented. Some of the infectious diseases that have been documented by previous studies, include the correlation between rainfall and drought in the occurrence of malaria, the influence of the dry season on epidemic meningococcal disease in the sub-Saharan African, and the importance of warm ocean waters in driving cholera occurrence in the Ganges River delta in Asia The rise of climate change has been a major concern in the public health sector. Climate change mainly affects vulnerable populations especially in developing countries; therefore, it's important that public health advocates are involve in the decision-making process in order to provide resources and preventative measures for the challenges that are associated with climate change. The main objective of this study is to assess the vulnerability and impact of climate change

  11. impact of projected climate change on agricultural production in ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    ... 2065) climate data. The climate change projections data from global climate models were downscaled using self-organising maps technique. ... met resistance in favour of maize (Zea mays L.). ..... interest: Report of the Commision for Africa.

  12. Planning for climate change: The need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases.

    Science.gov (United States)

    Mellor, Jonathan E; Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara

    2016-04-01

    Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies.

  13. Web-based Data Visualization of the MGClimDeX Climate Model Output: An Integrated Perspective of Climate Change Impact on Natural Resources in Highly Vulnerable Regions.

    Science.gov (United States)

    Martinez-Rey, J.; Brockmann, P.; Cadule, P.; Nangini, C.

    2016-12-01

    Earth System Models allow us to understand the interactions between climate and biogeological processes. These models generate a very large amount of data. These data are usually reduced to a few number of static figures shown in highly specialized scientific publications. However, the potential impacts of climate change demand a broader perspective regarding the ways in which climate model results of this kind are disseminated, particularly in the amount and variety of data, and the target audience. This issue is of great importance particularly for scientific projects that seek a large broadcast with different audiences on their key results. The MGClimDeX project, which assesses the climate change impact on La Martinique island in the Lesser Antilles, will provide tools and means to help the key stakeholders -responsible for addressing the critical social, economic, and environmental issues- to take the appropriate adaptation and mitigation measures in order to prevent future risks associated with climate variability and change, and its role on human activities. The MGClimDeX project will do so by using model output and data visualization techniques within the next year, showing the cross-connected impacts of climate change on various sectors (agriculture, forestry, ecosystems, water resources and fisheries). To address this challenge of representing large sets of data from model output, we use back-end data processing and front-end web-based visualization techniques, going from the conventional netCDF model output stored on hub servers to highly interactive web-based data-powered visualizations on browsers. We use the well-known javascript library D3.js extended with DC.js -a dimensional charting library for all the front-end interactive filtering-, in combination with Bokeh, a Python library to synthesize the data, all framed in the essential HTML+CSS scripts. The resulting websites exist as standalone information units or embedded into journals or scientific

  14. Climate change impacts: Public policies and perception in Albania

    Directory of Open Access Journals (Sweden)

    Elona Pojani

    2013-12-01

    Full Text Available The purpose of this paper is to discuss some of the main impacts of climate change in Albania. More specifically the paper will try to analyze the public response toward these new challenges. This analysis will be preceded by a brief review of the international literature regarding climate change consequences. In addition, the paper will discuss public perception and awareness toward climate change. This discussion will be based on a survey which has involved a wide range of population. The main results of the survey show that the level of awareness of the study group (which consisted mainly on high educated participants about climate change and its relationship with the development is very low. Therefore more emphasis should be put to information regarding environmental issues, through education system and awareness campaigns.

  15. Climate Change Impacts on the Congo Basin Region

    NARCIS (Netherlands)

    Ludwig, F.; Franssen, W.; Jans, W.W.P.; Kruijt, B.; Supit, I.

    2012-01-01

    This report presents analyses of climate change impacts in the Congo Basin on water for agriculture and hydropower, forest ecosystem functioning and carbon storage and impacts of climate variability and change on future economic development. To quantify the impacts of future climate we developed a m

  16. Climate change and livestock: Impacts, adaptation, and mitigation

    Directory of Open Access Journals (Sweden)

    M. Melissa Rojas-Downing

    2017-01-01

    Full Text Available Global demand for livestock products is expected to double by 2050, mainly due to improvement in the worldwide standard of living. Meanwhile, climate change is a threat to livestock production because of the impact on quality of feed crop and forage, water availability, animal and milk production, livestock diseases, animal reproduction, and biodiversity. This study reviews the global impacts of climate change on livestock production, the contribution of livestock production to climate change, and specific climate change adaptation and mitigation strategies in the livestock sector. Livestock production will be limited by climate variability as animal water consumption is expected to increase by a factor of three, demand for agricultural lands increase due to need for 70% growth in production, and food security concern since about one-third of the global cereal harvest is used for livestock feed. Meanwhile, the livestock sector contributes 14.5% of global greenhouse gas (GHG emissions, driving further climate change. Consequently, the livestock sector will be a key player in the mitigation of GHG emissions and improving global food security. Therefore, in the transition to sustainable livestock production, there is a need for: a assessments related to the use of adaptation and mitigation measures tailored to the location and livestock production system in use, and b policies that support and facilitate the implementation of climate change adaptation and mitigation measures.

  17. Health Care Facilities Resilient to Climate Change Impacts

    Directory of Open Access Journals (Sweden)

    Jaclyn Paterson

    2014-12-01

    Full Text Available Climate change will increase the frequency and magnitude of extreme weather events and create risks that will impact health care facilities. Health care facilities will need to assess climate change risks and adopt adaptive management strategies to be resilient, but guidance tools are lacking. In this study, a toolkit was developed for health care facility officials to assess the resiliency of their facility to climate change impacts. A mixed methods approach was used to develop climate change resiliency indicators to inform the development of the toolkit. The toolkit consists of a checklist for officials who work in areas of emergency management, facilities management and health care services and supply chain management, a facilitator’s guide for administering the checklist, and a resource guidebook to inform adaptation. Six health care facilities representing three provinces in Canada piloted the checklist. Senior level officials with expertise in the aforementioned areas were invited to review the checklist, provide feedback during qualitative interviews and review the final toolkit at a stakeholder workshop. The toolkit helps health care facility officials identify gaps in climate change preparedness, direct allocation of adaptation resources and inform strategic planning to increase resiliency to climate change.

  18. IMPACT, VULNERABILITY AND INURING TO THE CLIMATE CHANGES

    Energy Technology Data Exchange (ETDEWEB)

    Mazilu Mirela; Buce Gabriela; Ciobanu Mariana [University of Craiova, University Centre of Drobeta Turnu Severin, Mehedinti (Romania)

    2008-09-30

    The adverse effects of the climate changes caused or not by the human being are on the international politic agenda for more than a decade. All over the world the discussions on the climate changes are intensifying and heading new directions, with a larger opening. The climate changes were subject of the agenda of the most important regional and international meetings this year, many of these asking the ending with positive results of the U.N.O. Conference on Climate Changes that is taking place these days in Bali, between the 3rd and 14th of December 2007. The Bali Conference will give the possibility of getting involved in the future into the multilateral processes of climate change under the auspices of the United Nations and into the process of shaping a global approaching plan of the climate changes. The climate changes represent one of the major challenges in our century--a complex field about what we have to improve our knowledge and understanding in order to take immediate and correct actions for a lasting and efficient approach from the point of view of the costs and challenges in the climate changes field respecting the precaution and climate changes inuring principle. The inuring is a process which allows societies to learn to react to the risks associated to the climate changes. These risks are real and already present in many systems and essential sectors of the human existence--the hydrological resources, alimentary security and health. The inuring options are multiple and vary from the technical ones--protection against the water gown level or dwellings protected against the floods by being hanged up on pontoons--to the change of the behavior of the individuals, such as the reduce of the water or energy consumption and/or a more efficient consumption. Other strategies suppose: signaling systems of the meteorological phenomenon, improvements of the risk management, ways to assure and preserve the biodiversity in order to reduce the impact of the

  19. Global modelling of river water quality under climate change

    Science.gov (United States)

    van Vliet, Michelle T. H.; Franssen, Wietse H. P.; Yearsley, John R.

    2017-04-01

    Climate change will pose challenges on the quality of freshwater resources for human use and ecosystems for instance by changing the dilution capacity and by affecting the rate of chemical processes in rivers. Here we assess the impacts of climate change and induced streamflow changes on a selection of water quality parameters for river basins globally. We used the Variable Infiltration Capacity (VIC) model and a newly developed global water quality module for salinity, temperature, dissolved oxygen and biochemical oxygen demand. The modelling framework was validated using observed records of streamflow, water temperature, chloride, electrical conductivity, dissolved oxygen and biochemical oxygen demand for 1981-2010. VIC and the water quality module were then forced with an ensemble of bias-corrected General Circulation Model (GCM) output for the representative concentration pathways RCP2.6 and RCP8.5 to study water quality trends and identify critical regions (hotspots) of water quality deterioration for the 21st century.

  20. Modeling Potential Impacts of Climate Change on Streamflow Using Projections of the 5th Assessment Report for the Bernam River Basin, Malaysia

    Directory of Open Access Journals (Sweden)

    Nkululeko Simeon Dlamini

    2017-03-01

    Full Text Available Potential impacts of climate change on the streamflow of the Bernam River Basin in Malaysia are assessed using ten Global Climate Models (GCMs under three Representative Concentration Pathways (RCP4.5, RCP6.0 and RCP8.5. A graphical user interface was developed that integrates all of the common procedures of assessing climate change impacts, to generate high resolution climate variables (e.g., rainfall, temperature, etc. at the local scale from large-scale climate models. These are linked in one executable module to generate future climate sequences that can be used as inputs to various models, including hydrological and crop models. The generated outputs were used as inputs to the SWAT hydrological model to simulate the hydrological processes. The evaluation results indicated that the model performed well for the watershed with a monthly R2, Nash–Sutcliffe Efficiency (NSE and Percent Bias (PBIAS values of 0.67, 0.62 and −9.4 and 0.62, 0.61 and −4.2 for the calibration and validation periods, respectively. The multi-model projections show an increase in future temperature (tmax and tmin in all respective scenarios, up to an average of 2.5 °C for under the worst-case scenario (RC8.5. Rainfall is also predicted to change with clear variations between the dry and wet season. Streamflow projections also followed rainfall pattern to a great extent with a distinct change between the dry and wet season possibly due to the increase in evapotranspiration in the watershed. In principle, the interface can be customized for the application to other watersheds by incorporating GCMs’ baseline data and their corresponding future data for those particular stations in the new watershed. Methodological limitations of the study are also discussed.

  1. An example of groundwater modeling to predict impact of climate change and to support optimization of a new intake

    Science.gov (United States)

    Polomcic, D.; Stevanovic, Z.; Ristic Vakanjac, V.; Dokmanovic, P.; Milanovic, S.

    2012-04-01

    For the purposes of forecasting the effects of climate change in the Pirot basin and surrounding karst massifs in South-East Serbia hydrodynamic analysis of groundwater regime has been carried out. The analysis comprises the two steps: 1. Forecasting discharge of the karst springs along the edge of the karst massifs currently tapped for drinking water supply; and 2. Forecasting effects of possible new intake consists of 10 operational wells which could be placed in deeper aquifer parts to compensate reduced groundwater flow. For the late the finite differences method and software package MODFLOW have been used, while calculations were conducted by Groundwater Vistas 5.51 (Environmental Simulations International, Ltd). The study area consists of three main hydrogeological units: 1. Central unit: Intergranular aquifer of Pliocene and Quaternary sand and gravel deposited in the Pirot basin, covered by recent alluvial sediments of the Nišava and Jerma Rivers 2. Karstic aquifer in massif of Stara Planina in the eastern basin's margin also extending in the basin' bedrock; and 3. Fissured aquifer of the southern slopes of Vla\\vska Mountain made of Jurassic and Lower Creatceous limestones and clastic rocks. The corresponding aquifers are mostly unconfined, with exception of confined aquifer layers in Pliocene-Quaternary sediments. A basic dimension of the matrix, which includes the research area, is 31.4 km x 24 km, which covers an area of 753.6 km2. The flow field in the plan is made with the basic cell size of 400 m x 400 m, which is in the zone of karst springs refined with square mesh of 25 m x 25 m. The calibration model was utilized in unsteady flow conditions, with a time step of one month for the time period January 2000 - December 2010 (total of 132 time steps), which is at a lower level of iterations divided into 10 parts of unequal length (factor 1.2). Prediction calculations include four representative periods: 2020, 2050, 2070 and 2100 and seven different

  2. Regional Risk Assessment for climate change impacts on coastal aquifers.

    Science.gov (United States)

    Iyalomhe, F; Rizzi, J; Pasini, S; Torresan, S; Critto, A; Marcomini, A

    2015-12-15

    Coastal aquifers have been identified as particularly vulnerable to impacts on water quantity and quality due to the high density of socio-economic activities and human assets in coastal regions and to the projected rising sea levels, contributing to the process of saltwater intrusion. This paper proposes a Regional Risk Assessment (RRA) methodology integrated with a chain of numerical models to evaluate potential climate change-related impacts on coastal aquifers and linked natural and human systems (i.e., wells, river, agricultural areas, lakes, forests and semi-natural environments). The RRA methodology employs Multi Criteria Decision Analysis methods and Geographic Information Systems functionalities to integrate heterogeneous spatial data on hazard, susceptibility and risk for saltwater intrusion and groundwater level variation. The proposed approach was applied on the Esino River basin (Italy) using future climate hazard scenarios based on a chain of climate, hydrological, hydraulic and groundwater system models running at different spatial scales. Models were forced with the IPCC SRES A1B emission scenario for the period 2071-2100 over four seasons (i.e., winter, spring, summer and autumn). Results indicate that in future seasons, climate change will cause few impacts on the lower Esino River valley. Groundwater level decrease will have limited effects: agricultural areas, forests and semi-natural environments will be at risk only in a region close to the coastline which covers less than 5% of the total surface of the considered receptors; less than 3.5% of the wells will be exposed in the worst scenario. Saltwater intrusion impact in future scenarios will be restricted to a narrow region close to the coastline (only few hundred meters), and thus it is expected to have very limited effects on the Esino coastal aquifer with no consequences on the considered natural and human systems.

  3. Climate change impact on wetland forest plants of SNR Zasavica

    Directory of Open Access Journals (Sweden)

    Čavlović Dragana

    2012-01-01

    Full Text Available Wetlands are among the most vulnerable habitats on the planet. Very complex forest ecosystems are also parts of wetlands. Research and analysis of forest vegetation elements, leads to a conclusion about ecological conditions of wetlands. The aim of the paper is detail forest vegetation study, and analyzing the impact of climate changes on wetland forest vegetations of the strict protection area at the SNR Zasavica Ramsar site. Field research was carried out by using Braun-Blanquet’s Zurich-Montpelier school method. Phytogeographical elements and life forms of plants were determined subsequently, in order to get indicator values of wetland plants. Coupled Regional Climate Model (CRCM, EBU-POM was used for the climate simulations. Exact climatic variables for the site were determined by downscaling method. Climatic variables reference values were taken for the period of 1961-1990, and climate change simulations for the period 2071-2100 (A1B and A2. Indicator values of forest plants taken into consideration were humidity and temperature; therefore, ecological optimums were determined in scales of humidity and temperature. Regional Climate Model shows that there will be a long and intensive dry period in the future, with high temperatures from April till October. Continental winter will be more humid, with higher precipitation, especially in February. Based on the analysis of results it was concluded that wetlands are transitional habitats, also very variable and therefore vulnerable to changes. The changes may lead to the extinction of some plant species.

  4. Modelling regional climate change and urban planning scenarios and their impacts on the urban environment in two cities with WRF-ACASA

    Science.gov (United States)

    Falk, M.; Pyles, R. D.; Marras, S.; Spano, D.; Paw U, K. T.

    2011-12-01

    The number of urban metabolism studies has increased in recent years, due to the important impact that energy, water and carbon exchange over urban areas have on climate change. Urban modeling is therefore crucial in the future design and management of cities. This study presents the ACASA model coupled to the Weather Research and Forecasting (WRF-ARW) mesoscale model to simulate urban fluxes at a horizontal resolution of 200 meters for urban areas of roughly 100 km^2. As part of the European Project "BRIDGE", these regional simulations were used in combination with remotely sensed data to provide constraints on the land surface types and the exchange of carbon and energy fluxes from urban centers. Surface-atmosphere exchanges of mass and energy were simulated using the Advanced Canopy Atmosphere Soil Algorithm (ACASA). ACASA is a multi-layer high-order closure model, recently modified to work over natural, agricultural as well as urban environments. In particular, improvements were made to account for the anthropogenic contribution to heat and carbon production. For two cities four climate change and four urban planning scenarios were simulated: The climate change scenarios include a base scenario (Sc0: 2008 Commit in IPCC), a medium emission scenario (Sc1: IPCC A2), a worst case emission scenario (Sce2: IPCC A1F1) and finally a best case emission scenario (Sce3: IPCC B1). The urban planning scenarios include different development scenarios such as smart growth. The two cities are a high latitude city, Helsinki (Finland) and an historic city, Florence (Italy). Helsinki is characterized by recent, rapid urbanization that requires a substantial amount of energy for heating, while Florence is representative of cities in lower latitudes, with substantial cultural heritage and a comparatively constant architectural footprint over time. In general, simulated fluxes matched the point observations well and showed consistent improvement in the energy partitioning over

  5. The Impacts of Climate Change Mitigation Strategies on Animal Welfare

    Science.gov (United States)

    Shields, Sara; Orme-Evans, Geoffrey

    2015-01-01

    Simple Summary Climate change is probably the most important environmental issue of our time. Raising animals for food contributes to the production of greenhouse gases implicated in the global warming that is causing climate change. To combat this ecological disaster, a number of mitigation strategies involving changes to agricultural practices have been proposed. However, some of these changes will impact the welfare of farmed animals. This paper reviews selected climate change mitigation strategies and explains how different approaches could have negative or positive effects. Abstract The objective of this review is to point out that the global dialog on reducing greenhouse gas emissions in animal agriculture has, thus far, not adequately considered animal welfare in proposed climate change mitigation strategies. Many suggested approaches for reducing emissions, most of which could generally be described as calls for the intensification of production, can have substantial effects on the animals. Given the growing world-wide awareness and concern for animal welfare, many of these approaches are not socially sustainable. This review identifies the main emission abatement strategies in the climate change literature that would negatively affect animal welfare and details the associated problems. Alternative strategies are also identified as possible solutions for animal welfare and climate change, and it is suggested that more attention be focused on these types of options when allocating resources, researching mitigation strategies, and making policy decisions on reducing emissions from animal agriculture. PMID:26479240

  6. Climate Change Impacts on Central China and Adaptation Measures

    Institute of Scientific and Technical Information of China (English)

    REN Yong-Jian; CUI Jiang-Xue; WAN Su-Qin; LIU Min; CHEN Zheng-Hong; LIAO Yu-Fang; WANG Ji-Jun

    2013-01-01

    In Central China, the obvious climate change has happened along with global warming. Based on the observational analysis, the climate change has significant effects, both positive and negative, in every field within the study area, and with the harmful effects far more prevalent. Under the scenario A1B, it is reported that temperature, precipitation, days of heat waves and extreme precipitation intensity will increase at respective rates of 0.38◦C per decade, 12.6 mm per decade, 6.4 d and 47 mm per decade in the 21st century. It is widely believed that these climate changes in the future will result in some apparent impacts on agro-ecosystems, water resources, wetland ecosystem, forest ecosystem, human health, energy sectors and other sensitive fields in Central China. Due to the limited scientific knowledge and researches, there are still some shortages in the climate change assessment methodologies and many uncertainties in the climate prediction results. Therefore, it is urgent and essential to increase the studies of the regional climate change adaptation, extend the research fields, and enhance the studies in the extreme weather and climate events to reduce the uncertainties of the climate change assessments.

  7. Simulating climate change impact on soil erosion using RUSLE model − A case study in a watershed of mid-Himalayan landscape

    Indian Academy of Sciences (India)

    Surya Gupta; Suresh Kumar

    2017-04-01

    Climate change, particularly due to the changed precipitation trend, can have a severe impact on soil erosion. The effect is more pronounced on the higher slopes of the Himalayan region. The goal of this study was to estimate the impact of climate change on soil erosion in a watershed of the Himalayan region using RUSLE model. The GCM (general circulation model) derived emission scenarios (HadCM3 A2a and B2a SRES) were used for climate projection. The statistical downscaling model (SDSM) was used to downscale the precipitation for three future periods, 2011–2040, 2041–2070, and 2071–2099, at large scale. Rainfall erosivity (R) was calculated for future periods using the SDSM downscaled precipitation data. ASTER digital elevation model (DEM) and Indian Remote Sensing data – IRS LISS IV satellite data were used to generate the spatial input parameters required by RUSLE model. A digital soil-landscape map was prepared to generate spatially distributed soil erodibility (K) factor map of the watershed. Topographic factors, slope length (L) and steepness (S) were derived from DEM. Normalised difference vegetation index (NDVI) derived from the satellite data was used to represent spatial variation vegetation density and condition under various land use/land cover. This variation was used to represent spatial vegetation cover factor. Analysis revealed that the average annual soil loss may increase by 28.38, 25.64 and 20.33% in the 2020s, 2050s and 2080s, respectively under A2 scenario, while under B2 scenario, it may increase by 27.06, 25.31 and 23.38% in the 2020s, 2050s and 2080s, respectively, from the base period (1985–2013). The study provides a comprehensive understanding of the possible future scenario of soil erosion in the mid-Himalaya for scientists and policy makers.

  8. Simulating climate change impact on soil erosion using RUSLE model - A case study in a watershed of mid-Himalayan landscape

    Science.gov (United States)

    Gupta, Surya; Kumar, Suresh

    2017-06-01

    Climate change, particularly due to the changed precipitation trend, can have a severe impact on soil erosion. The effect is more pronounced on the higher slopes of the Himalayan region. The goal of this study was to estimate the impact of climate change on soil erosion in a watershed of the Himalayan region using RUSLE model. The GCM (general circulation model) derived emission scenarios (HadCM3 A2a and B2a SRES) were used for climate projection. The statistical downscaling model (SDSM) was used to downscale the precipitation for three future periods, 2011-2040, 2041-2070, and 2071-2099, at large scale. Rainfall erosivity ( R) was calculated for future periods using the SDSM downscaled precipitation data. ASTER digital elevation model (DEM) and Indian Remote Sensing data - IRS LISS IV satellite data were used to generate the spatial input parameters required by RUSLE model. A digital soil-landscape map was prepared to generate spatially distributed soil erodibility ( K) factor map of the watershed. Topographic factors, slope length ( L) and steepness ( S) were derived from DEM. Normalised difference vegetation index (NDVI) derived from the satellite data was used to represent spatial variation vegetation density and condition under various land use/land cover. This variation was used to represent spatial vegetation cover factor. Analysis revealed that the average annual soil loss may increase by 28.38, 25.64 and 20.33% in the 2020s, 2050s and 2080s, respectively under A2 scenario, while under B2 scenario, it may increase by 27.06, 25.31 and 23.38% in the 2020s, 2050s and 2080s, respectively, from the base period (1985-2013). The study provides a comprehensive understanding of the possible future scenario of soil erosion in the mid-Himalaya for scientists and policy makers.

  9. Impact of climate change on carbon cycle in freshwater ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Kankaala, P.; Ojala, A.; Tulonen, T.; Haapamaeki, J.; Arvola, L. [Helsinki Univ., Lammi (Finland). Lammi Biological Station

    1996-12-31

    The impacts of the expected climate change on Finnish lake ecosystems were studied with the biota of the mesohumic Lake Paeaejaervi, southern Finland. Experimental conditions, from small-scale experiments on single species level to a large-scale ecosystem manipulation, were established to simulate directly the future climate and/or loading of nutrients and dissolved organic matter (DOM) from the drainage area. The experimental studies were accomplished by modelling the carbon flow in the pelagic food web as well as the growth of littoral macrophytes. The main hypothese tested were as follows: As a consequence of the climate change (rising temperature and increasing precipitation) the loading of nutrients and dissolved organic matter (DOM) from the drainage area to the lake will increase. In the pelagic zone this will be first reflected i higher productivity of primary producers and bacteria, but will later affect the entire food chain. Increase in atmospheric CO{sub 2} concentration and ambient temperature as well as longer growing season will enhance the overall productivity of littoral macrophytes. The higher productivity of the littoral zone will be reflected in the pelagic zone an thus may change the whole ecosystem of the lake

  10. Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed.

    Science.gov (United States)

    Ertürk, Ali; Ekdal, Alpaslan; Gürel, Melike; Karakaya, Nusret; Guzel, Cigdem; Gönenç, Ethem

    2014-11-15

    Western Mediterranean Region of Turkey is subject to considerable impacts of climate change that may adversely affect the water resources. Decrease in annual precipitation and winter precipitation as well as increase in temperatures are observed since 1960s. In this study, the impact of climate change on groundwater resources in part of Köyceğiz-Dalyan Watershed was evaluated. Evaluation was done by quantifying the impacts of climate change on the water budget components. Hydrological modeling was conducted with SWAT model which was calibrated and validated successfully. Climate change and land use scenarios were used to calculate the present and future climate change impacts on water budgets. According to the simulation results, almost all water budget components have decreased. SWAT was able to allocate less irrigation water because of the decrease of overall water due to the climate change. This resulted in an increase of water stressed days and temperature stressed days whereas crop yields have decreased according to the simulation results. The results indicated that lack of water is expected to be a problem in the future. In this manner, investigations on switching to more efficient irrigation methods and to crops with less water consumption are recommended as adaptation measures to climate change impacts.

  11. Modeling the Impacts of Historic Climate Change and Extreme Droughts on Water Yield and Productivity of National Forests over the Conterminous U.S

    Science.gov (United States)

    Sun, S.; Sun, G.; Caldwell, P. V.; McNulty, S. G.; Zhang, Y.

    2014-12-01

    Quantifying the impacts of droughts on the U.S National Forests (NFs) is necessary to develop sound forest management plans to mitigate and adapt to climate change. This study applied a water balance model (WaSSI) to 170 National Forests (NFs) over the conterminous U.S to examine how long-term climatic change and extreme climate events impacted forest water yield and productivity. Our model predicted that mean water yield decreased by 5% while mean productivity increased by 10% between 1961-2012 across the NFs. Overall 32% of NFs showed a significant increasing trend in forest gross ecosystem productivity (GEP), while 5% of the NFs had a significant decreasing trend. This study also suggested that the extent and severity of drought events occurring in the NFs had an increasing trend during the past 50 years. Taking the 170 NFs as a whole, the top-five droughts were characterized by a 261 mm/yr (or 30%) reduction in precipitation, that resulted in reductions in evapotranspiration by 55 mm/yr (or 10%), water yield by 154 mm/yr (or 49%) and GEP by 121 gC/m2/yr (or 10%). However, distribution of these changes varied spatially due to differences in vegetation types, weather, and geography. Overall, this study provided an assessment of historical impacts of droughts on forest watershed hydrology and productivity across diverse geographic regions using a consistent database. The study also identified forest watersheds that were severely influenced by historical drought, and provided a reference to develop appropriate adaptation strategies for potential future extreme droughts on the forest ecosystem services of NFs.

  12. Comparison of two potato simulation models under climate change. II Application of climate change scenarios.

    NARCIS (Netherlands)

    Wolf, J.

    2002-01-01

    The effects of climate change (for the year 2050 compared to ambient climate) and change in climatic variability on potato growth and production at 6 sites in Europe were calculated. These calculations were done with both a simple growth model, POTATOS, and a comprehensive model, NPOTATO. Comparison

  13. Comparison of two soya bean simulation models under climate change : II Application of climate change scenarios

    NARCIS (Netherlands)

    Wolf, J.

    2002-01-01

    The effects of climate change (for 2050 compared to ambient climate) and change in climatic variability on soya bean growth and production at 3 sites in the EU have been calculated. These calculations have been done with both a simple growth model, SOYBEANW, and a comprehensive model, CROPGRO.

  14. Uncertainties in projecting climate-change impacts in marine ecosystems

    DEFF Research Database (Denmark)

    Payne, Mark; Barange, Manuel; Cheung, William W. L.;

    2016-01-01

    Projections of the impacts of climate change on marine ecosystems are a key prerequisite for the planning of adaptation strategies, yet they are inevitably associated with uncertainty. Identifying, quantifying, and communicating this uncertainty is key to both evaluating the risk associated...... with a projection and building confidence in its robustness. We review how uncertainties in such projections are handled in marine science. We employ an approach developed in climate modelling by breaking uncertainty down into (i) structural (model) uncertainty, (ii) initialization and internal variability...... uncertainty is rarely treated explicitly and reducing this type of uncertainty may deliver gains on the seasonal-to-decadal time-scale.Weconclude that all parts of marine science could benefit from a greater exchange of ideas, particularly concerning such a universal problem such as the treatment...

  15. Consideration of climate change on environmental impact assessment in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Enríquez-de-Salamanca, Álvaro, E-mail: aenriquez@draba.org [Escuela de Doctorado, Universidad Nacional de Educación a Distancia, UNED, Draba Ingeniería y Consultoría Medioambiental, Cañada Nueva, 29, 28200 San Lorenzo de El Escorial (Spain); Martín-Aranda, Rosa M., E-mail: rmartin@ccia.uned.es [Departamento de Química Inorgánica y Química Técnica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo Senda del Rey, 9, 28040, Madrid (Spain); Díaz-Sierra, Rubén, E-mail: sierra@dfmf.uned.es [Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo Senda del Rey, 9, 28040, Madrid (Spain)

    2016-02-15

    Most of the projects subject to environmental impact assessment (EIA) are closely related to climate change, as they contribute to or are affected by it. The growing certainty about climate change and its impacts makes its consideration an essential part of the EIA process, as well as in strategic environmental assessment (SEA). This paper examines how climate change (CC) has been taken into account in EIA in Spain through the analysis of 1713 environmental records of decision (RODs) of projects submitted for EIA. In 2013 Spain approved one of the most advanced laws in terms of CC consideration in environmental assessment, although it had not yet accumulated extensive practice on the issue. This contrasts with the situation of countries like Canada or the USA, which have a significant body of experience without specific legal requirements. Only 14% of the RODs analysed included references to CC, and in more than half of the cases it was a mere citation. Thermal power plants, which are subject to specific GHG regulations, show the highest consideration, while transport infrastructures, which are important contributors to CC, show a very low consideration. Almost all the references are related to their contribution to CC, while consideration of the effects of CC is minimal. The increasingly common incorporation of CC into SEA, should not imply its exclusion from EIA, because both processes have different aims and uses. Including the obligation to consider CC in the EIA regulations is highly desirable, but probably not enough without other measures, such as practical guidance, training and motivational programmes for practitioners and evaluators. But even these actions cannot ensure effective and adequate assessments of CC. Probably more resources should be spent on creating greater awareness in all the agents involved in EIA. - Highlights: • We analyse how the climate change is considered in EIA in Spain. • Few projects seriously assess climate change.

  16. Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum using hydrological and geophysical methods

    Directory of Open Access Journals (Sweden)

    H. Sulzbacher

    2012-10-01

    Full Text Available A numerical, density dependent groundwater model is set up for the North Sea Island of Borkum to estimate climate change impacts on coastal aquifers and especially the situation of barrier islands in the Wadden Sea. The database includes information from boreholes, a seismic survey, a helicopter-borne electromagnetic (HEM survey, monitoring of the freshwater-saltwater boundary by vertical electrode chains in two boreholes, measurements of groundwater table, pumping and slug tests, as well as water samples. Based on a statistical analysis of borehole columns, seismic sections and HEM, a hydrogeological model is set up. The groundwater model is developed using the finite-element programme FEFLOW. The density dependent groundwater model is calibrated on the basis of hydraulic, hydrological and geophysical data, in particular spatial HEM and local monitoring data. Verification runs with the calibrated model show good agreement between measured and computed hydraulic heads. A good agreement is also obtained between measured and computed density or total dissolved solids data for both the entire freshwater lens on a large scale and in the area of the well fields on a small scale.

    For simulating future changes in this coastal groundwater system until the end of the current century, we use the climate scenario A2, specified by the Intergovernmental Panel on Climate Change and, in particular, the data for the German North Sea coast. Simulation runs show proceeding salinisation with time beneath the well fields of the two waterworks Waterdelle and Ostland.

    The modelling study shows that the spreading of well fields is an appropriate protection measure against excessive salinisation of the water supply until the end of the current century.

  17. Impact of climate change on Antarctic krill

    NARCIS (Netherlands)

    Florentino De Souza Silva, A.P.; Atkinson, A.; Kawaguchi, S.; Bravo Rebolledo, E.; Franeker, van J.A.

    2012-01-01

    Antarctic krill Euphausia superba (hereafter ‘krill’) occur in regions undergoing rapid environmental change, particularly loss of winter sea ice. During recent years, harvesting of krill has increased, possibly enhancing stress on krill and Antarctic ecosystems. Here we review the overall impact of

  18. Impact of climate change on Antarctic krill

    NARCIS (Netherlands)

    Florentino De Souza Silva, A.P.; Atkinson, A.; Kawaguchi, S.; Bravo Rebolledo, E.; Franeker, van J.A.

    2012-01-01

    Antarctic krill Euphausia superba (hereafter ‘krill’) occur in regions undergoing rapid environmental change, particularly loss of winter sea ice. During recent years, harvesting of krill has increased, possibly enhancing stress on krill and Antarctic ecosystems. Here we review the overall impact of

  19. A Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US

    Energy Technology Data Exchange (ETDEWEB)

    Oubeidillah, Abdoul A [ORNL; Kao, Shih-Chieh [ORNL; Ashfaq, Moetasim [ORNL; Naz, Bibi S [ORNL; Tootle, Glenn [University of Alabama, Tuscaloosa

    2014-01-01

    To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic dataset with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation including meteorologic forcings, soil, land class, vegetation, and elevation were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous United States at refined 1/24 (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter dataset was prepared for the macro-scale Variable Infiltration Capacity (VIC) hydrologic model. The VIC simulation was driven by DAYMET daily meteorological forcing and was calibrated against USGS WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter dataset may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous United States. We anticipate that through this hydrologic parameter dataset, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter dataset will be provided to interested parties to support further hydro-climate impact assessment.

  20. A model for climate change education in formal and informal settings--C2S2 Climate Change Student Summit

    Science.gov (United States)

    Huffman, L. T.; Lynds, S. E.; Rack, F. R.

    2012-12-01

    Through a NOAA Environmental Literacy grant, ANDRILL (ANtarctic geological DRILLing) created a unique opportunity for both formal and informal educators to engage their classrooms/audiences in understanding the complexities of climate change. The program, entitled C2S2: Climate Change Student Summits, included excellent geographical coverage through an exceptional two-workshop professional development series for teachers in each of nine different regions representing the U.S. National Climate Assessment regions defined by the U.S. Global Change Research Program. The program also included a creative, investigative science research and presentation experience for teams of students in each region, culminating in the Climate Change Student Summit, an on-site capstone event including a videoconference connecting all sites. The success of this program is based on combining multiple aspects, such as providing professional development for educators and encouraging the active involvement of research scientists, both in the professional development workshops and in the Student Summit. Another key factor is the close working relationships between informal and formal education entities, including the involvement of informal science learning facilities and informal science education leaders. The program includes the creation and use of cutting-edge curriculum materials available in the ELF, (Environmental Literacy Framework with a focus on climate change) and hands-on resources for teachers and students that provide an earth systems approach to climate change education, which have been successfully used in grades 5-12 as well as at numerous science museums. The C2S2 project has completed four years of activities with demonstrated positive impacts on both students and teachers. This presentation will share the lessons learned about implementing this climate change science education program and suggest that it is a successful model that can be used to scale up this project from

  1. Climate change and its gendered impacts on agriculture in Vietnam

    Directory of Open Access Journals (Sweden)

    Trung, P.T

    2013-03-01

    Full Text Available Studies have shown that Vietnam is one of the countries that most affected by climate change because of its geographical and natural conditions together with its fast but massive and unplanned urbanization. There are many research and studies that have been conducted to assess the impacts of climate change on different sectors in Vietnam. Agriculture plays an important role in the country’s economy in terms of poverty reduction, food security, employment and export but projected to be heavily affected because of sea level rise, floods or droughts etc. A large proportion of Vietnam’s population, especially women, involves with agricultural works and production. So, this paper using a gender perspective will examine possible impacts that climate change has been causing to women and men differently in order to propose some solutions for the facing problems. Since the paper only utilizes available resources, it can serve as a concept note for further works in the future.

  2. Uncertainty in projected impacts of climate change on biodiversity

    DEFF Research Database (Denmark)

    Garcia, Raquel A.

    metrics. By describing the exposure of regions to multiple changes in the magnitude, timing, position, or availability of climatic conditions, metrics can provide inferences about the potential threats and opportunities for the biodiversity in those regions. The diversity of existing metrics is reviewed......Evidence for shifts in the phenologies and distributions of species over recent decades has often been attributed to climate change. The prospect of greater and faster changes in climate during the 21st century has spurred a stream of studies anticipating future biodiversity impacts. Yet......, uncertainty is inherent to both projected climate changes and their effects on biodiversity, and needs to be understood before projections can be used. This thesis seeks to elucidate some of the uncertainties clouding assessments of biodiversity impacts from climate change, and explores ways to address them...

  3. Chapter 6. Impacts of Climate Change on Oregon's Coasts and Estuaries in "Oregon Climate Change Assessment Report"

    Science.gov (United States)

    In 2007 the Oregon legislature created a new Oregon Climate Change Research Institute (OCCRI), which is based at Oregon State University (OSU). As part of its charter, OCCRI is mandated to produce a biennial report for the state legislature synthesizing climate change impacts a...

  4. Workshop: Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Research on Climate Change Impacts and Associated Economic Damages (part 2)

    Science.gov (United States)

    This is a workshop titled Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Research on Climate Change Impacts and Associated Economic Damages (part 2)

  5. European information on climate change impacts, vulnerability and adaptation

    Science.gov (United States)

    Jol, A.; Isoard, S.

    2010-09-01

    Vulnerability to natural and technological disasters is increasing due to a combination of intensifying land use, increasing industrial development, further urban expansion and expanding infrastructure and also climate change. At EU level the European Commission's White Paper on adaptation to climate change (published in 2009) highlights that adaptation actions should be focused on the most vulnerable areas and communities in Europe (e.g. mountains, coastal areas, river flood prone areas, Mediterranean, Arctic). Mainstreaming of climate change into existing EU policies will be a key policy, including within the Water Framework Directive, Marine Strategy Framework Directive, Nature protection and biodiversity policies, integrated coastal zone management, other (sectoral) policies (agriculture, forestry, energy, transport, health) and disaster risk prevention. 2010 is the international year on biodiversity and the Conference of Parties of the biodiversity convention will meet in autumn 2010 (Japan) to discuss amongst other post-2010 strategies, objectives and indicators. Both within the Biodiversity Convention (CBD) and the Climate Change Convention (UNFCCC) there is increasing recognition of the need for integration of biodiversity conservation into climate change mitigation and adaptation activities. Furthermore a number of European countries and also some regions have started to prepare and/or have adopted national adaptation plans or frameworks. Sharing of good practices on climate change vulnerability methods and adaptation actions is so far limited, but is essential to improve such plans, at national, sub national and local level where much of the adaptation action is already taking place and will be expanding in future, also involving increasingly the business community. The EU Clearinghouse on CC impacts, vulnerability and adaptation should address these needs and it is planned to be operational end of 2011. The EEA is expected to have a role in its

  6. Impact of global climate change on ozone, particulate matter, and secondary organic aerosol concentrations in California: A model perturbation analysis

    Science.gov (United States)

    Horne, Jeremy R.; Dabdub, Donald

    2017-03-01

    Air quality simulations are performed to determine the impact of changes in future climate and emissions on regional air quality in the South Coast Air Basin (SoCAB) of California. The perturbation parameters considered in this study include (1) temperature, (2) absolute humidity, (3) biogenic VOC emissions due to temperature changes, and (4) boundary conditions. All parameters are first perturbed individually. In addition, the impact of simultaneously perturbing more than one parameter is analyzed. Air quality is simulated with meteorology representative of a summertime ozone pollution episode using both a baseline 2005 emissions inventory and a future emissions projection for the year 2023. Different locations within the modeling domain exhibit varying degrees of sensitivity to the perturbations considered. Afternoon domain wide average ozone concentrations are projected to increase by 13-18% as a result of changes in future climate and emissions. Afternoon increases at individual locations range from 10 to 36%. The change in afternoon particulate matter (PM) levels is a strong function of location in the basin, ranging from -7.1% to +4.7% when using 2005 emissions and -8.6% to +1.7% when using 2023 emissions. Afternoon secondary organic aerosol (SOA) concentrations for the entire domain are projected to decrease by over 15%, and the change in SOA levels is not a strong function of the emissions inventory utilized. Temperature increases play the dominant role in determining the overall impact on ozone, PM, and SOA concentrations in both the individual and combined perturbation scenarios.

  7. Arctic Cities and Climate Change: A Geographic Impact Assessment

    Science.gov (United States)

    Shiklomanov, N. I.; Streletskiy, D. A.

    2014-12-01

    Arctic climate change is a concern for the engineering community, land-use planners and policy makers as it may have significant impacts on socio-economic development and human activities in the northern regions. A warmer climate has potential for a series of positive economic effects, such as development of maritime transportation, enhanced agricultural production and decrease in energy consumption. However, these potential benefits may be outwaited by negative impacts related to transportation accessibility and stability of existing infrastructure, especially in permafrost regions. Compared with the Arctic zones of other countries, the Russian Arctic is characterized by higher population, greater industrial development and urbanization. Arctic urban areas and associated industrial sites are the location of some of intense interaction between man and nature. However, while there is considerable research on various aspects of Arctic climate change impacts on human society, few address effects on Arctic cities and their related industries. This presentation overviews potential climate-change impacts on Russian urban environments in the Arctic and discusses methodology for addressing complex interactions between climatic, permafrost and socio-economic systems at the range of geographical scales. We also provide a geographic assessment of selected positive and negative climate change impacts affecting several diverse Russian Arctic cities.

  8. An extended modeling approach to assess climate change impacts on groundwater recharge and adaptation in arid areas

    Directory of Open Access Journals (Sweden)

    H. Hashemi

    2014-10-01

    Full Text Available The impact of future climate scenarios on surface and groundwater resources was simulated using a modeling approach for an artificial recharge area in arid southern Iran. Future climate data for the periods of 2010–2030 and 2030–2050 were acquired from the Canadian Global Coupled Model (CGCM 3.1 for scenarios A1B, A2, and B1. These scenarios were adapted to the studied region using the delta-change method. The modified version of the HBV model (Qbox was used to simulate runoff in a flash flood prone catchment. The model was calibrated and validated for the period 2002–2011 using daily discharge data. The projected climate variables were used to simulate future runoff. The rainfall–runoff model was then coupled to a calibrated groundwater flow and recharge model (MODFLOW to simulate future recharge and groundwater hydraulic head. The results of the rainfall–runoff modeling showed that under the B1 scenario the number of floods might increase in the area. This in turn calls for a proper management, as this is the only source of fresh water supply in the studied region. The results of the groundwater recharge modeling showed no significant difference between present and future recharge for all scenarios. Owing to that, four abstraction and recharge scenarios were assumed to simulate the groundwater level and recharged water in the studied aquifer. The results showed that the abstraction scenarios have the most substantial effect on the groundwater level and the continuation of current pumping rate would lead to a groundwater decline by 18 m up to 2050.

  9. Impacts of Climate Change on the Climate Extremes of the Middle East

    Science.gov (United States)

    Turp, M. Tufan; Collu, Kamil; Deler, F. Busra; Ozturk, Tugba; Kurnaz, M. Levent

    2016-04-01

    The Middle East is one of the most vulnerable regions to the impacts of climate change. Because of the importance of the region and its vulnerability to global climate change, the studies including the investigation of projected changes in the climate of the Middle East play a crucial role in order to struggle with the negative effects of climate change. This research points out the relationship between the climate change and climate extremes indices in the Middle East and it investigates the changes in the number of extreme events as described by the joint CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices (ETCCDI). As part of the study, the regional climate model (RegCM4.4) of the Abdus Salam International Centre for Theoretical Physics (ICTP) is run to obtain future projection data. This research has been supported by Boǧaziçi University Research Fund Grant Number 10421.

  10. Impact of Climate Change on Food Security in Kenya

    Science.gov (United States)

    Yator, J. J.

    2016-12-01

    This study sought to address the existing gap on the impact of climate change on food security in support of policy measures to avert famine catastrophes. Fixed and random effects regressions for crop food security were estimated. The study simulated the expected impact of future climate change on food insecurity based on the Representative Concentration Pathways scenario (RCPs). The study makes use of county-level yields estimates (beans, maize, millet and sorghum) and daily climate data (1971 to 2010). Climate variability affects food security irrespective of how food security is defined. Rainfall during October-November-December (OND), as well as during March-April-May (MAM) exhibit an inverted U-shaped relationship with most food crops; the effects are most pronounced for maize and sorghum. Beans and Millet are found to be largely unresponsive to climate variability and also to time-invariant factors. OND rains and fall and summer temperature exhibit a U-shaped relationship with yields for most crops, while MAM rains temperature exhibits an inverted U-shaped relationship. However, winter temperatures exhibit a hill-shaped relationship with most crops. Project future climate change scenarios on crop productivity show that climate change will adversely affect food security, with up to 69% decline in yields by the year 2100. Climate variables have a non-linear relationship with food insecurity. Temperature exhibits an inverted U-shaped relationship with food insecurity, suggesting that increased temperatures will increase crop food insecurity. However, maize and millet, benefit from increased summer and winter temperatures. The simulated effects of different climate change scenarios on food insecurity suggest that adverse climate change will increase food insecurity in Kenya. The largest increases in food insecurity are predicted for the RCP 8.5Wm2, compared to RCP 4.5Wm2. Climate change is likely to have the greatest effects on maize insecurity, which is likely

  11. Impact of climate change on carbon pools variation in cultivated Alfisols and on CO2 emissions: performance and application of the Rothamsted carbon model in Togo

    Science.gov (United States)

    Kintche, Kokou; Guibert, Hervé; Tittonell, Pablo; Sogbedji, Jean; Leveque, Jean; Bonfoh, Bèdibètè; Pocanam, Yentchambré

    2010-05-01

    This study was carried out to evaluate the performance of the Rothamsted Carbon Model in simulating the C pool in cultivated Alfisols, while also assessing the impact of climate change on C pool variation patterns and on carbon dioxide (CO2) emission. The model input data was from two 30 year experiments conducted at Elavagnon (N 7° 58', E 1° 21') and Dalanda (N 8° 38', E 1° 00') in Togo. The model performance was evaluated on the basis of the consistency of the simulated parameters as compared to those observed in the field using the R2 statistic, root mean square error (RMSE), model efficiency (EF) and quotient of variance (QV). The parametered version of the model was used to assess the impact of global warming, late onset and early cessation of the rainy season, as observed in recent years in the West African region. The Rothamsted Carbon Model accurately described the observed C pool variations in these Alfisols after altering certain parameters, especially annual decomposition rates of active C compartments. Annual simulated decomposition rates were 10, 0.28, 0.47 and 0.015, respectively, for the decomposable plant material (DPM), resistant plant material (RPM), microbial biomass (BIO) and humified organic matter (HUM) fractions, whereas for RPM, BIO and HUM they were slightly low in comparison to the Rothamsted parametered nominal values. Simulated R2 values were 80% at Elavagnon and 79% at Dalanda. RMSE was 8% at Elavagnon and 7% at Dalanda. EF was positive and QV was above 1 in 25% of the simulations conducted at Elavagnon and in 50% of those conducted at Dalanda. The model simulated C losses (in the form of CO2) of 1.41 and 1.21 t C ha-1 year-1at Elavagnon and Dalanda, respectively. This study revealed that a 1° C monthly temperature increase would accelerate the loss of C stocks in these tropical Alfisols by 27%, while increasing C losses (CO2) by 2.3%. For the same annual rainfall level, late onset and early cessation of the rainy season would have

  12. Climate Change Impacts on High-Altitude Ecosystems

    Directory of Open Access Journals (Sweden)

    Harald Pauli

    2016-02-01

    Full Text Available Reviewed: Climate Change Impacts on High-Altitude Ecosystems By Münir Öztürk, Khalid Rehman Hakeem, I. Faridah-Hanum and Efe. Recep, Cham, Switzerland: Springer International Publishing, 2015. xvii + 696 pp. US$ 239.00. ISBN 978-3-319-12858-0.

  13. Climate change impact assessment and adaptation under uncertainty

    NARCIS (Netherlands)

    Wardekker, J.A.

    2011-01-01

    Expected impacts of climate change are associated with large uncertainties, particularly at the local level. Adaptation scientists, practitioners, and decision-makers will need to find ways to cope with these uncertainties. Several approaches have been suggested as ‘uncertainty-proof’ to some

  14. The implication of irrigation in climate change impact assessment

    NARCIS (Netherlands)

    Zhao, Gang; Webber, Heidi; Hoffmann, Holger; Wolf, Joost; Siebert, Stefan; Ewert, Frank

    2015-01-01

    This study evaluates the impacts of projected climate change on irrigation requirements and yields of six crops (winter wheat, winter barley, rapeseed, grain maize, potato, and sugar beet) in Europe. Furthermore, the uncertainty deriving from consideration of irrigation, CO2 effects on

  15. Impact of climate change on reservoir reliability | Mujere | African ...

    African Journals Online (AJOL)

    Impact of climate change on reservoir reliability. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL · RESOURCES ... carbon dioxide (CO2) are raising global and regional temperatures, and producing changes in other climate ... The reservoir supplies most of its water to citrus plantations.

  16. Short Note Potential impacts of climate change on African agriculture

    African Journals Online (AJOL)

    Short Note Potential impacts of climate change on African agriculture. ... and animals live, such as food production, availability and use of water and health risks. ... It seems obvious that any significant change in climate on a global scale would ...

  17. Risk Assessment Of Climate Change Impacts On Railway Infrastructure

    NARCIS (Netherlands)

    Stipanovic Oslakovic, I.; Maat, ter H.W.; Hartmann, A.; Dewulf, G.

    2013-01-01

    Although it has been known for a while that climate-related factors account for the performance development of infrastructure, it remains difficult for infrastructure manager to estimate the effect of the anticipated climate change. The impact of climate factors differs very much between geographica

  18. Uncertainties in projecting climate-change impacts in marine ecosystems

    DEFF Research Database (Denmark)

    Payne, Mark; Barange, Manuel; Cheung, William W. L.

    2016-01-01

    Projections of the impacts of climate change on marine ecosystems are a key prerequisite for the planning of adaptation strategies, yet they are inevitably associated with uncertainty. Identifying, quantifying, and communicating this uncertainty is key to both evaluating the risk associated with ...

  19. A global assessment of the impact of climate change\\ud on water scarcity

    OpenAIRE

    Gosling, Simon N.; Arnell, Nigel

    2013-01-01

    This paper presents a global scale assessment of the impact of climate change on water scarcity. Patterns of climate change from 21 Global Climate Models (GCMs) under four SRES scenarios are applied to a global hydrological model to estimate water resources across 1339 watersheds. The Water Crowding Index (WCI) and the Water Stress Index (WSI) are used to calculate exposure to increases and decreases in global water scarcity due to climate change. 1.6 (WCI) and 2.4 (WSI) billion people are es...

  20. Linking biological integrity and watershed models to assess the impacts of historical land use and climate changes on stream health.

    Science.gov (United States)

    Einheuser, Matthew D; Nejadhashemi, A Pouyan; Wang, Lizhu; Sowa, Scott P; Woznicki, Sean A

    2013-06-01

    Land use change and other human disturbances have significant impacts on physicochemical and biological conditions of stream systems. Meanwhile, linking these disturbances with hydrology and water quality conditions is challenged due to the lack of high-resolution datasets and the selection of modeling techniques that can adequately deal with the complex and nonlinear relationships of natural systems. This study addresses the above concerns by employing a watershed model to obtain stream flow and water quality data and fill a critical gap in data collection. The data were then used to estimate fish index of biological integrity (IBI) within the Saginaw Bay basin in Michigan. Three methods were used in connecting hydrology and water quality variables to fish measures including stepwise linear regression, partial least squares regression, and fuzzy logic. The IBI predictive model developed using fuzzy logic showed the best performance with the R (2) = 0.48. The variables that identified as most correlated to IBI were average annual flow, average annual organic phosphorus, average seasonal nitrite, average seasonal nitrate, and stream gradient. Next, the predictions were extended to pre-settlement (mid-1800s) land use and climate conditions. Results showed overall significantly higher IBI scores under the pre-settlement land use scenario for the entire watershed. However, at the fish sampling locations, there was no significant difference in IBI. Results also showed that including historical climate data have strong influences on stream flow and water quality measures that interactively affect stream health; therefore, should be considered in developing baseline ecological conditions.

  1. Synthetic Scenarios from CMIP5 Model Simulations for Climate Change Impact Assessments in Managed Ecosystems and Water Resources: Case Study in South Asian Countries

    Science.gov (United States)

    Anandhi, A.; Omani, N.; Chaubey, I.; Horton, R.; Bader, D.; Nanjundiah, R. S.

    2017-01-01

    Increasing population, urbanization, and associated demand for food production compounded by climate change and variability have important implications for the managed ecosystems and water resources of a region. This is particularly true for south Asia, which supports one quarter of the global population, half of whom live below the poverty line. This region is largely dependent on monsoon precipitation for water. Given the limited resources of the developing countries in this region, the objective of our study was to empirically explore climate change in south Asia up to the year 2099 using monthly simulations from 35 global climate models (GCMs) participating in the fifth phase of the Climate Model Inter-comparison Project (CMIP5) for two future emission scenarios (representative concentration pathways RCP4.5 and RCP8.5) and provide a wide range of potential climate change outcomes. This was carried out using a three-step procedure: calculating the mean annual, monsoon, and non-monsoon precipitation and temperatures; estimating the percent change from historical conditions; and developing scenario funnels and synthetic scenarios. This methodology was applied for the entire south Asia region; however, the percent change information generated at 1.5deg grid scale can be used to generate scenarios at finer spatial scales. Our results showed a high variability in the future change in precipitation (-23% to 52%, maximum in the non-monsoon season) and temperature (0.8% to 2.1%) in the region. Temperatures in the region consistently increased, especially in the Himalayan region, which could have impacts including a faster retreat of glaciers and increased floods. It could also change rivers from perennial to seasonal, leading to significant challenges in water management. Increasing temperatures could further stress groundwater reservoirs, leading to withdrawal rates that become even more unsustainable. The high precipitation variability (with higher propensity for

  2. Synthetic Scenarios from CMIP5 Model Simulations for Climate Change Impact Assessments in Managed Ecosystems and Water Resources: Case Study in South Asian Countries

    Science.gov (United States)

    Anandhi, A.; Omani, N.; Chaubey, I.; Horton, R.; Bader, D.; Nanjundiah, R. S.

    2017-01-01

    Increasing population, urbanization, and associated demand for food production compounded by climate change and variability have important implications for the managed ecosystems and water resources of a region. This is particularly true for south Asia, which supports one quarter of the global population, half of whom live below the poverty line. This region is largely dependent on monsoon precipitation for water. Given the limited resources of the developing countries in this region, the objective of our study was to empirically explore climate change in south Asia up to the year 2099 using monthly simulations from 35 global climate models (GCMs) participating in the fifth phase of the Climate Model Inter-comparison Project (CMIP5) for two future emission scenarios (representative concentration pathways RCP4.5 and RCP8.5) and provide a wide range of potential climate change outcomes. This was carried out using a three-step procedure: calculating the mean annual, monsoon, and non-monsoon precipitation and temperatures; estimating the percent change from historical conditions; and developing scenario funnels and synthetic scenarios. This methodology was applied for the entire south Asia region; however, the percent change information generated at 1.5deg grid scale can be used to generate scenarios at finer spatial scales. Our results showed a high variability in the future change in precipitation (-23% to 52%, maximum in the non-monsoon season) and temperature (0.8% to 2.1%) in the region. Temperatures in the region consistently increased, especially in the Himalayan region, which could have impacts including a faster retreat of glaciers and increased floods. It could also change rivers from perennial to seasonal, leading to significant challenges in water management. Increasing temperatures could further stress groundwater reservoirs, leading to withdrawal rates that become even more unsustainable. The high precipitation variability (with higher propensity for

  3. Impacts of climate change on the global forest sector

    Science.gov (United States)

    Perez-Garcia, J.; Joyce, L.A.; McGuire, A.D.; Xiao, X.

    2002-01-01

    The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors

  4. Evaluation of climate change impacts on energy demand

    DEFF Research Database (Denmark)

    Taseska, Verica; Markovska, Natasa; Callaway, John M.

    2012-01-01

    Adaptation Case, in which the optimal electricity generation mix is determined by allowing for endogenous capacity adjustments in the model. This modeling exercise will identify the changes in the energy demand and in electricity generation mix in the Adaptation Case, as well as climate change damages......Although previous climate change research has documented the effects of linking mitigation and adaptation in the energy sector, there is still a lack of integrated assessment, particularly at national level. This paper may contribute to fill this gap, identifying the interactions between climate...... change and the energy demand in Macedonia. The analyses are conducted using the MARKAL (MARKet ALlocation)-Macedonia model, with a focus on energy demand in commercial and residential sectors (mainly for heating and cooling). Three different cases are developed: 1) Base Case, which gives the optimal...

  5. Potential Impacts of Accelerated Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Leung, L. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vail, L. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-31

    This research project is part of the U.S. Nuclear Regulatory Commission’s (NRC’s) Probabilistic Flood Hazard Assessment (PFHA) Research plan in support of developing a risk-informed licensing framework for flood hazards and design standards at proposed new facilities and significance determination tools for evaluating potential deficiencies related to flood protection at operating facilities. The PFHA plan aims to build upon recent advances in deterministic, probabilistic, and statistical modeling of extreme precipitation events to develop regulatory tools and guidance for NRC staff with regard to PFHA for nuclear facilities. The tools and guidance developed under the PFHA plan will support and enhance NRC’s capacity to perform thorough and efficient reviews of license applications and license amendment requests. They will also support risk-informed significance determination of inspection findings, unusual events, and other oversight activities.

  6. Alternative future analysis for assessing the potential impact of climate change on urban landscape dynamics.

    Science.gov (United States)

    He, Chunyang; Zhao, Yuanyuan; Huang, Qingxu; Zhang, Qiaofeng; Zhang, Da

    2015-11-01

    Assessing the impact of climate change on urban landscape dynamics (ULD) is the foundation for adapting to climate change and maintaining urban landscape sustainability. This paper demonstrates an alternative future analysis by coupling a system dynamics (SD) and a cellular automata (CA) model. The potential impact of different climate change scenarios on ULD from 2009 to 2030 was simulated and evaluated in the Beijing-Tianjin-Tangshan megalopolis cluster area (BTT-MCA). The results suggested that the integrated model, which combines the advantages of the SD and CA model, has the strengths of spatial quantification and flexibility. Meanwhile, the results showed that the influence of climate change would become more severe over time. In 2030, the potential urban area affected by climate change will be 343.60-1260.66 km(2) (5.55 -20.37 % of the total urban area, projected by the no-climate-change-effect scenario). Therefore, the effects of climate change should not be neglected when designing and managing urban landscape.

  7. A New Economic Assessment Index for the Impact of Climate Change on Grain Yield

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The impact of climate change on agriculture has received wide attention by the scientific community.This paper studies how to assess the grain yield impact of climate change, according to the climate change over a long time period in the future as predicted by a climate system model. The application of the concept of a traditional "yield impact of meteorological factor (YIMF)" or "yield impact of weather factor" to the grain yield assessment of a decadal or even a longer timescale would be suffocated at the outset because the YIMF is for studying the phenomenon on an interannual timescale, and it is difficult to distinguish between the trend caused by climate change and the one resulting from changes in non-climatic factors. Therefore,the concept of the yield impact of climatic change (YICC), which is defined as the difference in the per unit area yields (PUAY) of a grain crop under a changing and an envisaged invariant climate conditions, is presented in this paper to assess the impact of global climate change on grain yields. The climatic factor has been introduced into the renowned economic Cobb-Douglas model, yielding a quantitative assessment method of YICC using real data. The method has been tested using the historical data of Northeast China,and the results show that it has an encouraging application outlook.

  8. Climate change and land management impact rangeland condition and sage-grouse habitat in southeastern Oregon

    OpenAIRE

    Megan K. Creutzburg; Emilie B. Henderson; David R. Conklin

    2015-01-01

    Contemporary pressures on sagebrush steppe from climate change, exotic species, wildfire, and land use change threaten rangeland species such as the greater sage-grouse (Centrocercus urophasianus). To effectively manage sagebrush steppe landscapes for long-term goals, managers need information about the potential impacts of climate change, disturbances, and management activities. We integrated information from a dynamic global vegetation model, a sage-grouse habitat climate envelope model, an...

  9. A new dataset for systematic assessments of climate change impacts as a function of global warming

    Directory of Open Access Journals (Sweden)

    J. Heinke

    2012-11-01

    Full Text Available In the ongoing political debate on climate change, global mean temperature change (ΔTglob has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalized patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilize a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  10. Verification of hydrological processes using the ACRU agro-hydrological modelling system for simulating potential climate change impacts in an alpine watershed in Alberta, Canada

    Science.gov (United States)

    Nemeth, M. W.; Kienzle, S. W.; Byrne, J. M.

    2009-12-01

    important to determine if outputs from the model are consistent with the behaviour of the hydrological system, and are based on comprehensive statistical analyses. Verification was done to generate confidence in the various scenarios of hydrological impacts within the UNSR watershed. After the model has been determined to be within physically meaningful ranges, different climate change scenarios will be applied to baseline data and integrated into the model to simulate the impacts of expected environmental changes. An ensemble of GCMs will be used to simulate the potential impacts of expected environmental changes, such as a decreased snowpack due to warming winter temperatures. References: Schulze, R.E.; Lorentz, S.; Kienzle, S.W.; Perks, L. 2004: Modelling the impacts of land-use and climate change on hydrological responses in the mixed underdeveloped / developed Mgeni catchment, South Africa. In: Kabat, P. et al. (Eds.): Vegetation, Water, Humans and the Climate A New Perspective on an Interactive System. BAHC-IGBP Publication, Springer, 17pp, with 14 Figures and 2 tables

  11. Impacts of climate change on mangrove ecosystems: A region by region overview

    Science.gov (United States)

    Ward, Raymond D.; Friess, Daniel A.; Day, Richard H.; MacKenzie, Richard A.

    2016-01-01

    Inter-related and spatially variable climate change factors including sea level rise, increased storminess, altered precipitation regime and increasing temperature are impacting mangroves at regional scales. This review highlights extreme regional variation in climate change threats and impacts, and how these factors impact the structure of mangrove communities, their biodiversity and geomorphological setting. All these factors interplay to determine spatially variable resiliency to climate change impacts, and because mangroves are varied in type and geographical location, these systems are good models for understanding such interactions at different scales. Sea level rise is likely to influence mangroves in all regions although local impacts are likely to be more varied. Changes in the frequency and intensity of storminess are likely to have a greater impact on N and Central America, Asia, Australia, and East Africa than West Africa and S. America. This review also highlights the numerous geographical knowledge gaps of climate change impacts, with some regions particularly understudied (e.g., Africa and the Middle East). While there has been a recent drive to address these knowledge gaps especially in South America and Asia, further research is required to allow researchers to tease apart the processes that influence both vulnerability and resilience to climate change. A more globally representative view of mangroves would allow us to better understand the importance of mangrove type and landscape setting in determining system resiliency to future climate change.

  12. Collared Pikas as a Model Species for Studying the Biological Impacts of Climate Change in Alpine Ecosystems

    Science.gov (United States)

    O'Donovan, K. S.; Hik, D.

    2007-12-01

    Climate models suggest that global temperatures could rise between 1.4° C and 5.8° C over the next 100 years, and that these effects will be most extreme in northern mountain regions. Pikas (Ochotona, Lagomorpha) are widespread small mammals in the alpine environments of Asia and North America. They are cold adapted and consequently sensitive to warming global temperatures. Considerable research has shown a poleward migration of many species as a result of rising temperatures, but high alpine dwelling species, like the pika, may already be trapped at the top of mountains. Little is known about the threshold values of environmental conditions under which pikas either persist or disappear. Collared pikas (Ochotona collaris) inhabit alpine meadows in the Kluane region of the southwest Yukon. Sites located along an environmental gradient from nunataks in the St Elias Icefields to the Ruby Range Mountains have experienced different climatic and glacial histories. Using baseline data from the long-term study in the Ruby Ranges, we report on differences in the ecological and climatic conditions of sites along this gradient and how this translates into differences in the behavioural and population ecology of the pikas living there. By looking at these differences we can infer the potential impacts of a warming climate, and the subsequent ecological changes on collared pika populations in order to clarify the causes of local extinction and allow us to develop models for predicting ecological responses as conditions change under future climate regimes.

  13. Advances in ocean modeling for climate change research

    Science.gov (United States)

    Holland, William R.; Capotondi, Antonietta; Holland, Marika M.

    1995-07-01

    An adequate understanding of climate variability and the eventual prediction of climate change are among the most urgent and far-reaching efforts of the scientific community. The climate system is in an ever-changing state with vast impact on mankind in all his activities. Both short and long-term aspects of climate variability are of concern, and the unravelling of "natural" variability from "man-induced" climate change is required to prepare for and ameliorate, if possible, the potentially devastating aspects of such change. In terms of scientific effort, the climate community can be thought of as the union of the disciplinary sciences of meteorology, oceanography, sea ice and glaciology, and land surface processes. Since models are based upon mathematical and numerical constructs, mathematics and computer sciences are also directly involved. In addition, some of the problems of man-induced climate change (release of greenhouse gases, the ozone-hole problem, etc.) are basically chemical in nature, and the expertise of the atmospheric and oceanic chemist is also required. In addition, some part of the response to climate perturbations will arise in the biological world, due to upsetting the balance in the great food web that binds communities together on both the land and the sea. Thus, the problems to be solved are extraordinarily complex and require the efforts of many kinds of scientist.

  14. Modelling hydrological responses of Nerbioi River Basin to Climate Change

    Science.gov (United States)

    Mendizabal, Maddalen; Moncho, Roberto; Chust, Guillem; Torp, Peter

    2010-05-01

    Future climate change will affect aquatic systems on various pathways. Regarding the hydrological cycle, which is a very important pathway, changes in hydrometeorological variables (air temperature, precipitation, evapotranspiration) in first order impact discharges. The fourth report assessment of the Intergovernmental Panel for Climate Change indicates there is evidence that the recent warming of the climate system would result in more frequent extreme precipitation events, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. Available research and climate model outputs indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99%). For example, it is likely that up to 20% of the world population will live in areas where river flood potential could increase by the 2080s. In Spain, within the Atlantic basin, the hydrological variability will increase in the future due to the intensification of the positive phase of the North Atlantic Oscillation (NAO) index. This might cause flood frequency decreases, but its magnitude does not decrease. The generation of flood, its duration and magnitude are closely linked to changes in winter precipitation. The climatic conditions and relief of the Iberian Peninsula favour the generation of floods. In Spain, floods had historically strong socio-economic impacts, with more than 1525 victims in the past five decades. This upward trend of hydrological variability is expected to remain in the coming decades (medium uncertainty) when the intensification of the positive phase of the NAO index (MMA, 2006) is considered. In order to adapt or minimize climate change impacts in water resources, it is necessary to use climate projections as well as hydrological modelling tools. The main objective of this paper is to evaluate and assess the hydrological response to climate changes in flow conditions in Nerbioi river

  15. Climate change impacts and adaptive strategies: lessons from the grapevine.

    Science.gov (United States)

    Mosedale, Jonathan R; Abernethy, Kirsten E; Smart, Richard E; Wilson, Robert J; Maclean, Ilya M D

    2016-11-01

    The cultivation of grapevines for winemaking, known as viticulture, is widely cited as a climate-sensitive agricultural system that has been used as an indicator of both historic and contemporary climate change. Numerous studies have questioned the viability of major viticulture regions under future climate projections. We review the methods used to study the impacts of climate change on viticulture in the light of what is known about the effects of climate and weather on the yields and quality of vineyard harvests. Many potential impacts of climate change on viticulture, particularly those associated with a change in climate variability or seasonal weather patterns, are rarely captured. Key biophysical characteristics of viticulture are often unaccounted for, including the variability of grapevine phenology and the exploitation of microclimatic niches that permit successful cultivation under suboptimal macroclimatic conditions. We consider how these same biophysical characteristics permit a variety of strategies by which viticulture can adapt to changing climatic conditions. The ability to realize these strategies, however, is affected by uneven exposure to risks across the winemaking sector, and the evolving capacity for decision-making within and across organizational boundaries. The role grape provenance plays in shaping perceptions of wine value and quality illustrates how conflicts of interest influence decisions about adaptive strategies within the industry. We conclude by considering what lessons can be taken from viticulture for studies of climate change impacts and the capacity for adaptation in other agricultural and natural systems. © 2016 John Wiley & Sons Ltd.

  16. Climate change impacts on lake thermal dynamics and ecosystem vulnerabilities

    Science.gov (United States)

    Sahoo, G. B; Forrest, A. L; Schladow, S. G ;; Reuter, J. E; Coats, R.; Dettinger, Michael

    2016-01-01

    Using water column temperature records collected since 1968, we analyzed the impacts of climate change on thermal properties, stability intensity, length of stratification, and deep mixing dynamics of Lake Tahoe using a modified stability index (SI). This new SI is easier to produce and is a more informative measure of deep lake stability than commonly used stability indices. The annual average SI increased at 16.62 kg/m2/decade although the summer (May–October) average SI increased at a higher rate (25.42 kg/m2/decade) during the period 1968–2014. This resulted in the lengthening of the stratification season by approximately 24 d. We simulated the lake thermal structure over a future 100 yr period using a lake hydrodynamic model driven by statistically downscaled outputs of the Geophysical Fluid Dynamics Laboratory Model (GFDL) for two different green house gas emission scenarios (the A2 in which greenhouse-gas emissions increase rapidly throughout the 21st Century, and the B1 in which emissions slow and then level off by the late 21st Century). The results suggest a continuation and intensification of the already observed trends. The length of stratification duration and the annual average lake stability are projected to increase by 38 d and 12 d and 30.25 kg/m2/decade and 8.66 kg/m2/decade, respectively for GFDLA2 and GFDLB1, respectively during 2014–2098. The consequences of this change bear the hallmarks of climate change induced lake warming and possible exacerbation of existing water quality, quantity and ecosystem changes. The developed methodology could be extended and applied to other lakes as a tool to predict changes in stratification and mixing dynamics.

  17. U.S. Global Climate Change Impacts Overview

    Science.gov (United States)

    Karl, T. R.

    2009-12-01

    This past year the US Global Change Research Program released a report that summarized the science of climate change and the impacts of climate change on the United States, now and in the future. The report underscores the importance of measures to reduce climate change. In the context of impacts, the report identifies examples of actions currently being pursued in various sectors and regions to address climate change as well as other environmental problems that could be exacerbated by climate change. This state-of-knowledge report also identifies areas in which scientific uncertainty limits our ability to estimate future climate changes and its impacts. Key findings of the report include: (1) Global warming is unequivocal and primarily human induced. - This statement is stronger than the IPCC (2007) statement because new attribution studies since that report continue to implicate human caused changes over the past 50 years. (2) Climate Changes are underway in the Unites States and are projected to grow. - These include increases in heavy downpours, rising temperature and sea level, rapidly retreating glaciers, thawing permafrost, lengthening growing seasons lengthening ice-free seasons in the oceans and on lakes and rivers, earlier snowmelt and alteration in river flows. (3) Widespread climate-related impacts are occurring now and are expected to increase. - The impacts vary from region to region, but are already affecting many sectors e.g., water, energy, transportation, agriculture, ecosystems, etc. (4) Climate change will stress water resources. - Water is an issue in every region of the US, but the nature of the impacts vary (5) Crop and livestock production will be increasingly challenged. - Warming related to high emission scenarios often negatively affect crop growth and yields levels. Increased pests, water stress, diseases, and weather extremes will pose adaptation challenges for crops and livestock production. (6) Coastal areas are at increased risk from

  18. Impact of Climate Change Adaptation Options on Stream Flow

    Science.gov (United States)

    Mishra, Ashok; Bhave, Ajay; Raghuwanshi, Narendra

    2017-04-01

    Climate change, now, is taken as a reality with distressing effects on natural resources. It is an established fact that the negative impacts of climate change on freshwater will be greater with increased precipitation variability and seasonal runoff shifts on water supply and consequent impacts on water quantity and quality. Therefore, this sector necessitates identification of possible long term adaptation to changing climate and their impacts on regional water availability and demand. We assessed three stakeholder-identified adaptation options namely- construction of traditional ponds (TP), construction of check dams (CD) and increased forest cover (IFC) in Kangsabati reservoir catchment and command area, in India using the Water Evaluation And Planning (WEAP) model. Four high resolution ( 25km) regional climate model outputs and their ensemble for the period 2021-2050 provide a range of future climate (2021-2050) scenarios to force the WEAP model. Calibrated (1991-2000) and validated (2001-2010) WEAP model with reasonable NSE, R2 and PBIAS statistics has been used to test the effects of identified adaptation options on unmet demand of water, runoff generation and peak stream flow. Applying one traditional ponds for every 1 km2 area reduced unmet irrigation water demand by 4.5 x 109 m3 with reduced peak water demand from 0.78 x 109 m3 to 0.7 x 109 m3 compared to non-adaptation scenario. Increasing forest cover reduces runoff by 1000 times more than check dams and reduces monsoon season peak runoff rate as well. IFC demonstrates greater ability to meet the adaptation requirement by reducing high flows by upto 8 m3/s during monsoon season and increasing reservoir inflow by upto 0.5 m3/s during the lean season. While there is uncertainty in the magnitude of change of streamflow due to the effect of adaptation options, there is greater certainty in the sign of change. Results indicate that check dams and increasing forest cover as adaptation strategies have a

  19. Limitations and pitfalls of climate change impact analysis on urban rainfall extremes

    DEFF Research Database (Denmark)

    Willems, P.; Olsson, J.; Arnbjerg-Nielsen, Karsten

    to anthropogenic climate change. Current practices have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. Climate change may well be the driver that ensures that changes in urban drainage paradigms are identified...... and suitable solutions implemented. Design and optimization of urban drainage infrastructure considering climate change impacts and co-optimizing with other objectives will become ever more important to keep our cities liveable into the future.......Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due...

  20. Multi-Target Calibration with a VIC Hydrologic Model: Impacts of Climate Change and Risk Assessment in the Colorado River Basin

    Science.gov (United States)

    Wi, S.; Isenstein, L.; Yang, Y. C. E.; Brown, C.

    2015-12-01

    The Variable Infiltration Capacity (VIC) model is applied to the headwaters of the Arkansas River (Colorado Springs) in the USA for the purpose of water supply evaluation. Modeling the hydrologic regime of the Arkansas River is a challenge due to the large number of diversions and regulations that might impact the natural streamflow. Since the Arkansas River headwaters are snow-melt dominated, a snow cover dataset can provide additional information during the model calibration process. Remote sensing snow data have been successfully used in previous studies coupled with hydrologic modeling to improve calibration results. Using the daily snow data acquired from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite, and this study tests different calibration schemes to determine the most suitable calibration target(s) for the Colorado Springs. First, the VIC model is calibrated to streamflow and snow alone, and then a mutli-objective optimization is utilized to calibrate the model to streamflow and snow simultaneously. A well calibrated hydrologic model can be employed particularly for climate change assessments to inform decision makers about water availability and water supply under different climate conditions. This study will provide such information to Colorado Springs in which development in terms of water supply is expected to grow considerably; increases in demands are projected to be 28% higher than the present demands (approximately 102 billion gallons) by the year 2050.

  1. Challenges and priorities for modelling livestock health and pathogens in the context of climate change

    NARCIS (Netherlands)

    Özkan, Şeyda; Vitali, Andrea; Lacetera, Nicola; Amon, Barbara; Bannink, André; Bartley, Dave J.; Blanco-penedo, Isabel; Haas, De Yvette; Dufrasne, Isabelle; Elliott, John; Eory, Vera; Fox, Naomi J.; Garnsworthy, Phil C.; Gengler, Nicolas; Hammami, Hedi; Kyriazakis, Ilias; Leclère, David; Lessire, Françoise; Macleod, Michael; Robinson, Timothy P.; Ruete, Alejandro; Sandars, Daniel L.; Shrestha, Shailesh; Stott, Alistair W.; Twardy, Stanislaw; Vanrobays, Marie-Laure; Ahmadi, Bouda Vosough; Weindl, Isabelle; Wheelhouse, Nick; Williams, Adrian G.; Williams, Hefin W.; Wilson, Anthony J.; Østergaard, Søren; Kipling, Richard P.

    2016-01-01

    Climate change has the potential to impair livestock health, with consequences for animal welfare, productivity, greenhouse gas emissions, and human livelihoods and health. Modelling has an important role in assessing the impacts of climate change on livestock systems and the efficacy of potential a

  2. Climate change impacts on hydrology and water resources

    Directory of Open Access Journals (Sweden)

    Fred Fokko Hattermann

    2015-04-01

    Full Text Available Aim of our study is to quantify the impacts of climate change on hydrology in the large river basins in Germany (Rhine, Elbe, Danube, Weser and Ems and thereby giving the range of impact uncertainty created by the most recent regional climate projections. The study shows mainly results for the A1B SRES (Special Report on Emission Scenario scenario by comparing the reference period 1981–2010 and the scenario periods 2031–2060 and 2061–2090 and using climate projections of a combination of 4 Global Climate Models (GCMs and 12 Regional Climate Models (RCMs as climate driver. The outcome is compared against impacts driven by a more recent RCP (Representative Emission Pathways scenario by using data of a statistical RCM. The results indicate that more robust conclusions can be drawn for some river basins, especially the Rhine and Danube basins, while diversity of results leads to higher uncertainty in the other river basins. The results also show that hydrology is very sensitive to changes in climate and effects of a general increase in precipitation can even be over-compensated by an increase in evapotranspiration. The decrease of runoff in late summer shown in most results can be an indicator for more pronounced droughts under scenario conditions.

  3. Methodologies for simulating impacts of climate change on crop production

    Science.gov (United States)

    Ecophysiological models of crop growth have seen wide use in IPCC and related assessments. However, the diversity of modeling approaches constrains cross-study syntheses and increases potential for bias. We reviewed 139 peer-reviewed papers dealing with climate change and agriculture, considering si...

  4. Potential Impacts of Climate Change in the Great Lakes Region

    Science.gov (United States)

    Winkler, J. A.

    2011-12-01

    Climate change is projected to have substantial impacts in the Great Lakes region of the United States. One intent of this presentation is to introduce the Great Lakes Integrated Sciences and Assessments Center (GLISA), a recently-funded NOAA RISA center. The goals and unique organizational structure of GLISA will be described along with core activities that support impact and assessment studies in the region. Additionally, observed trends in temperature, precipitation including lake effect snowfall, and lake temperatures and ice cover will be summarized for the Great Lakes region, and vulnerabilities to, and potential impacts of, climate change will be surveyed for critical natural and human systems. These include forest ecosystems, water resources, traditional and specialized agriculture, and tourism/recreation. Impacts and vulnerabilities unique to the Great Lakes region are emphasized.

  5. Investigating the impacts of climate change on Chinese agriculture. China-UK collaboration project

    Energy Technology Data Exchange (ETDEWEB)

    Erda, Lin (ed.)

    2004-04-15

    The impact of climate change in China is expected to be considerable. A regional climate change model (PRECIS), developed by the UK's Hadley Centre for Climate Prediction and Research, was used to simulate China's climate and to develop climate change scenarios for the country. Results from this project suggest that, depending on the level of future emissions, the average temperature increase in China by the end of the 21st century may be between 3 and 4C.

  6. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    Science.gov (United States)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  7. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from $32.7 billion to $54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  8. U.S. Global Climate Change Impacts Report, Adaptation

    Science.gov (United States)

    Pulwarty, R.

    2009-12-01

    Adaptation measures improve our ability to cope with or avoid harmful climate impacts and take advantage of beneficial ones, now and as climate varies and changes. Adaptation and mitigation are necessary elements of an effective response to climate change. Adaptation options also have the potential to moderate harmful impacts of current and future climate variability and change. The Global Climate Change Impacts Report identifies examples of adaptation-related actions currently being pursued in various sectors and regions to address climate change, as well as other environmental problems that could be exacerbated by climate change such as urban air pollution and heat waves. Some adaptation options that are currently being pursued in various regions and sectors to deal with climate change and/or other environmental issues are identified in this report. A range of adaptation responses can be employed to reduce risks through redesign or relocation of infrastructure, sustainability of ecosystem services, increased redundancy of critical social services, and operational improvements. Adapting to climate change is an evolutionary process and requires both analytic and deliberative decision support. Many of the climate change impacts described in the report have economic consequences. A significant part of these consequences flow through public and private insurance markets, which essentially aggregate and distribute society's risk. However, in most cases, there is currently insufficient robust information to evaluate the practicality, efficiency, effectiveness, costs, or benefits of adaptation measures, highlighting a need for research. Adaptation planning efforts such as that being conducted in New York City and the Colorado River will be described. Climate will be continually changing, moving at a relatively rapid rate, outside the range to which society has adapted in the past. The precise amounts and timing of these changes will not be known with certainty. The

  9. Impacts of climate change on marine organisms and ecosystems.

    Science.gov (United States)

    Brierley, Andrew S; Kingsford, Michael J

    2009-07-28

    Human activities are releasing gigatonnes of carbon to the Earth's atmosphere annually. Direct consequences of cumulative post-industrial emissions include increasing global temperature, perturbed regional weather patterns, rising sea levels, acidifying oceans, changed nutrient loads and altered ocean circulation. These and other physical consequences are affecting marine biological processes from genes to ecosystems, over scales from rock pools to ocean basins, impacting ecosystem services and threatening human food security. The rates of physical change are unprecedented in some cases. Biological change is likely to be commensurately quick, although the resistance and resilience of organisms and ecosystems is highly variable. Biological changes founded in physiological response manifest as species range-changes, invasions and extinctions, and ecosystem regime shifts. Given the essential roles that oceans play in planetary function and provision of human sustenance, the grand challenge is to intervene before more tipping points are passed and marine ecosystems follow less-buffered terrestrial systems further down a spiral of decline. Although ocean bioengineering may alleviate change, this is not without risk. The principal brake to climate change remains reduced CO(2) emissions that marine scientists and custodians of the marine environment can lobby for and contribute to. This review describes present-day climate change, setting it in context with historical change, considers consequences of climate change for marine biological processes now and in to the future, and discusses contributions that marine systems could play in mitigating the impacts of global climate change.

  10. Climate change impacts are sensitive to the concentration stabilization path

    Science.gov (United States)

    O'Neill, Brian C.; Oppenheimer, Michael

    2004-01-01

    Analysis of policies to achieve the long-term objective of the United Nations Framework Convention on Climate Change, stabilizing concentrations of greenhouse gases at levels that avoid “dangerous” climate changes, must discriminate among the infinite number of emission and concentration trajectories that yield the same final concentration. Considerable attention has been devoted to path-dependent mitigation costs, generally for CO2 alone, but not to the differential climate change impacts implied by alternative trajectories. Here, we derive pathways leading to stabilization of equivalent CO2 concentration (including radiative forcing effects of all significant trace gases and aerosols) with a range of transient behavior before stabilization, including temporary overshoot of the final value. We compare resulting climate changes to the sensitivity of representative geophysical and ecological systems. Based on the limited available information, some physical and ecological systems appear to be quite sensitive to the details of the approach to stabilization. The likelihood of occurrence of impacts that might be considered dangerous increases under trajectories that delay emissions reduction or overshoot the final concentration. PMID:15545606

  11. Globalisation and climate change in Asia: the urban health impact.

    Science.gov (United States)

    Munslow, Barry; O'Dempsey, Tim

    2010-01-01

    Asia's economic development successes will create new policy areas to address, as the advances made through globalisation create greater climate change challenges, particularly the impact on urban health. Poverty eradication and higher standards of living both increase demand on resources. Globalisation increases inequalities and those who are currently the losers will carry the greatest burden of the costs in the form of the negative effects of climate change and the humanitarian crises that will ensue. Of four major climate change challenges affecting the environment and health, two—urban air pollution and waste management—can be mitigated by policy change and technological innovation if sufficient resources are allocated. Because of the urban bias in the development process, these challenges will probably register on policy makers' agenda. The second two major challenges—floods and drought—are less amenable to policy and technological solutions: many humanitarian emergency challenges lie ahead. This article describes the widely varying impact of both globalisation and climate change across Asia. The greatest losers are those who flee one marginal location, the arid inland areas, only to settle in another marginal location in the flood prone coastal slums. Effective preparation is required, and an effective response when subsequent humanitarian crises occur.

  12. Modelling the effects of climate change on the energy system-A case study of Norway

    Energy Technology Data Exchange (ETDEWEB)

    Seljom, Pernille, E-mail: Pernille.Seljom@ife.no [Department of Energy Systems, Institute of Energy Technology (IFE), PO Box 40, NO-2027 Kjeller (Norway); Rosenberg, Eva; Fidje, Audun [Department of Energy Systems, Institute of Energy Technology (IFE), PO Box 40, NO-2027 Kjeller (Norway); Haugen, Jan Erik [Norwegian Meteorological Institute, PO Box 43 Blindern, NO-0313 Oslo (Norway); Meir, Michaela; Rekstad, John [Department of Physics, University of Oslo (UiO), PO Box 1072 Blindern, NO-0316 Oslo (Norway); Jarlset, Thore [Norwegian Water Resources and Energy Directorate (NVE), PO Box 5091 Majorstua, NO-0301 Oslo (Norway)

    2011-11-15

    The overall objective of this work is to identify the effects of climate change on the Norwegian energy system towards 2050. Changes in the future wind- and hydro-power resource potential, and changes in the heating and cooling demand are analysed to map the effects of climate change. The impact of climate change is evaluated with an energy system model, the MARKAL Norway model, to analyse the future cost optimal energy system. Ten climate experiments, based on five different global models and six emission scenarios, are used to cover the range of possible future climate scenarios and of these three experiments are used for detailed analyses. This study indicate that in Norway, climate change will reduce the heating demand, increase the cooling demand, have a limited impact on the wind power potential, and increase the hydro-power potential. The reduction of heating demand will be significantly higher than the increase of cooling demand, and thus the possible total direct consequence of climate change will be reduced energy system costs and lower electricity production costs. The investments in offshore wind and tidal power will be reduced and electric based vehicles will be profitable earlier. - Highlights: > Climate change will make an impact on the Norwegian energy system towards 2050. > An impact is lower Norwegian electricity production costs and increased electricity export. > Climate change gives earlier profitable investments in electric based vehicles. > Climate change reduces investments in offshore wind and tidal power.

  13. Global Catastrophes in Perspective: Asteroid Impacts vs Climate Change

    Science.gov (United States)

    Boslough, M. B.; Harris, A. W.

    2008-12-01

    When allocating resources to address threats, decision makers are best served by having objective assessments of the relative magnitude of the threats in question. Asteroids greater than about 1 km in diameter are assumed by the planetary impact community to exceed a "global catastrophe threshold". Impacts from smaller objects are expected to cause local or regional destruction, and would be the proximate cause of most associated fatalities. Impacts above the threshold would be expected to alter the climate, killing billions of people and causing a collapse of civilization. In this apocalyptic scenario, only a small fraction of the casualties would be attributable to direct effects of the impact: the blast wave, thermal radiation, debris, ground motion, or tsunami. The vast majority of deaths would come later and be due to indirect causes: starvation, disease, or violence as a consequence of societal disruption related to the impact-induced global climate change. The concept of a catastrophe threshold comes from "nuclear winter" studies, which form the basis for quantitative estimates of the consequences of a large impact. The probability estimates come from astronomical observations and statistical analysis. Much of the impact threat, at its core, is a climate-change threat. Prior to the Spaceguard Survey of Near-Earth Objects (NEOs), the chance of dying from an asteroid impact was estimated to be 1 in 25,000 (Chapman & Morrison, 1994). Most of the large asteroids have now been discovered, and none is on an impact trajectory. Moreover, new data show that mid-sized asteroids (tens to hundreds of meters across) are less abundant than previously thought, by a factor of three. We now estimate that the lifetime odds of being killed by the impact of one of the remaining undiscovered NEOs are about one in 720,000 for individuals with a life expectancy of 80 years (Harris, 2008). One objective way to compare the relative magnitude of the impact threat to that of

  14. Projecting Poverty at the Household Scale to Assess the Impact of Climate Change on Poor People

    Science.gov (United States)

    Hallegatte, S.; Rozenberg, J.

    2015-12-01

    This paper quantifies the potential impacts of climate change on poverty in 2030 and 2050, in 92 countries covering 90% of the developing world population. It accounts for the deep uncertainties that characterize future socio-economic evolutions and the lack of data regarding the condition and livelihood of poor people. It also considers many impacts of climate change, another source of uncertainty. We use a micro-simulation model based on household surveys and explore a wide range of uncertainties on future structural change, productivity growth or demographic changes. This results, for each country, in the creation of several hundred scenarios for future income growth and income distribution. We then explore the resulting space of possible futures and use scenario discovery techniques to identify the main drivers of inequalities and poverty reduction. We find that redistribution and structural change are powerful drivers of poverty and inequality reduction, except in low-income countries. In the poorest countries in Africa, reducing poverty cannot rely on redistribution but requires low population growth and productivity growth in agriculture. Once we have explored the space of possible outcomes for poverty and inequalities, we choose two representative scenarios of the best and worst cases and model the impacts of climate change in each of these two scenarios. Climate change impacts are modeled through 4 channels. First, climate change has an impact on labor productivity growth for people who work outside because of higher temperatures. Second, climate change has an impact on human capital because of more severe stunting in some places. Third, climate change has an impact on physical capital via more frequent natural disasters. Fourth, climate change has an impact on consumption because of changes in food prices. Impacts are very heterogeneous across countries and are mostly concentrated in African and South-East Asian countries. For high radiative forcing (RCP8

  15. Progress in rapid climate changes and their modeling study in millennial and centennial scales

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Rapid climate change at millennial and centennial scales is one of the most important aspects in paleoclimate study.It has been found that rapid climate change at millennial and centennial scales is a global phenomenon during both the glacial age and the Holocene with amplitudes typical of geological or astronomical time-scales.Simulations of glacial and Holocene climate changes have demonstrated the response of the climate system to the changes of earth orbital parameter and the importance of variations in feedbacks of ocean,vegetation,icecap and greenhouse gases.Modeling experiments suggest that the Atlantic thermohaline circulation was sensitive to the fresh water input into the North Atlantic and was closely related to the rapid climate changes during the last glacial age and the Holocene.Adopting the Earth-system models of inter mediate complexity (EMICs),CLIMBER-2,the response of East Asian climate change to Dansgaard/Oeschger and Heinrich events during the typical last glacial period (60 ka B.P.-20 ka B.P.) and impacts of ice on the Tibetan plateau on Holocene climate change were stimulated,studied and revealed.Further progress of paleoclimate modeling depends on developing finer-grid models and reconstructing more reliable boundary conditions.More attention should be paid on the study of mechanisms of abrupt climatic changes as well as regional climate changes in the background of global climate change.

  16. Assessment of impacts on ground water resources in Libya and vulnerability to climate change

    Directory of Open Access Journals (Sweden)

    S. P. Bindra

    2014-12-01

    Full Text Available This paper is designed to present the likely impact of climate change on groundwater resources in general and Libya in particular. State of the art reviews on recent research studies, and methodology to assess the impact of climate change on groundwater resources shows that climate change poses uncertainties to the supply and management of water resources. It outlines to demonstrate that how climate change impact assessment plays a vital role in forming the sensitive water balance rarely achieved in most area owing to precipitation variability’s and seasonality. It demonstrates that how large increases in water demand with very little recharge from precipitation have strained Libya’s groundwater resources resulting in declines of groundwater levels and its quality, especially on Libyan coastal areas where most of the agriculture, domestic and industrial activities are concentrated. Based on several research studies it demonstrates that how policy and decision making process using best practices for monitoring, analyzing and forecasting variation of climate is a way forward to cope with the impact of sea level rise, and combat some water supplies in vulnerable areas that are becoming unusable due to the penetration of salt water into coastal aquifers (Jifara Plain, Sirt, Jebal El-Akhdar.Finally, a number of Global Climate Models (GCM are reviewed to demonstrate that how better understanding of climate and climate change forecasting helps in devising appropriate adaptation strategies due to the impact of climate change.

  17. Modeling Climate Change in the Absence of Climate Change Data. Editorial Comment

    Science.gov (United States)

    Skiles, J. W.

    1995-01-01

    Practitioners of climate change prediction base many of their future climate scenarios on General Circulation Models (GCM's), each model with differing assumptions and parameter requirements. For representing the atmosphere, GCM's typically contain equations for calculating motion of particles, thermodynamics and radiation, and continuity of water vapor. Hydrology and heat balance are usually included for continents, and sea ice and heat balance are included for oceans. The current issue of this journal contains a paper by Van Blarcum et al. (1995) that predicts runoff from nine high-latitude rivers under a doubled CO2 atmosphere. The paper is important since river flow is an indicator variable for climate change. The authors show that precipitation will increase under the imposed perturbations and that owing to higher temperatures earlier in the year that cause the snow pack to melt sooner, runoff will also increase. They base their simulations on output from a GCM coupled with an interesting water routing scheme they have devised. Climate change models have been linked to other models to predict deforestation.

  18. Improving modelled impacts on the flowering of temperate fruit trees in the Iberian Peninsula of climate change projections for 21st century

    Science.gov (United States)

    Ruiz-Ramos, Margarita; Pérez-Lopez, David; Sánchez-Sánchez, Enrique; Centeno, Ana; Dosio, Alessandro; Lopez-de-la-Franca, Noelia

    2013-04-01

    Flowering of temperate trees needs winter chilling, being the specific requirements dependent on the variety. This work studied the trend and changes of values of chilling hours for some representative agricultural locations in Spain for the last three decades and their projected changes under climate change scenarios. According to our previous results (Pérez-López et al., 2012), areas traditionally producing fruit as the Ebro (NE of Spain) or Guadalquivir (SO) valleys, Murcia (SE) and Extremadura (SO) could have a major cold reduction of chill-hours. This would drive a change of varieties or species and may enhance the use of chemicals to complete the needs of chill hours for flowering. However, these results showed high uncertainty, partly due to the bias of the climate data used, generated by Regional Climate Models. The chilling hours were calculated with different methods according to the species considered: North Carolina method (Shaltout and Unrath, 1983) was used for apples, Utah method (Richardson et al. 1974) for peach and grapevine and the approach used by De Melo-Abreu et al. (2004) for olive trees. The climate data used as inputs were the results of numerical simulations obtained from a group of regional climate models at high resolution (25 km) from the European Project ENSEMBLES (http://www.ensembles-eu.org/) first bias corrected for temperatures and precipitation (Dosio and Paruolo, 2011; Dosio et al., 2012). This work aims to improve the impact projections obtained in Pérez-López et al. (2012). For this purpose, variation of chill-hours between 2nd half of 20th century and 1st half of 21st century at the study locations were recalculated considering 1) a feedback in the dates in which the chilling hours are calculated, to take into account the shift of phenological dates, and 2) substituting the original ENSEMBLES data set of climate used in Pérez-López et al. (2012) by the bias corrected data set. Calculations for the 2nd half of 20th

  19. Impacts of Climate Change on Locust Outbreaks in China's History

    Institute of Scientific and Technical Information of China (English)

    YU Ge

    2009-01-01

    @@ Global warming is causing the climate to change, lakes to dry up and less rain to fall. In population ecology, researchers have found that climate change plays an important role in controlling the size of species populations. To proof this model, long-term observational data are crucial, making researchers to turn to historical records of locust outbreaks.[1

  20. Potential Impacts of Climate Change on Hydrological Extremes Across Europe

    Science.gov (United States)

    Donnelly, C.; Dahné, J.; Andersson, J.; Arheimer, B.

    2012-04-01

    Regional scale predictions of floods and droughts are particularly useful for demonstrating to the general public the potential impacts of climate change, for example for the European continent. The E-HYPE pan-European application of the HYPE model was used to simulate hydrological data at a median subbasin resolution of 215 km2 for all of Europe. This data was then used to calculate, at this resolution, a number of drought and flood indices for today's climate and for a small ensemble of bias-corrected regional climate change projections. Indices calculated include the 1 in 10 and 1 in 50 year flood levels, mean annual high water discharge, mean annual low water discharge, number of days per year with hydrological drought and agricultural drought and the intensity of days with agricultural drought. Maps showing the relative changes in these variables for various time periods in the future were then made from the results. These maps may then be used to indicate 'hot-spots' for where hydrological extremes are important today and for where large changes in flood and drought levels or frequency may be expected for a future climate. The E-HYPE model, used to make these predictions, has been evaluated using a large data set of discharge observations (over 800) at independent sites across Europe. The model uses readily available pan-European input data sets and a single parameter set across the entire continent. This homogenous treatment of the model domain means that results from all over Europe are easily comparable. Validation is made to ensure the model simulates discharge volumes and daily variation at each station, but novel for this study is that a validation of the model's ability to capture the drought and flood indices was also made. Although E-HYPE is a large domain model, the high subbasin resolution means that these results are available at high-resolution across Europe. Nevertheless, prediction uncertainty increases with decreasing catchment scale, so this

  1. Climate Change Impacts on Rainfall Extremes and Urban Drainage: a State-of-the-Art Review

    DEFF Research Database (Denmark)

    Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten

    2013-01-01

    to anthropogenic climate change. Current practices have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend or impact results. The review (Willems et al., 2012) considers the following aspects: analysis of long-term historical trends...... due to anthropogenic climate change, analysis of long-term future trends due to anthropogenic climate change, and implications for urban drainage infrastructure design and management. A summary is provided in this paper.......Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due...

  2. Climate Change and Water in Vulnerable Agriculture: Impacts - Mitigation - Adaptation

    Science.gov (United States)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2016-04-01

    Agriculture highly depends on climate and is adversely affected by climate extremes caused mainly by anthropogenic climate change and increasing climate variability. Moreover, agricultural production risks and vulnerability of agriculture may become an issue in several regions around the world, since they are likely to increase the incidence of crop failure. The aim of this paper is to present the water availability and requirements in Southern Europe and specifically in the Mediterranean region, which is characterized by vulnerable agriculture. Indeed, the climatic trend in the 21st century for this region indicates temperature increase, precipitation decrease combined with an increase in the frequency of climate extremes, such as droughts, heat waves and forest fires. The three major components of climate change are examined, namely impacts, mitigation and adaptation. In particular, precipitation frequency analysis has already indicated a reduction in the precipitation amounts and a shift towards more intense rainstorms. Moreover, time series of drought indices are presented in affected areas. The importance of climate change mitigation measures is also highlighted. Finally, an adaptation scheme for agriculture from climate change in vulnerable and water scarce areas is presented.

  3. Climate change impacts and adaptation: a Canadian perspective. Transportation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    A brief summary of research over the past five years in the field of climate change, as it relates to key sectors in Canada, is presented in the report entitled: Climate change impacts and adaptation: a Canadian perspective. The emphasis of this chapter is on transportation, the role of adaptation in reducing vulnerabilities, and capitalizing on potential opportunities. Other sectors, such as fisheries, the coastal zone, tourism and human health might be affected by decisions made with regard to transportation. The areas that seem most vulnerable to climate change in transportation include northern ice roads, Great Lakes shipping, coastal infrastructure threatened by sea-level rise, and infrastructure located on permafrost. Most of the attention has been devoted to infrastructure and operations issues in northern Canada, despite most of the transportation activities taking place in southern Canada. Milder and or shorter winters might lead to savings, but additional knowledge is required before quantitative estimates can be made. The changed frequency of extreme climate events, and or changes in precipitation may influence other weather hazards or inefficiencies. If Canadians are prepared to be proactive, the report indicated that the effects of climate change on transportation may be largely manageable. 77 refs., 2 tabs., 3 figs.

  4. Climate change impacts and risks for animal health in Asia.

    Science.gov (United States)

    Forman, S; Hungerford, N; Yamakawa, M; Yanase, T; Tsai, H-J; Joo, Y-S; Yang, D-K; Nha, J-J

    2008-08-01

    The threat of climate change and global warming is now recognised worldwide and some alarming manifestations of change have occurred. The Asian continent, because of its size and diversity, may be affected significantly by the consequences of climate change, and its new status as a 'hub' of livestock production gives it an important role in mitigating possible impacts of climate variability on animal health. Animal health may be affected by climate change in four ways: heat-related diseases and stress, extreme weather events, adaptation of animal production systems to new environments, and emergence or re-emergence of infectious diseases, especially vector-borne diseases critically dependent on environmental and climatic conditions. To face these new menaces, the need for strong and efficient Veterinary Services is irrefutable, combined with good coordination of public health services, as many emerging human diseases are zoonoses. Asian developing countries have acute weaknesses in their Veterinary Services, which jeopardises the global surveillance network essential for early detection of hazards. Indeed, international cooperation within and outside Asia is vital to mitigating the risks of climate change to animal health in Asia.

  5. Modeling Bird Migration under Climate Change: A Mechanistic Approach

    Science.gov (United States)

    Smith, James A.

    2009-01-01

    How will migrating birds respond to changes in the environment under climate change? What are the implications for migratory success under the various accelerated climate change scenarios as forecast by the Intergovernmental Panel on Climate Change? How will reductions or increased variability in the number or quality of wetland stop-over sites affect migratory bird species? The answers to these questions have important ramifications for conservation biology and wildlife management. Here, we describe the use of continental scale simulation modeling to explore how spatio-temporal changes along migratory flyways affect en-route migration success. We use an individually based, biophysical, mechanistic, bird migration model to simulate the movement of shorebirds in North America as a tool to study how such factors as drought and wetland loss may impact migratory success and modify migration patterns. Our model is driven by remote sensing and climate data and incorporates important landscape variables. The energy budget components of the model include resting, foraging, and flight, but presently predation is ignored. Results/Conclusions We illustrate our model by studying the spring migration of sandpipers through the Great Plains to their Arctic breeding grounds. Why many species of shorebirds have shown significant declines remains a puzzle. Shorebirds are sensitive to stop-over quality and spacing because of their need for frequent refueling stops and their opportunistic feeding patterns. We predict bird "hydrographs that is, stop-over frequency with latitude, that are in agreement with the literature. Mean stop-over durations predicted from our model for nominal cases also are consistent with the limited, but available data. For the shorebird species simulated, our model predicts that shorebirds exhibit significant plasticity and are able to shift their migration patterns in response to changing drought conditions. However, the question remains as to whether this

  6. Modeling Bird Migration under Climate Change: A Mechanistic Approach

    Science.gov (United States)

    Smith, James A.

    2009-01-01

    How will migrating birds respond to changes in the environment under climate change? What are the implications for migratory success under the various accelerated climate change scenarios as forecast by the Intergovernmental Panel on Climate Change? How will reductions or increased variability in the number or quality of wetland stop-over sites affect migratory bird species? The answers to these questions have important ramifications for conservation biology and wildlife management. Here, we describe the use of continental scale simulation modeling to explore how spatio-temporal changes along migratory flyways affect en-route migration success. We use an individually based, biophysical, mechanistic, bird migration model to simulate the movement of shorebirds in North America as a tool to study how such factors as drought and wetland loss may impact migratory success and modify migration patterns. Our model is driven by remote sensing and climate data and incorporates important landscape variables. The energy budget components of the model include resting, foraging, and flight, but presently predation is ignored. Results/Conclusions We illustrate our model by studying the spring migration of sandpipers through the Great Plains to their Arctic breeding grounds. Why many species of shorebirds have shown significant declines remains a puzzle. Shorebirds are sensitive to stop-over quality and spacing because of their need for frequent refueling stops and their opportunistic feeding patterns. We predict bird "hydrographs that is, stop-over frequency with latitude, that are in agreement with the literature. Mean stop-over durations predicted from our model for nominal cases also are consistent with the limited, but available data. For the shorebird species simulated, our model predicts that shorebirds exhibit significant plasticity and are able to shift their migration patterns in response to changing drought conditions. However, the question remains as to whether this

  7. Climate change impact assessments on the water resources of India under extensive human interventions.

    Science.gov (United States)

    Madhusoodhanan, C G; Sreeja, K G; Eldho, T I

    2016-10-01

    Climate change is a major concern in the twenty-first century and its assessments are associated with multiple uncertainties, exacerbated and confounded in the regions where human interventions are prevalent. The present study explores the challenges for climate change impact assessment on the water resources of India, one of the world's largest human-modified systems. The extensive human interventions in the Energy-Land-Water-Climate (ELWC) nexus significantly impact the water resources of the country. The direct human interventions in the landscape may surpass/amplify/mask the impacts of climate change and in the process also affect climate change itself. Uncertainties in climate and resource assessments add to the challenge. Formulating coherent resource and climate change policies in India would therefore require an integrated approach that would assess the multiple interlinkages in the ELWC nexus and distinguish the impacts of global climate change from that of regional human interventions. Concerted research efforts are also needed to incorporate the prominent linkages in the ELWC nexus in climate/earth system modelling.

  8. The impact of climate change on the characteristics of the frost-free season over the contiguous USA as projected by the NARCCAP model ensembles

    Science.gov (United States)

    Shiyuan Zhong; Lejiang Yu; Julie A. Winkler; Ying Tang; Warren E. Heilman; Xiandi. Bian

    2017-01-01

    Understanding the impacts of climate change on frost-free seasons is key to designing effective adaptation strategies for ecosystem management and agricultural production. This study examines the potential changes in the frost-free season length between historical (1971−2000) and future (2041−2070) periods over the contiguous USA with a focus on spatial variability and...