WorldWideScience

Sample records for modelling cardiac conduction

  1. Six Conductivity Values to Use in the Bidomain Model of Cardiac Tissue.

    Science.gov (United States)

    Johnston, Barbara M

    2016-07-01

    The aim of this work is to produce a consistent set of six conductivity values for use in the bidomain model of cardiac tissue. Studies in 2007 by Hooks et al. and in 2009 by Caldwell et al. have found that, in the directions longitudinal:transverse:normal (l:t:n) to the cardiac fibers, ratios of bulk conductivities and conduction velocities are each approximately in the ratio 4:2:1. These results are used here as the basis for a method that can find sets of six normalized bidomain conductivity values. It is found that the ratios involving transverse and normal conductivities are quite consistent, allowing new light to be shed on conductivity in the normal direction. For example, it is found that the ratio of transverse to normal conductivity is much greater in the intracellular (i) than the extracellular (e) domain. Using parameter values from experimental studies leads to the proposal of a new nominal six conductivity dataset: gil=2.4, gel=2.4, git=0.35, get=2.0, gin=0.08, and gen=1.1 (all in mS/cm). When it is used to model partial thickness ischaemia, this dataset produces epicardial potential distributions in accord with experimental studies in an animal model. It is, therefore, suggested that the dataset is suitable for use in numerical simulations. Since the bidomain approach is the most commonly used method for modeling cardiac electrophysiological phenomena, new information about conductivity in the normal direction, as well as a consistent set of six conductivity values, is valuable for researchers who perform simulation studies.

  2. Excitation model of pacemaker cardiomyocytes of cardiac conduction system

    Science.gov (United States)

    Grigoriev, M.; Babich, L.

    2015-11-01

    Myocardium includes typical and atypical cardiomyocytes - pacemakers, which form the cardiac conduction system. Excitation from the atrioventricular node in normal conditions is possible only in one direction. Retrograde direction of pulses is impossible. The most important prerequisite for the work of cardiomyocytes is the anatomical integrity of the conduction system. Changes in contractile force of the cardiomyocytes, which appear periodically, are due to two mechanisms of self-regulation - heterometric and homeometric. Graphic course of the excitation pulse propagation along the heart muscle more accurately reveals the understanding of the arrhythmia mechanism. These models have the ability to visualize the essence of excitation dynamics. However, they do not have the proper forecasting function for result estimation. Integrative mathematical model enables further investigation of general laws of the myocardium active behavior, allows for determination of the violation mechanism of electrical and contractile function of cardiomyocytes. Currently, there is no full understanding of the topography of pacemakers and ionic mechanisms. There is a need for the development of direction of mathematical modeling and comparative studies of the electrophysiological arrangement of cells of atrioventricular connection and ventricular conduction system.

  3. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study*

    Science.gov (United States)

    Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart

    2014-01-01

    In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies. PMID:24599687

  4. Diet-induced pre-diabetes slows cardiac conductance and promotes arrhythmogenesis

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Callø, Kirstine; Braunstein, Thomas Hartig

    2015-01-01

    BACKGROUND: Type 2 diabetes is associated with abnormal electrical conduction and sudden cardiac death, but the pathogenic mechanism remains unknown. This study describes electrophysiological alterations in a diet-induced pre-diabetic rat model and examines the underlying mechanism. METHODS...

  5. Mathematical Models of Cardiac Pacemaking Function

    Science.gov (United States)

    Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak

    2013-10-01

    Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  6. Mathematical Models of Cardiac Pacemaking Function

    Directory of Open Access Journals (Sweden)

    Pan eLi

    2013-10-01

    Full Text Available Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  7. Complex versus simple models: ion-channel cardiac toxicity prediction.

    Science.gov (United States)

    Mistry, Hitesh B

    2018-01-01

    There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model B net was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the B net model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.

  8. Complex versus simple models: ion-channel cardiac toxicity prediction

    Directory of Open Access Journals (Sweden)

    Hitesh B. Mistry

    2018-02-01

    Full Text Available There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model Bnet was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the Bnet model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.

  9. A sodium-channel mutation causes isolated cardiac conduction disease

    NARCIS (Netherlands)

    Tan, H. L.; Bink-Boelkens, M. T.; Bezzina, C. R.; Viswanathan, P. C.; Beaufort-Krol, G. C.; van Tintelen, P. J.; van den Berg, M. P.; Wilde, A. A.; Balser, J. R.

    2001-01-01

    Cardiac conduction disorders slow the heart rhythm and cause disability in millions of people worldwide. Inherited mutations in SCN5A, the gene encoding the human cardiac sodium (Na+) channel, have been associated with rapid heart rhythms that occur suddenly and are life-threatening; however, a

  10. A sodium-channel mutation causes isolated cardiac conduction disease

    NARCIS (Netherlands)

    Tan, HL; Bink-Boelkens, MTE; Bezzina, CR; Viswanathan, PC; Beaufort-Krol, GCM; van Tintelen, PJ; van den Berg, MP; Wilde, AAM; Balser, [No Value

    2001-01-01

    Cardiac conduction disorders slow the heart rhythm and cause disability in millions of people worldwide. Inherited mutations in SCN5A, the gene encoding the human cardiac sodium (Na+) channel, have been associated with rapid heart rhythms that occur suddenly and are life-threatening(1-3); however, a

  11. A cardiac electrical activity model based on a cellular automata system in comparison with neural network model.

    Science.gov (United States)

    Khan, Muhammad Sadiq Ali; Yousuf, Sidrah

    2016-03-01

    Cardiac Electrical Activity is commonly distributed into three dimensions of Cardiac Tissue (Myocardium) and evolves with duration of time. The indicator of heart diseases can occur randomly at any time of a day. Heart rate, conduction and each electrical activity during cardiac cycle should be monitor non-invasively for the assessment of "Action Potential" (regular) and "Arrhythmia" (irregular) rhythms. Many heart diseases can easily be examined through Automata model like Cellular Automata concepts. This paper deals with the different states of cardiac rhythms using cellular automata with the comparison of neural network also provides fast and highly effective stimulation for the contraction of cardiac muscles on the Atria in the result of genesis of electrical spark or wave. The specific formulated model named as "States of automaton Proposed Model for CEA (Cardiac Electrical Activity)" by using Cellular Automata Methodology is commonly shows the three states of cardiac tissues conduction phenomena (i) Resting (Relax and Excitable state), (ii) ARP (Excited but Absolutely refractory Phase i.e. Excited but not able to excite neighboring cells) (iii) RRP (Excited but Relatively Refractory Phase i.e. Excited and able to excite neighboring cells). The result indicates most efficient modeling with few burden of computation and it is Action Potential during the pumping of blood in cardiac cycle.

  12. Prediction of significant conduction disease through noninvasive assessment of cardiac calcification.

    Science.gov (United States)

    Mainigi, Sumeet K; Chebrolu, Lakshmi Hima Bindu; Romero-Corral, Abel; Mehta, Vinay; Machado, Rodolfo Rozindo; Konecny, Tomas; Pressman, Gregg S

    2012-10-01

    Cardiac calcification is associated with coronary artery disease, arrhythmias, conduction disease, and adverse cardiac events. Recently, we have described an echocardiographic-based global cardiac calcification scoring system. The objective of this study was to evaluate the severity of cardiac calcification in patients with permanent pacemakers as based on this scoring system. Patients with a pacemaker implanted within the 2-year study period with a previous echocardiogram were identified and underwent blinded global cardiac calcium scoring. These patients were compared to matched control patients without a pacemaker who also underwent calcium scoring. The study group consisted of 49 patients with pacemaker implantation who were compared to 100 matched control patients. The mean calcium score in the pacemaker group was 3.3 ± 2.9 versus 1.8 ± 2.0 (P = 0.006) in the control group. Univariate and multivariate analysis revealed glomerular filtration rate and calcium scoring to be significant predictors of the presence of a pacemaker. Echocardiographic-based calcium scoring correlates with the presence of severe conduction disease requiring a pacemaker. © 2012, Wiley Periodicals, Inc.

  13. Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators.

    Science.gov (United States)

    Wang, Ling; Wu, Yaobin; Hu, Tianli; Guo, Baolin; Ma, Peter X

    2017-09-01

    Mimicking the nanofibrous structure similar to extracellular matrix and conductivity for electrical propagation of native myocardium would be highly beneficial for cardiac tissue engineering and cardiomyocytes-based bioactuators. Herein, we developed conductive nanofibrous sheets with electrical conductivity and nanofibrous structure composed of poly(l-lactic acid) (PLA) blending with polyaniline (PANI) for cardiac tissue engineering and cardiomyocytes-based 3D bioactuators. Incorporating of varying contents of PANI from 0wt% to 3wt% into the PLA polymer, the electrospun nanofibrous sheets showed enhanced conductivity while maintaining the same fiber diameter. These PLA/PANI conductive nanofibrous sheets exhibited good cell viability and promoting effect on differentiation of H9c2 cardiomyoblasts in terms of maturation index and fusion index. Moreover, PLA/PANI nanofibrous sheets enhanced the cell-cell interaction, maturation and spontaneous beating of primary cardiomyocytes. Furthermore, the cardiomyocytes-laden PLA/PANI conductive nanofibrous sheets can form 3D bioactuators with tubular and folding shapes, and spontaneously beat with much higher frequency and displacement than that on cardiomyocytes-laden PLA nanofibrous sheets. Therefore, these PLA/PANI conductive nanofibrous sheets with conductivity and extracellular matrix like nanostructure demonstrated promising potential in cardiac tissue engineering and cardiomyocytes-based 3D bioactuators. Cardiomyocytes-based bioactuators have been paid more attention due to their spontaneous motion by integrating cardiomyocytes into polymer structures, but developing suitable scaffolds for bioactuators remains challenging. Electrospun nanofibrous scaffolds have been widely used in cardiac tissue engineering because they can mimic the extracellular matrix of myocardium. Developing conductive nanofibrous scaffolds by electrospinning would be beneficial for cardiomyocytes-based bioactuators, but such scaffolds have been

  14. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.

    Science.gov (United States)

    Navaei, Ali; Saini, Harpinder; Christenson, Wayne; Sullivan, Ryan Tanner; Ros, Robert; Nikkhah, Mehdi

    2016-09-01

    The development of advanced biomaterials is a crucial step to enhance the efficacy of tissue engineering strategies for treatment of myocardial infarction. Specific characteristics of biomaterials including electrical conductivity, mechanical robustness and structural integrity need to be further enhanced to promote the functionalities of cardiac cells. In this work, we fabricated UV-crosslinkable gold nanorod (GNR)-incorporated gelatin methacrylate (GelMA) hybrid hydrogels with enhanced material and biological properties for cardiac tissue engineering. Embedded GNRs promoted electrical conductivity and mechanical stiffness of the hydrogel matrix. Cardiomyocytes seeded on GelMA-GNR hybrid hydrogels exhibited excellent cell retention, viability, and metabolic activity. The increased cell adhesion resulted in abundance of locally organized F-actin fibers, leading to the formation of an integrated tissue layer on the GNR-embedded hydrogels. Immunostained images of integrin β-1 confirmed improved cell-matrix interaction on the hybrid hydrogels. Notably, homogeneous distribution of cardiac specific markers (sarcomeric α-actinin and connexin 43), were observed on GelMA-GNR hydrogels as a function of GNRs concentration. Furthermore, the GelMA-GNR hybrids supported synchronous tissue-level beating of cardiomyocytes. Similar observations were also noted by, calcium transient assay that demonstrated the rhythmic contraction of the cardiomyocytes on GelMA-GNR hydrogels as compared to pure GelMA. Thus, the findings of this study clearly demonstrated that functional cardiac patches with superior electrical and mechanical properties can be developed using nanoengineered GelMA-GNR hybrid hydrogels. In this work, we developed gold nanorod (GNR) incorporated gelatin-based hydrogels with suitable electrical conductivity and mechanical stiffness for engineering functional cardiac tissue constructs (e.g. cardiac patches). The synthesized conductive hybrid hydrogels properly

  15. "Just-In-Time" Simulation Training Using 3-D Printed Cardiac Models After Congenital Cardiac Surgery.

    Science.gov (United States)

    Olivieri, Laura J; Su, Lillian; Hynes, Conor F; Krieger, Axel; Alfares, Fahad A; Ramakrishnan, Karthik; Zurakowski, David; Marshall, M Blair; Kim, Peter C W; Jonas, Richard A; Nath, Dilip S

    2016-03-01

    High-fidelity simulation using patient-specific three-dimensional (3D) models may be effective in facilitating pediatric cardiac intensive care unit (PCICU) provider training for clinical management of congenital cardiac surgery patients. The 3D-printed heart models were rendered from preoperative cross-sectional cardiac imaging for 10 patients undergoing congenital cardiac surgery. Immediately following surgical repair, a congenital cardiac surgeon and an intensive care physician conducted a simulation training session regarding postoperative care utilizing the patient-specific 3D model for the PCICU team. After the simulation, Likert-type 0 to 10 scale questionnaire assessed participant perception of impact of the training session. Seventy clinicians participated in training sessions, including 22 physicians, 38 nurses, and 10 ancillary care providers. Average response to whether 3D models were more helpful than standard hand off was 8.4 of 10. Questions regarding enhancement of understanding and clinical ability received average responses of 9.0 or greater, and 90% of participants scored 8 of 10 or higher. Nurses scored significantly higher than other clinicians on self-reported familiarity with the surgery (7.1 vs. 5.8; P = .04), clinical management ability (8.6 vs. 7.7; P = .02), and ability enhancement (9.5 vs. 8.7; P = .02). Compared to physicians, nurses and ancillary providers were more likely to consider 3D models more helpful than standard hand off (8.7 vs. 7.7; P = .05). Higher case complexity predicted greater enhancement of understanding of surgery (P = .04). The 3D heart models can be used to enhance congenital cardiac critical care via simulation training of multidisciplinary intensive care teams. Benefit may be dependent on provider type and case complexity. © The Author(s) 2016.

  16. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Baei, Payam [Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Cardiovascular Engineering Laboratory, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Jalili-Firoozinezhad, Sasan [Department of Biomedicine and Surgery, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel (Switzerland); Department of Bioengineeringand IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Rajabi-Zeleti, Sareh [Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Tafazzoli-Shadpour, Mohammad [Cardiovascular Engineering Laboratory, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Baharvand, Hossein, E-mail: Baharvand@royaninstitute.org [Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Department of Developmental Biology, University of Science and Culture, ACECR, Tehran (Iran, Islamic Republic of); Aghdami, Nasser, E-mail: Nasser.Aghdami@royaninstitute.org [Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of)

    2016-06-01

    Injectable hydrogels that resemble electromechanical properties of the myocardium are crucial for cardiac tissue engineering prospects. We have developed a facile approach that uses chitosan (CS) to generate a thermosensitive conductive hydrogel with a highly porous network of interconnected pores. Gold nanoparticles (GNPs) were evenly dispersed throughout the CS matrix in order to provide electrical cues. The gelation response and electrical conductivity of the hydrogel were controlled by different concentrations of GNPs. The CS-GNP hydrogels were seeded with mesenchymal stem cells (MSCs) and cultivated for up to 14 days in the absence of electrical stimulations. CS-GNP scaffolds supported viability, metabolism, migration and proliferation of MSCs along with the development of uniform cellular constructs. Immunohistochemistry for early and mature cardiac markers showed enhanced cardiomyogenic differentiation of MSCs within the CS-GNP compared to the CS matrix alone. The results of this study demonstrate that incorporation of nanoscale electro-conductive GNPs into CS hydrogels enhances the properties of myocardial constructs. These constructs could find utilization for regeneration of other electroactive tissues. - Highlights: • Thermosensitive electro-conductive hydrogels were prepared from CS and GNPs. • Gelation time and conductivity were tuned by varying concentration of GNPs. • CS-2GNP with gelation time of 25.7 min and conductivity of 0.13 S·m{sup −1} was selected for in vitro studies. • CS-2GNP supported active metabolism, migration and proliferation of MSCs. • Expression of cardiac markers increased about two-fold in CS-2GNP compared to CS.

  17. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Baei, Payam; Jalili-Firoozinezhad, Sasan; Rajabi-Zeleti, Sareh; Tafazzoli-Shadpour, Mohammad; Baharvand, Hossein; Aghdami, Nasser

    2016-01-01

    Injectable hydrogels that resemble electromechanical properties of the myocardium are crucial for cardiac tissue engineering prospects. We have developed a facile approach that uses chitosan (CS) to generate a thermosensitive conductive hydrogel with a highly porous network of interconnected pores. Gold nanoparticles (GNPs) were evenly dispersed throughout the CS matrix in order to provide electrical cues. The gelation response and electrical conductivity of the hydrogel were controlled by different concentrations of GNPs. The CS-GNP hydrogels were seeded with mesenchymal stem cells (MSCs) and cultivated for up to 14 days in the absence of electrical stimulations. CS-GNP scaffolds supported viability, metabolism, migration and proliferation of MSCs along with the development of uniform cellular constructs. Immunohistochemistry for early and mature cardiac markers showed enhanced cardiomyogenic differentiation of MSCs within the CS-GNP compared to the CS matrix alone. The results of this study demonstrate that incorporation of nanoscale electro-conductive GNPs into CS hydrogels enhances the properties of myocardial constructs. These constructs could find utilization for regeneration of other electroactive tissues. - Highlights: • Thermosensitive electro-conductive hydrogels were prepared from CS and GNPs. • Gelation time and conductivity were tuned by varying concentration of GNPs. • CS-2GNP with gelation time of 25.7 min and conductivity of 0.13 S·m"−"1 was selected for in vitro studies. • CS-2GNP supported active metabolism, migration and proliferation of MSCs. • Expression of cardiac markers increased about two-fold in CS-2GNP compared to CS.

  18. Advanced computer techniques for inverse modeling of electric current in cardiac tissue

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, S.A.; Romero, L.A.; Diegert, C.F.

    1996-08-01

    For many years, ECG`s and vector cardiograms have been the tools of choice for non-invasive diagnosis of cardiac conduction problems, such as found in reentrant tachycardia or Wolff-Parkinson-White (WPW) syndrome. Through skillful analysis of these skin-surface measurements of cardiac generated electric currents, a physician can deduce the general location of heart conduction irregularities. Using a combination of high-fidelity geometry modeling, advanced mathematical algorithms and massively parallel computing, Sandia`s approach would provide much more accurate information and thus allow the physician to pinpoint the source of an arrhythmia or abnormal conduction pathway.

  19. Animal models of cardiac cachexia.

    Science.gov (United States)

    Molinari, Francesca; Malara, Natalia; Mollace, Vincenzo; Rosano, Giuseppe; Ferraro, Elisabetta

    2016-09-15

    Cachexia is the loss of body weight associated with several chronic diseases including chronic heart failure (CHF). The cachectic condition is mainly due to loss of skeletal muscle mass and adipose tissue depletion. The majority of experimental in vivo studies on cachexia rely on animal models of cancer cachexia while a reliable and appropriate model for cardiac cachexia has not yet been established. A critical issue in generating a cardiac cachexia model is that genetic modifications or pharmacological treatments impairing the heart functionality and used to obtain the heart failure model might likely impair the skeletal muscle, this also being a striated muscle and sharing with the myocardium several molecular and physiological mechanisms. On the other hand, often, the induction of heart damage in the several existing models of heart failure does not necessarily lead to skeletal muscle loss and cachexia. Here we describe the main features of cardiac cachexia and illustrate some animal models proposed for cardiac cachexia studies; they include the genetic calsequestrin and Dahl salt-sensitive models, the monocrotaline model and the surgical models obtained by left anterior descending (LAD) ligation, transverse aortic constriction (TAC) and ascending aortic banding. The availability of a specific animal model for cardiac cachexia is a crucial issue since, besides the common aspects of cachexia in the different syndromes, each disease has some peculiarities in its etiology and pathophysiology leading to cachexia. Such peculiarities need to be unraveled in order to find new targets for effective therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Engineering the heart: Evaluation of conductive nanomaterials for improving implant integration and cardiac function

    Science.gov (United States)

    Zhou, Jin; Chen, Jun; Sun, Hongyu; Qiu, Xiaozhong; Mou, Yongchao; Liu, Zhiqiang; Zhao, Yuwei; Li, Xia; Han, Yao; Duan, Cuimi; Tang, Rongyu; Wang, Chunlan; Zhong, Wen; Liu, Jie; Luo, Ying; (Mengqiu) Xing, Malcolm; Wang, Changyong

    2014-01-01

    Recently, carbon nanotubes together with other types of conductive materials have been used to enhance the viability and function of cardiomyocytes in vitro. Here we demonstrated a paradigm to construct ECTs for cardiac repair using conductive nanomaterials. Single walled carbon nanotubes (SWNTs) were incorporated into gelatin hydrogel scaffolds to construct three-dimensional ECTs. We found that SWNTs could provide cellular microenvironment in vitro favorable for cardiac contraction and the expression of electrochemical associated proteins. Upon implantation into the infarct hearts in rats, ECTs structurally integrated with the host myocardium, with different types of cells observed to mutually invade into implants and host tissues. The functional measurements showed that SWNTs were essential to improve the performance of ECTs in inhibiting pathological deterioration of myocardium. This work suggested that conductive nanomaterials hold therapeutic potential in engineering cardiac tissues to repair myocardial infarction. PMID:24429673

  1. Bayesian Sensitivity Analysis of a Cardiac Cell Model Using a Gaussian Process Emulator

    Science.gov (United States)

    Chang, Eugene T Y; Strong, Mark; Clayton, Richard H

    2015-01-01

    Models of electrical activity in cardiac cells have become important research tools as they can provide a quantitative description of detailed and integrative physiology. However, cardiac cell models have many parameters, and how uncertainties in these parameters affect the model output is difficult to assess without undertaking large numbers of model runs. In this study we show that a surrogate statistical model of a cardiac cell model (the Luo-Rudy 1991 model) can be built using Gaussian process (GP) emulators. Using this approach we examined how eight outputs describing the action potential shape and action potential duration restitution depend on six inputs, which we selected to be the maximum conductances in the Luo-Rudy 1991 model. We found that the GP emulators could be fitted to a small number of model runs, and behaved as would be expected based on the underlying physiology that the model represents. We have shown that an emulator approach is a powerful tool for uncertainty and sensitivity analysis in cardiac cell models. PMID:26114610

  2. On the identification of multiple space dependent ionic parameters in cardiac electrophysiology modelling

    Science.gov (United States)

    Abidi, Yassine; Bellassoued, Mourad; Mahjoub, Moncef; Zemzemi, Nejib

    2018-03-01

    In this paper, we consider the inverse problem of space dependent multiple ionic parameters identification in cardiac electrophysiology modelling from a set of observations. We use the monodomain system known as a state-of-the-art model in cardiac electrophysiology and we consider a general Hodgkin-Huxley formalism to describe the ionic exchanges at the microscopic level. This formalism covers many physiological transmembrane potential models including those in cardiac electrophysiology. Our main result is the proof of the uniqueness and a Lipschitz stability estimate of ion channels conductance parameters based on some observations on an arbitrary subdomain. The key idea is a Carleman estimate for a parabolic operator with multiple coefficients and an ordinary differential equation system.

  3. Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders

    DEFF Research Database (Denmark)

    den Hoed, Marcel; Eijgelsheim, Mark; Esko, Tõnu

    2013-01-01

    of dilated cardiomyopathy, congenital heart failure and/or sudden cardiac death. In addition, genetic susceptibility to increased heart rate is associated with altered cardiac conduction and reduced risk of sick sinus syndrome, and both heart rate-increasing and heart rate-decreasing variants associate...

  4. Advantages of a cohort study on cardiac arrest conducted by nurses

    Directory of Open Access Journals (Sweden)

    Cássia Regina Vancini Campanharo

    2015-10-01

    Full Text Available AbstractOBJECTIVEIdentifying factors associated to survival after cardiac arrest.METHODAn experience report of a cohort study conducted in a university hospital, with a consecutive sample comprised of 285 patients. Data were collected for a year by trained nurses. The training strategy was conducted through an expository dialogue lecture. Collection monitoring was carried out by nurses via telephone calls, visits to the emergency room and by medical record searches. The neurological status of survivors was evaluated at discharge, after six months and one year.RESULTSOf the 285 patients, 16 survived until hospital discharge, and 13 remained alive after one year, making possible to identify factors associated with survival. There were no losses in the process.CONCLUSIONCohort studies help identify risks and disease outcomes. Considering cardiac arrest, they can subsidize public policies, encourage future studies and training programs for CPR, thereby improving the prognosis of patients.

  5. Estimation of 3-D conduction velocity vector fields from cardiac mapping data.

    Science.gov (United States)

    Barnette, A R; Bayly, P V; Zhang, S; Walcott, G P; Ideker, R E; Smith, W M

    2000-08-01

    A method to estimate three-dimensional (3-D) conduction velocity vector fields in cardiac tissue is presented. The speed and direction of propagation are found from polynomial "surfaces" fitted to space-time (x, y, z, t) coordinates of cardiac activity. The technique is applied to sinus rhythm and paced rhythm mapped with plunge needles at 396-466 sites in the canine myocardium. The method was validated on simulated 3-D plane and spherical waves. For simulated data, conduction velocities were estimated with an accuracy of 1%-2%. In experimental data, estimates of conduction speeds during paced rhythm were slower than those found during normal sinus rhythm. Vector directions were also found to differ between different types of beats. The technique was able to distinguish between premature ventricular contractions and sinus beats and between sinus and paced beats. The proposed approach to computing velocity vector fields provides an automated, physiological, and quantitative description of local electrical activity in 3-D tissue. This method may provide insight into abnormal conduction associated with fatal ventricular arrhythmias.

  6. Map-based model of the cardiac action potential

    International Nuclear Information System (INIS)

    Pavlov, Evgeny A.; Osipov, Grigory V.; Chan, C.K.; Suykens, Johan A.K.

    2011-01-01

    A simple computationally efficient model which is capable of replicating the basic features of cardiac cell action potential is proposed. The model is a four-dimensional map and demonstrates good correspondence with real cardiac cells. Various regimes of cardiac activity, which can be reproduced by the proposed model, are shown. Bifurcation mechanisms of these regimes transitions are explained using phase space analysis. The dynamics of 1D and 2D lattices of coupled maps which model the behavior of electrically connected cells is discussed in the context of synchronization theory. -- Highlights: → Recent experimental-data based models are complicated for analysis and simulation. → The simplified map-based model of the cardiac cell is constructed. → The model is capable for replication of different types of cardiac activity. → The spatio-temporal dynamics of ensembles of coupled maps are investigated. → Received data are analyzed in context of biophysical processes in the myocardium.

  7. Map-based model of the cardiac action potential

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, Evgeny A., E-mail: genie.pavlov@gmail.com [Department of Computational Mathematics and Cybernetics, Nizhny Novgorod State University, 23, Gagarin Avenue, 603950 Nizhny Novgorod (Russian Federation); Osipov, Grigory V. [Department of Computational Mathematics and Cybernetics, Nizhny Novgorod State University, 23, Gagarin Avenue, 603950 Nizhny Novgorod (Russian Federation); Chan, C.K. [Institute of Physics, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei 115, Taiwan (China); Suykens, Johan A.K. [K.U. Leuven, ESAT-SCD/SISTA, Kasteelpark Arenberg 10, B-3001 Leuven (Heverlee) (Belgium)

    2011-07-25

    A simple computationally efficient model which is capable of replicating the basic features of cardiac cell action potential is proposed. The model is a four-dimensional map and demonstrates good correspondence with real cardiac cells. Various regimes of cardiac activity, which can be reproduced by the proposed model, are shown. Bifurcation mechanisms of these regimes transitions are explained using phase space analysis. The dynamics of 1D and 2D lattices of coupled maps which model the behavior of electrically connected cells is discussed in the context of synchronization theory. -- Highlights: → Recent experimental-data based models are complicated for analysis and simulation. → The simplified map-based model of the cardiac cell is constructed. → The model is capable for replication of different types of cardiac activity. → The spatio-temporal dynamics of ensembles of coupled maps are investigated. → Received data are analyzed in context of biophysical processes in the myocardium.

  8. Cardiac cell modelling: Observations from the heart of the cardiac physiome project

    KAUST Repository

    Fink, Martin; Niederer, Steven A.; Cherry, Elizabeth M.; Fenton, Flavio H.; Koivumä ki, Jussi T.; Seemann, Gunnar; Thul, Rü diger; Zhang, Henggui; Sachse, Frank B.; Beard, Dan; Crampin, Edmund J.; Smith, Nicolas P.

    2011-01-01

    In this manuscript we review the state of cardiac cell modelling in the context of international initiatives such as the IUPS Physiome and Virtual Physiological Human Projects, which aim to integrate computational models across scales and physics. In particular we focus on the relationship between experimental data and model parameterisation across a range of model types and cellular physiological systems. Finally, in the context of parameter identification and model reuse within the Cardiac Physiome, we suggest some future priority areas for this field. © 2010 Elsevier Ltd.

  9. Is a Three-Dimensional Printing Model Better Than a Traditional Cardiac Model for Medical Education? A Pilot Randomized Controlled Study.

    Science.gov (United States)

    Wang, Zhongmin; Liu, Yuhao; Luo, Hongxing; Gao, Chuanyu; Zhang, Jing; Dai, Yuya

    2017-11-01

    Three-dimensional (3D) printing is a newly-emerged technology converting a series of two-dimensional images to a touchable 3D model, but no studies have investigated whether or not a 3D printing model is better than a traditional cardiac model for medical education. A 3D printing cardiac model was generated using multi-slice computed tomography datasets. Thirty-four medical students were randomized to either the 3D Printing Group taught with the aid of a 3D printing cardiac model or the Traditional Model Group with a commonly used plastic cardiac model. Questionnaires with 10 medical questions and 3 evaluative questions were filled in by the students. A 3D printing cardiac model was successfully generated. Students in the 3D Printing Group were slightly quicker to answer all questions when compared with the Traditional Model Group (224.53 ± 44.13 s vs. 238.71 ± 68.46 s, p = 0.09), but the total score was not significantly different (6.24 ± 1.30 vs. 7.18 ± 1.70, p = 0.12). Neither the students'satisfaction (p = 0.48) nor their understanding of cardiac structures (p = 0.24) was significantly different between two groups. More students in the 3D Printing Group believed that they had understood at least 90% of teaching content (6 vs. 1). Both groups had 12 (70.6%) students who preferred a 3D printing model for medical education. A 3D printing model was not significantly superior to a traditional model in teaching cardiac diseases in our pilot randomized controlled study, yet more studies may be conducted to validate the real effect of 3D printing on medical education.

  10. Conditional shape models for cardiac motion estimation

    DEFF Research Database (Denmark)

    Metz, Coert; Baka, Nora; Kirisli, Hortense

    2010-01-01

    We propose a conditional statistical shape model to predict patient specific cardiac motion from the 3D end-diastolic CTA scan. The model is built from 4D CTA sequences by combining atlas based segmentation and 4D registration. Cardiac motion estimation is, for example, relevant in the dynamic...

  11. Slow [Na+]i dynamics impacts arrhythmogenesis and spiral wave reentry in cardiac myocyte ionic model.

    Science.gov (United States)

    Krogh-Madsen, Trine; Christini, David J

    2017-09-01

    Accumulation of intracellular Na + is gaining recognition as an important regulator of cardiac myocyte electrophysiology. The intracellular Na + concentration can be an important determinant of the cardiac action potential duration, can modulate the tissue-level conduction of excitation waves, and can alter vulnerability to arrhythmias. Mathematical models of cardiac electrophysiology often incorporate a dynamic intracellular Na + concentration, which changes much more slowly than the remaining variables. We investigated the dependence of several arrhythmogenesis-related factors on [Na + ] i in a mathematical model of the human atrial action potential. In cell simulations, we found that [Na + ] i accumulation stabilizes the action potential duration to variations in several conductances and that the slow dynamics of [Na + ] i impacts bifurcations to pro-arrhythmic afterdepolarizations, causing intermittency between different rhythms. In long-lasting tissue simulations of spiral wave reentry, [Na + ] i becomes spatially heterogeneous with a decreased area around the spiral wave rotation center. This heterogeneous region forms a functional anchor, resulting in diminished meandering of the spiral wave. Our findings suggest that slow, physiological, rate-dependent variations in [Na + ] i may play complex roles in cellular and tissue-level cardiac dynamics.

  12. LR-Spring Mass Model for Cardiac Surgical Simulation

    DEFF Research Database (Denmark)

    Mosegaard, Jesper

    2004-01-01

    The purpose of the research conducted was to develop a real-time surgical simulator for preoperative planning of surgery in congenital heart disease. The main problem simulating procedures on cardiac morphology is the need for a large degree of detail and simulation speed. In combination with a d......The purpose of the research conducted was to develop a real-time surgical simulator for preoperative planning of surgery in congenital heart disease. The main problem simulating procedures on cardiac morphology is the need for a large degree of detail and simulation speed. In combination...

  13. Patient-specific models of cardiac biomechanics

    Science.gov (United States)

    Krishnamurthy, Adarsh; Villongco, Christopher T.; Chuang, Joyce; Frank, Lawrence R.; Nigam, Vishal; Belezzuoli, Ernest; Stark, Paul; Krummen, David E.; Narayan, Sanjiv; Omens, Jeffrey H.; McCulloch, Andrew D.; Kerckhoffs, Roy C. P.

    2013-07-01

    Patient-specific models of cardiac function have the potential to improve diagnosis and management of heart disease by integrating medical images with heterogeneous clinical measurements subject to constraints imposed by physical first principles and prior experimental knowledge. We describe new methods for creating three-dimensional patient-specific models of ventricular biomechanics in the failing heart. Three-dimensional bi-ventricular geometry is segmented from cardiac CT images at end-diastole from patients with heart failure. Human myofiber and sheet architecture is modeled using eigenvectors computed from diffusion tensor MR images from an isolated, fixed human organ-donor heart and transformed to the patient-specific geometric model using large deformation diffeomorphic mapping. Semi-automated methods were developed for optimizing the passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Material properties of active cardiac muscle contraction were optimized to match ventricular pressures measured by cardiac catheterization, and parameters of a lumped-parameter closed-loop model of the circulation were estimated with a circulatory adaptation algorithm making use of information derived from echocardiography. These components were then integrated to create a multi-scale model of the patient-specific heart. These methods were tested in five heart failure patients from the San Diego Veteran's Affairs Medical Center who gave informed consent. The simulation results showed good agreement with measured echocardiographic and global functional parameters such as ejection fraction and peak cavity pressures.

  14. Nonlinear dynamics in cardiac conduction

    Science.gov (United States)

    Kaplan, D. T.; Smith, J. M.; Saxberg, B. E.; Cohen, R. J.

    1988-01-01

    Electrical conduction in the heart shows many phenomena familiar from nonlinear dynamics. Among these phenomena are multiple basins of attraction, phase locking, and perhaps period-doubling bifurcations and chaos. We describe a simple cellular-automation model of electrical conduction which simulates normal conduction patterns in the heart as well as a wide range of disturbances of heart rhythm. In addition, we review the application of percolation theory to the analysis of the development of complex, self-sustaining conduction patterns.

  15. Uncertainty and variability in computational and mathematical models of cardiac physiology.

    Science.gov (United States)

    Mirams, Gary R; Pathmanathan, Pras; Gray, Richard A; Challenor, Peter; Clayton, Richard H

    2016-12-01

    Mathematical and computational models of cardiac physiology have been an integral component of cardiac electrophysiology since its inception, and are collectively known as the Cardiac Physiome. We identify and classify the numerous sources of variability and uncertainty in model formulation, parameters and other inputs that arise from both natural variation in experimental data and lack of knowledge. The impact of uncertainty on the outputs of Cardiac Physiome models is not well understood, and this limits their utility as clinical tools. We argue that incorporating variability and uncertainty should be a high priority for the future of the Cardiac Physiome. We suggest investigating the adoption of approaches developed in other areas of science and engineering while recognising unique challenges for the Cardiac Physiome; it is likely that novel methods will be necessary that require engagement with the mathematics and statistics community. The Cardiac Physiome effort is one of the most mature and successful applications of mathematical and computational modelling for describing and advancing the understanding of physiology. After five decades of development, physiological cardiac models are poised to realise the promise of translational research via clinical applications such as drug development and patient-specific approaches as well as ablation, cardiac resynchronisation and contractility modulation therapies. For models to be included as a vital component of the decision process in safety-critical applications, rigorous assessment of model credibility will be required. This White Paper describes one aspect of this process by identifying and classifying sources of variability and uncertainty in models as well as their implications for the application and development of cardiac models. We stress the need to understand and quantify the sources of variability and uncertainty in model inputs, and the impact of model structure and complexity and their consequences for

  16. Coupled iterated map models of action potential dynamics in a one-dimensional cable of cardiac cells

    International Nuclear Information System (INIS)

    Wang Shihong; Xie Yuanfang; Qu Zhilin

    2008-01-01

    Low-dimensional iterated map models have been widely used to study action potential dynamics in isolated cardiac cells. Coupled iterated map models have also been widely used to investigate action potential propagation dynamics in one-dimensional (1D) coupled cardiac cells, however, these models are usually empirical and not carefully validated. In this study, we first developed two coupled iterated map models which are the standard forms of diffusively coupled maps and overcome the limitations of the previous models. We then determined the coupling strength and space constant by quantitatively comparing the 1D action potential duration profile from the coupled cardiac cell model described by differential equations with that of the coupled iterated map models. To further validate the coupled iterated map models, we compared the stability conditions of the spatially uniform state of the coupled iterated maps and those of the 1D ionic model and showed that the coupled iterated map model could well recapitulate the stability conditions, i.e. the spatially uniform state is stable unless the state is chaotic. Finally, we combined conduction into the developed coupled iterated map model to study the effects of coupling strength on wave stabilities and showed that the diffusive coupling between cardiac cells tends to suppress instabilities during reentry in a 1D ring and the onset of discordant alternans in a periodically paced 1D cable

  17. Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system

    NARCIS (Netherlands)

    Bezzina, Connie R.; Rook, Martin B.; Groenewegen, W. Antoinette; Herfst, Lucas J.; van der Wal, Allard C.; Lam, Jan; Jongsma, Habo J.; Wilde, Arthur A. M.; Mannens, Marcel M. A. M.

    2003-01-01

    Cardiac conduction defects associate with mutations in SCN5A, the gene encoding the cardiac Na+ channel. In the present study, we characterized a family in which the proband was born in severe distress with irregular wide complex tachycardia. His older sister died at 1 year of age from severe

  18. Sick sinus syndrome, progressive cardiac conduction disease, atrial flutter and ventricular tachycardia caused by a novel SCN5A mutation

    DEFF Research Database (Denmark)

    Holst, Anders G; Liang, Bo; Jespersen, Thomas

    2010-01-01

    father carried the same mutation, but had a milder phenotype, presenting with progressive cardiac conduction later in life. The mutation was found to result in a loss-of-function in the sodium current. In conclusion, the same SCN5A mutation can result in a wide array of clinical phenotypes and perhaps......Mutations in the cardiac sodium channel encoded by the gene SCN5A can result in a wide array of phenotypes. We report a case of a young male with a novel SCN5A mutation (R121W) afflicted by sick sinus syndrome, progressive cardiac conduction disorder, atrial flutter and ventricular tachycardia. His...

  19. Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell

    Science.gov (United States)

    Maltsev, Victor A.; Yaniv, Yael; Maltsev, Anna V.; Stern, Michael D.; Lakatta, Edward G.

    2015-01-01

    Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent “coupled-clock” theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies, such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434

  20. Cardiac Dysfunction in a Porcine Model of Pediatric Malnutrition

    DEFF Research Database (Denmark)

    Fabiansen, Christian; Lykke, Mikkel; Hother, Anne-Louise

    2015-01-01

    BACKGROUND: Half a million children die annually of severe acute malnutrition and cardiac dysfunction may contribute to the mortality. However, cardiac function remains poorly examined in cases of severe acute malnutrition. OBJECTIVE: To determine malnutrition-induced echocardiographic disturbances...... and longitudinal changes in plasma pro-atrial natriuretic peptide and cardiac troponin-T in a pediatric porcine model. METHODS AND RESULTS: Five-week old piglets (Duroc-x-Danish Landrace-x-Yorkshire) were fed a nutritionally inadequate maize-flour diet to induce malnutrition (MAIZE, n = 12) or a reference diet...... groups. The myocardial performance index was 86% higher in MAIZE vs AGE-REF (pMalnutrition associates with cardiac dysfunction in a pediatric porcine model by increased myocardial performance index and pro-atrial natriuretic peptide...

  1. Is there an association between Fahr′s disease and cardiac conduction system disease?: A case report

    Directory of Open Access Journals (Sweden)

    Prashanth Panduranga

    2012-01-01

    Full Text Available Background: Fahr′s disease is a rare neurodegenerative disorder of unknown cause characterized by idiopathic basal ganglia calcification that is associated with neuropsychiatric and cognitive impairment. No case of Fahr′s disease with associated cardiac conduction disease has been described in the literature to date. The objective of this case report was to describe a young female with various cardiac conduction system abnormalities and bilateral basal ganglia calcifica-tion suggestive of Fahr′s disease. Case Report: A 19-year-old female was transferred to our hospital for a pacemaker insertion. Her past medical history included cognitive impairment and asymptomatic congenital complete heart block since birth. Her manifestations in-cluded cognitive impairment, tremors, rigidity, ataxia, bilateral basal ganglia calcification without clinical manifesta-tions of mitochondrial cytopathy. She also had right bundle branch block, left anterior fascicular block, intermittent complete heart block, atrial arrhythmias with advanced atrioventricular blocks and ventricular asystole manifested by Stokes-Adams seizures, which was diagnosed as epilepsy. Conclusions: According to our knowledge, this was the first case report of a su spected association between Fahr′s disease and isolated cardiac conduction system disease. In addition, this case illustrated that in patients with heart blocks and seizures, a diagnosis of epilepsy needs to be made with caution and such patients need further evaluations by a cardiologist or electrophysiologist to consider pacing and prevent future catastrophic events.

  2. Concise Review: Cardiac Disease Modeling Using Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Yang, Chunbo; Al-Aama, Jumana; Stojkovic, Miodrag; Keavney, Bernard; Trafford, Andrew; Lako, Majlinda; Armstrong, Lyle

    2015-09-01

    Genetic cardiac diseases are major causes of morbidity and mortality. Although animal models have been created to provide some useful insights into the pathogenesis of genetic cardiac diseases, the significant species differences and the lack of genetic information for complex genetic diseases markedly attenuate the application values of such data. Generation of induced pluripotent stem cells (iPSCs) from patient-specific specimens and subsequent derivation of cardiomyocytes offer novel avenues to study the mechanisms underlying cardiac diseases, to identify new causative genes, and to provide insights into the disease aetiology. In recent years, the list of human iPSC-based models for genetic cardiac diseases has been expanding rapidly, although there are still remaining concerns on the level of functionality of iPSC-derived cardiomyocytes and their ability to be used for modeling complex cardiac diseases in adults. This review focuses on the development of cardiomyocyte induction from pluripotent stem cells, the recent progress in heart disease modeling using iPSC-derived cardiomyocytes, and the challenges associated with understanding complex genetic diseases. To address these issues, we examine the similarity between iPSC-derived cardiomyocytes and their ex vivo counterparts and how this relates to the method used to differentiate the pluripotent stem cells into a cardiomyocyte phenotype. We progress to examine categories of congenital cardiac abnormalities that are suitable for iPSC-based disease modeling. © AlphaMed Press.

  3. Simulation of a plane wavefront propagating in cardiac tissue using a cellular automata model

    International Nuclear Information System (INIS)

    Barbosa, Carlos R Hall

    2003-01-01

    We present a detailed description of a cellular automata model for the propagation of action potential in a planar cardiac tissue, which is very fast and easy to use. The model incorporates anisotropy in the electrical conductivity and a spatial variation of the refractory time. The transmembrane potential distribution is directly derived from the cell states, and the intracellular and extracellular potential distributions are calculated for the particular case of a plane wavefront. Once the potential distributions are known, the associated current densities are calculated by Ohm's law, and the magnetic field is determined at a plane parallel to the cardiac tissue by applying the law of Biot and Savart. The results obtained for propagation speed and for magnetic field amplitude with the cellular automata model are compared with values predicted by the bidomain formulation, for various angles between wavefront propagation and fibre direction, characterizing excellent agreement between the models

  4. Designs that make a difference: the Cardiac Universal Bed model.

    Science.gov (United States)

    Johnson, Jackie; Brown, Katherine Kay; Neal, Kelly

    2003-01-01

    Information contained in this article includes some of the findings from a joint research project conducted by Corazon Consulting and Ohio State University Medical Center on national trends in Cardiac Universal Bed (CUB) utilization. This article outlines current findings and "best practice" standards related to the benefits of developing care delivery models to differentiate an organization with a competitive advantage in the highly dynamic marketplace of cardiovascular care. (OSUMC, a Corazon client, is incorporating the CUB into their Ross Heart Hospital slated to open this spring.)

  5. Milrinone ameliorates cardiac mechanical dysfunction after hypothermia in an intact rat model.

    Science.gov (United States)

    Dietrichs, Erik Sveberg; Kondratiev, Timofei; Tveita, Torkjel

    2014-12-01

    Rewarming from hypothermia is often complicated by cardiac dysfunction, characterized by substantial reduction in stroke volume. Previously we have reported that inotropic agents, working via cardiac β-receptor agonism may exert serious side effects when applied to treat cardiac contractile dysfunction during rewarming. In this study we tested whether Milrinone, a phosphodiesterase III inhibitor, is able to ameliorate such dysfunction when given during rewarming. A rat model designed for circulatory studies during experimental hypothermia with cooling to a core temperature of 15°C, stable hypothermia at this temperature for 3h and subsequent rewarming was used, with a total of 3 groups: (1) a normothermic group receiving Milrinone, (2) a hypothermic group receiving Milrinone the last hour of hypothermia and during rewarming, and (3) a hypothermic saline control group. Hemodynamic function was monitored using a conductance catheter introduced to the left ventricle. After rewarming from 15°C, stroke volume and cardiac output returned to within baseline values in Milrinone treated animals, while these variables were significantly reduced in saline controls. Milrinone ameliorated cardiac dysfunction during rewarming from 15°C. The present results suggest that at low core temperatures and during rewarming from such temperatures, pharmacologic efforts to support cardiovascular function is better achieved by substances preventing cyclic AMP breakdown rather than increasing its formation via β-receptor stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Alternans promotion in cardiac electrophysiology models by delay differential equations.

    Science.gov (United States)

    Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M

    2017-09-01

    Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.

  7. Alternans promotion in cardiac electrophysiology models by delay differential equations

    Science.gov (United States)

    Gomes, Johnny M.; dos Santos, Rodrigo Weber; Cherry, Elizabeth M.

    2017-09-01

    Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.

  8. Pharmacokinetic/pharmacodynamic modeling of cardiac toxicity in human acute overdoses: utility and limitations.

    Science.gov (United States)

    Mégarbane, Bruno; Aslani, Arsia Amir; Deye, Nicolas; Baud, Frédéric J

    2008-05-01

    Hypotension, cardiac failure, QT interval prolongation, dysrhythmias, and conduction disturbances are common complications of overdoses with cardiotoxicants. Pharmacokinetic/pharmacodynamic (PK/PD) relationships are useful to assess diagnosis, prognosis, and treatment efficacy in acute poisonings. To review the utility and limits of PK/PD studies of cardiac toxicity. Discussion of various models, mainly those obtained in digitalis, cyanide, venlafaxine and citalopram poisonings. A sigmoidal E(max) model appears adequate to represent the PK/PD relationships in cardiotoxic poisonings. PK/PD correlations investigate the discrepancies between the time course of the effect magnitude and its evolving concentrations. They may help in understanding the mechanisms of occurrence as well as disappearance of a cardiotoxic effect. When data are sparse, population-based PK/PD modeling using computer-intensive algorithms is helpful to estimate population mean values of PK parameters as well as their individual variability. Further PK/PD studies are needed in medical toxicology to allow understanding of the meaning of blood toxicant concentration in acute poisonings and thus improve management.

  9. A model of survival following pre-hospital cardiac arrest based on the Victorian Ambulance Cardiac Arrest Register.

    Science.gov (United States)

    Fridman, Masha; Barnes, Vanessa; Whyman, Andrew; Currell, Alex; Bernard, Stephen; Walker, Tony; Smith, Karen L

    2007-11-01

    This study describes the epidemiology of sudden cardiac arrest patients in Victoria, Australia, as captured via the Victorian Ambulance Cardiac Arrest Register (VACAR). We used the VACAR data to construct a new model of out-of-hospital cardiac arrest (OHCA), which was specified in accordance with observed trends. All cases of cardiac arrest in Victoria that were attended by Victorian ambulance services during the period of 2002-2005. Overall survival to hospital discharge was 3.8% among 18,827 cases of OHCA. Survival was 15.7% among 1726 bystander witnessed, adult cardiac arrests of presumed cardiac aetiology, presenting in ventricular fibrillation or ventricular tachycardia (VF/VT), where resuscitation was attempted. In multivariate logistic regression analysis, bystander CPR, cardiac arrest (CA) location, response time, age and sex were predictors of VF/VT, which, in turn, was a strong predictor of survival. The same factors that affected VF/VT made an additional contribution to survival. However, for bystander CPR, CA location and response time this additional contribution was limited to VF/VT patients only. There was no detectable association between survival and age younger than 60 years or response time over 15min. The new model accounts for relationships among predictors of survival. These relationships indicate that interventions such as reduced response times and bystander CPR act in multiple ways to improve survival.

  10. Microengineered in vitro model of cardiac fibrosis through modulating myofibroblast mechanotransduction

    International Nuclear Information System (INIS)

    Zhao, Hui; Li, Xiaokang; Zhao, Shan; Zeng, Yang; Ding, Haiyan; Du, Yanan; Zhao, Long; Sun, Wei

    2014-01-01

    Cardiac fibrosis greatly impairs normal heart function post infarction and there is no effective anti-fibrotic drug developed at present. The current therapies for cardiac infarction mainly take effect by eliminating occlusion in coronary artery by thrombolysis drugs, vascular stent grafting or heart bypass operation, which are capable to provide sufficient blood flow for intact myocardium yet showed subtle efficacy in ameliorating fibrosis condition. The advances of in vitro cell/tissue models open new avenues for drug assessment due to the low cost, good controllability and availability as well as the convenience for operation as compared to the animal models. To our knowledge, no proper biomimetic in vitro cardiac fibrosis model has been reported yet. Here we engineered an in vitro cardiac fibrosis model using heart-derived fibroblasts, and the fibrogenesis was recapitulated by patterning the substrate rigidity which mimicked the mechanical heterogeneity of myocardium post-infarction. Various biomarkers for cardiac fibrosis were assayed to validate the biomimicry of the engineered platform. Subsequent addition of Rho-associated protein kinase (ROCK) pathway inhibitor reduced the ratio of myofibroblasts, indicating the feasibility of applying this platform in screening anti-fibrosis drugs. (paper)

  11. Characterization of Cardiac Patients Based on the Synergy Model

    Directory of Open Access Journals (Sweden)

    Tavangar

    2014-10-01

    Full Text Available Background Cardiac patients need comprehensive support due to the adverse effects of this disease on different aspects of their lives. Synergy intervention is a model that focuses on patients' requirements. Objectives This study aimed to determine the eightfold characteristic of cardiac patients based on the synergy model that represent their clinical requirements. Materials and Methods In this descriptive cross-sectional study, 40 cardiac patients hospitalized at the cardiac care unit (CCU of Yazd Afshar Hospital were randomly selected. The data were collected by using a two-part check-list including demographic characteristics and also by studying eight characteristics of patients through interviewing and reviewing their records. The results were analyzed using descriptive statistics such as frequency (percentage and analytical statistics such as Spearman and Mann-Whitney test with the SPSS software, version 18. Results The results showed that among patients' internal characteristics, reversibility (70.6%, vulnerability (68.6%, and predictability (80.4% at level 1 (the minimum score had the highest frequency and stability (49% and complexity (54.9% were at level 3 (average score. Among external characteristics participation in decision-making (80.4% at level 1 had the highest frequency while care (62.7% and recourses (98% were at level 3. Conclusions Ignoring any of the eightfold characteristics based on the synergy model interferes with comprehensive support of cardiac patients. Therefore, it is necessary for professional health practitioners, especially nurses, to consider patients' eightfold characteristics in order to provide quality care.

  12. Complete cardiac regeneration in a mouse model of myocardial infarction.

    Science.gov (United States)

    Haubner, Bernhard Johannes; Adamowicz-Brice, Martyna; Khadayate, Sanjay; Tiefenthaler, Viktoria; Metzler, Bernhard; Aitman, Tim; Penninger, Josef M

    2012-12-01

    Cardiac remodeling and subsequent heart failure remain critical issues after myocardial infarction despite improved treatment and reperfusion strategies. Recently, complete cardiac regeneration has been demonstrated in fish and newborn mice following resection of the cardiac apex. However, it remained entirely unclear whether the mammalian heart can also completely regenerate following a complex cardiac ischemic injury. We established a protocol to induce a severe heart attack in one-day-old mice using left anterior descending artery (LAD) ligation. LAD ligation triggered substantial cardiac injury in the left ventricle defined by Caspase 3 activation and massive cell death. Ischemia-induced cardiomyocyte death was also visible on day 4 after LAD ligation. Remarkably, 7 days after the initial ischemic insult, we observed complete cardiac regeneration without any signs of tissue damage or scarring. This tissue regeneration translated into long-term normal heart functions as assessed by echocardiography. In contrast, LAD ligations in 7-day-old mice resulted in extensive scarring comparable to adult mice, indicating that the regenerative capacity for complete cardiac healing after heart attacks can be traced to the first week after birth. RNAseq analyses of hearts on day 1, day 3, and day 10 and comparing LAD-ligated and sham-operated mice surprisingly revealed a transcriptional programme of major changes in genes mediating mitosis and cell division between days 1, 3 and 10 postnatally and a very limited set of genes, including genes regulating cell cycle and extracellular matrix synthesis, being differentially regulated in the regenerating hearts. We present for the first time a mammalian model of complete cardiac regeneration following a severe ischemic cardiac injury. This novel model system provides the unique opportunity to uncover molecular and cellular pathways that can induce cardiac regeneration after ischemic injury, findings that one day could be translated

  13. Cardiac regeneration using pluripotent stem cells—Progression to large animal models

    Directory of Open Access Journals (Sweden)

    James J.H. Chong

    2014-11-01

    Full Text Available Pluripotent stem cells (PSCs have indisputable cardiomyogenic potential and therefore have been intensively investigated as a potential cardiac regenerative therapy. Current directed differentiation protocols are able to produce high yields of cardiomyocytes from PSCs and studies in small animal models of cardiovascular disease have proven sustained engraftment and functional efficacy. Therefore, the time is ripe for cardiac regenerative therapies using PSC derivatives to be tested in large animal models that more closely resemble the hearts of humans. In this review, we discuss the results of our recent study using human embryonic stem cell derived cardiomyocytes (hESC-CM in a non-human primate model of ischemic cardiac injury. Large scale remuscularization, electromechanical coupling and short-term arrhythmias demonstrated by our hESC-CM grafts are discussed in the context of other studies using adult stem cells for cardiac regeneration.

  14. Effect of Skeletal Muscle Na+ Channel Delivered Via a Cell Platform on Cardiac Conduction and Arrhythmia Induction

    NARCIS (Netherlands)

    Boink, Gerard J. J.; Lu, Jia; Driessen, Helen E.; Duan, Lian; Sosunov, Eugene A.; Anyukhovsky, Evgeny P.; Shlapakova, Iryna N.; Lau, David H.; Rosen, Tove S.; Danilo, Peter; Jia, Zhiheng; Ozgen, Nazira; Bobkov, Yevgeniy; Guo, Yuanjian; Brink, Peter R.; Kryukova, Yelena; Robinson, Richard B.; Entcheva, Emilia; Cohen, Ira S.; Rosen, Michael R.

    2012-01-01

    Background-In depolarized myocardial infarct epicardial border zones, the cardiac sodium channel is largely inactivated, contributing to slow conduction and reentry. We have demonstrated that adenoviral delivery of the skeletal muscle Na+ channel (SkM1) to epicardial border zones normalizes

  15. Pregnancy as a cardiac stress model

    Science.gov (United States)

    Chung, Eunhee; Leinwand, Leslie A.

    2014-01-01

    Cardiac hypertrophy occurs during pregnancy as a consequence of both volume overload and hormonal changes. Both pregnancy- and exercise-induced cardiac hypertrophy are generally thought to be similar and physiological. Despite the fact that there are shared transcriptional responses in both forms of cardiac adaptation, pregnancy results in a distinct signature of gene expression in the heart. In some cases, however, pregnancy can induce adverse cardiac events in previously healthy women without any known cardiovascular disease. Peripartum cardiomyopathy is the leading cause of non-obstetric mortality during pregnancy. To understand how pregnancy can cause heart disease, it is first important to understand cardiac adaptation during normal pregnancy. This review provides an overview of the cardiac consequences of pregnancy, including haemodynamic, functional, structural, and morphological adaptations, as well as molecular phenotypes. In addition, this review describes the signalling pathways responsible for pregnancy-induced cardiac hypertrophy and angiogenesis. We also compare and contrast cardiac adaptation in response to disease, exercise, and pregnancy. The comparisons of these settings of cardiac hypertrophy provide insight into pregnancy-associated cardiac adaptation. PMID:24448313

  16. A Comparison of a Machine Learning Model with EuroSCORE II in Predicting Mortality after Elective Cardiac Surgery: A Decision Curve Analysis.

    Science.gov (United States)

    Allyn, Jérôme; Allou, Nicolas; Augustin, Pascal; Philip, Ivan; Martinet, Olivier; Belghiti, Myriem; Provenchere, Sophie; Montravers, Philippe; Ferdynus, Cyril

    2017-01-01

    The benefits of cardiac surgery are sometimes difficult to predict and the decision to operate on a given individual is complex. Machine Learning and Decision Curve Analysis (DCA) are recent methods developed to create and evaluate prediction models. We conducted a retrospective cohort study using a prospective collected database from December 2005 to December 2012, from a cardiac surgical center at University Hospital. The different models of prediction of mortality in-hospital after elective cardiac surgery, including EuroSCORE II, a logistic regression model and a machine learning model, were compared by ROC and DCA. Of the 6,520 patients having elective cardiac surgery with cardiopulmonary bypass, 6.3% died. Mean age was 63.4 years old (standard deviation 14.4), and mean EuroSCORE II was 3.7 (4.8) %. The area under ROC curve (IC95%) for the machine learning model (0.795 (0.755-0.834)) was significantly higher than EuroSCORE II or the logistic regression model (respectively, 0.737 (0.691-0.783) and 0.742 (0.698-0.785), p machine learning model, in this monocentric study, has a greater benefit whatever the probability threshold. According to ROC and DCA, machine learning model is more accurate in predicting mortality after elective cardiac surgery than EuroSCORE II. These results confirm the use of machine learning methods in the field of medical prediction.

  17. Time series analysis as input for clinical predictive modeling: modeling cardiac arrest in a pediatric ICU.

    Science.gov (United States)

    Kennedy, Curtis E; Turley, James P

    2011-10-24

    Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9

  18. Cardiac Conduction System: Delineation of Anatomic Landmarks With Multidetector CT

    Directory of Open Access Journals (Sweden)

    Farhood Saremi

    2009-11-01

    Full Text Available Major components of the cardiac conduction system including the sinoatrial node (SAN, atrioventricular node (AVN, the His Bundle, and the right and left bundle branches are too small to be directly visualized by multidetector CT (MDCT given the limited spatial resolution of current scanners. However, the related anatomic landmarks and variants of this system a well as the areas with special interest to electrophysiologists can be reliably demonstrated by MDCT. Some of these structures and landmarks include the right SAN artery, right atrial cavotricuspid isthmus, Koch triangle, AVN artery, interatrial muscle bundles, and pulmonary veins. In addition, MDCT has an imperative role in demarcating potential arrhythmogenic structures. The aim of this review will be to assess the extent at which MDCT can outline the described anatomic landmarks and therefore provide crucial information used in clinical practice.

  19. Dynamics of spiral waves in a cardiac electromechanical model with a local electrical inhomogeneity

    International Nuclear Information System (INIS)

    Mesin, Luca

    2012-01-01

    Highlights: ► I study spirals in a model of electromechanical coupling in a cardiac tissue. ► The model is anisotropic and includes an electrical heterogeneity. ► Mechanical deformation is described under the active strain hypothesis. ► Joint effect of inhomogeneity and deformation influences spiral dynamics. ► Conductivity of stretch activated current is the parameter most affecting spirals. - Abstract: Joint effect of electrical heterogeneity (e.g. induced by ischemia) and mechanical deformation is investigated for an anisotropic, quasi–incompressible model of cardiac electromechanical coupling (EMC) using the active strain approach and periodic boundary conditions. Three local inhomogeneities with different geometry are simulated. Under a specific stimulation protocol, the heterogeneities are able to induce spirals. The interplay between the dimension of the electrical inhomogeneity, the EMC and the mechano-electrical feedback provided by the stretch activated current (SAC) determines the dynamics of the spiral waves of excitation, which could extinguish (in the case of low SAC), or be stable (with the tip rotating inside the inhomogeneity), or drift and be annihilated (in the case of high SAC).

  20. Small and large animal models in cardiac contraction research: advantages and disadvantages.

    Science.gov (United States)

    Milani-Nejad, Nima; Janssen, Paul M L

    2014-03-01

    The mammalian heart is responsible for not only pumping blood throughout the body but also adjusting this pumping activity quickly depending upon sudden changes in the metabolic demands of the body. For the most part, the human heart is capable of performing its duties without complications; however, throughout many decades of use, at some point this system encounters problems. Research into the heart's activities during healthy states and during adverse impacts that occur in disease states is necessary in order to strategize novel treatment options to ultimately prolong and improve patients' lives. Animal models are an important aspect of cardiac research where a variety of cardiac processes and therapeutic targets can be studied. However, there are differences between the heart of a human being and an animal and depending on the specific animal, these differences can become more pronounced and in certain cases limiting. There is no ideal animal model available for cardiac research, the use of each animal model is accompanied with its own set of advantages and disadvantages. In this review, we will discuss these advantages and disadvantages of commonly used laboratory animals including mouse, rat, rabbit, canine, swine, and sheep. Since the goal of cardiac research is to enhance our understanding of human health and disease and help improve clinical outcomes, we will also discuss the role of human cardiac tissue in cardiac research. This review will focus on the cardiac ventricular contractile and relaxation kinetics of humans and animal models in order to illustrate these differences. © 2013.

  1. Pathophysiological mechanisms of sino-atrial dysfunction and ventricular conduction disease associated with SCN5A deficiency: insights from mouse models

    Directory of Open Access Journals (Sweden)

    Christopher L-H Huang

    2012-07-01

    Full Text Available Genetically modified mice provide a number of models for studying cardiac channelopathies related to cardiac Na+ channel (SCN5A abnormalities. We review key pathophysiological features in these murine models that may underlie clinical features observed in sinus node dysfunction and progressive cardiac conduction disease, thereby providing insights into their pathophysiological mechanisms. We describe loss of Na+ channel function and fibrotic changes associated with both loss and gain-of-function Na+ channel mutations. Recent reports further relate the progressive fibrotic changes to upregulation of TGF-β1 production and the transcription factors, Atf3, a stress-inducible gene, and Egr1, to the presence of heterozygous Scn5a inactivation. Both changes are thus directly implicated in the clinically observed disruptions in sino-atrial node pacemaker function, and sino-atrial and ventricular conduction, and their progression with age. Murine systems with genetic modifications in Scn5a thus prove a useful tool to address questions concerning roles of genetic and environmental modifiers on human SCN5A disease phenotypes.

  2. Effect of heat stress on cardiac output and systemic vascular conductance during simulated hemorrhage to presyncope in young men

    DEFF Research Database (Denmark)

    Ganio, Matthew S; Overgaard, Morten; Seifert, Thomas

    2012-01-01

    During moderate actual or simulated hemorrhage, as cardiac output decreases, reductions in systemic vascular conductance (SVC) maintain mean arterial pressure (MAP). Heat stress, however, compromises the control of MAP during simulated hemorrhage, and it remains unknown whether this response is due...... to a persistently high SVC and/or a low cardiac output. This study tested the hypothesis that an inadequate decrease in SVC is the primary contributing mechanism by which heat stress compromises blood pressure control during simulated hemorrhage. Simulated hemorrhage was imposed via lower body negative pressure...... normothermic is no longer adequate during a heat-stressed-simulated hemorrhage. The absence of a decrease in SVC at a time of profound reductions in MAP suggests that inadequate control of vascular conductance is a primary mechanism compromising blood pressure control during these conditions....

  3. Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias

    Directory of Open Access Journals (Sweden)

    Maaike eHoekstra

    2012-08-01

    Full Text Available Cardiac arrhythmias are a major cause of morbidity and mortality. In younger patients, the majority of sudden cardiac deaths have an underlying Mendelian genetic cause. Over the last 15 years, enormous progress has been made in identifying the distinct clinical phenotypes and in studying the basic cellular and genetic mechanisms associated with the primary Mendelian (monogenic arrhythmia syndromes. Investigation of the electrophysiological consequences of an ion channel mutation is ideally done in the native cardiomyocyte environment. However, the majority of such studies so far have relied on heterologous expression systems in which single ion channel genes are expressed in non-cardiac cells. In some cases, transgenic mouse models haven been generated, but these also have significant shortcomings, primarily related to species differences.The discovery that somatic cells can be reprogrammed to pluripotency as induced pluripotent stem cells (iPSC has generated much interest since it presents an opportunity to generate patient- and disease-specific cell lines from which normal and diseased human cardiomyocytes can be obtained These genetically diverse human model systems can be studied in vitro and used to decipher mechanisms of disease and identify strategies and reagents for new therapies. Here we review the present state of the art with respect to cardiac disease models already generated using IPSC technology and which have been (partially characterized.Human iPSC (hiPSC models have been described for the cardiac arrhythmia syndromes, including LQT1, LQT2, LQT3-Brugada Syndrome, LQT8/Timothy syndrome and catecholaminergic polymorphic ventricular tachycardia. In most cases, the hiPSC-derived cardiomyoctes recapitulate the disease phenotype and have already provided opportunities for novel insight into cardiac pathophysiology. It is expected that the lines will be useful in the development of pharmacological agents for the management of these

  4. Cardiac sodium channel NaV1.5 distribution in myocytes via interacting proteins: the multiple pool model.

    Science.gov (United States)

    Shy, Diana; Gillet, Ludovic; Abriel, Hugues

    2013-04-01

    The cardiac sodium current (INa) is responsible for the rapid depolarization of cardiac cells, thus allowing for their contraction. It is also involved in regulating the duration of the cardiac action potential (AP) and propagation of the impulse throughout the myocardium. Cardiac INa is generated by the voltage-gated Na(+) channel, NaV1.5, a 2016-residue protein which forms the pore of the channel. Over the past years, hundreds of mutations in SCN5A, the human gene coding for NaV1.5, have been linked to many cardiac electrical disorders, including the congenital and acquired long QT syndrome, Brugada syndrome, conduction slowing, sick sinus syndrome, atrial fibrillation, and dilated cardiomyopathy. Similar to many membrane proteins, NaV1.5 has been found to be regulated by several interacting proteins. In some cases, these different proteins, which reside in distinct membrane compartments (i.e. lateral membrane vs. intercalated disks), have been shown to interact with the same regulatory domain of NaV1.5, thus suggesting that several pools of NaV1.5 channels may co-exist in cardiac cells. The aim of this review article is to summarize the recent works that demonstrate its interaction with regulatory proteins and illustrate the model that the sodium channel NaV1.5 resides in distinct and different pools in cardiac cells. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis

    NARCIS (Netherlands)

    Frank, Deborah U.; Carter, Kandis L.; Thomas, Kirk R.; Burr, R. Michael; Bakker, Martijn L.; Coetzee, William A.; Tristani-Firouzi, Martin; Bamshad, Michael J.; Christoffels, Vincent M.; Moon, Anne M.

    2012-01-01

    TBX3 is critical for human development: mutations in TBX3 cause congenital anomalies in patients with ulnar-mammary syndrome. Data from mice and humans suggest multiple roles for Tbx3 in development and function of the cardiac conduction system. The mechanisms underlying the functional development,

  6. Spatiotemporal processing of gated cardiac SPECT images using deformable mesh modeling

    International Nuclear Information System (INIS)

    Brankov, Jovan G.; Yang Yongyi; Wernick, Miles N.

    2005-01-01

    In this paper we present a spatiotemporal processing approach, based on deformable mesh modeling, for noise reduction in gated cardiac single-photon emission computed tomography images. Because of the partial volume effect (PVE), clinical cardiac-gated perfusion images exhibit a phenomenon known as brightening--the myocardium appears to become brighter as the heart wall thickens. Although brightening is an artifact, it serves as an important diagnostic feature for assessment of wall thickening in clinical practice. Our proposed processing algorithm aims to preserve this important diagnostic feature while reducing the noise level in the images. The proposed algorithm is based on the use of a deformable mesh for modeling the cardiac motion in a gated cardiac sequence, based on which the images are processed by smoothing along space-time trajectories of object points while taking into account the PVE. Our experiments demonstrate that the proposed algorithm can yield significantly more-accurate results than several existing methods

  7. Integrative computational models of cardiac arrhythmias -- simulating the structurally realistic heart

    Science.gov (United States)

    Trayanova, Natalia A; Tice, Brock M

    2009-01-01

    Simulation of cardiac electrical function, and specifically, simulation aimed at understanding the mechanisms of cardiac rhythm disorders, represents an example of a successful integrative multiscale modeling approach, uncovering emergent behavior at the successive scales in the hierarchy of structural complexity. The goal of this article is to present a review of the integrative multiscale models of realistic ventricular structure used in the quest to understand and treat ventricular arrhythmias. It concludes with the new advances in image-based modeling of the heart and the promise it holds for the development of individualized models of ventricular function in health and disease. PMID:20628585

  8. Cardiac CT for planning redo cardiac surgery: effect of knowledge-based iterative model reconstruction on image quality

    International Nuclear Information System (INIS)

    Oda, Seitaro; Weissman, Gaby; Weigold, W. Guy; Vembar, Mani

    2015-01-01

    The purpose of this study was to investigate the effects of knowledge-based iterative model reconstruction (IMR) on image quality in cardiac CT performed for the planning of redo cardiac surgery by comparing IMR images with images reconstructed with filtered back-projection (FBP) and hybrid iterative reconstruction (HIR). We studied 31 patients (23 men, 8 women; mean age 65.1 ± 16.5 years) referred for redo cardiac surgery who underwent cardiac CT. Paired image sets were created using three types of reconstruction: FBP, HIR, and IMR. Quantitative parameters including CT attenuation, image noise, and contrast-to-noise ratio (CNR) of each cardiovascular structure were calculated. The visual image quality - graininess, streak artefact, margin sharpness of each cardiovascular structure, and overall image quality - was scored on a five-point scale. The mean image noise of FBP, HIR, and IMR images was 58.3 ± 26.7, 36.0 ± 12.5, and 14.2 ± 5.5 HU, respectively; there were significant differences in all comparison combinations among the three methods. The CNR of IMR images was better than that of FBP and HIR images in all evaluated structures. The visual scores were significantly higher for IMR than for the other images in all evaluated parameters. IMR can provide significantly improved qualitative and quantitative image quality at in cardiac CT for planning of reoperative cardiac surgery. (orig.)

  9. Using delay differential equations to induce alternans in a model of cardiac electrophysiology.

    Science.gov (United States)

    Eastman, Justin; Sass, Julian; Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M

    2016-09-07

    Cardiac electrical alternans is a period-2 dynamical behavior with alternating long and short action potential durations (APD) that often precedes dangerous arrhythmias associated with cardiac arrest. Despite the importance of alternans, many current ordinary differential equations models of cardiac electrophysiology do not produce alternans, thereby limiting the use of these models for studying the mechanisms that underlie this condition. Because delay differential equations (DDEs) commonly induce complex dynamics in other biological systems, we investigate whether incorporating DDEs can lead to alternans development in cardiac models by studying the Fox et al. canine ventricular action potential model. After suppressing the alternans in the original model, we show that alternans can be obtained by introducing DDEs in the model gating variables, and we quantitatively compare the DDE-induced alternans with the alternans present in the original model. We analyze the behavior of the voltage, currents, and gating variables of the model to study the effects of the delays and to determine how alternans develops in that setting, and we discuss the mathematical and physiological implications of our findings. In future work, we aim to apply our approach to induce alternans in models that do not naturally exhibit such dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Cardiac magnetic source imaging based on current multipole model

    International Nuclear Information System (INIS)

    Tang Fa-Kuan; Wang Qian; Hua Ning; Lu Hong; Tang Xue-Zheng; Ma Ping

    2011-01-01

    It is widely accepted that the heart current source can be reduced into a current multipole. By adopting three linear inverse methods, the cardiac magnetic imaging is achieved in this article based on the current multipole model expanded to the first order terms. This magnetic imaging is realized in a reconstruction plane in the centre of human heart, where the current dipole array is employed to represent realistic cardiac current distribution. The current multipole as testing source generates magnetic fields in the measuring plane, serving as inputs of cardiac magnetic inverse problem. In the heart-torso model constructed by boundary element method, the current multipole magnetic field distribution is compared with that in the homogeneous infinite space, and also with the single current dipole magnetic field distribution. Then the minimum-norm least-squares (MNLS) method, the optimal weighted pseudoinverse method (OWPIM), and the optimal constrained linear inverse method (OCLIM) are selected as the algorithms for inverse computation based on current multipole model innovatively, and the imaging effects of these three inverse methods are compared. Besides, two reconstructing parameters, residual and mean residual, are also discussed, and their trends under MNLS, OWPIM and OCLIM each as a function of SNR are obtained and compared. (general)

  11. Influenza epidemics, seasonality, and the effects of cold weather on cardiac mortality

    Science.gov (United States)

    2012-01-01

    Background More people die in the winter from cardiac disease, and there are competing hypotheses to explain this. The authors conducted a study in 48 US cities to determine how much of the seasonal pattern in cardiac deaths could be explained by influenza epidemics, whether that allowed a more parsimonious control for season than traditional spline models, and whether such control changed the short term association with temperature. Methods The authors obtained counts of daily cardiac deaths and of emergency hospital admissions of the elderly for influenza during 1992–2000. Quasi-Poisson regression models were conducted estimating the association between daily cardiac mortality, and temperature. Results Controlling for influenza admissions provided a more parsimonious model with better Generalized Cross-Validation, lower residual serial correlation, and better captured Winter peaks. The temperature-response function was not greatly affected by adjusting for influenza. The pooled estimated increase in risk for a temperature decrease from 0 to −5°C was 1.6% (95% confidence interval (CI) 1.1-2.1%). Influenza accounted for 2.3% of cardiac deaths over this period. Conclusions The results suggest that including epidemic data explained most of the irregular seasonal pattern (about 18% of the total seasonal variation), allowing more parsimonious models than when adjusting for seasonality only with smooth functions of time. The effect of cold temperature is not confounded by epidemics. PMID:23025494

  12. Long-Term Overexpression of Hsp70 Does Not Protect against Cardiac Dysfunction and Adverse Remodeling in a MURC Transgenic Mouse Model with Chronic Heart Failure and Atrial Fibrillation.

    Science.gov (United States)

    Bernardo, Bianca C; Sapra, Geeta; Patterson, Natalie L; Cemerlang, Nelly; Kiriazis, Helen; Ueyama, Tomomi; Febbraio, Mark A; McMullen, Julie R

    2015-01-01

    Previous animal studies had shown that increasing heat shock protein 70 (Hsp70) using a transgenic, gene therapy or pharmacological approach provided cardiac protection in models of acute cardiac stress. Furthermore, clinical studies had reported associations between Hsp70 levels and protection against atrial fibrillation (AF). AF is the most common cardiac arrhythmia presenting in cardiology clinics and is associated with increased rates of heart failure and stroke. Improved therapies for AF and heart failure are urgently required. Despite promising observations in animal studies which targeted Hsp70, we recently reported that increasing Hsp70 was unable to attenuate cardiac dysfunction and pathology in a mouse model which develops heart failure and intermittent AF. Given our somewhat unexpected finding and the extensive literature suggesting Hsp70 provides cardiac protection, it was considered important to assess whether Hsp70 could provide protection in another mouse model of heart failure and AF. The aim of the current study was to determine whether increasing Hsp70 could attenuate adverse cardiac remodeling, cardiac dysfunction and episodes of arrhythmia in a mouse model of heart failure and AF due to overexpression of Muscle-Restricted Coiled-Coil (MURC). Cardiac function and pathology were assessed in mice at approximately 12 months of age. We report here, that chronic overexpression of Hsp70 was unable to provide protection against cardiac dysfunction, conduction abnormalities, fibrosis or characteristic molecular markers of the failing heart. In summary, elevated Hsp70 may provide protection in acute cardiac stress settings, but appears insufficient to protect the heart under chronic cardiac disease conditions.

  13. Long-Term Overexpression of Hsp70 Does Not Protect against Cardiac Dysfunction and Adverse Remodeling in a MURC Transgenic Mouse Model with Chronic Heart Failure and Atrial Fibrillation.

    Directory of Open Access Journals (Sweden)

    Bianca C Bernardo

    Full Text Available Previous animal studies had shown that increasing heat shock protein 70 (Hsp70 using a transgenic, gene therapy or pharmacological approach provided cardiac protection in models of acute cardiac stress. Furthermore, clinical studies had reported associations between Hsp70 levels and protection against atrial fibrillation (AF. AF is the most common cardiac arrhythmia presenting in cardiology clinics and is associated with increased rates of heart failure and stroke. Improved therapies for AF and heart failure are urgently required. Despite promising observations in animal studies which targeted Hsp70, we recently reported that increasing Hsp70 was unable to attenuate cardiac dysfunction and pathology in a mouse model which develops heart failure and intermittent AF. Given our somewhat unexpected finding and the extensive literature suggesting Hsp70 provides cardiac protection, it was considered important to assess whether Hsp70 could provide protection in another mouse model of heart failure and AF. The aim of the current study was to determine whether increasing Hsp70 could attenuate adverse cardiac remodeling, cardiac dysfunction and episodes of arrhythmia in a mouse model of heart failure and AF due to overexpression of Muscle-Restricted Coiled-Coil (MURC. Cardiac function and pathology were assessed in mice at approximately 12 months of age. We report here, that chronic overexpression of Hsp70 was unable to provide protection against cardiac dysfunction, conduction abnormalities, fibrosis or characteristic molecular markers of the failing heart. In summary, elevated Hsp70 may provide protection in acute cardiac stress settings, but appears insufficient to protect the heart under chronic cardiac disease conditions.

  14. Mathematical cardiac electrophysiology

    CERN Document Server

    Colli Franzone, Piero; Scacchi, Simone

    2014-01-01

    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  15. MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance.

    Science.gov (United States)

    Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa

    2008-05-01

    We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias.

  16. MURC, a Muscle-Restricted Coiled-Coil Protein That Modulates the Rho/ROCK Pathway, Induces Cardiac Dysfunction and Conduction Disturbance▿

    Science.gov (United States)

    Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa

    2008-01-01

    We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias. PMID:18332105

  17. A priori motion models for four-dimensional reconstruction in gated cardiac SPECT

    International Nuclear Information System (INIS)

    Lalush, D.S.; Tsui, B.M.W.; Cui, Lin

    1996-01-01

    We investigate the benefit of incorporating a priori assumptions about cardiac motion in a fully four-dimensional (4D) reconstruction algorithm for gated cardiac SPECT. Previous work has shown that non-motion-specific 4D Gibbs priors enforcing smoothing in time and space can control noise while preserving resolution. In this paper, we evaluate methods for incorporating known heart motion in the Gibbs prior model. The new model is derived by assigning motion vectors to each 4D voxel, defining the movement of that volume of activity into the neighboring time frames. Weights for the Gibbs cliques are computed based on these open-quotes most likelyclose quotes motion vectors. To evaluate, we employ the mathematical cardiac-torso (MCAT) phantom with a new dynamic heart model that simulates the beating and twisting motion of the heart. Sixteen realistically-simulated gated datasets were generated, with noise simulated to emulate a real Tl-201 gated SPECT study. Reconstructions were performed using several different reconstruction algorithms, all modeling nonuniform attenuation and three-dimensional detector response. These include ML-EM with 4D filtering, 4D MAP-EM without prior motion assumption, and 4D MAP-EM with prior motion assumptions. The prior motion assumptions included both the correct motion model and incorrect models. Results show that reconstructions using the 4D prior model can smooth noise and preserve time-domain resolution more effectively than 4D linear filters. We conclude that modeling of motion in 4D reconstruction algorithms can be a powerful tool for smoothing noise and preserving temporal resolution in gated cardiac studies

  18. Black-box modeling to estimate tissue temperature during radiofrequency catheter cardiac ablation: feasibility study on an agar phantom model

    International Nuclear Information System (INIS)

    Blasco-Gimenez, Ramón; Lequerica, Juan L; Herrero, Maria; Hornero, Fernando; Berjano, Enrique J

    2010-01-01

    The aim of this work was to study linear deterministic models to predict tissue temperature during radiofrequency cardiac ablation (RFCA) by measuring magnitudes such as electrode temperature, power and impedance between active and dispersive electrodes. The concept involves autoregressive models with exogenous input (ARX), which is a particular case of the autoregressive moving average model with exogenous input (ARMAX). The values of the mode parameters were determined from a least-squares fit of experimental data. The data were obtained from radiofrequency ablations conducted on agar models with different contact pressure conditions between electrode and agar (0 and 20 g) and different flow rates around the electrode (1, 1.5 and 2 L min −1 ). Half of all the ablations were chosen randomly to be used for identification (i.e. determination of model parameters) and the other half were used for model validation. The results suggest that (1) a linear model can be developed to predict tissue temperature at a depth of 4.5 mm during RF cardiac ablation by using the variables applied power, impedance and electrode temperature; (2) the best model provides a reasonably accurate estimate of tissue temperature with a 60% probability of achieving average errors better than 5 °C; (3) substantial errors (larger than 15 °C) were found only in 6.6% of cases and were associated with abnormal experiments (e.g. those involving the displacement of the ablation electrode) and (4) the impact of measuring impedance on the overall estimate is negligible (around 1 °C)

  19. [Third phase of cardiac rehabilitation: a nurse-based "home-control" model].

    Science.gov (United States)

    Albertini, Sara; Ciocca, Antonella; Opasich, Cristina; Pinna, Gian Domenico; Cobelli, Franco

    2011-12-01

    Phase 3 is a critical point for cardiac rehabilitation: many problems don't allow achieving a correct secondary prevention, in particular regarding the relationship between patient and cardiologist. Aiming at ensuring continuity of care of phase 3 cardiac rehabilitation patients, we have developed a telemetric educational program to stimulate in them the will and capacity to become active comanagers of their disease. Nurses specialized in cardiac rehabilitation, with the collaboration of the general practitioners, contact the patients by scheduled phone calls to collect questionnaires about their health status and the result of biochemistry. All the results are analyzed by the nurses and discussed with each patient (educational reinforcement). The effects of this program of comanagement of cardiac disease and secondary prevention are analyzed comparing each patient data at the discharge with data after one year and those coming from our archive (retrospective analysis). The patients enrolled in this study pay much more attention to the amount of food they eat; they tend not to gain weight, and they restart smoking in a reduced proportion compared to patients not enrolled in the study. However, despite having received better information on their cardiac disease, their compliance to physical training, consumption of healthy food, and pharmacological therapy is not improved. This study focuses on the role of a continuous educational program of a cardiac rehabilitation unit after the patient's discharge. This home control program conducted by nurses specialized in cardiac rehabilitation, with the assistance of cardiologists, psychologists and physiotherapists, and in collaboration with the general practitioner, was quite cheap, and helped maximizing the knowledge of the disease and reinforcing correct life style in the patients. The results are not as good as expected, probably because one year does not represent a sufficient time, or because the educational

  20. The role of conductivity discontinuities in design of cardiac defibrillation

    Science.gov (United States)

    Lim, Hyunkyung; Cun, Wenjing; Wang, Yue; Gray, Richard A.; Glimm, James

    2018-01-01

    Fibrillation is an erratic electrical state of the heart, of rapid twitching rather than organized contractions. Ventricular fibrillation is fatal if not treated promptly. The standard treatment, defibrillation, is a strong electrical shock to reinitialize the electrical dynamics and allow a normal heart beat. Both the normal and the fibrillatory electrical dynamics of the heart are organized into moving wave fronts of changing electrical signals, especially in the transmembrane voltage, which is the potential difference between the cardiac cellular interior and the intracellular region of the heart. In a normal heart beat, the wave front motion is from bottom to top and is accompanied by the release of Ca ions to induce contractions and pump the blood. In a fibrillatory state, these wave fronts are organized into rotating scroll waves, with a centerline known as a filament. Treatment requires altering the electrical state of the heart through an externally applied electrical shock, in a manner that precludes the existence of the filaments and scroll waves. Detailed mechanisms for the success of this treatment are partially understood, and involve local shock-induced changes in the transmembrane potential, known as virtual electrode alterations. These transmembrane alterations are located at boundaries of the cardiac tissue, including blood vessels and the heart chamber wall, where discontinuities in electrical conductivity occur. The primary focus of this paper is the defibrillation shock and the subsequent electrical phenomena it induces. Six partially overlapping causal factors for defibrillation success are identified from the literature. We present evidence in favor of five of these and against one of them. A major conclusion is that a dynamically growing wave front starting at the heart surface appears to play a primary role during defibrillation by critically reducing the volume available to sustain the dynamic motion of scroll waves; in contrast, virtual

  1. Combining computer modelling and cardiac imaging to understand right ventricular pump function.

    Science.gov (United States)

    Walmsley, John; van Everdingen, Wouter; Cramer, Maarten J; Prinzen, Frits W; Delhaas, Tammo; Lumens, Joost

    2017-10-01

    Right ventricular (RV) dysfunction is a strong predictor of outcome in heart failure and is a key determinant of exercise capacity. Despite these crucial findings, the RV remains understudied in the clinical, experimental, and computer modelling literature. This review outlines how recent advances in using computer modelling and cardiac imaging synergistically help to understand RV function in health and disease. We begin by highlighting the complexity of interactions that make modelling the RV both challenging and necessary, and then summarize the multiscale modelling approaches used to date to simulate RV pump function in the context of these interactions. We go on to demonstrate how these modelling approaches in combination with cardiac imaging have improved understanding of RV pump function in pulmonary arterial hypertension, arrhythmogenic right ventricular cardiomyopathy, dyssynchronous heart failure and cardiac resynchronization therapy, hypoplastic left heart syndrome, and repaired tetralogy of Fallot. We conclude with a perspective on key issues to be addressed by computational models of the RV in the near future. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  2. Alternans by non-monotonic conduction velocity restitution, bistability and memory

    International Nuclear Information System (INIS)

    Kim, Tae Yun; Hong, Jin Hee; Heo, Ryoun; Lee, Kyoung J

    2013-01-01

    Conduction velocity (CV) restitution is a key property that characterizes any medium supporting traveling waves. It reflects not only the dynamics of the individual constituents but also the coupling mechanism that mediates their interaction. Recent studies have suggested that cardiac tissues, which have a non-monotonic CV-restitution property, can support alternans, a period-2 oscillatory response of periodically paced cardiac tissue. This study finds that single-hump, non-monotonic, CV-restitution curves are a common feature of in vitro cultures of rat cardiac cells. We also find that the Fenton–Karma model, one of the well-established mathematical models of cardiac tissue, supports a very similar non-monotonic CV restitution in a physiologically relevant parameter regime. Surprisingly, the mathematical model as well as the cell cultures support bistability and show cardiac memory that tends to work against the generation of an alternans. Bistability was realized by adopting two different stimulation protocols, ‘S1S2’, which produces a period-1 wave train, and ‘alternans-pacing’, which favors a concordant alternans. Thus, we conclude that the single-hump non-monotonicity in the CV-restitution curve is not sufficient to guarantee a cardiac alternans, since cardiac memory interferes and the way the system is paced matters. (paper)

  3. Development and Validation of Predictive Models of Cardiac Mortality and Transplantation in Resynchronization Therapy

    Directory of Open Access Journals (Sweden)

    Eduardo Arrais Rocha

    2015-01-01

    Full Text Available Abstract Background: 30-40% of cardiac resynchronization therapy cases do not achieve favorable outcomes. Objective: This study aimed to develop predictive models for the combined endpoint of cardiac death and transplantation (Tx at different stages of cardiac resynchronization therapy (CRT. Methods: Prospective observational study of 116 patients aged 64.8 ± 11.1 years, 68.1% of whom had functional class (FC III and 31.9% had ambulatory class IV. Clinical, electrocardiographic and echocardiographic variables were assessed by using Cox regression and Kaplan-Meier curves. Results: The cardiac mortality/Tx rate was 16.3% during the follow-up period of 34.0 ± 17.9 months. Prior to implantation, right ventricular dysfunction (RVD, ejection fraction < 25% and use of high doses of diuretics (HDD increased the risk of cardiac death and Tx by 3.9-, 4.8-, and 5.9-fold, respectively. In the first year after CRT, RVD, HDD and hospitalization due to congestive heart failure increased the risk of death at hazard ratios of 3.5, 5.3, and 12.5, respectively. In the second year after CRT, RVD and FC III/IV were significant risk factors of mortality in the multivariate Cox model. The accuracy rates of the models were 84.6% at preimplantation, 93% in the first year after CRT, and 90.5% in the second year after CRT. The models were validated by bootstrapping. Conclusion: We developed predictive models of cardiac death and Tx at different stages of CRT based on the analysis of simple and easily obtainable clinical and echocardiographic variables. The models showed good accuracy and adjustment, were validated internally, and are useful in the selection, monitoring and counseling of patients indicated for CRT.

  4. Integrative Modeling of Electrical Properties of Pacemaker Cardiac Cells

    Science.gov (United States)

    Grigoriev, M.; Babich, L.

    2016-06-01

    This work represents modeling of electrical properties of pacemaker (sinus) cardiac cells. Special attention is paid to electrical potential arising from transmembrane current of Na+, K+ and Ca2+ ions. This potential is calculated using the NaCaX model. In this respect, molar concentration of ions in the intercellular space which is calculated on the basis of the GENTEX model is essential. Combined use of two different models allows referring this approach to integrative modeling.

  5. Cardiac spheroids as promising in vitro models to study the human heart microenvironment

    DEFF Research Database (Denmark)

    Polonchuk, Liudmila; Chabria, Mamta; Badi, Laura

    2017-01-01

    Three-dimensional in vitro cell systems are a promising alternative to animals to study cardiac biology and disease. We have generated three-dimensional in vitro models of the human heart ("cardiac spheroids", CSs) by co-culturing human primary or iPSC-derived cardiomyocytes, endothelial cells an...

  6. Dissection of a Quantitative Trait Locus for PR Interval Duration Identifies Tnni3k as a Novel Modulator of Cardiac Conduction

    NARCIS (Netherlands)

    Lodder, Elisabeth M.; Scicluna, Brendon P.; Milano, Annalisa; Sun, Albert Y.; Tang, Hao; Remme, Carol Ann; Moerland, Perry D.; Tanck, Michael W. T.; Pitt, Geoffrey S.; Marchuk, Douglas A.; Bezzina, Connie R.

    2012-01-01

    Atrio-ventricular conduction disease is a common feature in Mendelian rhythm disorders associated with sudden cardiac death and is characterized by prolongation of the PR interval on the surface electrocardiogram (ECG). Prolongation of the PR interval is also a strong predictor of atrial

  7. Cardiac surgery in the Pacific Islands.

    Science.gov (United States)

    Davis, Philip John; Wainer, Zoe; O'Keefe, Michael; Nand, Parma

    2011-12-01

    Rheumatic heart disease constitutes a significant disease burden in under-resourced communities. Recognition of the devastating impact of rheumatic heart disease has resulted in volunteer cardiac teams from Australasia providing surgical services to regions of need. The primary objective of this study was to compare New Zealand hospitals' volunteer cardiac surgical operative results in Samoa and Fiji with the accepted surgical mortality and morbidity rates for Australasia. A retrospective review from seven volunteer cardiac surgical trips to Samoa and Fiji from 2003 to 2009 was conducted. Patient data were retrospectively and prospectively collected. Preoperative morbidity and mortality risk were calculated using the European System for Cardiac Operative Risk Evaluation (euroSCORE). Audit data were collated in line with the Australasian Society of Cardiac and Thoracic Surgeons guidelines. One hundred and three operations were performed over 6 years. EuroSCORE predicted an operative mortality of 3.32%. In-hospital mortality was 0.97% and post-discharge mortality was 2.91%, resulting in a 30-day mortality of 3.88%. This study demonstrated that performing cardiac surgery in Fiji and Samoa is viable and safe. However, the mortality was slightly higher than predicted by euroSCORE. Difficulties exist in predicting mortality rates in patients with rheumatic heart disease from Pacific Island nations as known risk scoring models fail to be disease, ethnically or culturally inclusive. Audit processes and risk model development and assessment are an essential part of this complex surgical charity work and will result in improved patient selection and outcomes. © 2011 The Authors. ANZ Journal of Surgery © 2011 Royal Australasian College of Surgeons.

  8. The importance of mechano-electrical feedback and inertia in cardiac electromechanics.

    Science.gov (United States)

    Costabal, Francisco Sahli; Concha, Felipe A; Hurtado, Daniel E; Kuhl, Ellen

    2017-06-15

    In the past years, a number cardiac electromechanics models have been developed to better understand the excitation-contraction behavior of the heart. However, there is no agreement on whether inertial forces play a role in this system. In this study, we assess the influence of mass in electromechanical simulations, using a fully coupled finite element model. We include the effect of mechano-electrical feedback via stretch activated currents. We compare five different models: electrophysiology, electromechanics, electromechanics with mechano-electrical feedback, electromechanics with mass, and electromechanics with mass and mechano-electrical feedback. We simulate normal conduction to study conduction velocity and spiral waves to study fibrillation. During normal conduction, mass in conjunction with mechano-electrical feedback increased the conduction velocity by 8.12% in comparison to the plain electrophysiology case. During the generation of a spiral wave, mass and mechano-electrical feedback generated secondary wavefronts, which were not present in any other model. These secondary wavefronts were initiated in tensile stretch regions that induced electrical currents. We expect that this study will help the research community to better understand the importance of mechanoelectrical feedback and inertia in cardiac electromechanics.

  9. Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels.

    Science.gov (United States)

    Weisbrod, David; Khun, Shiraz Haron; Bueno, Hanna; Peretz, Asher; Attali, Bernard

    2016-01-01

    The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca(2+)-activated K(+) channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity.

  10. Cardiac remodeling in the mouse model of Marfan syndrome develops into two distinctive phenotypes.

    Science.gov (United States)

    Tae, Hyun-Jin; Petrashevskaya, Natalia; Marshall, Shannon; Krawczyk, Melissa; Talan, Mark

    2016-01-15

    Marfan syndrome (MFS) is a systemic disorder of connective tissue caused by mutations in fibrillin-1. Cardiac dysfunction in MFS has not been characterized halting the development of therapies of cardiac complication in MFS. We aimed to study the age-dependent cardiac remodeling in the mouse model of MFS FbnC1039G+/- mouse [Marfan heterozygous (HT) mouse] and its association with valvular regurgitation. Marfan HT mice of 2-4 mo demonstrated a mild hypertrophic cardiac remodeling with predominant decline of diastolic function and increased transforming growth factor-β canonical (p-SMAD2/3) and noncanonical (p-ERK1/2 and p-p38 MAPK) signaling and upregulation of hypertrophic markers natriuretic peptides atrium natriuretic peptide and brain natriuretic peptide. Among older HT mice (6-14 mo), cardiac remodeling was associated with two distinct phenotypes, manifesting either dilated or constricted left ventricular chamber. Dilatation of left ventricular chamber was accompanied by biochemical evidence of greater mechanical stress, including elevated ERK1/2 and p38 MAPK phosphorylation and higher brain natriuretic peptide expression. The aortic valve regurgitation was registered in 20% of the constricted group and 60% of the dilated group, whereas mitral insufficiency was observed in 40% of the constricted group and 100% of the dilated group. Cardiac dysfunction was not associated with the increase of interstitial fibrosis and nonmyocyte proliferation. In the mouse model fibrillin-1, haploinsufficiency results in the early onset of nonfibrotic hypertrophic cardiac remodeling and dysfunction, independently from valvular abnormalities. MFS heart is vulnerable to stress-induced cardiac dilatation in the face of valvular regurgitation, and stress-activated MAPK signals represent a potential target for cardiac management in MFS.

  11. Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism.

    Directory of Open Access Journals (Sweden)

    Daniel A Beard

    2006-09-01

    Full Text Available Observations on the relationship between cardiac work rate and the levels of energy metabolites adenosine triphosphate (ATP, adenosine diphosphate (ADP, and phosphocreatine (CrP have not been satisfactorily explained by theoretical models of cardiac energy metabolism. Specifically, the in vivo stability of ATP, ADP, and CrP levels in response to changes in work and respiratory rate has eluded explanation. Here a previously developed model of mitochondrial oxidative phosphorylation, which was developed based on data obtained from isolated cardiac mitochondria, is integrated with a spatially distributed model of oxygen transport in the myocardium to analyze data obtained from several laboratories over the past two decades. The model includes the components of the respiratory chain, the F0F1-ATPase, adenine nucleotide translocase, and the mitochondrial phosphate transporter at the mitochondrial level; adenylate kinase, creatine kinase, and ATP consumption in the cytoplasm; and oxygen transport between capillaries, interstitial fluid, and cardiomyocytes. The integrated model is able to reproduce experimental observations on ATP, ADP, CrP, and inorganic phosphate levels in canine hearts over a range of workload and during coronary hypoperfusion and predicts that cytoplasmic inorganic phosphate level is a key regulator of the rate of mitochondrial respiration at workloads for which the rate of cardiac oxygen consumption is less than or equal to approximately 12 mumol per minute per gram of tissue. At work rates corresponding to oxygen consumption higher than 12 mumol min(-1 g(-1, model predictions deviate from the experimental data, indicating that at high work rates, additional regulatory mechanisms that are not currently incorporated into the model may be important. Nevertheless, the integrated model explains metabolite levels observed at low to moderate workloads and the changes in metabolite levels and tissue oxygenation observed during graded

  12. Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models

    Directory of Open Access Journals (Sweden)

    Lois Choy

    2016-09-01

    Full Text Available The mouse is the second mammalian species, after the human, in which substantial amount of the genomic information has been analyzed. With advances in transgenic technology, mutagenesis is now much easier to carry out in mice. Consequently, an increasing number of transgenic mouse systems have been generated for the study of cardiac arrhythmias in ion channelopathies and cardiomyopathies. Mouse hearts are also amenable to physical manipulation such as coronary artery ligation and transverse aortic constriction to induce heart failure, radiofrequency ablation of the AV node to model complete AV block and even implantation of a miniature pacemaker to induce cardiac dyssynchrony. Last but not least, pharmacological models, despite being simplistic, have enabled us to understand the physiological mechanisms of arrhythmias and evaluate the anti-arrhythmic properties of experimental agents, such as gap junction modulators, that may be exert therapeutic effects in other cardiac diseases. In this article, we examine these in turn, demonstrating that primary inherited arrhythmic syndromes are now recognized to be more complex than abnormality in a particular ion channel, involving alterations in gene expression and structural remodelling. Conversely, in cardiomyopathies and heart failure, mutations in ion channels and proteins have been identified as underlying causes, and electrophysiological remodelling are recognized pathological features. Transgenic techniques causing mutagenesis in mice are extremely powerful in dissecting the relative contributions of different genes play in producing disease phenotypes. Mouse models can serve as useful systems in which to explore how protein defects contribute to arrhythmias and direct future therapy.

  13. Directed fusion of cardiac spheroids into larger heterocellular microtissues enables investigation of cardiac action potential propagation via cardiac fibroblasts

    Science.gov (United States)

    Markes, Alexander R.; Okundaye, Amenawon O.; Qu, Zhilin; Mende, Ulrike; Choi, Bum-Rak

    2018-01-01

    Multicellular spheroids generated through cellular self-assembly provide cytoarchitectural complexities of native tissue including three-dimensionality, extensive cell-cell contacts, and appropriate cell-extracellular matrix interactions. They are increasingly suggested as building blocks for larger engineered tissues to achieve shapes, organization, heterogeneity, and other biomimetic complexities. Application of these tissue culture platforms is of particular importance in cardiac research as the myocardium is comprised of distinct but intermingled cell types. Here, we generated scaffold-free 3D cardiac microtissue spheroids comprised of cardiac myocytes (CMs) and/or cardiac fibroblasts (CFs) and used them as building blocks to form larger microtissues with different spatial distributions of CMs and CFs. Characterization of fusing homotypic and heterotypic spheroid pairs revealed an important influence of CFs on fusion kinetics, but most strikingly showed rapid fusion kinetics between heterotypic pairs consisting of one CF and one CM spheroid, indicating that CMs and CFs self-sort in vitro into the intermixed morphology found in the healthy myocardium. We then examined electrophysiological integration of fused homotypic and heterotypic microtissues by mapping action potential propagation. Heterocellular elongated microtissues which recapitulate the disproportionate CF spatial distribution seen in the infarcted myocardium showed that action potentials propagate through CF volumes albeit with significant delay. Complementary computational modeling revealed an important role of CF sodium currents and the spatial distribution of the CM-CF boundary in action potential conduction through CF volumes. Taken together, this study provides useful insights for the development of complex, heterocellular engineered 3D tissue constructs and their engraftment via tissue fusion and has implications for arrhythmogenesis in cardiac disease and repair. PMID:29715271

  14. Directed fusion of cardiac spheroids into larger heterocellular microtissues enables investigation of cardiac action potential propagation via cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Tae Yun Kim

    Full Text Available Multicellular spheroids generated through cellular self-assembly provide cytoarchitectural complexities of native tissue including three-dimensionality, extensive cell-cell contacts, and appropriate cell-extracellular matrix interactions. They are increasingly suggested as building blocks for larger engineered tissues to achieve shapes, organization, heterogeneity, and other biomimetic complexities. Application of these tissue culture platforms is of particular importance in cardiac research as the myocardium is comprised of distinct but intermingled cell types. Here, we generated scaffold-free 3D cardiac microtissue spheroids comprised of cardiac myocytes (CMs and/or cardiac fibroblasts (CFs and used them as building blocks to form larger microtissues with different spatial distributions of CMs and CFs. Characterization of fusing homotypic and heterotypic spheroid pairs revealed an important influence of CFs on fusion kinetics, but most strikingly showed rapid fusion kinetics between heterotypic pairs consisting of one CF and one CM spheroid, indicating that CMs and CFs self-sort in vitro into the intermixed morphology found in the healthy myocardium. We then examined electrophysiological integration of fused homotypic and heterotypic microtissues by mapping action potential propagation. Heterocellular elongated microtissues which recapitulate the disproportionate CF spatial distribution seen in the infarcted myocardium showed that action potentials propagate through CF volumes albeit with significant delay. Complementary computational modeling revealed an important role of CF sodium currents and the spatial distribution of the CM-CF boundary in action potential conduction through CF volumes. Taken together, this study provides useful insights for the development of complex, heterocellular engineered 3D tissue constructs and their engraftment via tissue fusion and has implications for arrhythmogenesis in cardiac disease and repair.

  15. Contrast enhanced micro-computed tomography resolves the 3-dimensional morphology of the cardiac conduction system in mammalian hearts.

    Directory of Open Access Journals (Sweden)

    Robert S Stephenson

    Full Text Available The general anatomy of the cardiac conduction system (CCS has been known for 100 years, but its complex and irregular three-dimensional (3D geometry is not so well understood. This is largely because the conducting tissue is not distinct from the surrounding tissue by dissection. The best descriptions of its anatomy come from studies based on serial sectioning of samples taken from the appropriate areas of the heart. Low X-ray attenuation has formerly ruled out micro-computed tomography (micro-CT as a modality to resolve internal structures of soft tissue, but incorporation of iodine, which has a high molecular weight, into those tissues enhances the differential attenuation of X-rays and allows visualisation of fine detail in embryos and skeletal muscle. Here, with the use of a iodine based contrast agent (I(2KI, we present contrast enhanced micro-CT images of cardiac tissue from rat and rabbit in which the three major subdivisions of the CCS can be differentiated from the surrounding contractile myocardium and visualised in 3D. Structures identified include the sinoatrial node (SAN and the atrioventricular conduction axis: the penetrating bundle, His bundle, the bundle branches and the Purkinje network. Although the current findings are consistent with existing anatomical representations, the representations shown here offer superior resolution and are the first 3D representations of the CCS within a single intact mammalian heart.

  16. Scroll-wave dynamics in human cardiac tissue: lessons from a mathematical model with inhomogeneities and fiber architecture.

    Directory of Open Access Journals (Sweden)

    Rupamanjari Majumder

    2011-04-01

    Full Text Available Cardiac arrhythmias, such as ventricular tachycardia (VT and ventricular fibrillation (VF, are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study.

  17. Large-deflection statics analysis of active cardiac catheters through co-rotational modelling.

    Science.gov (United States)

    Peng Qi; Chen Qiu; Mehndiratta, Aadarsh; I-Ming Chen; Haoyong Yu

    2016-08-01

    This paper presents a co-rotational concept for large-deflection formulation of cardiac catheters. Using this approach, the catheter is first discretized with a number of equal length beam elements and nodes, and the rigid body motions of an individual beam element are separated from its deformations. Therefore, it is adequate for modelling arbitrarily large deflections of a catheter with linear elastic analysis at the local element level. A novel design of active cardiac catheter of 9 Fr in diameter at the beginning of the paper is proposed, which is based on the contra-rotating double helix patterns and is improved from the previous prototypes. The modelling section is followed by MATLAB simulations of various deflections when the catheter is exerted different types of loads. This proves the feasibility of the presented modelling approach. To the best knowledge of the authors, it is the first to utilize this methodology for large-deflection static analysis of the catheter, which will enable more accurate control of robot-assisted cardiac catheterization procedures. Future work would include further experimental validations.

  18. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

    Directory of Open Access Journals (Sweden)

    Jessica Jen-Chu Wang

    2016-07-01

    Full Text Available We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls.

  19. Hybrid automata models of cardiac ventricular electrophysiology for real-time computational applications.

    Science.gov (United States)

    Andalam, Sidharta; Ramanna, Harshavardhan; Malik, Avinash; Roop, Parthasarathi; Patel, Nitish; Trew, Mark L

    2016-08-01

    Virtual heart models have been proposed for closed loop validation of safety-critical embedded medical devices, such as pacemakers. These models must react in real-time to off-the-shelf medical devices. Real-time performance can be obtained by implementing models in computer hardware, and methods of compiling classes of Hybrid Automata (HA) onto FPGA have been developed. Models of ventricular cardiac cell electrophysiology have been described using HA which capture the complex nonlinear behavior of biological systems. However, many models that have been used for closed-loop validation of pacemakers are highly abstract and do not capture important characteristics of the dynamic rate response. We developed a new HA model of cardiac cells which captures dynamic behavior and we implemented the model in hardware. This potentially enables modeling the heart with over 1 million dynamic cells, making the approach ideal for closed loop testing of medical devices.

  20. Cardiac remodelling in a baboon model of intrauterine growth restriction mimics accelerated ageing.

    Science.gov (United States)

    Kuo, Anderson H; Li, Cun; Li, Jinqi; Huber, Hillary F; Nathanielsz, Peter W; Clarke, Geoffrey D

    2017-02-15

    Rodent models of intrauterine growth restriction (IUGR) successfully identify mechanisms that can lead to short-term and long-term detrimental cardiomyopathies but differences between rodent and human cardiac physiology and placental-fetal development indicate a need for models in precocial species for translation to human development. We developed a baboon model for IUGR studies using a moderate 30% global calorie restriction of pregnant mothers and used cardiac magnetic resonance imaging to evaluate offspring heart function in early adulthood. Impaired diastolic and systolic cardiac function was observed in IUGR offspring with differences between male and female subjects, compared to their respective controls. Aspects of cardiac impairment found in the IUGR offspring were similar to those found in normal controls in a geriatric cohort. Understanding early cardiac biomarkers of IUGR using non-invasive imaging in this susceptible population, especially taking into account sexual dimorphisms, will aid recognition of the clinical presentation, development of biomarkers suitable for use in humans and management of treatment strategies. Extensive rodent studies have shown that reduced perinatal nutrition programmes chronic cardiovascular disease. To enable translation to humans, we developed baboon offspring cohorts from mothers fed ad libitum (control) or 70% of the control ad libitum diet in pregnancy and lactation, which were growth restricted at birth. We hypothesized that intrauterine growth restriction (IUGR) offspring hearts would show impaired function and a premature ageing phenotype. We studied IUGR baboons (8 male, 8 female, 5.7 years), control offspring (8 male, 8 female, 5.6 years - human equivalent approximately 25 years), and normal elderly (OLD) baboons (6 male, 6 female, mean 15.9 years). Left ventricular (LV) morphology and systolic and diastolic function were evaluated with cardiac MRI and normalized to body surface area. Two-way ANOVA by group

  1. Inpatient cardiac rehabilitation programs' exercise therapy for patients undergoing cardiac surgery: National Korean Questionnaire Survey.

    Science.gov (United States)

    Seo, Yong Gon; Jang, Mi Ja; Park, Won Hah; Hong, Kyung Pyo; Sung, Jidong

    2017-02-01

    Inpatient cardiac rehabilitation (ICR) has been commonly conducted after cardiac surgery in many countries, and has been reported a lots of results. However, until now, there is inadequacy of data on the status of ICR in Korea. This study described the current status of exercise therapy in ICR that is performed after cardiac surgery in Korean hospitals. Questionnaires modified by previous studies were sent to the departments of thoracic surgery of 10 hospitals in Korea. Nine replies (response rate 90%) were received. Eight nurses and one physiotherapist completed the questionnaire. Most of the education on wards after cardiac surgery was conducted by nurses. On postoperative day 1, four sites performed sitting on the edge of bed, sit to stand, up to chair, and walking in the ward. Only one site performed that exercise on postoperative day 2. One activity (stairs up and down) was performed on different days at only two sites. Patients received education preoperatively and predischarge for preventing complications and reducing muscle weakness through physical inactivity. The results of the study demonstrate that there are small variations in the general care provided by nurses after cardiac surgery. Based on the results of this research, we recommended that exercise therapy programs have to conduct by exercise specialists like exercise physiologists or physiotherapists for patients in hospitalization period.

  2. Lentiginosis, Deafness and Cardiac Abnormalities*

    African Journals Online (AJOL)

    1973-01-06

    Jan 6, 1973 ... His height. mass. intelligence and genitalia were normal. The aSSOCiatIOn between deafness and disturbance of cardiac conduction and between pigmented skin lesions and cardiac abnormalities, has been well described. Should. ~I patient present with multiple lentigines and/or familial sensineural ...

  3. Understanding post-operative temperature drop in cardiac surgery: a mathematical model

    NARCIS (Netherlands)

    Tindall, M. J.; Peletier, M. A.; Severens, N. M. W.; Veldman, D. J.; de Mol, B. A. J. M.

    2008-01-01

    A mathematical model is presented to understand heat transfer processes during the cooling and re-warming of patients during cardiac surgery. Our compartmental model is able to account for many of the qualitative features observed in the cooling of various regions of the body including the central

  4. Cardiac gated ventilation

    International Nuclear Information System (INIS)

    Hanson, C.W. III; Hoffman, E.A.

    1995-01-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart

  5. Evaluation of respiratory and cardiac motion correction schemes in dual gated PET/CT cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lamare, F., E-mail: frederic.lamare@chu-bordeaux.fr; Fernandez, P. [Univ. Bordeaux, INCIA, UMR 5287, F-33400 Talence (France); CNRS, INCIA, UMR 5287, F-33400 Talence (France); Service de Médecine Nucléaire, Hôpital Pellegrin, CHU de Bordeaux, 33076 Bordeaux (France); Le Maitre, A.; Visvikis, D. [INSERM, UMR1101, LaTIM, Université de Bretagne Occidentale, 29609 Brest (France); Dawood, M.; Schäfers, K. P. [European Institute for Molecular Imaging, University of Münster, Mendelstr. 11, 48149 Münster (Germany); Rimoldi, O. E. [Vita-Salute University and Scientific Institute San Raffaele, Milan, Italy and CNR Istituto di Bioimmagini e Fisiologia Molecolare, Milan (Italy)

    2014-07-15

    Purpose: Cardiac imaging suffers from both respiratory and cardiac motion. One of the proposed solutions involves double gated acquisitions. Although such an approach may lead to both respiratory and cardiac motion compensation there are issues associated with (a) the combination of data from cardiac and respiratory motion bins, and (b) poor statistical quality images as a result of using only part of the acquired data. The main objective of this work was to evaluate different schemes of combining binned data in order to identify the best strategy to reconstruct motion free cardiac images from dual gated positron emission tomography (PET) acquisitions. Methods: A digital phantom study as well as seven human studies were used in this evaluation. PET data were acquired in list mode (LM). A real-time position management system and an electrocardiogram device were used to provide the respiratory and cardiac motion triggers registered within the LM file. Acquired data were subsequently binned considering four and six cardiac gates, or the diastole only in combination with eight respiratory amplitude gates. PET images were corrected for attenuation, but no randoms nor scatter corrections were included. Reconstructed images from each of the bins considered above were subsequently used in combination with an affine or an elastic registration algorithm to derive transformation parameters allowing the combination of all acquired data in a particular position in the cardiac and respiratory cycles. Images were assessed in terms of signal-to-noise ratio (SNR), contrast, image profile, coefficient-of-variation (COV), and relative difference of the recovered activity concentration. Results: Regardless of the considered motion compensation strategy, the nonrigid motion model performed better than the affine model, leading to higher SNR and contrast combined with a lower COV. Nevertheless, when compensating for respiration only, no statistically significant differences were

  6. A discrete electromechanical model for human cardiac tissue: effects of stretch-activated currents and stretch conditions on restitution properties and spiral wave dynamics.

    Science.gov (United States)

    Weise, Louis D; Panfilov, Alexander V

    2013-01-01

    We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006) and tension development (adjusted Niederer, Hunter, Smith, 2006 model) with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material). Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning.

  7. A discrete electromechanical model for human cardiac tissue: effects of stretch-activated currents and stretch conditions on restitution properties and spiral wave dynamics.

    Directory of Open Access Journals (Sweden)

    Louis D Weise

    Full Text Available We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006 and tension development (adjusted Niederer, Hunter, Smith, 2006 model with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material. Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning.

  8. Patient-Specific Induced Pluripotent Stem Cell Models: Generation and Characterization of Cardiac Cells.

    Science.gov (United States)

    Zanella, Fabian; Sheikh, Farah

    2016-01-01

    The generation of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes has been of utmost interest for the study of cardiac development, cardiac disease modeling, and evaluation of cardiotoxic effects of novel candidate drugs. Several protocols have been developed to guide human stem cells toward the cardiogenic path. Pioneering work used serum to promote cardiogenesis; however, low cardiogenic throughputs, lack of chemical definition, and batch-to-batch variability of serum lots constituted a considerable impediment to the implementation of those protocols to large-scale cell biology. Further work focused on the manipulation of pathways that mouse genetics indicated to be fundamental in cardiac development to promote cardiac differentiation in stem cells. Although extremely elegant, those serum-free protocols involved the use of human recombinant cytokines that tend to be quite costly and which can also be variable between lots. The latest generation of cardiogenic protocols aimed for a more cost-effective and reproducible definition of the conditions driving cardiac differentiation, using small molecules to manipulate cardiogenic pathways overriding the need for cytokines. This chapter details methods based on currently available cardiac differentiation protocols for the generation and characterization of robust numbers of hiPSC-derived cardiomyocytes under chemically defined conditions.

  9. Transcriptional profile of isoproterenol-induced cardiomyopathy and comparison to exercise-induced cardiac hypertrophy and human cardiac failure

    Directory of Open Access Journals (Sweden)

    McIver Lauren J

    2009-12-01

    Full Text Available Abstract Background Isoproterenol-induced cardiac hypertrophy in mice has been used in a number of studies to model human cardiac disease. In this study, we compared the transcriptional response of the heart in this model to other animal models of heart failure, as well as to the transcriptional response of human hearts suffering heart failure. Results We performed microarray analyses on RNA from mice with isoproterenol-induced cardiac hypertrophy and mice with exercise-induced physiological hypertrophy and identified 865 and 2,534 genes that were significantly altered in pathological and physiological cardiac hypertrophy models, respectively. We compared our results to 18 different microarray data sets (318 individual arrays representing various other animal models and four human cardiac diseases and identified a canonical set of 64 genes that are generally altered in failing hearts. We also produced a pairwise similarity matrix to illustrate relatedness of animal models with human heart disease and identified ischemia as the human condition that most resembles isoproterenol treatment. Conclusion The overall patterns of gene expression are consistent with observed structural and molecular differences between normal and maladaptive cardiac hypertrophy and support a role for the immune system (or immune cell infiltration in the pathology of stress-induced hypertrophy. Cross-study comparisons such as the results presented here provide targets for further research of cardiac disease that might generally apply to maladaptive cardiac stresses and are also a means of identifying which animal models best recapitulate human disease at the transcriptional level.

  10. [Experimental therapy of cardiac remodeling with quercetin-containing drugs].

    Science.gov (United States)

    Kuzmenko, M A; Pavlyuchenko, V B; Tumanovskaya, L V; Dosenko, V E; Moybenko, A A

    2013-01-01

    It was shown that continuous beta-adrenergic hyperstimulation resulted in cardiac function disturbances and fibrosis of cardiac tissue. Treatment with quercetin-containing drugs, particularly, water-soluble corvitin and tableted quertin exerted favourable effect on cardiac hemodynamics, normalized systolic and diastolic function in cardiac remodeling, induced by sustained beta-adrenergic stimulation. It was estimated that conducted experimental therapy limited cardiac fibrosis area almost three-fold, that could be associated with first and foremost improved cardiac distensibility, characteristics of diastolic and also pump function in cardiac remodeling.

  11. Hemodynamic forces regulate developmental patterning of atrial conduction.

    Directory of Open Access Journals (Sweden)

    Michael C Bressan

    Full Text Available Anomalous action potential conduction through the atrial chambers of the heart can lead to severe cardiac arrhythmia. To date, however, little is known regarding the mechanisms that pattern proper atrial conduction during development. Here we demonstrate that atrial muscle functionally diversifies into at least two heterogeneous subtypes, thin-walled myocardium and rapidly conducting muscle bundles, during a developmental window just following cardiac looping. During this process, atrial muscle bundles become enriched for the fast conduction markers Cx40 and Nav1.5, similar to the precursors of the fast conduction Purkinje fiber network located within the trabeculae of the ventricles. In contrast to the ventricular trabeculae, however, atrial muscle bundles display an increased proliferation rate when compared to the surrounding myocardium. Interestingly, mechanical loading of the embryonic atrial muscle resulted in an induction of Cx40, Nav1.5 and the cell cycle marker Cyclin D1, while decreasing atrial pressure via in vivo ligation of the vitelline blood vessels results in decreased atrial conduction velocity. Taken together, these data establish a novel model for atrial conduction patterning, whereby hemodynamic stretch coordinately induces proliferation and fast conduction marker expression, which in turn promotes the formation of large diameter muscle bundles to serve as preferential routes of conduction.

  12. Design of a hybrid model for cardiac arrhythmia classification based on Daubechies wavelet transform.

    Science.gov (United States)

    Rajagopal, Rekha; Ranganathan, Vidhyapriya

    2018-06-05

    Automation in cardiac arrhythmia classification helps medical professionals make accurate decisions about the patient's health. The aim of this work was to design a hybrid classification model to classify cardiac arrhythmias. The design phase of the classification model comprises the following stages: preprocessing of the cardiac signal by eliminating detail coefficients that contain noise, feature extraction through Daubechies wavelet transform, and arrhythmia classification using a collaborative decision from the K nearest neighbor classifier (KNN) and a support vector machine (SVM). The proposed model is able to classify 5 arrhythmia classes as per the ANSI/AAMI EC57: 1998 classification standard. Level 1 of the proposed model involves classification using the KNN and the classifier is trained with examples from all classes. Level 2 involves classification using an SVM and is trained specifically to classify overlapped classes. The final classification of a test heartbeat pertaining to a particular class is done using the proposed KNN/SVM hybrid model. The experimental results demonstrated that the average sensitivity of the proposed model was 92.56%, the average specificity 99.35%, the average positive predictive value 98.13%, the average F-score 94.5%, and the average accuracy 99.78%. The results obtained using the proposed model were compared with the results of discriminant, tree, and KNN classifiers. The proposed model is able to achieve a high classification accuracy.

  13. A prediction model for 5-year cardiac mortality in patients with chronic heart failure using {sup 123}I-metaiodobenzylguanidine imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Kenichi; Matsuo, Shinro [Kanazawa University Hospital, Department of Nuclear Medicine, Kanazawa (Japan); Nakata, Tomoaki [Sapporo Medical University School of Medicine, Second Department of Internal Medicine (Cardiology), Sapporo (Japan); Hakodate-Goryoukaku Hospital, Department of Cardiology, Hakodate (Japan); Yamada, Takahisa [Osaka Prefectural General Medical Center, Department of Cardiology, Osaka (Japan); Yamashina, Shohei [Toho University Omori Medical Center, Department of Cardiovascular Medicine, Tokyo (Japan); Momose, Mitsuru [Tokyo Women' s Medical University, Department of Nuclear Medicine, Tokyo (Japan); Kasama, Shu [Cardiovascular Hospital of Central Japan, Department of Cardiology, Shibukawa (Japan); Matsui, Toshiki [Social Insurance Shiga General Hospital, Department of Cardiology, Otsu (Japan); Travin, Mark I. [Albert Einstein Medical College, Department of Cardiology and Nuclear Medicine, Montefiore Medical Center, Bronx, NY (United States); Jacobson, Arnold F. [GE Healthcare, Medical Diagnostics, Princeton, NJ (United States)

    2014-09-15

    Prediction of mortality risk is important in the management of chronic heart failure (CHF). The aim of this study was to create a prediction model for 5-year cardiac death including assessment of cardiac sympathetic innervation using data from a multicenter cohort study in Japan. The original pooled database consisted of cohort studies from six sites in Japan. A total of 933 CHF patients who underwent {sup 123}I-metaiodobenzylguanidine (MIBG) imaging and whose 5-year outcomes were known were selected from this database. The late MIBG heart-to-mediastinum ratio (HMR) was used for quantification of cardiac uptake. Cox proportional hazard and logistic regression analyses were used to select appropriate variables for predicting 5-year cardiac mortality. The formula for predicting 5-year mortality was created using a logistic regression model. During the 5-year follow-up, 205 patients (22 %) died of a cardiac event including heart failure death, sudden cardiac death and fatal acute myocardial infarction (64 %, 30 % and 6 %, respectively). Multivariate logistic analysis selected four parameters, including New York Heart Association (NYHA) functional class, age, gender and left ventricular ejection fraction, without HMR (model 1) and five parameters with the addition of HMR (model 2). The net reclassification improvement analysis for all subjects was 13.8 % (p < 0.0001) by including HMR and its inclusion was most effective in the downward reclassification of low-risk patients. Nomograms for predicting 5-year cardiac mortality were created from the five-parameter regression model. Cardiac MIBG imaging had a significant additive value for predicting cardiac mortality. The prediction formula and nomograms can be used for risk stratifying in patients with CHF. (orig.)

  14. Development of a diagnosis- and procedure-based risk model for 30-day outcome after pediatric cardiac surgery.

    Science.gov (United States)

    Crowe, Sonya; Brown, Kate L; Pagel, Christina; Muthialu, Nagarajan; Cunningham, David; Gibbs, John; Bull, Catherine; Franklin, Rodney; Utley, Martin; Tsang, Victor T

    2013-05-01

    The study objective was to develop a risk model incorporating diagnostic information to adjust for case-mix severity during routine monitoring of outcomes for pediatric cardiac surgery. Data from the Central Cardiac Audit Database for all pediatric cardiac surgery procedures performed in the United Kingdom between 2000 and 2010 were included: 70% for model development and 30% for validation. Units of analysis were 30-day episodes after the first surgical procedure. We used logistic regression for 30-day mortality. Risk factors considered included procedural information based on Central Cardiac Audit Database "specific procedures," diagnostic information defined by 24 "primary" cardiac diagnoses and "univentricular" status, and other patient characteristics. Of the 27,140 30-day episodes in the development set, 25,613 were survivals, 834 were deaths, and 693 were of unknown status (mortality, 3.2%). The risk model includes procedure, cardiac diagnosis, univentricular status, age band (neonate, infant, child), continuous age, continuous weight, presence of non-Down syndrome comorbidity, bypass, and year of operation 2007 or later (because of decreasing mortality). A risk score was calculated for 95% of cases in the validation set (weight missing in 5%). The model discriminated well; the C-index for validation set was 0.77 (0.81 for post-2007 data). Removal of all but procedural information gave a reduced C-index of 0.72. The model performed well across the spectrum of predicted risk, but there was evidence of underestimation of mortality risk in neonates undergoing operation from 2007. The risk model performs well. Diagnostic information added useful discriminatory power. A future application is risk adjustment during routine monitoring of outcomes in the United Kingdom to assist quality assurance. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  15. Mammalian enabled (Mena) is a critical regulator of cardiac function.

    Science.gov (United States)

    Aguilar, Frédérick; Belmonte, Stephen L; Ram, Rashmi; Noujaim, Sami F; Dunaevsky, Olga; Protack, Tricia L; Jalife, Jose; Todd Massey, H; Gertler, Frank B; Blaxall, Burns C

    2011-05-01

    Mammalian enabled (Mena) of the Drosophila enabled/vasodilator-stimulated phosphoprotein gene family is a cytoskeletal protein implicated in actin regulation and cell motility. Cardiac Mena expression is enriched in intercalated discs (ICD), the critical intercellular communication nexus between adjacent muscle cells. We previously identified Mena gene expression to be a key predictor of human and murine heart failure (HF). To determine the in vivo function of Mena in the heart, we assessed Mena protein expression in multiple HF models and characterized the effects of genetic Mena deletion on cardiac structure and function. Immunoblot analysis revealed significant upregulation of Mena protein expression in left ventricle tissue from patients with end-stage HF, calsequestrin-overexpressing mice, and isoproterenol-infused mice. Characterization of the baseline cardiac function of adult Mena knockout mice (Mena(-/-)) via echocardiography demonstrated persistent cardiac dysfunction, including a significant reduction in percent fractional shortening compared with wild-type littermates. Electrocardiogram PR and QRS intervals were significantly prolonged in Mena(-/-) mice, manifested by slowed conduction on optical mapping studies. Ultrastructural analysis of Mena(-/-) hearts revealed disrupted organization and widening of ICD structures, mislocalization of the gap junction protein connexin 43 (Cx43) to the lateral borders of cardiomyoycytes, and increased Cx43 expression. Furthermore, the expression of vinculin (an adherens junction protein) was significantly reduced in Mena(-/-) mice. We report for the first time that genetic ablation of Mena results in cardiac dysfunction, highlighted by diminished contractile performance, disrupted ICD structure, and slowed electrical conduction.

  16. Computer modelling for better diagnosis and therapy of patients by cardiac resynchronisation therapy

    NARCIS (Netherlands)

    Pluijmert, Marieke; Lumens, Joost; Potse, Mark; Delhaas, Tammo; Auricchio, Angelo; Prinzen, Frits W

    2015-01-01

    Mathematical or computer models have become increasingly popular in biomedical science. Although they are a simplification of reality, computer models are able to link a multitude of processes to each other. In the fields of cardiac physiology and cardiology, models can be used to describe the

  17. Cardiac overexpression of Mammalian enabled (Mena) exacerbates heart failure in mice.

    Science.gov (United States)

    Belmonte, Stephen L; Ram, Rashmi; Mickelsen, Deanne M; Gertler, Frank B; Blaxall, Burns C

    2013-09-15

    Mammalian enabled (Mena) is a key regulator of cytoskeletal actin dynamics, which has been implicated in heart failure (HF). We have previously demonstrated that cardiac Mena deletion produced cardiac dysfunction with conduction abnormalities and hypertrophy. Moreover, elevated Mena expression correlates with HF in human and animal models, yet the precise role of Mena in cardiac pathophysiology is unclear. In these studies, we evaluated mice with cardiac myocyte-specific Mena overexpression (TTA/TgTetMena) comparable to that observed in cardiac pathology. We found that the hearts of TTA/TgTetMena mice were functionally and morphologically comparable to wild-type littermates, except for mildly increased heart mass in the transgenic mice. Interestingly, TTA/TgTetMena mice were particularly susceptible to cardiac injury, as these animals experienced pronounced decreases in ejection fraction and fractional shortening as well as heart dilatation and hypertrophy after transverse aortic constriction (TAC). By "turning off" Mena overexpression in TTA/TgTetMena mice either immediately prior to or immediately after TAC surgery, we discovered that normalizing Mena levels eliminated cardiac hypertrophy in TTA/TgTetMena animals but did not preclude post-TAC cardiac functional deterioration. These findings indicate that hearts with increased levels of Mena fare worse when subjected to cardiac injury and suggest that Mena contributes to HF pathophysiology.

  18. Comparison of {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG PET) and cardiac magnetic resonance (CMR) in corticosteroid-naive patients with conduction system disease due to cardiac sarcoidosis

    Energy Technology Data Exchange (ETDEWEB)

    Ohira, Hiroshi; Birnie, David H.; Mc Ardle, Brian; Dick, Alexander; Klein, Ran; Renaud, Jennifer; DeKemp, Robert A.; Davies, Ross; Hessian, Renee; Liu, Peter; Nery, Pablo B. [University of Ottawa Heart Institute, Molecular Function and Imaging Program, National Cardiac PET Centre, Ottawa, ON (Canada); University of Ottawa Heart Institute, Arrhythmia Service, Division of Cardiology, Department of Medicine, Ottawa, ON (Canada); Pena, Elena; Dennie, Carole [The Ottawa Hospital, Medical Imaging Department, Ottawa, ON (Canada); University of Ottawa, Department of Radiology, Ottawa, ON (Canada); Bernick, Jordan; Wells, George A. [University of Ottawa Heart Institute, Cardiovascular Research Methods Center, Ottawa, ON (Canada); Leung, Eugene [The Ottawa Hospital, Division of Nuclear Medicine, Department of Medicine, Ottawa, Ontario (Canada); Yoshinaga, Keiichiro [Hokkaido University School of Medicine, Department of Molecular Imaging, Hokkaido (Japan); Tsujino, Ichizo; Sato, Takahiro; Nishimura, Masaharu [Hokkaido University School of Medicine, First Department of Medicine, Hokkaido (Japan); Manabe, Osamu; Tamaki, Nagara [Hokkaido University School of Medicine, Department of Nuclear Medicine, Hokkaido (Japan); Oyama-Manabe, Noriko [Hokkaido University Hospital, Diagnostic and Interventional Radiology, Hokkaido (Japan); Ruddy, Terrence D.; Beanlands, Rob S.B. [University of Ottawa Heart Institute, Molecular Function and Imaging Program, National Cardiac PET Centre, Ottawa, ON (Canada); University of Ottawa Heart Institute, Arrhythmia Service, Division of Cardiology, Department of Medicine, Ottawa, ON (Canada); The Ottawa Hospital, Medical Imaging Department, Ottawa, ON (Canada); University of Ottawa, Department of Radiology, Ottawa, ON (Canada); The Ottawa Hospital, Division of Nuclear Medicine, Department of Medicine, Ottawa, Ontario (Canada); Chow, Benjamin J.W. [University of Ottawa Heart Institute, Molecular Function and Imaging Program, National Cardiac PET Centre, Ottawa, ON (Canada); University of Ottawa Heart Institute, Arrhythmia Service, Division of Cardiology, Department of Medicine, Ottawa, ON (Canada); The Ottawa Hospital, Medical Imaging Department, Ottawa, ON (Canada); University of Ottawa, Department of Radiology, Ottawa, ON (Canada)

    2016-02-15

    Cardiac sarcoidosis (CS) is a cause of conduction system disease (CSD). {sup 18}F-Fluorodeoxyglucose-positron emission tomography (FDG PET) and cardiac magnetic resonance (CMR) are used for detection of CS. The relative diagnostic value of these has not been well studied. The aim was to compare these imaging modalities in this population. We recruited steroid-naive patients with newly diagnosed CSD due to CS. All CS patients underwent both imaging studies within 12 weeks of each other. Patients were classified into two groups: group A with chronic mild CSD (right bundle branch block and/or axis deviation), and group B with new-onset atrioventricular block (AVB, Mobitz type II or third-degree AVB). Thirty patients were included. Positive findings on both imaging studies were seen in 72 % of patients (13/18) in group A and in 58 % of patients (7/12) in group B. The remainder (28 %) of the patients in group A were positive only on CMR. Of the patients in group B, 8 % were positive only on CMR and 33 % were positive only on FDG PET. Patients in group A were more likely to be positive only on CMR, and patients in group B were more likely to be positive only on FDG PET (p = 0.02). Patients in group B positive only on FDG PET underwent CMR earlier relative to their symptomatology than patients positive only on CMR (median 7.0, IQR 1.5 - 34.3, vs. 72.0, IQR 25.0 - 79.5 days; p = 0.03). The number of positive FDG PET and CMR studies was different in patients with CSD depending on their clinical presentation. This study demonstrated that CMR can adequately detect cardiac involvement associated with chronic mild CSD. In patients presenting with new-onset AVB and a negative CMR study, FDG PET may be useful for detecting cardiac involvement due to CS. (orig.)

  19. A 3D active shape model driven by fuzzy inference : application to cardiac CT and MR

    NARCIS (Netherlands)

    Assen, van H.C.; Danilouchkine, M.G.; Dirksen, M.S.; Reiber, J.H.C.; Lelieveldt, B.P.F.

    2008-01-01

    Abstract—Manual quantitative analysis of cardiac left ventricular function using Multislice CT and MR is arduous because of the large data volume. In this paper, we present a 3-D active shape model (ASM) for semiautomatic segmentation of cardiac CT and MRvolumes, without the requirement of

  20. Model-based imaging of cardiac electrical function in human atria

    Science.gov (United States)

    Modre, Robert; Tilg, Bernhard; Fischer, Gerald; Hanser, Friedrich; Messnarz, Bernd; Schocke, Michael F. H.; Kremser, Christian; Hintringer, Florian; Roithinger, Franz

    2003-05-01

    Noninvasive imaging of electrical function in the human atria is attained by the combination of data from electrocardiographic (ECG) mapping and magnetic resonance imaging (MRI). An anatomical computer model of the individual patient is the basis for our computer-aided diagnosis of cardiac arrhythmias. Three patients suffering from Wolff-Parkinson-White syndrome, from paroxymal atrial fibrillation, and from atrial flutter underwent an electrophysiological study. After successful treatment of the cardiac arrhythmia with invasive catheter technique, pacing protocols with stimuli at several anatomical sites (coronary sinus, left and right pulmonary vein, posterior site of the right atrium, right atrial appendage) were performed. Reconstructed activation time (AT) maps were validated with catheter-based electroanatomical data, with invasively determined pacing sites, and with pacing at anatomical markers. The individual complex anatomical model of the atria of each patient in combination with a high-quality mesh optimization enables accurate AT imaging, resulting in a localization error for the estimated pacing sites within 1 cm. Our findings may have implications for imaging of atrial activity in patients with focal arrhythmias.

  1. Cardiac fatty acid uptake and metabolism in the rat model of polycystic ovary syndrome.

    Science.gov (United States)

    Tepavčević, Snežana; Milutinović, Danijela Vojnović; Macut, Djuro; Stojiljković, Mojca; Nikolić, Marina; Božić-Antić, Ivana; Ćulafić, Tijana; Bjekić-Macut, Jelica; Matić, Gordana; Korićanac, Goran

    2015-09-01

    Polycystic ovary syndrome (PCOS) is associated with an altered plasma lipid profile and increased risk for cardiovascular diseases. We hypothesized that molecular mechanisms underlying cardiac pathology in PCOS involve changes in expression and subcellular localization of several key proteins involved in cardiac lipid transport and metabolism, such as fatty acid transporter CD36, lipin 1, peroxisome proliferator-activated receptor α (PPARα), peroxisome proliferator-activated receptor γ coactivator-1 (PGC1), and carnitine palmitoyltransferase 1 (CPT1). We used the animal model of PCOS obtained by treating female rats with dihydrotestosterone (DHT). Protein levels of CD36, lipin 1, PPARα, PGC1, and antioxidative enzymes were assessed by Western blot in different cardiac cell compartments. Cardiac triglycerides (TG) and lipid peroxidation were also measured. The content of CD36 was decreased in both the cardiac plasma membranes and intracellular pool. On the other hand, total content of cardiac lipin 1 in DHT-treated rats was elevated, in contrast to decreased microsomal lipin 1 content. An increase in nuclear content of lipin 1 was observed together with elevation of nuclear PPARα and PGC1, and an increase in CPT1 expression. However, lipid peroxidation was reduced in the heart, without alterations in antioxidative enzymes expression and cardiac TG content. The results indicate that treatment of female rats with DHT is accompanied by a decrease of fatty acid uptake and a reduction of lipid peroxidation in the heart. The observed elevation of lipin 1, PPARα, PGC1, and CPT1 expression suggests that cardiac fatty acid metabolism is shifted toward mitochondrial beta oxidation.

  2. Distribution of cardiac sodium channels in clusters potentiates ephaptic interactions in the intercalated disc.

    Science.gov (United States)

    Hichri, Echrak; Abriel, Hugues; Kucera, Jan P

    2018-02-15

    It has been proposed that ephaptic conduction, relying on interactions between the sodium (Na + ) current and the extracellular potential in intercalated discs, might contribute to cardiac conduction when gap junctional coupling is reduced, but this mechanism is still controversial. In intercalated discs, Na + channels form clusters near gap junction plaques, but the functional significance of these clusters has never been evaluated. In HEK cells expressing cardiac Na + channels, we show that restricting the extracellular space modulates the Na + current, as predicted by corresponding simulations accounting for ephaptic effects. In a high-resolution model of the intercalated disc, clusters of Na + channels that face each other across the intercellular cleft facilitate ephaptic impulse transmission when gap junctional coupling is reduced. Thus, our simulations reveal a functional role for the clustering of Na + channels in intercalated discs, and suggest that rearrangement of these clusters in disease may influence cardiac conduction. It has been proposed that ephaptic interactions in intercalated discs, mediated by extracellular potentials, contribute to cardiac impulse propagation when gap junctional coupling is reduced. However, experiments demonstrating ephaptic effects on the cardiac Na + current (I Na ) are scarce. Furthermore, Na + channels form clusters around gap junction plaques, but the electrophysiological significance of these clusters has never been investigated. In patch clamp experiments with HEK cells stably expressing human Na v 1.5 channels, we examined how restricting the extracellular space modulates I Na elicited by an activation protocol. In parallel, we developed a high-resolution computer model of the intercalated disc to investigate how the distribution of Na + channels influences ephaptic interactions. Approaching the HEK cells to a non-conducting obstacle always increased peak I Na at step potentials near the threshold of I Na activation

  3. Reciprocal Modulation of IK1-INa Extends Excitability in Cardiac Ventricular Cells.

    Science.gov (United States)

    Varghese, Anthony

    2016-01-01

    The inwardly rectifying potassium current (I K1 ) and the fast inward sodium current (I Na ) are reciprocally modulated in mammalian ventricular myocytes. An increase in the expression of channels responsible for one of these two currents results in a corresponding increase in expression of the other. These currents are critical in the propagation of action potentials (AP) during the normal functioning of the heart. This study identifies a physiological role for I K1 -I Na reciprocal modulation in ventricular fiber activation thresholds and conduction. Simulations of action potentials in single cells and propagating APs in cardiac fibers were carried out using an existing model of electrical activity in cardiac ventricular myocytes. The conductances, G K1 , of the inwardly rectifying potassium current, and G Na , of the fast inward sodium current were modified independently and in tandem to simulate reciprocal modulation. In single cells, independent modulation of G K1 alone resulted in changes in activation thresholds that were qualitatively similar to those for reciprocal G K1 -G Na modulation and unlike those due to independent modulation of G Na alone, indicating that G K1 determines the cellular activation threshold. On the other hand, the variations in conduction velocity in cardiac cell fibers were similar for independent G Na modulation and for tandem changes in G K1 -G Na , suggesting that G Na is primarily responsible for setting tissue AP conduction velocity. Conduction velocity dependence on G K1 -G Na is significantly affected by the intercellular gap junction conductance. While the effects on the passive fiber space constant due to changes in both G K1 and the intercellular gap junction conductance, G gj , were in line with linear cable theory predictions, both conductances had surprisingly large effects on fiber activation thresholds. Independent modulation of G K1 rendered cardiac fibers inexcitable at higher levels of G K1 whereas tandem G K1 -G Na

  4. Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds.

    Science.gov (United States)

    Hussain, Ali; Collins, George; Yip, Derek; Cho, Cheul H

    2013-02-01

    The in vitro generation of a three-dimensional (3-D) myocardial tissue-like construct employing cells, biomaterials, and biomolecules is a promising strategy in cardiac tissue regeneration, drug testing, and tissue engineering applications. Despite significant progress in this field, current cardiac tissue models are not yet able to stably maintain functional characteristics of cardiomyocytes for long-term culture and therapeutic purposes. The objective of this study was to fabricate bioactive 3-D chitosan nanofiber scaffolds using an electrospinning technique and exploring its potential for long-term cardiac function in the 3-D co-culture model. Chitosan is a natural polysaccharide biomaterial that is biocompatible, biodegradable, non-toxic, and cost effective. Electrospun chitosan was utilized to provide structural scaffolding characterized by scale and architectural resemblance to the extracellular matrix (ECM) in vivo. The chitosan fibers were coated with fibronectin via adsorption in order to enhance cellular adhesion to the fibers and migration into the interfibrous milieu. Ventricular cardiomyocytes were harvested from neonatal rats and studied in various culture conditions (i.e., mono- and co-cultures) for their viability and function. Cellular morphology and functionality were examined using immunofluorescent staining for alpha-sarcomeric actin (SM-actin) and gap junction protein, Connexin-43 (Cx43). Scanning electron microscopy (SEM) and light microscopy were used to investigate cellular morphology, spatial organization, and contractions. Calcium indicator was used to monitor calcium ion flux of beating cardiomyocytes. The results demonstrate that the chitosan nanofibers retained their cylindrical morphology in long-term cell cultures and exhibited good cellular attachment and spreading in the presence of adhesion molecule, fibronectin. Cardiomyocyte mono-cultures resulted in loss of cardiomyocyte polarity and islands of non-coherent contractions. However

  5. Humanitarian Cardiology and Cardiac Surgery in Sub-Saharan Africa: Can We Reshape the Model?

    Science.gov (United States)

    Tefera, Endale; Nega, Berhanu; Yadeta, Dejuma; Chanie, Yilkal

    2016-11-01

    In recent decades, humanitarian cardiology and cardiac surgery have shifted toward sending short-term surgical and catheter missions to treat patients. Although this model has been shown to be effective in bringing cardiovascular care to the patients' environment, its effectiveness in creating sustainable service is questioned. This study reports the barriers to contribution of missions to effective skill transfer and possible improvements needed in the future, from the perspective of both the local and overseas teams. We reviewed the mission-based activities in the Children's Heart Fund Cardiac Center in the past six years. We distributed questionnaires to the local surgeons and the lead surgeons of the overseas teams. Twenty-six missions visited the center 57 times. There were 371 operating days and 605 surgical procedures. Of the procedures performed, 498 were open-heart surgeries. Of the operations, 360 were congenital cases and 204 were rheumatic. Six local surgeons and 18 overseas surgeons responded. Both groups agree the current model of collaboration is not optimal for effective skill transfer. The local surgeons suggested deeper involvement of the universities, governmental institutions, defined training goals and time frame, and communication among the overseas teams themselves as remedies in the future. Majority of the overseas surgeons agree that networking and regular communication among the missions themselves are needed. Some reflected that it would be convenient if the local surgeons are trained by one or two frequently visiting surgeons in their early years and later exposed to multiple teams if needed. The current model of collaboration has brought cardiac care to patients having cardiac diseases. However, the model appears to be suboptimal for skill transfer. The model needs to be reshaped to achieve this complex goal. © The Author(s) 2016.

  6. Mechanical perturbation control of cardiac alternans

    Science.gov (United States)

    Hazim, Azzam; Belhamadia, Youssef; Dubljevic, Stevan

    2018-05-01

    Cardiac alternans is a disturbance in heart rhythm that is linked to the onset of lethal cardiac arrhythmias. Mechanical perturbation control has been recently used to suppress alternans in cardiac tissue of relevant size. In this control strategy, cardiac tissue mechanics are perturbed via active tension generated by the heart's electrical activity, which alters the tissue's electric wave profile through mechanoelectric coupling. We analyze the effects of mechanical perturbation on the dynamics of a map model that couples the membrane voltage and active tension systems at the cellular level. Therefore, a two-dimensional iterative map of the heart beat-to-beat dynamics is introduced, and a stability analysis of the system of coupled maps is performed in the presence of a mechanical perturbation algorithm. To this end, a bidirectional coupling between the membrane voltage and active tension systems in a single cardiac cell is provided, and a discrete form of the proposed control algorithm, that can be incorporated in the coupled maps, is derived. In addition, a realistic electromechanical model of cardiac tissue is employed to explore the feasibility of suppressing alternans at cellular and tissue levels. Electrical activity is represented in two detailed ionic models, the Luo-Rudy 1 and the Fox models, while two active contractile tension models, namely a smooth variant of the Nash-Panfilov model and the Niederer-Hunter-Smith model, are used to represent mechanical activity in the heart. The Mooney-Rivlin passive elasticity model is employed to describe passive mechanical behavior of the myocardium.

  7. Radioisotope-powered cardiac pacemaker program. Clinical studies of the nuclear pacemaker model NU-5. Final report

    International Nuclear Information System (INIS)

    1980-06-01

    Beginning in February, 1970, the Nuclear Materials and Equipment Corporation (NUMEC) undertook a program to design, develop and manufacture a radioisotope powered cardiac pacemaker system. The scope of technical work was specified to be: establish system, component, and process cost reduction goals using the prototype Radioisotope Powered Cardiac Pacemaker (RCP) design and develop production techniques to achieve these cost reduction objectives; fabricate radioisotope powered fueled prototype cardiac pacemakers (RCP's) on a pilot production basis; conduct liaison with a Government-designated fueling facility for purposes of defining fueling requirements, fabrication and encapsulation procedures, safety design criteria and quality control and inspection requirements; develop and implement Quality Assurance and Reliability Programs; conduct performance, acceptance, lifetime and reliability tests of fueled RCP's in the laboratory; conduct liaison with the National Institutes of Health and with Government specified medical research institutions selected for the purpose of undertaking clinical evaluation of the RCP in humans; monitor and evaluate, on a continuing basis, all test data; and perform necessary safety analyses and tests. Pacemaker designs were developed and quality assurance and manufacturing procedures established. Prototype pacemakers were fabricated. A total of 126 radioisotope powered units were implanted and have been followed clinically for approximately seven years. Four (4) of these units have failed. Eighty-three (83) units remain implanted and satisfactorily operational. An overall failure rate of less than the target 0.15% per month has been achieved

  8. Modelling cardiac signal as a confound in EEG-fMRI and its application in focal epilepsy studies

    DEFF Research Database (Denmark)

    Liston, A. D.; Ellegaard Lund, Torben; Salek-Haddadi, A

    2006-01-01

    effects to be modelled, as effects of no interest. Our model is based on an over-complete basis set covering a linear relationship between cardiac-related MR signal and the phase of the cardiac cycle or time after pulse (TAP). This method showed that, on average, 24.6 +/- 10.9% of grey matter voxels......Cardiac noise has been shown to reduce the sensitivity of functional Magnetic Resonance Imaging (fMRI) to an experimental effect due to its confounding presence in the blood oxygenation level-dependent (BOLD) signal. Its effect is most severe in particular regions of the brain and a method is yet...... to take it into account in routine fMRI analysis. This paper reports the development of a general and robust technique to improve the reliability of EEG-fMRI studies to BOLD signal correlated with interictal epileptiform discharges (IEDs). In these studies, ECG is routinely recorded, enabling cardiac...

  9. Coexisting chaotic and multi-periodic dynamics in a model of cardiac alternans

    Energy Technology Data Exchange (ETDEWEB)

    Skardal, Per Sebastian, E-mail: skardals@gmail.com [Departament d' Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona (Spain); Restrepo, Juan G., E-mail: juanga@colorado.edu [Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309 (United States)

    2014-12-15

    The spatiotemporal dynamics of cardiac tissue is an active area of research for biologists, physicists, and mathematicians. Of particular interest is the study of period-doubling bifurcations and chaos due to their link with cardiac arrhythmogenesis. In this paper, we study the spatiotemporal dynamics of a recently developed model for calcium-driven alternans in a one dimensional cable of tissue. In particular, we observe in the cable coexistence of regions with chaotic and multi-periodic dynamics over wide ranges of parameters. We study these dynamics using global and local Lyapunov exponents and spatial trajectory correlations. Interestingly, near nodes—or phase reversals—low-periodic dynamics prevail, while away from the nodes, the dynamics tend to be higher-periodic and eventually chaotic. Finally, we show that similar coexisting multi-periodic and chaotic dynamics can also be observed in a detailed ionic model.

  10. Targeting sodium channels in cardiac arrhythmia

    NARCIS (Netherlands)

    Remme, Carol Ann; Wilde, Arthur A. M.

    2014-01-01

    Cardiac voltage-gated sodium channels are responsible for proper electrical conduction in the heart. During acquired pathological conditions and inherited sodium channelopathies, altered sodium channel function causes conduction disturbances and ventricular arrhythmias. Although the clinical,

  11. Identifying Variability in Mental Models Within and Between Disciplines Caring for the Cardiac Surgical Patient.

    Science.gov (United States)

    Brown, Evans K H; Harder, Kathleen A; Apostolidou, Ioanna; Wahr, Joyce A; Shook, Douglas C; Farivar, R Saeid; Perry, Tjorvi E; Konia, Mojca R

    2017-07-01

    The cardiac operating room is a complex environment requiring efficient and effective communication between multiple disciplines. The objectives of this study were to identify and rank critical time points during the perioperative care of cardiac surgical patients, and to assess variability in responses, as a correlate of a shared mental model, regarding the importance of these time points between and within disciplines. Using Delphi technique methodology, panelists from 3 institutions were tasked with developing a list of critical time points, which were subsequently assigned to pause point (PP) categories. Panelists then rated these PPs on a 100-point visual analog scale. Descriptive statistics were expressed as percentages, medians, and interquartile ranges (IQRs). We defined low response variability between panelists as an IQR ≤ 20, moderate response variability as an IQR > 20 and ≤ 40, and high response variability as an IQR > 40. Panelists identified a total of 12 PPs. The PPs identified by the highest number of panelists were (1) before surgical incision, (2) before aortic cannulation, (3) before cardiopulmonary bypass (CPB) initiation, (4) before CPB separation, and (5) at time of transfer of care from operating room (OR) to intensive care unit (ICU) staff. There was low variability among panelists' ratings of the PP "before surgical incision," moderate response variability for the PPs "before separation from CPB," "before transfer from OR table to bed," and "at time of transfer of care from OR to ICU staff," and high response variability for the remaining 8 PPs. In addition, the perceived importance of each of these PPs varies between disciplines and between institutions. Cardiac surgical providers recognize distinct critical time points during cardiac surgery. However, there is a high degree of variability within and between disciplines as to the importance of these times, suggesting an absence of a shared mental model among disciplines caring for

  12. Sudden Cardiac Death in Children. Part 2

    Directory of Open Access Journals (Sweden)

    Ye.V. Pshenichnaya

    2013-03-01

    Full Text Available This article deals with the dysplastic changes in musculo-valve structures of the heart, arrhythmias and conduction disorders, associated with a risk of sudden cardiac death. The diagnostic criteria for sudden cardiac death, the events of cardio-pulmonary resuscitation, prevention of life-threatening conditions in children are provided.

  13. Simulation study of a magnetocardiogram based on a virtual heart model: effect of a cardiac equivalent source and a volume conductor

    International Nuclear Information System (INIS)

    Shou Guo-Fa; Xia Ling; Dai Ling; Ma Ping; Tang Fa-Kuan

    2011-01-01

    In this paper, we present a magnetocardiogram (MCG) simulation study using the boundary element method (BEM) and based on the virtual heart model and the realistic human volume conductor model. The different contributions of cardiac equivalent source models and volume conductor models to the MCG are deeply and comprehensively investigated. The single dipole source model, the multiple dipoles source model and the equivalent double layer (EDL) source model are analysed and compared with the cardiac equivalent source models. Meanwhile, the effect of the volume conductor model on the MCG combined with these cardiac equivalent sources is investigated. The simulation results demonstrate that the cardiac electrophysiological information will be partly missed when only the single dipole source is taken, while the EDL source is a good option for MCG simulation and the effect of the volume conductor is smallest for the EDL source. Therefore, the EDL source is suitable for the study of MCG forward and inverse problems, and more attention should be paid to it in future MCG studies. (general)

  14. Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators

    Science.gov (United States)

    Shin, Su Ryon; Jung, Sung Mi; Zalabany, Momen; Kim, Keekyoung; Zorlutuna, Pinar; Kim, Sang bok; Nikkhah, Mehdi; Khabiry, Masoud; Azize, Mohamed; Kong, Jing; Wan, Kai-tak; Palacios, Tomas; Dokmeci, Mehmet R.; Bae, Hojae; Tang, Xiaowu (Shirley); Khademhosseini, Ali

    2013-01-01

    We engineered functional cardiac patches by seeding neonatal rat cardiomyocytes onto carbon nanotube (CNT) incorporated photocrosslinkable gelatin methacrylate (GelMA) hydrogel. The resulting cardiac constructs showed excellent mechanical integrity and advanced electrophysiological functions. Specifically, myocardial tissues cultured on 50 μm thick CNT-GelMA showed 3 times higher spontaneous synchronous beating rates and 85% lower excitation threshold, compared to those cultured on pristine GelMA hydrogels. Our results indicate that the electrically conductive and nanofibrous networks formed by CNTs within a porous gelatin framework is the key characteristics of CNT-GelMA leading to improved cardiac cell adhesion, organization, and cell-cell coupling. Centimeter-scale patches were released from glass substrates to form 3D biohybrid actuators, which showed controllable linear cyclic contraction/extension, pumping, and swimming actuations. In addition, we demonstrate for the first time that cardiac tissues cultured on CNT-GelMA resist damage by a model cardiac inhibitor as well as a cytotoxic compound. Therefore, incorporation of CNTs into gelatin, and potentially other biomaterials, could be useful in creating multifunctional cardiac scaffolds for both therapeutic purposes and in vitro studies. These hybrid materials could also be used for neuron and other muscle cells to create tissue constructs with improved organization, electroactivity, and mechanical integrity. PMID:23363247

  15. Development and validation of risk models to predict outcomes following in-hospital cardiac arrest attended by a hospital-based resuscitation team.

    Science.gov (United States)

    Harrison, David A; Patel, Krishna; Nixon, Edel; Soar, Jasmeet; Smith, Gary B; Gwinnutt, Carl; Nolan, Jerry P; Rowan, Kathryn M

    2014-08-01

    The National Cardiac Arrest Audit (NCAA) is the UK national clinical audit for in-hospital cardiac arrest. To make fair comparisons among health care providers, clinical indicators require case mix adjustment using a validated risk model. The aim of this study was to develop and validate risk models to predict outcomes following in-hospital cardiac arrest attended by a hospital-based resuscitation team in UK hospitals. Risk models for two outcomes-return of spontaneous circulation (ROSC) for greater than 20min and survival to hospital discharge-were developed and validated using data for in-hospital cardiac arrests between April 2011 and March 2013. For each outcome, a full model was fitted and then simplified by testing for non-linearity, combining categories and stepwise reduction. Finally, interactions between predictors were considered. Models were assessed for discrimination, calibration and accuracy. 22,479 in-hospital cardiac arrests in 143 hospitals were included (14,688 development, 7791 validation). The final risk model for ROSC>20min included: age (non-linear), sex, prior length of stay in hospital, reason for attendance, location of arrest, presenting rhythm, and interactions between presenting rhythm and location of arrest. The model for hospital survival included the same predictors, excluding sex. Both models had acceptable performance across the range of measures, although discrimination for hospital mortality exceeded that for ROSC>20min (c index 0.81 versus 0.72). Validated risk models for ROSC>20min and hospital survival following in-hospital cardiac arrest have been developed. These models will strengthen comparative reporting in NCAA and support local quality improvement. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  16. Development and validation of risk models to predict outcomes following in-hospital cardiac arrest attended by a hospital-based resuscitation team☆

    Science.gov (United States)

    Harrison, David A.; Patel, Krishna; Nixon, Edel; Soar, Jasmeet; Smith, Gary B.; Gwinnutt, Carl; Nolan, Jerry P.; Rowan, Kathryn M.

    2014-01-01

    Aim The National Cardiac Arrest Audit (NCAA) is the UK national clinical audit for in-hospital cardiac arrest. To make fair comparisons among health care providers, clinical indicators require case mix adjustment using a validated risk model. The aim of this study was to develop and validate risk models to predict outcomes following in-hospital cardiac arrest attended by a hospital-based resuscitation team in UK hospitals. Methods Risk models for two outcomes—return of spontaneous circulation (ROSC) for greater than 20 min and survival to hospital discharge—were developed and validated using data for in-hospital cardiac arrests between April 2011 and March 2013. For each outcome, a full model was fitted and then simplified by testing for non-linearity, combining categories and stepwise reduction. Finally, interactions between predictors were considered. Models were assessed for discrimination, calibration and accuracy. Results 22,479 in-hospital cardiac arrests in 143 hospitals were included (14,688 development, 7791 validation). The final risk model for ROSC > 20 min included: age (non-linear), sex, prior length of stay in hospital, reason for attendance, location of arrest, presenting rhythm, and interactions between presenting rhythm and location of arrest. The model for hospital survival included the same predictors, excluding sex. Both models had acceptable performance across the range of measures, although discrimination for hospital mortality exceeded that for ROSC > 20 min (c index 0.81 versus 0.72). Conclusions Validated risk models for ROSC > 20 min and hospital survival following in-hospital cardiac arrest have been developed. These models will strengthen comparative reporting in NCAA and support local quality improvement. PMID:24830872

  17. Real Patient and its Virtual Twin: Application of Quantitative Systems Toxicology Modelling in the Cardiac Safety Assessment of Citalopram.

    Science.gov (United States)

    Patel, Nikunjkumar; Wiśniowska, Barbara; Jamei, Masoud; Polak, Sebastian

    2017-11-27

    A quantitative systems toxicology (QST) model for citalopram was established to simulate, in silico, a 'virtual twin' of a real patient to predict the occurrence of cardiotoxic events previously reported in patients under various clinical conditions. The QST model considers the effects of citalopram and its most notable electrophysiologically active primary (desmethylcitalopram) and secondary (didesmethylcitalopram) metabolites, on cardiac electrophysiology. The in vitro cardiac ion channel current inhibition data was coupled with the biophysically detailed model of human cardiac electrophysiology to investigate the impact of (i) the inhibition of multiple ion currents (I Kr , I Ks , I CaL ); (ii) the inclusion of metabolites in the QST model; and (iii) unbound or total plasma as the operating drug concentration, in predicting clinically observed QT prolongation. The inclusion of multiple ion channel current inhibition and metabolites in the simulation with unbound plasma citalopram concentration provided the lowest prediction error. The predictive performance of the model was verified with three additional therapeutic and supra-therapeutic drug exposure clinical cases. The results indicate that considering only the hERG ion channel inhibition of only the parent drug is potentially misleading, and the inclusion of active metabolite data and the influence of other ion channel currents should be considered to improve the prediction of potential cardiac toxicity. Mechanistic modelling can help bridge the gaps existing in the quantitative translation from preclinical cardiac safety assessment to clinical toxicology. Moreover, this study shows that the QST models, in combination with appropriate drug and systems parameters, can pave the way towards personalised safety assessment.

  18. Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy.

    Science.gov (United States)

    Liu, Xifu; Gu, Xinhua; Li, Zhaoming; Li, Xinyan; Li, Hui; Chang, Jianjie; Chen, Ping; Jin, Jing; Xi, Bing; Chen, Denghong; Lai, Donna; Graham, Robert M; Zhou, Mingdong

    2006-10-03

    We evaluated the therapeutic potential of a recombinant 61-residue neuregulin-1 (beta2a isoform) receptor-active peptide (rhNRG-1) in multiple animal models of heart disease. Activation of the erbB family of receptor tyrosine kinases by rhNRG-1 could provide a treatment option for heart failure, because neuregulin-stimulated erbB2/erbB4 heterodimerization is not only critical for myocardium formation in early heart development but prevents severe dysfunction of the adult heart and premature death. Disabled erbB-signaling is also implicated in the transition from compensatory hypertrophy to failure, whereas erbB receptor-activation promotes myocardial cell growth and survival and protects against anthracycline-induced cardiomyopathy. rhNRG-1 was administered IV to animal models of ischemic, dilated, and viral cardiomyopathy, and cardiac function and survival were evaluated. Short-term intravenous administration of rhNRG-1 to normal dogs and rats did not alter hemodynamics or cardiac contractility. In contrast, rhNRG-1 improved cardiac performance, attenuated pathological changes, and prolonged survival in rodent models of ischemic, dilated, and viral cardiomyopathy, with the survival benefits in the ischemic model being additive to those of angiotensin-converting enzyme inhibitor therapy. In addition, despite continued pacing, rhNRG-1 produced global improvements in cardiac function in a canine model of pacing-induced heart failure. These beneficial effects make rhNRG-1 promising as a broad-spectrum therapeutic for the treatment of heart failure due to a variety of common cardiac diseases.

  19. Mouse models for the study of postnatal cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    A. Del Olmo-Turrubiarte

    2015-06-01

    Full Text Available The main objective of this study was to create a postnatal model for cardiac hypertrophy (CH, in order to explain the mechanisms that are present in childhood cardiac hypertrophy. Five days after implantation, intraperitoneal (IP isoproterenol (ISO was injected for 7 days to pregnant female mice. The fetuses were obtained at 15, 17 and 19 dpc from both groups, also newborns (NB, neonates (7–15 days and young adults (6 weeks of age. Histopathological exams were done on the hearts. Immunohistochemistry and western blot demonstrated GATA4 and PCNA protein expression, qPCR real time the mRNA of adrenergic receptors (α-AR and β-AR, alpha and beta myosins (α-MHC, β-MHC and GATA4. After the administration of ISO, there was no change in the number of offsprings. We observed significant structural changes in the size of the offspring hearts. Morphometric analysis revealed an increase in the size of the left ventricular wall and interventricular septum (IVS. Histopathological analysis demonstrated loss of cellular compaction and presence of left ventricular small fibrous foci after birth. Adrenergic receptors might be responsible for changing a physiological into a pathological hypertrophy. However GATA4 seemed to be the determining factor in the pathology. A new animal model was established for the study of pathologic CH in early postnatal stages.

  20. Epidemiology and Outcomes After In-Hospital Cardiac Arrest After Pediatric Cardiac Surgery

    Science.gov (United States)

    Gupta, Punkaj; Jacobs, Jeffrey P.; Pasquali, Sara K.; Hill, Kevin D.; Gaynor, J. William; O’Brien, Sean M.; He, Max; Sheng, Shubin; Schexnayder, Stephen M.; Berg, Robert A.; Nadkarni, Vinay M.; Imamura, Michiaki; Jacobs, Marshall L.

    2014-01-01

    Background Multicenter data regarding cardiac arrest in children undergoing heart operations are limited. We describe epidemiology and outcomes associated with postoperative cardiac arrest in a large multiinstitutional cohort. Methods Patients younger than 18 years in the Society of Thoracic Surgeons Congenital Heart Surgery Database (2007 through 2012) were included. Patient factors, operative characteristics, and outcomes were described for patients with and without postoperative cardiac arrest. Multivariable models were used to evaluate the association of center volume with cardiac arrest rate and mortality after cardiac arrest, adjusting for patient and procedural factors. Results Of 70,270 patients (97 centers), 1,843 (2.6%) had postoperative cardiac arrest. Younger age, lower weight, and presence of preoperative morbidities (all p < 0.0001) were associated with cardiac arrest. Arrest rate increased with procedural complexity across common benchmark operations, ranging from 0.7% (ventricular septal defect repair) to 12.7% (Norwood operation). Cardiac arrest was associated with significant mortality risk across procedures, ranging from 15.4% to 62.3% (all p < 0.0001). In multivariable analysis, arrest rate was not associated with center volume (odds ratio, 1.06; 95% confidence interval, 0.71 to 1.57 in low- versus high-volume centers). However, mortality after cardiac arrest was higher in low-volume centers (odds ratio, 2.00; 95% confidence interval, 1.52 to 2.63). This association was present for both high- and low-complexity operations. Conclusions Cardiac arrest carries a significant mortality risk across the stratum of procedural complexity. Although arrest rates are not associated with center volume, lower-volume centers have increased mortality after cardiac arrest. Further study of mechanisms to prevent cardiac arrest and to reduce mortality in those with an arrest is warranted. PMID:25443018

  1. An Overview of Techniques for Cardiac Left Ventricle Segmentation on Short-Axis MRI

    Directory of Open Access Journals (Sweden)

    Krasnobaev Arseny

    2016-01-01

    Full Text Available Nowadays, heart diseases are the leading cause of death. Left ventricle segmentation of a human heart in magnetic resonance images (MRI is a crucial step in both cardiac diseases diagnostics and heart internal structure reconstruction. It allows estimating such important parameters as ejection faction, left ventricle myocardium mass, stroke volume, etc. In addition, left ventricle segmentation helps to construct the personalized heart computational models in order to conduct the numerical simulations. At present, the fully automated cardiac segmentation methods still do not meet the accuracy requirements. We present an overview of left ventricle segmentation algorithms on short-axis MRI. A wide variety of completely different approaches are used for cardiac segmentation, including machine learning, graph-based methods, deformable models, and low-level heuristics. The current state-of-the-art technique is a combination of deformable models with advanced machine learning methods, such as deep learning or Markov random fields. We expect that approaches based on deep belief networks are the most promising ones because the main training process of networks with this architecture can be performed on the unlabelled data. In order to improve the quality of left ventricle segmentation algorithms, we need more datasets with labelled cardiac MRI data in open access.

  2. A Cell Model to Evaluate Chemical Effects on Adult Human Cardiac Progenitor Cell Differentiation and Function

    Science.gov (United States)

    Adult cardiac stem cells (CSC) and progenitor cells (CPC) represent a population of cells in the heart critical for its regeneration and function over a lifetime. The impact of chemicals on adult human CSC/CPC differentiation and function is unknown. Research was conducted to dev...

  3. Direct Cardiac Reprogramming: Advances in Cardiac Regeneration

    Directory of Open Access Journals (Sweden)

    Olivia Chen

    2015-01-01

    Full Text Available Heart disease is one of the lead causes of death worldwide. Many forms of heart disease, including myocardial infarction and pressure-loading cardiomyopathies, result in irreversible cardiomyocyte death. Activated fibroblasts respond to cardiac injury by forming scar tissue, but ultimately this response fails to restore cardiac function. Unfortunately, the human heart has little regenerative ability and long-term outcomes following acute coronary events often include chronic and end-stage heart failure. Building upon years of research aimed at restoring functional cardiomyocytes, recent advances have been made in the direct reprogramming of fibroblasts toward a cardiomyocyte cell fate both in vitro and in vivo. Several experiments show functional improvements in mouse models of myocardial infarction following in situ generation of cardiomyocyte-like cells from endogenous fibroblasts. Though many of these studies are in an early stage, this nascent technology holds promise for future applications in regenerative medicine. In this review, we discuss the history, progress, methods, challenges, and future directions of direct cardiac reprogramming.

  4. Optimizing a gap conductance model applicable to VVER-1000 thermal–hydraulic model

    International Nuclear Information System (INIS)

    Rahgoshay, M.; Hashemi-Tilehnoee, M.

    2012-01-01

    Highlights: ► Two known conductance models for application in VVER-1000 thermal–hydraulic code are examined. ► An optimized gap conductance model is developed which can predict the gap conductance in good agreement with FSAR data. ► The licensed thermal–hydraulic code is coupled with the gap conductance model predictor externally. -- Abstract: The modeling of gap conductance for application in VVER-1000 thermal–hydraulic codes is addressed. Two known models, namely CALZA-BINI and RELAP5 gap conductance models, are examined. By externally linking of gap conductance models and COBRA-EN thermal hydraulic code, the acceptable range of each model is specified. The result of each gap conductance model versus linear heat rate has been compared with FSAR data. A linear heat rate of about 9 kW/m is the boundary for optimization process. Since each gap conductance model has its advantages and limitation, the optimized gap conductance model can predict the gap conductance better than each of the two other models individually.

  5. A mobile phone-based care model for outpatient cardiac rehabilitation: the care assessment platform (CAP

    Directory of Open Access Journals (Sweden)

    Francis Rebecca

    2010-01-01

    Full Text Available Abstract Background Cardiac rehabilitation programs offer effective means to prevent recurrence of a cardiac event, but poor uptake of current programs have been reported globally. Home based models are considered as a feasible alternative to avoid various barriers related to care centre based programs. This paper sets out the study design for a clinical trial seeking to test the hypothesis that these programs can be better and more efficiently supported with novel Information and Communication Technologies (ICT. Methods/Design We have integrated mobile phones and web services into a comprehensive home- based care model for outpatient cardiac rehabilitation. Mobile phones with a built-in accelerometer sensor are used to measure physical exercise and WellnessDiary software is used to collect information on patients' physiological risk factors and other health information. Video and teleconferencing are used for mentoring sessions aiming at behavioural modifications through goal setting. The mentors use web-portal to facilitate personal goal setting and to assess the progress of each patient in the program. Educational multimedia content are stored or transferred via messaging systems to the patients phone to be viewed on demand. We have designed a randomised controlled trial to compare the health outcomes and cost efficiency of the proposed model with a traditional community based rehabilitation program. The main outcome measure is adherence to physical exercise guidelines. Discussion The study will provide evidence on using mobile phones and web services for mentoring and self management in a home-based care model targeting sustainable behavioural modifications in cardiac rehabilitation patients. Trial registration The trial has been registered in the Australian New Zealand Clinical Trials Registry (ANZCTR with number ACTRN12609000251224.

  6. Defining the Intrinsic Cardiac Risks of Operations to Improve Preoperative Cardiac Risk Assessments.

    Science.gov (United States)

    Liu, Jason B; Liu, Yaoming; Cohen, Mark E; Ko, Clifford Y; Sweitzer, Bobbie J

    2018-02-01

    Current preoperative cardiac risk stratification practices group operations into broad categories, which might inadequately consider the intrinsic cardiac risks of individual operations. We sought to define the intrinsic cardiac risks of individual operations and to demonstrate how grouping operations might lead to imprecise estimates of perioperative cardiac risk. Elective operations (based on Common Procedural Terminology codes) performed from January 1, 2010 to December 31, 2015 at hospitals participating in the American College of Surgeons National Surgical Quality Improvement Program were studied. A composite measure of perioperative adverse cardiac events was defined as either cardiac arrest requiring cardiopulmonary resuscitation or acute myocardial infarction. Operations' intrinsic cardiac risks were derived from mixed-effects models while controlling for patient mix. Resultant risks were sorted into low-, intermediate-, and high-risk categories, and the most commonly performed operations within each category were identified. Intrinsic operative risks were also examined using a representative grouping of operations to portray within-group variation. Sixty-six low, 30 intermediate, and 106 high intrinsic cardiac risk operations were identified. Excisional breast biopsy had the lowest intrinsic cardiac risk (overall rate, 0.01%; odds ratio, 0.11; 95% CI, 0.02 to 0.25) relative to the average, whereas aorto-bifemoral bypass grafting had the highest (overall rate, 4.1%; odds ratio, 6.61; 95% CI, 5.54 to 7.90). There was wide variation in the intrinsic cardiac risks of operations within the representative grouping (median odds ratio, 1.40; interquartile range, 0.88 to 2.17). A continuum of intrinsic cardiac risk exists among operations. Grouping operations into broad categories inadequately accounts for the intrinsic cardiac risk of individual operations.

  7. Preoperative predictive model for acute kidney injury after elective cardiac surgery: a prospective multicentre cohort study.

    Science.gov (United States)

    Callejas, Raquel; Panadero, Alfredo; Vives, Marc; Duque, Paula; Echarri, Gemma; Monedero, Pablo

    2018-05-11

    Predictive models of CS-AKI include emergency surgery and patients with haemodynamic instability. Our objective was to evaluate the performance of validated predictive models (Thakar and Demirjian) in elective cardiac surgery and to propose a better score in the case of poor performance. A prospective, multicentre, observational study was designed. Data were collected from 942 patients undergoing cardiac surgery, after excluding emergency surgery and patients with an intraaortic balloon pump. The main outcome measure was CS-AKI defined by the composite of requiring dialysis or doubling baseline creatinine values. Both models showed poor discrimination in elective surgery (Thakar's model, AUROC = 0.57, 95% CI = 0.50-0.64 and Demirjian's model, AUROC= 0.64, 95% CI = 0.58-0.71). We generated a new model whose significant independent predictors were: anaemia, age, hypertension, obesity, congestive heart failure, previous cardiac surgery and type of surgery. It classifies patients with scores 0-3 as low risk ( 8 as high risk (>30%) of developing CS-AKI with a statistically significant correlation (p <0.001). Our model reflects acceptable discriminatory ability (AUC = 0.72, 95% CI = 0.66-0.78) which is significantly better than Thakar and Demirjian's models (p<0.01). We developed a new simple predictive model of CS-AKI in elective surgery based on available preoperative information. Our new model is easy to calculate and can be an effective tool for communicating risk to patients and guiding decision-making in the perioperative period. The study requires external validation.

  8. FET-biosensor for cardiac troponin biomarker

    Directory of Open Access Journals (Sweden)

    Md Arshad Mohd Khairuddin

    2017-01-01

    Full Text Available Acute myocardial infarction or myocardial infarction (MI is a major health problem, due to diminished flow of blood to the heart, leads to higher rates of mortality and morbidity. The most specific markers for cardiac injury are cardiac troponin I (cTnI and cardiac troponin T (cTnT which have been considered as ‘gold standard’. Due to higher specificity, determination of the level of cardiac troponins became a predominant indicator for MI. Currently, field-effect transistor (FET-based biosensors have been main interest to be implemented in portable sensors with the ultimate application in point-of-care testing (POCT. In this paper, we review on the FET-based biosensor based on its principle of operation, integration with nanomaterial, surface functionalization as well as immobilization, and the introduction of additional gate (for ambipolar conduction on the device architecture for the detection of cardiac troponin I (cTnI biomarker.

  9. 3D/2D model-to-image registration by imitation learning for cardiac procedures.

    Science.gov (United States)

    Toth, Daniel; Miao, Shun; Kurzendorfer, Tanja; Rinaldi, Christopher A; Liao, Rui; Mansi, Tommaso; Rhode, Kawal; Mountney, Peter

    2018-05-12

    In cardiac interventions, such as cardiac resynchronization therapy (CRT), image guidance can be enhanced by involving preoperative models. Multimodality 3D/2D registration for image guidance, however, remains a significant research challenge for fundamentally different image data, i.e., MR to X-ray. Registration methods must account for differences in intensity, contrast levels, resolution, dimensionality, field of view. Furthermore, same anatomical structures may not be visible in both modalities. Current approaches have focused on developing modality-specific solutions for individual clinical use cases, by introducing constraints, or identifying cross-modality information manually. Machine learning approaches have the potential to create more general registration platforms. However, training image to image methods would require large multimodal datasets and ground truth for each target application. This paper proposes a model-to-image registration approach instead, because it is common in image-guided interventions to create anatomical models for diagnosis, planning or guidance prior to procedures. An imitation learning-based method, trained on 702 datasets, is used to register preoperative models to intraoperative X-ray images. Accuracy is demonstrated on cardiac models and artificial X-rays generated from CTs. The registration error was [Formula: see text] on 1000 test cases, superior to that of manual ([Formula: see text]) and gradient-based ([Formula: see text]) registration. High robustness is shown in 19 clinical CRT cases. Besides the proposed methods feasibility in a clinical environment, evaluation has shown good accuracy and high robustness indicating that it could be applied in image-guided interventions.

  10. Therapy with mesenchymal stromal cells or conditioned medium reverse cardiac alterations in a high-fat diet-induced obesity model.

    Science.gov (United States)

    Daltro, P S; Barreto, B C; Silva, P G; Neto, P Chenaud; Sousa Filho, P H F; Santana Neta, D; Carvalho, G B; Silva, D N; Paredes, B D; de Alcantara, A C; Freitas, L A R; Couto, R D; Santos, R R; Souza, B S F; Soares, M B P; Macambira, S G

    2017-10-01

    Obesity is associated with numerous cardiac complications, including arrhythmias, cardiac fibrosis, remodeling and heart failure. Here we evaluated the therapeutic potential of mesenchymal stromal cells (MSCs) and their conditioned medium (CM) to treat cardiac complications in a mouse model of high-fat diet (HFD)-induced obesity. After obesity induction and HFD withdrawal, obese mice were treated with MSCs, CM or vehicle. Cardiac function was assessed using electrocardiography, echocardiography and treadmill test. Body weight and biochemical parameters were evaluated. Cardiac tissue was used for real time (RT)-polymerase chain reaction (PCR) and histopathologic analysis. Characterization of CM by protein array showed the presence of different cytokines and growth factors, including chemokines, osteopontin, cystatin C, Serpin E1 and Gas 6. HFD-fed mice presented cardiac arrhythmias, altered cardiac gene expression and fibrosis reflected in physical exercise incapacity associated with obesity and diabetes. Administration of MSCs or CM improved arrhythmias and exercise capacity. This functional improvement correlated with normalization of GATA4 gene expression in the hearts of MSC- or CM-treated mice. The gene expression of connexin 43, troponin I, adiponectin, transforming growth factor (TGF) β, peroxisome proliferator activated receptor gamma (PPARγ), insulin-like growth factor 1 (IGF-1), matrix metalloproteinase-9 (MMP9) and tissue inhibitor of metalloproteinases 1 (TIMP1) were significantly reduced in MSCs, but not in CM-treated mice. Moreover, MSC or CM administration reduced the intensity of cardiac fibrosis. Our results suggest that MSCs and CM have a recovery effect on cardiac disturbances due to obesity and corroborate to the paracrine action of MSCs in heart disease models. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Establishment of a PRKAG2 cardiac syndrome disease model and mechanism study using human induced pluripotent stem cells.

    Science.gov (United States)

    Zhan, Yongkun; Sun, Xiaolei; Li, Bin; Cai, Huanhuan; Xu, Chen; Liang, Qianqian; Lu, Chao; Qian, Ruizhe; Chen, Sifeng; Yin, Lianhua; Sheng, Wei; Huang, Guoying; Sun, Aijun; Ge, Junbo; Sun, Ning

    2018-04-01

    PRKAG2 cardiac syndrome is a distinct form of human cardiomyopathy characterized by cardiac hypertrophy, ventricular pre-excitation and progressive cardiac conduction disorder. However, it remains unclear how mutations in the PRKAG2 gene give rise to such a complicated disease. To investigate the underlying molecular mechanisms, we generated disease-specific hiPSC-derived cardiomyocytes from two brothers both carrying a heterozygous missense mutation c.905G>A (R302Q) in the PRKAG2 gene and further corrected the R302Q mutation with CRISPR-Cas9 mediated genome editing. Disease-specific hiPSC-cardiomyocytes recapitulated many phenotypes of PRKAG2 cardiac syndrome including cellular enlargement, electrophysiological irregularities and glycogen storage. In addition, we found that the PRKAG2-R302Q mutation led to increased AMPK activities, resulting in extensive glycogen deposition and cardiomyocyte hypertrophy. Finally we confirmed that disrupted phenotypes of PRKAG2 cardiac syndrome caused by the specific PRKAG2-R302Q mutation can be alleviated by small molecules inhibiting AMPK activity and be rescued with CRISPR-Cas9 mediated genome correction. Our results showed that disease-specific hiPSC-CMs and genetically-corrected hiPSC-cardiomyocytes would be a very useful platform for understanding the pathogenesis of, and testing autologous cell-based therapies for, PRKAG2 cardiac syndrome. Copyright © 2018. Published by Elsevier Ltd.

  12. Cardiac Delayed Rectifier Potassium Channels in Health and Disease

    Science.gov (United States)

    Chen, Lei; Sampson, Kevin J.; Kass, Robert S.

    2016-01-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this chapter, we will review the molecular identities and biophysical properties of these channels. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the possibility and prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. PMID:27261823

  13. Ischemic Stroke Due to Cardiac Involvement: Emery Dreifuss Patient

    Directory of Open Access Journals (Sweden)

    Ersin Kasım Ulusoy

    2015-08-01

    Full Text Available Emery-Dreifuss muscular dystrophy (EDMD is a hereditary disease. It is characterized by early-onset contractures, slowly progressive weakness, fatigue related to skapulo-humero-peroneal muscle weakness, cardiomyopathy which develops in adulthood and cardiac conduction system block. Cardiac involvement has a prognostic significance in patients with EDMD and even sudden cardiac death may be the first clinical presentation. In this article, an EDMD patient with ischemic stroke clinic who didn’t have regular cardiac follow-up was reported and the importance of the treatment of cardiac diseases which could play a role in ischemic stroke etiology and the implantation of pace-maker was mentioned.

  14. Cardiac Delayed Rectifier Potassium Channels in Health and Disease.

    Science.gov (United States)

    Chen, Lei; Sampson, Kevin J; Kass, Robert S

    2016-06-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this article, we will review their molecular identities and biophysical properties. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Peripheral vasodilatation determines cardiac output in exercising humans

    DEFF Research Database (Denmark)

    Bada, A A; Svendsen, J H; Secher, N H

    2012-01-01

    In dogs, manipulation of heart rate has no effect on the exercise-induced increase in cardiac output. Whether these findings apply to humans remain uncertain, because of the large differences in cardiovascular anatomy and regulation. To investigate the role of heart rate and peripheral...... arterial ATP infusion at rest. Exercise and ATP infusion increased cardiac output, leg blood flow and vascular conductance (P heart rate by up to 54 beats min(−1), cardiac output did not change in any of the three...... demonstrate that the elevated cardiac output during steady-state exercise is regulated by the increase in skeletal muscle blood flow and venous return to the heart, whereas the increase in heart rate appears to be secondary to the regulation of cardiac output....

  16. Thermal conductivity model for nanofiber networks

    Science.gov (United States)

    Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun; Smalyukh, Ivan I.; Yang, Ronggui

    2018-02-01

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  17. Thermal conductivity model for nanofiber networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xinpeng [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Huang, Congliang [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China; Liu, Qingkun [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Smalyukh, Ivan I. [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Yang, Ronggui [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Buildings and Thermal Systems Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA

    2018-02-28

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  18. Crack Cocaine-Induced Cardiac Conduction Abnormalities Are Reversed by Sodium Bicarbonate Infusion

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Miranda

    2013-01-01

    Full Text Available We report a dramatic case of a 19-year-old man with crack cocaine overdose with important clinical complications as cardiac arrest due to ventricular fibrillation and epileptics status. During this intoxication, electrocardiographic abnormalities similar to those found in tricyclic antidepressant poisoning were observed, and they were reversed by intravenous sodium bicarbonate infusion.

  19. Kalman filter-based gap conductance modeling

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1983-01-01

    Geometric and thermal property uncertainties contribute greatly to the problem of determining conductance within the fuel-clad gas gap of a nuclear fuel pin. Accurate conductance values are needed for power plant licensing transient analysis and for test analyses at research facilities. Recent work by Meek, Doerner, and Adams has shown that use of Kalman filters to estimate gap conductance is a promising approach. A Kalman filter is simply a mathematical algorithm that employs available system measurements and assumed dynamic models to generate optimal system state vector estimates. This summary addresses another Kalman filter approach to gap conductance estimation and subsequent identification of an empirical conductance model

  20. Construction of a cardiac conduction system subject to extracellular stimulation.

    Science.gov (United States)

    Clements, Clyde; Vigmond, Edward

    2005-01-01

    Proper electrical excitation of the heart is dependent on the specialized conduction system that coordinates the electrical activity from the atria to the ventricles. This paper describes the construction of a conduction system as a branching network of Purkinje fibers on the endocardial surface. Endocardial surfaces were extracted from an FEM model of the ventricles and transformed to 2D. A Purkinje network was drawn on top and the inverse transform performed. The underlying mathematics utilized one dimensional cubic Hermite finite elements. Compared to linear elements, the cubic Hermite solution was found to have a much smaller RMS error. Furthermore, this method has the advantage of enforcing current conservation at bifurcation and unification points, and allows for discrete coupling resistances.

  1. [Cardiac sarcoidosis: diagnostics, treatment and follow-up].

    Science.gov (United States)

    Dudziak, Maria; Jankowska, Hanna; Dorniak, Karolina

    2018-03-27

    Sarcoidosis is a generalised granulomatous disorder of unknown aetiology. Cardiac involvement may affect conduction system, myocardium, valvular apparatus and pericardium. Clinical spectrum ranges from asymptomatic involvement to sudden cardiac death. Patients with biopsy-proven extracardiac sarcoidosis should be screened for cardiac involvement (standard ECG, 24-hour Holter ECG, echocardiography) and in case of any abnormalities found on these tests, more advanced diagnostic methods should be used. Steroid treatment is still the mainstay of therapy in cardiac sarcoidosis. Several immunosuppresive agents are also effective and used in different combinations with steroids, as well as heart failure treatment (including ACE inhibitors, angiotensin receptor blockers, beta-blockers and diuretics). Advanced heart block requires pacemaker implantation, and implantable cardioverterdefibrillator is an effective treatment in primary and secondary prophylaxis of sudden cardiac death. Heart transplantation is considered in advanced, drug-resistant heart failure or incessant ventricular arrhythmias unresponsive to other forms of therapy. © 2018 MEDPRESS.

  2. J Waves for Predicting Cardiac Events in Hypertrophic Cardiomyopathy.

    Science.gov (United States)

    Tsuda, Toyonobu; Hayashi, Kenshi; Konno, Tetsuo; Sakata, Kenji; Fujita, Takashi; Hodatsu, Akihiko; Nagata, Yoji; Teramoto, Ryota; Nomura, Akihiro; Tanaka, Yoshihiro; Furusho, Hiroshi; Takamura, Masayuki; Kawashiri, Masa-Aki; Fujino, Noboru; Yamagishi, Masakazu

    2017-10-01

    This study sought to investigate whether the presence of J waves was associated with cardiac events in patients with hypertrophic cardiomyopathy (HCM). It has been uncertain whether the presence of J waves predicts life-threatening cardiac events in patients with HCM. This study evaluated consecutive 338 patients with HCM (207 men; age 61 ± 17 years of age). A J-wave was defined as J-point elevation >0.1 mV in at least 2 contiguous inferior and/or lateral leads. Cardiac events were defined as sudden cardiac death, ventricular fibrillation or sustained ventricular tachycardia, or appropriate implantable cardiac defibrillator therapy. The study also investigated whether adding the J-wave in a conventional risk model improved a prediction of cardiac events. J waves were seen in 46 (13.6%) patients at registration. Cardiac events occurred in 31 patients (9.2%) during median follow-up of 4.9 years (interquartile range: 2.6 to 7.1 years). In a Cox proportional hazards model, the presence of J waves was significantly associated with cardiac events (adjusted hazard ratio: 4.01; 95% confidence interval [CI]: 1.78 to 9.05; p = 0.001). Compared with the conventional risk model, the model using J waves in addition to conventional risks better predicted cardiac events (net reclassification improvement, 0.55; 95% CI: 0.20 to 0.90; p = 0.002). The presence of J waves was significantly associated with cardiac events in HCM. Adding J waves to conventional cardiac risk factors improved prediction of cardiac events. Further confirmatory studies are needed before considering J-point elevation as a marker of risk for use in making management decisions regarding risk in patients with HCM. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  3. Towards modeling of cardiac micro-structure with catheter-based confocal microscopy: a novel approach for dye delivery and tissue characterization.

    Science.gov (United States)

    Lasher, Richard A; Hitchcock, Robert W; Sachse, Frank B

    2009-08-01

    This work presents a methodology for modeling of cardiac tissue micro-structure. The approach is based on catheter-based confocal imaging systems, which are emerging as tools for diagnosis in various clinical disciplines. A limitation of these systems is that a fluorescent marker must be available in sufficient concentration in the imaged region. We introduce a novel method for the local delivery of fluorescent markers to cardiac tissue based on a hydro-gel carrier brought into contact with the tissue surface. The method was tested with living rabbit cardiac tissue and applied to acquire three-dimensional image stacks with a standard inverted confocal microscope and two-dimensional images with a catheter-based confocal microscope. We processed these image stacks to obtain spatial models and quantitative data on tissue microstructure. Volumes of atrial and ventricular myocytes were 4901 +/- 1713 and 10 299 +/-3598 mum (3) (mean+/-sd), respectively. Atrial and ventricular myocyte volume fractions were 72.4 +/-4.7% and 79.7 +/- 2.9% (mean +/-sd), respectively. Atrial and ventricular myocyte density was 165 571 +/- 55 836 and 86 957 +/- 32 280 cells/mm (3) (mean+/-sd), respectively. These statistical data and spatial descriptions of tissue microstructure provide important input for modeling studies of cardiac tissue function. We propose that the described methodology can also be used to characterize diseased tissue and allows for personalized modeling of cardiac tissue.

  4. Alcohol, cardiac arrhythmias and sudden death.

    Science.gov (United States)

    Kupari, M; Koskinen, P

    1998-01-01

    Studies in experimental animals have shown varying and apparently opposite effects of alcohol on cardiac rhythm and conduction. Given acutely to non-alcoholic animals, ethanol may even have anti-arrhythmic properties whereas chronic administration clearly increases the animals' susceptibility to cardiac arrhythmias. Chronic heavy alcohol use has been incriminated in the genesis of cardiac arrhythmias in humans. The evidence has come from clinical observations, retrospective case-control studies, controlled studies of consecutive admissions for arrhythmias, and prospective epidemiological investigations. Furthermore, electrophysiological studies have shown that acute alcohol administration facilitates the induction of tachyarrhythmias in selected heavy drinkers. The role of alcohol appears particularly conspicuous in idiopathic atrial fibrillation. Occasionally, ventricular tachyarrhythmias have also been provoked by alcohol intake. Several lines of evidence suggest that heavy drinking increases the risk of sudden cardiac death with fatal arrhythmia as the most likely mechanism. According to epidemiological studies this effect appears most prominent in middle-aged men and is only partly explained by confounding traits such as smoking and social class. The basic arrhythmogenic effects of alcohol are still insufficiently delineated. Subclinical heart muscle injury from chronic heavy use may be instrumental in producing patchy delays in conduction. The hyperadrenergic state of drinking and withdrawal may also contribute, as may electrolyte abnormalities, impaired vagal heart rate control, repolarization abnormalities with prolonged QT intervals and worsening of myocardial ischaemia or sleep apnoea. Most of what we know about alcohol and arrhythmias relates to heavy drinking. The effect of social drinking on clinical arrhythmias in non-alcoholic cardiac patients needs to be addressed further.

  5. Cardiac re-entry dynamics and self-termination in DT-MRI based model of Human Foetal Heart

    Science.gov (United States)

    Biktasheva, Irina V.; Anderson, Richard A.; Holden, Arun V.; Pervolaraki, Eleftheria; Wen, Fen Cai

    2018-02-01

    The effect of human foetal heart geometry and anisotropy on anatomy induced drift and self-termination of cardiac re-entry is studied here in MRI based 2D slice and 3D whole heart computer simulations. Isotropic and anisotropic models of 20 weeks of gestational age human foetal heart obtained from 100μm voxel diffusion tensor MRI data sets were used in the computer simulations. The fiber orientation angles of the heart were obtained from the orientation of the DT-MRI primary eigenvectors. In a spatially homogeneous electrophysiological monodomain model with the DT-MRI based heart geometries, cardiac re-entry was initiated at a prescribed location in a 2D slice, and in the 3D whole heart anatomy models. Excitation was described by simplified FitzHugh-Nagumo kinetics. In a slice of the heart, with propagation velocity twice as fast along the fibres than across the fibers, DT-MRI based fiber anisotropy changes the re-entry dynamics from pinned to an anatomical re-entry. In the 3D whole heart models, the fiber anisotropy changes cardiac re-entry dynamics from a persistent re-entry to the re-entry self-termination. The self-termination time depends on the re-entry’s initial position. In all the simulations with the DT-MRI based cardiac geometry, the anisotropy of the myocardial tissue shortens the time to re-entry self-termination several folds. The numerical simulations depend on the validity of the DT-MRI data set used. The ventricular wall showed the characteristic transmural rotation of the helix angle of the developed mammalian heart, while the fiber orientation in the atria was irregular.

  6. [Cardiac sarcoidosis: Diagnosis and therapeutic challenges].

    Science.gov (United States)

    Cohen Aubart, F; Nunes, H; Mathian, A; Haroche, J; Hié, M; Le-Thi Huong Boutin, D; Cluzel, P; Soussan, M; Waintraub, X; Fouret, P; Valeyre, D; Amoura, Z

    2017-01-01

    Sarcoidosis is a granulomatous disorder of unknown cause characterized by non-caseating granuloma in young adults. Cardiac involvement is rare and range from 2 to 75% depending on diagnostic criteria. Cardiac involvement in sarcoidosis may be asymptomatic or may manifest as rhythm/conduction troubles or congestive heart failure. The diagnosis and treatment of cardiac sarcoidosis may be challenging. However, advances have come in recent years from the use of cardiac MRI and 18 FDG-TEP scanner, as well as from the stratification of the risk of ventricular tachycardia/fibrillation. Due to the rarity of the disease, there is no reliable prospective large study to guide therapeutic strategy for cardiac sarcoidosis. Corticosteroids are probably efficacious, in particular in case of atrio-ventricular block or moderate heart failure. Immunosuppressive drugs have not been largely studied but methotrexate could be helpful. In refractory forms, TNF-α antagonists have been used with success. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  7. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics.

    Science.gov (United States)

    Cortassa, Sonia; Aon, Miguel A; Marbán, Eduardo; Winslow, Raimond L; O'Rourke, Brian

    2003-04-01

    We present an integrated thermokinetic model describing control of cardiac mitochondrial bioenergetics. The model describes the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and mitochondrial Ca(2+) handling. The kinetic component of the model includes effectors of the TCA cycle enzymes regulating production of NADH and FADH(2), which in turn are used by the electron transport chain to establish a proton motive force (Delta mu(H)), driving the F(1)F(0)-ATPase. In addition, mitochondrial matrix Ca(2+), determined by Ca(2+) uniporter and Na(+)/Ca(2+) exchanger activities, regulates activity of the TCA cycle enzymes isocitrate dehydrogenase and alpha-ketoglutarate dehydrogenase. The model is described by twelve ordinary differential equations for the time rate of change of mitochondrial membrane potential (Delta Psi(m)), and matrix concentrations of Ca(2+), NADH, ADP, and TCA cycle intermediates. The model is used to predict the response of mitochondria to changes in substrate delivery, metabolic inhibition, the rate of adenine nucleotide exchange, and Ca(2+). The model is able to reproduce, qualitatively and semiquantitatively, experimental data concerning mitochondrial bioenergetics, Ca(2+) dynamics, and respiratory control. Significant increases in oxygen consumption (V(O(2))), proton efflux, NADH, and ATP synthesis, in response to an increase in cytoplasmic Ca(2+), are obtained when the Ca(2+)-sensitive dehydrogenases are the main rate-controlling steps of respiratory flux. These responses diminished when control is shifted downstream (e.g., the respiratory chain or adenine nucleotide translocator). The time-dependent behavior of the model, under conditions simulating an increase in workload, closely reproduces experimentally observed mitochondrial NADH dynamics in heart trabeculae subjected to changes in pacing frequency. The steady-state and time-dependent behavior of the model support the hypothesis that mitochondrial matrix Ca(2+) plays an

  8. Methyl-CpG binding-protein 2 function in cholinergic neurons mediates cardiac arrhythmogenesis.

    Science.gov (United States)

    Herrera, José A; Ward, Christopher S; Wehrens, Xander H T; Neul, Jeffrey L

    2016-11-15

    Sudden unexpected death occurs in one quarter of deaths in Rett Syndrome (RTT), a neurodevelopmental disorder caused by mutations in Methyl-CpG-binding protein 2 (MECP2). People with RTT show a variety of autonomic nervous system (ANS) abnormalities and mouse models show similar problems including QTc interval prolongation and hypothermia. To explore the role of cardiac problems in sudden death in RTT, we characterized cardiac rhythm in mice lacking Mecp2 function. Male and female mutant mice exhibited spontaneous cardiac rhythm abnormalities including bradycardic events, sinus pauses, atrioventricular block, premature ventricular contractions, non-sustained ventricular arrhythmias, and increased heart rate variability. Death was associated with spontaneous cardiac arrhythmias and complete conduction block. Atropine treatment reduced cardiac arrhythmias in mutant mice, implicating overactive parasympathetic tone. To explore the role of MeCP2 within the parasympathetic neurons, we selectively removed MeCP2 function from cholinergic neurons (MeCP2 ChAT KO), which recapitulated the cardiac rhythm abnormalities, hypothermia, and early death seen in RTT male mice. Conversely, restoring MeCP2 only in cholinergic neurons rescued these phenotypes. Thus, MeCP2 in cholinergic neurons is necessary and sufficient for autonomic cardiac control, thermoregulation, and survival, and targeting the overactive parasympathetic system may be a useful therapeutic strategy to prevent sudden unexpected death in RTT.

  9. Electron conductivity model for dense plasmas

    International Nuclear Information System (INIS)

    Lee, Y.T.; More, R.M.

    1984-01-01

    An electron conductivity model for dense plasmas is described which gives a consistent and complete set of transport coefficients including not only electrical conductivity and thermal conductivity, but also thermoelectric power, and Hall, Nernst, Ettinghausen, and Leduc--Righi coefficients. The model is useful for simulating plasma experiments with strong magnetic fields. The coefficients apply over a wide range of plasma temperature and density and are expressed in a computationally simple form. Different formulas are used for the electron relaxation time in plasma, liquid, and solid phases. Comparisons with recent calculations and available experimental measurement show the model gives results which are sufficiently accurate for many practical applications

  10. Homogenized thermal conduction model for particulate foods

    OpenAIRE

    Chinesta , Francisco; Torres , Rafael; Ramón , Antonio; Rodrigo , Mari Carmen; Rodrigo , Miguel

    2002-01-01

    International audience; This paper deals with the definition of an equivalent thermal conductivity for particulate foods. An homogenized thermal model is used to asses the effect of particulate spatial distribution and differences in thermal conductivities. We prove that the spatial average of the conductivity can be used in an homogenized heat transfer model if the conductivity differences among the food components are not very large, usually the highest conductivity ratio between the foods ...

  11. Identification of cardiac rhythm features by mathematical analysis of vector fields.

    Science.gov (United States)

    Fitzgerald, Tamara N; Brooks, Dana H; Triedman, John K

    2005-01-01

    Automated techniques for locating cardiac arrhythmia features are limited, and cardiologists generally rely on isochronal maps to infer patterns in the cardiac activation sequence during an ablation procedure. Velocity vector mapping has been proposed as an alternative method to study cardiac activation in both clinical and research environments. In addition to the visual cues that vector maps can provide, vector fields can be analyzed using mathematical operators such as the divergence and curl. In the current study, conduction features were extracted from velocity vector fields computed from cardiac mapping data. The divergence was used to locate ectopic foci and wavefront collisions, and the curl to identify central obstacles in reentrant circuits. Both operators were applied to simulated rhythms created from a two-dimensional cellular automaton model, to measured data from an in situ experimental canine model, and to complex three-dimensional human cardiac mapping data sets. Analysis of simulated vector fields indicated that the divergence is useful in identifying ectopic foci, with a relatively small number of vectors and with errors of up to 30 degrees in the angle measurements. The curl was useful for identifying central obstacles in reentrant circuits, and the number of velocity vectors needed increased as the rhythm became more complex. The divergence was able to accurately identify canine in situ pacing sites, areas of breakthrough activation, and wavefront collisions. In data from human arrhythmias, the divergence reliably estimated origins of electrical activity and wavefront collisions, but the curl was less reliable at locating central obstacles in reentrant circuits, possibly due to the retrospective nature of data collection. The results indicate that the curl and divergence operators applied to velocity vector maps have the potential to add valuable information in cardiac mapping and can be used to supplement human pattern recognition.

  12. Cardiac Electromechanical Models: From Cell to Organ

    Directory of Open Access Journals (Sweden)

    Natalia A Trayanova

    2011-08-01

    Full Text Available The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computation physiology and medicine. This review focuses on electromechanical (EM models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single cell models and the second half addresses organ models. At the subcelluar level, myofilament models represent actin-myosin interaction and Ca-based activation. Myofilament models and their refinements represent an overview of the development in the field. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered the cellular basis of the Frank-Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction-diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and

  13. Ventricular Fibrillation-Induced Cardiac Arrest Results in Regional Cardiac Injury Preferentially in Left Anterior Descending Coronary Artery Territory in Piglet Model

    Directory of Open Access Journals (Sweden)

    Giridhar Kaliki Venkata

    2016-01-01

    Full Text Available Objective. Decreased cardiac function after resuscitation from cardiac arrest (CA results from global ischemia of the myocardium. In the evolution of postarrest myocardial dysfunction, preferential involvement of any coronary arterial territory is not known. We hypothesized that there is no preferential involvement of any coronary artery during electrical induced ventricular fibrillation (VF in piglet model. Design. Prospective, randomized controlled study. Methods. 12 piglets were randomized to baseline and electrical induced VF. After 5 min, the animals were resuscitated according to AHA PALS guidelines. After return of spontaneous circulation (ROSC, animals were observed for an additional 4 hours prior to cardiac MRI. Data (mean ± SD was analyzed using unpaired t-test; p value ≤ 0.05 was considered statistically significant. Results. Segmental wall motion (mm; baseline versus postarrest group in segment 7 (left anterior descending (LAD was 4.68±0.54 versus 3.31±0.64, p=0.0026. In segment 13, it was 3.82±0.96 versus 2.58±0.82, p=0.02. In segment 14, it was 2.42±0.44 versus 1.29±0.99, p=0.028. Conclusion. Postarrest myocardial dysfunction resulted in segmental wall motion defects in the LAD territory. There were no perfusion defects in the involved segments.

  14. The heart and cardiac pacing in Steinert disease.

    Science.gov (United States)

    Nigro, Gerardo; Papa, Andrea Antonio; Politano, Luisa

    2012-10-01

    Myotonic dystrophy (Dystrophia Myotonica, DM) is the most frequently inherited neuromuscular disease of adult life. It is a multisystemic disease with major cardiac involvement. Core features of myotonic dystrophy are myotonia, muscle weakness, cataract, respiratory failure and cardiac conduction abnormalities. Classical DM, first described by Steinert and called Steinert's disease or DM1 (Dystrophia Myotonica type 1) has been identified as an autosomal dominant disorder associated with the presence of an abnormal expansion of a CTG trinucleotide repeat in the 3' untranslated region of DMPK gene on chromosome 19. This review will mainly focus on the various aspects of cardiac involvement in DM1 patients and the current role of cardiac pacing in their treatment.

  15. Cardiac Fibroblasts Adopt Osteogenic Fates and Can Be Targeted to Attenuate Pathological Heart Calcification.

    Science.gov (United States)

    Pillai, Indulekha C L; Li, Shen; Romay, Milagros; Lam, Larry; Lu, Yan; Huang, Jie; Dillard, Nathaniel; Zemanova, Marketa; Rubbi, Liudmilla; Wang, Yibin; Lee, Jason; Xia, Ming; Liang, Owen; Xie, Ya-Hong; Pellegrini, Matteo; Lusis, Aldons J; Deb, Arjun

    2017-02-02

    Mammalian tissues calcify with age and injury. Analogous to bone formation, osteogenic cells are thought to be recruited to the affected tissue and induce mineralization. In the heart, calcification of cardiac muscle leads to conduction system disturbances and is one of the most common pathologies underlying heart blocks. However the cell identity and mechanisms contributing to pathological heart muscle calcification remain unknown. Using lineage tracing, murine models of heart calcification and in vivo transplantation assays, we show that cardiac fibroblasts (CFs) adopt an osteoblast cell-like fate and contribute directly to heart muscle calcification. Small-molecule inhibition of ENPP1, an enzyme that is induced upon injury and regulates bone mineralization, significantly attenuated cardiac calcification. Inhibitors of bone mineralization completely prevented ectopic cardiac calcification and improved post injury heart function. Taken together, these findings highlight the plasticity of fibroblasts in contributing to ectopic calcification and identify pharmacological targets for therapeutic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies

    Directory of Open Access Journals (Sweden)

    Georges N. Kanaan

    2018-04-01

    Full Text Available Glutaredoxin 2 (GRX2, a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies. Keywords: Human heart, Mitochondria, Oxidative stress, Redox, Cardiac metabolism, Cardiac hypertrophy

  17. Period doubling cascades of limit cycles in cardiac action potential models as precursors to chaotic early Afterdepolarizations.

    Science.gov (United States)

    Kügler, Philipp; Bulelzai, M A K; Erhardt, André H

    2017-04-04

    Early afterdepolarizations (EADs) are pathological voltage oscillations during the repolarization phase of cardiac action potentials (APs). EADs are caused by drugs, oxidative stress or ion channel disease, and they are considered as potential precursors to cardiac arrhythmias in recent attempts to redefine the cardiac drug safety paradigm. The irregular behaviour of EADs observed in experiments has been previously attributed to chaotic EAD dynamics under periodic pacing, made possible by a homoclinic bifurcation in the fast subsystem of the deterministic AP system of differential equations. In this article we demonstrate that a homoclinic bifurcation in the fast subsystem of the action potential model is neither a necessary nor a sufficient condition for the genesis of chaotic EADs. We rather argue that a cascade of period doubling (PD) bifurcations of limit cycles in the full AP system paves the way to chaotic EAD dynamics across a variety of models including a) periodically paced and spontaneously active cardiomyocytes, b) periodically paced and non-active cardiomyocytes as well as c) unpaced and spontaneously active cardiomyocytes. Furthermore, our bifurcation analysis reveals that chaotic EAD dynamics may coexist in a stable manner with fully regular AP dynamics, where only the initial conditions decide which type of dynamics is displayed. EADs are a potential source of cardiac arrhythmias and hence are of relevance both from the viewpoint of drug cardiotoxicity testing and the treatment of cardiomyopathies. The model-independent association of chaotic EADs with period doubling cascades of limit cycles introduced in this article opens novel opportunities to study chaotic EADs by means of bifurcation control theory and inverse bifurcation analysis. Furthermore, our results may shed new light on the synchronization and propagation of chaotic EADs in homogeneous and heterogeneous multicellular and cardiac tissue preparations.

  18. Evaluation of cerebral-cardiac syndrome using echocardiography in a canine model of acute traumatic brain injury.

    Science.gov (United States)

    Qian, Rong; Yang, Weizhong; Wang, Xiumei; Xu, Zhen; Liu, Xiaodong; Sun, Bing

    2015-01-01

    Previous studies have confirmed that traumatic brain injury (TBI) can induce general adaptation syndrome (GAS), which subsequently results in myocardial dysfunction and damage in some patients with acute TBI; this condition is also termed as cerebral-cardiac syndrome. However, most clinicians ignore the detection and treatment of myocardial dysfunction, and instead concentrate only on the serious neural damage that is observed in acute TBI, which is one of the most important fatal factors. Therefore, clarification is urgently needed regarding the relationship between TBI and myocardial dysfunction. In the present study, we evaluated 18 canine models of acute TBI, by using real-time myocardial contrast echocardiography and strain rate imaging to accurately evaluate myocardial function and regional microcirculation, including the strain rate of the different myocardial segments, time-amplitude curves, mean ascending slope of the curve, and local myocardial blood flow. Our results suggest that acute TBI often results in cerebral-cardiac syndrome, which rapidly progresses to the serious stage within 3 days. This study is the first to provide comprehensive ultrasonic characteristics of cerebral-cardiac syndrome in an animal model of TBI.

  19. Oxidized calmodulin kinase II regulates conduction following myocardial infarction: a computational analysis.

    Directory of Open Access Journals (Sweden)

    Matthew D Christensen

    2009-12-01

    Full Text Available Calmodulin kinase II (CaMKII mediates critical signaling pathways responsible for divergent functions in the heart including calcium cycling, hypertrophy and apoptosis. Dysfunction in the CaMKII signaling pathway occurs in heart disease and is associated with increased susceptibility to life-threatening arrhythmia. Furthermore, CaMKII inhibition prevents cardiac arrhythmia and improves heart function following myocardial infarction. Recently, a novel mechanism for oxidative CaMKII activation was discovered in the heart. Here, we provide the first report of CaMKII oxidation state in a well-validated, large-animal model of heart disease. Specifically, we observe increased levels of oxidized CaMKII in the infarct border zone (BZ. These unexpected new data identify an alternative activation pathway for CaMKII in common cardiovascular disease. To study the role of oxidation-dependent CaMKII activation in creating a pro-arrhythmia substrate following myocardial infarction, we developed a new mathematical model of CaMKII activity including both oxidative and autophosphorylation activation pathways. Computer simulations using a multicellular mathematical model of the cardiac fiber demonstrate that enhanced CaMKII activity in the infarct BZ, due primarily to increased oxidation, is associated with reduced conduction velocity, increased effective refractory period, and increased susceptibility to formation of conduction block at the BZ margin, a prerequisite for reentry. Furthermore, our model predicts that CaMKII inhibition improves conduction and reduces refractoriness in the BZ, thereby reducing vulnerability to conduction block and reentry. These results identify a novel oxidation-dependent pathway for CaMKII activation in the infarct BZ that may be an effective therapeutic target for improving conduction and reducing heterogeneity in the infarcted heart.

  20. Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells.

    Science.gov (United States)

    Sundnes, J; Lines, G T; Tveito, A

    2001-08-01

    The contraction of the heart is preceded and caused by a cellular electro-chemical reaction, causing an electrical field to be generated. Performing realistic computer simulations of this process involves solving a set of partial differential equations, as well as a large number of ordinary differential equations (ODEs) characterizing the reactive behavior of the cardiac tissue. Experiments have shown that the solution of the ODEs contribute significantly to the total work of a simulation, and there is thus a strong need to utilize efficient solution methods for this part of the problem. This paper presents how an efficient implicit Runge-Kutta method may be adapted to solve a complicated cardiac cell model consisting of 31 ODEs, and how this solver may be coupled to a set of PDE solvers to provide complete simulations of the electrical activity.

  1. Modeling liver electrical conductivity during hypertonic injection.

    Science.gov (United States)

    Castellví, Quim; Sánchez-Velázquez, Patricia; Moll, Xavier; Berjano, Enrique; Andaluz, Anna; Burdío, Fernando; Bijnens, Bart; Ivorra, Antoni

    2018-01-01

    Metastases in the liver frequently grow as scattered tumor nodules that neither can be removed by surgical resection nor focally ablated. Previously, we have proposed a novel technique based on irreversible electroporation that may be able to simultaneously treat all nodules in the liver while sparing healthy tissue. The proposed technique requires increasing the electrical conductivity of healthy liver by injecting a hypersaline solution through the portal vein. Aiming to assess the capability of increasing the global conductivity of the liver by means of hypersaline fluids, here, it is presented a mathematical model that estimates the NaCl distribution within the liver and the resulting conductivity change. The model fuses well-established compartmental pharmacokinetic models of the organ with saline injection models used for resuscitation treatments, and it considers changes in sinusoidal blood viscosity because of the hypertonicity of the solution. Here, it is also described a pilot experimental study in pigs in which different volumes of NaCl 20% (from 100 to 200 mL) were injected through the portal vein at different flow rates (from 53 to 171 mL/minute). The in vivo conductivity results fit those obtained by the model, both quantitatively and qualitatively, being able to predict the maximum conductivity with a 14.6% average relative error. The maximum conductivity value was 0.44 second/m, which corresponds to increasing 4 times the mean basal conductivity (0.11 second/m). The results suggest that the presented model is well suited for predicting on liver conductivity changes during hypertonic saline injection. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Raf-mediated cardiac hypertrophy in adult Drosophila

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2013-07-01

    In response to stress and extracellular signals, the heart undergoes a process called cardiac hypertrophy during which cardiomyocytes increase in size. If untreated, cardiac hypertrophy can progress to overt heart failure that causes significant morbidity and mortality. The identification of molecular signals that cause or modify cardiomyopathies is necessary to understand how the normal heart progresses to cardiac hypertrophy and heart failure. Receptor tyrosine kinase (RTK signaling is essential for normal human cardiac function, and the inhibition of RTKs can cause dilated cardiomyopathies. However, neither investigations of activated RTK signaling pathways nor the characterization of hypertrophic cardiomyopathy in the adult fly heart has been previously described. Therefore, we developed strategies using Drosophila as a model to circumvent some of the complexities associated with mammalian models of cardiovascular disease. Transgenes encoding activated EGFRA887T, Ras85DV12 and Ras85DV12S35, which preferentially signal to Raf, or constitutively active human or fly Raf caused hypertrophic cardiomyopathy as determined by decreased end diastolic lumen dimensions, abnormal cardiomyocyte fiber morphology and increased heart wall thicknesses. There were no changes in cardiomyocyte cell numbers. Additionally, activated Raf also induced an increase in cardiomyocyte ploidy compared with control hearts. However, preventing increases in cardiomyocyte ploidy using fizzy-related (Fzr RNAi did not rescue Raf-mediated cardiac hypertrophy, suggesting that Raf-mediated polyploidization is not required for cardiac hypertrophy. Similar to mammals, the cardiac-specific expression of RNAi directed against MEK or ERK rescued Raf-mediated cardiac hypertrophy. However, the cardiac-specific expression of activated ERKD334N, which promotes hyperplasia in non-cardiac tissues, did not cause myocyte hypertrophy. These results suggest that ERK is necessary, but not sufficient, for Raf

  3. Cardiac regeneration therapy: connections to cardiac physiology.

    Science.gov (United States)

    Takehara, Naofumi; Matsubara, Hiroaki

    2011-12-01

    Without heart transplantation, a large number of patients with failing hearts worldwide face poor outcomes. By means of cardiomyocyte regeneration, cardiac regeneration therapy is emerging with great promise as a means for restoring loss of cardiac function. However, the limited success of clinical trials using bone marrow-derived cells and myoblasts with heterogeneous constituents, transplanted at a wide range of cell doses, has led to disagreement on the efficacy of cell therapy. It is therefore essential to reevaluate the evidence for the efficacy of cell-based cardiac regeneration therapy, focusing on targets, materials, and methodologies. Meanwhile, the revolutionary innovation of cardiac regeneration therapy is sorely needed to help the millions of people who suffer heart failure from acquired loss of cardiomyocytes. Cardiac regeneration has been used only in limited species or as a developing process in the rodent heart; now, the possibility of cardiomyocyte turnover in the human heart is being revisited. In the pursuit of this concept, the use of cardiac stem/progenitor stem cells in the cardiac niche must be focused to usher in a second era of cardiac regeneration therapy for the severely injured heart. In addition, tissue engineering and cellular reprogramming will advance the next era of treatment that will enable current cell-based therapy to progress to "real" cardiac regeneration therapy. Although many barriers remain, the prevention of refractory heart failure through cardiac regeneration is now becoming a realistic possibility.

  4. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Quan He

    2014-01-01

    Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.

  5. Thymic pathology and cardiac myxomas: Coincidence or a closer relationship?

    Science.gov (United States)

    Moraitis, Sotirios D; Agrafiotis, Apostolos C; Pappas, Dimitrios; Pothitakis, Chrysovalantis; Stergianni, Maria; Koukis, Ioannis

    2018-04-30

    Myxomas are the most common benign cardiac tumors and are located more frequently in the left atrium. In the literature there are cases describing the coexistence of thymic tumors and cardiac myxomas. In the case reported herein, during the resection of a cardiac myxoma, an enlarged thymus gland was encountered and resected. The histological exam revealed a thymic hyperplasia. The aim of this case study is to assess the need of conducting further studies in order to identify a common histological pathway between thymic lesions and cardiac myxomas. The diagnosis of a cardiac myxoma could justify a further workup of the anterior mediastinum in order not to overlook a lesion of thymic origin.

  6. Modelling the effect of hydration on skin conductivity.

    Science.gov (United States)

    Davies, L; Chappell, P; Melvin, T

    2017-08-01

    Electrical signals are recorded from and sent into the body via the skin in a number of applications. In practice, skin is often hydrated with liquids having different conductivities so a model was produced in order to determine the relationship between skin impedance and conductivity. A model representing the skin was subjected to a variety of electrical signals. The parts of the model representing the stratum corneum were given different conductivities to represent different levels of hydration. The overall impedance and conductivity of the cells did not vary at frequencies below 40 kHz. Above 40 kHz, levels of increased conductivity caused the overall impedance to decrease. The variation in impedance with conductivity between 5 and 50 mSm -1 can be modelled quadratically while variation in impedance with conductivity between 5 and 5000 mSm -1 can be modelled with a double exponential decay. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Scalable BDDC Algorithms for Cardiac Electromechanical Coupling

    KAUST Repository

    Pavarino, L. F.

    2017-03-17

    The spread of electrical excitation in the cardiac muscle and the subsequent contraction-relaxation process is quantitatively described by the cardiac electromechanical coupling model. The electrical model consists of the Bidomain system, which is a degenerate parabolic system of two nonlinear partial differential equations (PDEs) of reaction-diffusion type, describing the evolution in space and time of the intra- and extracellular electric potentials. The PDEs are coupled through the reaction term with a stiff system of ordinary differential equations (ODEs), the membrane model, which describes the flow of the ionic currents through the cellular membrane and the dynamics of the associated gating variables. The mechanical model consists of the quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-incompressible transversely isotropic hyperelastic material, and coupled with a system of ODEs accounting for the development of biochemically generated active force.

  8. Scalable BDDC Algorithms for Cardiac Electromechanical Coupling

    KAUST Repository

    Pavarino, L. F.; Scacchi, S.; Verdi, C.; Zampieri, E.; Zampini, Stefano

    2017-01-01

    The spread of electrical excitation in the cardiac muscle and the subsequent contraction-relaxation process is quantitatively described by the cardiac electromechanical coupling model. The electrical model consists of the Bidomain system, which is a degenerate parabolic system of two nonlinear partial differential equations (PDEs) of reaction-diffusion type, describing the evolution in space and time of the intra- and extracellular electric potentials. The PDEs are coupled through the reaction term with a stiff system of ordinary differential equations (ODEs), the membrane model, which describes the flow of the ionic currents through the cellular membrane and the dynamics of the associated gating variables. The mechanical model consists of the quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-incompressible transversely isotropic hyperelastic material, and coupled with a system of ODEs accounting for the development of biochemically generated active force.

  9. Cardiac stress test as a risk-stratification tool for posttransplant cardiac outcomes in diabetic kidney transplant recipients.

    Science.gov (United States)

    Singh, Neeraj; Parikh, Samir; Bhatt, Udayan; Vonvisger, Jon; Nori, Uday; Hasan, Ayesha; Samavedi, Srinivas; Andreoni, Kenneth; Henry, Mitchell; Pelletier, Ronald; Rajab, Amer; Elkhammas, Elmahdi; Pesavento, Todd

    2012-12-27

    The utility of cardiac stress testing as a risk-stratification tool before kidney transplantation remains debatable owing to discordance with coronary angiography and outcome yields at different centers. We conducted a retrospective study of 273 diabetic kidney transplant recipients from 2006 to 2010. By protocol, all diabetic patients underwent pharmacological radionucleotide stress test or dobutamine stress echocardiography before transplant. We compared the 1-year cardiac outcomes between those with negative stress test results and those with positive stress test results. Patients with a positive stress test result (n=67) underwent coronary angiogram, and significant coronary artery disease (≥70% coronary stenosis) was found in 35 (52.2%) patients. Of the latter, 32 (91.4%) underwent cardiac revascularization (24 underwent cardiac stenting and 8 underwent coronary artery bypass grafting). The rest (n=35) were treated medically. Within 1 year after transplant, the group with positive stress test results experienced more cardiac events (34.3% vs. 3.9%, P<0.001) including acute myocardial infarction (22.4% vs. 3.4%, P<0.001) and ventricular arrhythmias (8.9% vs. 0.05%, P=0.001), higher all-cause mortality (19.4% vs. 4.8%, P<0.001), and cardiac mortality (17.9% vs. 0.9%, P<0.001) compared with the group with negative stress test results. In this diabetic population, stress testing showed positive and negative predictive values of 34.3% and 96.1%, respectively. Pharmacological cardiac stress testing provided excellent risk stratification in diabetic kidney transplant recipients.

  10. Scaling properties of conduction velocity in heterogeneous excitable media

    Science.gov (United States)

    Shajahan, T. K.; Borek, Bartłomiej; Shrier, Alvin; Glass, Leon

    2011-10-01

    Waves of excitation through excitable media, such as cardiac tissue, can propagate as plane waves or break up to form reentrant spiral waves. In diseased hearts reentrant waves can be associated with fatal cardiac arrhythmias. In this paper we investigate the conditions that lead to wave break, reentry, and propagation failure in mathematical models of heterogeneous excitable media. Two types of heterogeneities are considered: sinks are regions in space in which the voltage is fixed at its rest value, and breaks are nonconducting regions with no-flux boundary conditions. We find that randomly distributed heterogeneities in the medium have a decremental effect on the velocity, and above a critical density of such heterogeneities the conduction fails. Using numerical and analytical methods we derive the general relationship among the conduction velocity, density of heterogeneities, diffusion coefficient, and the rise time of the excitation in both two and three dimensions. This work helps us understand the factors leading to reduced propagation velocity and the formation of spiral waves in heterogeneous excitable media.

  11. Modern Radiation Therapy and Cardiac Outcomes in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Boero, Isabel J.; Paravati, Anthony J.; Triplett, Daniel P.; Hwang, Lindsay; Matsuno, Rayna K.; Gillespie, Erin F.; Yashar, Catheryn M.; Moiseenko, Vitali; Einck, John P.; Mell, Loren K. [Department of Radiation Medicine and Applied Sciences, Moores Cancer Center, University of California, San Diego, La Jolla, California (United States); Parikh, Sahil A. [University Hospitals Case Medical Center, Harrington Heart and Vascular Institute, and Case Western Reserve University School of Medicine, Cleveland, Ohio (United States); Murphy, James D., E-mail: j2murphy@ucsd.edu [Department of Radiation Medicine and Applied Sciences, Moores Cancer Center, University of California, San Diego, La Jolla, California (United States)

    2016-03-15

    Purpose: Adjuvant radiation therapy, which has proven benefit against breast cancer, has historically been associated with an increased incidence of ischemic heart disease. Modern techniques have reduced this risk, but a detailed evaluation has not recently been conducted. The present study evaluated the effect of current radiation practices on ischemia-related cardiac events and procedures in a population-based study of older women with nonmetastatic breast cancer. Methods and Materials: A total of 29,102 patients diagnosed from 2000 to 2009 were identified from the Surveillance, Epidemiology, and End Results–Medicare database. Medicare claims were used to identify the radiation therapy and cardiac outcomes. Competing risk models were used to assess the effect of radiation on these outcomes. Results: Patients with left-sided breast cancer had a small increase in their risk of percutaneous coronary intervention (PCI) after radiation therapy—the 10-year cumulative incidence for these patients was 5.5% (95% confidence interval [CI] 4.9%-6.2%) and 4.5% (95% CI 4.0%-5.0%) for right-sided patients. This risk was limited to women with previous cardiac disease. For patients who underwent PCI, those with left-sided breast cancer had a significantly increased risk of cardiac mortality with a subdistribution hazard ratio of 2.02 (95% CI 1.23-3.34). No other outcome, including cardiac mortality for the entire cohort, showed a significant relationship with tumor laterality. Conclusions: For women with a history of cardiac disease, those with left-sided breast cancer who underwent radiation therapy had increased rates of PCI and a survival decrement if treated with PCI. The results of the present study could help cardiologists and radiation oncologists better stratify patients who need more aggressive cardioprotective techniques.

  12. Modern Radiation Therapy and Cardiac Outcomes in Breast Cancer

    International Nuclear Information System (INIS)

    Boero, Isabel J.; Paravati, Anthony J.; Triplett, Daniel P.; Hwang, Lindsay; Matsuno, Rayna K.; Gillespie, Erin F.; Yashar, Catheryn M.; Moiseenko, Vitali; Einck, John P.; Mell, Loren K.; Parikh, Sahil A.; Murphy, James D.

    2016-01-01

    Purpose: Adjuvant radiation therapy, which has proven benefit against breast cancer, has historically been associated with an increased incidence of ischemic heart disease. Modern techniques have reduced this risk, but a detailed evaluation has not recently been conducted. The present study evaluated the effect of current radiation practices on ischemia-related cardiac events and procedures in a population-based study of older women with nonmetastatic breast cancer. Methods and Materials: A total of 29,102 patients diagnosed from 2000 to 2009 were identified from the Surveillance, Epidemiology, and End Results–Medicare database. Medicare claims were used to identify the radiation therapy and cardiac outcomes. Competing risk models were used to assess the effect of radiation on these outcomes. Results: Patients with left-sided breast cancer had a small increase in their risk of percutaneous coronary intervention (PCI) after radiation therapy—the 10-year cumulative incidence for these patients was 5.5% (95% confidence interval [CI] 4.9%-6.2%) and 4.5% (95% CI 4.0%-5.0%) for right-sided patients. This risk was limited to women with previous cardiac disease. For patients who underwent PCI, those with left-sided breast cancer had a significantly increased risk of cardiac mortality with a subdistribution hazard ratio of 2.02 (95% CI 1.23-3.34). No other outcome, including cardiac mortality for the entire cohort, showed a significant relationship with tumor laterality. Conclusions: For women with a history of cardiac disease, those with left-sided breast cancer who underwent radiation therapy had increased rates of PCI and a survival decrement if treated with PCI. The results of the present study could help cardiologists and radiation oncologists better stratify patients who need more aggressive cardioprotective techniques.

  13. Hopping models for ion conduction in noncrystals

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Schrøder, Thomas

    2007-01-01

    semiconductors). These universalities are subject of much current interest, for instance interpreted in the context of simple hopping models. In the present paper we first discuss the temperature dependence of the dc conductivity in hopping models and the importance of the percolation phenomenon. Next......, the experimental (quasi)universality of the ac conductivity is discussed. It is shown that hopping models are able to reproduce the experimental finding that the response obeys time-temperature superposition, while at the same time a broad range of activation energies is involved in the conduction process. Again...

  14. Clinical skills: cardiac rhythm recognition and monitoring.

    Science.gov (United States)

    Sharman, Joanna

    With technological advances, changes in provision of healthcare services and increasing pressure on critical care services, ward patients' severity of illness is ever increasing. As such, nurses need to develop their skills and knowledge to care for their client group. Competency in cardiac rhythm monitoring is beneficial to identify changes in cardiac status, assess response to treatment, diagnosis and post-surgical monitoring. This paper describes the basic anatomy and physiology of the heart and its conduction system, and explains a simple and easy to remember process of analysing cardiac rhythms (Resuscitation Council UK, 2000) that can be used in first-line assessment to assist healthcare practitioners in providing care to their patients.

  15. Implementing a working together model for Aboriginal patients with acute coronary syndrome: an Aboriginal Hospital Liaison Officer and a specialist cardiac nurse working together to improve hospital care.

    Science.gov (United States)

    Daws, Karen; Punch, Amanda; Winters, Michelle; Posenelli, Sonia; Willis, John; MacIsaac, Andrew; Rahman, Muhammad Aziz; Worrall-Carter, Linda

    2014-11-01

    Acute coronary syndrome (ACS) contributes to the disparity in life expectancy between Aboriginal and non-Aboriginal Australians. Improving hospital care for Aboriginal patients has been identified as a means of addressing this disparity. This project developed and implemented a working together model of care, comprising an Aboriginal Hospital Liaison Officer and a specialist cardiac nurse, providing care coordination specifically directed at improving attendance at cardiac rehabilitation services for Aboriginal Australians in a large metropolitan hospital in Melbourne. A quality improvement framework using a retrospective case notes audit evaluated Aboriginal patients' admissions to hospital and identified low attendance rates at cardiac rehabilitation services. A working together model of care coordination by an Aboriginal Hospital Liaison Officer and a specialist cardiac nurse was implemented to improve cardiac rehabilitation attendance in Aboriginal patients admitted with ACS to the cardiac wards of the hospital. A retrospective medical records audit showed that there were 68 Aboriginal patients admitted to the cardiac wards with ACS from 1 July 2008 to 30 June 2011. A referral to cardiac rehabilitation was recorded for 42% of these. During the implementation of the model of care, 13 of 15 patients (86%) received a referral to cardiac rehabilitation and eight of the 13 (62%) attended. Implementation of the working together model demonstrated improved referral to and attendance at cardiac rehabilitation services, thereby, has potential to prevent complications and mortality. WHAT IS KNOWN ABOUT THE TOPIC?: Aboriginal Australians experience disparities in access to recommended care for acute coronary syndrome. This may contribute to the life expectancy gap between Aboriginal and non-Aboriginal Australians. WHAT DOES THIS PAPER ADD?: This paper describes a model of care involving an Aboriginal Hospital Liaisons Officer and a specialist cardiac nurse working

  16. Computational cardiology: the bidomain based modified Hill model incorporating viscous effects for cardiac defibrillation

    Science.gov (United States)

    Cansız, Barış; Dal, Hüsnü; Kaliske, Michael

    2017-10-01

    Working mechanisms of the cardiac defibrillation are still in debate due to the limited experimental facilities and one-third of patients even do not respond to cardiac resynchronization therapy. With an aim to develop a milestone towards reaching the unrevealed mechanisms of the defibrillation phenomenon, we propose a bidomain based finite element formulation of cardiac electromechanics by taking into account the viscous effects that are disregarded by many researchers. To do so, the material is deemed as an electro-visco-active material and described by the modified Hill model (Cansız et al. in Comput Methods Appl Mech Eng 315:434-466, 2017). On the numerical side, we utilize a staggered solution method, where the elliptic and parabolic part of the bidomain equations and the mechanical field are solved sequentially. The comparative simulations designate that the viscoelastic and elastic formulations lead to remarkably different outcomes upon an externally applied electric field to the myocardial tissue. Besides, the achieved framework requires significantly less computational time and memory compared to monolithic schemes without loss of stability for the presented examples.

  17. A New Transgenic Mouse Model of Heart Failure and Cardiac Cachexia Raised by Sustained Activation of Met Tyrosine Kinase in the Heart

    Directory of Open Access Journals (Sweden)

    Valentina Sala

    2016-01-01

    Full Text Available Among other diseases characterized by the onset of cachexia, congestive heart failure takes a place of relevance, considering the high prevalence of this pathology in most European countries and in the United States, and is undergoing a rapid increase in developing countries. Actually, only few models of cardiac cachexia exist. Difficulties in the recruitment and follow-up of clinical trials implicate that new reproducible and well-characterized animal models are pivotal in developing therapeutic strategies for cachexia. We generated a new model of cardiac cachexia: a transgenic mouse expressing Tpr-Met receptor, the activated form of c-Met receptor of hepatocyte growth factor, specifically in the heart. We showed that the cardiac-specific induction of Tpr-Met raises a cardiac hypertrophic remodelling, which progresses into concentric hypertrophy with concomitant increase in Gdf15 mRNA levels. Hypertrophy progresses to congestive heart failure with preserved ejection fraction, characterized by reduced body weight gain and food intake and skeletal muscle wasting. Prevention trial by suppressing Tpr-Met showed that loss of body weight could be prevented. Skeletal muscle wasting was also associated with altered gene expression profiling. We propose transgenic Tpr-Met mice as a new model of cardiac cachexia, which will constitute a powerful tool to understand such complex pathology and test new drugs/approaches at the preclinical level.

  18. The heart and cardiac pacing in Steinert disease

    OpenAIRE

    NIGRO, GERARDO; PAPA, ANDREA ANTONIO; POLITANO, LUISA

    2012-01-01

    Myotonic dystrophy (Dystrophia Myotonica, DM) is the most frequently inherited neuromuscular disease of adult life. It is a multisystemic disease with major cardiac involvement. Core features of myotonic dystrophy are myotonia, muscle weakness, cataract, respiratory failure and cardiac conduction abnormalities. Classical DM, first described by Steinert and called Steinert's disease or DM1 (Dystrophia Myotonica type 1) has been identified as an autosomal dominant disorder associated with the p...

  19. Halogenated anaesthetics and cardiac protection in cardiac and non-cardiac anaesthesia

    Directory of Open Access Journals (Sweden)

    Landoni Giovanni

    2009-01-01

    Full Text Available Volatile anaesthetic agents have direct protective properties against ischemic myocardial damage. The implementation of these properties during clinical anaesthesia can provide an additional tool in the treatment or prevention, or both, of ischemic cardiac dysfunction in the perioperative period. A recent meta-analysis showed that desflurane and sevoflurane reduce postoperative mortality and incidence of myocardial infarction following cardiac surgery, with significant advantages in terms of postoperative cardiac troponin release, need for inotrope support, time on mechanical ventilation, intensive care unit and overall hospital stay. Multicentre, randomised clinical trials had previously demonstrated that the use of desflurane can reduce the postoperative release of cardiac troponin I, the need for inotropic support, and the number of patients requiring prolonged hospitalisation following coronary artery bypass graft surgery either with and without cardiopulmonary bypass. The American College of Cardiology/American Heart Association Guidelines recommend volatile anaesthetic agents during non-cardiac surgery for the maintenance of general anaesthesia in patients at risk for myocardial infarction. Nonetheless, e vidence in non-coronary surgical settings is contradictory and will be reviewed in this paper together with the mechanisms of cardiac protection by volatile agents.

  20. Three-dimensional modelling and three-dimensional printing in pediatric and congenital cardiac surgery.

    Science.gov (United States)

    Kiraly, Laszlo

    2018-04-01

    Three-dimensional (3D) modelling and printing methods greatly support advances in individualized medicine and surgery. In pediatric and congenital cardiac surgery, personalized imaging and 3D modelling presents with a range of advantages, e.g., better understanding of complex anatomy, interactivity and hands-on approach, possibility for preoperative surgical planning and virtual surgery, ability to assess expected results, and improved communication within the multidisciplinary team and with patients. 3D virtual and printed models often add important new anatomical findings and prompt alternative operative scenarios. For the lack of critical mass of evidence, controlled randomized trials, however, most of these general benefits remain anecdotal. For an individual surgical case-scenario, prior knowledge, preparedness and possibility of emulation are indispensable in raising patient-safety. It is advocated that added value of 3D printing in healthcare could be raised by establishment of a multidisciplinary centre of excellence (COE). Policymakers, research scientists, clinicians, as well as health care financers and local entrepreneurs should cooperate and communicate along a legal framework and established scientific guidelines for the clinical benefit of patients, and towards financial sustainability. It is expected that besides the proven utility of 3D printed patient-specific anatomical models, 3D printing will have a major role in pediatric and congenital cardiac surgery by providing individually customized implants and prostheses, especially in combination with evolving techniques of bioprinting.

  1. Sildenafil Protects against Myocardial Ischemia-Reperfusion Injury Following Cardiac Arrest in a Porcine Model: Possible Role of the Renin-Angiotensin System

    Science.gov (United States)

    Wang, Guoxing; Zhang, Qian; Yuan, Wei; Wu, Junyuan; Li, Chunsheng

    2015-01-01

    Sildenafil, a phosphodiesterase-5 inhibitor sold as Viagra, is a cardioprotector against myocardial ischemia/reperfusion (I/R) injury. Our study explored whether sildenafil protects against I/R-induced damage in a porcine cardiac arrest and resuscitation (CAR) model via modulating the renin-angiotensin system. Male pigs were randomly divided to three groups: Sham group, Saline group, and sildenafil (0.5 mg/kg) group. Thirty min after drug infusion, ventricular fibrillation (8 min) and cardiopulmonary resuscitation (up to 30 min) was conducted in these animals. We found that sildenafil ameliorated the reduced cardiac function and improved the 24-h survival rate in this model. Sildenafil partly attenuated the increases of plasma angiotensin II (Ang II) and Ang (1–7) levels after CAR. Sildenafil also decreased apoptosis and Ang II expression in myocardium. The increases of expression of angiotensin-converting-enzyme (ACE), ACE2, Ang II type 1 receptor (AT1R), and the Ang (1–7) receptor Mas in myocardial tissue were enhanced after CAR. Sildenafil suppressed AT1R up-regulation, but had no effect on ACE, ACE2, and Mas expression. Sildenafilfurther boosted the upregulation of endothelial nitric oxide synthase (eNOS), cyclic guanosine monophosphate (cGMP) and inducible nitric oxide synthase(iNOS). Collectively, our results suggest that cardioprotection of sildenafil in CAR model is accompanied by an inhibition of Ang II-AT1R axis activation. PMID:26569234

  2. Sildenafil Protects against Myocardial Ischemia-Reperfusion Injury Following Cardiac Arrest in a Porcine Model: Possible Role of the Renin-Angiotensin System

    Directory of Open Access Journals (Sweden)

    Guoxing Wang

    2015-11-01

    Full Text Available Sildenafil, a phosphodiesterase-5 inhibitor sold as Viagra, is a cardioprotector against myocardial ischemia/reperfusion (I/R injury. Our study explored whether sildenafil protects against I/R-induced damage in a porcine cardiac arrest and resuscitation (CAR model via modulating the renin-angiotensin system. Male pigs were randomly divided to three groups: Sham group, Saline group, and sildenafil (0.5 mg/kg group. Thirty min after drug infusion, ventricular fibrillation (8 min and cardiopulmonary resuscitation (up to 30 min was conducted in these animals. We found that sildenafil ameliorated the reduced cardiac function and improved the 24-h survival rate in this model. Sildenafil partly attenuated the increases of plasma angiotensin II (Ang II and Ang (1–7 levels after CAR. Sildenafil also decreased apoptosis and Ang II expression in myocardium. The increases of expression of angiotensin-converting-enzyme (ACE, ACE2, Ang II type 1 receptor (AT1R, and the Ang (1–7 receptor Mas in myocardial tissue were enhanced after CAR. Sildenafil suppressed AT1R up-regulation, but had no effect on ACE, ACE2, and Mas expression. Sildenafilfurther boosted the upregulation of endothelial nitric oxide synthase (eNOS, cyclic guanosine monophosphate (cGMP and inducible nitric oxide synthase(iNOS. Collectively, our results suggest that cardioprotection of sildenafil in CAR model is accompanied by an inhibition of Ang II-AT1R axis activation.

  3. A quantitative model of the cardiac ventricular cell incorporating the transverse-axial tubular system

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Christé, G.; Šimurda, J.

    2003-01-01

    Roč. 22, č. 3 (2003), s. 355-368 ISSN 0231-5882 R&D Projects: GA ČR GP204/02/D129 Institutional research plan: CEZ:AV0Z2076919 Keywords : cardiac cell * tubular system * quantitative modelling Subject RIV: BO - Biophysics Impact factor: 0.794, year: 2003

  4. Cardiac involvement in children with neuro-muscular disorders

    Directory of Open Access Journals (Sweden)

    E. N. Arkhipova

    2015-01-01

    Full Text Available Many inherited neuromuscular disorders include cardiac involvement as a typical clinical feature. Among the most common of them is the group of muscular dystrophies. Dilated cardiomyopathy, ventricular arrhythmias, atrial fibrillations, atrioventricular and intraventricular conduction abnormalities, and sudden cardiac death are well known pathological findings in Duchenne muscular dystrophies, myotonic dystrophy type I and 2, Emery-Dreifuss muscular dystrophies and different types of limb-girdle muscular dystrophies and other disorders. Detection of cardiac pathology in patients with different muscular dystrophies is possible with ECG, echocardiography and cardiovascular magnetic resonance imaging, which are recommended for screening and early cardioprotective treatment.

  5. Development of irradiated UO2 thermal conductivity model

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Bang Je-Geon; Kim Dae Ho; Jung Youn Ho

    2001-01-01

    Thermal conductivity model of the irradiated UO 2 pellet was developed, based upon the thermal diffusivity data of the irradiated UO 2 pellet measured during thermal cycling. The model predicts the thermal conductivity by multiplying such separate correction factors as solid fission products, gaseous fission products, radiation damage and porosity. The developed model was validated by comparison with the variation of the measured thermal diffusivity data during thermal cycling and prediction of other UO 2 thermal conductivity models. Since the developed model considers the effect of gaseous fission products as a separate factor, it can predict variation of thermal conductivity in the rim region of high burnup UO 2 pellet where the fission gases in the matrix are precipitated into bubbles, indicating that decrease of thermal conductivity by bubble precipitation in rim region would be significantly compensated by the enhancing effect of fission gas depletion in the UO 2 matrix. (author)

  6. Applications of Dynamic Clamp to Cardiac Arrhythmia Research: Role in Drug Target Discovery and Safety Pharmacology Testing

    Directory of Open Access Journals (Sweden)

    Francis A. Ortega

    2018-01-01

    Full Text Available Dynamic clamp, a hybrid-computational-experimental technique that has been used to elucidate ionic mechanisms underlying cardiac electrophysiology, is emerging as a promising tool in the discovery of potential anti-arrhythmic targets and in pharmacological safety testing. Through the injection of computationally simulated conductances into isolated cardiomyocytes in a real-time continuous loop, dynamic clamp has greatly expanded the capabilities of patch clamp outside traditional static voltage and current protocols. Recent applications include fine manipulation of injected artificial conductances to identify promising drug targets in the prevention of arrhythmia and the direct testing of model-based hypotheses. Furthermore, dynamic clamp has been used to enhance existing experimental models by addressing their intrinsic limitations, which increased predictive power in identifying pro-arrhythmic pharmacological compounds. Here, we review the recent advances of the dynamic clamp technique in cardiac electrophysiology with a focus on its future role in the development of safety testing and discovery of anti-arrhythmic drugs.

  7. Metabolic and cardiac changes in high cholesterol-fructose-fed rats

    DEFF Research Database (Denmark)

    Axelsen, Lene N; Pedersen, Henrik D; Petersen, Jørgen S

    2010-01-01

    Introduction: High cholesterol-fructose (HCF) fed rats have previously been described as an animal model of impaired cardiac insulin signaling and decreased contractile performance. In this study, we evaluated the metabolic and cardiac effects of a HCF diet in rats. Methods: Male Sprague-Dawley r......Introduction: High cholesterol-fructose (HCF) fed rats have previously been described as an animal model of impaired cardiac insulin signaling and decreased contractile performance. In this study, we evaluated the metabolic and cardiac effects of a HCF diet in rats. Methods: Male Sprague...

  8. Pacemaker Dependency after Cardiac Surgery: A Systematic Review of Current Evidence.

    Science.gov (United States)

    Steyers, Curtis M; Khera, Rohan; Bhave, Prashant

    2015-01-01

    Severe postoperative conduction disturbances requiring permanent pacemaker implantation frequently occur following cardiac surgery. Little is known about the long-term pacing requirements and risk factors for pacemaker dependency in this population. We performed a systematic review of the literature addressing rates and predictors of pacemaker dependency in patients requiring permanent pacemaker implantation after cardiac surgery. Using a comprehensive search of the Medline, Web of Science and EMBASE databases, studies were selected for review based on predetermined inclusion and exclusion criteria. A total of 8 studies addressing the endpoint of pacemaker-dependency were identified, while 3 studies were found that addressed the recovery of atrioventricular (AV) conduction endpoint. There were 10 unique studies with a total of 780 patients. Mean follow-up ranged from 6-72 months. Pacemaker dependency rates ranged from 32%-91% and recovery of AV conduction ranged from 16%-42%. There was significant heterogeneity with respect to the definition of pacemaker dependency. Several patient and procedure-specific variables were found to be independently associated with pacemaker dependency, but these were not consistent between studies. Pacemaker dependency following cardiac surgery occurs with variable frequency. While individual studies have identified various perioperative risk factors for pacemaker dependency and non-resolution of AV conduction disease, results have been inconsistent. Well-conducted studies using a uniform definition of pacemaker dependency might identify patients who will benefit most from early permanent pacemaker implantation after cardiac surgery.

  9. An overview on development and application of an experimental platform for quantitative cardiac imaging research in rabbit models of myocardial infarction.

    Science.gov (United States)

    Feng, Yuanbo; Bogaert, Jan; Oyen, Raymond; Ni, Yicheng

    2014-10-01

    To exploit the advantages of using rabbits for cardiac imaging research and to tackle the technical obstacles, efforts have been made under the framework of a doctoral research program. In this overview article, by cross-referencing the current literature, we summarize how we have developed a preclinical cardiac research platform based on modified models of reperfused myocardial infarction (MI) in rabbits; how the in vivo manifestations of cardiac imaging could be closely matched with those ex vivo macro- and microscopic findings; how these imaging outcomes could be quantitatively analyzed, validated and demonstrated; and how we could apply this cardiac imaging platform to provide possible solutions to certain lingering diagnostic and therapeutic problems in experimental cardiology. In particular, tissue components in acute cardiac ischemia have been stratified and characterized, post-infarct lipomatous metaplasia (LM) as a common but hardly illuminated clinical pathology has been identified in rabbit models, and a necrosis avid tracer as well as an anti-ischemic drug have been successfully assessed for their potential utilities in clinical cardiology. These outcomes may interest the researchers in the related fields and help strengthen translational research in cardiovascular diseases.

  10. Prediction of drug-related cardiac adverse effects in humans--B: use of QSAR programs for early detection of drug-induced cardiac toxicities.

    Science.gov (United States)

    Frid, Anna A; Matthews, Edwin J

    2010-04-01

    This report describes the use of three quantitative structure-activity relationship (QSAR) programs to predict drug-related cardiac adverse effects (AEs), BioEpisteme, MC4PC, and Leadscope Predictive Data Miner. QSAR models were constructed for 9 cardiac AE clusters affecting Purkinje nerve fibers (arrhythmia, bradycardia, conduction disorder, electrocardiogram, palpitations, QT prolongation, rate rhythm composite, tachycardia, and Torsades de pointes) and 5 clusters affecting the heart muscle (coronary artery disorders, heart failure, myocardial disorders, myocardial infarction, and valve disorders). The models were based on a database of post-marketing AEs linked to 1632 chemical structures, and identical training data sets were configured for three QSAR programs. Model performance was optimized and shown to be affected by the ratio of the number of active to inactive drugs. Results revealed that the three programs were complementary and predictive performances using any single positive, consensus two positives, or consensus three positives were as follows, respectively: 70.7%, 91.7%, and 98.0% specificity; 74.7%, 47.2%, and 21.0% sensitivity; and 138.2, 206.3, and 144.2 chi(2). In addition, a prospective study using AE data from the U.S. Food and Drug Administration's (FDA's) MedWatch Program showed 82.4% specificity and 94.3% sensitivity. Furthermore, an external validation study of 18 drugs with serious cardiotoxicity not considered in the models had 88.9% sensitivity. Published by Elsevier Inc.

  11. Mechanisms Involved in Secondary Cardiac Dysfunction in Animal Models of Trauma and Hemorrhagic Shock.

    Science.gov (United States)

    Wilson, Nick M; Wall, Johanna; Naganathar, Veena; Brohi, Karim; De'Ath, Henry D

    2017-10-01

    Clinical evidence reveals the existence of a trauma-induced secondary cardiac injury (TISCI) that is associated with poor patient outcomes. The mechanisms leading to TISCI in injured patients are uncertain. Conversely, animal models of trauma hemorrhage have repeatedly demonstrated significant cardiac dysfunction following injury, and highlighted mechanisms through which this might occur. The aim of this review was to provide an overview of the animal studies describing TISCI and its pathophysiology.Basic science models of trauma show evidence of innate immune system activation via Toll-like receptors, the exact protagonists of which remain unclear. Shortly following trauma and hemorrhage, cardiomyocytes upregulate gene regulatory protein and inflammatory molecule expression including nuclear factor kappa beta, tumor necrosis factor alpha, and interleukin-6. This is associated with expression of membrane bound adhesion molecules and chemokines leading to marked myocardial leukocyte infiltration. This cell activation and infiltration is linked to a rise in enzymes that cause oxidative and nitrative stress and subsequent protein misfolding within cardiomyocytes. Such protein damage may lead to reduced contractility and myocyte apoptosis. Other molecules have been identified as cardioprotective following injury. These include p38 mitogen-activated protein kinases and heat shock proteins.The balance between increasing damaging mediators and a reduction in cardio-protective molecules appears to define myocardial function following trauma. Exogenous therapeutics have been trialled in rodents with promising abilities to favorably alter this balance, and subsequently lead to improved cardiac function.

  12. Dealing with existential anxiety in exercise-based cardiac rehabilitation

    DEFF Research Database (Denmark)

    Simonÿ, Charlotte; Pedersen, Birthe D; Dreyer, Pia

    2015-01-01

    rehabilitation. Focus group interviews were conducted at the programme end, and individual interviews were performed one to two months later. The interpretation comprised three methodological steps: naïve reading, structural analysis, and comprehensive interpretation and discussion. Findings Although both......Aims and objectives To investigate patients' lived experiences of exercise-based cardiac rehabilitation. Background Exercise-based cardiac rehabilitation is used to enable patients with cardiac problems to move forward to lead satisfying lives. However, knowledge of patients' concerns while...... it requires specific care. Recognising this anxiety also highlights how participating in the programme can be very demanding, which can help us understand aspects of adherence problems. Of greatest importance is that exercise-based cardiac rehabilitation enables patients to find a new foothold, which...

  13. Effects of milrinone on left ventricular cardiac function during cooling in an intact animal model.

    Science.gov (United States)

    Tveita, Torkjel; Sieck, Gary C

    2012-08-01

    Due to adverse effects of β-receptor agonists reported when applied during hypothermia, left ventricular (LV) cardiac effects of milrinone, a PDE3 inhibitor which mode of action is deprived the sarcolemmal β-receptor-G protein-PKA system, was tested during cooling to 15 °C. Sprague Dawley rats were instrumented to measure left ventricular (LV) pressure-volume changes using a Millar pressure-volume conductance catheter. Core temperature was reduced from 37 to 15 °C (60 min) using internal and external heat exchangers. Milrinone, or saline placebo, was given as continuous i.v. infusions for 30 min at 37 °C and during cooling. In normothermic controls continuous milrinone infusion for 90 min elevated cardiac output (CO) and stroke volume (SV) significantly. Significant differences in cardiac functional variables between the milrinone group and the saline control group during cooling to 15 °C were found: Compared to saline treated animals throughout cooling from 33 to 15 °CSV was significantly elevated in milrinone animals, the index of LV isovolumic relaxation, Tau, was significantly better preserved, and both HR and CO were significantly higher from 33 to 24 °C. Likewise, during cooling between 33 and 28 °C also LVdP/dt(max) was significantly higher in the milrinone group. Milrinone preserved LV systolic and diastolic function at a significantly higher level than in saline controls during cooling to 15 °C. In essential contrast to our previous results when using β-receptor agonists during hypothermia, the present experiment demonstrates the positive inotropic effects of milrinone on LV cardiac function during cooling to 15 °C. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Bayesian Model Averaging of Artificial Intelligence Models for Hydraulic Conductivity Estimation

    Science.gov (United States)

    Nadiri, A.; Chitsazan, N.; Tsai, F. T.; Asghari Moghaddam, A.

    2012-12-01

    This research presents a Bayesian artificial intelligence model averaging (BAIMA) method that incorporates multiple artificial intelligence (AI) models to estimate hydraulic conductivity and evaluate estimation uncertainties. Uncertainty in the AI model outputs stems from error in model input as well as non-uniqueness in selecting different AI methods. Using one single AI model tends to bias the estimation and underestimate uncertainty. BAIMA employs Bayesian model averaging (BMA) technique to address the issue of using one single AI model for estimation. BAIMA estimates hydraulic conductivity by averaging the outputs of AI models according to their model weights. In this study, the model weights were determined using the Bayesian information criterion (BIC) that follows the parsimony principle. BAIMA calculates the within-model variances to account for uncertainty propagation from input data to AI model output. Between-model variances are evaluated to account for uncertainty due to model non-uniqueness. We employed Takagi-Sugeno fuzzy logic (TS-FL), artificial neural network (ANN) and neurofuzzy (NF) to estimate hydraulic conductivity for the Tasuj plain aquifer, Iran. BAIMA combined three AI models and produced better fitting than individual models. While NF was expected to be the best AI model owing to its utilization of both TS-FL and ANN models, the NF model is nearly discarded by the parsimony principle. The TS-FL model and the ANN model showed equal importance although their hydraulic conductivity estimates were quite different. This resulted in significant between-model variances that are normally ignored by using one AI model.

  15. Eicosapentenoic Acid Attenuates Allograft Rejection in an HLA-B27/EGFP Transgenic Rat Cardiac Transplantation Model.

    Science.gov (United States)

    Liu, Zhong; Hatayama, Naoyuki; Xie, Lin; Kato, Ken; Zhu, Ping; Ochiya, Takahiro; Nagahara, Yukitoshi; Hu, Xiang; Li, Xiao-Kang

    2012-01-01

    The development of an animal model bearing definite antigens is important to facilitate the evaluation and modulation of specific allo-antigen responses after transplantation. In the present study, heterotopic cardiac transplantation was performed from F344/EGFPTg and F344/HLA-B27Tg rats to F344 rats. The F344 recipients accepted the F344/EGFPTg transplants, whereas they rejected the cardiac tissue from the F344/HLA-B27Tg rats by 39.4 ± 6.5 days, due to high production of anti-HLA-B27 IgM- and IgG-specific antibodies. In addition, immunization of F344 rats with skin grafts from F344/HLA-B27Tg rats resulted in robust production of anti- HLA-B27 IgM and IgG antibodies and accelerated the rejection of a secondary cardiac allograft (7.4 ± 1.9 days). Of interest, the F344 recipients rejected cardiac grafts from double transgenic F344/HLA-B27&EGFPTg rats within 9.0 ± 3.2 days, and this was associated with a significant increase in the infiltration of lymphocytes by day 7, suggesting a role for cellular immune rejection. Eicosapentenoic acid (EPA), one of the ω-3 polyunsaturated fatty acids in fish oil, could attenuate the production of anti-HLA IgG antibodies and B-cell proliferation, significantly prolonging double transgenic F344HLA-B27&EGFPTg to F344 rat cardiac allograft survival (36.1 ± 13.6 days). Moreover, the mRNA expression in the grafts was assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), revealing an increase in the expression of the HO-1, IL-10, TGF-β, IDO, and Foxp3 genes in the EPA-treated group. Hence, our data indicate that HLA-B27 and/or GFP transgenic proteins are useful for establishing a unique animal transplantation model to clarify the mechanism underlying the allogeneic cellular and humoral immune response, in which the transplant antigens are specifically presented. Furthermore, we also demonstrated that EPA was effective in the treatment of rat cardiac allograft rejection and may allow the development of

  16. The Influence of Cardiac Risk Factor Burden on Cardiac Stress Test Outcomes.

    Science.gov (United States)

    Schrock, Jon W; Li, Morgan; Orazulike, Chidubem; Emerman, Charles L

    2011-06-01

    Chest pain is the most common admission diagnosis for observation unit patients. These patients often undergo cardiac stress testing to further risk stratify for coronary artery disease (CAD). The decision of whom to stress is currently based on clinical judgment. We sought to determine the influence of cardiac risk factor burden on cardiac stress test outcome for patients tested from an observation unit, inpatient or outpatient setting. We performed a retrospective observational cohort study for all patients undergoing stress testing in our institution from June 2006 through July 2007. Cardiac risk factors were collected at the time of stress testing. Risk factors were evaluated in a summative fashion using multivariate regression adjusting for age and known coronary artery disease. The model was tested for goodness of fit and collinearity and the c statistic was calculated using the receiver operating curve. A total of 4026 subjects were included for analysis of which 22% had known CAD. The rates of positive outcome were 89 (12.0%), 95 (12.6%), and 343 (16.9%) for the OU, outpatients, and hospitalized patients respectively. While the odds of a positive test outcome increased for additional cardiac risk factors, ROC curve analysis indicates that simply adding the number of risk factors does not add significant diagnostic value. Hospitalized patients were more likely to have a positive stress test, OR 1.41 (1.10 - 1.81). Our study does not support basing the decision to perform a stress test on the number of cardiac risk factors.

  17. Cardiac fusion and complex congenital cardiac defects in thoracopagus twins: diagnostic value of cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Park, Jeong-Jun [University of Ulsan College of Medicine, Asan Medical Center, Department of Pediatric Cardiac Surgery, Seoul (Korea, Republic of); Kim, Ellen Ai-Rhan [University of Ulsan College of Medicine, Asan Medical Center, Division of Neonatology, Department of Pediatrics, Seoul (Korea, Republic of); Won, Hye-Sung [University of Ulsan College of Medicine, Asan Medical Center, Department of Obstetrics and Gynecology, Seoul (Korea, Republic of)

    2014-09-15

    Most thoracopagus twins present with cardiac fusion and associated congenital cardiac defects, and assessment of this anatomy is of critical importance in determining patient care and outcome. Cardiac CT with electrocardiographic triggering provides an accurate and quick morphological assessment of both intracardiac and extracardiac structures in newborns, making it the best imaging modality to assess thoracopagus twins during the neonatal period. In this case report, we highlight the diagnostic value of cardiac CT in thoracopagus twins with an interatrial channel and complex congenital cardiac defects. (orig.)

  18. Mechanisms Regulating the Cardiac Output Response to Cyanide Infusion, a Model of Hypoxia

    Science.gov (United States)

    Liang, Chang-seng; Huckabee, William E.

    1973-01-01

    When tissue metabolic changes like those of hypoxia were induced by intra-aortic infusion of cyanide in dogs, cardiac output began to increase after 3 to 5 min, reached a peak (220% of the control value) at 15 min, and returned to control in 40 min. This pattern of cardiac output rise was not altered by vagotomy with or without atropine pretreatment. However, this cardiac output response could be differentiated into three phases by pretreating the animals with agents that block specific activities of the sympatho-adrenal system. First, ganglionic blockade produced by mecamylamine or sympathetic nerve blockade by bretylium abolished the middle phase of the cardiac output seen in the untreated animal, but early and late phases still could be discerned. Second, beta-adrenergic receptor blockade produced by propranolol shortened the total duration of the cardiac output rise by abolishing the late phase. Third, when given together, propranolol and mecamylamine (or bretylium) prevented most of the cardiac output rise that follows the early phase. When cyanide was given to splenectomized dogs, the duration of the cardiac output response was not shortened, but the response became biphasic, resembling that seen after chemical sympathectomy. A similar biphasic response of the cardiac output also resulted from splenic denervation; sham operation or nephrectomy had no effect on the monophasic pattern of the normal response. Splenic venous blood obtained from cyanide-treated dogs, when infused intraportally, caused an increase in cardiac output in recipient dogs; similar infusion of arterial blood had no effects. These results suggest that the cardiac output response to cyanide infusion consists of three components: an early phase, related neither to the autonomic nervous system nor to circulating catecholamines; a middle phase, caused by a nonadrenergic humoral substance released from the spleen by sympathetic stimulation; and a late phase, dependent upon adrenergic receptors

  19. Regional evidence of modulation of cardiac adiponectin level in dilated cardiomyopathy: pilot study in a porcine animal model

    Directory of Open Access Journals (Sweden)

    Caselli Chiara

    2012-11-01

    Full Text Available Abstract Background The role of systemic and myocardial adiponectin (ADN in dilated cardiomyopathy is still debated. We tested the regulation of both systemic and myocardial ADN and the relationship with AMP-activated protein kinase (AMPK activity in a swine model of non-ischemic dilated cardiomyopathy. Methods and results Cardiac tissue was collected from seven instrumented adult male minipigs by pacing the left ventricular (LV free wall (180 beats/min, 3 weeks, both from pacing (PS and opposite sites (OS, and from five controls. Circulating ADN levels were inversely related to global and regional cardiac function. Myocardial ADN in PS was down-regulated compared to control (p Conclusions Paradoxically, circulating ADN did not show any cardioprotective effect, confirming its role as negative prognostic biomarker of heart failure. Myocardial ADN was reduced in PS compared to control in an AMPK-independent fashion, suggesting the occurrence of novel mechanisms by which reduced cardiac ADN levels may regionally mediate the decline of cardiac function.

  20. Molecular and immunohistochemical analyses of cardiac troponin T during cardiac development in the Mexican axolotl, Ambystoma mexicanum.

    Science.gov (United States)

    Zhang, C; Pietras, K M; Sferrazza, G F; Jia, P; Athauda, G; Rueda-de-Leon, E; Rveda-de-Leon, E; Maier, J A; Dube, D K; Lemanski, S L; Lemanski, L F

    2007-01-01

    The Mexican axolotl, Ambystoma mexicanum, is an excellent animal model for studying heart development because it carries a naturally occurring recessive genetic mutation, designated gene c, for cardiac nonfunction. The double recessive mutants (c/c) fail to form organized myofibrils in the cardiac myoblasts resulting in hearts that fail to beat. Tropomyosin expression patterns have been studied in detail and show dramatically decreased expression in the hearts of homozygous mutant embryos. Because of the direct interaction between tropomyosin and troponin T (TnT), and the crucial functions of TnT in the regulation of striated muscle contraction, we have expanded our studies on this animal model to characterize the expression of the TnT gene in cardiac muscle throughout normal axolotl development as well as in mutant axolotls. In addition, we have succeeded in cloning the full-length cardiac troponin T (cTnT) cDNA from axolotl hearts. Confocal microscopy has shown a substantial, but reduced, expression of TnT protein in the mutant hearts when compared to normal during embryonic development. 2006 Wiley-Liss, Inc.

  1. Thermal conductivity model for nanoporous thin films

    Science.gov (United States)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  2. Quadripolar leads in cardiac resynchronization therapy

    NARCIS (Netherlands)

    Van Everdingen, Wouter M.; Cramer, MJ; Doevendans, Pieter A.; Meine, Mathias

    2015-01-01

    Despite the benefit of cardiac resynchronization therapy (CRT) in patients with heart failure and conduction delay, a considerable number of patients do not respond substantially. Left ventricular lead position is an important factor in response, restricted by the patient's specific anatomy and

  3. Impact of thoracic surgery on cardiac morphology and function in small animal models of heart disease: a cardiac MRI study in rats.

    Directory of Open Access Journals (Sweden)

    Peter Nordbeck

    Full Text Available BACKGROUND: Surgical procedures in small animal models of heart disease might evoke alterations in cardiac morphology and function. The aim of this study was to reveal and quantify such potential artificial early or long term effects in vivo, which might account for a significant bias in basic cardiovascular research, and, therefore, could potentially question the meaning of respective studies. METHODS: Female Wistar rats (n = 6 per group were matched for weight and assorted for sham left coronary artery ligation or control. Cardiac morphology and function was then investigated in vivo by cine magnetic resonance imaging at 7 Tesla 1 and 8 weeks after the surgical procedure. The time course of metabolic and inflammatory blood parameters was determined in addition. RESULTS: Compared to healthy controls, rats after sham surgery showed a lower body weight both 1 week (267.5±10.6 vs. 317.0±11.3 g, n<0.05 and 8 weeks (317.0±21.1 vs. 358.7±22.4 g, n<0.05 after the intervention. Left and right ventricular morphology and function were not different in absolute measures in both groups 1 week after surgery. However, there was a confined difference in several cardiac parameters normalized to the body weight (bw, such as myocardial mass (2.19±0.30/0.83±0.13 vs. 1.85±0.22/0.70±0.07 mg left/right per g bw, p<0.05, or enddiastolic ventricular volume (1.31±0.36/1.21±0.31 vs. 1.14±0.20/1.07±0.17 µl left/right per g bw, p<0.05. Vice versa, after 8 weeks, cardiac masses, volumes, and output showed a trend for lower values in sham operated rats compared to controls in absolute measures (782.2±57.2/260.2±33.2 vs. 805.9±84.8/310.4±48.5 mg, p<0.05 for left/right ventricular mass, but not normalized to body weight. Matching these findings, blood testing revealed only minor inflammatory but prolonged metabolic changes after surgery not related to cardiac disease. CONCLUSION: Cardio-thoracic surgical procedures in experimental myocardial infarction

  4. Initiation and dynamics of a spiral wave around an ionic heterogeneity in a model for human cardiac tissue.

    Science.gov (United States)

    Defauw, Arne; Dawyndt, Peter; Panfilov, Alexander V

    2013-12-01

    In relation to cardiac arrhythmias, heterogeneity of cardiac tissue is one of the most important factors underlying the onset of spiral waves and determining their type. In this paper, we numerically model heterogeneity of realistic size and value and study formation and dynamics of spiral waves around such heterogeneity. We find that the only sustained pattern obtained is a single spiral wave anchored around the heterogeneity. Dynamics of an anchored spiral wave depend on the extent of heterogeneity, and for certain heterogeneity size, we find abrupt regional increase in the period of excitation occurring as a bifurcation. We study factors determining spatial distribution of excitation periods of anchored spiral waves and discuss consequences of such dynamics for cardiac arrhythmias and possibilities for experimental testings of our predictions.

  5. A collocation--Galerkin finite element model of cardiac action potential propagation.

    Science.gov (United States)

    Rogers, J M; McCulloch, A D

    1994-08-01

    A new computational method was developed for modeling the effects of the geometric complexity, nonuniform muscle fiber orientation, and material inhomogeneity of the ventricular wall on cardiac impulse propagation. The method was used to solve a modification to the FitzHugh-Nagumo system of equations. The geometry, local muscle fiber orientation, and material parameters of the domain were defined using linear Lagrange or cubic Hermite finite element interpolation. Spatial variations of time-dependent excitation and recovery variables were approximated using cubic Hermite finite element interpolation, and the governing finite element equations were assembled using the collocation method. To overcome the deficiencies of conventional collocation methods on irregular domains, Galerkin equations for the no-flux boundary conditions were used instead of collocation equations for the boundary degrees-of-freedom. The resulting system was evolved using an adaptive Runge-Kutta method. Converged two-dimensional simulations of normal propagation showed that this method requires less CPU time than a traditional finite difference discretization. The model also reproduced several other physiologic phenomena known to be important in arrhythmogenesis including: Wenckebach periodicity, slowed propagation and unidirectional block due to wavefront curvature, reentry around a fixed obstacle, and spiral wave reentry. In a new result, we observed wavespeed variations and block due to nonuniform muscle fiber orientation. The findings suggest that the finite element method is suitable for studying normal and pathological cardiac activation and has significant advantages over existing techniques.

  6. A second-generation computational modeling of cardiac electrophysiology: response of action potential to ionic concentration changes and metabolic inhibition.

    Science.gov (United States)

    Alaa, Nour Eddine; Lefraich, Hamid; El Malki, Imane

    2014-10-21

    Cardiac arrhythmias are becoming one of the major health care problem in the world, causing numerous serious disease conditions including stroke and sudden cardiac death. Furthermore, cardiac arrhythmias are intimately related to the signaling ability of cardiac cells, and are caused by signaling defects. Consequently, modeling the electrical activity of the heart, and the complex signaling models that subtend dangerous arrhythmias such as tachycardia and fibrillation, necessitates a quantitative model of action potential (AP) propagation. Yet, many electrophysiological models, which accurately reproduce dynamical characteristic of the action potential in cells, have been introduced. However, these models are very complex and are very time consuming computationally. Consequently, a large amount of research is consecrated to design models with less computational complexity. This paper is presenting a new model for analyzing the propagation of ionic concentrations and electrical potential in space and time. In this model, the transport of ions is governed by Nernst-Planck flux equation (NP), and the electrical interaction of the species is described by a new cable equation. These set of equations form a system of coupled partial nonlinear differential equations that is solved numerically. In the first we describe the mathematical model. To realize the numerical simulation of our model, we proceed by a finite element discretization and then we choose an appropriate resolution algorithm. We give numerical simulations obtained for different input scenarios in the case of suicide substrate reaction which were compared to those obtained in literature. These input scenarios have been chosen so as to provide an intuitive understanding of dynamics of the model. By accessing time and space domains, it is shown that interpreting the electrical potential of cell membrane at steady state is incorrect. This model is general and applies to ions of any charge in space and time

  7. Alternative research funding to improve clinical outcomes: model of prediction and prevention of sudden cardiac death.

    Science.gov (United States)

    Myerburg, Robert J; Ullmann, Steven G

    2015-04-01

    Although identification and management of cardiovascular risk markers have provided important population risk insights and public health benefits, individual risk prediction remains challenging. Using sudden cardiac death risk as a base case, the complex epidemiology of sudden cardiac death risk and the substantial new funding required to study individual risk are explored. Complex epidemiology derives from the multiple subgroups having different denominators and risk profiles, while funding limitations emerge from saturation of conventional sources of research funding without foreseeable opportunities for increases. A resolution to this problem would have to emerge from new sources of funding targeted to individual risk prediction. In this analysis, we explore the possibility of a research funding strategy that would offer business incentives to the insurance industries, while providing support for unresolved research goals. The model is developed for the case of sudden cardiac death risk, but the concept is applicable to other areas of the medical enterprise. © 2015 American Heart Association, Inc.

  8. Identification and functional characterization of cardiac pacemaker cells in zebrafish.

    Directory of Open Access Journals (Sweden)

    Federico Tessadori

    Full Text Available In the mammalian heart a conduction system of nodes and conducting cells generates and transduces the electrical signals evoking myocardial contractions. Specialized pacemaker cells initiating and controlling cardiac contraction rhythmicity are localized in an anatomically identifiable structure of myocardial origin, the sinus node. We previously showed that in mammalian embryos sinus node cells originate from cardiac progenitors expressing the transcription factors T-box transcription factor 3 (Tbx3 and Islet-1 (Isl1. Although cardiac development and function are strikingly conserved amongst animal classes, in lower vertebrates neither structural nor molecular distinguishable components of a conduction system have been identified, questioning its evolutionary origin. Here we show that zebrafish embryos lacking the LIM/homeodomain-containing transcription factor Isl1 display heart rate defects related to pacemaker dysfunction. Moreover, 3D reconstructions of gene expression patterns in the embryonic and adult zebrafish heart led us to uncover a previously unidentified, Isl1-positive and Tbx2b-positive region in the myocardium at the junction of the sinus venosus and atrium. Through their long interconnecting cellular protrusions the identified Isl1-positive cells form a ring-shaped structure. In vivo labeling of the Isl1-positive cells by transgenic technology allowed their isolation and electrophysiological characterization, revealing their unique pacemaker activity. In conclusion we demonstrate that Isl1-expressing cells, organized as a ring-shaped structure around the venous pole, hold the pacemaker function in the adult zebrafish heart. We have thereby identified an evolutionary conserved, structural and molecular distinguishable component of the cardiac conduction system in a lower vertebrate.

  9. Uncertainty quantification of fast sodium current steady-state inactivation for multi-scale models of cardiac electrophysiology.

    Science.gov (United States)

    Pathmanathan, Pras; Shotwell, Matthew S; Gavaghan, David J; Cordeiro, Jonathan M; Gray, Richard A

    2015-01-01

    Perhaps the most mature area of multi-scale systems biology is the modelling of the heart. Current models are grounded in over fifty years of research in the development of biophysically detailed models of the electrophysiology (EP) of cardiac cells, but one aspect which is inadequately addressed is the incorporation of uncertainty and physiological variability. Uncertainty quantification (UQ) is the identification and characterisation of the uncertainty in model parameters derived from experimental data, and the computation of the resultant uncertainty in model outputs. It is a necessary tool for establishing the credibility of computational models, and will likely be expected of EP models for future safety-critical clinical applications. The focus of this paper is formal UQ of one major sub-component of cardiac EP models, the steady-state inactivation of the fast sodium current, INa. To better capture average behaviour and quantify variability across cells, we have applied for the first time an 'individual-based' statistical methodology to assess voltage clamp data. Advantages of this approach over a more traditional 'population-averaged' approach are highlighted. The method was used to characterise variability amongst cells isolated from canine epi and endocardium, and this variability was then 'propagated forward' through a canine model to determine the resultant uncertainty in model predictions at different scales, such as of upstroke velocity and spiral wave dynamics. Statistically significant differences between epi and endocardial cells (greater half-inactivation and less steep slope of steady state inactivation curve for endo) was observed, and the forward propagation revealed a lack of robustness of the model to underlying variability, but also surprising robustness to variability at the tissue scale. Overall, the methodology can be used to: (i) better analyse voltage clamp data; (ii) characterise underlying population variability; (iii) investigate

  10. Solving the cardiac hypertrophy riddle: The angiotensin II-mechanical stress connection.

    Science.gov (United States)

    Zablocki, Daniela; Sadoshima, Junichi

    2013-11-08

    A series of studies conducted 20 years ago, documenting the cardiac hypertrophy phenotype and its underlying signaling mechanism induced by angiotensin II (Ang II) and mechanical stress, showed a remarkable similarity between the effect of the Gαq agonist and that of mechanical forces on cardiac hypertrophy. Subsequent studies confirmed the involvement of autocrine/paracrine mechanisms, including stretch-induced release of Ang II in load-induced cardiac hypertrophy. Recent studies showed that the Ang II type 1 (AT1) receptor is also directly activated by mechanical forces, suggesting that AT1 receptors play an important role in mediating load-induced cardiac hypertrophy through both ligand- and mechanical stress-dependent mechanisms.

  11. Computerized prediction of intensive care unit discharge after cardiac surgery: development and validation of a Gaussian processes model

    Directory of Open Access Journals (Sweden)

    Meyfroidt Geert

    2011-10-01

    Full Text Available Abstract Background The intensive care unit (ICU length of stay (LOS of patients undergoing cardiac surgery may vary considerably, and is often difficult to predict within the first hours after admission. The early clinical evolution of a cardiac surgery patient might be predictive for his LOS. The purpose of the present study was to develop a predictive model for ICU discharge after non-emergency cardiac surgery, by analyzing the first 4 hours of data in the computerized medical record of these patients with Gaussian processes (GP, a machine learning technique. Methods Non-interventional study. Predictive modeling, separate development (n = 461 and validation (n = 499 cohort. GP models were developed to predict the probability of ICU discharge the day after surgery (classification task, and to predict the day of ICU discharge as a discrete variable (regression task. GP predictions were compared with predictions by EuroSCORE, nurses and physicians. The classification task was evaluated using aROC for discrimination, and Brier Score, Brier Score Scaled, and Hosmer-Lemeshow test for calibration. The regression task was evaluated by comparing median actual and predicted discharge, loss penalty function (LPF ((actual-predicted/actual and calculating root mean squared relative errors (RMSRE. Results Median (P25-P75 ICU length of stay was 3 (2-5 days. For classification, the GP model showed an aROC of 0.758 which was significantly higher than the predictions by nurses, but not better than EuroSCORE and physicians. The GP had the best calibration, with a Brier Score of 0.179 and Hosmer-Lemeshow p-value of 0.382. For regression, GP had the highest proportion of patients with a correctly predicted day of discharge (40%, which was significantly better than the EuroSCORE (p Conclusions A GP model that uses PDMS data of the first 4 hours after admission in the ICU of scheduled adult cardiac surgery patients was able to predict discharge from the ICU as a

  12. Dose-Escalation Study for Cardiac Radiosurgery in a Porcine Model

    Energy Technology Data Exchange (ETDEWEB)

    Blanck, Oliver, E-mail: oliver.blanck@uksh.de [Department of Radiation Oncology, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); CyberKnife Center Northern Germany, Guestrow (Germany); Bode, Frank [Medical Department II, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Gebhard, Maximilian [Institute of Pathology, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Hunold, Peter [Department of Radiology and Nuclear Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Brandt, Sebastian [Department of Anaesthesiology and Intensive Care Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Bruder, Ralf [Institute for Robotics and Cognitive Systems, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Grossherr, Martin [Department of Anaesthesiology and Intensive Care Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Vonthein, Reinhard [Institute of Medical Biometry and Statistics, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Rades, Dirk [Department of Radiation Oncology, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); Dunst, Juergen [Department of Radiation Oncology, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck (Germany); University Copenhagen (Denmark)

    2014-07-01

    Purpose: To perform a proof-of-principle dose-escalation study to radiosurgically induce scarring in cardiac muscle tissue to block veno-atrial electrical connections at the pulmonary vein antrum, similar to catheter ablation. Methods and Materials: Nine mini-pigs underwent pretreatment magnetic resonance imaging (MRI) evaluation of heart function and electrophysiology assessment by catheter measurements in the right superior pulmonary vein (RSPV). Immediately after examination, radiosurgery with randomized single-fraction doses of 0 and 17.5-35 Gy in 2.5-Gy steps were delivered to the RSPV antrum (target volume 5-8 cm{sup 3}). MRI and electrophysiology were repeated 6 months after therapy, followed by histopathologic examination. Results: Transmural scarring of cardiac muscle tissue was noted with doses ≥32.5 Gy. However, complete circumferential scarring of the RSPV was not achieved. Logistic regressions showed that extent and intensity of fibrosis significantly increased with dose. The 50% effective dose for intense fibrosis was 31.3 Gy (odds ratio 2.47/Gy, P<.01). Heart function was not affected, as verified by MRI and electrocardiogram evaluation. Adjacent critical structures were not damaged, as verified by pathology, demonstrating the short-term safety of small-volume cardiac radiosurgery with doses up to 35 Gy. Conclusions: Radiosurgery with doses >32.5 Gy in the healthy pig heart can induce circumscribed scars at the RSPV antrum noninvasively, mimicking the effect of catheter ablation. In our study we established a significant dose-response relationship for cardiac radiosurgery. The long-term effects and toxicity of such high radiation doses need further investigation in the pursuit of cardiac radiosurgery for noninvasive treatment of atrial fibrillation.

  13. Soil hydraulic properties near saturation, an improved conductivity model

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Jacobsen, Ole Hørbye; Hansen, Søren

    2006-01-01

    of commonly used hydraulic conductivity models and give suggestions for improved models. Water retention and near saturated and saturated hydraulic conductivity were measured for a variety of 81 top and subsoils. The hydraulic conductivity models by van Genuchten [van Genuchten, 1980. A closed-form equation...... for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898.] (vGM) and Brooks and Corey, modified by Jarvis [Jarvis, 1991. MACRO—A Model of Water Movement and Solute Transport in Macroporous Soils. Swedish University of Agricultural Sciences. Department of Soil Sciences....... Optimising a matching factor (k0) improved the fit considerably whereas optimising the l-parameter in the vGM model improved the fit only slightly. The vGM was improved with an empirical scaling function to account for the rapid increase in conductivity near saturation. Using the improved models...

  14. SU-F-T-405: Development of a Rapid Cardiac Contouring Tool Using Landmark-Driven Modeling

    International Nuclear Information System (INIS)

    Pelletier, C; Jung, J; Mosher, E; Lee, C; Lee, C

    2016-01-01

    Purpose: This study aims to develop a tool to rapidly delineate cardiac substructures for use in dosimetry for large-scale clinical trial or epidemiological investigations. The goal is to produce a system that can semi-automatically delineate nine cardiac structures to a reasonable accuracy within a couple of minutes. Methods: The cardiac contouring tool employs a Most Similar Atlas method, where a selection criterion is used to pre-select the most similar model to the patient from a library of pre-defined atlases. Sixty contrast-enhanced cardiac computed tomography angiography (CTA) scans (30 male and 30 female) were manually contoured to serve as the atlas library. For each CTA 12 structures were delineated. Kabsch algorithm was used to compute the optimum rotation and translation matrices between the patient and atlas. Minimum root mean squared distance between the patient and atlas after transformation was used to select the most-similar atlas. An initial study using 10 CTA sets was performed to assess system feasibility. Leave-one patient out method was performed, and fit criteria were calculated to evaluate the fit accuracy compared to manual contours. Results: For the pilot study, mean dice indices of .895 were achieved for the whole heart, .867 for the ventricles, and .802 for the atria. In addition, mean distance was measured via the chord length distribution (CLD) between ground truth and the atlas structures for the four coronary arteries. The mean CLD for all coronary arteries was below 14mm, with the left circumflex artery showing the best agreement (7.08mm). Conclusion: The cardiac contouring tool is able to delineate cardiac structures with reasonable accuracy in less than 90 seconds. Pilot data indicates that the system is able to delineate the whole heart and ventricles within a reasonable accuracy using even a limited library. We are extending the atlas sets to 60 adult males and females in total.

  15. SU-F-T-405: Development of a Rapid Cardiac Contouring Tool Using Landmark-Driven Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, C; Jung, J [East Carolina University Greenville, NC (United States); Mosher, E; Lee, C [National Cancer Institute, Rockville, MD (United States); Lee, C [University of Michigan, Ann Arbor, MI (United States)

    2016-06-15

    Purpose: This study aims to develop a tool to rapidly delineate cardiac substructures for use in dosimetry for large-scale clinical trial or epidemiological investigations. The goal is to produce a system that can semi-automatically delineate nine cardiac structures to a reasonable accuracy within a couple of minutes. Methods: The cardiac contouring tool employs a Most Similar Atlas method, where a selection criterion is used to pre-select the most similar model to the patient from a library of pre-defined atlases. Sixty contrast-enhanced cardiac computed tomography angiography (CTA) scans (30 male and 30 female) were manually contoured to serve as the atlas library. For each CTA 12 structures were delineated. Kabsch algorithm was used to compute the optimum rotation and translation matrices between the patient and atlas. Minimum root mean squared distance between the patient and atlas after transformation was used to select the most-similar atlas. An initial study using 10 CTA sets was performed to assess system feasibility. Leave-one patient out method was performed, and fit criteria were calculated to evaluate the fit accuracy compared to manual contours. Results: For the pilot study, mean dice indices of .895 were achieved for the whole heart, .867 for the ventricles, and .802 for the atria. In addition, mean distance was measured via the chord length distribution (CLD) between ground truth and the atlas structures for the four coronary arteries. The mean CLD for all coronary arteries was below 14mm, with the left circumflex artery showing the best agreement (7.08mm). Conclusion: The cardiac contouring tool is able to delineate cardiac structures with reasonable accuracy in less than 90 seconds. Pilot data indicates that the system is able to delineate the whole heart and ventricles within a reasonable accuracy using even a limited library. We are extending the atlas sets to 60 adult males and females in total.

  16. Induced Pluripotent Stem Cells 10 Years Later: For Cardiac Applications.

    Science.gov (United States)

    Yoshida, Yoshinori; Yamanaka, Shinya

    2017-06-09

    Induced pluripotent stem cells (iPSCs) are reprogrammed cells that have features similar to embryonic stem cells, such as the capacity of self-renewal and differentiation into many types of cells, including cardiac myocytes. Although initially the reprogramming efficiency was low, several improvements in reprogramming methods have achieved robust and efficient generation of iPSCs without genomic insertion of transgenes. iPSCs display clonal variations in epigenetic and genomic profiles and cellular behavior in differentiation. iPSC-derived cardiac myocytes (iPSC cardiac myocytes) recapitulate phenotypic differences caused by genetic variations, making them attractive human disease models, and are useful for drug discovery and toxicology testing. In addition, iPSC cardiac myocytes can help with patient stratification in regard to drug responsiveness. Furthermore, they can be used as source cells for cardiac regeneration in animal models. Here, we review recent progress in iPSC technology and its applications to cardiac diseases. © 2017 American Heart Association, Inc.

  17. Fractional Heat Conduction Models and Thermal Diffusivity Determination

    Directory of Open Access Journals (Sweden)

    Monika Žecová

    2015-01-01

    Full Text Available The contribution deals with the fractional heat conduction models and their use for determining thermal diffusivity. A brief historical overview of the authors who have dealt with the heat conduction equation is described in the introduction of the paper. The one-dimensional heat conduction models with using integer- and fractional-order derivatives are listed. Analytical and numerical methods of solution of the heat conduction models with using integer- and fractional-order derivatives are described. Individual methods have been implemented in MATLAB and the examples of simulations are listed. The proposal and experimental verification of the methods for determining thermal diffusivity using half-order derivative of temperature by time are listed at the conclusion of the paper.

  18. Cardiac Ca2+ signalling in zebrafish: Translation of findings to man.

    Science.gov (United States)

    van Opbergen, Chantal J M; van der Voorn, Stephanie M; Vos, Marc A; de Boer, Teun P; van Veen, Toon A B

    2018-05-07

    Sudden cardiac death is a leading cause of death worldwide, mainly caused by highly disturbed electrical activation patterns in the heart. Currently, murine models are the most popular model to study underlying molecular mechanisms of inherited or acquired cardiac electrical abnormalities, although the numerous electrophysiological discrepancies between mouse and human raise the question whether mice are the optimal model to study cardiac rhythm disorders. Recently it has been uncovered that the zebrafish cardiac electrophysiology seems surprisingly similar to the human heart, mainly because the zebrafish AP contains a clear plateau phase and ECG characteristics show alignment with the human ECG. Although, before using zebrafish as a model to study cardiac arrhythmogenesis, however, it is very important to gain a better insight into the electrophysiological characteristics of the zebrafish heart. In this review we outline the electrophysiological machinery of the zebrafish cardiomyocytes, with a special focus on the intracellular Ca 2+ dynamics and excitation-contraction coupling. We debate the potential of zebrafish as a model to study human cardiovascular diseases and postulate steps to employ zebrafish into a more 'humanized' model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Evaluating the Cancer Therapeutic Potential of Cardiac Glycosides

    Directory of Open Access Journals (Sweden)

    José Manuel Calderón-Montaño

    2014-01-01

    Full Text Available Cardiac glycosides, also known as cardiotonic steroids, are a group of natural products that share a steroid-like structure with an unsaturated lactone ring and the ability to induce cardiotonic effects mediated by a selective inhibition of the Na+/K+-ATPase. Cardiac glycosides have been used for many years in the treatment of cardiac congestion and some types of cardiac arrhythmias. Recent data suggest that cardiac glycosides may also be useful in the treatment of cancer. These compounds typically inhibit cancer cell proliferation at nanomolar concentrations, and recent high-throughput screenings of drug libraries have therefore identified cardiac glycosides as potent inhibitors of cancer cell growth. Cardiac glycosides can also block tumor growth in rodent models, which further supports the idea that they have potential for cancer therapy. Evidence also suggests, however, that cardiac glycosides may not inhibit cancer cell proliferation selectively and the potent inhibition of tumor growth induced by cardiac glycosides in mice xenografted with human cancer cells is probably an experimental artifact caused by their ability to selectively kill human cells versus rodent cells. This paper reviews such evidence and discusses experimental approaches that could be used to reveal the cancer therapeutic potential of cardiac glycosides in preclinical studies.

  20. Cross-talk between cardiac muscle and coronary vasculature.

    Science.gov (United States)

    Westerhof, Nico; Boer, Christa; Lamberts, Regis R; Sipkema, Pieter

    2006-10-01

    The cardiac muscle and the coronary vasculature are in close proximity to each other, and a two-way interaction, called cross-talk, exists. Here we focus on the mechanical aspects of cross-talk including the role of the extracellular matrix. Cardiac muscle affects the coronary vasculature. In diastole, the effect of the cardiac muscle on the coronary vasculature depends on the (changes in) muscle length but appears to be small. In systole, coronary artery inflow is impeded, or even reversed, and venous outflow is augmented. These systolic effects are explained by two mechanisms. The waterfall model and the intramyocardial pump model are based on an intramyocardial pressure, assumed to be proportional to ventricular pressure. They explain the global effects of contraction on coronary flow and the effects of contraction in the layers of the heart wall. The varying elastance model, the muscle shortening and thickening model, and the vascular deformation model are based on direct contact between muscles and vessels. They predict global effects as well as differences on flow in layers and flow heterogeneity due to contraction. The relative contributions of these two mechanisms depend on the wall layer (epi- or endocardial) and type of contraction (isovolumic or shortening). Intramyocardial pressure results from (local) muscle contraction and to what extent the interstitial cavity contracts isovolumically. This explains why small arterioles and venules do not collapse in systole. Coronary vasculature affects the cardiac muscle. In diastole, at physiological ventricular volumes, an increase in coronary perfusion pressure increases ventricular stiffness, but the effect is small. In systole, there are two mechanisms by which coronary perfusion affects cardiac contractility. Increased perfusion pressure increases microvascular volume, thereby opening stretch-activated ion channels, resulting in an increased intracellular Ca2+ transient, which is followed by an increase in Ca

  1. Imaging cardiac activation sequence during ventricular tachycardia in a canine model of nonischemic heart failure.

    Science.gov (United States)

    Han, Chengzong; Pogwizd, Steven M; Yu, Long; Zhou, Zhaoye; Killingsworth, Cheryl R; He, Bin

    2015-01-15

    Noninvasive cardiac activation imaging of ventricular tachycardia (VT) is important in the clinical diagnosis and treatment of arrhythmias in heart failure (HF) patients. This study investigated the ability of the three-dimensional cardiac electrical imaging (3DCEI) technique for characterizing the activation patterns of spontaneously occurring and norepinephrine (NE)-induced VTs in a newly developed arrhythmogenic canine model of nonischemic HF. HF was induced by aortic insufficiency followed by aortic constriction in three canines. Up to 128 body-surface ECGs were measured simultaneously with bipolar recordings from up to 232 intramural sites in a closed-chest condition. Data analysis was performed on the spontaneously occurring VTs (n=4) and the NE-induced nonsustained VTs (n=8) in HF canines. Both spontaneously occurring and NE-induced nonsustained VTs initiated by a focal mechanism primarily from the subendocardium, but occasionally from the subepicardium of left ventricle. Most focal initiation sites were located at apex, right ventricular outflow tract, and left lateral wall. The NE-induced VTs were longer, more rapid, and had more focal sites than the spontaneously occurring VTs. Good correlation was obtained between imaged activation sequence and direct measurements (averaged correlation coefficient of ∼0.70 over 135 VT beats). The reconstructed initiation sites were ∼10 mm from measured initiation sites, suggesting good localization in such a large animal model with cardiac size similar to a human. Both spontaneously occurring and NE-induced nonsustained VTs had focal initiation in this canine model of nonischemic HF. 3DCEI is feasible to image the activation sequence and help define arrhythmia mechanism of nonischemic HF-associated VTs. Copyright © 2015 the American Physiological Society.

  2. Cardiac arrhythmias in adult patients with asthma

    DEFF Research Database (Denmark)

    Warnier, Miriam J; Rutten, Frans H; Kors, Jan A

    2012-01-01

    OBJECTIVE: The pathogenesis of cardiac arrhythmias in asthma patients has not been fully elucidated. Adverse drug effects, particularly those of β2-mimetics, may play a role. The aim of this study was to determine whether asthma is associated with the risk of cardiac arrhythmias and electrocardio......OBJECTIVE: The pathogenesis of cardiac arrhythmias in asthma patients has not been fully elucidated. Adverse drug effects, particularly those of β2-mimetics, may play a role. The aim of this study was to determine whether asthma is associated with the risk of cardiac arrhythmias...... and electrocardiographic characteristics of arrhythmogenicity (ECG) and to explore the role of β2-mimetics. METHODS: A cross-sectional study was conducted among 158 adult patients with a diagnosis of asthma and 6303 participants without asthma from the cohort of the Utrecht Health Project-an ongoing, longitudinal, primary...... or flutter). Secondary outcomes were tachycardia, bradycardia, PVC, atrial fibrillation or flutter, mean heart rate, mean corrected QT (QTc) interval length, and prolonged QTc interval. RESULTS: Tachycardia and PVCs were more prevalent in patients with asthma (3% and 4%, respectively) than those without...

  3. Development of new anatomy reconstruction software to localize cardiac isochrones to the cardiac surface from the 12 lead ECG.

    Science.gov (United States)

    van Dam, Peter M; Gordon, Jeffrey P; Laks, Michael M; Boyle, Noel G

    2015-01-01

    Non-invasive electrocardiographic imaging (ECGI) of the cardiac muscle can help the pre-procedure planning of the ablation of ventricular arrhythmias by reducing the time to localize the origin. Our non-invasive ECGI system, the cardiac isochrone positioning system (CIPS), requires non-intersecting meshes of the heart, lungs and torso. However, software to reconstruct the meshes of the heart, lungs and torso with the capability to check and prevent these intersections is currently lacking. Consequently the reconstruction of a patient specific model with realistic atrial and ventricular wall thickness and incorporating blood cavities, lungs and torso usually requires additional several days of manual work. Therefore new software was developed that checks and prevents any intersections, and thus enables the use of accurate reconstructed anatomical models within CIPS. In this preliminary study we investigated the accuracy of the created patient specific anatomical models from MRI or CT. During the manual segmentation of the MRI data the boundaries of the relevant tissues are determined. The resulting contour lines are used to automatically morph reference meshes of the heart, lungs or torso to match the boundaries of the morphed tissue. Five patients were included in the study; models of the heart, lungs and torso were reconstructed from standard cardiac MRI images. The accuracy was determined by computing the distance between the segmentation contours and the morphed meshes. The average accuracy of the reconstructed cardiac geometry was within 2mm with respect to the manual segmentation contours on the MRI images. Derived wall volumes and left ventricular wall thickness were within the range reported in literature. For each reconstructed heart model the anatomical heart axis was computed using the automatically determined anatomical landmarks of the left apex and the mitral valve. The accuracy of the reconstructed heart models was well within the accuracy of the used

  4. Short-term exercise worsens cardiac oxidative stress and fibrosis in 8-month-old db/db mice by depleting cardiac glutathione.

    Science.gov (United States)

    Laher, Ismail; Beam, Julianne; Botta, Amy; Barendregt, Rebekah; Sulistyoningrum, Dian; Devlin, Angela; Rheault, Mark; Ghosh, Sanjoy

    2013-01-01

    Moderate exercise improves cardiac antioxidant status in young humans and animals with Type-2 diabetes (T2D). Given that both diabetes and advancing age synergistically decrease antioxidant expression in most tissues, it is unclear whether exercise can upregulate cardiac antioxidants in chronic animal models of T2D. To this end, 8-month-old T2D and normoglycemic mice were exercised for 3 weeks, and cardiac redox status was evaluated. As expected, moderate exercise increased cardiac antioxidants and attenuated oxidative damage in normoglycemic mice. In contrast, similar exercise protocol in 8-month-old db/db mice worsened cardiac oxidative damage, which was associated with a specific dysregulation of glutathione (GSH) homeostasis. Expression of enzymes for GSH biosynthesis [γ-glutamylcysteine synthase, glutathione reductase] as well as for GSH-mediated detoxification (glutathione peroxidase, glutathione-S-transferase) was lower, while toxic metabolites dependent on GSH for clearance (4-hydroxynonenal) were increased in exercised diabetic mice hearts. To validate GSH loss as an important factor for such aggravated damage, daily administration of GSH restored cardiac GSH levels in exercised diabetic mice. Such supplementation attenuated both oxidative damage and fibrotic changes in the myocardium. Expression of transforming growth factor beta (TGF-β) and its regulated genes which are responsible for such profibrotic changes were also attenuated with GSH supplementation. These novel findings in a long-term T2D animal model demonstrate that short-term exercise by itself can deplete cardiac GSH and aggravate cardiac oxidative stress. As GSH administration conferred protection in 8-month-old diabetic mice undergoing exercise, supplementation with GSH-enhancing agents may be beneficial in elderly diabetic patients undergoing exercise.

  5. Dihydrotestosterone deteriorates cardiac insulin signaling and glucose transport in the rat model of polycystic ovary syndrome.

    Science.gov (United States)

    Tepavčević, Snežana; Vojnović Milutinović, Danijela; Macut, Djuro; Žakula, Zorica; Nikolić, Marina; Božić-Antić, Ivana; Romić, Snježana; Bjekić-Macut, Jelica; Matić, Gordana; Korićanac, Goran

    2014-05-01

    It is supposed that women with polycystic ovary syndrome (PCOS) are prone to develop cardiovascular disease as a consequence of multiple risk factors that are mostly related to the state of insulin resistance and consequent hyperinsulinemia. In the present study, we evaluated insulin signaling and glucose transporters (GLUT) in cardiac cells of dihydrotestosterone (DHT) treated female rats as an animal model of PCOS. Expression of proteins involved in cardiac insulin signaling pathways and glucose transporters, as well as their phosphorylation or intracellular localization were studied by Western blot analysis in DHT-treated and control rats. Treatment with DHT resulted in increased body mass, absolute mass of the heart, elevated plasma insulin concentration, dyslipidemia and insulin resistance. At the molecular level, DHT treatment did not change protein expression of cardiac insulin receptor and insulin receptor substrate 1, while phosphorylation of the substrate at serine 307 was increased. Unexpectedly, although expression of downstream Akt kinase and its phosphorylation at threonine 308 were not altered, phosphorylation of Akt at serine 473 was increased in the heart of DHT-treated rats. In contrast, expression and phosphorylation of extracellular signal regulated kinases 1/2 were decreased. Plasma membrane contents of GLUT1 and GLUT4 were decreased, as well as the expression of GLUT4 in cardiac cells at the end of androgen treatment. The obtained results provide evidence for alterations in expression and especially in functional characteristics of insulin signaling molecules and glucose transporters in the heart of DHT-treated rats with PCOS, indicating impaired cardiac insulin action. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Bone Morphogenetic Protein 9 Reduces Cardiac Fibrosis and Improves Cardiac Function in Heart Failure.

    Science.gov (United States)

    Morine, Kevin J; Qiao, Xiaoying; York, Sam; Natov, Peter S; Paruchuri, Vikram; Zhang, Yali; Aronovitz, Mark J; Karas, Richard H; Kapur, Navin K

    2018-02-27

    Background -Heart failure is a growing cause of morbidity and mortality worldwide. Transforming growth factor beta (TGF-β1) promotes cardiac fibrosis, but also activates counter-regulatory pathways that serve to regulate TGF-β1 activity in heart failure. Bone morphogenetic protein 9 (BMP9) is a member of the TGFβ family of cytokines and signals via the downstream effector protein Smad1. Endoglin is a TGFβ co-receptor that promotes TGF-β1 signaling via Smad3 and binds BMP9 with high affinity. We hypothesized that BMP9 limits cardiac fibrosis by activating Smad1 and attenuating Smad3 and further that neutralizing endoglin activity promotes BMP9 activity. Methods -We examined BMP9 expression and signaling in human cardiac fibroblasts and human subjects with heart failure. We utilized the thoracic aortic constriction (TAC) induced model of heart failure to evaluate the functional effect of BMP9 signaling on cardiac remodeling. Results -BMP9 expression is increased in the circulation and left ventricle (LV) of human subjects with heart failure and is expressed by cardiac fibroblasts. Next, we observed that BMP9 attenuates Type I collagen synthesis in human cardiac fibroblasts using recombinant human BMP9 and an siRNA approach. In BMP9 -/- mice subjected to TAC, loss of BMP9 activity promotes cardiac fibrosis, impairs LV function, and increases LV levels of phosphorylated Smad3 (pSmad3), not pSmad1. In contrast, treatment of wild-type mice subjected to TAC with recombinant BMP9 limits progression of cardiac fibrosis, improves LV function, enhances myocardial capillary density, and increases LV levels of pSmad1, not pSmad3 compared to vehicle treated controls. Since endoglin binds BMP9 with high affinity, we explored the effect of reduced endoglin activity on BMP9 activity. Neutralizing endoglin activity in human cardiac fibroblasts or in wild-type mice subjected to TAC induced heart failure limits collagen production, increases BMP9 protein levels, and increases

  7. Effect of global cardiac ischemia on human ventricular fibrillation: insights from a multi-scale mechanistic model of the human heart.

    Directory of Open Access Journals (Sweden)

    Ivan V Kazbanov

    2014-11-01

    Full Text Available Acute regional ischemia in the heart can lead to cardiac arrhythmias such as ventricular fibrillation (VF, which in turn compromise cardiac output and result in secondary global cardiac ischemia. The secondary ischemia may influence the underlying arrhythmia mechanism. A recent clinical study documents the effect of global cardiac ischaemia on the mechanisms of VF. During 150 seconds of global ischemia the dominant frequency of activation decreased, while after reperfusion it increased rapidly. At the same time the complexity of epicardial excitation, measured as the number of epicardical phase singularity points, remained approximately constant during ischemia. Here we perform numerical studies based on these clinical data and propose explanations for the observed dynamics of the period and complexity of activation patterns. In particular, we study the effects on ischemia in pseudo-1D and 2D cardiac tissue models as well as in an anatomically accurate model of human heart ventricles. We demonstrate that the fall of dominant frequency in VF during secondary ischemia can be explained by an increase in extracellular potassium, while the increase during reperfusion is consistent with washout of potassium and continued activation of the ATP-dependent potassium channels. We also suggest that memory effects are responsible for the observed complexity dynamics. In addition, we present unpublished clinical results of individual patient recordings and propose a way of estimating extracellular potassium and activation of ATP-dependent potassium channels from these measurements.

  8. Cardiac tamponade: contrast reflux as an indicator of cardiac chamber equalization

    Directory of Open Access Journals (Sweden)

    Nauta Foeke Jacob

    2012-05-01

    Full Text Available Abstract Background Traumatic hemopericardium remains a rare entity; it does however commonly cause cardiac tamponade which remains a major cause of death in traumatic blunt cardiac injury. Objectives We present a case of blunt chest trauma complicated by cardiac tamponade causing cardiac chamber equalization revealed by reflux of contrast. Case report A 29-year-old unidentified male suffered blunt chest trauma in a motor vehicle collision. Computed tomography (CT demonstrated a periaortic hematoma and hemopericardium. Significant contrast reflux was seen in the inferior vena cava and hepatic veins suggesting a change in cardiac chamber pressures. After intensive treatment including cardiac massage this patient expired of cardiac arrest. Conclusion Reflux of contrast on CT imaging can be an indicator of traumatic cardiac tamponade.

  9. Improving cardiac myocytes performance by CNTs platforms

    Directory of Open Access Journals (Sweden)

    Valentina eMartinelli

    2013-09-01

    Full Text Available The application of nanotechnology to the cardiovascular system has increasingly caught scientists’ attention as a potentially powerful tool for the development of new generation devices able to interface, repair or boost the performance of cardiac tissue. Carbon nanotubes (CNTs are considered as promising materials for nanomedicine applications in general and have been recently tested towards excitable cell growth. CNTs are cylindrically shaped structures made up of rolled-up graphene sheets, with unique electrical, thermal and mechanical properties, able to effectively conducting electrical current in electrochemical interfaces. CNTs-based scaffolds have been recently found to support the in vitro growth of cardiac cells: in particular, their ability to improve cardiomyocytes proliferation, maturation and electrical behavior are making CNTs extremely attractive for the development and exploitation of interfaces able to impact on cardiac cells physiology and function.

  10. Modelling electrolyte conductivity in a water electrolyzer cell

    DEFF Research Database (Denmark)

    Caspersen, Michael; Kirkegaard, Julius Bier

    2012-01-01

    An analytical model describing the hydrogen gas evolution under natural convection in an electrolyzer cell is developed. Main purpose of the model is to investigate the electrolyte conductivity through the cell under various conditions. Cell conductivity is calculated from a parallel resistor...

  11. Living cardiac patch: the elixir for cardiac regeneration.

    Science.gov (United States)

    Lakshmanan, Rajesh; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2012-12-01

    A thorough understanding of the cellular and muscle fiber orientation in left ventricular cardiac tissue is of paramount importance for the generation of artificial cardiac patches to treat the ischemic myocardium. The major challenge faced during cardiac patch engineering is to choose a perfect combination of three entities; cells, scaffolds and signaling molecules comprising the tissue engineering triad for repair and regeneration. This review provides an overview of various scaffold materials, their mechanical properties and fabrication methods utilized in cardiac patch engineering. Stem cell therapies in clinical trials and the commercially available cardiac patch materials were summarized in an attempt to provide a recent perspective in the treatment of heart failure. Various tissue engineering strategies employed thus far to construct viable thick cardiac patches is schematically illustrated. Though many strategies have been proposed for fabrication of various cardiac scaffold materials, the stage and severity of the disease condition demands the incorporation of additional cues in a suitable scaffold material. The scaffold may be nanofibrous patch, hydrogel or custom designed films. Integration of stem cells and biomolecular cues along with the scaffold may provide the right microenvironment for the repair of unhealthy left ventricular tissue as well as promote its regeneration.

  12. Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the murine embryo through cardiac remodeling and fibrosis.

    Science.gov (United States)

    Lin, Xue; Yang, Penghua; Reece, E Albert; Yang, Peixin

    2017-08-01

    Cardiac hypertrophy is highly prevalent in patients with type 2 diabetes mellitus. Experimental evidence has implied that pregnant women with type 2 diabetes mellitus and their children are at an increased risk of cardiovascular diseases. Our previous mouse model study revealed that maternal type 2 diabetes mellitus induces structural heart defects in their offspring. This study aims to determine whether maternal type 2 diabetes mellitus induces embryonic heart hypertrophy in a murine model of diabetic embryopathy. The type 2 diabetes mellitus embryopathy model was established by feeding 4-week-old female C57BL/6J mice with a high-fat diet for 15 weeks. Cardiac hypertrophy in embryos at embryonic day 17.5 was characterized by measuring heart size and thickness of the right and left ventricle walls and the interventricular septum, as well as the expression of β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, desmin, and adrenomedullin. Cardiac remodeling was determined by collagen synthesis and fibronectin synthesis. Fibrosis was evaluated by Masson staining and determining the expression of connective tissue growth factor, osteopontin, and galectin-3 genes. Cell apoptosis also was measured in the developing heart. The thicknesses of the left ventricle walls and the interventricular septum of embryonic hearts exposed to maternal diabetes were significantly thicker than those in the nondiabetic group. Maternal diabetes significantly increased β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, and desmin expression, but decreased expression of adrenomedullin. Moreover, collagen synthesis was significantly elevated, whereas fibronectin synthesis was suppressed, in embryonic hearts from diabetic dams, suggesting that cardiac remodeling is a contributing factor to cardiac hypertrophy. The cardiac fibrosis marker, galectin-3, was induced by maternal diabetes. Furthermore, maternal type 2 diabetes mellitus

  13. Medicare Program; Advancing Care Coordination Through Episode Payment Models (EPMs); Cardiac Rehabilitation Incentive Payment Model; and Changes to the

    Science.gov (United States)

    2017-05-19

    This final rule finalizes May 20, 2017 as the effective date of the final rule titled "Advancing Care Coordination Through Episode Payment Models (EPMs); Cardiac Rehabilitation Incentive Payment Model; and Changes to the Comprehensive Care for Joint Replacement Model (CJR)" originally published in the January 3, 2017 Federal Register. This final rule also finalizes a delay of the applicability date of the regulations at 42 CFR part 512 from July 1, 2017 to January 1, 2018 and delays the effective date of the specific CJR regulations listed in the DATES section from July 1, 2017 to January 1, 2018.

  14. Modelling far field pacing for terminating spiral waves pinned to ischaemic heterogeneities in cardiac tissue

    Science.gov (United States)

    Boccia, E.; Luther, S.

    2017-01-01

    In cardiac tissue, electrical spiral waves pinned to a heterogeneity can be unpinned (and eventually terminated) using electric far field pulses and recruiting the heterogeneity as a virtual electrode. While for isotropic media the process of unpinning is much better understood, the case of an anisotropic substrate with different conductivities in different directions still needs intensive investigation. To study the impact of anisotropy on the unpinning process, we present numerical simulations based on the bidomain formulation of the phase I of the Luo and Rudy action potential model modified due to the occurrence of acute myocardial ischaemia. Simulating a rotating spiral wave pinned to an ischaemic heterogeneity, we compare the success of sequences of far field pulses in the isotropic and the anisotropic case for spirals still in transient or in steady rotation states. Our results clearly indicate that the range of pacing parameters resulting in successful termination of pinned spiral waves is larger in anisotropic tissue than in an isotropic medium. This article is part of the themed issue ‘Mathematical methods in medicine: neuroscience, cardiology and pathology’. PMID:28507234

  15. Regulation of cardiac remodeling by cardiac Na/K-ATPase isoforms

    Directory of Open Access Journals (Sweden)

    Lijun Catherine Liu

    2016-09-01

    Full Text Available Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1-3. The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1 the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2 the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  16. Electrical conductivity modeling in fractal non-saturated porous media

    Science.gov (United States)

    Wei, W.; Cai, J.; Hu, X.; Han, Q.

    2016-12-01

    The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.

  17. Influence of cardiac decentralization on cardioprotection.

    Directory of Open Access Journals (Sweden)

    John G Kingma

    Full Text Available The role of cardiac nerves on development of myocardial tissue injury after acute coronary occlusion remains controversial. We investigated whether acute cardiac decentralization (surgical modulates coronary flow reserve and myocardial protection in preconditioned dogs subject to ischemia-reperfusion. Experiments were conducted on four groups of anesthetised, open-chest dogs (n = 32: 1- controls (CTR, intact cardiac nerves, 2- ischemic preconditioning (PC; 4 cycles of 5-min IR, 3- cardiac decentralization (CD and 4- CD+PC; all dogs underwent 60-min coronary occlusion and 180-min reperfusion. Coronary blood flow and reactive hyperemic responses were assessed using a blood volume flow probe. Infarct size (tetrazolium staining was related to anatomic area at risk and coronary collateral blood flow (microspheres in the anatomic area at risk. Post-ischemic reactive hyperemia and repayment-to-debt ratio responses were significantly reduced for all experimental groups; however, arterial perfusion pressure was not affected. Infarct size was reduced in CD dogs (18.6 ± 4.3; p = 0.001, data are mean ± 1 SD compared to 25.2 ± 5.5% in CTR dogs and was less in PC dogs as expected (13.5 ± 3.2 vs. 25.2 ± 5.5%; p = 0.001; after acute CD, PC protection was conserved (11.6 ± 3.4 vs. 18.6 ± 4.3%; p = 0.02. In conclusion, our findings provide strong evidence that myocardial protection against ischemic injury can be preserved independent of extrinsic cardiac nerve inputs.

  18. Initial Efficacy of a Cardiac Rehabilitation Transition Program: Cardiac TRUST

    Science.gov (United States)

    Zullo, Melissa; Boxer, Rebecca; Moore, Shirley M.

    2012-01-01

    Patients recovering from cardiac events are increasingly using postacute care, such as home health care and skilled nursing facility services. The purpose of this pilot study was to test the initial efficacy, feasibility, and safety of a specially designed postacute care transitional rehabilitation intervention for cardiac patients. Cardiac Transitional Rehabilitation Using Self- Management Techniques (Cardiac TRUST) is a family-focused intervention that includes progressive low-intensity walking and education in self-management skills to facilitate recovery following a cardiac event. Using a randomized two-group design, exercise self-efficacy, steps walked, and participation in an outpatient cardiac rehabilitation program were compared in a sample of 38 older adults; 17 who received the Cardiac TRUST program and 21 who received usual care only. At discharge from postacute care, the intervention group had a trend for higher levels of self-efficacy for exercise outcomes (X=39.1, SD=7.4) than the usual care group (X=34.5; SD=7.0) (t-test 1.9, p=.06). During the 6 weeks following discharge, compared with the usual care group, the intervention group had more attendance in out-patient cardiac rehabilitation (33% compared to 11.8%, F=7.1, p=.03) and a trend toward more steps walked during the first week (X=1,307, SD=652 compared to X=782, SD=544, t-test 1.8, p=.07). The feasibility of the intervention was better for the home health participants than for those in the skilled nursing facility and there were no safety concerns. The provision of cardiac-focused rehabilitation during postacute care has the potential to bridge the gap in transitional services from hospitalization to outpatient cardiac rehabilitation for these patients at high risk for future cardiac events. Further evidence of the efficacy of Cardiac TRUST is warranted. PMID:22084960

  19. Rapid development of cardiac dysfunction in a canine model of insulin resistance and moderate obesity.

    Science.gov (United States)

    Broussard, Josiane L; Nelson, Michael D; Kolka, Cathryn M; Bediako, Isaac Asare; Paszkiewicz, Rebecca L; Smith, Laura; Szczepaniak, Edward W; Stefanovski, Darko; Szczepaniak, Lidia S; Bergman, Richard N

    2016-01-01

    The worldwide incidence of obesity and diabetes continues to rise at an alarming rate. A major cause of the morbidity and mortality associated with obesity and diabetes is heart disease, yet the mechanisms that lead to cardiovascular complications remain unclear. We performed cardiac MRI to assess left ventricular morphology and function during the development of moderate obesity and insulin resistance in a well-established canine model (n = 26). To assess the influence of dietary fat composition, we randomised animals to a traditional lard diet (rich in saturated and monounsaturated fat; n = 12), a salmon oil diet (rich in polyunsaturated fat; n = 8) or a control diet (n = 6). High-fat feeding with lard increased body weight and fasting insulin and markedly reduced insulin sensitivity. Lard feeding also significantly reduced left ventricular function, evidenced by a worsening of circumferential strain and impairment in left ventricular torsion. High-fat feeding with salmon oil increased body weight; however, salmon oil feeding did not impair insulin sensitivity or cardiac function. These data emphasise the importance of dietary fat composition on both metabolic and cardiac function, and have important implications for the relationship between diet and health.

  20. In silico prediction of sex-based differences in human susceptibility to cardiac ventricular tachyarrhythmias

    Directory of Open Access Journals (Sweden)

    Pei-Chi eYang

    2012-09-01

    Full Text Available Sex-based differences in human susceptibility to cardiac ventricular tachyarrhythmias likely result from the emergent effects of multiple intersecting processes that fundamentally differ in male and female hearts. Included are measured differences in the genes encoding key cardiac ion channels and effects of sex steroid hormones to acutely modify electrical activity. At the genome scale, human females have recently been shown to have lower expression of genes encoding key cardiac repolarizing potassium currents and connexin43, the primary ventricular gap junction subunit. Human males and females also have distinct sex steroid hormones. Here, we developed mathematical models for male and female ventricular human heart cells by incorporating experimentally determined genomic differences and effects of sex steroid hormones into the O’Hara-Rudy model. These male and female model cells and tissues then were used to predict how various sex-based differences underlie arrhythmia risk. Genomic-based differences in ion channel expression were alone sufficient to determine longer female cardiac action potential durations (APD in both epicardial and endocardial cells compared to males. Subsequent addition of sex steroid hormones exacerbated these differences, as testosterone further shortened APDs, while estrogen and progesterone application resulted in disparate effects on APDs. Our results indicate that incorporation of experimentally determined genomic differences from human hearts in conjunction with sex steroid hormones are consistent with clinically observed differences in QT interval, T-wave shape and morphology, and critically, in the higher vulnerability of adult human females to Torsades de Pointes type arrhythmias. The model suggests that female susceptibility to alternans stems from longer female action potentials, while reentrant arrhythmia derives largely from sex-based differences in conduction play an important role in arrhythmia

  1. Gastrodin Inhibits Store-Operated Ca2+ Entry and Alleviates Cardiac Hypertrophy

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Yao

    2017-04-01

    Full Text Available Cardiac hypertrophy is a major risk factor for heart failure, which are among the leading causes of human death. Gastrodin is a small molecule that has been used clinically to treat neurological and vascular diseases for many years without safety issues. In the present study, we examined protective effect of gastrodin against cardiac hypertrophy and explored the underlying mechanism. Phenylephrine and angiotensin II were used to induce cardiac hypertrophy in a mouse model and a cultured cardiomyocyte model. Gastrodin was found to alleviate the cardiac hypertrophy in both models. Mechanistically, gastrodin attenuated the store-operated Ca2+ entry (SOCE by reducing the expression of STIM1 and Orai1, two key proteins in SOCE, in animal models as well as in cultured cardiomyocyte model. Furthermore, suppressing SOCE by RO2959, Orai1-siRNAs or STIM1-siRNAs markedly attenuated the phenylephrine-induced hypertrophy in cultured cardiomyocyte model. Together, these results showed that gastrodin inhibited cardiac hypertrophy and it also reduced the SOCE via its action on the expression of STIM1 and Orai1. Furthermore, suppression of SOCE could reduce the phenylephrine-induced cardiomyocyte hypertrophy, suggesting that SOCE-STIM1-Orai1 is located upstream of hypertrophy.

  2. A new thermal conductivity model for nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Junemoo; Kleinstreuer, Clement [Department of Mechanical and Aerospace Engineering (United States)], E-mail: ck@eos.ncsu.edu

    2004-12-15

    In a quiescent suspension, nanoparticles move randomly and thereby carry relatively large volumes of surrounding liquid with them. This micro-scale interaction may occur between hot and cold regions, resulting in a lower local temperature gradient for a given heat flux compared with the pure liquid case. Thus, as a result of Brownian motion, the effective thermal conductivity, k{sub eff}, which is composed of the particles' conventional static part and the Brownian motion part, increases to result in a lower temperature gradient for a given heat flux. To capture these transport phenomena, a new thermal conductivity model for nanofluids has been developed, which takes the effects of particle size, particle volume fraction and temperature dependence as well as properties of base liquid and particle phase into consideration by considering surrounding liquid traveling with randomly moving nanoparticles.The strong dependence of the effective thermal conductivity on temperature and material properties of both particle and carrier fluid was attributed to the long impact range of the interparticle potential, which influences the particle motion. In the new model, the impact of Brownian motion is more effective at higher temperatures, as also observed experimentally. Specifically, the new model was tested with simple thermal conduction cases, and demonstrated that for a given heat flux, the temperature gradient changes significantly due to a variable thermal conductivity which mainly depends on particle volume fraction, particle size, particle material and temperature. To improve the accuracy and versatility of the k{sub eff}model, more experimental data sets are needed.

  3. Cardiac troponins--Translational biomarkers in cardiology: Theory and practice of cardiac troponin high-sensitivity assays.

    Science.gov (United States)

    Adamcova, Michaela; Popelova-Lencova, Olga; Jirkovsky, Eduard; Simko, Fedor; Gersl, Vladimir; Sterba, Martin

    2016-01-01

    Tn is a unique translational biomarker in cardiology whose potential has not been diminished in the new era of high sensitive assays. cTns can be valuable markers in cardiac diseases as well as in infectious diseases and respiratory diseases. Furthermore, the role of cTns is growing in the routine evaluation of cardioxicity and in determining the efficacy/safety ratio of novel cardioprotective strategies in clinical settings. cTns can detect myocardial injury not only in a wide spectrum of laboratory animals in experimental studies in vivo, but also in isolated heart models or cardiomyocytes in vitro. The crucial issue regarding the cross-species usage of cardiac troponin investigation remains the choice of cardiac troponin testing. This review summarizes the recent proteomic data on aminoacid sequences of cTnT and cTnI in various species, as well as selected analytical characteristics of human cardiac troponin high-sensitivity assays. Due to the highly phylogenetically conserved structure of troponins, the same bioindicator can be investigated using the same method in both clinical and experimental cardiology, thus contributing to a better understanding of the pathogenesis of cardiac diseases as well as to increased effectiveness of troponin use in clinical practice. Measuring cardiac troponins using commercially available human high-sensitivity cardiac troponin tests with convenient antibodies selected on the basis of adequate proteomic knowledge can solve many issues which would otherwise be difficult to address in clinical settings for various ethical and practical reasons. Our survey could help elaborate the practical guidelines for optimizing the choice of cTns assay in cardiology. © 2016 International Union of Biochemistry and Molecular Biology.

  4. Model calculation of thermal conductivity in antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Mikhail, I.F.I., E-mail: ifi_mikhail@hotmail.com; Ismail, I.M.M.; Ameen, M.

    2015-11-01

    A theoretical study is given of thermal conductivity in antiferromagnetic materials. The study has the advantage that the three-phonon interactions as well as the magnon phonon interactions have been represented by model operators that preserve the important properties of the exact collision operators. A new expression for thermal conductivity has been derived that involves the same terms obtained in our previous work in addition to two new terms. These two terms represent the conservation and quasi-conservation of wavevector that occur in the three-phonon Normal and Umklapp processes respectively. They gave appreciable contributions to the thermal conductivity and have led to an excellent quantitative agreement with the experimental measurements of the antiferromagnet FeCl{sub 2}. - Highlights: • The Boltzmann equations of phonons and magnons in antiferromagnets have been studied. • Model operators have been used to represent the magnon–phonon and three-phonon interactions. • The models possess the same important properties as the exact operators. • A new expression for the thermal conductivity has been derived. • The results showed a good quantitative agreement with the experimental data of FeCl{sub 2}.

  5. Inhibition of the Unfolded Protein Response Mechanism Prevents Cardiac Fibrosis.

    Directory of Open Access Journals (Sweden)

    Jody Groenendyk

    Full Text Available Cardiac fibrosis attributed to excessive deposition of extracellular matrix proteins is a major cause of heart failure and death. Cardiac fibrosis is extremely difficult and challenging to treat in a clinical setting due to lack of understanding of molecular mechanisms leading to cardiac fibrosis and effective anti-fibrotic therapies. The objective in this study was to examine whether unfolded protein response (UPR pathway mediates cardiac fibrosis and whether a pharmacological intervention to modulate UPR can prevent cardiac fibrosis and preserve heart function.We demonstrate here that the mechanism leading to development of fibrosis in a mouse with increased expression of calreticulin, a model of heart failure, stems from impairment of endoplasmic reticulum (ER homeostasis, transient activation of the unfolded protein response (UPR pathway and stimulation of the TGFβ1/Smad2/3 signaling pathway. Remarkably, sustained pharmacologic inhibition of the UPR pathway by tauroursodeoxycholic acid (TUDCA is sufficient to prevent cardiac fibrosis, and improved exercise tolerance.We show that the mechanism leading to development of fibrosis in a mouse model of heart failure stems from transient activation of UPR pathway leading to persistent remodelling of cardiac tissue. Blocking the activation of the transiently activated UPR pathway by TUDCA prevented cardiac fibrosis, and improved prognosis. These findings offer a window for additional interventions that can preserve heart function.

  6. Study of gap conductance model for thermo mechanical fully coupled finite element model

    International Nuclear Information System (INIS)

    Kim, Hyo Cha; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun

    2012-01-01

    A light water reactor (LWR) fuel rod consists of zirconium alloy cladding and uranium dioxide pellets, with a slight gap between them. Therefore, the mechanical integrity of zirconium alloy cladding is the most critical issue, as it is an important barrier for fission products released into the environment. To evaluate the stress and strain of the cladding during operation, fuel performance codes with a one-dimensional (1D) approach have been reported since the 1970s. However, it is difficult for a 1D model to simulate the stress and strain of the cladding accurately owing to a lack of degree of freedom. A LWR fuel performance code should include thermo-mechanical coupled model owing to the existence of the fuel-cladding gap. Generally, the gap that is filled with helium gas results in temperature drop along radius direction. The gap conductance that determines temperature gradient within the gap is very sensitive to gap thickness. For instance, once the gap size increases up to several microns in certain region, difference of surface temperatures increases up to 100 Kelvin. Therefore, iterative thermo-mechanical coupled analysis is required to solve temperature distribution throughout pellet and cladding. Consequently, the Finite Element (FE) module, which can simulate a higher degree of freedom numerically, is an indispensable requirement to understand the thermomechanical behavior of cladding. FRAPCON-3, which is reliable performance code, has iterative loop for thermo-mechanical coupled calculation to solve 1D gap conductance model. In FEMAXI-III, 1D thermal analysis module and FE module for stress-strain analysis were separated. 1D thermal module includes iterative analysis between them. DIONISIO code focused on thermal contact model as function of surface roughness and contact pressure when the gap is closed. In previous works, gap conductance model has been developed only for 1D model or hybrid model (1D and FE). To simulate temperature, stress and strain

  7. A model of cardiac ryanodine receptor gating predicts experimental Ca2+-dynamics and Ca2+-triggered arrhythmia in the long QT syndrome

    Science.gov (United States)

    Wilson, Dan; Ermentrout, Bard; Němec, Jan; Salama, Guy

    2017-09-01

    Abnormal Ca2+ handling is well-established as the trigger of cardiac arrhythmia in catecholaminergic polymorphic ventricular tachycardia and digoxin toxicity, but its role remains controversial in Torsade de Pointes (TdP), the arrhythmia associated with the long QT syndrome (LQTS). Recent experimental results show that early afterdepolarizations (EADs) that initiate TdP are caused by spontaneous (non-voltage-triggered) Ca2+ release from Ca2+-overloaded sarcoplasmic reticulum (SR) rather than the activation of the L-type Ca2+-channel window current. In bradycardia and long QT type 2 (LQT2), a second, non-voltage triggered cytosolic Ca2+ elevation increases gradually in amplitude, occurs before overt voltage instability, and then precedes the rise of EADs. Here, we used a modified Shannon-Puglisi-Bers model of rabbit ventricular myocytes to reproduce experimental Ca2+ dynamics in bradycardia and LQT2. Abnormal systolic Ca2+-oscillations and EADs caused by SR Ca2+-release are reproduced in a modified 0-dimensional model, where 3 gates in series control the ryanodine receptor (RyR2) conductance. Two gates control RyR2 activation and inactivation and sense cytosolic Ca2+ while a third gate senses luminal junctional SR Ca2+. The model predicts EADs in bradycardia and low extracellular [K+] and cessation of SR Ca2+-release terminate salvos of EADs. Ca2+-waves, systolic cell-synchronous Ca2+-release, and multifocal diastolic Ca2+ release seen in subcellular Ca2+-mapping experiments are observed in the 2-dimensional version of the model. These results support the role of SR Ca2+-overload, abnormal SR Ca2+-release, and the subsequent activation of the electrogenic Na+/Ca2+-exchanger as the mechanism of TdP. The model offers new insights into the genesis of cardiac arrhythmia and new therapeutic strategies.

  8. Cardiac tumors: optimal cardiac MR sequences and spectrum of imaging appearances.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2012-02-01

    OBJECTIVE: This article reviews the optimal cardiac MRI sequences for and the spectrum of imaging appearances of cardiac tumors. CONCLUSION: Recent technologic advances in cardiac MRI have resulted in the rapid acquisition of images of the heart with high spatial and temporal resolution and excellent myocardial tissue characterization. Cardiac MRI provides optimal assessment of the location, functional characteristics, and soft-tissue features of cardiac tumors, allowing accurate differentiation of benign and malignant lesions.

  9. Calorie restriction attenuates cardiac remodeling and diastolic dysfunction in a rat model of metabolic syndrome.

    Science.gov (United States)

    Takatsu, Miwa; Nakashima, Chieko; Takahashi, Keiji; Murase, Tamayo; Hattori, Takuya; Ito, Hiromi; Murohara, Toyoaki; Nagata, Kohzo

    2013-11-01

    Calorie restriction (CR) can modulate the features of obesity-related metabolic and cardiovascular diseases. We have recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of metabolic syndrome. DS/obese rats develop hypertension and manifest left ventricular remodeling and diastolic dysfunction, as well as increased cardiac oxidative stress and inflammation. We have now investigated the effects of CR on cardiac pathophysiology in DS/obese rats. DS/obese rats were fed either normal laboratory chow ad libitum or a calorie-restricted diet (65% of the average food intake for ad libitum) from 9 to 13 weeks. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+) or DS/lean) littermates served as controls. CR reduced body weight in both DS/obese and DS/lean rats, as well as attenuated the development of hypertension in DS/obese rats without affecting blood pressure in DS/lean rats. CR also reduced body fat content, ameliorated left ventricular hypertrophy, fibrosis, and diastolic dysfunction, and attenuated cardiac oxidative stress and inflammation in DS/obese rats. In addition, it increased serum adiponectin concentration, as well as downregulated the expression of angiotensin-converting enzyme and angiotensin II type 1A receptor genes in the heart of DS/obese rats. Our results thus show that CR attenuated obesity and hypertension, as well as left ventricular remodeling and diastolic dysfunction in DS/obese rats, with these latter effects being associated with reduced cardiac oxidative stress and inflammation.

  10. Chronic intermittent hypoxia induces cardiac inflammation and dysfunction in a rat obstructive sleep apnea model.

    Science.gov (United States)

    Wei, Qin; Bian, Yeping; Yu, Fuchao; Zhang, Qiang; Zhang, Guanghao; Li, Yang; Song, Songsong; Ren, Xiaomei; Tong, Jiayi

    2016-11-01

    Chronic intermittent hypoxia is considered to play an important role in cardiovascular pathogenesis during the development of obstructive sleep apnea (OSA). We used a well-described OSA rat model induced with simultaneous intermittent hypoxia. Male Sprague Dawley rats were individually placed into plexiglass chambers with air pressure and components were electronically controlled. The rats were exposed to intermittent hypoxia 8 hours daily for 5 weeks. The changes of cardiac structure and function were examined by ultrasound. The cardiac pathology, apoptosis, and fibrosis were analyzed by H&E staining, TUNNEL assay, and picosirius staining, respectively. The expression of inflammation and fibrosis marker genes was analyzed by quantitative real-time PCR and Western blot. Chronic intermittent hypoxia/low pressure resulted in significant increase of left ventricular internal diameters (LVIDs), end-systolic volume (ESV), end-diastolic volume (EDV), and blood lactate level and marked reduction in ejection fraction and fractional shortening. Chronic intermittent hypoxia increased TUNNEL-positive myocytes, disrupted normal arrangement of cardiac fibers, and increased Sirius stained collagen fibers. The expression levels of hypoxia induced factor (HIF)-1α, NF-kB, IL-6, and matrix metallopeptidase 2 (MMP-2) were significantly increased in the heart of rats exposed to chronic intermittent hypoxia. In conclusion, the left ventricular function was adversely affected by chronic intermittent hypoxia, which is associated with increased expression of HIF-1α and NF-kB signaling molecules and development of cardiac inflammation, apoptosis and fibrosis. © 2016 by the Journal of Biomedical Research. All rights reserved.

  11. Cardiac c-Kit Biology Revealed by Inducible Transgenesis.

    Science.gov (United States)

    Gude, Natalie A; Firouzi, Fareheh; Broughton, Kathleen M; Ilves, Kelli; Nguyen, Kristine P; Payne, Christina R; Sacchi, Veronica; Monsanto, Megan M; Casillas, Alexandria R; Khalafalla, Farid G; Wang, Bingyan J; Ebeid, David E; Alvarez, Roberto; Dembitsky, Walter P; Bailey, Barbara A; van Berlo, Jop; Sussman, Mark A

    2018-06-22

    Biological significance of c-Kit as a cardiac stem cell marker and role(s) of c-Kit+ cells in myocardial development or response to pathological injury remain unresolved because of varied and discrepant findings. Alternative experimental models are required to contextualize and reconcile discordant published observations of cardiac c-Kit myocardial biology and provide meaningful insights regarding clinical relevance of c-Kit signaling for translational cell therapy. The main objectives of this study are as follows: demonstrating c-Kit myocardial biology through combined studies of both human and murine cardiac cells; advancing understanding of c-Kit myocardial biology through creation and characterization of a novel, inducible transgenic c-Kit reporter mouse model that overcomes limitations inherent to knock-in reporter models; and providing perspective to reconcile disparate viewpoints on c-Kit biology in the myocardium. In vitro studies confirm a critical role for c-Kit signaling in both cardiomyocytes and cardiac stem cells. Activation of c-Kit receptor promotes cell survival and proliferation in stem cells and cardiomyocytes of either human or murine origin. For creation of the mouse model, the cloned mouse c-Kit promoter drives Histone2B-EGFP (enhanced green fluorescent protein; H2BEGFP) expression in a doxycycline-inducible transgenic reporter line. The combination of c-Kit transgenesis coupled to H2BEGFP readout provides sensitive, specific, inducible, and persistent tracking of c-Kit promoter activation. Tagging efficiency for EGFP+/c-Kit+ cells is similar between our transgenic versus a c-Kit knock-in mouse line, but frequency of c-Kit+ cells in cardiac tissue from the knock-in model is 55% lower than that from our transgenic line. The c-Kit transgenic reporter model reveals intimate association of c-Kit expression with adult myocardial biology. Both cardiac stem cells and a subpopulation of cardiomyocytes express c-Kit in uninjured adult heart

  12. Thermal conductivity model of vibro-packed fuel

    International Nuclear Information System (INIS)

    Yeon Soo, Kim

    2001-01-01

    In an effort to dispose of excess weapons grade plutonium accumulated in the cold war era in the United States and the Russian Federation, one method currently under investigation is the conversion of the plutonium into mixed oxide (MOX) reactor fuel for LWRs and fast reactors in the Russian Federation. A fuel option already partly developed at the Research Institute of Atomic Reactors (RIAR) in Dimitrovgrad is that of vibro-packed MOX. Fuel rod fabrication using powder vibro-packing is attractive because it includes neither a process too complex to operate in glove boxes (or remotely), nor a waste-producing step necessary for the conventional pellet rod fabrication. However, because of its loose bonding between fuel particles at the beginning of life, vibro-packed MOX fuel has a somewhat less effective thermal conductivity than fully sintered pellet fuel, and undergoes more restructuring. Helium would also likely be pressurized in vibro-packed MOX fuel rods for LWRs to enhance initial fuel thermal conductivity. The combination of these two factors complicates development of an accurate thermal conductivity model. But clearly in order to predict fuel thermomechanical responses during irradiation of vibro-packed MOX fuel, fuel thermal conductivity must be known. The Vibropac fuel of interest in this study refers the fuel that is compacted with irregular fragments of mixed oxide fuel. In this paper, the thermal-conductivity models in the literature that dealt with relatively similar situations to the present case are examined. Then, the best model is selected based on accuracy of prediction and applicability. Then, the selected model is expanded to fit the various situations of interest. (author)

  13. Modelling the pathogenesis of Myotonic Dystrophy type 1 cardiac phenotype through human iPSC-derived cardiomyocytes.

    Science.gov (United States)

    Spitalieri, Paola; Talarico, Rosa V; Caioli, Silvia; Murdocca, Michela; Serafino, Annalucia; Girasole, Marco; Dinarelli, Simone; Longo, Giovanni; Pucci, Sabina; Botta, Annalisa; Novelli, Giuseppe; Zona, Cristina; Mango, Ruggiero; Sangiuolo, Federica

    2018-03-15

    Myotonic Dystrophy type 1 (DM1) is a multisystemic disease, autosomal dominant, caused by a CTG repeat expansion in DMPK gene. We assessed the appropriateness of patient-specific induced pluripotent stem cell-derived cardiomyocytes (CMs) as a model to recapitulate some aspects of the pathogenetic mechanism involving cardiac manifestations in DM1 patients. Once obtained in vitro, CMs have been characterized for their morphology and their functionality. CMs DM1 show intranuclear foci and transcript markers abnormally spliced respect to WT ones, as well as several irregularities in nuclear morphology, probably caused by an unbalanced lamin A/C ratio. Electrophysiological characterization evidences an abnormal profile only in CMs DM1 such that the administration of antiarrythmic drugs to these cells highlights even more the functional defect linked to the disease. Finally, Atomic Force Measurements reveal differences in the biomechanical behaviour of CMs DM1, in terms of frequencies and synchronicity of the beats. Altogether the complex phenotype described in this work, strongly reproduces some aspects of the human DM1 cardiac phenotype. Therefore, the present study provides an in vitro model suggesting novel insights into the mechanisms leading to the development of arrhythmogenesis and dilatative cardiomyopathy to consider when approaching to DM1 patients, especially for the risk assessment of sudden cardiac death (SCD). These data could be also useful in identifying novel biomarkers effective in clinical settings and patient-tailored therapies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Numerical Modeling of Electrical Contact Conductance of Rough Bodies

    Directory of Open Access Journals (Sweden)

    M. V. Murashov

    2015-01-01

    Full Text Available Since the beginning of the 20th century to the present time, efforts have been made to develop a model of the electrical contact conductance. The development of micro- and nanotechnologies make contact conductance problem more essential. To conduct borrowing from a welldeveloped thermal contact conductance models on the basis of thermal and electrical conductivity analogy is often not possible due to a number of fundamental differences. While some 3Dmodels of rough bodies deformation have been developed in one way or another, a 3D-model of the electrical conductance through rough bodies contact is still not. A spatial model of electrical contact of rough bodies is proposed, allows one to calculate the electrical contact conductance as a function of the contact pressure. Representative elements of the bodies are parallelepipeds with deterministic roughness on the contacting surfaces. First the non-linear elastic-plastic deformation of rough surface under external pressure is solved using the finite element software ANSYS. Then the solution of electrostatic problem goes on the same finite element mesh. Aluminum AD1 is used as the material of the contacting bodies with properties that account for cold work hardening of the surface. The numerical model is built within the continuum mechanics and nanoscale effects are not taken into account. The electrical contact conductance was calculated on the basis of the concept of electrical resistance of the model as the sum of the electrical resistances of the contacting bodies and the contact itself. It was assumed that there is no air in the gap between the bodies. The dependence of the electrical contact conductance on the contact pressure is calculated as well as voltage and current density distributions in the contact bodies. It is determined that the multi-asperity contact mode, adequate to real roughness, is achieved at pressures higher than 3MPa, while results within the single contact spot are

  15. Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis.

    Directory of Open Access Journals (Sweden)

    Juhyun Lee

    Full Text Available Peristaltic contraction of the embryonic heart tube produces time- and spatial-varying wall shear stress (WSS and pressure gradients (∇P across the atrioventricular (AV canal. Zebrafish (Danio rerio are a genetically tractable system to investigate cardiac morphogenesis. The use of Tg(fli1a:EGFP (y1 transgenic embryos allowed for delineation and two-dimensional reconstruction of the endocardium. This time-varying wall motion was then prescribed in a two-dimensional moving domain computational fluid dynamics (CFD model, providing new insights into spatial and temporal variations in WSS and ∇P during cardiac development. The CFD simulations were validated with particle image velocimetry (PIV across the atrioventricular (AV canal, revealing an increase in both velocities and heart rates, but a decrease in the duration of atrial systole from early to later stages. At 20-30 hours post fertilization (hpf, simulation results revealed bidirectional WSS across the AV canal in the heart tube in response to peristaltic motion of the wall. At 40-50 hpf, the tube structure undergoes cardiac looping, accompanied by a nearly 3-fold increase in WSS magnitude. At 110-120 hpf, distinct AV valve, atrium, ventricle, and bulbus arteriosus form, accompanied by incremental increases in both WSS magnitude and ∇P, but a decrease in bi-directional flow. Laminar flow develops across the AV canal at 20-30 hpf, and persists at 110-120 hpf. Reynolds numbers at the AV canal increase from 0.07±0.03 at 20-30 hpf to 0.23±0.07 at 110-120 hpf (p< 0.05, n=6, whereas Womersley numbers remain relatively unchanged from 0.11 to 0.13. Our moving domain simulations highlights hemodynamic changes in relation to cardiac morphogenesis; thereby, providing a 2-D quantitative approach to complement imaging analysis.

  16. Cardiac function and cognition in older community-dwelling cardiac patients.

    Science.gov (United States)

    Eggermont, Laura H P; Aly, Mohamed F A; Vuijk, Pieter J; de Boer, Karin; Kamp, Otto; van Rossum, Albert C; Scherder, Erik J A

    2017-11-01

    Cognitive deficits have been reported in older cardiac patients. An underlying mechanism for these findings may be reduced cardiac function. The relationship between cardiac function as represented by different echocardiographic measures and different cognitive function domains in older cardiac patients remains unknown. An older (≥70 years) heterogeneous group of 117 community-dwelling cardiac patients under medical supervision by a cardiologist underwent thorough echocardiographic assessment including left ventricular ejection fraction, cardiac index, left atrial volume index, left ventricular mass index, left ventricular diastolic function, and valvular calcification. During a home visit, a neuropsychological assessment was performed within 7.1 ± 3.8 months after echocardiographic assessment; the neuropsychological assessment included three subtests of a word-learning test (encoding, recall, recognition) to examine one memory function domain and three executive function tests, including digit span backwards, Trail Making Test B minus A, and the Stroop colour-word test. Regression analyses showed no significant linear or quadratic associations between any of the echocardiographic functions and the cognitive function measures. None of the echocardiographic measures as representative of cardiac function was correlated with memory or executive function in this group of community-dwelling older cardiac patients. These findings contrast with those of previous studies. © 2017 Japanese Psychogeriatric Society.

  17. Gene Expression Profile in the Early Stage of Angiotensin II-induced Cardiac Remodeling: a Time Series Microarray Study in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Meng-Qiu Dang

    2015-01-01

    Full Text Available Background/Aims: Angiotensin II (Ang II plays a critical role in the cardiac remodeling contributing to heart failure. However, the gene expression profiles induced by Ang II in the early stage of cardiac remodeling remain unknown. Methods: Wild-type male mice (C57BL/6 background, 10-weeek-old were infused with Ang II (1500 ng/kg/min for 7 days. Blood pressure was measured. Cardiac function and remodeling were examined by echocardiography, H&E and Masson staining. The time series microarrays were then conducted to detected gene expression profiles. Results: Microarray results identified that 1,489 genes were differentially expressed in the hearts at day 1, 3 and 7 of Ang II injection. These genes were further classified into 26 profiles by hierarchical cluster analysis. Of them, 4 profiles were significant (No. 19, 8, 21 and 22 and contained 904 genes. Gene Ontology showed that these genes mainly participate in metabolic process, oxidation-reduction process, extracellular matrix organization, apoptotic process, immune response, and others. Significant pathways included focal adhesion, ECM-receptor interaction, cytokine-cytokine receptor interaction, MAPK and insulin signaling pathways, which were known to play important roles in Ang II-induced cardiac remodeling. Moreover, gene co-expression networks analysis suggested that serine/cysteine peptidase inhibitor, member 1 (Serpine1, also known as PAI-1 localized in the core of the network. Conclusions: Our results indicate that many genes are mainly involved in metabolism, inflammation, cardiac fibrosis and hypertrophy. Serpine1 may play a central role in the development of Ang II-induced cardiac remodeling at the early stage.

  18. Lamin A/C mutations with lipodystrophy, cardiac abnormalities, and muscular dystrophy

    NARCIS (Netherlands)

    van der Kooi, A. J.; Bonne, G.; Eymard, B.; Duboc, D.; Talim, B.; van der Valk, M.; Reiss, P.; Richard, P.; Demay, L.; Merlini, L.; Schwartz, K.; Busch, H. F. M.; de Visser, M.

    2002-01-01

    Mutations in the lamin A/C gene are found in Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy with cardiac conduction disturbances, dilated cardiomyopathy with conduction system disease, and familial partial lipodystrophy. Cases with lamin A/C mutations presenting with lipodystrophy

  19. Cardiac involvement in myotonic muscular dystrophy (Steinert's disease): a prospective study of 25 patients

    International Nuclear Information System (INIS)

    Perloff, J.K.; Stevenson, W.G.; Roberts, N.K.; Cabeen, W.; Weiss, J.

    1984-01-01

    The presence, degree and frequency of disorders of cardiac conduction and rhythm and of regional or global myocardial dystrophy or myotonia have not previously been studied prospectively and systematically in the same population of patients with myotonic dystrophy. Accordingly, 25 adults with classic Steinert's disease underwent electrocardiography, 24-hour ambulatory electrocardiography, vectorcardiography, chest x-rays, echocardiography, electrophysiologic studies, and technetium-99m angiography. Clinically important cardiac manifestations of myotonic dystrophy reside in specialized tissues rather than in myocardium. Involvement is relatively specific, primarily assigned to the His-Purkinje system. The cardiac muscle disorder takes the form of dystrophy rather than myotonia, and is not selective, appearing with approximately equal distribution in all 4 chambers. Myocardial dystrophy seldom results in clinically overt ventricular failure, but may be responsible for atrial and ventricular arrhythmias. Since myotonic dystrophy is genetically transmitted, a primary biochemical defect has been proposed with complete expression of the gene toward striated muscle tissue, whether skeletal or cardiac. Specialized cardiac tissue and myocardium have close, if not identical, embryologic origins, so it is not surprising that the genetic marker affects both. Cardiac involvement is therefore an integral part of myotonic dystrophy, targeting particularly the infranodal conduction system, to a lesser extent the sinus node, and still less specifically, the myocardium

  20. Efficacy of tranexamic acid in paediatric cardiac surgery: a systematic review and meta-analysis

    NARCIS (Netherlands)

    Faraoni, David; Willems, Ariane; Melot, Christian; de Hert, Stefan; van der Linden, Philippe

    2012-01-01

    The benefit-to-risk ratio of using tranexamic acid (TXA) in paediatric cardiac surgery has not yet been determined. This systematic review evaluated studies that compared TXA to placebo in children undergoing cardiac surgery. A systematic search was conducted in all relevant randomized controlled

  1. Cardiac function and cognition in older community-dwelling cardiac patients

    NARCIS (Netherlands)

    Eggermont, Laura H.P.; Aly, Mohamed F.A.; Vuijk, Pieter J.; de Boer, Karin; Kamp, Otto; van Rossum, Albert C.; Scherder, Erik J.A.

    2017-01-01

    Background: Cognitive deficits have been reported in older cardiac patients. An underlying mechanism for these findings may be reduced cardiac function. The relationship between cardiac function as represented by different echocardiographic measures and different cognitive function domains in older

  2. Dietary salt restriction improves cardiac and adipose tissue pathology independently of obesity in a rat model of metabolic syndrome.

    Science.gov (United States)

    Hattori, Takuya; Murase, Tamayo; Takatsu, Miwa; Nagasawa, Kai; Matsuura, Natsumi; Watanabe, Shogo; Murohara, Toyoaki; Nagata, Kohzo

    2014-12-02

    Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, which are derived from a cross between Dahl salt-sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal-salt (0.36% NaCl in chow) or low-salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared with similarly treated homozygous lean littermates (DahlS.Z-Lepr(+)/Lepr(+), or DS/lean rats). DS/obese rats fed the normal-salt diet progressively developed hypertension and showed left ventricular hypertrophy, fibrosis, and diastolic dysfunction at 15 weeks. Dietary salt restriction attenuated all of these changes in DS/obese rats. The levels of cardiac oxidative stress and inflammation and the expression of cardiac renin-angiotensin-aldosterone system genes were increased in DS/obese rats fed the normal-salt diet, and dietary salt restriction downregulated these parameters in both DS/obese and DS/lean rats. In addition, dietary salt restriction attenuated the increase in visceral adipose tissue inflammation and the decrease in insulin signaling apparent in DS/obese rats without reducing body weight or visceral adipocyte size. Dietary salt restriction did not alter fasting serum glucose levels but it markedly decreased the fasting serum insulin concentration in DS/obese rats. Dietary salt restriction not only prevents hypertension and cardiac injury but also ameliorates insulin resistance, without reducing obesity, in this model of metabolic syndrome. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  3. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, J.G.P. [Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Universidade Iguaçu, Campos V, Itaperuna, RJ (Brazil); Faculdade de Minas, Muriaé, MG (Brazil); Vasques, E.R. [Departamento de Gastroenterologia, LIM 37, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Arida, R.M. [Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cavalheiro, E.A. [Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cabral, F.R.; Torres, L.B. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Menezes-Rodrigues, F.S.; Jurkiewicz, A.; Caricati-Neto, A. [Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Godoy, C.M.G. [Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP (Brazil); Gomes da Silva, S. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Núcleo de Pesquisas Tecnológicas, Programa Integrado em Engenharia Biomédica, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP (Brazil)

    2015-01-13

    The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode.

  4. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats

    International Nuclear Information System (INIS)

    Tavares, J.G.P.; Vasques, E.R.; Arida, R.M.; Cavalheiro, E.A.; Cabral, F.R.; Torres, L.B.; Menezes-Rodrigues, F.S.; Jurkiewicz, A.; Caricati-Neto, A.; Godoy, C.M.G.; Gomes da Silva, S.

    2015-01-01

    The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode

  5. Feasibility of a Facebook Intervention for Exercise Motivation and Cardiac Rehabilitation Adherence: Study Protocol.

    Science.gov (United States)

    Siegmund, Lee Anne; Ahmed, Haitham M; Crawford, Michael Todd; Bena, James Frank

    2017-08-18

    While cardiac rehabilitation has been shown to be effective at improving coronary heart disease (CHD), participation is generally poor. Attempts to increase uptake and adherence often fail. Use of a Facebook intervention for this population may be a unique opportunity to support self-determined motivation and affect adherence. To evaluate the impact of a Facebook intervention on motivation for exercise and adherence to cardiac rehabilitation in patients with CHD during a 12-week, Phase II cardiac rehabilitation program. A prospective, randomized controlled pilot study, grounded in Self-Determination Theory, will be conducted. Participants will be recruited from inpatient, or the intake visit to outpatient, cardiac rehabilitation, and then randomly assigned to the intervention or comparison group. Participants in the intervention group will take part in a private Facebook group. Weekly posts will be designed to support self-determined motivation, measured at baseline and postcardiac rehabilitation by the Behavioral Regulation in Exercise Questionnaire-3 (BREQ-3). The Psychological Need Satisfaction for Exercise (PNSE) scale will measure fulfillment of needs that affect motivation. Participants in the comparison group will be given the same materials, but these will be supplied via handouts and email. The number of sessions attended will be tallied and analyzed using t tests. Overall motivation will be evaluated using analysis of covariance (ANCOVA) models. Multivariate analysis of variance models will be used to evaluate differences in the change across motivation subtypes. If significant, ANCOVA models for each subtype will be fit. ANCOVA models will be used to compare changes in needs satisfaction, overall and separately among the three subscales, between groups. Engagement in the Facebook group will be measured by number of "likes" and self-report of weekly visits to the group. This project was funded in July 2017 and recruitment is currently underway. The

  6. Nitrates for the prevention of cardiac morbidity and mortality in patients undergoing non-cardiac surgery.

    Science.gov (United States)

    Zhao, Na; Xu, Jin; Singh, Balwinder; Yu, Xuerong; Wu, Taixiang; Huang, Yuguang

    2016-08-04

    resolved differences by discussion and, when necessary, sought help and suggestions from a third review author. We used a random-effects model for data analysis. We included 27 randomized controlled trials (RCTs) (8244 participants analysed). Investigators reported 12 different comparisons of three different nitrates (nitroglycerin, isosorbide dinitrate and nicorandil) versus no treatment, placebo or other pharmacological interventions. All participants were older than 15 years of age. More than half of the trials used general anaesthesia. Surgical procedures in most trials were at low to moderate risk for perioperative cardiac complications. Only two comparisons including three studies reported the primary outcome - all-cause mortality up to 30 days post operation. Researchers reported other morbidity outcomes and adverse events in a variable and heterogeneous way, resulting in limited available data for inclusion in the meta-analysis. We determined that the overall methodological quality of included studies was fair to low, in accordance with risk of bias in most domains.In summary, we found no difference in the primary outcome - all-cause mortality up to 30 days post operation - when nitroglycerin was compared with no treatment (one study, 60 participants, 0/30 vs 1/30; (risk ratio (RR) 0.33, 95% confidence interval (CI) 0.01 to 7.87, very low-quality evidence based on GRADE criteria) or with placebo (two studies, 89 participants, 1/45 vs 0/44; RR 2.81, 95% CI 0.12 to 63.83, very low-quality evidence). Regarding our secondary outcomes, we noted no statistically significant differences in angina pectoris, acute myocardial infarction, acute heart failure, cardiac arrhythmia or cardiac arrest in any comparisons. In comparisons versus nitroglycerin, although more events of cardiac ischaemia were observed in participants receiving no treatment or placebo, we found no statistically significant differences in any comparisons, except the comparison of nicorandil versus placebo

  7. A Numerical Study of Scalable Cardiac Electro-Mechanical Solvers on HPC Architectures

    Directory of Open Access Journals (Sweden)

    Piero Colli Franzone

    2018-04-01

    Full Text Available We introduce and study some scalable domain decomposition preconditioners for cardiac electro-mechanical 3D simulations on parallel HPC (High Performance Computing architectures. The electro-mechanical model of the cardiac tissue is composed of four coupled sub-models: (1 the static finite elasticity equations for the transversely isotropic deformation of the cardiac tissue; (2 the active tension model describing the dynamics of the intracellular calcium, cross-bridge binding and myofilament tension; (3 the anisotropic Bidomain model describing the evolution of the intra- and extra-cellular potentials in the deforming cardiac tissue; and (4 the ionic membrane model describing the dynamics of ionic currents, gating variables, ionic concentrations and stretch-activated channels. This strongly coupled electro-mechanical model is discretized in time with a splitting semi-implicit technique and in space with isoparametric finite elements. The resulting scalable parallel solver is based on Multilevel Additive Schwarz preconditioners for the solution of the Bidomain system and on BDDC preconditioned Newton-Krylov solvers for the non-linear finite elasticity system. The results of several 3D parallel simulations show the scalability of both linear and non-linear solvers and their application to the study of both physiological excitation-contraction cardiac dynamics and re-entrant waves in the presence of different mechano-electrical feedbacks.

  8. Stress cardiac magnetic resonance imaging provides effective cardiac risk reclassification in patients with known or suspected stable coronary artery disease.

    Science.gov (United States)

    Shah, Ravi; Heydari, Bobak; Coelho-Filho, Otavio; Murthy, Venkatesh L; Abbasi, Siddique; Feng, Jiazhuo H; Pencina, Michael; Neilan, Tomas G; Meadows, Judith L; Francis, Sanjeev; Blankstein, Ron; Steigner, Michael; di Carli, Marcelo; Jerosch-Herold, Michael; Kwong, Raymond Y

    2013-08-06

    A recent large-scale clinical trial found that an initial invasive strategy does not improve cardiac outcomes beyond optimized medical therapy in patients with stable coronary artery disease. Novel methods to stratify at-risk patients may refine therapeutic decisions to improve outcomes. In a cohort of 815 consecutive patients referred for evaluation of myocardial ischemia, we determined the net reclassification improvement of the risk of cardiac death or nonfatal myocardial infarction (major adverse cardiac events) incremental to clinical risk models, using guideline-based low (3%) annual risk categories. In the whole cohort, inducible ischemia demonstrated a strong association with major adverse cardiac events (hazard ratio=14.66; Pstatistic, 0.81-0.86; P=0.04; adjusted hazard ratio=7.37; PStress cardiac magnetic resonance imaging effectively reclassifies patient risk beyond standard clinical variables, specifically in patients at moderate to high pretest clinical risk and in patients with previous coronary artery disease. http://www.clinicaltrials.gov. Unique identifier: NCT01821924.

  9. The development of a new cardiac auscultation test: How do screening and diagnostic skills differ?

    DEFF Research Database (Denmark)

    Nielsen, Tommy; Mølgaard, Henning; Ringsted, Charlotte

    2010-01-01

    BACKGROUND: Newly qualified doctors are expected to be able to conduct a cardiac auscultation unassisted, but studies show conflicting results regarding cardiac auscultation skills. METHODS: A two-part test instrument was designed containing innovative recordings of heart sounds from patients...

  10. Evaluation of exercise tolerance patients in cardiac rehabilitation D model based on 6 Minute Walk Test

    Directory of Open Access Journals (Sweden)

    Bielawa Lukasz.

    2012-12-01

    Full Text Available Evaluation of the results of 6-minute walk test depending on gender, age, left ventricular ejection fraction, the primary disease and BMI. Patients underwent assessment of Cardiac Rehabilitation Department in Szymbark in 2012 (80 people. Duration of rehabilitation for all patients was 21 days. The test was performed at the beginning and end of the cycle. Following the 3-week cardiac rehabilitation in the model D in a group of 80 patients with a mean age of 72 years achieved a statistically significant improvement in exercise capacity, expressed in the increase in test 6MWT distance by an average of 52 meters. In the study, men received final results statistically superior to women. The largest increase in the distance gained to patients after aortic valve prosthesis. People who are obese with a body mass index BMI over 30 have an average trip distance underperform both at baseline, final, and in the resulting increase of the distance than those with a BMI under 30. Prevention of obesity, one of the modifiable risk factors for cardiovascular disease should be the goal of training during cardiac rehabilitation patient education.

  11. Myostatin as a Marker for Doxorubicin Induced Cardiac Damage.

    Science.gov (United States)

    Kesik, Vural; Honca, Tevfik; Gulgun, Mustafa; Uysal, Bulent; Kurt, Yasemin Gulcan; Cayci, Tuncer; Babacan, Oguzhan; Gocgeldi, Ercan; Korkmazer, Nadir

    2016-01-01

    Doxorubicin (DXR) is an effective chemotherapeutic agent but causes severe cardiac failure over known doses. Thus, early detection and prevention of cardiac damage is important. Various markers have been tested for early detection of cardiac damage. Myostatin is a protein produced in skeletal muscle cells inhibits muscle differentiation and growth during myogenesis. We evaluated the role of myostatin as a marker for showing DXR induced cardiac damage and compared with well known cardiac markers like NT-proBNP, hs-TnT and CK in a rat model of chronic DXR cardiotoxicity. Myostatin, NT-proBNP, and hs-TnT but not CK rose significantly during DXR treatment. Myostatin can be used as an early marker of DXR induced cardiotoxicity. © 2016 by the Association of Clinical Scientists, Inc.

  12. Adrenergic regulation of conduction velocity in cultures of immature cardiomyocytes

    NARCIS (Netherlands)

    de Boer, T. P.; van Rijen, H. V. M.; van der Heyden, M. A. G.; de Bakker, J. M. T.; van Veen, T. A. B.

    2008-01-01

    During cardiac maturation, increased exposure of the heart to circulating catecholamines correlates with increased conduction velocity and growth of the heart. We used an in vitro approach to study the underlying mechanisms of adrenergic stimulation induced changes in conduction velocity. By

  13. Exercise training restores cardiac protein quality control in heart failure.

    Directory of Open Access Journals (Sweden)

    Juliane C Campos

    Full Text Available Exercise training is a well-known coadjuvant in heart failure treatment; however, the molecular mechanisms underlying its beneficial effects remain elusive. Despite the primary cause, heart failure is often preceded by two distinct phenomena: mitochondria dysfunction and cytosolic protein quality control disruption. The objective of the study was to determine the contribution of exercise training in regulating cardiac mitochondria metabolism and cytosolic protein quality control in a post-myocardial infarction-induced heart failure (MI-HF animal model. Our data demonstrated that isolated cardiac mitochondria from MI-HF rats displayed decreased oxygen consumption, reduced maximum calcium uptake and elevated H₂O₂ release. These changes were accompanied by exacerbated cardiac oxidative stress and proteasomal insufficiency. Declined proteasomal activity contributes to cardiac protein quality control disruption in our MI-HF model. Using cultured neonatal cardiomyocytes, we showed that either antimycin A or H₂O₂ resulted in inactivation of proteasomal peptidase activity, accumulation of oxidized proteins and cell death, recapitulating our in vivo model. Of interest, eight weeks of exercise training improved cardiac function, peak oxygen uptake and exercise tolerance in MI-HF rats. Moreover, exercise training restored mitochondrial oxygen consumption, increased Ca²⁺-induced permeability transition and reduced H₂O₂ release in MI-HF rats. These changes were followed by reduced oxidative stress and better cardiac protein quality control. Taken together, our findings uncover the potential contribution of mitochondrial dysfunction and cytosolic protein quality control disruption to heart failure and highlight the positive effects of exercise training in re-establishing cardiac mitochondrial physiology and protein quality control, reinforcing the importance of this intervention as a non-pharmacological tool for heart failure therapy.

  14. Direct cone-beam cardiac reconstruction algorithm with cardiac banding artifact correction

    International Nuclear Information System (INIS)

    Taguchi, Katsuyuki; Chiang, Beshan S.; Hein, Ilmar A.

    2006-01-01

    Multislice helical computed tomography (CT) is a promising noninvasive technique for coronary artery imaging. Various factors can cause inconsistencies in cardiac CT data, which can result in degraded image quality. These inconsistencies may be the result of the patient physiology (e.g., heart rate variations), the nature of the data (e.g., cone-angle), or the reconstruction algorithm itself. An algorithm which provides the best temporal resolution for each slice, for example, often provides suboptimal image quality for the entire volume since the cardiac temporal resolution (TRc) changes from slice to slice. Such variations in TRc can generate strong banding artifacts in multi-planar reconstruction images or three-dimensional images. Discontinuous heart walls and coronary arteries may compromise the accuracy of the diagnosis. A β-blocker is often used to reduce and stabilize patients' heart rate but cannot eliminate the variation. In order to obtain robust and optimal image quality, a software solution that increases the temporal resolution and decreases the effect of heart rate is highly desirable. This paper proposes an ECG-correlated direct cone-beam reconstruction algorithm (TCOT-EGR) with cardiac banding artifact correction (CBC) and disconnected projections redundancy compensation technique (DIRECT). First the theory and analytical model of the cardiac temporal resolution is outlined. Next, the performance of the proposed algorithms is evaluated by using computer simulations as well as patient data. It will be shown that the proposed algorithms enhance the robustness of the image quality against inconsistencies by guaranteeing smooth transition of heart cycles used in reconstruction

  15. Detecting early cardiac dysfunction with radionuclide cardiac blood-pool imaging

    International Nuclear Information System (INIS)

    Wu Kegui; Chen Daguang; Lin Haoxue

    1992-01-01

    Cardiac function was measured by radionuclide cardiac blood-pool imaging in 15 normal persons, 19 cases of hypertension, 32 cases of coronary heart disease, 35 cases of coronary heart disease combined with hypertension and 44 cases of myocardial infarction. Significant differences have been found in indices of cardiac function between normal subjects and patients with coronary heart disease and coronary heart disease combined with hypertension, even though the patients were without any clinical sin of cardiac failure. Lowered regional EF and decreased ventricular was motion were found in 38.8% of patients, while 65.7%of patients revealed marked abnormality in MFR. The results indicate that latent cardiac dysfunction is common in patients with coronary heart disease. The earliest change is diastolic function abnormalities

  16. Dysfunctional Hyperpolarization-Activated Cyclic Nucleotide-gated Ion Channels in Cardiac Diseases

    Directory of Open Access Journals (Sweden)

    Xiaoqi Zhao

    Full Text Available Abstract Hyperpolarization-activated cyclic nucleotide-gated (HCN channels are reverse voltage-dependent, and their activation depends on the hyperpolarization of the membrane and may be directly or indirectly regulated by the cyclic adenosine monophosphate (cAMP or other signal-transduction cascades. The distribution, quantity and activation states of HCN channels differ in tissues throughout the body. Evidence exhibits that HCN channels play critical roles in the generation and conduction of the electrical impulse and the physiopathological process of some cardiac diseases. They may constitute promising drug targets in the treatment of these cardiac diseases. Pharmacological treatment targeting HCN channels is of benefit to these cardiac conditions.

  17. Cardiac Function Remains Impaired Despite Reversible Cardiac Remodeling after Acute Experimental Viral Myocarditis

    Directory of Open Access Journals (Sweden)

    Peter Moritz Becher

    2017-01-01

    Full Text Available Background. Infection with Coxsackievirus B3 induces myocarditis. We aimed to compare the acute and chronic phases of viral myocarditis to identify the immediate effects of cardiac inflammation as well as the long-term effects after resolved inflammation on cardiac fibrosis and consequently on cardiac function. Material and Methods. We infected C57BL/6J mice with Coxsackievirus B3 and determined the hemodynamic function 7 as well as 28 days after infection. Subsequently, we analyzed viral burden and viral replication in the cardiac tissue as well as the expression of cytokines and matrix proteins. Furthermore, cardiac fibroblasts were infected with virus to investigate if viral infection alone induces profibrotic signaling. Results. Severe cardiac inflammation was determined and cardiac fibrosis was consistently colocalized with inflammation during the acute phase of myocarditis. Declined cardiac inflammation but no significantly improved hemodynamic function was observed 28 days after infection. Interestingly, cardiac fibrosis declined to basal levels as well. Both cardiac inflammation and fibrosis were reversible, whereas the hemodynamic function remains impaired after healed viral myocarditis in C57BL/6J mice.

  18. Current role of cardiac and extra-cardiac pathologies in clinically indicated cardiac computed tomography with emphasis on status before pulmonary vein isolation

    Energy Technology Data Exchange (ETDEWEB)

    Sohns, J.M.; Lotz, J. [Goettingen University Medical Center (Germany). Inst. for Diagnostic and Interventional Radiology; German Center for Cardiovascular Research (DZHK), Goettingen (Germany); Menke, J.; Staab, W.; Fasshauer, M.; Kowallick, J.T.; Zwaka, P.A.; Schwarz, A. [Goettingen University Medical Center (Germany). Inst. for Diagnostic and Interventional Radiology; Spiro, J. [Koeln University Hospital (Germany). Radiology; Bergau, L.; Unterberg-Buchwald, C. [Goettingen University Medical Center (Germany). Cardiology and Pneumology

    2014-09-15

    Purpose: The aim of this study was to assess the incidence of cardiac and significant extra-cardiac findings in clinical computed tomography of the heart in patients with atrial fibrillation before pulmonary vein isolation (PVI). Materials and Methods: 224 patients (64 ± 10 years; male 63%) with atrial fibrillation were examined by cardiac 64-slice multidetector CT before PVI. Extra-cardiac findings were classified as 'significant' if they were recommended to additional diagnostics or therapy, and otherwise as 'non-significant'. Additionally, cardiac findings were documented in detail. Results: A total of 724 cardiac findings were identified in 203 patients (91% of patients). Additionally, a total of 619 extra-cardiac findings were identified in 179 patients (80% of patients). Among these extra-cardiac findings 196 (32%) were 'significant', and 423 (68%) were 'non-significant'. In 2 patients (1%) a previously unknown malignancy was detected (esophageal cancer and lung cancer, local stage, no metastasis). 203 additional imaging diagnostics followed to clarify the 'significant' findings (124 additional CT, costs 38,314.69 US dollars). Overall, there were 3.2 cardiac and 2.8 extra-cardiac findings per patient. Extra-cardiac findings appear significantly more frequently in patients over 60 years old, in smokers and in patients with a history of cardiac findings (p < 0.05). Conclusion: Cardiac CT scans before PVI should be screened for extracardiac incidental findings that could have important clinical implications for each patient. (orig.)

  19. Milrinone for cardiac dysfunction in critically ill adult patients

    DEFF Research Database (Denmark)

    Koster, Geert; Bekema, Hanneke J; Wetterslev, Jørn

    2016-01-01

    INTRODUCTION: Milrinone is an inotrope widely used for treatment of cardiac failure. Because previous meta-analyses had methodological flaws, we decided to conduct a systematic review of the effect of milrinone in critically ill adult patients with cardiac dysfunction. METHODS: This systematic...... trials were at high risk of bias, and none reported the primary composite outcome SAE. Fourteen trials with 1611 randomised patients reported mortality data at maximum follow-up (RR 0.96; 95% confidence interval 0.76-1.21). Milrinone did not significantly affect other patient-centred outcomes. All...... analyses displayed statistical and/or clinical heterogeneity of patients, interventions, comparators, outcomes, and/or settings and all featured missing data. DISCUSSION: The current evidence on the use of milrinone in critically ill adult patients with cardiac dysfunction suffers from considerable risks...

  20. Familial Atrial Septal Defect and Sudden Cardiac Death

    DEFF Research Database (Denmark)

    Ellesøe, Sabrina Gade; Johansen, Morten Munk; Bjerre, Jesper Vandborg

    2016-01-01

    OBJECTIVE: Atrial septal defect (ASD) is the second most common congenital heart defect (CHD) and is observed in families as an autosomal dominant trait as well as in nonfamilial CHD. Mutations in the NKX2-5 gene, located on chromosome 5, are associated with ASD, often combined with conduction...... disturbances, cardiomyopathies, complex CHD, and sudden cardiac death as well. Here, we show that NKX2-5 mutations primarily occur in ASD patients with conduction disturbances and heritable ASD. Furthermore, these families are at increased risk of sudden cardiac death. RESULTS: We screened 39 probands...... with familial CHD for mutations in NKX2-5 and discovered a novel mutation in one family (2.5%) with ASD and atrioventricular block. A review of the literature revealed 59 different NKX2-5 mutations in 202 patients. Mutations were significantly more common in familial cases compared to nonfamilial cases (P = 7...

  1. Cardiac tissue engineering using perfusion bioreactor systems

    Science.gov (United States)

    Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana

    2009-01-01

    This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955

  2. Effect of Social Intolerance on Psychological Distress in Cardiac Patients

    International Nuclear Information System (INIS)

    Zonash, R.; Arouj, K.

    2017-01-01

    Background: The patients with diverse cardiac issues and physical illness experience different levels of social intolerance, depression, anxiety and stress. Objectives: To explore the relationship between social intolerance and psychological distress among cardiac patients and investigate the effect of different type of cardiac illness, its duration and physical symptoms on social intolerance and psychological distress. Study design, settings and duration: Cross-sectional study, conducted at Benazir Bhutto Hospital (BBH), Rawalpindi Institute of Cardiology (RIC), Hearts International Hospital (HIH) and Pakistan Institute of Medical Sciences (PIMS) from September-December, 2014. Patients and Methods: The sample size of 180 adult cardiac patients was collected. These patients were selected from the cardiac units of 4 hospitals of Rawalpindi using purposive sampling. Social intolerance was assessed using Frustration Discomfort Scale (FDS), distress was assessed using depression anxiety and stress scale (DASS) Results: Out of 180 patients, 53.3 percent were males and 46.7 percent females. Their ages ranged from 20 to 60 years. Results revealed significant discomfort intolerance, (p < 0.01) entitlement (p < 0.05) and emotional intolerance (p < 0.01) in these patients. There was 45 percent variance in depression, while discomfort intolerance (p < 0.01) and achievement frustration (p< 0.01) showed 35 percent variance in anxiety. Conclusion: Cardiac patients suffer from major emotional distress.(author)

  3. Sudden cardiac arrest as a rare presentation of myxedema coma: case report.

    Science.gov (United States)

    Salhan, Divya; Sapkota, Deepak; Verma, Prakash; Kandel, Saroj; Abdulfattah, Omar; Lixon, Antony; Zwenge, Deribe; Schmidt, Frances

    2017-01-01

    Myxedema coma is a decompensated hypothyroidism which occurs due to long-standing, undiagnosed, or untreated hypothyroidism. Untreated hypothyroidism is known to affect almost all organs including the heart. It is associated with a decrease in cardiac output, stroke volume due to decreased myocardial contractility, and an increase in systemic vascular resistance. It can cause cardiac arrhythmias and the most commonly seen conduction abnormalities are sinus bradycardia, heart block, ventricular tachycardia, and torsade de pointes. The authors report a case of an elderly man who presented with sudden cardiac arrest and myxedema coma and who was successfully revived.

  4. Cardiac endothelial cells isolated from mouse heart - a novel model for radiobiology

    International Nuclear Information System (INIS)

    Jelonek, K.; Walaszczyk, A.; Gabrys, D.; Pietrowska, M.; Widlak, P.; Kanthou, Ch.

    2011-01-01

    Cardiovascular disease is recognized as an important clinical problem in radiotherapy and radiation protection. However, only few radiobiological models relevant for assessment of cardiotoxic effects of ionizing radiation are available. Here we describe the isolation of mouse primary cardiac endothelial cells, a possible target for cardiotoxic effects of radiation. Cells isolated from hearts of juvenile mice were cultured and irradiated in vitro. In addition, cells isolated from hearts of locally irradiated adult animals (up to 6 days after irradiation) were tested. A dose-dependent formation of histone γH 2 A.X foci was observed after in vitro irradiation of cultured cells. However, such cells were resistant to radiation-induced apoptosis. Increased levels of actin stress fibres were observed in the cytoplasm of cardiac endothelial cells irradiated in vitro or isolated from irradiated animals. A high dose of 16 Gy did not increase permeability to Dextran in monolayers formed by endothelial cells. Up-regulated expression of Vcam1, Sele and Hsp70i genes was detected after irradiation in vitro and in cells isolated few days after irradiation in vivo. The increased level of actin stress fibres and enhanced expression of stress-response genes in irradiated endothelial cells are potentially involved in cardiotoxic effects of ionizing radiation. (authors)

  5. A model approach to the adaptation of cardiac structure by mechanical feedback in the environment of the cell

    NARCIS (Netherlands)

    Arts, M.G.J.; Prinzen, F.W.; Snoeckx, L.H.E.H.; Reneman, R.S.

    1995-01-01

    The uniformity of the mechanical load of the cardiac fibers in the wall is maintained by continuous remodeling. In this proposed model the myocyte changes direction in optimizing systolic sarcomere shortening. Early systolic stretch and contractility increases the mass of contractile proteins.

  6. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  7. Modeling conductive cooling for thermally stressed dairy cows.

    Science.gov (United States)

    Gebremedhin, Kifle G; Wu, Binxin; Perano, K

    2016-02-01

    Conductive cooling, which is based on direct contact between a cow lying down and a cooled surface (water mattress, or any other heat exchanger embedded under the bedding), allows heat transfer from the cow to the cooled surface, and thus alleviate heat stress of the cow. Conductive cooling is a novel technology that has the potential to reduce the consumption of energy and water in cooling dairy cows compared to some current practices. A three-dimensional conduction model that simulates cooling thermally-stressed dairy cows was developed. The model used a computational fluid dynamics (CFD) method to characterize the air-flow field surrounding the animal model. The flow field was obtained by solving the continuity and the momentum equations. The heat exchange between the animal and the cooled water mattress as well as between the animal and ambient air was determined by solving the energy equation. The relative humidity was characterized using the species transport equation. The conduction 3-D model was validated against experimental temperature data and the agreement was very good (average error is 4.4% and the range is 1.9-8.3%) for a mesh size of 1117202. Sensitivity analyses were conducted between heat losses (sensible and latent) with respect to air temperature, relative humidity, air velocity, and level of wetness of skin surface to determine which of the parameters affect heat flux more than others. Heat flux was more sensitive to air temperature and level of wetness of the skin surface and less sensitive to relative humidity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation.

    Science.gov (United States)

    Cui, Zhi; Ni, Nathan C; Wu, Jun; Du, Guo-Qing; He, Sheng; Yau, Terrence M; Weisel, Richard D; Sung, Hsing-Wen; Li, Ren-Ke

    2018-01-01

    Background: The post-myocardial infarction (MI) scar interrupts electrical impulse propagation and delays regional contraction, which contributes to ventricular dysfunction. We investigated the potential of an injectable conductive biomaterial to restore scar tissue conductivity and re-establish synchronous ventricular contraction. Methods: A conductive biomaterial was generated by conjugating conductive polypyrrole (PPY) onto chitosan (CHI) backbones. Trypan blue staining of neonatal rat cardiomyocytes (CMs) cultured on biomaterials was used to evaluate the biocompatibility of the conductive biomaterials. Ca 2+ imaging was used to visualize beating CMs. A cryoablation injury rat model was used to investigate the ability of PPY:CHI to improve cardiac electrical propagation in the injured heart in vivo . Electromyography was used to evaluate conductivity of scar tissue ex vivo . Results: Cell survival and morphology were similar between cells cultured on biomaterials-coated and uncoated-control dishes. PPY:CHI established synchronous contraction of two distinct clusters of spontaneously-beating CMs. Intramyocardial PPY:CHI injection into the cryoablation-induced injured region improved electrical impulse propagation across the scarred tissue and decreased the QRS interval, whereas saline- or CHI-injected hearts continued to have delayed propagation patterns and significantly reduced conduction velocity compared to healthy controls. Ex vivo evaluation found that scar tissue from PPY:CHI-treated rat hearts had higher signal amplitude compared to those from saline- or CHI-treated rat heart tissue. Conclusions: The PPY:CHI biomaterial is electrically conductive, biocompatible and injectable. It improved synchronous contraction between physically separated beating CM clusters in vitro . Intra-myocardial injection of PPY:CHI following cardiac injury improved electrical impulse propagation of scar tissue in vivo .

  9. Main Complications of Mild Induced Hypothermia after Cardiac Arrest: A Review Article

    Directory of Open Access Journals (Sweden)

    Hassan Soleimanpour

    2014-03-01

    Full Text Available The aim of the present study is to assess the complications of mild induced hypothermia (MIH in patients with cardiac arrest. Presently, based on the guidelines of the American heart Association, MIH following successful cardiopulmonary resuscitation (CPR in unconscious adult patients due to ventricular fibrillation (VF with out-of-hospital cardiac arrest (OOHCA is essential and required. However, MIH could be associated with complications in Patients with cardiac arrest. Studies conducted on the precautions and care following cardiac arrest and MIH were included. Valid scientific data bases were used for data collection. The obtained results from different studies revealed that mild MIH could be associated with numerous complications and the knowledge and awareness of the medical staff from the complications is required to guarantee successful therapeutic approaches in MIH following cardiac arrest which is a novel medical facility with different styles and complications. Overall, further future studies are required to improve the quality of MIH, to increase survival and to decrease complications rates.

  10. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI.

    Science.gov (United States)

    Avendi, M R; Kheradvar, Arash; Jafarkhani, Hamid

    2016-05-01

    Segmentation of the left ventricle (LV) from cardiac magnetic resonance imaging (MRI) datasets is an essential step for calculation of clinical indices such as ventricular volume and ejection fraction. In this work, we employ deep learning algorithms combined with deformable models to develop and evaluate a fully automatic LV segmentation tool from short-axis cardiac MRI datasets. The method employs deep learning algorithms to learn the segmentation task from the ground true data. Convolutional networks are employed to automatically detect the LV chamber in MRI dataset. Stacked autoencoders are used to infer the LV shape. The inferred shape is incorporated into deformable models to improve the accuracy and robustness of the segmentation. We validated our method using 45 cardiac MR datasets from the MICCAI 2009 LV segmentation challenge and showed that it outperforms the state-of-the art methods. Excellent agreement with the ground truth was achieved. Validation metrics, percentage of good contours, Dice metric, average perpendicular distance and conformity, were computed as 96.69%, 0.94, 1.81 mm and 0.86, versus those of 79.2-95.62%, 0.87-0.9, 1.76-2.97 mm and 0.67-0.78, obtained by other methods, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Parametric modelling of cardiac system multiple measurement signals: an open-source computer framework for performance evaluation of ECG, PCG and ABP event detectors.

    Science.gov (United States)

    Homaeinezhad, M R; Sabetian, P; Feizollahi, A; Ghaffari, A; Rahmani, R

    2012-02-01

    The major focus of this study is to present a performance accuracy assessment framework based on mathematical modelling of cardiac system multiple measurement signals. Three mathematical algebraic subroutines with simple structural functions for synthetic generation of the synchronously triggered electrocardiogram (ECG), phonocardiogram (PCG) and arterial blood pressure (ABP) signals are described. In the case of ECG signals, normal and abnormal PQRST cycles in complicated conditions such as fascicular ventricular tachycardia, rate dependent conduction block and acute Q-wave infarctions of inferior and anterolateral walls can be simulated. Also, continuous ABP waveform with corresponding individual events such as systolic, diastolic and dicrotic pressures with normal or abnormal morphologies can be generated by another part of the model. In addition, the mathematical synthetic PCG framework is able to generate the S4-S1-S2-S3 cycles in normal and in cardiac disorder conditions such as stenosis, insufficiency, regurgitation and gallop. In the PCG model, the amplitude and frequency content (5-700 Hz) of each sound and variation patterns can be specified. The three proposed models were implemented to generate artificial signals with varies abnormality types and signal-to-noise ratios (SNR), for quantitative detection-delineation performance assessment of several ECG, PCG and ABP individual event detectors designed based on the Hilbert transform, discrete wavelet transform, geometric features such as area curve length (ACLM), the multiple higher order moments (MHOM) metric, and the principal components analysed geometric index (PCAGI). For each method the detection-delineation operating characteristics were obtained automatically in terms of sensitivity, positive predictivity and delineation (segmentation) error rms and checked by the cardiologist. The Matlab m-file script of the synthetic ECG, ABP and PCG signal generators are available in the Appendix.

  12. Cardiac rehabilitation

    Science.gov (United States)

    ... rehab; Heart failure - cardiac rehab References Anderson L, Taylor RS. Cardiac rehabilitation for people with heart disease: ... of Medicine, Division of Cardiology, Harborview Medical Center, University of Washington Medical School, Seattle, WA. Also reviewed ...

  13. A 2D Electromechanical Model of Human Atrial Tissue Using the Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Paul Brocklehurst

    2015-01-01

    Full Text Available Cardiac tissue is a syncytium of coupled cells with pronounced intrinsic discrete nature. Previous models of cardiac electromechanics often ignore such discrete properties and treat cardiac tissue as a continuous medium, which has fundamental limitations. In the present study, we introduce a 2D electromechanical model for human atrial tissue based on the discrete element method (DEM. In the model, single-cell dynamics are governed by strongly coupling the electrophysiological model of Courtemanche et al. to the myofilament model of Rice et al. with two-way feedbacks. Each cell is treated as a viscoelastic body, which is physically represented by a clump of nine particles. Cell aggregations are arranged so that the anisotropic nature of cardiac tissue due to fibre orientations can be modelled. Each cell is electrically coupled to neighbouring cells, allowing excitation waves to propagate through the tissue. Cell-to-cell mechanical interactions are modelled using a linear contact bond model in DEM. By coupling cardiac electrophysiology with mechanics via the intracellular Ca2+ concentration, the DEM model successfully simulates the conduction of cardiac electrical waves and the tissue’s corresponding mechanical contractions. The developed DEM model is numerically stable and provides a powerful method for studying the electromechanical coupling problem in the heart.

  14. Electrocardiographic Patch Devices and Contemporary Wireless Cardiac Monitoring

    Directory of Open Access Journals (Sweden)

    Erik eFung

    2015-05-01

    Full Text Available Cardiac electrophysiologic derangements often coexist with disorders of the circulatory system. Capturing and diagnosing arrhythmias and conduction system disease may lead to a change in diagnosis, clinical management and patient outcomes. Standard 12-lead electrocardiogram (ECG, Holter monitors and event recorders have served as useful diagnostic tools over the last few decades. However, their shortcomings are only recently being addressed by emerging technologies. With advances in device miniaturization and wireless technologies, and changing consumer expectations, wearable ‘on-body’ ECG patch devices have evolved to meet contemporary needs. These devices are unobtrusive and easy to use, leading to increased device wear time and diagnostic yield. While becoming the standard for detecting arrhythmias and conduction system disorders in the outpatient setting where continuous ECG monitoring in the short to medium term (days to weeks is indicated, these cardiac devices and related digital mobile health technologies are reshaping the clinician-patient interface with important implications for future healthcare delivery.

  15. The benefits of the Atlas of Human Cardiac Anatomy website for the design of cardiac devices.

    Science.gov (United States)

    Spencer, Julianne H; Quill, Jason L; Bateman, Michael G; Eggen, Michael D; Howard, Stephen A; Goff, Ryan P; Howard, Brian T; Quallich, Stephen G; Iaizzo, Paul A

    2013-11-01

    This paper describes how the Atlas of Human Cardiac Anatomy website can be used to improve cardiac device design throughout the process of development. The Atlas is a free-access website featuring novel images of both functional and fixed human cardiac anatomy from over 250 human heart specimens. This website provides numerous educational tutorials on anatomy, physiology and various imaging modalities. For instance, the 'device tutorial' provides examples of devices that were either present at the time of in vitro reanimation or were subsequently delivered, including leads, catheters, valves, annuloplasty rings and stents. Another section of the website displays 3D models of the vasculature, blood volumes and/or tissue volumes reconstructed from computed tomography and magnetic resonance images of various heart specimens. The website shares library images, video clips and computed tomography and MRI DICOM files in honor of the generous gifts received from donors and their families.

  16. Engineering Cardiac Muscle Tissue: A Maturating Field of Research.

    Science.gov (United States)

    Weinberger, Florian; Mannhardt, Ingra; Eschenhagen, Thomas

    2017-04-28

    Twenty years after the initial description of a tissue engineered construct, 3-dimensional human cardiac tissues of different kinds are now generated routinely in many laboratories. Advances in stem cell biology and engineering allow for the generation of constructs that come close to recapitulating the complex structure of heart muscle and might, therefore, be amenable to industrial (eg, drug screening) and clinical (eg, cardiac repair) applications. Whether the more physiological structure of 3-dimensional constructs provides a relevant advantage over standard 2-dimensional cell culture has yet to be shown in head-to-head-comparisons. The present article gives an overview on current strategies of cardiac tissue engineering with a focus on different hydrogel methods and discusses perspectives and challenges for necessary steps toward the real-life application of cardiac tissue engineering for disease modeling, drug development, and cardiac repair. © 2017 American Heart Association, Inc.

  17. MRI-based morphological modeling, synthesis and characterization of cardiac tissue-mimicking materials.

    Science.gov (United States)

    Kossivas, Fotis; Angeli, S; Kafouris, D; Patrickios, C S; Tzagarakis, V; Constantinides, C

    2012-06-01

    This study uses standard synthetic methodologies to produce tissue-mimicking materials that match the morphology and emulate the in vivo murine and human cardiac mechanical and imaging characteristics, with dynamic mechanical analysis, atomic force microscopy (AFM), scanning electron microscopy (SEM) and magnetic resonance imaging. In accordance with such aims, poly(glycerol sebacate) (PGS) elastomeric materials were synthesized (at two different glycerol (G)-sebacic (S) acid molar ratios; the first was synthesized using a G:S molar ratio of 2:2, while the second from a 2:5 G:S molar ratio, resulting in PGS2:2 and PGS2:5 elastomers, respectively). Unlike the synthesized PGS2:2 elastomers, the PGS2:5 materials were characterized by an overall mechanical instability in their loading behavior under the three successive loading conditions tested. An oscillatory response in the mechanical properties of the synthesized elastomers was observed throughout the loading cycles, with measured increased storage modulus values at the first loading cycle, stabilizing to lower values at subsequent cycles. These elastomers were characterized at 4 °C and were found to have storage modulus values of 850 and 1430 kPa at the third loading cycle, respectively, in agreement with previously reported values of the rat and human myocardium. SEM of surface topology indicated minor degradation of synthesized materials at 10 and 20 d post-immersion in the PBS buffer solution, with a noted cluster formation on the PGS2:5 elastomers. AFM nanoindentation experiments were also conducted for the measurement of the Young modulus of the sample surface (no bulk contribution). Correspondingly, the PGS2:2 elastomer indicated significantly decreased surface Young's modulus values 20 d post-PBS immersion, compared to dry conditions (Young's modulus = 1160 ± 290 kPa (dry) and 200 ± 120 kPa (20 d)). In addition to the two-dimensional (2D) elastomers, an integrative platform for accurate construction of

  18. MRI-based morphological modeling, synthesis and characterization of cardiac tissue-mimicking materials

    International Nuclear Information System (INIS)

    Kossivas, Fotis; Angeli, S; Constantinides, C; Kafouris, D; Patrickios, C S; Tzagarakis, V

    2012-01-01

    This study uses standard synthetic methodologies to produce tissue-mimicking materials that match the morphology and emulate the in vivo murine and human cardiac mechanical and imaging characteristics, with dynamic mechanical analysis, atomic force microscopy (AFM), scanning electron microscopy (SEM) and magnetic resonance imaging. In accordance with such aims, poly(glycerol sebacate) (PGS) elastomeric materials were synthesized (at two different glycerol (G)–sebacic (S) acid molar ratios; the first was synthesized using a G:S molar ratio of 2:2, while the second from a 2:5 G:S molar ratio, resulting in PGS2:2 and PGS2:5 elastomers, respectively). Unlike the synthesized PGS2:2 elastomers, the PGS2:5 materials were characterized by an overall mechanical instability in their loading behavior under the three successive loading conditions tested. An oscillatory response in the mechanical properties of the synthesized elastomers was observed throughout the loading cycles, with measured increased storage modulus values at the first loading cycle, stabilizing to lower values at subsequent cycles. These elastomers were characterized at 4 °C and were found to have storage modulus values of 850 and 1430 kPa at the third loading cycle, respectively, in agreement with previously reported values of the rat and human myocardium. SEM of surface topology indicated minor degradation of synthesized materials at 10 and 20 d post-immersion in the PBS buffer solution, with a noted cluster formation on the PGS2:5 elastomers. AFM nanoindentation experiments were also conducted for the measurement of the Young modulus of the sample surface (no bulk contribution). Correspondingly, the PGS2:2 elastomer indicated significantly decreased surface Young's modulus values 20 d post-PBS immersion, compared to dry conditions (Young's modulus = 1160 ± 290 kPa (dry) and 200 ± 120 kPa (20 d)). In addition to the two-dimensional (2D) elastomers, an integrative platform for accurate construction of

  19. Respiratory and cardiac motion correction in dual gated PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fayad, Hadi; Monnier, Florian [LaTIM, INSERM, UMR 1101, Brest (France); Odille, Freedy; Felblinger, Jacques [INSERM U947, University of Nancy, Nancy (France); Lamare, Frederic [INCIA, UMR5287, CNRS, CHU Bordeaux, Bordeaux (France); Visvikis, Dimitris [LaTIM, INSERM, UMR 1101, Brest (France)

    2015-05-18

    Respiratory and cardiac motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies involve the use of double gated acquisitions which lead to low signal-to-noise ratio (SNR) and to issues concerning the combination of cardiac and respiratory frames. The objective of this work is to use a generalized reconstruction by inversion of coupled systems (GRICS) approach, previously used for PET/MR respiratory motion correction, combined with a cardiac phase signal and a reconstruction incorporated PET motion correction approach in order to reconstruct motion free images from dual gated PET acquisitions. The GRICS method consists of formulating parallel MRI in the presence of patient motion as a coupled inverse problem. Its resolution, using a fixed-point method, allows the reconstructed image to be improved using a motion model constructed from the raw MR data and two respiratory belts. GRICS obtained respiratory displacements are interpolated using the cardiac phase derived from an ECG to model simultaneous cardiac and respiratory motion. Three different volunteer datasets (4DMR acquisitions) were used for evaluation. GATE was used to simulate 4DPET datasets corresponding to the acquired 4DMR images. Simulated data were subsequently binned using 16 cardiac phases (M1) vs diastole only (M2), in combination with 8 respiratory amplitude gates. Respiratory and cardiac motion corrected PET images using either M1 or M2 were compared to respiratory only corrected images and evaluated in terms of SNR and contrast improvement. Significant visual improvements were obtained when correcting simultaneously for respiratory and cardiac motion (using 16 cardiac phase or diastole only) compared to respiratory motion only compensation. Results were confirmed by an associated increased SNR and contrast. Results indicate that using GRICS is an efficient tool for respiratory and cardiac motion correction in dual gated PET/MR imaging.

  20. Geometric model for softwood transverse thermal conductivity. Part I

    Science.gov (United States)

    Hong-mei Gu; Audrey Zink-Sharp

    2005-01-01

    Thermal conductivity is a very important parameter in determining heat transfer rate and is required for developing of drying models and in industrial operations such as adhesive cure rate. Geometric models for predicting softwood thermal conductivity in the radial and tangential directions were generated in this study based on obervation and measurements of wood...

  1. Improved bioavailability of targeted Curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment

    International Nuclear Information System (INIS)

    Ray, Aramita; Rana, Santanu; Banerjee, Durba; Mitra, Arkadeep; Datta, Ritwik; Naskar, Shaon; Sarkar, Sagartirtha

    2016-01-01

    Cardiomyocyte apoptosis acts as a prime modulator of cardiac hypertrophy leading to heart failure, a major cause of human mortality worldwide. Recent therapeutic interventions have focussed on translational applications of diverse pharmaceutical regimes among which, Curcumin (from Curcuma longa) is known to have an anti-hypertrophic potential but with limited pharmacological efficacies due to low aqueous solubility and poor bioavailability. In this study, Curcumin encapsulated by carboxymethyl chitosan (CMC) nanoparticle conjugated to a myocyte specific homing peptide was successfully delivered in bioactive form to pathological myocardium for effective regression of cardiac hypertrophy in a rat (Rattus norvegicus) model. Targeted nanotization showed higher cardiac bioavailability of Curcumin at a low dose of 5 mg/kg body weight compared to free Curcumin at 35 mg/kg body weight. Moreover, Curcumin/CMC-peptide treatment during hypertrophy significantly improved cardiac function by downregulating expression of hypertrophy marker genes (ANF, β-MHC), apoptotic mediators (Bax, Cytochrome-c) and activity of apoptotic markers (Caspase 3 and PARP); whereas free Curcumin in much higher dose showed minimal improvement during compromised cardiac function. Targeted Curcumin treatment significantly lowered p53 expression and activation in diseased myocardium via inhibited interaction of p53 with p300-HAT. Thus attenuated acetylation of p53 facilitated p53 ubiquitination and reduced the apoptotic load in hypertrophied cardiomyocytes; thereby limiting cardiomyocytes' need to enter the regeneration cycle during hypertrophy. This study elucidates for the first time an efficient targeted delivery regimen for Curcumin and also attributes towards probable mechanistic insight into its therapeutic potential as a cardio-protective agent for regression of cardiac hypertrophy. - Highlights: • Cardiomyocyte targeted Curcumin/CMC-peptide increases bioavailability of the drug.

  2. Unstable spiral waves and local Euclidean symmetry in a model of cardiac tissue

    International Nuclear Information System (INIS)

    Marcotte, Christopher D.; Grigoriev, Roman O.

    2015-01-01

    This paper investigates the properties of unstable single-spiral wave solutions arising in the Karma model of two-dimensional cardiac tissue. In particular, we discuss how such solutions can be computed numerically on domains of arbitrary shape and study how their stability, rotational frequency, and spatial drift depend on the size of the domain as well as the position of the spiral core with respect to the boundaries. We also discuss how the breaking of local Euclidean symmetry due to finite size effects as well as the spatial discretization of the model is reflected in the structure and dynamics of spiral waves. This analysis allows identification of a self-sustaining process responsible for maintaining the state of spiral chaos featuring multiple interacting spirals

  3. Unstable spiral waves and local Euclidean symmetry in a model of cardiac tissue.

    Science.gov (United States)

    Marcotte, Christopher D; Grigoriev, Roman O

    2015-06-01

    This paper investigates the properties of unstable single-spiral wave solutions arising in the Karma model of two-dimensional cardiac tissue. In particular, we discuss how such solutions can be computed numerically on domains of arbitrary shape and study how their stability, rotational frequency, and spatial drift depend on the size of the domain as well as the position of the spiral core with respect to the boundaries. We also discuss how the breaking of local Euclidean symmetry due to finite size effects as well as the spatial discretization of the model is reflected in the structure and dynamics of spiral waves. This analysis allows identification of a self-sustaining process responsible for maintaining the state of spiral chaos featuring multiple interacting spirals.

  4. Early cardiac changes in a rat model of prediabetes: brain natriuretic peptide overexpression seems to be the best marker

    Science.gov (United States)

    2013-01-01

    Background Diabetic cardiomyopathy (DCM) is defined as structural and functional changes in the myocardium due to metabolic and cellular abnormalities induced by diabetes mellitus (DM). The impact of prediabetic conditions on the cardiac tissue remains to be elucidated. The goal of this study was to elucidate whether cardiac dysfunction is already present in a state of prediabetes, in the presence of insulin resistance, and to unravel the underlying mechanisms, in a rat model without obesity and hypertension as confounding factors. Methods Two groups of 16-week-old Wistar rats were tested during a 9 week protocol: high sucrose (HSu) diet group (n = 7) – rats receiving 35% of sucrose in drinking water vs the vehicle control group (n = 7). The animal model was characterized in terms of body weight (BW) and the glycemic, insulinemic and lipidic profiles. The following parameters were assessed to evaluate possible early cardiac alterations and underlying mechanisms: blood pressure, heart rate, heart and left ventricle (LV) trophism indexes, as well as the serum and tissue protein and/or the mRNA expression of markers for fibrosis, hypertrophy, proliferation, apoptosis, angiogenesis, endothelial function, inflammation and oxidative stress. Results The HSu-treated rats presented normal fasting plasma glucose (FPG) but impaired glucose tolerance (IGT), accompanied by hyperinsulinemia and insulin resistance (P prediabetic. Furthermore, although hypertriglyceridemia (P prediabetes/insulin resistance could be an important tool to evaluate the early cardiac impact of dysmetabolism (hyperinsulinemia and impaired glucose tolerance with fasting normoglycemia), without confounding factors such as obesity and hypertension. Left ventricle hypertrophy is already present and brain natriuretic peptide seems to be the best early marker for this condition. PMID:23497124

  5. Point kinetics model with one-dimensional (radial) heat conduction formalism

    International Nuclear Information System (INIS)

    Jain, V.K.

    1989-01-01

    A point-kinetics model with one-dimensional (radial) heat conduction formalism has been developed. The heat conduction formalism is based on corner-mesh finite difference method. To get average temperatures in various conducting regions, a novel weighting scheme has been devised. The heat conduction model has been incorporated in the point-kinetics code MRTF-FUEL. The point-kinetics equations are solved using the method of real integrating factors. It has been shown by analysing the simulation of hypothetical loss of regulation accident in NAPP reactor that the model is superior to the conventional one in accuracy and speed of computation. (author). 3 refs., 3 tabs

  6. Model-based segmentation of short-axis MR cardiac images

    NARCIS (Netherlands)

    Spreeuwers, Lieuwe Jan; Breeuwer, M.

    Reliable automatic segmentation of MR cardiac images is still an important problem in medical image processing. Although image data quality has improved considerably during the last years, this segmentation is still considered a difficult problem. Manual segmentation is hardly an option as this is

  7. Cardiac Subtype-Specific Modeling of Kv1.5 Ion Channel Deficiency Using Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Maike Marczenke

    2017-07-01

    Full Text Available The ultrarapid delayed rectifier K+ current (IKur, mediated by Kv1.5 channels, constitutes a key component of the atrial action potential. Functional mutations in the underlying KCNA5 gene have been shown to cause hereditary forms of atrial fibrillation (AF. Here, we combine targeted genetic engineering with cardiac subtype-specific differentiation of human induced pluripotent stem cells (hiPSCs to explore the role of Kv1.5 in atrial hiPSC-cardiomyocytes. CRISPR/Cas9-mediated mutagenesis of integration-free hiPSCs was employed to generate a functional KCNA5 knockout. This model as well as isogenic wild-type control hiPSCs could selectively be differentiated into ventricular or atrial cardiomyocytes at high efficiency, based on the specific manipulation of retinoic acid signaling. Investigation of electrophysiological properties in Kv1.5-deficient cardiomyocytes compared to isogenic controls revealed a strictly atrial-specific disease phentoype, characterized by cardiac subtype-specific field and action potential prolongation and loss of 4-aminopyridine sensitivity. Atrial Kv1.5-deficient cardiomyocytes did not show signs of arrhythmia under adrenergic stress conditions or upon inhibiting additional types of K+ current. Exposure of bulk cultures to carbachol lowered beating frequencies and promoted chaotic spontaneous beating in a stochastic manner. Low-frequency, electrical stimulation in single cells caused atrial and mutant-specific early afterdepolarizations, linking the loss of KCNA5 function to a putative trigger mechanism in familial AF. These results clarify for the first time the role of Kv1.5 in atrial hiPSC-cardiomyocytes and demonstrate the feasibility of cardiac subtype-specific disease modeling using engineered hiPSCs.

  8. Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology.

    Directory of Open Access Journals (Sweden)

    Shankarjee Krishnamoorthi

    Full Text Available We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

  9. Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology.

    Science.gov (United States)

    Krishnamoorthi, Shankarjee; Perotti, Luigi E; Borgstrom, Nils P; Ajijola, Olujimi A; Frid, Anna; Ponnaluri, Aditya V; Weiss, James N; Qu, Zhilin; Klug, William S; Ennis, Daniel B; Garfinkel, Alan

    2014-01-01

    We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG) and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.

  10. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: Modulation of cardiac PPAR-α-mediated transcription of fatty acid metabolic genes

    International Nuclear Information System (INIS)

    Huang, Tom H.-W.; Yang Qinglin; Harada, Masaki; Uberai, Jasna; Radford, Jane; Li, George Q.; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao

    2006-01-01

    Excess cardiac triglyceride accumulation in diabetes and obesity induces lipotoxicity, which predisposes the myocytes to death. On the other hand, increased cardiac fatty acid (FA) oxidation plays a role in the development of myocardial dysfunction in diabetes. PPAR-α plays an important role in maintaining homeostasis of lipid metabolism. We have previously demonstrated that the extract from Salacia oblonga root (SOE), an Ayurvedic anti-diabetic and anti-obesity medicine, improves hyperlipidemia in Zucker diabetic fatty (ZDF) rats (a genetic model of type 2 diabetes and obesity) and possesses PPAR-α activating properties. Here we demonstrate that chronic oral administration of SOE reduces cardiac triglyceride and FA contents and decreases the Oil red O-stained area in the myocardium of ZDF rats, which parallels the effects on plasma triglyceride and FA levels. Furthermore, the treatment suppressed cardiac overexpression of both FA transporter protein-1 mRNA and protein in ZDF rats, suggesting inhibition of increased cardiac FA uptake as the basis for decreased cardiac FA levels. Additionally, the treatment also inhibited overexpression in ZDF rat heart of PPAR-α mRNA and protein and carnitine palmitoyltransferase-1, acyl-CoA oxidase and 5'-AMP-activated protein kinase mRNAs and restored the downregulated acetyl-CoA carboxylase mRNA. These results suggest that SOE inhibits cardiac FA oxidation in ZDF rats. Thus, our findings suggest that improvement by SOE of excess cardiac lipid accumulation and increased cardiac FA oxidation in diabetes and obesity occurs by reduction of cardiac FA uptake, thereby modulating cardiac PPAR-α-mediated FA metabolic gene transcription

  11. Cardiac tissue slices: preparation, handling, and successful optical mapping.

    Science.gov (United States)

    Wang, Ken; Lee, Peter; Mirams, Gary R; Sarathchandra, Padmini; Borg, Thomas K; Gavaghan, David J; Kohl, Peter; Bollensdorff, Christian

    2015-05-01

    Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. Here, we describe in detail the preparation, handling, and optical mapping of transmembrane potential and intracellular free calcium concentration transients (CaT) in ventricular tissue slices from guinea pigs and rabbits. Slices cut in the epicardium-tangential plane contained well-aligned in-slice myocardial cell strands ("fibers") in subepicardial and midmyocardial sections. Cut with a high-precision slow-advancing microtome at a thickness of 350 to 400 μm, tissue slices preserved essential action potential (AP) properties of the precutting Langendorff-perfused heart. We identified the need for a postcutting recovery period of 36 min (guinea pig) and 63 min (rabbit) to reach 97.5% of final steady-state values for AP duration (APD) (identified by exponential fitting). There was no significant difference between the postcutting recovery dynamics in slices obtained using 2,3-butanedione 2-monoxime or blebistatin as electromechanical uncouplers during the cutting process. A rapid increase in APD, seen after cutting, was caused by exposure to ice-cold solution during the slicing procedure, not by tissue injury, differences in uncouplers, or pH-buffers (bicarbonate; HEPES). To characterize intrinsic patterns of CaT, AP, and conduction, a combination of multipoint and field stimulation should be used to avoid misinterpretation based on source-sink effects. In summary, we describe in detail the preparation, mapping, and data analysis approaches for reproducible cardiac tissue slice-based investigations into AP and CaT dynamics. Copyright © 2015 the American Physiological Society.

  12. Assessment of inpatient multimodal cardiac imaging appropriateness at large academic medical centers.

    Science.gov (United States)

    Remfry, Andrew; Abrams, Howard; Dudzinski, David M; Weiner, Rory B; Bhatia, R Sacha

    2015-11-14

    Responding to concerns regarding the growth of cardiac testing, the American College of Cardiology Foundation (ACCF) published Appropriate Use Criteria (AUC) for various cardiac imaging modalities. Single modality cardiac imaging appropriateness has been reported but there have been no studies assessing the appropriateness of multiple imaging modalities in an inpatient environment. A retrospective study of the appropriateness of cardiac tests ordered by the inpatient General Internal Medicine (GIM) and Cardiology services at three Canadian academic hospitals was conducted over two one-month periods. Cardiac tests characterized were transthoracic echocardiography (TTE), transesophageal echocardiography (TEE), single-photon emission tomography myocardial perfusion imaging (SPECT), and diagnostic cardiac catheterization. Overall, 553 tests were assessed, of which 99.8% were classifiable by AUC. 91% of all studies were categorized as appropriate, 4% may be appropriate and 5% were rarely appropriate. There were high rates of appropriate use of all modalities by GIM and Cardiology throughout. Significantly more appropriate diagnostic catheterizations were ordered by Cardiology than GIM (93% vs. 82%, p = imaging modalities in this multi-centered study on Cardiology and GIM inpatients in the acute care setting. The rate of appropriate ordering was high across all imaging modalities. We recommend further work towards improving appropriate utilization of cardiac imaging resources focus on the out-patient setting.

  13. Development of Multidimensional Gap Conductance model using Virtual Link Gap Element

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Chan; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The gap conductance that determines temperature gradient between pellet and cladding can be quite sensitive to gap thickness. For instance, once the gap size increases up to several micrometers in certain region, difference of pellet surface temperatures increases up to 100 Kelvin. Therefore, iterative thermo-mechanical coupled analysis is required to solve temperature distribution throughout pellet and cladding. Recently, multidimensional fuel performance codes have been being developed in the advanced countries to evaluate thermal behavior of fuel for off normal conditions and DBA(design based accident) conditions using the Finite Element Method (FEM). FRAPCON-FRAPTRAN code system, which is well known as the verified and reliable code, incorporates 1D thermal module and multidimensional mechanical module. In this code, multidimensional gap conductance model is not applied. ALCYONE developed by CEA introduces equivalent heat convection coefficient that represents multidimensional gap conductance as a function of gap thickness. BISON, which is multidimensional fuel performance code developed by INL, owns multidimensional gap conductance model using projected thermal contact. In general, thermal contact algorithm is nonlinear calculation which is expensive approach numerically. The gap conductance model for multi-dimension is difficult issue in terms of convergence and nonlinearity because gap conductance is function of gap thickness which depends on mechanical analysis at each iteration step. In this paper, virtual link gap (VLG) element has been proposed to resolve convergence issue and nonlinear characteristic of multidimensional gap conductance. In terms of calculation accuracy and convergence efficiency, the proposed VLG model was evaluated. LWR fuel performance codes should incorporate thermo-mechanical loop to solve gap conductance problem, iteratively. However, gap conductance in multidimensional model is difficult issue owing to its nonlinearity and

  14. Cardiac damage in athlete's heart: When the "supernormal" heart fails!

    Science.gov (United States)

    Carbone, Andreina; D'Andrea, Antonello; Riegler, Lucia; Scarafile, Raffaella; Pezzullo, Enrica; Martone, Francesca; America, Raffaella; Liccardo, Biagio; Galderisi, Maurizio; Bossone, Eduardo; Calabrò, Raffaele

    2017-06-26

    Intense exercise may cause heart remodeling to compensate increases in blood pressure or volume by increasing muscle mass. Cardiac changes do not involve only the left ventricle, but all heart chambers. Physiological cardiac modeling in athletes is associated with normal or enhanced cardiac function, but recent studies have documented decrements in left ventricular function during intense exercise and the release of cardiac markers of necrosis in athlete's blood of uncertain significance. Furthermore, cardiac remodeling may predispose athletes to heart disease and result in electrical remodeling, responsible for arrhythmias. Athlete's heart is a physiological condition and does not require a specific treatment. In some conditions, it is important to differentiate the physiological adaptations from pathological conditions, such as hypertrophic cardiomyopathy, arrhythmogenic dysplasia of the right ventricle, and non-compaction myocardium, for the greater risk of sudden cardiac death of these conditions. Moreover, some drugs and performance-enhancing drugs can cause structural alterations and arrhythmias, therefore, their use should be excluded.

  15. A new classifier-based strategy for in-silico ion-channel cardiac drug safety assessment

    Directory of Open Access Journals (Sweden)

    Hitesh eMistry

    2015-03-01

    Full Text Available There is currently a strong interest in using high-throughput in-vitro ion-channel screening data to make predictions regarding the cardiac toxicity potential of a new compound in both animal and human studies. A recent FDA think tank encourages the use of biophysical mathematical models of cardiac myocytes for this prediction task. However, it remains unclear whether this approach is the most appropriate. Here we examine five literature data-sets that have been used to support the use of four different biophysical models and one statistical model for predicting cardiac toxicity in numerous species using various endpoints. We propose a simple model that represents the balance between repolarisation and depolarisation forces and compare the predictive power of the model against the original results (leave-one-out cross-validation. Our model showed equivalent performance when compared to the four biophysical models and one statistical model. We therefore conclude that this approach should be further investigated in the context of early cardiac safety screening when in-vitro potency data is generated.

  16. Duration of Untreated Cardiac Arrest and Clinical Relevance of Animal Experiments: The Relationship Between the "No-Flow" Duration and the Severity of Post-Cardiac Arrest Syndrome in a Porcine Model.

    Science.gov (United States)

    Babini, Giovanni; Grassi, Luigi; Russo, Ilaria; Novelli, Deborah; Boccardo, Antonio; Luciani, Anita; Fumagalli, Francesca; Staszewsky, Lidia; Fiordaliso, Fabio; De Maglie, Marcella; Salio, Monica; Zani, Davide D; Letizia, Teresa; Masson, Serge; Luini, Mario V; Pravettoni, Davide; Scanziani, Eugenio; Latini, Roberto; Ristagno, Giuseppe

    2018-02-01

    The study investigated the effect of untreated cardiac arrest (CA), that is, "no-flow" time, on postresuscitation myocardial and neurological injury, and survival in a pig model to identify an optimal duration that adequately reflects the most frequent clinical scenario. An established model of myocardial infarction followed by CA and cardiopulmonary resuscitation was used. Twenty-two pigs were subjected to three no-flow durations: short (8-10 min), intermediate (12-13 min), and long (14-15 min). Left ventricular ejection fraction (LVEF) was assessed together with thermodilution cardiac output (CO) and high sensitivity cardiac troponin T (hs-cTnT). Neurological impairment was evaluated by neurological scores, serum neuron specific enolase (NSE), and histopathology. More than 60% of animals survived when the duration of CA was ≤13 min, compared to only 20% for a duration ≥14 min. Neuronal degeneration and neurological scores showed a trend toward a worse recovery for longer no-flow durations. No animals achieved a good neurological recovery for a no-flow ≥14 min, in comparison to a 56% for a duration ≤13 min (P = 0.043). Serum NSE levels significantly correlated with the no-flow duration (r = 0.892). Longer durations of CA were characterized by lower LVEF and CO compared to shorter durations (P flow time, the higher was the number of defibrillations delivered (P = 0.043). The defibrillations delivered significantly correlated with LVEF and plasma hs-cTnT. Longer no-flow durations caused greater postresuscitation myocardial and neurological dysfunction and reduced survival. An untreated CA of 12-13 min may be an optimal choice for a clinically relevant model.

  17. Competition model for aperiodic stochastic resonance in a Fitzhugh-Nagumo model of cardiac sensory neurons.

    Science.gov (United States)

    Kember, G C; Fenton, G A; Armour, J A; Kalyaniwalla, N

    2001-04-01

    Regional cardiac control depends upon feedback of the status of the heart from afferent neurons responding to chemical and mechanical stimuli as transduced by an array of sensory neurites. Emerging experimental evidence shows that neural control in the heart may be partially exerted using subthreshold inputs that are amplified by noisy mechanical fluctuations. This amplification is known as aperiodic stochastic resonance (ASR). Neural control in the noisy, subthreshold regime is difficult to see since there is a near absence of any correlation between input and the output, the latter being the average firing (spiking) rate of the neuron. This lack of correlation is unresolved by traditional energy models of ASR since these models are unsuitable for identifying "cause and effect" between such inputs and outputs. In this paper, the "competition between averages" model is used to determine what portion of a noisy, subthreshold input is responsible, on average, for the output of sensory neurons as represented by the Fitzhugh-Nagumo equations. A physiologically relevant conclusion of this analysis is that a nearly constant amount of input is responsible for a spike, on average, and this amount is approximately independent of the firing rate. Hence, correlation measures are generally reduced as the firing rate is lowered even though neural control under this model is actually unaffected.

  18. Phenotypically silent Cre recombination within the postnatal ventricular conduction system.

    Science.gov (United States)

    Bhattacharyya, Samadrita; Bhakta, Minoti; Munshi, Nikhil Vilas

    2017-01-01

    The cardiac conduction system (CCS) is composed of specialized cardiomyocytes that initiate and maintain cardiac rhythm. Any perturbation to the normal sequence of electrical events within the heart can result in cardiac arrhythmias. To understand how cardiac rhythm is established at the molecular level, several genetically modified mouse lines expressing Cre recombinase within specific CCS compartments have been created. In general, Cre driver lines have been generated either by homologous recombination of Cre into an endogenous locus or Cre expression driven by a randomly inserted transgene. However, haploinsufficiency of the endogenous gene compromises the former approach, while position effects negatively impact the latter. To address these limitations, we generated a Cre driver line for the ventricular conduction system (VCS) that preserves endogenous gene expression by targeting the Contactin2 (Cntn2) 3' untranslated region (3'UTR). Here we show that Cntn23'UTR-IRES-Cre-EGFP/+ mice recombine floxed alleles within the VCS and that Cre expression faithfully recapitulates the spatial distribution of Cntn2 within the heart. We further demonstrate that Cre expression initiates after birth with preservation of native Cntn2 protein. Finally, we show that Cntn23'UTR-IRES-Cre-EGFP/+ mice maintain normal cardiac mechanical and electrical function. Taken together, our results establish a novel VCS-specific Cre driver line without the adverse consequences of haploinsufficiency or position effects. We expect that our new mouse line will add to the accumulating toolkit of CCS-specific mouse reagents and aid characterization of the cell-autonomous molecular circuitry that drives VCS maintenance and function.

  19. Thermal conductivity of the Lennard-Jones chain fluid model.

    Science.gov (United States)

    Galliero, Guillaume; Boned, Christian

    2009-12-01

    Nonequilibrium molecular dynamics simulations have been performed to estimate, analyze, and correlate the thermal conductivity of a fluid composed of short Lennard-Jones chains (up to 16 segments) over a large range of thermodynamic conditions. It is shown that the dilute gas contribution to the thermal conductivity decreases when the chain length increases for a given temperature. In dense states, simulation results indicate that the residual thermal conductivity of the monomer increases strongly with density, but is weakly dependent on the temperature. Compared to the monomer value, it has been noted that the residual thermal conductivity of the chain was slightly decreasing with its length. Using these results, an empirical relation, including a contribution due to the critical enhancement, is proposed to provide an accurate estimation of the thermal conductivity of the Lennard-Jones chain fluid model (up to 16 segments) over the domain 0.8values of the Lennard-Jones chain fluid model merge on the same "universal" curve when plotted as a function of the excess entropy. Furthermore, it is shown that the reduced configurational thermal conductivity of the Lennard-Jones chain fluid model is approximately proportional to the reduced excess entropy for all fluid states and all chain lengths.

  20. Two-dimensional modeling of conduction-mode laser welding

    International Nuclear Information System (INIS)

    Russo, A.J.

    1984-01-01

    WELD2D is a two-dimensional finite difference computer program suitable for modeling the conduction-mode welding process when the molten weld pool motion can be neglected. The code is currently structured to treat butt-welded geometries in a plane normal to the beam motion so that dissimilar materials may be considered. The surface heat transfer models used in the code include a Gaussian beam or uniform laser source, and a free electron theory reflectance calculation. Temperature-dependent material parameters are used in the reflectance calculation. Measured cold reflection data are used to include surface roughness or oxide effects until melt occurs, after which the surface is assumed to be smooth and clean. Blackbody reradiation and a simple natural convection model are also included in the upper surface boundary condition. Either an implicit or explicit finite-difference representation of the heat conduction equation in an enthalpy form is solved at each time step. This enables phase transition energies to be easily and accurately incorporated into the formulation. Temperature-dependent 9second-order polynominal dependence) thermal conductivities are used in the conduction calculations. Constant values of specific heat are used for each material phase. At present, material properties for six metals are included in the code. These are: aluminium, nickel, steel, molybdenum, copper and silicon

  1. Reliability of pulse oximetry during cardiopulmonary resuscitation in a piglet model of neonatal cardiac arrest.

    Science.gov (United States)

    Hassan, Mohammad Ahmad; Mendler, Marc; Maurer, Miriam; Waitz, Markus; Huang, Li; Hummler, Helmut D

    2015-01-01

    Pulse oximetry is widely used in intensive care and emergency conditions to monitor arterial oxygenation and to guide oxygen therapy. To study the reliability of pulse oximetry in comparison with CO-oximetry in newborn piglets during cardiopulmonary resuscitation (CPR). In a prospective cohort study in 30 healthy newborn piglets, cardiac arrest was induced, and thereafter each piglet received CPR for 20 min. Arterial oxygen saturation was monitored continuously by pulse oximetry (SpO2). Arterial blood was analyzed for functional oxygenation (SaO2) every 2 min. SpO2 was compared with coinciding SaO2 values and bias considered whenever the difference (SpO2 - SaO2) was beyond ±5%. Bias values were decreased at the baseline measurements (mean: 2.5 ± 4.6%) with higher precision and accuracy compared with values across the experiment. Two minutes after cardiac arrest, there was a marked decrease in precision and accuracy as well as an increase in bias up to 13 ± 34%, reaching a maximum of 45.6 ± 28.3% after 10 min over a mean SaO2 range of 29-58%. Pulse oximetry showed increased bias and decreased accuracy and precision during CPR in a model of neonatal cardiac arrest. We recommend further studies to clarify the exact mechanisms of these false readings to improve reliability of pulse oximetry during the marked desaturation and hypoperfusion found during CPR. © 2014 S. Karger AG, Basel.

  2. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    Science.gov (United States)

    Rogozhnikov, Dmitry; O'Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.

    2016-12-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.

  3. Risk Factor Analyses for the Return of Spontaneous Circulation in the Asphyxiation Cardiac Arrest Porcine Model

    Directory of Open Access Journals (Sweden)

    Cai-Jun Wu

    2015-01-01

    Full Text Available Background: Animal models of asphyxiation cardiac arrest (ACA are frequently used in basic research to mirror the clinical course of cardiac arrest (CA. The rates of the return of spontaneous circulation (ROSC in ACA animal models are lower than those from studies that have utilized ventricular fibrillation (VF animal models. The purpose of this study was to characterize the factors associated with the ROSC in the ACA porcine model. Methods: Forty-eight healthy miniature pigs underwent endotracheal tube clamping to induce CA. Once induced, CA was maintained untreated for a period of 8 min. Two minutes following the initiation of cardiopulmonary resuscitation (CPR, defibrillation was attempted until ROSC was achieved or the animal died. To assess the factors associated with ROSC in this CA model, logistic regression analyses were performed to analyze gender, the time of preparation, the amplitude spectrum area (AMSA from the beginning of CPR and the pH at the beginning of CPR. A receiver-operating characteristic (ROC curve was used to evaluate the predictive value of AMSA for ROSC. Results: ROSC was only 52.1% successful in this ACA porcine model. The multivariate logistic regression analyses revealed that ROSC significantly depended on the time of preparation, AMSA at the beginning of CPR and pH at the beginning of CPR. The area under the ROC curve in for AMSA at the beginning of CPR was 0.878 successful in predicting ROSC (95% confidence intervals: 0.773∼0.983, and the optimum cut-off value was 15.62 (specificity 95.7% and sensitivity 80.0%. Conclusions: The time of preparation, AMSA and the pH at the beginning of CPR were associated with ROSC in this ACA porcine model. AMSA also predicted the likelihood of ROSC in this ACA animal model.

  4. Association between dental caries and out-of-hospital cardiac arrests of cardiac origin in Japan.

    Science.gov (United States)

    Suematsu, Yasunori; Miura, Shin-Ichiro; Zhang, Bo; Uehara, Yoshinari; Ogawa, Masahiro; Yonemoto, Naohiro; Nonogi, Hiroshi; Nagao, Ken; Kimura, Takeshi; Saku, Keijiro

    2016-04-01

    Oral infection contributes to atherosclerosis and coronary heart disease. We hypothesized that dental caries may be associated with out-of-hospital cardiac arrests (OHCA) of cardiac origin, but not non-cardiac origin. We compared the age-adjusted incidence of OHCA (785,591 cases of OHCA: 55.4% of cardiac origin and 44.6% of non-cardiac origin) to the age-adjusted prevalence of dental caries between 2005 and 2011 in the 47 prefectures of Japan. In both the total population and males over 65 years, the number of cases of dental caries was significantly associated with the number of OHCA of total and cardiac origin from 2005 to 2011, but not those of non-cardiac origin. In the total population, the age-adjusted prevalence of dental caries was not significantly associated with the age-adjusted incidence of OHCA (total OHCA: r correlation coefficient=0.22, p=0.14; OHCA of cardiac origin: r=0.25, p=0.09; OHCA of non-cardiac origin: r=-0.002, p=0.99). Among male patients over 65 years, the age-adjusted prevalence of dental caries was significantly associated with OHCA of total and cardiac origin, but not non-cardiac origin (total OHCA: r=0.47, p<0.001; OHCA of cardiac origin: r=0.37, p=0.01; OHCA of non-cardiac origin: r=0.28, p=0.054). While oral hygiene is important in all age groups, it may be particularly associated with OHCAs of cardiac origin in males over 65 years. Copyright © 2015. Published by Elsevier Ltd.

  5. Exercise-related cardiac arrest in cardiac rehabilitation - The ...

    African Journals Online (AJOL)

    Prescribed physical activity plays a major role in the rehabilitation of patients with coronary artery disease, and as with any other form of treatment its benefits must be weighed against its possible risks. This study attempted to establish the safety of cardiac rehabilitation as a medical intervention at the Johannesburg Cardiac ...

  6. Targeted next-generation sequencing provides novel clues for associated epilepsy and cardiac conduction disorder/SUDEP.

    Directory of Open Access Journals (Sweden)

    Monica Coll

    Full Text Available Sudden unexpected death in epilepsy is an unpredicted condition in patients with a diagnosis of epilepsy, and autopsy does not conclusively identify cause of death. Although the pathophysiological mechanisms that underlie this entity remain unknown, the fact that epilepsy can affect cardiac function is not surprising. The genetic factors involving ion channels co-expressed in the heart and brain and other candidate genes have been previously described. In the present study, 20 epilepsy patients with personal or family history of heart rhythm disturbance/cardiac arrhythmias/sudden death were sequenced using a custom re-sequencing panel. Twenty-six relatives were genetically analysed to ascertain the family segregation in ten individuals. Four subjects revealed variants with positive genotype-phenotype segregation: four missense variants in the CDKL5, CNTNAP2, GRIN2A and ADGRV1 genes and one copy number variant in KCNQ1. The potential pathogenic role of variants in new candidate genes will need further studies in larger cohorts, and the evaluation of the potential pathogenic role in the cardio-cerebral mechanisms requires in vivo/in vitro studies. In addition to family segregation, evaluation of the potential pathogenic roles of these variants in cardio-cerebral mechanisms by in vivo/in vitro studies should also be performed. The potential pathogenic role of variants in new candidate genes will need further studies in larger cohorts.

  7. Dynamic separation of pulmonary and cardiac changes in electrical impedance tomography

    International Nuclear Information System (INIS)

    Deibele, J M; Luepschen, H; Leonhardt, S

    2008-01-01

    In spontaneously breathing or ventilated subjects, it is difficult to image cardiac-related conductivity changes using electrical impedance tomography (EIT) due to the high amplitude of the ventilation component. Previous attempts to separate these components included either electrocardiogram-gated averaging, frequency domain filtering or holding the breath while performing the measurements. However, such methods are either not able to produce continuous real-time images or to fully separate cardiac and pulmonary changes. The aim of this work was to develop a new dynamic filtering method for the online separation of pulmonary and cardiac changes avoiding the drawbacks of the previous attempts. The approach is based on estimating template functions for the pulmonary and cardiac components by means of principal component analysis and frequency domain filtering. Then, these templates are fitted into the input signals. The new method enables an observer to examine the variation of the cardiac signal beat-by-beat after a one-time setup period of 20 s. Preliminary in vivo results of two healthy subjects are presented. The results are superior to frequency domain filtering and in good agreement with signals averaged over several cardiac cycles. The method does not depend on ECG or other a priori knowledge. The apparent validity of the method's ability to separate cardiac and pulmonary changes in EIT images was shown and has to be confirmed in future studies. The algorithm opens up new possibilities for future clinical trials on continuous monitoring by means of EIT and for the examination of the relation between the cardiac component and lung perfusion

  8. A Parametric Computational Model of the Action Potential of Pacemaker Cells.

    Science.gov (United States)

    Ai, Weiwei; Patel, Nitish D; Roop, Partha S; Malik, Avinash; Andalam, Sidharta; Yip, Eugene; Allen, Nathan; Trew, Mark L

    2018-01-01

    A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need. The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable. The model can capture rate-dependent dynamics, such as action potential duration restitution, conduction velocity restitution, and overdrive suppression by incorporating nonlinear update functions. Simulated dynamics of the model compared well with previous models and clinical data. The results show that the parametric model can reproduce the electrophysiological dynamics of a variety of pacemaker cells, such as sinoatrial node, atrioventricular node, and the His-Purkinje system, under varying cardiac conditions. This is an important contribution toward closed-loop validation of cardiac devices using real-time heart models.

  9. Prognostic value of depressed midwall systolic function in cardiac light-chain amyloidosis.

    Science.gov (United States)

    Perlini, Stefano; Salinaro, Francesco; Musca, Francesco; Mussinelli, Roberta; Boldrini, Michele; Raimondi, Ambra; Milani, Paolo; Foli, Andrea; Cappelli, Francesco; Perfetto, Federico; Palladini, Giovanni; Rapezzi, Claudio; Merlini, Giampaolo

    2014-05-01

    Cardiac amyloidosis represents an archetypal form of restrictive heart disease, characterized by profound diastolic dysfunction. As ejection fraction is preserved until the late stage of the disease, the majority of patients do fulfill the definition of diastolic heart failure, that is, heart failure with preserved ejection fraction (HFpEF). In another clinical model of HFpEF, that is, pressure-overload hypertrophy, depressed midwall fractional shortening (mFS) has been shown to be a powerful prognostic factor. To assess the potential prognostic role of mFS in cardiac light-chain amyloidosis with preserved ejection fraction, we enrolled 221 consecutive untreated patients, in whom a first diagnosis of cardiac light-chain amyloidosis was concluded between 2008 and 2010. HFpEF was present in 181 patients. Patients in whom cardiac involvement was excluded served as controls (n = 121). Prognosis was assessed after a median follow-up of 561 days. When compared with light-chain amyloidosis patients without myocardial involvement, cardiac light-chain amyloidosis was characterized by increased wall thickness (P model. In cardiac light-chain amyloidosis with normal ejection fraction, depressed circumferential mFS, a marker of myocardial contractile dysfunction, is a powerful predictor of survival.

  10. Lyme Carditis: A Case Involving the Conduction System and Mitral Valve.

    Science.gov (United States)

    Patel, Lakir D; Schachne, Jay S

    2017-02-01

    Lyme disease is the most common tick-borne infection in the Northern hemisphere. Cardiac manifestations of Lyme disease typically include variable atrioventricular nodal block and rarely structural heart pathology. The incidence of Lyme carditis may be underestimated based on current reporting practices of confirmed cases. This case of a 59-year-old man with Lyme carditis demonstrates the unique presentation of widespread conduction system disease, mitral regurgitation, and suspected ischemic disease. Through clinical data, electrocardiograms, and cardiac imaging, we show the progression, and resolution, of a variety of cardiac symptoms attributable to infection with Lyme. [Full article available at http://rimed.org/rimedicaljournal-2017-02.asp].

  11. Sudden cardiac death

    Directory of Open Access Journals (Sweden)

    Neeraj Parakh

    2015-01-01

    Full Text Available Sudden cardiac death is one of the most common cause of mortality worldwide. Despite significant advances in the medical science, there is little improvement in the sudden cardiac death related mortality. Coronary artery disease is the most common etiology behind sudden cardiac death, in the above 40 years population. Even in the apparently healthy population, there is a small percentage of patients dying from sudden cardiac death. Given the large denominator, this small percentage contributes to the largest burden of sudden cardiac death. Identification of this at risk group among the apparently healthy individual is a great challenge for the medical fraternity. This article looks into the causes and methods of preventing SCD and at some of the Indian data. Details of Brugada syndrome, Long QT syndrome, Genetics of SCD are discussed. Recent guidelines on many of these causes are summarised.

  12. Cardiac Patients’ Experiences and Perceptions of Social Media: Mixed-Methods Study

    Science.gov (United States)

    Partridge, Stephanie R; Grunseit, Anne C; Gallagher, Patrick; Freeman, Becky; O'Hara, Blythe J; Neubeck, Lis; Due, Sarah; Paull, Glenn; Ding, Ding; Bauman, Adrian; Phongsavan, Philayrath; Roach, Kellie; Sadler, Leonie; Glinatsis, Helen

    2017-01-01

    Background Traditional in-person cardiac rehabilitation has substantial benefits for cardiac patients, which are offset by poor attendance. The rapid increase in social media use in older adults provides an opportunity to reach patients who are eligible for cardiac rehabilitation but unable to attend traditional face-to-face groups. However, there is a paucity of research on cardiac patients’ experiences and perspectives on using social media to support their health. Objective The aim of this study was to describe cardiac rehabilitation patients’ experiences in using social media in general and their perspective on using social media, particularly Facebook, to support their cardiac health and secondary prevention efforts. Methods A mixed-methods study was undertaken among cardiac rehabilitation patients in both urban and rural areas. First, this study included a survey (n=284) on social media use and capability. Second, six focus group interviews were conducted with current Facebook users (n=18) to elucidate Facebook experience and perspectives. Results Social media use was low (28.0%, 79/282) but more common in participants who were under 70 years of age, employed, and had completed high school. Social media users accessed Web-based information on general health issues (65%, 51/79), medications (56%, 44/79), and heart health (43%, 34/79). Participants were motivated to invest time in using Facebook for “keeping in touch” with family and friends and to be informed by expert cardiac health professionals and fellow cardiac participants if given the opportunity. It appeared that participants who had a higher level of Facebook capability (understanding of features and the consequences of their use and efficiency in use) spent more time on Facebook and reported higher levels of “liking,” commenting, or sharing posts. Furthermore, higher Facebook capability appeared to increase a participants’ willingness to participate in a cardiac Facebook support group

  13. [Effect of down-regulation of IKs repolarization-reserve on ventricular arrhythmogenesis in a guinea pig model of cardiac hypertrophy].

    Science.gov (United States)

    Wang, Hegui; Huang, Ting; Wang, Zheng; Ge, Nannan; Ke, Yongsheng

    2018-04-28

    To observe the changes of rapidly activated delayed rectifier potassium channel (IKr) and slowly activated delayed rectifier potassium channel (IKs) in cardiac hypertrophy and to evaluate the effects of IKr and IKs blocker on the incidence of ventricular arrhythmias in guinea pigs with left ventricular hypertrophy (LVH).
 Methods: Guinea pigs were divided into a sham operation group and a left ventricular hypertrophy (LVH) group. LVH model was prepared. Whole cell patch-clamp technique was used to record IKr and IKs tail currents in a guinea pig model with LVH. The changes of QTc and the incidence rate of ventricular arrhythmias in LVH guinea pigs were observed by using the IKr and IKs blockers.
 Results: Compared with cardiac cells in the control group, the interventricular septal thickness at end systole (IVSs), left ventricular posterior wall thickness at end systole (LVPWs), QTc interval and cell capacitance in guinea pigs with LVH were significantly increased (Pguinea pigs with LVH compared with the control guinea pigs. In contrast, IKs blocker produced modest increase in QTc interval in guinea pigs of control group with no increase in LVH animals. IKs blocker did not induce ventricular arrhythmias incidence in either control or LVH animals.
 Conclusion: The cardiac hypertrophy-induced arrhythmogenesis is due to the down-regulation 
of IKs.

  14. Development of cardiac conduction system in mammals with a focus on the anatomical, functional and medical/genetical aspects

    Czech Academy of Sciences Publication Activity Database

    Sedmera, David

    2007-01-01

    Roč. 5, - (2007), s. 115-123 ISSN 1214-021X Institutional research plan: CEZ:AV0Z50450515 Keywords : myocyte * AV junction * Wolf- Parkinson -White syndrome * ventricular CCS * cardiac disease Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  15. Modeling for cardiac excitation propagation based on the Nernst-Planck equation and homogenization.

    Science.gov (United States)

    Okada, Jun-ichi; Sugiura, Seiryo; Hisada, Toshiaki

    2013-06-01

    The bidomain model is a commonly used mathematical model of the electrical properties of the cardiac muscle that takes into account the anisotropy of both the intracellular and extracellular spaces. However, the equations contain self-contradiction such that the update of ion concentrations does not consider intracellular or extracellular ion movements due to the gradient of electric potential and the membrane charge as capacitive currents in spite of the fact that those currents are taken into account in forming Kirchhoff's first law. To overcome this problem, we start with the Nernst-Planck equation, the ionic conservation law, and the electroneutrality condition at the cellular level, and by introducing a homogenization method and assuming uniformity of variables at the microscopic scale, we derive rational bidomain equations at the macroscopic level.

  16. Multiscale Modeling of UHTC: Thermal Conductivity

    Science.gov (United States)

    Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.

    2012-01-01

    We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.

  17. Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes

    International Nuclear Information System (INIS)

    Bao, W S; Meguid, S A; Zhu, Z H; Meguid, M J

    2011-01-01

    We have developed an improved three-dimensional (3D) percolation model to investigate the effect of the alignment of carbon nanotubes (CNTs) on the electrical conductivity of nanocomposites. In this model, both intrinsic and contact resistances are considered, and a new method of resistor network recognition that employs periodically connective paths is developed. This method leads to a reduction in the size effect of the representative cuboid in our Monte Carlo simulations. With this new technique, we were able to effectively analyze the effects of the CNT alignment upon the electrical conductivity of nanocomposites. Our model predicted that the peak value of the conductivity occurs for partially aligned rather than perfectly aligned CNTs. It has also identified the value of the peak and the corresponding alignment for different volume fractions of CNTs. Our model works well for both multi-wall CNTs (MWCNTs) and single-wall CNTs (SWCNTs), and the numerical results show a quantitative agreement with existing experimental observations.

  18. Conservation of cardiac L-type Ca2+ channels and their regulation in Drosophila: A novel genetically-pliable channelopathic model.

    Science.gov (United States)

    Limpitikul, Worawan B; Viswanathan, Meera C; O'Rourke, Brian; Yue, David T; Cammarato, Anthony

    2018-04-21

    Dysregulation of L-type Ca 2+ channels (LTCCs) underlies numerous cardiac pathologies. Understanding their modulation with high fidelity relies on investigating LTCCs in their native environment with intact interacting proteins. Such studies benefit from genetic manipulation of endogenous channels in cardiomyocytes, which often proves cumbersome in mammalian models. Drosophila melanogaster, however, offers a potentially efficient alternative as it possesses a relatively simple heart, is genetically pliable, and expresses well-conserved genes. Fluorescence in situ hybridization confirmed an abundance of Ca-α1D and Ca-α1T mRNA in fly myocardium, which encode subunits that specify hetero-oligomeric channels homologous to mammalian LTCCs and T-type Ca 2+ channels, respectively. Cardiac-specific knockdown of Ca-α1D via interfering RNA abolished cardiac contraction, suggesting Ca-α1D (i.e. A1D) represents the primary functioning Ca 2+ channel in Drosophila hearts. Moreover, we successfully isolated viable single cardiomyocytes and recorded Ca 2+ currents via patch clamping, a feat never before accomplished with the fly model. The profile of Ca 2+ currents recorded in individual cells when Ca 2+ channels were hypomorphic, absent, or under selective LTCC blockage by nifedipine, additionally confirmed the predominance of A1D current across all activation voltages. T-type current, activated at more negative voltages, was also detected. Lastly, A1D channels displayed Ca 2+ -dependent inactivation, a critical negative feedback mechanism of LTCCs, and the current through them was augmented by forskolin, an activator of the protein kinase A pathway. In sum, the Drosophila heart possesses a conserved compendium of Ca 2+ channels, suggesting that the fly may serve as a robust and effective platform for studying cardiac channelopathies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Dietary composition regulates Drosophila mobility and cardiac physiology

    Science.gov (United States)

    Bazzell, Brian; Ginzberg, Sara; Healy, Lindsey; Wessells, R. J.

    2013-01-01

    SUMMARY The impact of dietary composition on exercise capacity is a subject of intense study in both humans and model organisms. Interactions between diet and genetics are a crucial component of optimized dietary design. However, the genetic factors governing exercise response are still not well understood. The recent development of invertebrate models for endurance exercise is likely to facilitate study designs examining the conserved interactions between diet, exercise and genetics. As a first step, we used the Drosophila model to describe the effects of varying dietary composition on several physiological indices, including fatigue tolerance and climbing speed, cardiac performance, lipid storage and autophagy. We found that flies of two divergent genetic backgrounds optimize endurance and cardiac performance on relatively balanced low calorie diets. When flies are provided with unbalanced diets, diets higher in sugar than in yeast facilitate greater endurance at the expense of cardiac performance. Importantly, we found that dietary composition has a profound effect on various physiological indices, whereas total caloric intake per se has very little predictive value for performance. We also found that the effects of diet on endurance are completely reversible within 48 h if flies are switched to a different diet. PMID:23155082

  20. Structural, Nursing, and Physician Characteristics and 30-Day Mortality for Patients Undergoing Cardiac Surgery in Pennsylvania.

    Science.gov (United States)

    Lane-Fall, Meghan B; Ramaswamy, Tara S; Brown, Sydney E S; He, Xu; Gutsche, Jacob T; Fleisher, Lee A; Neuman, Mark D

    2017-09-01

    Cardiac surgery ICU characteristics and clinician staffing patterns have not been well characterized. We sought to describe Pennsylvania cardiac ICUs and to determine whether ICU characteristics are associated with mortality in the 30 days after cardiac surgery. From 2012 to 2013, we conducted a survey of cardiac surgery ICUs in Pennsylvania to assess ICU structure, care practices, and clinician staffing patterns. ICU data were linked to an administrative database of cardiac surgery patient discharges. We used logistic regression to measure the association between ICU variables and death in 30 days. Cardiac surgery ICUs in Pennsylvania. Patients having coronary artery bypass grafting and/or cardiac valve repair or replacement from 2009 to 2011. None. Of the 57 cardiac surgical ICUs in Pennsylvania, 43 (75.4%) responded to the facility survey. Rounds included respiratory therapists in 26 of 43 (60.5%) and pharmacists in 23 of 43 (53.5%). Eleven of 41 (26.8%) reported that at least 2/3 of their nurses had a bachelor's degree in nursing. Advanced practice providers were present in most of the ICUs (37/43; 86.0%) but residents (8/42; 18.6%) and fellows (7/43; 16.3%) were not. Daytime intensivists were present in 21 of 43 (48.8%) responding ICUs; eight of 43 (18.6%) had nighttime intensivists. Among 29,449 patients, there was no relationship between mortality and nurse ICU experience, presence of any intensivist, or absence of residents after risk adjustment. To exclude patients who may have undergone transcatheter aortic valve replacement, we conducted a subgroup analysis of patients undergoing only coronary artery bypass grafting, and results were similar. Pennsylvania cardiac surgery ICUs have variable structures, care practices, and clinician staffing, although none of these are statistically significantly associated with mortality in the 30 days following surgery after adjustment.

  1. Zebrafish cardiac muscle thick filaments: isolation technique and three-dimensional structure.

    Science.gov (United States)

    González-Solá, Maryví; Al-Khayat, Hind A; Behra, Martine; Kensler, Robert W

    2014-04-15

    To understand how mutations in thick filament proteins such as cardiac myosin binding protein-C or titin, cause familial hypertrophic cardiomyopathies, it is important to determine the structure of the cardiac thick filament. Techniques for the genetic manipulation of the zebrafish are well established and it has become a major model for the study of the cardiovascular system. Our goal is to develop zebrafish as an alternative system to the mammalian heart model for the study of the structure of the cardiac thick filaments and the proteins that form it. We have successfully isolated thick filaments from zebrafish cardiac muscle, using a procedure similar to those for mammalian heart, and analyzed their structure by negative-staining and electron microscopy. The isolated filaments appear well ordered with the characteristic 42.9 nm quasi-helical repeat of the myosin heads expected from x-ray diffraction. We have performed single particle image analysis on the collected electron microscopy images for the C-zone region of these filaments and obtained a three-dimensional reconstruction at 3.5 nm resolution. This reconstruction reveals structure similar to the mammalian thick filament, and demonstrates that zebrafish may provide a useful model for the study of the changes in the cardiac thick filament associated with disease processes. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Do Cardiac Rehabilitation Programs Offer Cardiopulmonary Resuscitation Training in Australia and New Zealand?

    Science.gov (United States)

    Cartledge, Susie H; Bray, Janet E; Stub, Dion; Krum, Henry; Finn, Judith

    2016-06-01

    Cardiac rehabilitation may provide an ideal environment to train high-risk cardiac patients and their families in cardiopulmonary resuscitation (CPR). However, whether this training is currently offered is unknown. The aims of this study were to: 1) describe the prevalence of CPR training in cardiac rehabilitation programs in Australia and New Zealand (NZ); and 2) examine perceived barriers and attitudes of cardiac rehabilitation coordinators towards providing CPR training. We conducted a cross-sectional online survey of Australian and NZ cardiac rehabilitation coordinators. We received 253 completed surveys (46.7% response rate) (Australia n=208, NZ n=45). Cardiopulmonary resuscitation training was included in 23.9% of Australian programs and 56.6% in NZ. Common barriers to CPR training included lack of resources (49.7%) and a lack of awareness to provide CPR training for this high-risk group (33.7%). The majority of coordinators believed that lay people should be trained in CPR (96.3%) and were comfortable with recommending CPR training to this high-risk group (89.4%). While cardiac rehabilitation coordinators have positive attitudes towards CPR training, it is not currently part of most programs - particularly in Australia. Organisations formulating cardiac rehabilitation recommendations and guidelines should give consideration to include the provision of CPR training. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  3. Simulation-based Mastery Learning Improves Cardiac Auscultation Skills in Medical Students

    Science.gov (United States)

    McGaghie, William C.; Cohen, Elaine R.; Kaye, Marsha; Wayne, Diane B.

    2010-01-01

    Background Cardiac auscultation is a core clinical skill. However, prior studies show that trainee skills are often deficient and that clinical experience is not a proxy for competence. Objective To describe a mastery model of cardiac auscultation education and evaluate its effectiveness in improving bedside cardiac auscultation skills. Design Untreated control group design with pretest and posttest. Participants Third-year students who received a cardiac auscultation curriculum and fourth year students who did not. Intervention A cardiac auscultation curriculum consisting of a computer tutorial and a cardiac patient simulator. All third-year students were required to meet or exceed a minimum passing score (MPS) set by an expert panel at posttest. Measurements Diagnostic accuracy with simulated heart sounds and actual patients. Results Trained third-year students (n = 77) demonstrated significantly higher cardiac auscultation accuracy compared to untrained fourth year students (n = 31) in assessment of simulated heart sounds (93.8% vs. 73.9%, p auscultation curriculum consisting of deliberate practice with a computer-based tutorial and a cardiac patient simulator resulted in improved assessment of simulated heart sounds and more accurate examination of actual patients. PMID:20339952

  4. Intention to abstain from smoking among cardiac rehabilitation patients: the role of attitude, self-efficacy, and craving.

    Science.gov (United States)

    Bakker, Esther C; Nijkamp, Marjan D; Sloot, Caroline; Berndt, Nadine C; Bolman, Catherine A W

    2015-01-01

    Smoking cessation after developing coronary heart disease improves disease prognosis more than any other treatment. However, many cardiac patients continue to smoke after hospital discharge. The aim of this study was to investigate factors associated with the intention to (permanently) abstain from smoking among cardiac rehabilitation patients 2 to 4 weeks after discharge from hospital. A cross-sectional survey was conducted among 149 cardiac rehabilitation patients recruited from 2 cardiac rehabilitation centers in The Netherlands 2 to 4 weeks after hospital discharge, at the start of the cardiac rehabilitation period. Psychosocial cognitions including attitude toward nonsmoking, social influence, and self-efficacy were measured with a standardized and validated Dutch questionnaire based on the Attitude-Social Influence-Self-efficacy model. Anxiety was measured using the shortened version of the State-Trait Anxiety Inventory. Craving for cigarettes was assessed with 6 items measuring the urge to smoke. Intention toward nonsmoking was assessed with 2 visual analog scales indicating the strength and probability of the intention to permanently refrain from smoking. Of all patients, 31% still smoked after hospital discharge. The smokers had a lower self-efficacy and intention to abstain from smoking and reported higher craving. Logistic regression analyses revealed that attitudes that embraced the advantages of not smoking, self-efficacy, and craving were significantly related to the intention to (permanently) abstain from smoking, whereas social influence and anxiety were not. Actual smoking behavior moderated the relation between self-efficacy and intention: only the quitters showed a significant positive relation. Anxiety did not moderate the relationship between psychosocial cognitive factors and intention. The intention to (permanently) abstain from smoking, measured 2 to 4 weeks after hospitalization for a cardiac event, predominantly depends on attitude, self

  5. Recurrent late cardiac tamponade following cardiac surgery : a deceiving and potentially lethal complication

    NARCIS (Netherlands)

    Harskamp, Ralf E.; Meuzelaar, Jacobus J.

    2010-01-01

    Background - Cardiac tamponade, characterized by inflow obstruction of the heart chambers by extracardiac compression, is a potentially lethal complication following cardiac surgery. Case report - We present a case of recurrent cardiac tamponade following valve surgery. At first presentation,

  6. The dynamics of spiral tip adjacent to inhomogeneity in cardiac tissue

    Science.gov (United States)

    Zhang, Juan; Tang, Jun; Ma, Jun; Luo, Jin Ming; Yang, Xian Qing

    2018-02-01

    Rotating spiral waves in cardiac tissue are implicated in life threatening cardiac arrhythmias. Experimental and theoretical evidences suggest the inhomogeneities in cardiac tissue play a significant role in the dynamics of spiral waves. Based on a modified 2D cardiac tissue model, the interaction of inhomogeneity on the nearby rigidly rotating spiral wave is numerically studied. The adjacent area of the inhomogeneity is divided to two areas, when the initial rotating center of the spiral tip is located in the two areas, the spiral tip will be attracted and anchor on the inhomogeneity finally, or be repulsed away. The width of the area is significantly dependent on the intensity and size of the inhomogeneity. Our numerical study sheds some light on the mechanism of the interaction of inhomogeneity on the spiral wave in cardiac tissue.

  7. COMPARISON OF CARDIAC BIOMARKERS AND ECHOCARDIOGRAPHY IN DIAGNOSING MYOCARDITIS

    Directory of Open Access Journals (Sweden)

    Nimi Bharathan

    2017-03-01

    Full Text Available BACKGROUND Conventional methods used to diagnose or rule out myocarditis is not useful in detecting cardiac myocyte injury in clinically suspected cases. Endomyocardial biopsy and histopathological examination is not feasible in most government hospitals in India. Sensitive parameters have yet to be found out. The study was conducted to find out whether diagnosis of myocarditis in clinically suspected cases can be done by measurement of serum levels of cardiac troponinI (cTnI and MB isoform of creatine kinase (CK-MB. MATERIALS AND METHODS 19 patients with clinically suspected myocarditis were screened for CK-MB activity and cTnI. Echocardiography, ECG and IgM for leptospirosis were also checked in these patients. RESULTS cTnI was elevated in 10 out of 19 patients with clinically suspected myocarditis. CK-MB was elevated in 7 patients. CONCLUSION Elevation of cTnI level in blood can be taken as an indicator of cardiac muscle cell injury in suspected cases of myocarditis.

  8. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing

    Science.gov (United States)

    Lind, Johan U.; Busbee, Travis A.; Valentine, Alexander D.; Pasqualini, Francesco S.; Yuan, Hongyan; Yadid, Moran; Park, Sung-Jin; Kotikian, Arda; Nesmith, Alexander P.; Campbell, Patrick H.; Vlassak, Joost J.; Lewis, Jennifer A.; Parker, Kevin K.

    2017-03-01

    Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues in vitro, have emerged as a promising alternative. However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes. Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.

  9. Medical robots in cardiac surgery - application and perspectives.

    Science.gov (United States)

    Kroczek, Karolina; Kroczek, Piotr; Nawrat, Zbigniew

    2017-03-01

    Medical robots offer new standards and opportunities for treatment. This paper presents a review of the literature and market information on the current situation and future perspectives for the applications of robots in cardiac surgery. Currently in the United States, only 10% of thoracic surgical procedures are conducted using robots, while globally this value remains below 1%. Cardiac and thoracic surgeons use robotic surgical systems increasingly often. The goal is to perform more than one hundred thousand minimally invasive robotic surgical procedures every year. A surgical robot can be used by surgical teams on a rotational basis. The market of surgical robots used for cardiovascular and lung surgery was worth 72.2 million dollars in 2014 and is anticipated to reach 2.2 billion dollars by 2021. The analysis shows that Poland should have more than 30 surgical robots. Moreover, Polish medical teams are ready for the introduction of several robots into the field of cardiac surgery. We hope that this market will accommodate the Polish Robin Heart robots as well.

  10. Cardiac Imaging Using Clinical 1.5 T MRI Scanners in a Murine Ischemia/Reperfusion Model

    Directory of Open Access Journals (Sweden)

    Jakob G. J. Voelkl

    2011-01-01

    Full Text Available To perform cardiac imaging in mice without having to invest in expensive dedicated equipment, we adapted a clinical 1.5 Tesla (T magnetic resonance imaging (MRI scanner for use in a murine ischemia/reperfusion model. Phase-sensitive inversion recovery (PSIR sequence facilitated the determination of infarct sizes in vivo by late gadolinium enhancement. Results were compared to histological infarct areas in mice after ischemia/reperfusion procedure with a good correlation (=0.807, <.001. In addition, fractional area change (FAC was assessed with single slice cine MRI and was matched to infarct size (=−0.837 and fractional shortening (FS measured with echocardiography (=0.860; both <.001. Here, we demonstrate the use of clinical 1.5 MRI scanners as a feasible method for basic phenotyping in mice. These widely available scanners are capable of investigating in vivo infarct dimensions as well as assessment of cardiac functional parameters in mice with reasonable throughput.

  11. Prophylactic antibiotics are associated with a lower incidence of pneumonia in cardiac arrest survivors treated with targeted temperature management

    DEFF Research Database (Denmark)

    Gagnon, David J; Nielsen, Niklas; Fraser, Gilles L

    2015-01-01

    INTRODUCTION: Prophylactic antibiotics (PRO) reduce the incidence of early-onset pneumonia in comatose patients with structural brain injury, but have not been examined in cardiac arrest survivors undergoing targeted temperature management (TTM). We investigated the effect of PRO on the development...... of pneumonia in that population. METHODS: We conducted a retrospective cohort study comparing patients treated with PRO to those not receiving PRO (no-PRO) using Northern Hypothermia Network registry data. Cardiac arrest survivors ≥ 18 years of age with a GCS...-34 °C were enrolled in the registry. Differences were analyzed in univariate analyses and with logistic regression models to evaluate independent associations of clinical factors with incidence of pneumonia and good functional outcome. RESULTS: 416 of 1240 patients (33.5%) received PRO. Groups were...

  12. Small cardiac lesions: fibrosis of papillary muscles and focal cardiac myocytolysis

    Energy Technology Data Exchange (ETDEWEB)

    Steer, A [Hijiyanna Park, Hiroshima JP; Nakashima, N; Kawashima, T; Lee, K K; Danzig, M D; Robertson, T L; Dock, D S

    1977-11-01

    Three types of small cardiac lesions were described and illustrated: (1) focal type of papillary muscle fibrosis, evidently a healed infarct of the papillary muscle present in 13% of the autopsies, is a histologically characteristic lesion associated with coronary artery disease and healed myocardial infarction; (2) diffuse type of papillary muscle fibrosis, probably an aging change present in almost half of the autopsies, is associated with sclerosis of the arteries in the papillary muscle, is identifiable histologically; and apparently is not associated with any cardiac abnormality; and (3) focal cardiac myocytolysis, a unique histologic lesion, usually multifocal without predilection for any area of the heart, is associated with ischemic heart disease, death due to cancer complicated by non-bacterial thrombotic endocarditis and microthrombi in small cardiac arteries as well as with other diseases. Differentiation of the 2 types of papillary muscle fibrosis is important in the study of papillary muscle and mitral valve dysfunction. Focal cardiac myocytolysis may contribute to the fatal extension of myocardial infarcts.

  13. Small cardiac lesions: fibrosis of papillary muscles and focal cardiac myocytolysis

    Energy Technology Data Exchange (ETDEWEB)

    Steer, A; Nakashima, T; Kawashima, T; Lee, K K; Danzig, M D; Robertson, T L; Dock, D S

    1977-11-01

    Three types of small cardiac lesions were described and illustrated: (1) focal type of papillary muscle fibrosis, evidently a healed infarct of the papillary muscle present in 13% of the autopsies, is a histologically characteristic lesion associated with coronary artery disease and healed myocardial infarction, (2) diffuse type of papillary muscle fibrosis, probably an aging change present in almost half of the autopsies, is associated with sclerosis of the arteries in the papillary muscle, is identifiable histologically, and apparently is not associated with any cardiac abnormality, and (3) focal cardiac myochtolysis, a unique histologic lesion, usually multifocal without predilection for any area of the heart, is associated with ischemic heart disease, death due to cancer complicated by nonbacterial thrombotic endocarditis and microthrombi in small cardiac arteries as well as with other diseases. Differentiation of the 2 types of papillary muscle fibrosis is important in the study of papillary muscle and mitral valve dysfunction. Focal cardiac myocytolysis may contribute to the fatal extension of myocardial infarcts.

  14. Genetically engineered cardiac pacemaker: Stem cells transfected with HCN2 gene and myocytes—A model

    Science.gov (United States)

    Kanani, S.; Pumir, A.; Krinsky, V.

    2008-01-01

    One of the successfully tested methods to design genetically engineered cardiac pacemaker cells consists in transfecting a human mesenchymal stem cell (hMSC) with a HCN2 gene and connecting it to a myocyte. We develop and study a mathematical model, describing a myocyte connected to a hMSC transfected with a HCN2 gene. The cardiac action potential is described both with the simple Beeler Reuter model, as well as with the elaborate dynamic Luo Rudy model. The HCN2 channel is described by fitting electrophysiological records, in the spirit of Hodgkin Huxley. The model shows that oscillations can occur in a pair myocyte-stem cell, that was not observed in the experiments yet. The model predicted that: (1) HCN pacemaker channels can induce oscillations only if the number of expressed I channels is low enough. At too high an expression level of I channels, oscillations cannot be induced, no matter how many pacemaker channels are expressed. (2) At low expression levels of I channels, a large domain of values in the parameter space (n, N) exists, where oscillations should be observed. We denote N the number of expressed pacemaker channels in the stem cell, and n the number of gap junction channels coupling the stem cell and the myocyte. (3) The expression levels of I channels observed in ventricular myocytes, both in the Beeler Reuter and in the dynamic Luo Rudy models are too high to allow to observe oscillations. With expression levels below ˜1/4 of the original value, oscillations can be observed. The main consequence of this work is that in order to obtain oscillations in an experiment with a myocyte-stem cell pair, increasing the values of n, N is unlikely to be helpful, unless the expression level of I has been reduced enough. The model also allows us to explore levels of gene expression not yet achieved in experiments, and could be useful to plan new experiments, aimed at improving the robustness of the oscillations.

  15. Stability and special solutions to the conducting dusty gas model

    International Nuclear Information System (INIS)

    Calmelet, C.J.

    1987-01-01

    Models of the flow of a dusty, conducting and non-conducting gas are examined. Exact solutions for a conducting dusty gas model in the presence of a magnetic field are developed for two different flow domains. The exact solutions are calculated in the cases of negligible and non-negligible induced magnetic field. Stability theorems are developed which depend on the flow parameters of the dusty gas and the magnetic field. In particular, a universal stability theorem is obtained when the dusty gas flow is electrically conducting in the presence of an applied magnetic field, and the dust particles are non-uniformly distributed

  16. Recurrent late cardiac tamponade following cardiac surgery: a deceiving and potentially lethal complication

    NARCIS (Netherlands)

    Harskamp, Ralf E.; Meuzelaar, Jacobus J.

    2010-01-01

    Cardiac tamponade, characterized by inflow obstruction of the heart chambers by extracardiac compression, is a potentially lethal complication following cardiac surgery. We present a case of recurrent cardiac tamponade following valve surgery. At first presentation, diagnosis was delayed because of

  17. The Cultural Meaning of Cardiac Illness and Self-Care Among Lebanese Patients With Coronary Artery Disease.

    Science.gov (United States)

    Dumit, Nuhad Yazbik; Magilvy, Joan Kathy; Afifi, Rima

    2016-07-01

    Cardiac disease is the leading cause of death in Lebanon, accounting for 22% to 26% of total deaths in the country. A thorough understanding of perceptions of cardiac illness and related self-care management is critical to the development of secondary prevention programs that are specific to the Lebanese culture. To explore the cultural perceptions of cardiac illness and the associated meaning of self-care among Lebanese patients. Using a qualitative descriptive method, semistructured interviews were conducted with a purposive sample of 15 Lebanese cardiac patients recruited from a medical center in Beirut, Lebanon. The qualitative descriptive analysis yielded one overarching and two other themes describing perceptions of cardiac illness and self-care within the Lebanese cultural context. The overarching cultural theme was, "Lebanese cardiac patients were unfamiliar with the term concept and meaning of self-care." Lebanese cardiac patients thanked God and accepted their fate (Theme I). The participants considered their cardiac incident a life or death warning (Theme II). Health care providers need to consider patients' cultural perception of illness while planning and evaluating cardiac self-care programs. © The Author(s) 2015.

  18. Validation of the 2014 European Society of Cardiology Sudden Cardiac Death Risk Prediction Model in Hypertrophic Cardiomyopathy in a Reference Center in South America.

    Science.gov (United States)

    Fernández, Adrián; Quiroga, Alejandro; Ochoa, Juan Pablo; Mysuta, Mauricio; Casabé, José Horacio; Biagetti, Marcelo; Guevara, Eduardo; Favaloro, Liliana E; Fava, Agostina M; Galizio, Néstor

    2016-07-01

    Sudden cardiac death (SCD) is a common cause of death in hypertrophic cardiomyopathy (HC). Our aim was to conduct an external and independent validation in South America of the 2014 European Society of Cardiology (ESC) SCD risk prediction model to identify patients requiring an implantable cardioverter defibrillator. This study included 502 consecutive patients with HC followed from March, 1993 to December, 2014. A combined end point of SCD or appropriate implantable cardioverter defibrillator therapy was assessed. For the quantitative estimation of individual 5-year SCD risk, we used the formula: 1 - 0.998(exp(Prognostic index)). Our database also included the abnormal blood pressure response to exercise as a risk marker. We analyzed the 3 categories of 5-year risk proposed by the ESC: low risk (LR) validated in our population and represents an improvement compared with previous approaches. A larger multicenter, independent and external validation of the model with long-term follow-up would be advisable. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. [Acute kidney injury after pediatric cardiac surgery: risk factors and outcomes. Proposal for a predictive model].

    Science.gov (United States)

    Cardoso, Bárbara; Laranjo, Sérgio; Gomes, Inês; Freitas, Isabel; Trigo, Conceição; Fragata, Isabel; Fragata, José; Pinto, Fátima

    2016-02-01

    To characterize the epidemiology and risk factors for acute kidney injury (AKI) after pediatric cardiac surgery in our center, to determine its association with poor short-term outcomes, and to develop a logistic regression model that will predict the risk of AKI for the study population. This single-center, retrospective study included consecutive pediatric patients with congenital heart disease who underwent cardiac surgery between January 2010 and December 2012. Exclusion criteria were a history of renal disease, dialysis or renal transplantation. Of the 325 patients included, median age three years (1 day-18 years), AKI occurred in 40 (12.3%) on the first postoperative day. Overall mortality was 13 (4%), nine of whom were in the AKI group. AKI was significantly associated with length of intensive care unit stay, length of mechanical ventilation and in-hospital death (p<0.01). Patients' age and postoperative serum creatinine, blood urea nitrogen and lactate levels were included in the logistic regression model as predictor variables. The model accurately predicted AKI in this population, with a maximum combined sensitivity of 82.1% and specificity of 75.4%. AKI is common and is associated with poor short-term outcomes in this setting. Younger age and higher postoperative serum creatinine, blood urea nitrogen and lactate levels were powerful predictors of renal injury in this population. The proposed model could be a useful tool for risk stratification of these patients. Copyright © 2015 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  20. Diffuse infiltrative cardiac tuberculosis

    International Nuclear Information System (INIS)

    Gulati, Gurpreet S; Kothari, Shyam S

    2011-01-01

    We present the cardiac magnetic resonance images of an unusual form of cardiac tuberculosis. Nodular masses in a sheet-like distribution were seen to infiltrate the outer myocardium and pericardium along most of the cardiac chambers. The lesions showed significant resolution on antitubercular therapy

  1. Asian consortium on radiation dose of pediatric cardiac CT (ASCI-REDCARD)

    International Nuclear Information System (INIS)

    Hui, Peter K.T.; Goo, Hyun Woo; Du, Jing; Ip, Janice J.K.; Kanzaki, Suzu; Kim, Young Jin; Kritsaneepaiboon, Supika; Lilyasari, Oktavia; Siripornpitak, Suvipaporn

    2017-01-01

    With incremental utilization of pediatric cardiac CT in congenital heart disease, it is imperative to define its current radiation dose levels in clinical practice in order to help imagers optimize CT protocols, particularly in Asia and other developing countries where CT physicists are not readily available. To evaluate current radiation dose levels and influencing factors in cardiac CT in children with congenital heart disease in Asia by conducting a retrospective multi-center, multi-vendor study. We included 1,043 pediatric cardiac CT examinations performed in 8 centers between January 2014 and December 2014 to evaluate congenital heart disease. In five weight groups, we calculated radiation dose metrics including volume CT dose index, size-specific dose estimate, dose-length product and effective dose. Age at CT exam, gender, tube voltage, scan mode, CT indication and image reconstruction algorithm were analyzed to learn whether they influenced CT radiation dose. Volume CT dose index, size-specific dose estimate, dose-length product and effective dose of pediatric cardiac CT showed variations in the range of 4.3-23.8 mGy, 4.9-17.6 mGy, 55.8-501.3 mGy circle cm and 1.5-3.2 mSv, respectively, within five weight groups. Gender, tube voltage, scan mode and cardiac function assessment significantly influenced CT radiation dose. This multi-center, multi-vendor study demonstrated variations in radiation dose metrics of pediatric cardiac CT reflecting current practice in Asia. Gender, tube voltage, scan mode and cardiac function assessment should be considered as essential radiation dose-influencing factors in developing optimal pediatric cardiac CT protocols. (orig.)

  2. Asian consortium on radiation dose of pediatric cardiac CT (ASCI-REDCARD)

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Peter K.T. [Hong Kong Baptist Hospital, Department of Radiology, Hong Kong, SAR (China); Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Du, Jing [Beijing Anzhen Hospital, Capital Medical University, Department of Radiology, Beijing (China); Ip, Janice J.K. [Queen Mary Hospital, Department of Radiology, Hong Kong, SAR (China); Kanzaki, Suzu [National Cerebral and Cardiovascular Center, Department of Radiology, Osaka (Japan); Kim, Young Jin [Yonsei University, Shinchon Severance Hospital, Department of Radiology, Seoul (Korea, Republic of); Kritsaneepaiboon, Supika [Songklanagarind Hospital, Prince of Songkla University, Department of Radiology, Hat Yai (Thailand); Lilyasari, Oktavia [University of Indonesia, National Cardiovascular Center Harapan Kita, Department of Cardiology, Jakarta (Indonesia); Siripornpitak, Suvipaporn [Ramathibodi Hospital, Mahidol University, Department of Radiology, Salaya (Thailand)

    2017-07-15

    With incremental utilization of pediatric cardiac CT in congenital heart disease, it is imperative to define its current radiation dose levels in clinical practice in order to help imagers optimize CT protocols, particularly in Asia and other developing countries where CT physicists are not readily available. To evaluate current radiation dose levels and influencing factors in cardiac CT in children with congenital heart disease in Asia by conducting a retrospective multi-center, multi-vendor study. We included 1,043 pediatric cardiac CT examinations performed in 8 centers between January 2014 and December 2014 to evaluate congenital heart disease. In five weight groups, we calculated radiation dose metrics including volume CT dose index, size-specific dose estimate, dose-length product and effective dose. Age at CT exam, gender, tube voltage, scan mode, CT indication and image reconstruction algorithm were analyzed to learn whether they influenced CT radiation dose. Volume CT dose index, size-specific dose estimate, dose-length product and effective dose of pediatric cardiac CT showed variations in the range of 4.3-23.8 mGy, 4.9-17.6 mGy, 55.8-501.3 mGy circle cm and 1.5-3.2 mSv, respectively, within five weight groups. Gender, tube voltage, scan mode and cardiac function assessment significantly influenced CT radiation dose. This multi-center, multi-vendor study demonstrated variations in radiation dose metrics of pediatric cardiac CT reflecting current practice in Asia. Gender, tube voltage, scan mode and cardiac function assessment should be considered as essential radiation dose-influencing factors in developing optimal pediatric cardiac CT protocols. (orig.)

  3. Burnout in Cardiac Anesthesiologists: Results From a National Survey in Italy.

    Science.gov (United States)

    Sanfilippo, Filippo; Noto, Alberto; Palumbo, Gaetano J; Ippolito, Mariachiara; Gagliardone, Mariapia; Scarlata, Maria; Bignami, Elena; Sangalli, Fabio; Cattaneo, Sergio; Blangetti, Ilaria; Scolletta, Sabino; Locatelli, Alessandro; Tritapepe, Luigi; Lorini, Ferdinando L; Arcadipane, Antonio

    2018-05-16

    There is increasing burnout incidence among medical disciplines, and physicians working in emergency settings seem at higher risk. Cardiac anesthesiology is a stressful anesthesiology subspecialty dealing with high-risk patients. The authors hypothesized a high risk of burnout in cardiac anesthesiologists. National survey conducted on burnout SETTING: Italian cardiac centers. Cardiac anesthesiologists. The authors administered via email an anonymous questionnaire divided into 3 parts. The first 2 parts evaluated workload and private life. The third part consisted of the Maslach Burnout Inventory test with its 3 constituents: high emotional exhaustion, high depersonalization, and low personal accomplishment. The authors measured the prevalence and risk of burnout through the Maslach Burnout Inventory questionnaire and analyzed factors influencing burnout. Among 670 contacts from 71 centers, 382 cardiac anesthesiologists completed the survey (57%). The authors found the following mean Maslach Burnout Inventory values: 14.5 ± 9.7 (emotional exhaustion), 9.1 ± 7.1 (depersonalization), and 33.7 ± 8.9 (personal accomplishment). A rate of 34%, 54%, and 66% of respondents scored in "high" or "moderate-high" risk of burnout (emotional exhaustion, depersonalization, and personal accomplishment, respectively). The authors found that, if offered to change subspecialty, 76% of respondents would prefer to remain in cardiac anesthesiology. This preference and parenthood were the only 2 investigated factors with a protective effect against all components of burnout. Significantly lower burnout scores were found in more experienced anesthesiologists. A relatively high incidence of burnout was found in cardiac anesthesiologists, especially regarding high depersonalization and low personal accomplishment. Nonetheless, most of the respondents would choose to remain in cardiac anesthesiology. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Role of the renin-angiotensin system in cardiac hypertrophy induced in rats by hyperthyroidism.

    Science.gov (United States)

    Kobori, H; Ichihara, A; Suzuki, H; Takenaka, T; Miyashita, Y; Hayashi, M; Saruta, T

    1997-08-01

    This study was conducted to examine whether the renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy without involving the sympathetic nervous system. Sprague-Dawley rats were divided into control-innervated, control-denervated, hyperthyroid-innervated, and hyperthyroid-denervated groups using intraperitoneal injections of thyroxine and 6-hydroxydopamine. After 8 wk, the heart-to-body weight ratio increased in hyperthyroid groups (63%), and this increase was only partially inhibited by sympathetic denervation. Radioimmunoassays and reverse transcription-polymerase chain reaction revealed increased cardiac levels of renin (33%) and angiotensin II (53%) and enhanced cardiac expression of renin mRNA (225%) in the hyperthyroid groups. These increases were unaffected by sympathetic denervation or 24-h bilateral nephrectomy. In addition, losartan and nicardipine decreased systolic blood pressure to the same extent, but only losartan caused regression of thyroxine-induced cardiac hypertrophy. These results suggest that thyroid hormone activates the cardiac renin-angiotensin system without involving the sympathetic nervous system or the circulating renin-angiotensin system; the activated renin-angiotensin system contributes to cardiac hypertrophy in hyperthyroidism.

  5. Fractional single-phase-lagging heat conduction model for describing anomalous diffusion

    Directory of Open Access Journals (Sweden)

    T.N. Mishra

    2016-03-01

    Full Text Available The fractional single-phase-lagging (FSPL heat conduction model is obtained by combining scalar time fractional conservation equation to the single-phase-lagging (SPL heat conduction model. Based on the FSPL heat conduction model, anomalous diffusion within a finite thin film is investigated. The effect of different parameters on solution has been observed and studied the asymptotic behavior of the FSPL model. The analytical solution is obtained using Laplace transform method. The whole analysis is presented in dimensionless form. Numerical examples of particular interest have been studied and discussed in details.

  6. Cardiac Rehabilitation Enhancing Programs in Patients with Myocardial Infarction: A literature Review

    Directory of Open Access Journals (Sweden)

    Ahyana Ahyana

    2013-01-01

    Full Text Available Background: Cardiac rehabilitation (CR is a process that involves a multidisciplinary team of health professionals in order to optimize the status of patients’ physical, psychological, social, and vocational well being. The CR program has been proven to influence health outcomes in patients with cardiac diseases, particularly myocardial infarction (MI and stable angina. However, patients’ compliance with cardiac rehabilitation programs remains a challenge.Purpose: The purpose of this study is to review and identify interventions that enhance cardiac rehabilitation behaviors in MI patients.Method: A literature review was conducted by analyzing related research reports published since 2000 to 2012. Only English language articles were included.Result: There were 10 experimental studies and 2 meta-analysis studies. Interventions widely used to enhance cardiac rehabilitation behaviors in MI patients were self-efficacy and self management derived programs. These programs involved interventions that enhance cardiac rehabilitation behaviors, including training exercise, behavioral change, education and psychological support, and lifestyle changing strategies. None have reported the use of culturally tailored intervention. Four phases of cardiac rehabilitation were accepted as each phase represents a different aspect of care: inpatient care, early post discharge period, exercise training, and long term follow up. Critical factors for patients in maintaining an optimum health condition after a cardiac event are, in order, status of patient’s physical, psychological, social, and vocational well being.Conclusion: Cardiac Rehabilitation program has been shown to improve quality of life and decrease mortality in MI patients. The development of culturally specific interventions to increase cardiac rehabilitation behaviors will provide a significant improvement for cardiac patient’s care that ultimately results in better health outcomes. Health care

  7. Animal models of cachexia and sarcopenia in chronic illness: Cardiac function, body composition changes and therapeutic results.

    Science.gov (United States)

    Ishida, Junichi; Saitoh, Masakazu; Doehner, Wolfram; von Haehling, Stephan; Anker, Markus; Anker, Stefan D; Springer, Jochen

    2017-07-01

    Cachexia is defined as a complex metabolic syndrome associated with underlying illness that is characterized by the loss of body weight consisting of muscle and fat mass wasting. Sarcopenia is defined as the ageing related loss of muscle mass in health and disease that may not have an effect on body weight. As millions of patients are in cachectic or sarcopenic states, both conditions contribute to high numbers to death worldwide. A number of treatments have been proposed for cachexia and sarcopenia, but these are either in the preclinical stage or in clinical trials and hence not available to the general population. Particularly in cachexia there is a massive problem of recruiting patients for trials and also with the follow-up, due to the seriousness of the disease. This underlines the importance of well-characterized animal models. Obviously, most of the widely used cachexia and sarcopenia animal models have limitations in reproducibility of the condition and novel models are warranted in this context. The key findings of developing models in the field of cachexia and sarcopenia are that more types of the conditions have been taken into the researchers' interest. In cardiac cachexia, technical issues, which limit the preciseness and reproducibility in surgical heart failure models, have been overcome by a combination of surgery and the use of transgenic mouse models or salt sensitive rat models. Fatigue is the most pronounced symptom of cachexia and may be caused by reduced cardiac function independent of the underlying disease. Sarcopenia models often suffer from the use of young animals, due to the limited availability and very high costs of using aged animals. This review will focus on rodent models designed to mimic cachexia and sarcopenia including co-morbidities such as cancer, heart failure, as well as other diseases and conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Magnetotelluric Forward Modeling and Inversion In 3 -d Conductivity Model of The Vesuvio Volcano

    Science.gov (United States)

    Spichak, V.; Patella, D.

    Three-dimensional forward modeling of MT fields in the simplified conductivity model of the Vesuvio volcano (T=0.1, 1, 10, 100 and 1000s) indicates that the best image of the magma chamber could be obtained basing on the pseudo-section of the determinant apparent resitivity phase as well as on the real and imaginary components of the electric field. Another important result of the studies conducted is that it was demonstrated the principal opportunity of detection and contouring the magma chamber by 2-D pseudo-sections constructed basing on the data transforms mentioned above. Bayesian three-dimensional inversion of synthetic MT data in the volcano model indicates that it is possible to determine the depth and vertical size of the magma chamber, however, simultaneous detection of the conductivity distribution inside the domain of search is of pure quality. However, if the geometrical parameters of the magma chamber are determined in advance, it becomes quite realistic to find out the conductivity distribution inside. The accuracy of such estimation strongly depends on the uncertainty in its prior value: the more narrow is the prior conductivity palette the closer could be the posterior conductivity distribution to the true one.

  9. Cardiac Patients' Experiences and Perceptions of Social Media: Mixed-Methods Study.

    Science.gov (United States)

    Partridge, Stephanie R; Grunseit, Anne C; Gallagher, Patrick; Freeman, Becky; O'Hara, Blythe J; Neubeck, Lis; Due, Sarah; Paull, Glenn; Ding, Ding; Bauman, Adrian; Phongsavan, Philayrath; Roach, Kellie; Sadler, Leonie; Glinatsis, Helen; Gallagher, Robyn

    2017-09-15

    Traditional in-person cardiac rehabilitation has substantial benefits for cardiac patients, which are offset by poor attendance. The rapid increase in social media use in older adults provides an opportunity to reach patients who are eligible for cardiac rehabilitation but unable to attend traditional face-to-face groups. However, there is a paucity of research on cardiac patients' experiences and perspectives on using social media to support their health. The aim of this study was to describe cardiac rehabilitation patients' experiences in using social media in general and their perspective on using social media, particularly Facebook, to support their cardiac health and secondary prevention efforts. A mixed-methods study was undertaken among cardiac rehabilitation patients in both urban and rural areas. First, this study included a survey (n=284) on social media use and capability. Second, six focus group interviews were conducted with current Facebook users (n=18) to elucidate Facebook experience and perspectives. Social media use was low (28.0%, 79/282) but more common in participants who were under 70 years of age, employed, and had completed high school. Social media users accessed Web-based information on general health issues (65%, 51/79), medications (56%, 44/79), and heart health (43%, 34/79). Participants were motivated to invest time in using Facebook for "keeping in touch" with family and friends and to be informed by expert cardiac health professionals and fellow cardiac participants if given the opportunity. It appeared that participants who had a higher level of Facebook capability (understanding of features and the consequences of their use and efficiency in use) spent more time on Facebook and reported higher levels of "liking," commenting, or sharing posts. Furthermore, higher Facebook capability appeared to increase a participants' willingness to participate in a cardiac Facebook support group. More capable users were more receptive to the use

  10. Prolongation of atrio-ventricular node conduction in a rabbit model of ischaemic cardiomyopathy: Role of fibrosis and connexin remodelling.

    Science.gov (United States)

    Nisbet, Ashley M; Camelliti, Patrizia; Walker, Nicola L; Burton, Francis L; Cobbe, Stuart M; Kohl, Peter; Smith, Godfrey L

    2016-05-01

    Conduction abnormalities are frequently associated with cardiac disease, though the mechanisms underlying the commonly associated increases in PQ interval are not known. This study uses a chronic left ventricular (LV) apex myocardial infarction (MI) model in the rabbit to create significant left ventricular dysfunction (LVD) 8weeks post-MI. In vivo studies established that the PQ interval increases by approximately 7ms (10%) with no significant change in average heart rate. Optical mapping of isolated Langendorff perfused rabbit hearts recapitulated this result: time to earliest activation of the LV was increased by 14ms (16%) in the LVD group. Intra-atrial and LV transmural conduction times were not altered in the LVD group. Isolated AVN preparations from the LVD group demonstrated a significantly longer conduction time (by approximately 20ms) between atrial and His electrograms than sham controls across a range of pacing cycle lengths. This difference was accompanied by increased effective refractory period and Wenckebach cycle length, suggesting significantly altered AVN electrophysiology post-MI. The AVN origin of abnormality was further highlighted by optical mapping of the isolated AVN. Immunohistochemistry of AVN preparations revealed increased fibrosis and gap junction protein (connexin43 and 40) remodelling in the AVN of LVD animals compared to sham. A significant increase in myocyte-non-myocyte connexin co-localization was also observed after LVD. These changes may increase the electrotonic load experienced by AVN muscle cells and contribute to slowed conduction velocity within the AVN. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Assessment of cardiac risk before non-cardiac surgery: brain natriuretic peptide in 1590 patients.

    Science.gov (United States)

    Dernellis, J; Panaretou, M

    2006-11-01

    To evaluate the predictive value of brain natriuretic peptide (BNP) for assessment of cardiac risk before non-cardiac surgery. Consecutively treated patients (947 men, 643 women) whose BNP was measured before non-cardiac surgery were studied. Clinical and ECG variables were evaluated to identify predictors of postoperative cardiac events. Events occurred in 6% of patients: 21 cardiac deaths, 20 non-fatal myocardial infarctions, 41 episodes of pulmonary oedema and 14 patients with ventricular tachycardia. All of these patients had raised plasma BNP concentrations (best cut-off point 189 pg/ml). The only independent predictor of postoperative events was BNP (odds ratio 34.52, 95% confidence interval (CI) 17.08 to 68.62, p 300 pg/ml); postoperative event rates were 0%, 5%, 12% and 81%, respectively. In this population of patients evaluated before non-cardiac surgery, BNP is an independent predictor of postoperative cardiac events. BNP > 189 pg/ml identified patients at highest risk.

  12. Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies

    Directory of Open Access Journals (Sweden)

    Karina O. Brandão

    2017-09-01

    Full Text Available It is now a decade since human induced pluripotent stem cells (hiPSCs were first described. The reprogramming of adult somatic cells to a pluripotent state has become a robust technology that has revolutionised our ability to study human diseases. Crucially, these cells capture all the genetic aspects of the patient from which they were derived. Combined with advances in generating the different cell types present in the human heart, this has opened up new avenues to study cardiac disease in humans and investigate novel therapeutic approaches to treat these pathologies. Here, we provide an overview of the current state of the field regarding the generation of cardiomyocytes from human pluripotent stem cells and methods to assess them functionally, an essential requirement when investigating disease and therapeutic outcomes. We critically evaluate whether treatments suggested by these in vitro models could be translated to clinical practice. Finally, we consider current shortcomings of these models and propose methods by which they could be further improved.

  13. Risk prediction models for major adverse cardiac event (MACE) following percutaneous coronary intervention (PCI): A review

    Science.gov (United States)

    Manan, Norhafizah A.; Abidin, Basir

    2015-02-01

    Five percent of patients who went through Percutaneous Coronary Intervention (PCI) experienced Major Adverse Cardiac Events (MACE) after PCI procedure. Risk prediction of MACE following a PCI procedure therefore is helpful. This work describes a review of such prediction models currently in use. Literature search was done on PubMed and SCOPUS database. Thirty literatures were found but only 4 studies were chosen based on the data used, design, and outcome of the study. Particular emphasis was given and commented on the study design, population, sample size, modeling method, predictors, outcomes, discrimination and calibration of the model. All the models had acceptable discrimination ability (C-statistics >0.7) and good calibration (Hosmer-Lameshow P-value >0.05). Most common model used was multivariate logistic regression and most popular predictor was age.

  14. 123I-MIBG imaging detects cardiac involvement and predicts cardiac events in Churg-Strauss syndrome

    International Nuclear Information System (INIS)

    Horiguchi, Yoriko; Morita, Yukiko; Tsurikisawa, Naomi; Akiyama, Kazuo

    2011-01-01

    In Churg-Strauss syndrome (CSS) it is important to detect cardiac involvement, which predicts poor prognosis. This study evaluated whether 123 I-metaiodobenzylguanidine (MIBG) scintigraphy could detect cardiac damage and predict cardiac events in CSS. 123 I-MIBG scintigraphy was performed in 28 patients with CSS, 12 of whom had cardiac involvement. The early and delayed heart to mediastinum ratio (early H/M and delayed H/M) and washout rate were calculated by using 123 I-MIBG scintigraphy and compared with those in control subjects. Early H/M and delayed H/M were significantly lower and the washout rate was significantly higher in patients with cardiac involvement than in those without and in controls (early H/M, p = 0.0024, p = 0.0001; delayed H/M, p = 0.0002, p = 0.0001; washout rate, p = 0.0012, p = 0.0052 vs those without and vs controls, respectively). Accuracy for detecting cardiac involvement was 86% for delayed H/M and washout rate and 79% for early H/M and B-type natriuretic peptide (BNP). Kaplan-Meier analysis showed significantly lower cardiac event-free rates in patients with early H/M ≤ 2.18 and BNP > 21.8 pg/ml than those with early H/M > 2.18 and BNP ≤ 21.8 pg/ml (log-rank test p = 0.006). Cardiac sympathetic nerve function was damaged in CSS patients with cardiac involvement. 123 I-MIBG scintigraphy was useful in detecting cardiac involvement and in predicting cardiac events. (orig.)

  15. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    Science.gov (United States)

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  16. Construction of cardiac anthropomorphic phantom for simulation of radiological exams

    International Nuclear Information System (INIS)

    Bandeira, C.K.; Vieira Neto, H.; Vieira, M.P.M.M.

    2017-01-01

    Phantoms are simulating objects of structures of the human body and can be applied in the quality control and calibration of radiological equipment. The aim of the work is the development of a cardiac anthropomorphic phantom to assist in the elaboration of protocols of dynamic studies that demonstrate the blood circulation inside the cardiac chambers. For the construction of the phantom was used latex, applied in layers on an anatomical model of heart, having been constructed the cardiac chambers and atrioventricular valves. Cardiac chambers were connected to the cannulas for fluid injection and simulation of the circulatory system. The constructed phantom presents anthropomorphic characteristics and allows the circulation of the fluid without reflux, but the thickness of the catheters used does not yet allow flows of greater order of magnitude. This phantom has the potential to be used in the dynamic simulation of cardiac exams, contributing to the elaboration and adequacy of computed tomography protocols

  17. CARDIAC LYMPHOMA IN DOG

    Directory of Open Access Journals (Sweden)

    G. D. Cruz

    2016-11-01

    Full Text Available Lymphoma is a lymphoid tumor that originates in hematopoietic organs such as lymph node, spleen or liver. In dogs, the overall prevalence of cardiac tumors was estimated to be only 0.19% based on the results of the survey of a large database, and lymphomas accounts for approximately 2% of all cardiac tumors. In general, the involvement of the myocardium is rarely described in canine lymphoma. Currently, there is no evidence of a viral association with primary cardiac lymphoma in dogs, but other types of immunosuppression may contribute to abnormal events, such as involvement primary cardiac. The aim of this study was to analyze a case of sudden death of a bitch, SRD, aged 10, who had the final diagnosis of cardiac lymphoma.

  18. Cardiac cone-beam CT

    International Nuclear Information System (INIS)

    Manzke, Robert

    2005-01-01

    This doctoral thesis addresses imaging of the heart with retrospectively gated helical cone-beam computed tomography (CT). A thorough review of the CT reconstruction literature is presented in combination with a historic overview of cardiac CT imaging and a brief introduction to other cardiac imaging modalities. The thesis includes a comprehensive chapter about the theory of CT reconstruction, familiarizing the reader with the problem of cone-beam reconstruction. The anatomic and dynamic properties of the heart are outlined and techniques to derive the gating information are reviewed. With the extended cardiac reconstruction (ECR) framework, a new approach is presented for the heart-rate-adaptive gated helical cardiac cone-beam CT reconstruction. Reconstruction assessment criteria such as the temporal resolution, the homogeneity in terms of the cardiac phase, and the smoothness at cycle-to-cycle transitions are developed. Several reconstruction optimization approaches are described: An approach for the heart-rate-adaptive optimization of the temporal resolution is presented. Streak artifacts at cycle-to-cycle transitions can be minimized by using an improved cardiac weighting scheme. The optimal quiescent cardiac phase for the reconstruction can be determined automatically with the motion map technique. Results for all optimization procedures applied to ECR are presented and discussed based on patient and phantom data. The ECR algorithm is analyzed for larger detector arrays of future cone-beam systems throughout an extensive simulation study based on a four-dimensional cardiac CT phantom. The results of the scientific work are summarized and an outlook proposing future directions is given. The presented thesis is available for public download at www.cardiac-ct.net

  19. Spiral Wave Initiation in Reaction-Diffusion-Mechanics Systems: A Model for the Onset of Reentrant Cardiac Arrhythmia

    NARCIS (Netherlands)

    Weise, L.D.

    2012-01-01

    Heart failure due to cardiac arrhythmias is a major cause of death in the industrialized world. Cardiac arrhythmia is often caused by spi- ral waves of electrical activity in the cardiac muscle. Therefore, it is a major task in cardiology to understand the mechanisms of spiral wave initiation in the

  20. In vitro burn model illustrating heat conduction patterns using compressed thermal papers.

    Science.gov (United States)

    Lee, Jun Yong; Jung, Sung-No; Kwon, Ho

    2015-01-01

    To date, heat conduction from heat sources to tissue has been estimated by complex mathematical modeling. In the present study, we developed an intuitive in vitro skin burn model that illustrates heat conduction patterns inside the skin. This was composed of tightly compressed thermal papers with compression frames. Heat flow through the model left a trace by changing the color of thermal papers. These were digitized and three-dimensionally reconstituted to reproduce the heat conduction patterns in the skin. For standardization, we validated K91HG-CE thermal paper using a printout test and bivariate correlation analysis. We measured the papers' physical properties and calculated the estimated depth of heat conduction using Fourier's equation. Through contact burns of 5, 10, 15, 20, and 30 seconds on porcine skin and our burn model using a heated brass comb, and comparing the burn wound and heat conduction trace, we validated our model. The heat conduction pattern correlation analysis (intraclass correlation coefficient: 0.846, p < 0.001) and the heat conduction depth correlation analysis (intraclass correlation coefficient: 0.93, p < 0.001) showed statistically significant high correlations between the porcine burn wound and our model. Our model showed good correlation with porcine skin burn injury and replicated its heat conduction patterns. © 2014 by the Wound Healing Society.

  1. The effectiveness of the cardiac resynchronization in a patient with ischemic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Diana R. Tudorașcu

    2018-04-01

    Full Text Available Cardiac resynchronization therapy (CRT in multiple and large trials has been demonstrated to improve symptoms and decrease hospitalization and mortality of patients when used in addition to optimal medical therapy. The global mechanical performance of the heart is affected in subjects with heart failure by atrio-ventricular, interventricular, or intraventricular conduction disorders, which lead to the desynchronization of electrical activity. Cardiac resynchronization therapy can effectively improve the clinical and haemodynamic status of these patients. According to literature data, CRT is performed only on well-selected patients (who qualify for CRT based on current indications, and approximately 70% of those patients respond favorably. We present the case of a patient responsive to cardiac resynchronization therapy which led to lowering of his NYHA classification and to improvement of left ventricle hemodynamics. The benefits of cardiac resynchronization therapy were multiple in this case, including improved tolerance to physical exercise and a decreased rate of hospitalization, which overall led to improved quality of life.

  2. Polymer microfiber meshes facilitate cardiac differentiation of c-kit{sup +} human cardiac stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Lijuan [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States); Thayer, Patrick [Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); Fan, Huimin [Research Institute of Heart Failure, Shanghai East Hospital of Tongji University, Shanghai (China); Ledford, Benjamin; Chen, Miao [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States); Goldstein, Aaron [Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); Cao, Guohua [School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); He, Jia-Qiang, E-mail: jiahe@vt.edu [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States)

    2016-09-10

    Electrospun microfiber meshes have been shown to support the proliferation and differentiation of many types of stem cells, but the phenotypic fate of c-kit{sup +} human cardiac stem cells (hCSCs) have not been explored. To this end, we utilized thin (~5 µm) elastomeric meshes consisting of aligned 1.7 µm diameter poly (ester-urethane urea) microfibers as substrates to examine their effect on hCSC viability, morphology, proliferation, and differentiation relative to cells cultured on tissue culture polystyrene (TCPS). The results showed that cells on microfiber meshes displayed an elongated morphology aligned in the direction of fiber orientation, lower proliferation rates, but increased expressions of genes and proteins majorly associated with cardiomyocyte phenotype. The early (NK2 homeobox 5, Nkx2.5) and late (cardiac troponin I, cTnI) cardiomyocyte genes were significantly increased on meshes (Nkx=2.5 56.2±13.0, cTnl=2.9±0.56,) over TCPS (Nkx2.5=4.2±0.9, cTnl=1.6±0.5, n=9, p<0.05 for both groups) after differentiation. In contrast, expressions of smooth muscle markers, Gata6 and myosin heavy chain (SM-MHC), were decreased on meshes. Immunocytochemical analysis with cardiac antibody exhibited the similar pattern of above cardiac differentiation. We conclude that aligned microfiber meshes are suitable for guiding cardiac differentiation of hCSCs and may facilitate stem cell-based therapies for treatment of cardiac diseases. - Highlights: • First study to characterize c-kit{sup +} human cardiac stem cells on microfiber meshes. • Microfiber meshes seem reducing cell proliferation, but no effect on cell viability. • Microfiber meshes facilitate the elongation of human cardiac stem cells in culture. • Cardiac but not smooth muscle differentiation were enhanced on microfiber meshes. • Microfiber meshes may be used as cardiac patches in cell-based cardiac therapy.

  3. Quadratic adaptive algorithm for solving cardiac action potential models.

    Science.gov (United States)

    Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing

    2016-10-01

    An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. Copyright © 2016 Elsevier Ltd. All rights

  4. How to Connect Cardiac Excitation to the Atomic Interactions of Ion Channels.

    Science.gov (United States)

    Silva, Jonathan R

    2018-01-23

    Many have worked to create cardiac action potential models that explicitly represent atomic-level details of ion channel structure. Such models have the potential to define new therapeutic directions and to show how nanoscale perturbations to channel function predispose patients to deadly cardiac arrhythmia. However, there have been significant experimental and theoretical barriers that have limited model usefulness. Recently, many of these barriers have come down, suggesting that considerable progress toward creating these long-sought models may be possible in the near term. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Study on the effect of hypoxia on apoptosis of cultured newly born rat cardiac myocytes

    International Nuclear Information System (INIS)

    Su Weidong; Li Huiqiang; Yao Zhi

    2005-01-01

    Objective: To investigate the possible hypoxia-mediated cellular apoptosis after ischemic cardiac injury via a model of cultured newly born rat cardiac myocytes. Methods: Cardiac myocytes cultures from newly born rats (1-3d) were examined for apoptosis with HE stain and flow cytometry after cultured 96h and again examined after exposure to hypoxic environment for 16h. Results: Apoptotic changes were evident in the hypoxic culture cells. The HE stain revealed cellular shrinkage, nuclear chromosomal condensation with cytoplasmic eosinophilia. Also, distinct apoptosis peak was observed in the flow cytometry. Conclusion: This experiment proved that hypoxic model of cardiac myocyte culture showed definite apoptosis of the cells. (authors)

  6. Modeling of thermal conductivity of nanofluids by modifying Maxwell’s equation using cell model approach

    International Nuclear Information System (INIS)

    Mehta, Siddharth; Chauhan, K. Prashanth; Kanagaraj, S.

    2011-01-01

    Nanofluid is an innovative heat transfer fluid with superior potential for enhancing the heat transfer performance of conventional fluids. Though many attempts have been made to investigate the abnormal high thermal conductivity of nanofluids, the existing models cannot precisely predict the same. An attempt has been made to develop a model for predicting the thermal conductivity of different types of nanofluids. The model presented here is derived based on the fact that thermal conductivity of nanofluids depends on thermal conductivity of particle and fluid as well as micro-convective heat transfer due to Brownian motion of nanoparticles. Novelty of the article lies in giving a unique equation which predicts thermal conductivity of nanofluids for different concentrations and particle sizes which also correctly predicts the trends observed in experimental data over a wide range of particle sizes, temperatures, and particle concentrations.

  7. Characterising and modelling extended conducted electromagnetic emission

    CSIR Research Space (South Africa)

    Grobler, Inus

    2013-06-01

    Full Text Available , such as common mode and differential mode separation, calibrated with an EMC ETS-Lindgren current probe. Good and workable model accuracies were achieved with the basic Step-Up and Step-Down circuits over the conducted emission frequency band and beyond...

  8. Epinephrine in Out-of-hospital Cardiac Arrest: Helpful or Harmful?

    Science.gov (United States)

    Shao, Huan; Li, Chun-Sheng

    2017-09-05

    Epinephrine is the primary drug administered during cardiopulmonary resuscitation (CPR) to reverse cardiac arrest. The evidence for the use of adrenaline in out-of-hospital cardiac arrest (OHCA) and in-hospital resuscitation is inconclusive. We conducted a systematic review on the clinical efficacy of adrenaline in adult OHCA patients to evaluate whether epinephrine provides any overall benefit for patients. The EMBASE and PubMed databases were searched with the key words "epinephrine," "cardiac arrest," and variations of these terms. Data from clinical randomized trials, meta-analyses, guidelines, and recent reviews were selected for review. Sudden cardiac arrest causes 544,000 deaths in China each year, with survival occurring in CPR. There is currently insufficient evidence to support or reject epinephrine administration during resuscitation. We believe that epinephrine may have a role in resuscitation, as administration of epinephrine during CPR increases the probability of restoring cardiac activity with pulses, which is an essential intermediate step toward long-term survival. The administration of adrenaline was associated with improved short-term survival (ROSC). However, it appears that the use of adrenaline is associated with no benefit on survival to hospital discharge or survival with favorable neurological outcome after OHCA, and it may have a harmful effect. Larger placebo-controlled, double-blind, randomized control trials are required to definitively establish the effect of epinephrine.

  9. Comprehensive cardiac rehabilitation

    DEFF Research Database (Denmark)

    Kruse, Marie; Hochstrasser, Stefan; Zwisler, Ann-Dorthe O

    2006-01-01

    OBJECTIVES: The costs of comprehensive cardiac rehabilitation are established and compared to the corresponding costs of usual care. The effect on health-related quality of life is analyzed. METHODS: An unprecedented and very detailed cost assessment was carried out, as no guidelines existed...... and may be as high as euro 1.877. CONCLUSIONS: Comprehensive cardiac rehabilitation is more costly than usual care, and the higher costs are not outweighed by a quality of life gain. Comprehensive cardiac rehabilitation is, therefore, not cost-effective....

  10. Autonomic cardiac innervation

    Science.gov (United States)

    Hasan, Wohaib

    2013-01-01

    Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these “non-classical” cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.   Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory

  11. Cardiac amyloidosis detection with pyrophosphate-99mTc scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Souza, D.S.F.; Ichiki, W.A.; Coura Filho, G.B.; Izaki, M.; Giorgi, M.C.P.; Soares Junior, J; Meneghetti, J.C. [Universidade de Sao Paulo (FM/USP), SP (Brazil). Fac. de Medicina. Instituto do Coracao. Servico de Medicina Nuclear e Imagem Molecular

    2008-07-01

    Full text: Introduction: Amyloidosis is a rare disease, characterized by extracellular deposition of insoluble amyloid fibrils in organs and tissues. It may affect virtually any system, preferably heart, kidneys and liver. The cardiac involvement produces a spectrum of clinical features, usually with progressive dysfunction. Early diagnosis is important for institution of appropriate therapy. Case report: Male patient, 75 years old, with diagnosed congestive heart failure functional class III and Mobitz II second-degree atrial-ventricular block, was hospitalized for implantation of definitive cardiac pacemaker. Patient mentioned history of worsening effort dyspnoea over a one-month period, progressing to minimum effort, orthopnea, paroxysmal nocturnal dyspnoea and paroxysms of dry cough, and swelling of lower limbs. Echocardiography showed diffuse hypertrophy of left ventricle (LV), with systolic dysfunction due to diffuse hypokinesia and hyperrefringent aspect in the septum. It was questioned a cardiac infiltrating process. Cardiac amyloidosis was considered as a diagnostic hypothesis. The patient underwent a pyrophosphate-{sup 99m}Tc scintigraphy, which showed abnormal tracer uptake in the heart projection, with diffuse pattern on the left ventricle walls, compatible with the clinical suspicion cardiac amyloidosis, which was later confirmed by endomyocardial biopsy. Discussion: In this case report, the patient had clinical and other auxiliary examinations, such as electrocardiography and Doppler echocardiography, compatible with cardiac amyloidosis, which led to implementation with pyrophosphate-{sup 99m}Tc scintigraphy and later endomyocardial biopsy. Cardiac amyloidosis occurs in about half the cases of primary amyloidosis (AL) and is rare in secondary amyloidosis (AA). Its clinical presentation is polymorphic and it can be classified into four distinctive types: restrictive cardiomyopathy, systolic dysfunction, postural hypotension and conduction disorders

  12. Cardiac amyloidosis detection with pyrophosphate-99mTc scintigraphy

    International Nuclear Information System (INIS)

    Souza, D.S.F.; Ichiki, W.A.; Coura Filho, G.B.; Izaki, M.; Giorgi, M.C.P.; Soares Junior, J; Meneghetti, J.C.

    2008-01-01

    Full text: Introduction: Amyloidosis is a rare disease, characterized by extracellular deposition of insoluble amyloid fibrils in organs and tissues. It may affect virtually any system, preferably heart, kidneys and liver. The cardiac involvement produces a spectrum of clinical features, usually with progressive dysfunction. Early diagnosis is important for institution of appropriate therapy. Case report: Male patient, 75 years old, with diagnosed congestive heart failure functional class III and Mobitz II second-degree atrial-ventricular block, was hospitalized for implantation of definitive cardiac pacemaker. Patient mentioned history of worsening effort dyspnoea over a one-month period, progressing to minimum effort, orthopnea, paroxysmal nocturnal dyspnoea and paroxysms of dry cough, and swelling of lower limbs. Echocardiography showed diffuse hypertrophy of left ventricle (LV), with systolic dysfunction due to diffuse hypokinesia and hyperrefringent aspect in the septum. It was questioned a cardiac infiltrating process. Cardiac amyloidosis was considered as a diagnostic hypothesis. The patient underwent a pyrophosphate- 99m Tc scintigraphy, which showed abnormal tracer uptake in the heart projection, with diffuse pattern on the left ventricle walls, compatible with the clinical suspicion cardiac amyloidosis, which was later confirmed by endomyocardial biopsy. Discussion: In this case report, the patient had clinical and other auxiliary examinations, such as electrocardiography and Doppler echocardiography, compatible with cardiac amyloidosis, which led to implementation with pyrophosphate- 99m Tc scintigraphy and later endomyocardial biopsy. Cardiac amyloidosis occurs in about half the cases of primary amyloidosis (AL) and is rare in secondary amyloidosis (AA). Its clinical presentation is polymorphic and it can be classified into four distinctive types: restrictive cardiomyopathy, systolic dysfunction, postural hypotension and conduction disorders. Cardiac

  13. Spatial distribution of specialized cardiac care units in the state of Santa Catarina

    Directory of Open Access Journals (Sweden)

    Silviana Cirino

    2014-12-01

    Full Text Available OBJECTIVE To analyze the methodology used for assessing the spatial distribution of specialized cardiac care units. METHODS A modeling and simulation method was adopted for the practical application of cardiac care service in the state of Santa Catarina, Southern Brazil, using the p-median model. As the state is divided into 21 health care regions, a methodology which suggests an arrangement of eight intermediate cardiac care units was analyzed, comparing the results obtained using data from 1996 and 2012. RESULTS Results obtained using data from 2012 indicated significant changes in the state, particularly in relation to the increased population density in the coastal regions. The current study provided a satisfactory response, indicated by the homogeneity of the results regarding the location of the intermediate cardiac care units and their respective regional administrations, thereby decreasing the average distance traveled by users to health care units, located in higher population density areas. The validity of the model was corroborated through the analysis of the allocation of the median vertices proposed in 1996 and 2012. CONCLUSIONS The current spatial distribution of specialized cardiac care units is more homogeneous and reflects the demographic changes that have occurred in the state over the last 17 years. The comparison between the two simulations and the current configuration showed the validity of the proposed model as an aid in decision making for system expansion.

  14. Current amplification models of sensorineurall and conductive hearing loss

    OpenAIRE

    Ostojić, Sanja; Mikić, Branka; Mirić, Danica

    2012-01-01

    The main function of a hearing aid is to improve auditory and language abilities of hearing impaired users. The amplification model has to be adapted according to age, degree and type of hearing loss. The goal of this paper is to analyze the current amplification models of sensorineural and conductive hearing loss which can provide a high quality of speech perception and sounds at any degree of hearing loss. The BAHA is a surgically implantable system for treatment of conductive hearing loss ...

  15. Particles Alter Diesel Exhaust Gases-Induced Hypotension, Cardiac Arrhythmia,Conduction Disturbance, and Autonomic Imbalance in Heart Failure-Prone Rats

    Science.gov (United States)

    Epidemiologic studies indicate that acute exposures to vehicular traffic and particulate matter (PM) air pollution are key causes of fatal cardiac arrhythmia, especially in those with preexisting cardiovascular disease. Researchers point to electrophysiologic dysfunction and auto...

  16. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015).

    Science.gov (United States)

    Singh, Aastha; Singh, Abhishek; Sen, Dwaipayan

    2016-06-04

    Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.

  17. Cardiac microvascular rarefaction in hyperthyroidism-induced left ventricle dysfunction.

    Science.gov (United States)

    Freitas, Felipe; Estato, Vanessa; Carvalho, Vinícius Frias; Torres, Rafael Carvalho; Lessa, Marcos Adriano; Tibiriçá, Eduardo

    2013-10-01

    The pathophysiology underlying hyperthyroidism-induced left ventricle (LV) dysfunction and hypertrophy directly involves the heart and indirectly involves the neuroendocrine systems. The effects of hyperthyroidism on the microcirculation are still controversial in experimental models. We investigated the effects of hyperthyroidism on the cardiac function and microcirculation of an experimental rat model. Male Wistar rats (170-250 g) were divided into two groups: the euthyroid group (n = 10), which was treated with 0.9% saline solution, and the hyperthyroid group (n = 10), which was treated with l-thyroxine (600 μg/kg/day, i.p.) during 14 days. An echocardiographic study was performed to evaluate the alterations in cardiac function, structure and geometry. The structural capillary density and the expression of angiotensin II AT1 receptor in the LV were analyzed using histochemistry and immunohistochemistry, respectively. Hyperthyroidism was found to induce profound cardiovascular alterations, such as systolic hypertension, tachycardia, LV dysfunction, cardiac hypertrophy, and myocardial fibrosis. This study demonstrates the existence of structural capillary rarefaction and the down-regulation of the cardiac angiotensin II AT1 receptor in the myocardium of hyperthyroid rats in comparison with euthyroid rats. Microvascular rarefaction may be involved in the pathophysiology of hyperthyroidism-induced cardiovascular alterations. © 2013 John Wiley & Sons Ltd.

  18. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  19. Regulation of gap junction conductance by calcineurin through Cx43 phosphorylation: implications for action potential conduction.

    Science.gov (United States)

    Jabr, Rita I; Hatch, Fiona S; Salvage, Samantha C; Orlowski, Alejandro; Lampe, Paul D; Fry, Christopher H

    2016-11-01

    Cardiac arrhythmias are associated with raised intracellular [Ca 2+ ] and slowed action potential conduction caused by reduced gap junction (GJ) electrical conductance (Gj). Ventricular GJs are composed of connexin proteins (Cx43), with Gj determined by Cx43 phosphorylation status. Connexin phosphorylation is an interplay between protein kinases and phosphatases but the precise pathways are unknown. We aimed to identify key Ca 2+ -dependent phosphorylation sites on Cx43 that regulate cardiac gap junction conductance and action potential conduction velocity. We investigated the role of the Ca 2+ -dependent phosphatase, calcineurin. Intracellular [Ca 2+ ] was raised in guinea-pig myocardium by a low-Na solution or increased stimulation. Conduction velocity and Gj were measured in multicellular strips. Phosphorylation of Cx43 serine residues (S365 and S368) and of the intermediary regulator I1 at threonine35 was measured by Western blot. Measurements were made in the presence and absence of inhibitors to calcineurin, I1 or protein phosphatase-1 and phosphatase-2.Raised [Ca 2 + ] i decreased Gj, reduced Cx43 phosphorylation at S365 and increased it at S368; these changes were reversed by calcineurin inhibitors. Cx43-S368 phosphorylation was reversed by the protein kinase C inhibitor chelerythrine. Raised [Ca 2+ ] i also decreased I1 phosphorylation, also prevented by calcineurin inhibitors, to increase activity of the Ca 2+ -independent phosphatase, PPI. The PP1 inhibitor, tautomycin, prevented Cx43-365 dephosphorylation, Cx43-S368 phosphorylation and Gj reduction in raised [Ca 2+ ] i . PP2A had no role. Conduction velocity was reduced by raised [Ca 2+ ] i and reversed by calcineurin inhibitors. Reduced action potential conduction and Gj in raised [Ca 2+ ] are regulated by calcineurin-dependent Cx43-S365 phosphorylation, leading to Cx43-S368 dephosphorylation. The calcineurin action is indirect, via I1 dephosphorylation and subsequent activation of PP1.

  20. External cardiac compression may be harmful in some scenarios of pulseless electrical activity.

    Science.gov (United States)

    Hogan, T S

    2012-10-01

    Pulseless electrical activity occurs when organised or semi-organised electrical activity of the heart persists but the product of systemic vascular resistance and the increase in systemic arterial flow generated by the ejection of the left venticular stroke volume is not sufficient to produce a clinically detectable pulse. Pulseless electrical activity encompasses a very heterogeneous variety of severe circulatory shock states ranging in severity from pseudo-cardiac arrest to effective cardiac arrest. Outcomes of cardiopulmonary resuscitation for pulseless electrical activity are generally poor. Impairment of cardiac filling is the limiting factor to cardiac output in many scenarios of pulseless electrical activity, including extreme vasodilatory shock states. There is no evidence that external cardiac compression can increase cardiac output when impaired cardiac filling is the limiting factor to cardiac output. If impaired cardiac filling is the limiting factor to cardiac output and the heart is effectively ejecting all the blood returning to it, then external cardiac compression can only increase cardiac output if it increases venous return and cardiac filling. Repeated cardiac compression asynchronous with the patient's cardiac cycle and raised mean intrathoracic pressure due to chest compression can be expected to reduce rather than to increase cardiac filling and therefore to reduce rather than to increase cardiac output in such circumstances. The hypothesis is proposed that the performance of external cardiac compression will have zero or negative effect on cardiac output in pulseless electrical activity when impaired cardiac filling is the limiting factor to cardiac output. External cardiac compression may be both directly and indirectly harmful to significant sub-groups of patients with pulseless electrical activity. We have neither evidence nor theory to provide comfort that external cardiac compression is not harmful in many scenarios of pulseless

  1. External cardiac compression may be harmful in some scenarios of pulseless electrical activity.

    LENUS (Irish Health Repository)

    Hogan, T S

    2012-10-01

    Pulseless electrical activity occurs when organised or semi-organised electrical activity of the heart persists but the product of systemic vascular resistance and the increase in systemic arterial flow generated by the ejection of the left venticular stroke volume is not sufficient to produce a clinically detectable pulse. Pulseless electrical activity encompasses a very heterogeneous variety of severe circulatory shock states ranging in severity from pseudo-cardiac arrest to effective cardiac arrest. Outcomes of cardiopulmonary resuscitation for pulseless electrical activity are generally poor. Impairment of cardiac filling is the limiting factor to cardiac output in many scenarios of pulseless electrical activity, including extreme vasodilatory shock states. There is no evidence that external cardiac compression can increase cardiac output when impaired cardiac filling is the limiting factor to cardiac output. If impaired cardiac filling is the limiting factor to cardiac output and the heart is effectively ejecting all the blood returning to it, then external cardiac compression can only increase cardiac output if it increases venous return and cardiac filling. Repeated cardiac compression asynchronous with the patient\\'s cardiac cycle and raised mean intrathoracic pressure due to chest compression can be expected to reduce rather than to increase cardiac filling and therefore to reduce rather than to increase cardiac output in such circumstances. The hypothesis is proposed that the performance of external cardiac compression will have zero or negative effect on cardiac output in pulseless electrical activity when impaired cardiac filling is the limiting factor to cardiac output. External cardiac compression may be both directly and indirectly harmful to significant sub-groups of patients with pulseless electrical activity. We have neither evidence nor theory to provide comfort that external cardiac compression is not harmful in many scenarios of pulseless

  2. Metoclopramide-induced cardiac arrest

    Directory of Open Access Journals (Sweden)

    Martha M. Rumore

    2011-11-01

    Full Text Available The authors report a case of cardiac arrest in a patient receiving intravenous (IV metoclopramide and review the pertinent literature. A 62-year-old morbidly obese female admitted for a gastric sleeve procedure, developed cardiac arrest within one minute of receiving metoclopramide 10 mg via slow intravenous (IV injection. Bradycardia at 4 beats/min immediately appeared, progressing rapidly to asystole. Chest compressions restored vital function. Electrocardiogram (ECG revealed ST depression indicative of myocardial injury. Following intubation, the patient was transferred to the intensive care unit. Various cardiac dysrrhythmias including supraventricular tachycardia (SVT associated with hypertension and atrial fibrillation occurred. Following IV esmolol and metoprolol, the patient reverted to normal sinus rhythm. Repeat ECGs revealed ST depression resolution without pre-admission changes. Metoclopramide is a non-specific dopamine receptor antagonist. Seven cases of cardiac arrest and one of sinus arrest with metoclopramide were found in the literature. The metoclopramide prescribing information does not list precautions or adverse drug reactions (ADRs related to cardiac arrest. The reaction is not dose related but may relate to the IV administration route. Coronary artery disease was the sole risk factor identified. According to Naranjo, the association was possible. Other reports of cardiac arrest, severe bradycardia, and SVT were reviewed. In one case, five separate IV doses of 10 mg metoclopramide were immediately followed by asystole repeatedly. The mechanism(s underlying metoclopramide’s cardiac arrest-inducing effects is unknown. Structural similarities to procainamide may play a role. In view of eight previous cases of cardiac arrest from metoclopramide having been reported, further elucidation of this ADR and patient monitoring is needed. Our report should alert clinicians to monitor patients and remain diligent in surveillance and

  3. Preconditioned augmented Lagrangian formulation for nearly incompressible cardiac mechanics.

    Science.gov (United States)

    Campos, Joventino Oliveira; Dos Santos, Rodrigo Weber; Sundnes, Joakim; Rocha, Bernardo Martins

    2018-04-01

    Computational modeling of the heart is a subject of substantial medical and scientific interest, which may contribute to increase the understanding of several phenomena associated with cardiac physiological and pathological states. Modeling the mechanics of the heart have led to considerable insights, but it still represents a complex and a demanding computational problem, especially in a strongly coupled electromechanical setting. Passive cardiac tissue is commonly modeled as hyperelastic and is characterized by quasi-incompressible, orthotropic, and nonlinear material behavior. These factors are known to be very challenging for the numerical solution of the model. The near-incompressibility is known to cause numerical issues such as the well-known locking phenomenon and ill-conditioning of the stiffness matrix. In this work, the augmented Lagrangian method is used to handle the nearly incompressible condition. This approach can potentially improve computational performance by reducing the condition number of the stiffness matrix and thereby improving the convergence of iterative solvers. We also improve the performance of iterative solvers by the use of an algebraic multigrid preconditioner. Numerical results of the augmented Lagrangian method combined with a preconditioned iterative solver for a cardiac mechanics benchmark suite are presented to show its improved performance. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Cardiac tumours: non invasive detection and assessment by gated cardiac blood pool radionuclide imaging

    International Nuclear Information System (INIS)

    Pitcher, D.; Wainwright, R.; Brennand-Roper, D.; Deverall, P.; Sowton, E.; Maisey, M.

    1980-01-01

    Four patients with cardiac tumours were investigated by gated cardiac blood pool radionuclide imaging and echocardiography. Contrast angiocardiography was performed in three of the cases. Two left atrial tumours were detected by all three techniques. In one of these cases echocardiography alone showed additional mitral valve stenosis, but isotope imaging indicated tumour size more accurately. A large septal mass was detected by all three methods. In this patient echocardiography showed evidence of left ventricular outflow obstruction, confirmed at cardiac catheterisation, but gated isotope imaging provided a more detailed assessment of the abnormal cardiac anatomy. In the fourth case gated isotope imaging detected a large right ventricular tumour which had not been identified by echocardiography. Gated cardiac blood pool isotope imaging is a complementary technique to echocardiography for the non-invasive detection and assessment of cardiac tumours. (author)

  5. Pulmonary and cardiac pathology in sudden unexpected death in epilepsy (SUDEP).

    Science.gov (United States)

    Nascimento, Fábio A; Tseng, Zian H; Palmiere, Cristian; Maleszewski, Joseph J; Shiomi, Takayuki; McCrillis, Aileen; Devinsky, Orrin

    2017-08-01

    To review studies on structural pulmonary and cardiac changes in SUDEP cases as well as studies showing pulmonary or cardiac structural changes in living epilepsy patients. We conducted electronic literature searches using the PubMed database for articles published in English, regardless of publication year, that included data on cardiac and/or pulmonary structural abnormalities in SUDEP cases or in living epilepsy patients during the postictal period. Fourteen postmortem studies reported pulmonary findings in SUDEP cases. Two focused mainly on assessing lung weights in SUDEP cases versus controls; no group difference was found. The other 12 reported descriptive autopsy findings. Among all SUDEP cases with available descriptive postmortem pulmonary examination, 72% had pulmonary changes, most often pulmonary edema/congestion, and, less frequently, intraalveolar hemorrhage. Eleven studies reported on cardiac pathology in SUDEP. Cardiac abnormalities were found in approximately one-fourth of cases. The most common findings were myocyte hypertrophy and myocardial fibrosis of various degrees. Among living epilepsy patients, postictal pulmonary pathology was the most commonly reported pulmonary abnormality and the most common postictal cardiac abnormality was transient left ventricular dysfunction - Takotsubo or neurogenic stunned myocardium. Cardiac and pulmonary pathological abnormalities are frequent among SUDEP cases, most commonly pulmonary edema/congestion and focal interstitial myocardial fibrosis. Most findings are not quantified, with subjective elements and undefined interobserver reliability, and lack of controls such as matched epilepsy patients who died from other causes. Further, studies have not systematically evaluated potential confounding factors, including postmortem interval to autopsy, paramedic resuscitation and IV fluids administration, underlying heart/lung disease, and risk factors for cardiac or pulmonary disease. Prospective studies with

  6. High Density Sphere Culture of Adult Cardiac Cells Increases the Levels of Cardiac and Progenitor Markers and Shows Signs of Vasculogenesis

    Directory of Open Access Journals (Sweden)

    Kristina Vukusic

    2013-01-01

    Full Text Available 3D environment and high cell density play an important role in restoring and supporting the phenotypes of cells represented in cardiac tissues. The aim of this study was therefore to investigate the suitability of high density sphere (HDS cultures for studies of cardiomyocyte-, endothelial-, and stem-cell biology. Primary adult cardiac cells from nine human biopsies were cultured using different media for up to 9 weeks. The possibilities to favor a certain cell phenotype and induce production of extra cellular matrix (ECM were studied by histology, immunohistochemistry, and quantitative real-time PCR. Defined media gave significant increase in both cardiac- and progenitor-specific markers and also an intraluminal position of endothelial cells over time. Cardiac media showed indication of differentiation and maturity of HDS considering the ECM production and activities within NOTCH regulation but no additional cardiac differentiation. Endothelial media gave no positive effects on endothelial phenotype but increased proliferation without fibroblast overgrowth. In addition, indications for early vasculogenesis were found. It was also possible to affect the Wnt signaling in HDS by addition of a glycogen synthase kinase 3 (GSK3 inhibitor. In conclusion, these findings show the suitability of HDS as in vitro model for studies of cardiomyocyte-, endothelial-, and stem-cell biology.

  7. Distributed predictive control of spiral wave in cardiac excitable media

    International Nuclear Information System (INIS)

    Zheng-Ning, Gan; Xin-Ming, Cheng

    2010-01-01

    In this paper, we propose the distributed predictive control strategies of spiral wave in cardiac excitable media. The modified FitzHugh–Nagumo model was used to express the cardiac excitable media approximately. Based on the control-Lyapunov theory, we obtained the distributed control equation, which consists of a positive control-Lyapunov function and a positive cost function. Using the equation, we investigate two kinds of robust control strategies: the time-dependent distributed control strategy and the space-time dependent distributed control strategy. The feasibility of the strategies was demonstrated via an illustrative example, in which the spiral wave was prevented to occur, and the possibility for inducing ventricular fibrillation was eliminated. The strategies are helpful in designing various cardiac devices. Since the second strategy is more efficient and robust than the first one, and the response time in the second strategy is far less than that in the first one, the former is suitable for the quick-response control systems. In addition, our spatiotemporal control strategies, especially the second strategy, can be applied to other cardiac models, even to other reaction-diffusion systems. (general)

  8. Chronic Cardiac-Targeted RNA Interference for the Treatment of Heart Failure Restores Cardiac Function and Reduces Pathological Hypertrophy

    Science.gov (United States)

    Suckau, Lennart; Fechner, Henry; Chemaly, Elie; Krohn, Stefanie; Hadri, Lahouaria; Kockskämper, Jens; Westermann, Dirk; Bisping, Egbert; Ly, Hung; Wang, Xiaomin; Kawase, Yoshiaki; Chen, Jiqiu; Liang, Lifan; Sipo, Isaac; Vetter, Roland; Weger, Stefan; Kurreck, Jens; Erdmann, Volker; Tschope, Carsten; Pieske, Burkert; Lebeche, Djamel; Schultheiss, Heinz-Peter; Hajjar, Roger J.; Poller, Wolfgang Ch.

    2009-01-01

    Background RNA interference (RNAi) has the potential to be a novel therapeutic strategy in diverse areas of medicine. We report on targeted RNAi for the treatment of heart failure (HF), an important disorder in humans resulting from multiple etiologies. Successful treatment of HF is demonstrated in a rat model of transaortic banding by RNAi targeting of phospholamban (PLB), a key regulator of cardiac Ca2+ homeostasis. Whereas gene therapy rests on recombinant protein expression as its basic principle, RNAi therapy employs regulatory RNAs to achieve its effect. Methods and Results We describe structural requirements to obtain high RNAi activity from adenoviral (AdV) and adeno-associated virus (AAV9) vectors and show that an AdV short hairpin RNA vector (AdV-shRNA) silenced PLB in cardiomyocytes (NRCMs) and improved hemodynamics in HF rats 1 month after aortic root injection. For simplified long-term therapy we developed a dimeric cardiotropic AAV vector (rAAV9-shPLB) delivering RNAi activity to the heart via intravenous injection. Cardiac PLB protein was reduced to 25% and SERCA2a suppression in the HF groups was rescued. In contrast to traditional vectors rAAV9 shows high affinity for myocardium, but low affinity for liver and other organs. rAAV9-shPLB therapy restored diastolic (LVEDP, dp/dtmin, Tau) and systolic (fractional shortening) functional parameters to normal range. The massive cardiac dilation was normalized and the cardiac hypertrophy, cardiomyocyte diameter and cardiac fibrosis significantly reduced. Importantly, there was no evidence of microRNA deregulation or hepatotoxicity during these RNAi therapies. Conclusion Our data show, for the first time, high efficacy of an RNAi therapeutic strategy in a cardiac disease. PMID:19237664

  9. Human adipose stem cell and ASC-derived cardiac progenitor cellular therapy improves outcomes in a murine model of myocardial infarction

    Directory of Open Access Journals (Sweden)

    Davy PMC

    2015-10-01

    Full Text Available Philip MC Davy,1 Kevin D Lye,2,3 Juanita Mathews,1 Jesse B Owens,1 Alice Y Chow,1 Livingston Wong,2 Stefan Moisyadi,1 Richard C Allsopp1 1Institute for Biogenesis Research, 2John A. Burns School of Medicine, University of Hawaii at Mānoa, 3Tissue Genesis, Inc., Honolulu, HI, USA Background: Adipose tissue is an abundant and potent source of adult stem cells for transplant therapy. In this study, we present our findings on the potential application of adipose-derived stem cells (ASCs as well as induced cardiac-like progenitors (iCPs derived from ASCs for the treatment of myocardial infarction. Methods and results: Human bone marrow (BM-derived stem cells, ASCs, and iCPs generated from ASCs using three defined cardiac lineage transcription factors were assessed in an immune-compromised mouse myocardial infarction model. Analysis of iCP prior to transplant confirmed changes in gene and protein expression consistent with a cardiac phenotype. Endpoint analysis was performed 1 month posttransplant. Significantly increased endpoint fractional shortening, as well as reduction in the infarct area at risk, was observed in recipients of iCPs as compared to the other recipient cohorts. Both recipients of iCPs and ASCs presented higher myocardial capillary densities than either recipients of BM-derived stem cells or the control cohort. Furthermore, mice receiving iCPs had a significantly higher cardiac retention of transplanted cells than all other groups. Conclusion: Overall, iCPs generated from ASCs outperform BM-derived stem cells and ASCs in facilitating recovery from induced myocardial infarction in mice. Keywords: adipose stem cells, myocardial infarction, cellular reprogramming, cellular therapy, piggyBac, induced cardiac-like progenitors

  10. A new function for ATP: activating cardiac sympathetic afferents during myocardial ischemia.

    Science.gov (United States)

    Fu, Liang-Wu; Longhurst, John C

    2010-12-01

    Myocardial ischemia activates cardiac sympathetic afferents leading to chest pain and reflex cardiovascular responses. Brief myocardial ischemia leads to ATP release in the interstitial space. Furthermore, exogenous ATP and α,β-methylene ATP (α,β-meATP), a P2X receptor agonist, stimulate cutaneous group III and IV sensory nerve fibers. The present study tested the hypothesis that endogenous ATP excites cardiac afferents during ischemia through activation of P2 receptors. Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicates (T(2)-T(5)) in anesthetized cats. Single fields of 45 afferents (conduction velocities = 0.25-4.92 m/s) were identified in the left ventricle with a stimulating electrode. Five minutes of myocardial ischemia stimulated 39 of 45 cardiac afferents (8 Aδ, 37 C fibers). Epicardial application of ATP (1-4 μmol) stimulated six ischemically sensitive cardiac afferents in a dose-dependent manner. Additionally, epicardial ATP (2 μmol), ADP (2 μmol), a P2Y agonist, and α,β-meATP (0.5 μmol) significantly activated eight other ischemically sensitive afferents. Third, pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, a P2 receptor antagonist, abolished the responses of six afferents to epicardial ATP (2 μmol) and attenuated the ischemia-related increase in activity of seven other afferents by 37%. In the absence of P2 receptor blockade, cardiac afferents responded consistently to repeated application of ATP (n = 6) and to recurrent myocardial ischemia (n = 6). Finally, six ischemia-insensitive cardiac spinal afferents did not respond to epicardial ATP (2-4 μmol), although these afferents did respond to epicardial bradykinin. Taken together, these data indicate that, during ischemia, endogenously released ATP activates ischemia-sensitive, but not ischemia-insensitive, cardiac spinal afferents through stimulation of P2 receptors likely located on the cardiac sensory

  11. Radiation enhanced conduction in insulators: computer modelling

    International Nuclear Information System (INIS)

    Fisher, A.J.

    1986-10-01

    The report describes the implementation of the Klaffky-Rose-Goland-Dienes [Phys. Rev. B.21 3610,1980] model of radiation-enhanced conduction and describes the codes used. The approach is demonstrated for the data for alumina of Pells, Buckley, Hill and Murphy [AERE R.11715, 1985]. (author)

  12. Human technology after cardiac epigenesis. Artificial heart versus cardiac transplantation.

    Science.gov (United States)

    Losman, J G

    1977-09-24

    Cardiovascular disease is the chief cause of death in technologically advanced countries and accounts for more than 50% of all deaths in the USA. For a patient with end-stage cardiac failure the only treatment presently available is organ replacement, either by transplantation or by the use of a mechanical heart. Transplantation has demonstrated its value: survival of more than 8 years and restoration of a normal quality of life to patients who were in end-stage cardiac decompensation. However, the prospect of routine clinical application of an artificial heart remains distant. The development of a totally implantable artificial heart still presents a series of challenging engineering problems with regard to strict constraints of size, weight, blood-material compatibility, adaptability of output to demand, efficiency and reliability of the power supply, and safety if nuclear fuel is used. The totally artificial heart is presently not an alternative to the cardiac allograft, but could provide short-term support for patients awaiting cardiac transplantation.

  13. Marketing cardiac CT programs.

    Science.gov (United States)

    Scott, Jason

    2010-01-01

    There are two components of cardiac CT discussed in this article: coronary artery calcium scoring (CACS) and coronary computed tomography angiography (CCTA).The distinctive advantages of each CT examination are outlined. In order to ensure a successful cardiac CT program, it is imperative that imaging facilities market their cardiac CT practices effectively in order to gain a competitive advantage in this valuable market share. If patients receive quality care by competent individuals, they are more likely to recommend the facility's cardiac CT program. Satisfied patients will also be more willing to come back for any further testing.

  14. Cardiac mTORC1 Dysregulation Impacts Stress Adaptation and Survival in Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Daniel D. Child

    2018-04-01

    Full Text Available Summary: Huntington’s disease (HD is a dominantly inherited neurological disorder caused by CAG-repeat expansion in exon 1 of Huntingtin (HTT. But in addition to the neurological disease, mutant HTT (mHTT, which is ubiquitously expressed, impairs other organ systems. Indeed, epidemiological and animal model studies suggest higher incidence of and mortality from heart disease in HD. Here, we show that the protein complex mTORC1 is dysregulated in two HD mouse models through a mechanism that requires intrinsic mHTT expression. Moreover, restoring cardiac mTORC1 activity with constitutively active Rheb prevents mortality and relieves the mHTT-induced block to hypertrophic adaptation to cardiac stress. Finally, we show that chronic mTORC1 dysregulation is due in part to mislocalization of endogenous Rheb. These data provide insight into the increased cardiac-related mortality of HD patients, with cardiac mHTT expression inhibiting mTORC1 activity, limiting heart growth, and decreasing the heart’s ability to compensate to chronic stress. : Child et al. demonstrate that mTORC1 dysregulation is a key molecular mechanism in the Huntington’s disease (HD heart phenotype. Impaired cardiac mTORC1 activity in HD mouse models requires intrinsic mHTT expression and explains the limited adaptation to cardiac stress. Keywords: Huntington’s disease, heart, mTOR, Rheb

  15. Concise Review: Fluorescent Reporters in Human Pluripotent Stem Cells: Contributions to Cardiac Differentiation and Their Applications in Cardiac Disease and Toxicity.

    Science.gov (United States)

    Den Hartogh, Sabine C; Passier, Robert

    2016-01-01

    In the last decade, since the first report of induced pluripotent stem cells, the stem cell field has made remarkable progress in the differentiation to specialized cell-types of various tissues and organs, including the heart. Cardiac lineage- and tissue-specific human pluripotent stem cell (hPSC) reporter lines have been valuable for the identification, selection, and expansion of cardiac progenitor cells and their derivatives, and for our current understanding of the underlying molecular mechanisms. In order to further advance the use of hPSCs in the fields of regenerative medicine, disease modeling, and preclinical drug development in cardiovascular research, it is crucial to identify functionally distinct cardiac subtypes and to study their biological signaling events and functional aspects in healthy and diseased conditions. In this review, we discuss the various strategies that have been followed to generate and study fluorescent reporter lines in hPSCs and provide insights how these reporter lines contribute to a better understanding and improvement of cell-based therapies and preclinical drug and toxicity screenings in the cardiac field. © AlphaMed Press.

  16. Empagliflozin Prevents Worsening of Cardiac Function in an Experimental Model of Pressure Overload-Induced Heart Failure

    Directory of Open Access Journals (Sweden)

    Nikole J. Byrne, BSc

    2017-08-01

    Full Text Available This study sought to determine whether the sodium/glucose cotransporter 2 (SGLT2 inhibitor empagliflozin improved heart failure (HF outcomes in nondiabetic mice. The EMPA-REG OUTCOME (Empagliflozin, Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients trial demonstrated that empagliflozin markedly prevented HF and cardiovascular death in subjects with diabetes. However, despite ongoing clinical trials in HF patients without type 2 diabetes, there are no objective and translational data to support an effect of SGLT2 inhibitors on cardiac structure and function, particularly in the absence of diabetes and in the setting of established HF. Male C57Bl/6 mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Following surgery, mice that progressed to HF received either vehicle or empagliflozin for 2 weeks. Cardiac function was then assessed in vivo using echocardiography and ex vivo using isolated working hearts. Although vehicle-treated HF mice experienced a progressive worsening of cardiac function over the 2-week treatment period, this decline was blunted in empagliflozin-treated HF mice. Treatment allocation to empagliflozin resulted in an improvement in cardiac systolic function, with no significant changes in cardiac remodeling or diastolic dysfunction. Moreover, isolated hearts from HF mice treated with empagliflozin displayed significantly improved ex vivo cardiac function compared to those in vehicle-treated controls. Empagliflozin treatment of nondiabetic mice with established HF blunts the decline in cardiac function both in vivo and ex vivo, independent of diabetes. These data provide important basic and translational clues to support the evaluation of SGLT2 inhibitors as a treatment strategy in a broad range of patients with established HF.

  17. Patient-specific cardiac phantom for clinical training and preprocedure surgical planning.

    Science.gov (United States)

    Laing, Justin; Moore, John; Vassallo, Reid; Bainbridge, Daniel; Drangova, Maria; Peters, Terry

    2018-04-01

    Minimally invasive mitral valve repair procedures including MitraClip ® are becoming increasingly common. For cases of complex or diseased anatomy, clinicians may benefit from using a patient-specific cardiac phantom for training, surgical planning, and the validation of devices or techniques. An imaging compatible cardiac phantom was developed to simulate a MitraClip ® procedure. The phantom contained a patient-specific cardiac model manufactured using tissue mimicking materials. To evaluate accuracy, the patient-specific model was imaged using computed tomography (CT), segmented, and the resulting point cloud dataset was compared using absolute distance to the original patient data. The result, when comparing the molded model point cloud to the original dataset, resulted in a maximum Euclidean distance error of 7.7 mm, an average error of 0.98 mm, and a standard deviation of 0.91 mm. The phantom was validated using a MitraClip ® device to ensure anatomical features and tools are identifiable under image guidance. Patient-specific cardiac phantoms may allow for surgical complications to be accounted for preoperative planning. The information gained by clinicians involved in planning and performing the procedure should lead to shorter procedural times and better outcomes for patients.

  18. Pediatric 320-row cardiac computed tomography using electrocardiogram-gated model-based full iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Shirota, Go; Maeda, Eriko; Namiki, Yoko; Bari, Razibul; Abe, Osamu [The University of Tokyo, Department of Radiology, Graduate School of Medicine, Tokyo (Japan); Ino, Kenji [The University of Tokyo Hospital, Imaging Center, Tokyo (Japan); Torigoe, Rumiko [Toshiba Medical Systems, Tokyo (Japan)

    2017-10-15

    Full iterative reconstruction algorithm is available, but its diagnostic quality in pediatric cardiac CT is unknown. To compare the imaging quality of two algorithms, full and hybrid iterative reconstruction, in pediatric cardiac CT. We included 49 children with congenital cardiac anomalies who underwent cardiac CT. We compared quality of images reconstructed using the two algorithms (full and hybrid iterative reconstruction) based on a 3-point scale for the delineation of the following anatomical structures: atrial septum, ventricular septum, right atrium, right ventricle, left atrium, left ventricle, main pulmonary artery, ascending aorta, aortic arch including the patent ductus arteriosus, descending aorta, right coronary artery and left main trunk. We evaluated beam-hardening artifacts from contrast-enhancement material using a 3-point scale, and we evaluated the overall image quality using a 5-point scale. We also compared image noise, signal-to-noise ratio and contrast-to-noise ratio between the algorithms. The overall image quality was significantly higher with full iterative reconstruction than with hybrid iterative reconstruction (3.67±0.79 vs. 3.31±0.89, P=0.0072). The evaluation scores for most of the gross structures were higher with full iterative reconstruction than with hybrid iterative reconstruction. There was no significant difference between full and hybrid iterative reconstruction for the presence of beam-hardening artifacts. Image noise was significantly lower in full iterative reconstruction, while signal-to-noise ratio and contrast-to-noise ratio were significantly higher in full iterative reconstruction. The diagnostic quality was superior in images with cardiac CT reconstructed with electrocardiogram-gated full iterative reconstruction. (orig.)

  19. Pediatric 320-row cardiac computed tomography using electrocardiogram-gated model-based full iterative reconstruction

    International Nuclear Information System (INIS)

    Shirota, Go; Maeda, Eriko; Namiki, Yoko; Bari, Razibul; Abe, Osamu; Ino, Kenji; Torigoe, Rumiko

    2017-01-01

    Full iterative reconstruction algorithm is available, but its diagnostic quality in pediatric cardiac CT is unknown. To compare the imaging quality of two algorithms, full and hybrid iterative reconstruction, in pediatric cardiac CT. We included 49 children with congenital cardiac anomalies who underwent cardiac CT. We compared quality of images reconstructed using the two algorithms (full and hybrid iterative reconstruction) based on a 3-point scale for the delineation of the following anatomical structures: atrial septum, ventricular septum, right atrium, right ventricle, left atrium, left ventricle, main pulmonary artery, ascending aorta, aortic arch including the patent ductus arteriosus, descending aorta, right coronary artery and left main trunk. We evaluated beam-hardening artifacts from contrast-enhancement material using a 3-point scale, and we evaluated the overall image quality using a 5-point scale. We also compared image noise, signal-to-noise ratio and contrast-to-noise ratio between the algorithms. The overall image quality was significantly higher with full iterative reconstruction than with hybrid iterative reconstruction (3.67±0.79 vs. 3.31±0.89, P=0.0072). The evaluation scores for most of the gross structures were higher with full iterative reconstruction than with hybrid iterative reconstruction. There was no significant difference between full and hybrid iterative reconstruction for the presence of beam-hardening artifacts. Image noise was significantly lower in full iterative reconstruction, while signal-to-noise ratio and contrast-to-noise ratio were significantly higher in full iterative reconstruction. The diagnostic quality was superior in images with cardiac CT reconstructed with electrocardiogram-gated full iterative reconstruction. (orig.)

  20. Fabrication and characterization of bio-engineered cardiac pseudo tissues

    Energy Technology Data Exchange (ETDEWEB)

    Xu Tao; Boland, Thomas [Department of Bioengineering, 420 Rhodes Hall, Clemson University, Clemson, SC 29634 (United States); Baicu, Catalin; Aho, Michael; Zile, Michael, E-mail: tboland@clemson.ed [Department of Medicine, Medical University of South Carolina, Charleston, SC 29425 (United States)

    2009-09-15

    We report on fabricating functional three-dimensional (3D) tissue constructs using an inkjet based bio-prototyping method. With the use of modified inkjet printers, contractile cardiac hybrids that exhibit the forms of the 3D rectangular sheet and even the 'half heart' (with two connected ventricles) have been fabricated by arranging alternate layers of biocompatible alginate hydrogels and mammalian cardiac cells according to pre-designed 3D patterns. In this study, primary feline adult and H1 cardiomyocytes were used as model cardiac cells. Alginate hydrogels with controlled micro-shell structures were built by spraying cross-linkers in micro-drops onto un-gelled alginic acid. The cells remained viable in constructs as thick as 1 cm due to the programmed porosity. Microscopic and macroscopic contractile functions of these cardiomyocyte constructs were observed in vitro. These results suggest that the inkjet bio-prototyping method could be used for hierarchical design of functional cardiac pseudo tissues, balanced with porosity for mass transport and structural support.

  1. Fabrication and characterization of bio-engineered cardiac pseudo tissues

    International Nuclear Information System (INIS)

    Xu Tao; Boland, Thomas; Baicu, Catalin; Aho, Michael; Zile, Michael

    2009-01-01

    We report on fabricating functional three-dimensional (3D) tissue constructs using an inkjet based bio-prototyping method. With the use of modified inkjet printers, contractile cardiac hybrids that exhibit the forms of the 3D rectangular sheet and even the 'half heart' (with two connected ventricles) have been fabricated by arranging alternate layers of biocompatible alginate hydrogels and mammalian cardiac cells according to pre-designed 3D patterns. In this study, primary feline adult and H1 cardiomyocytes were used as model cardiac cells. Alginate hydrogels with controlled micro-shell structures were built by spraying cross-linkers in micro-drops onto un-gelled alginic acid. The cells remained viable in constructs as thick as 1 cm due to the programmed porosity. Microscopic and macroscopic contractile functions of these cardiomyocyte constructs were observed in vitro. These results suggest that the inkjet bio-prototyping method could be used for hierarchical design of functional cardiac pseudo tissues, balanced with porosity for mass transport and structural support.

  2. Medicare Program; Advancing Care Coordination Through Episode Payment Models (EPMs); Cardiac Rehabilitation Incentive Payment Model; and Changes to the Comprehensive Care for Joint Replacement Model (CJR). Final rule.

    Science.gov (United States)

    2017-01-03

    This final rule implements three new Medicare Parts A and B episode payment models, a Cardiac Rehabilitation (CR) Incentive Payment model and modifications to the existing Comprehensive Care for Joint Replacement model under section 1115A of the Social Security Act. Acute care hospitals in certain selected geographic areas will participate in retrospective episode payment models targeting care for Medicare fee-forservice beneficiaries receiving services during acute myocardial infarction, coronary artery bypass graft, and surgical hip/femur fracture treatment episodes. All related care within 90 days of hospital discharge will be included in the episode of care. We believe these models will further our goals of improving the efficiency and quality of care for Medicare beneficiaries receiving care for these common clinical conditions and procedures.

  3. Indications, imaging technique, and reading of cardiac computed tomography: survey of clinical practice

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, M.H.; Zimmermann, E.; Germershausen, C.; Hamm, B. [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Schlattmann, P. [University Hospital of Friedrich-Schiller University Jena, Department of Medical Statistics, Computer Sciences and Documentation, Jena (Germany); Dewey, Marc [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Humboldt-Universitaet zu Berlin, Department of Radiology, Berlin, PO Box 10098 (Germany)

    2012-01-15

    To obtain an overview of the current clinical practice of cardiac computed tomography (CT). A 32-item questionnaire was mailed to a total of 750 providers of cardiac CT in 57 countries. A total of 169 questionnaires from 38 countries were available for analysis (23%). Most CT systems used (94%, 207/221) were of the latest generation (64-row or dual-source CT). The most common indications for cardiac CT was exclusion of coronary artery disease (97%, 164/169). Most centres used beta blockade (91%, 151/166) and sublingual nitroglycerine (80%, 134/168). A median slice thickness of 0.625 mm with a 0.5-mm increment and an 18-cm reconstruction field of view was used. Interpretation was most often done using source images in orthogonal planes (92%, 155/169). Ninety percent of sites routinely evaluate extracardiac structures on a large (70%) or cardiac field of view (20%). Radiology sites were significantly more interested in jointly performing cardiac CT together with cardiology than cardiologists. The mean examination time was 18.6 {+-} 8.4 min, and reading took on average 28.7 {+-} 17.8 min. Cardiac CT has rapidly become established in clinical practice, and there is emerging consensus regarding indications, conduct of the acquisition, and reading. (orig.)

  4. Mechanical ventilation with high tidal volumes attenuates myocardial dysfunction by decreasing cardiac edema in a rat model of LPS-induced peritonitis

    Directory of Open Access Journals (Sweden)

    Smeding Lonneke

    2012-03-01

    Full Text Available Abstract Background Injurious mechanical ventilation (MV may augment organ injury remote from the lungs. During sepsis, myocardial dysfunction is common and increased endothelial activation and permeability can cause myocardial edema, which may, among other factors, hamper myocardial function. We investigated the effects of MV with injuriously high tidal volumes on the myocardium in an animal model of sepsis. Methods Normal rats and intraperitoneal (i.p. lipopolysaccharide (LPS-treated rats were ventilated with low (6 ml/kg and high (19 ml/kg tidal volumes (Vt under general anesthesia. Non-ventilated animals served as controls. Mean arterial pressure (MAP, central venous pressure (CVP, cardiac output (CO and pulmonary plateau pressure (Pplat were measured. Ex vivo myocardial function was measured in isolated Langendorff-perfused hearts. Cardiac expression of endothelial vascular cell adhesion molecule (VCAM-1 and edema were measured to evaluate endothelial inflammation and leakage. Results MAP decreased after LPS-treatment and Vt-dependently, both independent of each other and with interaction. MV Vt-dependently increased CVP and Pplat and decreased CO. LPS-induced peritonitis decreased myocardial function ex vivo but MV attenuated systolic dysfunction Vt-dependently. Cardiac endothelial VCAM-1 expression was increased by LPS treatment independent of MV. Cardiac edema was lowered Vt-dependently by MV, particularly after LPS, and correlated inversely with systolic myocardial function parameters ex vivo. Conclusion MV attenuated LPS-induced systolic myocardial dysfunction in a Vt-dependent manner. This was associated with a reduction in cardiac edema following a lower transmural coronary venous outflow pressure during LPS-induced coronary inflammation.

  5. Comparison of remifentanil and low-dose fentanyl for fast-track cardiac anesthesia

    DEFF Research Database (Denmark)

    Khanykin, Boris; Siddiqi, Rizwan; Jensen, Per F

    2013-01-01

    BACKGROUND: Different anesthetic techniques have been used for fast tracking in cardiac anesthesia. Remifentanil, with its unique pharmacokinetic profile, could be an ideal drug for fast tracking. Possible limitations of remifentanil are rapid onset of postoperative pain after discontinuation...... of the drug infusion, which may increase the risk of an ischemic event. We conducted this randomized study to compare the efficacy of remifentanil versus low doses of fentanyl in fast-track cardiac anesthesia. It has been hypothesized that remifentanil would provide a safe anesthesia with no impact...... anesthesia. The study was designed as a prospective randomized study. The primary outcomes were changes in the cardiac index and creatine kinase MB fraction (CKMB), extubation times, mobilization times, and lengths of stay in the intensive care unit (ICU) and the hospital. Frequency of myocardial infarction...

  6. Cardiac CT and cardiac MRI - competitive or complementary for nuclear cardiology

    International Nuclear Information System (INIS)

    Moshage, W.

    2004-01-01

    In summary, cardiac computed tomography (CT) and cardiac magnetic resonance (MR) are two different technologies with distinct imaging properties that gain increasing importance in clinical cardiology. Even though images may look similar, the areas of application of CT and MR are quite different. Clinical applications of cardiac CT focus on on-invasive imaging of the coronary arteries. In this respect, the higher spatial resolution of cardiac CT constitutes a significant advantage as compared to MR and clinical results are superior. Clinical applications of cardiac MR, next to morphologic imaging of the heart, are most frequently found in the context of intra-and pericardial masses, complex congenital anomalies, and the assessment of left ventricular function (dobutamine) and perfusion (adenosine) under stress. The evaluation of the size and localization of myocardial necrosis, scars, and fibrosis gains increasing importance, for example in the workup of myocardial infarction, but also myocarditis and cardiomyopathies. In this respect, magnetic resonance imaging partly constitutes an alternative to nuclear medicine methods. Due to the lack of ionizing radiation and a relatively high spatial resolution, an increase of MR diagnostic procedures at the expense of nuclear medicine can be expected. (orig.)

  7. Towards an integrative computational model of the guinea pig cardiac myocyte

    Directory of Open Access Journals (Sweden)

    Laura Doyle Gauthier

    2012-07-01

    Full Text Available The local control theory of excitation-contraction (EC coupling asserts that regulation of calcium (Ca2+ release occurs at the nanodomain level, where openings of single L-type Ca2+ channels (LCCs trigger openings of small clusters of ryanodine receptors (RyRs co-localized within the dyad. A consequence of local control is that the whole-cell Ca2+ transient is a smooth continuous function of influx of Ca2+ through LCCs. While this so-called graded release property has been known for some time, it’s functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically-based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca2+ release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally-observed causal relationship between action potential (AP shape and timing of Ca2+ and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca2+ transients, thus influencing tissue-level electro-mechanical function.

  8. Toward an integrative computational model of the Guinea pig cardiac myocyte.

    Science.gov (United States)

    Gauthier, Laura Doyle; Greenstein, Joseph L; Winslow, Raimond L

    2012-01-01

    The local control theory of excitation-contraction (EC) coupling asserts that regulation of calcium (Ca(2+)) release occurs at the nanodomain level, where openings of single L-type Ca(2+) channels (LCCs) trigger openings of small clusters of ryanodine receptors (RyRs) co-localized within the dyad. A consequence of local control is that the whole-cell Ca(2+) transient is a smooth continuous function of influx of Ca(2+) through LCCs. While this so-called graded release property has been known for some time, its functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca(2+) release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally observed causal relationship between action potential (AP) shape and timing of Ca(2+) and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca(2+) transients, thus influencing tissue level electromechanical function.

  9. Relationship between cardiac output and effective renal plasma flow in patients with cardiac disease

    Energy Technology Data Exchange (ETDEWEB)

    McGriffin, D; Tauxe, W N; Lewis, C; Karp, R; Mantle, J

    1984-12-01

    The relationship between effective renal plasma flow (ERPF) and cardiac output was examined in 46 patients (22 with congestive heart failure and 24 following cardiac surgical procedures) by simultaneously measuring the global ERPF by the single-injection method and cardiac output by the thermodilution method. Of the patients in the heart-failure group, 21 also had pulmonary artery end diastolic pressure (PAEDP) recorded at the same time. ERPF and cardiac output were found to be related by the regression equations: cardiac output = 2.08 + 0.0065 ERPF (r, 080), with a SE of estimate of 0.81 l/min. ERPF and PAEDP were related by the regression equation: PAEDP = 42.02 - 0.0675 ERPF (r, 0.86), with a SE of estimate of 5.5 mm Hg. ERPF may be a useful noninvasive method of estimating cardiac output if it is known that no intrinsic kidney disease is present, and if the error of 0.81 l/min (1 SE of estimate) is within the range of clinical usefulness. The error is principally attributable to the determination of cardiac output by the thermodilution method.

  10. Hybrid options for treating cardiac disease.

    Science.gov (United States)

    Umakanthan, Ramanan; Leacche, Marzia; Zhao, David X; Gallion, Anna H; Mishra, Prabodh C; Byrne, John G

    2011-01-01

    The options for treating heart disease have greatly expanded during the course of the last 2 1/2 decades with the advent of hybrid technology. The hybrid option for treating cardiac disease implies using the technology of both interventional cardiology and cardiac surgery to treat cardiac disease. This rapidly developing technology has given rise to new and creative techniques to treat cardiac disease involving coronary artery disease, coronary artery disease and cardiac valve disease, and atrial fibrillation. It has also led to the establishment of new procedural suites called hybrid operating rooms that facilitate the integration of technologies of interventional cardiology catheterization laboratories with those of cardiac surgery operating rooms. The development of hybrid options for treating cardiac disease has also greatly augmented teamwork and collaboration between interventional cardiologists and cardiac surgeons. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Cardiac CT

    International Nuclear Information System (INIS)

    Dewey, Marc

    2011-01-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  12. Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie

    2011-07-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  13. Configurational Model for Conductivity of Stabilized Fluorite Structure Oxides

    DEFF Research Database (Denmark)

    Poulsen, Finn Willy

    1981-01-01

    The formalism developed here furnishes means by which ionic configurations, solid solution limits, and conductivity mechanisms in doped fluorite structures can be described. The present model differs markedly from previous models but reproduces qualitatively reality. The analysis reported...

  14. A predictive model to identify patients with suspected acute coronary syndromes at high risk of cardiac arrest or in-hospital mortality: An IMMEDIATE Trial sub-study

    Directory of Open Access Journals (Sweden)

    Madhab Ray

    2015-12-01

    Conclusions: The multivariable predictive model developed identified patients with very early ACS at high risk of cardiac arrest or death. Using this model could assist treating those with greatest potential benefit from GIK.

  15. Optical conductivity of the Hubbard model

    International Nuclear Information System (INIS)

    Vicente Alvarez, J.J.; Balseiro, C.A.; Ceccatto, H.A.

    1996-07-01

    We study the response to a static electric field (charge stiffness) and the frequency-dependent conductivity of the Hubbard model in a resonant-valence-bond-type paramagnetic phase. This phase is described by means of a charge and spin rotational-invariant approach, based on a mixed fermion-boson representation of the original strongly correlated electrons. We found that the Mott transition at half filling is well described by the charge stiffness behaviour, and that the values for this quantity off half filling agree reasonably well with numerical results. Furthermore, for the frequency-dependent conductivity we trace back the origin of the band which appears inside the Hubbard gap to magnetic pair breaking. This points to a magnetic origin of midinfrared band in high-T c compounds, with no relation to superconductivity. (author). 12 refs, 2 tabs

  16. Cardiac optogenetic pacing in drosophila melanogaster using red-shifted opsins (Conference Presentation)

    Science.gov (United States)

    Men, Jing; Li, Airong; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2017-02-01

    Electrical pacing is the current gold standard for investigation of mammalian cardiac electrical conduction systems as well as for treatment of certain cardiac pathologies. However, this method requires an invasive surgical procedure to implant the pacing electrodes. Recently, optogenetic pacing has been developed as an alternative, non-invasive method for heartbeat pacing in animals. It induces heartbeats by shining pulsed light on transgene-generated microbial opsins which in turn activate light gated ion channels in animal hearts. However, commonly used opsins, such as channelrhodopsin-2 (ChR2), require short light wavelength stimulation (475 nm), which is strongly absorbed and scattered by tissue. Here, we expressed recently engineered red-shifted opsins, ReaChR and CsChrimson, in the heart of a well-developed animal model, Drosophila melanogaster, for the first time. Optogenetic pacing was successfully conducted in both ReaChR and CsChrimson flies at their larval, pupal, and adult stages using 617 nm excitation light pulse, enabling a much deeper tissue penetration compared to blue stimulation light. A customized high speed and ultrahigh resolution OCM system was used to non-invasively monitor the heartbeat pacing in Drosophila. Compared to previous studies on optogenetic pacing of Drosophila, higher penetration depth of optogenetic excitation light was achieved in opaque late pupal flies. Lower stimulating power density is needed for excitation at each developmental stage of both groups, which improves the safety of this technique for heart rhythm studies.

  17. A thermal conductivity model for U-­Si compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    U3Si2 is a candidate for accident tolerant nuclear fuel being developed as an alternative to UO2 in commercial light water reactors (LWRs). One of its main benefits compared to UO2 is higher thermal conductivity that increases with temperature. This increase is contrary to UO2, for which the thermal conductivity decreases with temperature. The reason for the difference is the electronic origin of thermal conductivity in U3Si2, as compared to the phonon mechanism responsible for thermal transport in UO2. The phonon thermal conductivity in UO2 is unusually low for a fluorite oxide due to the strong interaction with the spins in the paramagnetic phase. The thermal conductivity of U3Si2 as well as other U-­Si compounds has been measured experimentally [1-­4]. However, for fuel performance simulations it is also critical to model the degradation of the thermal conductivity due to damage and microstructure evolution caused by the reactor environment (irradiation and high temperature). For UO2 this reduction is substantial and it has been the topic of extensive NEAMS research resulting in several publications [5, 6]. There are no data or models for the evolution of the U3Si2 thermal conductivity under irradiation. We know that the intrinsic thermal conductivities of UO2 (semi-conductor) and U3Si2 (metal) are very different, and we do not necessarily expect the dependence on damage to be the same either, which could present another advantage for the silicide fuel. In this report we summarize the first step in developing a model for the thermal conductivity of U-­Si compounds with the goal of capturing the effect of damage in U3Si2. Next year, we will focus on lattice damage. We will also attempt to assess the impact of fission gas bubbles.

  18. Cardiac telomere length in heart development, function, and disease.

    Science.gov (United States)

    Booth, S A; Charchar, F J

    2017-07-01

    Telomeres are repetitive nucleoprotein structures at chromosome ends, and a decrease in the number of these repeats, known as a reduction in telomere length (TL), triggers cellular senescence and apoptosis. Heart disease, the worldwide leading cause of death, often results from the loss of cardiac cells, which could be explained by decreases in TL. Due to the cell-specific regulation of TL, this review focuses on studies that have measured telomeres in heart cells and critically assesses the relationship between cardiac TL and heart function. There are several lines of evidence that have identified rapid changes in cardiac TL during the onset and progression of heart disease as well as at critical stages of development. There are also many factors, such as the loss of telomeric proteins, oxidative stress, and hypoxia, that decrease cardiac TL and heart function. In contrast, antioxidants, calorie restriction, and exercise can prevent both cardiac telomere attrition and the progression of heart disease. TL in the heart is also indicative of proliferative potential and could facilitate the identification of cells suitable for cardiac rejuvenation. Although these findings highlight the involvement of TL in heart function, there are important questions regarding the validity of animal models, as well as several confounding factors, that need to be considered when interpreting results and planning future research. With these in mind, elucidating the telomeric mechanisms involved in heart development and the transition to disease holds promise to prevent cardiac dysfunction and potentiate regeneration after injury. Copyright © 2017 the American Physiological Society.

  19. Cardiac tissue geometry as a determinant of unidirectional conduction block: assessment of microscopic excitation spread by optical mapping in patterned cell cultures and in a computer model.

    Science.gov (United States)

    Fast, V G; Kléber, A G

    1995-05-01

    Unidirectional conduction block (UCB) and reentry may occur as a consequence of an abrupt tissue expansion and a related change in the electrical load. The aim of this study was to evaluate critical dimensions of the tissue necessary for establishing UCB in heart cell culture. Neonatal rat heart cell cultures with cell strands of variable width emerging into a large cell area were grown using a technique of patterned cell growth. Action potential upstrokes were measured using a voltage sensitive dye (RH-237) and a linear array of 10 photodiodes with a 15 microns resolution. A mathematical model was used to relate action potential wave shapes to underlying ionic currents. UCB (block of a single impulse in anterograde direction - from a strand to a large area - and conduction in the retrograde direction) occurred in narrow cell strands with a width of 15(SD 4) microns (1-2 cells in width, n = 7) and there was no conduction block in strands with a width of 31(8) microns (n = 9, P multiple rising phases. Mathematical modelling showed that two rising phases were caused by electronic current flow, whereas local ionic current did not coincide with the rising portions of the upstrokes. (1) High resolution optical mapping shows multiphasic action potential upstrokes at the region of abrupt expansion. At the site of the maximum decrement in conduction, these peaks were largely determined by the electrotonus and not by the local ionic current. (2) Unidirectional conduction block occurred in strands with a width of 15(4) microns (1-2 cells).

  20. Cardiac function in acute hypothyroidism

    International Nuclear Information System (INIS)

    Donaghue, K.; Hales, I.; Allwright, S.; Cooper, R.; Edwards, A.; Grant, S.; Morrow, A.; Wilmshurst, E.; Royal North Shore Hospital, Sydney

    1985-01-01

    It has been established that chronic hypothyroidism may affect cardiac function by several mechanisms. It is not known how long the patient has to be hypothyroid for cardiac involvement to develop. This study was undertaken to assess the effect of a short period of hypothyroidism (10 days) on cardiac function. Nine patients who had had total tyroidectomy, had received ablative radioiodine for thyroid cancer and were euthyroid on replacement therapy were studied while both euthyroid and hypothyroid. Cardiac assessment was performed by X-ray, ECG, echocardiography and gated blood-pool scans. After 10 days of hypothyroidisms, the left-ventricular ejection fraction failed to rise after exercise in 4 of the 9 patients studied, which was significant (P<0.002). No significant changes in cardiac size or function at rest were detected. This functional abnormality in the absence of any demonstrable change in cardiac size and the absence of pericardial effussion with normal basal function suggest that short periods of hypothyroidism may reduce cardiac reserve, mostly because of alterations in metabolic function. (orig.)

  1. Maternal cardiac metabolism in pregnancy

    Science.gov (United States)

    Liu, Laura X.; Arany, Zolt

    2014-01-01

    Pregnancy causes dramatic physiological changes in the expectant mother. The placenta, mostly foetal in origin, invades maternal uterine tissue early in pregnancy and unleashes a barrage of hormones and other factors. This foetal ‘invasion’ profoundly reprogrammes maternal physiology, affecting nearly every organ, including the heart and its metabolism. We briefly review here maternal systemic metabolic changes during pregnancy and cardiac metabolism in general. We then discuss changes in cardiac haemodynamic during pregnancy and review what is known about maternal cardiac metabolism during pregnancy. Lastly, we discuss cardiac diseases during pregnancy, including peripartum cardiomyopathy, and the potential contribution of aberrant cardiac metabolism to disease aetiology. PMID:24448314

  2. Genetically engineered cardiac pacemaker: Stem cells transfected with HCN2 gene and myocytes-A model

    Energy Technology Data Exchange (ETDEWEB)

    Kanani, S. [Institut Genomique Fonctionelle, 141 Rue de la Cardonille, 34396 Montpellier (France); Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France); Pumir, A. [Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France); Laboratoire J.A. Dieudonne, CNRS and Universite de Nice, Parc Valrose, 06108 Nice (France)], E-mail: alain.pumir@unice.fr; Krinsky, V. [Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France)

    2008-01-07

    One of the successfully tested methods to design genetically engineered cardiac pacemaker cells consists in transfecting a human mesenchymal stem cell (hMSC) with a HCN2 gene and connecting it to a myocyte. We develop and study a mathematical model, describing a myocyte connected to a hMSC transfected with a HCN2 gene. The cardiac action potential is described both with the simple Beeler-Reuter model, as well as with the elaborate dynamic Luo-Rudy model. The HCN2 channel is described by fitting electrophysiological records, in the spirit of Hodgkin-Huxley. The model shows that oscillations can occur in a pair myocyte-stem cell, that was not observed in the experiments yet. The model predicted that: (1) HCN pacemaker channels can induce oscillations only if the number of expressed I{sub K1} channels is low enough. At too high an expression level of I{sub K1} channels, oscillations cannot be induced, no matter how many pacemaker channels are expressed. (2) At low expression levels of I{sub K1} channels, a large domain of values in the parameter space (n, N) exists, where oscillations should be observed. We denote N the number of expressed pacemaker channels in the stem cell, and n the number of gap junction channels coupling the stem cell and the myocyte. (3) The expression levels of I{sub K1} channels observed in ventricular myocytes, both in the Beeler-Reuter and in the dynamic Luo-Rudy models are too high to allow to observe oscillations. With expression levels below {approx}1/4 of the original value, oscillations can be observed. The main consequence of this work is that in order to obtain oscillations in an experiment with a myocyte-stem cell pair, increasing the values of n, N is unlikely to be helpful, unless the expression level of I{sub K1} has been reduced enough. The model also allows us to explore levels of gene expression not yet achieved in experiments, and could be useful to plan new experiments, aimed at improving the robustness of the oscillations.

  3. {sup 123}I-MIBG imaging detects cardiac involvement and predicts cardiac events in Churg-Strauss syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Yoriko; Morita, Yukiko [National Hospital Organization Sagamihara National Hospital, Department of Cardiology, Sagamihara City, Kanagawa (Japan); Tsurikisawa, Naomi; Akiyama, Kazuo [National Hospital Organization Sagamihara National Hospital, Clinical Research Centre for Allergy and Rheumatology, Sagamihara City, Kanagawa (Japan)

    2011-02-15

    In Churg-Strauss syndrome (CSS) it is important to detect cardiac involvement, which predicts poor prognosis. This study evaluated whether {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy could detect cardiac damage and predict cardiac events in CSS. {sup 123}I-MIBG scintigraphy was performed in 28 patients with CSS, 12 of whom had cardiac involvement. The early and delayed heart to mediastinum ratio (early H/M and delayed H/M) and washout rate were calculated by using {sup 123}I-MIBG scintigraphy and compared with those in control subjects. Early H/M and delayed H/M were significantly lower and the washout rate was significantly higher in patients with cardiac involvement than in those without and in controls (early H/M, p = 0.0024, p = 0.0001; delayed H/M, p = 0.0002, p = 0.0001; washout rate, p = 0.0012, p = 0.0052 vs those without and vs controls, respectively). Accuracy for detecting cardiac involvement was 86% for delayed H/M and washout rate and 79% for early H/M and B-type natriuretic peptide (BNP). Kaplan-Meier analysis showed significantly lower cardiac event-free rates in patients with early H/M {<=} 2.18 and BNP > 21.8 pg/ml than those with early H/M > 2.18 and BNP {<=} 21.8 pg/ml (log-rank test p = 0.006). Cardiac sympathetic nerve function was damaged in CSS patients with cardiac involvement. {sup 123}I-MIBG scintigraphy was useful in detecting cardiac involvement and in predicting cardiac events. (orig.)

  4. Minimally Invasive Cardiac Surgery: Transapical Aortic Valve Replacement

    Directory of Open Access Journals (Sweden)

    Ming Li

    2012-01-01

    Full Text Available Minimally invasive cardiac surgery is less traumatic and therefore leads to quicker recovery. With the assistance of engineering technologies on devices, imaging, and robotics, in conjunction with surgical technique, minimally invasive cardiac surgery will improve clinical outcomes and expand the cohort of patients that can be treated. We used transapical aortic valve implantation as an example to demonstrate that minimally invasive cardiac surgery can be implemented with the integration of surgical techniques and engineering technologies. Feasibility studies and long-term evaluation results prove that transapical aortic valve implantation under MRI guidance is feasible and practical. We are investigating an MRI compatible robotic surgical system to further assist the surgeon to precisely deliver aortic valve prostheses via a transapical approach. Ex vivo experimentation results indicate that a robotic system can also be employed in in vivo models.

  5. Visualizing the Cardiac Cycle: A Useful Tool to Promote Student Understanding

    Directory of Open Access Journals (Sweden)

    Ivan Shun Ho

    2011-03-01

    Full Text Available The cardiac cycle is an important concept presented in human anatomy and physiology courses. At Kingsborough Community College, all Allied Health majors taking Anatomy & Physiology must understand the cardiac cycle to grasp more advanced concepts. Contemporary textbooks illustrate the cardiac cycle’s concurrent events via linear models with overlapping line segments as physiological readouts. This presentation is appropriate for reference but, in the interactive classroom the promotion of understanding through clear, concise visual cues is essential. Muzio and Pilchman created a diagram to summarize events of the cardiac cycle. After discussions with one of the authors, I modified the diagram to aid visualization of the cycle and emphasize it as a repetitive, continuous process. A flow diagram presenting the portions of the cycle individually and progressively was also constructed. Three labeled phases are made from the diagram, based on grouped events occurring at different points. The simple, compartmentalized, cyclical diagram presented here promotes understanding of the cardiac cycle visually.

  6. On the Evolution of the Cardiac Pacemaker

    Directory of Open Access Journals (Sweden)

    Silja Burkhard

    2017-04-01

    Full Text Available The rhythmic contraction of the heart is initiated and controlled by an intrinsic pacemaker system. Cardiac contractions commence at very early embryonic stages and coordination remains crucial for survival. The underlying molecular mechanisms of pacemaker cell development and function are still not fully understood. Heart form and function show high evolutionary conservation. Even in simple contractile cardiac tubes in primitive invertebrates, cardiac function is controlled by intrinsic, autonomous pacemaker cells. Understanding the evolutionary origin and development of cardiac pacemaker cells will help us outline the important pathways and factors involved. Key patterning factors, such as the homeodomain transcription factors Nkx2.5 and Shox2, and the LIM-homeodomain transcription factor Islet-1, components of the T-box (Tbx, and bone morphogenic protein (Bmp families are well conserved. Here we compare the dominant pacemaking systems in various organisms with respect to the underlying molecular regulation. Comparative analysis of the pathways involved in patterning the pacemaker domain in an evolutionary context might help us outline a common fundamental pacemaker cell gene programme. Special focus is given to pacemaker development in zebrafish, an extensively used model for vertebrate development. Finally, we conclude with a summary of highly conserved key factors in pacemaker cell development and function.

  7. On the Evolution of the Cardiac Pacemaker

    Science.gov (United States)

    Burkhard, Silja; van Eif, Vincent; Garric, Laurence; Christoffels, Vincent M.; Bakkers, Jeroen

    2017-01-01

    The rhythmic contraction of the heart is initiated and controlled by an intrinsic pacemaker system. Cardiac contractions commence at very early embryonic stages and coordination remains crucial for survival. The underlying molecular mechanisms of pacemaker cell development and function are still not fully understood. Heart form and function show high evolutionary conservation. Even in simple contractile cardiac tubes in primitive invertebrates, cardiac function is controlled by intrinsic, autonomous pacemaker cells. Understanding the evolutionary origin and development of cardiac pacemaker cells will help us outline the important pathways and factors involved. Key patterning factors, such as the homeodomain transcription factors Nkx2.5 and Shox2, and the LIM-homeodomain transcription factor Islet-1, components of the T-box (Tbx), and bone morphogenic protein (Bmp) families are well conserved. Here we compare the dominant pacemaking systems in various organisms with respect to the underlying molecular regulation. Comparative analysis of the pathways involved in patterning the pacemaker domain in an evolutionary context might help us outline a common fundamental pacemaker cell gene programme. Special focus is given to pacemaker development in zebrafish, an extensively used model for vertebrate development. Finally, we conclude with a summary of highly conserved key factors in pacemaker cell development and function. PMID:29367536

  8. Discrete event simulation model of sudden cardiac death predicts high impact of preventive interventions.

    Science.gov (United States)

    Andreev, Victor P; Head, Trajen; Johnson, Neil; Deo, Sapna K; Daunert, Sylvia; Goldschmidt-Clermont, Pascal J

    2013-01-01

    Sudden Cardiac Death (SCD) is responsible for at least 180,000 deaths a year and incurs an average cost of $286 billion annually in the United States alone. Herein, we present a novel discrete event simulation model of SCD, which quantifies the chains of events associated with the formation, growth, and rupture of atheroma plaques, and the subsequent formation of clots, thrombosis and on-set of arrhythmias within a population. The predictions generated by the model are in good agreement both with results obtained from pathological examinations on the frequencies of three major types of atheroma, and with epidemiological data on the prevalence and risk of SCD. These model predictions allow for identification of interventions and importantly for the optimal time of intervention leading to high potential impact on SCD risk reduction (up to 8-fold reduction in the number of SCDs in the population) as well as the increase in life expectancy.

  9. Functional suppression of Kcnq1 leads to early sodium channel remodelling and cardiac conduction system dysmorphogenesis

    Czech Academy of Sciences Publication Activity Database

    De la Rosa, A. J.; Domínguez, J. N.; Sedmera, D.; Šaňková, Barbora; Hove-Madsen, L.; Franco, D.; Aránega, A. E.

    2013-01-01

    Roč. 98, č. 3 (2013), s. 504-514 ISSN 0008-6363 R&D Projects: GA ČR(CZ) GA304/08/0615; GA ČR(CZ) GAP302/11/1308; GA ČR(CZ) GD204/09/H084; GA ČR(CZ) GA13-12412S Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : ion channels * Long-QT syndrome * sudden death * cardiac hypertrophy Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 5.808, year: 2013

  10. Improving cardiovascular care through outpatient cardiac rehabilitation: an analysis of payment models that would improve quality and promote use.

    Science.gov (United States)

    Mead, Holly; Grantham, Sarah; Siegel, Bruce

    2014-01-01

    Much attention has been paid to improving the care of patients with cardiovascular disease by focusing attention on delivery system redesign and payment reforms that encompass the healthcare spectrum, from an acute episode to maintenance of care. However, 1 area of cardiovascular disease care that has received little attention in the advancement of quality is cardiac rehabilitation (CR), a comprehensive secondary prevention program that is significantly underused despite evidence-based guidelines that recommending its use. The purpose of this article was to analyze the applicability of 2 payment and reimbursement models-pay-for-performance and bundled payments for episodes of care--that can promote the use of CR. We conclude that a payment model combining elements of both pay-for-performance and episodes of care would increase the use of CR, which would both improve quality and increase efficiency in cardiac care. Specific elements would need to be clearly defined, however, including: (a) how an episode is defined, (b) how to hold providers accountable for the care they provider, (c) how to encourage participation among CR providers, and (d) how to determine an equitable distribution of payment. Demonstrations testing new payment models must be implemented to generate empirical evidence that a melded pay-for-performance and episode-based care payment model will improve quality and efficiency.

  11. Transcription factor Tbx3 is required for the specification of the atrioventricular conduction system

    NARCIS (Netherlands)

    Bakker, Martijn L.; Boukens, Bastiaan J.; Mommersteeg, Mathilda T. M.; Brons, Janynke F.; Wakker, Vincent; Moorman, Antoon F. M.; Christoffels, Vincent M.

    2008-01-01

    The cardiac conduction system consists of distinctive heart muscle cells that initiate and propagate the electric impulse required for coordinated contraction. The conduction system expresses the transcriptional repressor Tbx3, which is required for vertebrate development and controls the formation

  12. Vidarabine, an Anti-Herpes Virus Agent, Protects Against the Development of Heart Failure With Relatively Mild Side-Effects on Cardiac Function in a Canine Model of Pacing-Induced Dilated Cardiomyopathy.

    Science.gov (United States)

    Nakamura, Takashi; Fujita, Takayuki; Kishimura, Megumi; Suita, Kenji; Hidaka, Yuko; Cai, Wenqian; Umemura, Masanari; Yokoyama, Utako; Uechi, Masami; Ishikawa, Yoshihiro

    2016-11-25

    In heart failure patients, chronic hyperactivation of sympathetic signaling is known to exacerbate cardiac dysfunction. In this study, the cardioprotective effect of vidarabine, an anti-herpes virus agent, which we identified as a cardiac adenylyl cyclase inhibitor, in dogs with pacing-induced dilated cardiomyopathy (DCM) was evaluated. In addition, the adverse effects of vidarabine on basal cardiac function was compared to those of the β-blocker, carvedilol.Methods and Results:Vidarabine and carvedilol attenuated the development of pacing-induced systolic dysfunction significantly and with equal effectiveness. Both agents also inhibited the development of cardiac apoptosis and fibrosis and reduced the Na + -Ca 2+ exchanger-1 protein level in the heart. Importantly, carvedilol significantly enlarged the left ventricle and atrium; vidarabine, in contrast, did not. Vidarabine-treated dogs maintained cardiac response to β-AR stimulation better than carvedilol-treated dogs did. Vidarabine may protect against pacing-induced DCM with less suppression of basal cardiac function than carvedilol in a dog model. (Circ J 2016; 80: 2496-2505).

  13. Athletic Cardiac Remodeling in US Professional Basketball Players.

    Science.gov (United States)

    Engel, David J; Schwartz, Allan; Homma, Shunichi

    2016-04-01

    The incidence of sudden cardiac death is higher in US basketball players compared with other athlete groups. However, the recognition of the risk for sudden cardiac death among basketball players is challenging because little is known regarding athletic cardiac remodeling in these athletes or athletes of similarly increased size. To perform a comprehensive cardiac structural analysis of National Basketball Association (NBA) professional athletes. Echocardiographic observational study of NBA players on the active rosters for the 2013-2014 and 2014-2015 seasons was performed from December 16, 2013, to December 12, 2014. The policy of the NBA mandates annual preseason stress echocardiograms for each player. The NBA has sanctioned Columbia University Medical Center to conduct annual health and safety reviews of these echocardiograms. Data were analyzed from January to May 2015. Cardiac variables assessed included left ventricular (LV) size, mass, wall thickness, and hypertrophy patterns and function; left atrial volume; and aortic root diameter. All dimensions were biometrically scaled. Of the 526 athletes included in the study, 406 (77.2%) were African American and 107 (20.3%) were white, with a mean (SD) age of 25.7 (4.3) years. Mean (SD) athlete height was 200.2 (8.8) cm; mean body surface area, 2.38 (0.19) m2. Left ventricular size and mass in NBA athletes were proportional to body size, extending to the uppermost biometrics of the cohort. Left ventricular hypertrophy was present in 144 athletes (27.4%). African American athletes had increased LV wall thickness (unadjusted mean, 11.2 mm; 95% CI, 11.1-11.3 mm) and LV mass (unadjusted mean, 106.3 g/m2; 95% CI, 104.6-108.0 g/m2) compared with LV wall thickness (unadjusted mean, 10.5 mm; 95% CI, 10.3-10.7 mm; P basketball players and the athletic community at large.

  14. Thermal conductivity of group-IV semiconductors from a kinetic-collective model.

    Science.gov (United States)

    de Tomas, C; Cantarero, A; Lopeandia, A F; Alvarez, F X

    2014-09-08

    The thermal conductivity of group-IV semiconductors (silicon, germanium, diamond and grey tin) with several isotopic compositions has been calculated from a kinetic-collective model. From this approach, significantly different to Callaway-like models in its physical interpretation, the thermal conductivity expression accounts for a transition from a kinetic (individual phonon transport) to a collective (hydrodynamic phonon transport) behaviour of the phonon field. Within the model, we confirm the theoretical proportionality between the phonon-phonon relaxation times of the group-IV semiconductors. This proportionality depends on some materials properties and it allows us to predict the thermal conductivity of the whole group of materials without the need to fit each material individually. The predictions on thermal conductivities are in good agreement with experimental data over a wide temperature range.

  15. Thermal conductivity of group-IV semiconductors from a kinetic-collective model

    Science.gov (United States)

    de Tomas, C.; Cantarero, A.; Lopeandia, A. F.; Alvarez, F. X.

    2014-01-01

    The thermal conductivity of group-IV semiconductors (silicon, germanium, diamond and grey tin) with several isotopic compositions has been calculated from a kinetic-collective model. From this approach, significantly different to Callaway-like models in its physical interpretation, the thermal conductivity expression accounts for a transition from a kinetic (individual phonon transport) to a collective (hydrodynamic phonon transport) behaviour of the phonon field. Within the model, we confirm the theoretical proportionality between the phonon–phonon relaxation times of the group-IV semiconductors. This proportionality depends on some materials properties and it allows us to predict the thermal conductivity of the whole group of materials without the need to fit each material individually. The predictions on thermal conductivities are in good agreement with experimental data over a wide temperature range. PMID:25197256

  16. Cardiac carcinoid: tricuspid delayed hyperenhancement on cardiac 64-slice multidetector CT and magnetic resonance imaging.

    LENUS (Irish Health Repository)

    Martos, R

    2012-02-01

    INTRODUCTION: Carcinoid heart disease is a rare condition in adults. Its diagnosis can be easily missed in a patient presenting to a primary care setting. We revised the advantages of using coronary multidetector computed tomography (MDCT) and cardiac magnetic resonance imaging (MRI) in diagnosing this condition. MATERIALS AND METHODS: We studied a 65-year-old patient with carcinoid heart disease and right heart failure using transthoracic Doppler-echocardiogram, cardiac MDCT and MRI. Cardiac echocardiogram revealed marked thickening and retraction of the tricuspid leaflets with dilated right atrium and ventricle. Cardiac MDCT and MRI demonstrated fixation and retraction of the tricuspid leaflets with delayed contrast hyperenhancement of the tricuspid annulus. CONCLUSION: This case demonstrates fascinating imaging findings of cardiac carcinoid disease and highlights the increasing utility of contrast-enhanced MRI and cardiac MDCT in the diagnosis of this interesting condition.

  17. UCP3 Ablation Exacerbates High-Salt Induced Cardiac Hypertrophy and Cardiac Dysfunction

    Directory of Open Access Journals (Sweden)

    Hongmei Lang

    2018-04-01

    Full Text Available Background/Aims: Excessive salt intake and left ventricular hypertrophy (LVH are both critical for the development of hypertension and heart failure. The uncoupling protein 3 (UCP3 plays a cardio-protective role in early heart failure development. However, the potential role for UCP3 in salt intake and LVH is unclear. Methods: UCP3-/- and C57BL/6 mice were placed on either a normal-salt (NS, 0.5% or a high-salt (HS, 8% diet for 24 weeks. The cardiac function, endurance capacity, energy expenditure, and mitochondrial functional capacity were measured in each group. Results: Elevated blood pressure was only observed in HS-fed UCP3-/- mice. High salt induced cardiac hypertrophy and dysfunction were observed in both C57BL/6 and UCP3-/- mice. However, the cardiac lesions were more profound in HS-fed UCP3-/- mice. Furthermore, HS-fed UCP3-/-mice experienced more severe mitochondrial respiratory dysfunction compared with HS-fed C57BL/6 mice, represented by the decreased volume of oxygen consumption and heat production at the whole-body level. Conclusion: UCP3 protein was involved in the incidence of high-salt induced hypertension and the progression of cardiac dysfunction in the early stages of heart failure. UCP3 ablation exacerbated high-salt-induced cardiac hypertrophy and cardiac dysfunction.

  18. Cardiac vagal control and theoretical models of co-occurring depression and anxiety: A cross-sectional psychophysiological study of community elderly

    Directory of Open Access Journals (Sweden)

    Chen Hsi-Chung

    2012-07-01

    Full Text Available Abstract Background In order to elucidate the complex relationship between co-occurring depression and anxiety with cardiac autonomic function in the elderly, this study examined the correlation between cardiac vagal control (CVC and pre-defined, theoretical factors from the Hospital Anxiety and Depression Scale (HADS. Methods Three hundred fifty-four randomly selected Chinese male subjects aged ≥65 years and living in the community were enrolled. CVC was measured using a frequency-domain index of heart rate variability. Results Confirmatory factor analysis showed that the flat tripartite model of HADS provided a modest advantage in model fit when compared with other theoretical factor solutions. In the flat tripartite model, there was a significant negative association between anhedonic depression and CVC. In contrast, autonomic anxiety showed a significant positive correlation with CVC. In the hierarchical tripartite model, negative affectivity was not directly associated with CVC; instead, it had positive and negative indirect effects on CVC via autonomic anxiety and anhedonic depression, respectively. As scores for negative affectivity increased, these specific indirect effects diminished. Conclusions Among competing models of co-occurring depression and anxiety, constructs from tripartite models demonstrate fair conformity with the data but unique and distinct correlations with CVC. Negative affectivity may determine the relationship of anhedonic depression and autonomic anxiety with CVC. Separating affective symptoms under the constructs of the tripartite models helps disentangle complex associations between co-occurring depression and anxiety with CVC.

  19. Cardiac retransplantation is an efficacious therapy for primary cardiac allograft failure

    Directory of Open Access Journals (Sweden)

    Acker Michael A

    2008-05-01

    Full Text Available Abstract Background Although orthotopic heart transplantation has been an effective treatment for end-stage heart failure, the incidence of allograft failure has increased, necessitating treatment options. Cardiac retransplantation remains the only viable long-term solution for end-stage cardiac allograft failure. Given the limited number of available donor hearts, the long term results of this treatment option need to be evaluated. Methods 709 heart transplants were performed over a 20 year period at our institution. Repeat cardiac transplantation was performed in 15 patients (2.1%. A retrospective analysis was performed to determine the efficacy of cardiac retransplantation. Variables investigated included: 1 yr and 5 yr survival, length of hospitalization, post-operative complications, allograft failure, recipient and donor demographics, renal function, allograft ischemic time, UNOS listing status, blood group, allograft rejection, and hemodynamic function. Results Etiology of primary graft failure included transplant arteriopathy (n = 10, acute rejection (n = 3, hyperacute rejection (n = 1, and a post-transplant diagnosis of metastatic melanoma in the donor (n = 1. Mean age at retransplantation was 45.5 ± 9.7 years. 1 and 5 year survival for retransplantation were 86.6% and 71.4% respectively, as compared to 90.9% and 79.1% for primary transplantation. Mean ejection fraction was 67.3 ± 12.2% at a mean follow-up of 32.6 ± 18.5 mos post-retransplant; follow-up biopsy demonstrated either ISHLT grade 1A or 0 rejection (77.5 ± 95.7 mos post-transplant. Conclusion Cardiac retransplantation is an efficacious treatment strategy for cardiac allograft failure.

  20. East meets West: the influence of racial, ethnic and cultural risk factors on cardiac surgical risk model performance.

    Science.gov (United States)

    Soo-Hoo, Sarah; Nemeth, Samantha; Baser, Onur; Argenziano, Michael; Kurlansky, Paul

    2018-01-01

    To explore the impact of racial and ethnic diversity on the performance of cardiac surgical risk models, the Chinese SinoSCORE was compared with the Society of Thoracic Surgeons (STS) risk model in a diverse American population. The SinoSCORE risk model was applied to 13 969 consecutive coronary artery bypass surgery patients from twelve American institutions. SinoSCORE risk factors were entered into a logistic regression to create a 'derived' SinoSCORE whose performance was compared with that of the STS risk model. Observed mortality was 1.51% (66% of that predicted by STS model). The SinoSCORE 'low-risk' group had a mortality of 0.15%±0.04%, while the medium-risk and high-risk groups had mortalities of 0.35%±0.06% and 2.13%±0.14%, respectively. The derived SinoSCORE model had a relatively good discrimination (area under of the curve (AUC)=0.785) compared with that of the STS risk score (AUC=0.811; P=0.18 comparing the two). However, specific factors that were significant in the original SinoSCORE but that lacked significance in our derived model included body mass index, preoperative atrial fibrillation and chronic obstructive pulmonary disease. SinoSCORE demonstrated limited discrimination when applied to an American population. The derived SinoSCORE had a discrimination comparable with that of the STS, suggesting underlying similarities of physiological substrate undergoing surgery. However, differential influence of various risk factors suggests that there may be varying degrees of importance and interactions between risk factors. Clinicians should exercise caution when applying risk models across varying populations due to potential differences that racial, ethnic and geographic factors may play in cardiac disease and surgical outcomes.

  1. Macrophage populations and cardiac sympathetic denervation during L-NAME-induced hypertension in rats

    DEFF Research Database (Denmark)

    Neves, S R S; Machado, C R S; Pinto, A M T

    2006-01-01

    The rat model of hypertension induced by prolonged treatment with Nomega-nitro-L-arginine methyl ester (L-NAME) has been extensively used. However, the effects on cardiac autonomic innervation are unknown. Here, the cardiac sympathetic innervation is analyzed in parallel with myocardial lesions a...

  2. Schwinger effect and negative differential conductivity in holographic models

    Directory of Open Access Journals (Sweden)

    Shankhadeep Chakrabortty

    2015-01-01

    Full Text Available The consequences of the Schwinger effect for conductivity are computed for strong coupling systems using holography. The one-loop diagram on the flavor brane introduces an O(λNc imaginary part in the effective action for a Maxwell flavor gauge field. This in turn introduces a real conductivity in an otherwise insulating phase of the boundary theory. Moreover, in certain regions of parameter space the differential conductivity is negative. This is computed in the context of the Sakai–Sugimoto model.

  3. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  4. De Novo Human Cardiac Myocytes for Medical Research: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Veronique Hamel

    2017-01-01

    Full Text Available The advent of cellular reprogramming technology has revolutionized biomedical research. De novo human cardiac myocytes can now be obtained from direct reprogramming of somatic cells (such as fibroblasts, from induced pluripotent stem cells (iPSCs, which are reprogrammed from somatic cells, and from human embryonic stem cells (hESCs. Such de novo human cardiac myocytes hold great promise for in vitro disease modeling and drug screening and in vivo cell therapy of heart disease. Here, we review the technique advancements for generating de novo human cardiac myocytes. We also discuss several challenges for the use of such cells in research and regenerative medicine, such as the immature phenotype and heterogeneity of de novo cardiac myocytes obtained with existing protocols. We focus on the recent advancements in addressing such challenges.

  5. Temporal variation of out-of-hospital cardiac arrests in an equatorial climate.

    Science.gov (United States)

    Ong, Marcus Eh; Ng, Faith Sp; Yap, Susan; Yong, Kok Leong; Peberdy, Mary A; Ornato, Joseph P

    2010-01-01

    We aimed to determine whether there is a seasonal variation of out-of-hospital cardiac arrests (OHCA) in an equatorial climate, which does not experience seasonal environmental change. We conducted an observational prospective study looking at the occurrence of OHCA in Singapore. Included were all patients with OHCA presented to Emergency Departments across the country. We examined the monthly, daily, and hourly number of cases over a three-year period. Data was analyzed using analysis of variance (ANOVA). From October, 1st 2001 to October, 14th 2004, 2428 patients were enrolled in the study. Mean age for cardiac arrests was 60.6 years with 68.0% male. Ethnic distribution was 69.5% Chinese, 15.0% Malay, 11.0% Indian, and 4.4% Others. There was no significant seasonal variation (spring/summer/fall/winter) of events (ANOVA P = 0.71), monthly variation (P = 0.88) or yearly variation (P = 0.26). We did find weekly peaks on Mondays and a circadian pattern with daily peaks from 9-10 am. We did not find any discernable seasonal pattern of cardiac arrests. This contrasts with findings from temperate countries and suggests a climatic influence on cardiac arrest occurrence. We also found that sudden cardiac arrests follow a circadian pattern.

  6. Endothelial dysfunction after non-cardiac surgery

    DEFF Research Database (Denmark)

    Søndergaard, E S; Fonnes, S; Gögenur, I

    2015-01-01

    was to systematically review the literature to evaluate the association between non-cardiac surgery and non-invasive markers of endothelial function. METHODS: A systematic search was conducted in MEDLINE, EMBASE and Cochrane Library Database according to the PRISMA guidelines. Endothelial dysfunction was described only...... transplantation and vascular surgery respectively) had an improvement in endothelial dysfunction 1 month after surgery. CONCLUSION: Endothelial function changes in relation to surgery. Assessment of endothelial function by non-invasive measures has the potential to guide clinicians in the prevention or treatment...

  7. Intramyocardial strain estimation from cardiac cine MRI.

    Science.gov (United States)

    Elnakib, Ahmed; Beache, Garth M; Gimel'farb, Georgy; El-Baz, Ayman

    2015-08-01

    Functional strain is one of the important clinical indicators for the quantification of heart performance and the early detection of cardiovascular diseases, and functional strain parameters are used to aid therapeutic decisions and follow-up evaluations after cardiac surgery. A comprehensive framework for deriving functional strain parameters at the endocardium, epicardium, and mid-wall of the left ventricle (LV) from conventional cine MRI data was developed and tested. Cine data were collected using short TR-/TE-balanced steady-state free precession acquisitions on a 1.5T Siemens Espree scanner. The LV wall borders are segmented using a level set-based deformable model guided by a stochastic force derived from a second-order Markov-Gibbs random field model that accounts for the object shape and appearance features. Then, the mid-wall of the segmented LV is determined based on estimating the centerline between the endocardium and epicardium of the LV. Finally, a geometrical Laplace-based method is proposed to track corresponding points on successive myocardial contours throughout the cardiac cycle in order to characterize the strain evolutions. The method was tested using simulated phantom images with predefined point locations of the LV wall throughout the cardiac cycle. The method was tested on 30 in vivo datasets to evaluate the feasibility of the proposed framework to index functional strain parameters. The cine MRI-based model agreed with the ground truth for functional metrics to within 0.30 % for indexing the peak systolic strain change and 0.29 % (per unit time) for indexing systolic and diastolic strain rates. The method was feasible for in vivo extraction of functional strain parameters. Strain indexes of the endocardium, mid-wall, and epicardium can be derived from routine cine images using automated techniques, thereby improving the utility of cine MRI data for characterization of myocardial function. Unlike traditional texture-based tracking, the

  8. Nuclear cardiac

    International Nuclear Information System (INIS)

    Slutsky, R.; Ashburn, W.L.

    1982-01-01

    The relationship between nuclear medicine and cardiology has continued to produce a surfeit of interesting, illuminating, and important reports involving the analysis of cardiac function, perfusion, and metabolism. To simplify the presentation, this review is broken down into three major subheadings: analysis of myocardial perfusion; imaging of the recent myocardial infarction; and the evaluation of myocardial function. There appears to be an increasingly important relationship between cardiology, particularly cardiac physiology, and nuclear imaging techniques

  9. Levosimendan for Hemodynamic Support after Cardiac Surgery.

    Science.gov (United States)

    Landoni, Giovanni; Lomivorotov, Vladimir V; Alvaro, Gabriele; Lobreglio, Rosetta; Pisano, Antonio; Guarracino, Fabio; Calabrò, Maria G; Grigoryev, Evgeny V; Likhvantsev, Valery V; Salgado-Filho, Marcello F; Bianchi, Alessandro; Pasyuga, Vadim V; Baiocchi, Massimo; Pappalardo, Federico; Monaco, Fabrizio; Boboshko, Vladimir A; Abubakirov, Marat N; Amantea, Bruno; Lembo, Rosalba; Brazzi, Luca; Verniero, Luigi; Bertini, Pietro; Scandroglio, Anna M; Bove, Tiziana; Belletti, Alessandro; Michienzi, Maria G; Shukevich, Dmitriy L; Zabelina, Tatiana S; Bellomo, Rinaldo; Zangrillo, Alberto

    2017-05-25

    Acute left ventricular dysfunction is a major complication of cardiac surgery and is associated with increased mortality. Meta-analyses of small trials suggest that levosimendan may result in a higher rate of survival among patients undergoing cardiac surgery. We conducted a multicenter, randomized, double-blind, placebo-controlled trial involving patients in whom perioperative hemodynamic support was indicated after cardiac surgery, according to prespecified criteria. Patients were randomly assigned to receive levosimendan (in a continuous infusion at a dose of 0.025 to 0.2 μg per kilogram of body weight per minute) or placebo, for up to 48 hours or until discharge from the intensive care unit (ICU), in addition to standard care. The primary outcome was 30-day mortality. The trial was stopped for futility after 506 patients were enrolled. A total of 248 patients were assigned to receive levosimendan and 258 to receive placebo. There was no significant difference in 30-day mortality between the levosimendan group and the placebo group (32 patients [12.9%] and 33 patients [12.8%], respectively; absolute risk difference, 0.1 percentage points; 95% confidence interval [CI], -5.7 to 5.9; P=0.97). There were no significant differences between the levosimendan group and the placebo group in the durations of mechanical ventilation (median, 19 hours and 21 hours, respectively; median difference, -2 hours; 95% CI, -5 to 1; P=0.48), ICU stay (median, 72 hours and 84 hours, respectively; median difference, -12 hours; 95% CI, -21 to 2; P=0.09), and hospital stay (median, 14 days and 14 days, respectively; median difference, 0 days; 95% CI, -1 to 2; P=0.39). There was no significant difference between the levosimendan group and the placebo group in rates of hypotension or cardiac arrhythmias. In patients who required perioperative hemodynamic support after cardiac surgery, low-dose levosimendan in addition to standard care did not result in lower 30-day mortality than placebo

  10. Discovery and progress of direct cardiac reprogramming.

    Science.gov (United States)

    Kojima, Hidenori; Ieda, Masaki

    2017-06-01

    Cardiac disease remains a major cause of death worldwide. Direct cardiac reprogramming has emerged as a promising approach for cardiac regenerative therapy. After the discovery of MyoD, a master regulator for skeletal muscle, other single cardiac reprogramming factors (master regulators) have been sought. Discovery of cardiac reprogramming factors was inspired by the finding that multiple, but not single, transcription factors were needed to generate induced pluripotent stem cells (iPSCs) from fibroblasts. We first reported a combination of cardiac-specific transcription factors, Gata4, Mef2c, and Tbx5 (GMT), that could convert mouse fibroblasts into cardiomyocyte-like cells, which were designated as induced cardiomyocyte-like cells (iCMs). Following our first report of cardiac reprogramming, many researchers, including ourselves, demonstrated an improvement in cardiac reprogramming efficiency, in vivo direct cardiac reprogramming for heart regeneration, and cardiac reprogramming in human cells. However, cardiac reprogramming in human cells and adult fibroblasts remains inefficient, and further efforts are needed. We believe that future research elucidating epigenetic barriers and molecular mechanisms of direct cardiac reprogramming will improve the reprogramming efficiency, and that this new technology has great potential for clinical applications.

  11. Measuring cardiac efficiency using PET/MRI

    International Nuclear Information System (INIS)

    Gullberg, Grand; Aparici, Carina Mari; Brooks, Gabriel; Liu, Jing; Guccione, Julius; Saloner, David; Seo, Adam Youngho; Ordovas, Karen Gomes

    2015-01-01

    Heart failure (HF) is a complex syndrome that is projected by the American Heart Association to cost $160 billion by 2030. In HF, significant metabolic changes and structural remodeling lead to reduced cardiac efficiency. A normal heart is approximately 20-25% efficient measured by the ratio of work to oxygen utilization (1 ml oxygen = 21 joules). The heart requires rapid production of ATP where there is complete turnover of ATP every 10 seconds with 90% of ATP produced by mitochondrial oxidative metabolism requiring substrates of approximately 30% glucose and 65% fatty acids. In our preclinical PET/MRI studies in normal rats, we showed a negative correlation between work and the influx rate constant for 18FDG, confirming that glucose is not the preferred substrate at rest. However, even though fatty acid provides 9 kcal/gram compared to 4 kcal/gram for glucose, in HF the preferred energy source is glucose. PET/MRI offers the potential to study this maladapted mechanism of metabolism by measuring work in a region of myocardial tissue simultaneously with the measure of oxygen utilization, glucose, and fatty acid metabolism and to study cardiac efficiency in the etiology of and therapies for HF. MRI is used to measure strain and a finite element mechanical model using pressure measurements is used to estimate myofiber stress. The integral of strain times stress provides a measure of work which divided by energy utilization, estimated by the production of 11CO2 from intravenous injection of 11C-acetate, provides a measure of cardiac efficiency. Our project involves translating our preclinical research to the clinical application of measuring cardiac efficiency in patients. Using PET/MRI to develop technologies for studying myocardial efficiency in patients, provides an opportunity to relate cardiac work of specific tissue regions to metabolic substrates, and measure the heterogeneity of LV efficiency.

  12. Measuring cardiac efficiency using PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Gullberg, Grand [Lawrence Berkeley National Laboratory (United States); Aparici, Carina Mari; Brooks, Gabriel [University of California San Francisco (United States); Liu, Jing; Guccione, Julius; Saloner, David; Seo, Adam Youngho; Ordovas, Karen Gomes [Lawrence Berkeley National Laboratory (United States)

    2015-05-18

    Heart failure (HF) is a complex syndrome that is projected by the American Heart Association to cost $160 billion by 2030. In HF, significant metabolic changes and structural remodeling lead to reduced cardiac efficiency. A normal heart is approximately 20-25% efficient measured by the ratio of work to oxygen utilization (1 ml oxygen = 21 joules). The heart requires rapid production of ATP where there is complete turnover of ATP every 10 seconds with 90% of ATP produced by mitochondrial oxidative metabolism requiring substrates of approximately 30% glucose and 65% fatty acids. In our preclinical PET/MRI studies in normal rats, we showed a negative correlation between work and the influx rate constant for 18FDG, confirming that glucose is not the preferred substrate at rest. However, even though fatty acid provides 9 kcal/gram compared to 4 kcal/gram for glucose, in HF the preferred energy source is glucose. PET/MRI offers the potential to study this maladapted mechanism of metabolism by measuring work in a region of myocardial tissue simultaneously with the measure of oxygen utilization, glucose, and fatty acid metabolism and to study cardiac efficiency in the etiology of and therapies for HF. MRI is used to measure strain and a finite element mechanical model using pressure measurements is used to estimate myofiber stress. The integral of strain times stress provides a measure of work which divided by energy utilization, estimated by the production of 11CO2 from intravenous injection of 11C-acetate, provides a measure of cardiac efficiency. Our project involves translating our preclinical research to the clinical application of measuring cardiac efficiency in patients. Using PET/MRI to develop technologies for studying myocardial efficiency in patients, provides an opportunity to relate cardiac work of specific tissue regions to metabolic substrates, and measure the heterogeneity of LV efficiency.

  13. Exercise-based cardiac rehabilitation for adults after heart valve surgery

    DEFF Research Database (Denmark)

    Sibilitz, Kirstine Lærum; Berg, Selina Kikkenborg; Tang, Lars Hermann

    2016-01-01

    BACKGROUND: Exercise-based cardiac rehabilitation may benefit heart valve surgery patients. We conducted a systematic review to assess the evidence for the use of exercise-based intervention programmes following heart valve surgery. OBJECTIVES: To assess the benefits and harms of exercise......-based cardiac rehabilitation compared with no exercise training intervention, or treatment as usual, in adults following heart valve surgery. We considered programmes including exercise training with or without another intervention (such as a psycho-educational component). SEARCH METHODS: We searched...... handsearched Web of Science, bibliographies of systematic reviews and trial registers (ClinicalTrials.gov, Controlled-trials.com, and The World Health Organization International Clinical Trials Registry Platform). SELECTION CRITERIA: We included randomised clinical trials that investigated exercise...

  14. Human Cardiac 31P-MR Spectroscopy at 3 Tesla Cannot Detect Failing Myocardial Energy Homeostasis during Exercise

    Directory of Open Access Journals (Sweden)

    Adrianus J. Bakermans

    2017-11-01

    Full Text Available Phosphorus-31 magnetic resonance spectroscopy (31P-MRS is a unique non-invasive imaging modality for probing in vivo high-energy phosphate metabolism in the human heart. We investigated whether current 31P-MRS methodology would allow for clinical applications to detect exercise-induced changes in (patho-physiological myocardial energy metabolism. Hereto, measurement variability and repeatability of three commonly used localized 31P-MRS methods [3D image-selected in vivo spectroscopy (ISIS and 1D ISIS with 1D chemical shift imaging (CSI oriented either perpendicular or parallel to the surface coil] to quantify the myocardial phosphocreatine (PCr to adenosine triphosphate (ATP ratio in healthy humans (n = 8 at rest were determined on a clinical 3 Tesla MR system. Numerical simulations of myocardial energy homeostasis in response to increased cardiac work rates were performed using a biophysical model of myocardial oxidative metabolism. Hypertrophic cardiomyopathy was modeled by either inefficient sarcomere ATP utilization or decreased mitochondrial ATP synthesis. The effect of creatine depletion on myocardial energy homeostasis was explored for both conditions. The mean in vivo myocardial PCr/ATP ratio measured with 3D ISIS was 1.57 ± 0.17 with a large repeatability coefficient of 40.4%. For 1D CSI in a 1D ISIS-selected slice perpendicular to the surface coil, the PCr/ATP ratio was 2.78 ± 0.50 (repeatability 42.5%. With 1D CSI in a 1D ISIS-selected slice parallel to the surface coil, the PCr/ATP ratio was 1.70 ± 0.56 (repeatability 43.7%. The model predicted a PCr/ATP ratio reduction of only 10% at the maximal cardiac work rate in normal myocardium. Hypertrophic cardiomyopathy led to lower PCr/ATP ratios for high cardiac work rates, which was exacerbated by creatine depletion. Simulations illustrated that when conducting cardiac 31P-MRS exercise stress testing with large measurement error margins, results obtained under pathophysiologic

  15. Human Cardiac 31P-MR Spectroscopy at 3 Tesla Cannot Detect Failing Myocardial Energy Homeostasis during Exercise

    Science.gov (United States)

    Bakermans, Adrianus J.; Bazil, Jason N.; Nederveen, Aart J.; Strijkers, Gustav J.; Boekholdt, S. Matthijs; Beard, Daniel A.; Jeneson, Jeroen A. L.

    2017-01-01

    Phosphorus-31 magnetic resonance spectroscopy (31P-MRS) is a unique non-invasive imaging modality for probing in vivo high-energy phosphate metabolism in the human heart. We investigated whether current 31P-MRS methodology would allow for clinical applications to detect exercise-induced changes in (patho-)physiological myocardial energy metabolism. Hereto, measurement variability and repeatability of three commonly used localized 31P-MRS methods [3D image-selected in vivo spectroscopy (ISIS) and 1D ISIS with 1D chemical shift imaging (CSI) oriented either perpendicular or parallel to the surface coil] to quantify the myocardial phosphocreatine (PCr) to adenosine triphosphate (ATP) ratio in healthy humans (n = 8) at rest were determined on a clinical 3 Tesla MR system. Numerical simulations of myocardial energy homeostasis in response to increased cardiac work rates were performed using a biophysical model of myocardial oxidative metabolism. Hypertrophic cardiomyopathy was modeled by either inefficient sarcomere ATP utilization or decreased mitochondrial ATP synthesis. The effect of creatine depletion on myocardial energy homeostasis was explored for both conditions. The mean in vivo myocardial PCr/ATP ratio measured with 3D ISIS was 1.57 ± 0.17 with a large repeatability coefficient of 40.4%. For 1D CSI in a 1D ISIS-selected slice perpendicular to the surface coil, the PCr/ATP ratio was 2.78 ± 0.50 (repeatability 42.5%). With 1D CSI in a 1D ISIS-selected slice parallel to the surface coil, the PCr/ATP ratio was 1.70 ± 0.56 (repeatability 43.7%). The model predicted a PCr/ATP ratio reduction of only 10% at the maximal cardiac work rate in normal myocardium. Hypertrophic cardiomyopathy led to lower PCr/ATP ratios for high cardiac work rates, which was exacerbated by creatine depletion. Simulations illustrated that when conducting cardiac 31P-MRS exercise stress testing with large measurement error margins, results obtained under pathophysiologic conditions may

  16. Optimal Technique in Cardiac Anesthesia Recovery

    OpenAIRE

    Svircevic, V.

    2014-01-01

    The aim of this thesis is to evaluate fast-track cardiac anesthesia techniques and investigate their impact on postoperative mortality, morbidity and quality of life. The following topics will be discussed in the thesis. (1.) Is fast track cardiac anesthesia a safe technique for cardiac surgery? (2.) Does thoracic epidural anesthesia have an effect on mortality and morbidity after cardiac surgery? (3.) Does thoracic epidural anesthesia have an effect on quality of life after cardiac surgery? ...

  17. Pioglitazone reverses down-regulation of cardiac PPARγ expression in Zucker diabetic fatty rats

    International Nuclear Information System (INIS)

    Pelzer, Theo; Jazbutyte, Virginija; Arias-Loza, Paula Anahi; Segerer, Stephan; Lichtenwald, Margit; Law, Marilyn P.; Schaefers, Michael; Ertl, Georg; Neyses, Ludwig

    2005-01-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) plays a critical role in peripheral glucose homeostasis and energy metabolism, and inhibits cardiac hypertrophy in non-diabetic animal models. The functional role of PPARγ in the diabetic heart, however, is not fully understood. Therefore, we analyzed cardiac gene expression, metabolic control, and cardiac glucose uptake in male Zucker diabetic fatty rats (ZDF fa/fa) and lean ZDF rats (+/+) treated with the high affinity PPARγ agonist pioglitazone or placebo from 12 to 24 weeks of age. Hyperglycemia, hyperinsulinemia, and hypertriglyceridemia as well as lower cardiac PPARγ, glucose transporter-4 and α-myosin heavy chain expression levels were detected in diabetic ZDF rats compared to lean animals. Pioglitazone increased body weight and improved metabolic control, cardiac PPARγ, glut-4, and α-MHC expression levels in diabetic ZDF rats. Cardiac [ 18 F]fluorodeoxyglucose uptake was not detectable by micro-PET studies in untreated and pioglitazone treated ZDF fa/fa rats but was observed after administration of insulin to pioglitazone treated ZDF fa/fa rats. PPARγ agonists favorably affect cardiac gene expression in type-2 diabetic rats via activation and up-regulation of cardiac PPARγ expression whereas improvement of impaired cardiac glucose uptake in advanced type-2 diabetes requires co-administration of insulin

  18. Herbal Supplement Ameliorates Cardiac Hypertrophy in Rats with CCl4-Induced Liver Cirrhosis

    Directory of Open Access Journals (Sweden)

    Ping-Chun Li

    2012-01-01

    Full Text Available We used the carbon tetrachloride (CCl4 induced liver cirrhosis model to test the molecular mechanism of action involved in cirrhosis-associated cardiac hypertrophy and the effectiveness of Ocimum gratissimum extract (OGE and silymarin against cardiac hypertrophy. We treated male wistar rats with CCl4 and either OGE (0.02 g/kg B.W. or 0.04 g/kg B.W. or silymarin (0.2 g/kg B.W.. Cardiac eccentric hypertrophy was induced by CCl4 along with cirrhosis and increased expression of cardiac hypertrophy related genes NFAT, TAGA4, and NBP, and the interleukin-6 (IL-6 signaling pathway related genes MEK5, ERK5, JAK, and STAT3. OGE or silymarin co-treatment attenuated CCl4-induced cardiac abnormalities, and lowered expression of genes which were elevated by this hepatotoxin. Our results suggest that the IL-6 signaling pathway may be related to CCl4-induced cardiac hypertrophy. OGE and silymarin were able to lower liver fibrosis, which reduces the chance of cardiac hypertrophy perhaps by lowering the expressions of IL-6 signaling pathway related genes. We conclude that treatment of cirrhosis using herbal supplements is a viable option for protecting cardiac tissues against cirrhosis-related cardiac hypertrophy.

  19. Fetal Cardiac Doppler Signal Processing Techniques: Challenges and Future Research Directions

    Directory of Open Access Journals (Sweden)

    Saeed Abdulrahman Alnuaimi

    2017-12-01

    Full Text Available The fetal Doppler Ultrasound (DUS is commonly used for monitoring fetal heart rate and can also be used for identifying the event timings of fetal cardiac valve motions. In early-stage fetuses, the detected Doppler signal suffers from noise and signal loss due to the fetal movements and changing fetal location during the measurement procedure. The fetal cardiac intervals, which can be estimated by measuring the fetal cardiac event timings, are the most important markers of fetal development and well-being. To advance DUS-based fetal monitoring methods, several powerful and well-advanced signal processing and machine learning methods have recently been developed. This review provides an overview of the existing techniques used in fetal cardiac activity monitoring and a comprehensive survey on fetal cardiac Doppler signal processing frameworks. The review is structured with a focus on their shortcomings and advantages, which helps in understanding fetal Doppler cardiogram signal processing methods and the related Doppler signal analysis procedures by providing valuable clinical information. Finally, a set of recommendations are suggested for future research directions and the use of fetal cardiac Doppler signal analysis, processing, and modeling to address the underlying challenges.

  20. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy.

    Science.gov (United States)

    Galán, María; Varona, Saray; Guadall, Anna; Orriols, Mar; Navas, Miquel; Aguiló, Silvia; de Diego, Alicia; Navarro, María A; García-Dorado, David; Rodríguez-Sinovas, Antonio; Martínez-González, José; Rodriguez, Cristina

    2017-09-01

    Lysyl oxidase (LOX) controls matrix remodeling, a key process that underlies cardiovascular diseases and heart failure; however, a lack of suitable animal models has limited our knowledge with regard to the contribution of LOX to cardiac dysfunction. Here, we assessed the impact of LOX overexpression on ventricular function and cardiac hypertrophy in a transgenic LOX (TgLOX) mouse model with a strong cardiac expression of human LOX. TgLOX mice exhibited high expression of the transgene in cardiomyocytes and cardiofibroblasts, which are associated with enhanced LOX activity and H 2 O 2 production and with cardiofibroblast reprogramming. LOX overexpression promoted an age-associated concentric remodeling of the left ventricle and impaired diastolic function. Furthermore, LOX transgenesis aggravated angiotensin II (Ang II)-induced cardiac hypertrophy and dysfunction, which triggered a greater fibrotic response that was characterized by stronger collagen deposition and cross-linking and high expression of fibrotic markers. In addition, LOX transgenesis increased the Ang II-induced myocardial inflammatory infiltrate, exacerbated expression of proinflammatory markers, and decreased that of cardioprotective factors. Mechanistically, LOX overexpression enhanced oxidative stress and potentiated the Ang II-mediated cardiac activation of p38 MAPK while reducing AMPK activation. Our findings suggest that LOX induces an age-dependent disturbance of diastolic function and aggravates Ang II-induced hypertrophy, which provides novel insights into the role of LOX in cardiac performance.-Galán, M., Varona, S., Guadall, A., Orriols, M., Navas, M., Aguiló, S., de Diego, A., Navarro, M. A., García-Dorado, D., Rodríguez-Sinovas, A., Martínez-González, J., Rodriguez, C. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy. © FASEB.