WorldWideScience

Sample records for modelling black carbon

  1. Black Carbon Measurement and Modeling in the Arabian Peninsula

    Science.gov (United States)

    Zawad, Faisal Al; Khoder, Mamdouh; Almazroui, Mansour; Alghamdi, Mansour; Lihavainen, Heikki; Hyvarinen, Antti; Henriksson, Svante

    2017-04-01

    Black carbon is an important atmospheric aerosol as an effective factor in public health, changing the global and regional climate, and reducing visibility. Black carbon absorbs light, warms the atmosphere, and modifies cloud droplets and the amount of precipitation. In spite of this significance, knowledge of black carbon over the Arabian Peninsula is hard to find in literature until recently. The total mass of black carbon and wind direction and speeds were measured continuously at Hada Al-Sham, Saudi Arabia for the year 2013. In addition, a state of the art global aerosol - climate model (ECHAM5-HAM) was used to determine black carbon climatology over the Arabian Peninsula. Simulation of the model was carried out for the years eight years (2004 - 2011). The daily mean values of the concentrations of black carbon had a minimum of 15.0 ng/m3 and a maximum of 6372 ng/m3 with a mean of at 1899 ng/m3. The diurnal pattern of black carbon showed higher values overnight, and steady low values during daytimes caused by sea and land breezes. Seasons of black carbon vary over the Arabian Peninsula, and the longest is in the Northern Region where it lasts from July to October. High concentrations of black carbon at Hada Al-Sham was observed with a mean of 1.9 µm/m3, and seasons of black carbon vary widely across the Arabian Peninsula. Assessment of the effects of black carbon over the Arabian Peninsula on the global radiation balance. Initiating a black carbon monitoring network is highly recommended to assess its impacts on health, environment, and climate.

  2. Evaluation of black carbon estimations in global aerosol models

    NARCIS (Netherlands)

    Koch, D.; Schulz, M.; McNaughton, C.; Spackman, J.R.; Balkanski, Y.; Bauer, S.; Krol, M.C.

    2009-01-01

    We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentr

  3. Using measurements for evaluation of black carbon modeling

    Directory of Open Access Journals (Sweden)

    S. Gilardoni

    2010-04-01

    Full Text Available The ever increasing use of air quality and climate model assessments to underpin economic, public health, and environmental policy decisions makes effective model evaluation critical. This paper discusses the properties of black carbon and light attenuation and absorption observations that are the key to a reliable evaluation of black carbon model and compares parametric and nonparametric statistical tools for the quantification of the agreement between models and observations. Black carbon concentrations are simulated with TM5/M7 global model from July 2002 to June 2003 at four remote sites (Alert, Jungfraujoch, Mace Head, and Trinidad Head and two regional background sites (Bondville and Ispra. Equivalent black carbon (EBC concentrations are calculated using light attenuation measurements from January 2000 to December 2005. Seasonal trends in the measurements are determined by fitting sinusoidal functions and the representativeness of the period simulated by the model is verified based on the scatter of the experimental values relative to the fit curves. When the resolution of the model grid is larger than 1°×1°, it is recommended to verify that the measurement site is representative of the grid cell. For this purpose, equivalent black carbon measurements at Alert, Bondville and Trinidad Head are compared to light absorption and elemental carbon measurements performed at different sites inside the same model grid cells. Comparison of these equivalent black carbon and elemental carbon measurements indicates that uncertainties in black carbon optical properties can compromise the comparison between model and observations. During model evaluation it is important to examine the extent to which a model is able to simulate the variability in the observations over different integration periods as this will help to identify the most appropriate timescales. The agreement between model and observation is accurately described by the overlap of

  4. Using measurements for evaluation of black carbon modeling

    Directory of Open Access Journals (Sweden)

    S. Gilardoni

    2011-01-01

    Full Text Available The ever increasing use of air quality and climate model assessments to underpin economic, public health, and environmental policy decisions makes effective model evaluation critical. This paper discusses the properties of black carbon and light attenuation and absorption observations that are the key to a reliable evaluation of black carbon model and compares parametric and nonparametric statistical tools for the quantification of the agreement between models and observations. Black carbon concentrations are simulated with TM5/M7 global model from July 2002 to June 2003 at four remote sites (Alert, Jungfraujoch, Mace Head, and Trinidad Head and two regional background sites (Bondville and Ispra. Equivalent black carbon (EBC concentrations are calculated using light attenuation measurements from January 2000 to December 2005. Seasonal trends in the measurements are determined by fitting sinusoidal functions and the representativeness of the period simulated by the model is verified based on the scatter of the experimental values relative to the fit curves. When the resolution of the model grid is larger than 1° × 1°, it is recommended to verify that the measurement site is representative of the grid cell. For this purpose, equivalent black carbon measurements at Alert, Bondville and Trinidad Head are compared to light absorption and elemental carbon measurements performed at different sites inside the same model grid cells. Comparison of these equivalent black carbon and elemental carbon measurements indicates that uncertainties in black carbon optical properties can compromise the comparison between model and observations. During model evaluation it is important to examine the extent to which a model is able to simulate the variability in the observations over different integration periods as this will help to identify the most appropriate timescales. The agreement between model and observation is accurately described by the overlap of

  5. Wetting and Non-Wetting Models of Black Carbon Activation

    Science.gov (United States)

    Henson, B. F.; Laura, S.

    2006-12-01

    We present the results of recent modeling studies on the activation of black carbon (BC) aerosol to form cloud condensation nuclei (CCN). We use a model of BC activation based on a general modification of the Koehler equation for insoluble activation in which we introduce a term based on the activity of water adsorbed on the particle surface. We parameterize the model using the free energy of adsorption, a parameter directly comparable to laboratory measurements of water adsorption on carbon. Although the model of the water- surface interaction is general, the form of the activation equation that results depends upon a further model of the distribution of water on the particle. One possible model involves the symmetric growth of a water shell around the isoluble particle core (wetting). This model predicts upper and lower bounding curves for the activation supersaturation given by the range of water interaction energies from hydrophobic to hydrophilic which are in agreement with a large body of recent activation data. The resulting activation diameters are from 3 to 10 times smaller than activation of soluble particles of identical dry diameter. Another possible model involves an exluded liquid droplet growing in contact with the particle (non-wetting). The geometry of this model much more resembles classic assumptions of heterogeneous nucleation theory. This model can yield extremely high activation supersaturation as a function of diameter, as has been observed in some experiments, and enables calculations in agreement with some of these results. We discuss these two geometrical models of water growth, the different behaviors predicted by the resulting activation equation, and the means to determine which model of growth is appropriate for a given BC particle characterized by either water interaction energy or morphology. These simple models enable an efficient and physically reasonable means to calculate the activation of BC aerosol to form CCN based upon a

  6. Sources of uncertainties in modelling black carbon at the global scale

    NARCIS (Netherlands)

    Vignati, E.; Karl, M.; Krol, M.C.; Wilson, J.; Stier, P.; Cavalli, F.

    2010-01-01

    Our understanding of the global black carbon (BC) cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in th

  7. Sources of uncertainties in modelling black carbon at the global scale

    NARCIS (Netherlands)

    Vignati, E.; Karl, M.; Krol, M.C.; Wilson, J.; Stier, P.; Cavalli, F.

    2010-01-01

    Our understanding of the global black carbon (BC) cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in

  8. Evaluation of black carbon estimations in global aerosol models

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2009-11-01

    Full Text Available We evaluate black carbon (BC model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD retrievals from AERONET and Ozone Monitoring Instrument (OMI and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.7 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 8 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC ratio is 0.4 and models underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model

  9. Evaluation of Black Carbon Estimations in Global Aerosol Models

    Energy Technology Data Exchange (ETDEWEB)

    Koch, D.; Schulz, M.; Kinne, Stefan; McNaughton, C. S.; Spackman, J. R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, Tami C.; Boucher, Olivier; Chin, M.; Clarke, A. D.; De Luca, N.; Dentener, F.; Diehl, T.; Dubovik, O.; Easter, Richard C.; Fahey, D. W.; Feichter, J.; Fillmore, D.; Freitag, S.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Horowitz, L.; Iversen, T.; Kirkevag, A.; Klimont, Z.; Kondo, Yutaka; Krol, M.; Liu, Xiaohong; Miller, R.; Montanaro, V.; Moteki, N.; Myhre, G.; Penner, J.; Perlwitz, Ja; Pitari, G.; Reddy, S.; Sahu, L.; Sakamoto, H.; Schuster, G.; Schwarz, J. P.; Seland, O.; Stier, P.; Takegawa, Nobuyuki; Takemura, T.; Textor, C.; van Aardenne, John; Zhao, Y.

    2009-11-27

    We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) from AERONET and OMI retrievals and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.6 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 10 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC is 0.6 and underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the

  10. Evaluation of black carbon estimations in global aerosol models

    Directory of Open Access Journals (Sweden)

    D. Koch

    2009-07-01

    Full Text Available We evaluate black carbon (BC model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD from AERONET and Ozone Monitoring Instrument (OMI retrievals and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.6 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50 N, the average model is a factor of 10 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC is 0.6 and underestimates the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a

  11. Siberian Arctic black carbon sources constrained by model and observation

    Science.gov (United States)

    Winiger, Patrik; Andersson, August; Eckhardt, Sabine; Stohl, Andreas; Semiletov, Igor P.; Dudarev, Oleg V.; Charkin, Alexander; Shakhova, Natalia; Klimont, Zbigniew; Heyes, Chris; Gustafsson, Örjan

    2017-02-01

    Black carbon (BC) in haze and deposited on snow and ice can have strong effects on the radiative balance of the Arctic. There is a geographic bias in Arctic BC studies toward the Atlantic sector, with lack of observational constraints for the extensive Russian Siberian Arctic, spanning nearly half of the circum-Arctic. Here, 2 y of observations at Tiksi (East Siberian Arctic) establish a strong seasonality in both BC concentrations (8 ngṡm-3 to 302 ngṡm-3) and dual-isotope-constrained sources (19 to 73% contribution from biomass burning). Comparisons between observations and a dispersion model, coupled to an anthropogenic emissions inventory and a fire emissions inventory, give mixed results. In the European Arctic, this model has proven to simulate BC concentrations and source contributions well. However, the model is less successful in reproducing BC concentrations and sources for the Russian Arctic. Using a Bayesian approach, we show that, in contrast to earlier studies, contributions from gas flaring (6%), power plants (9%), and open fires (12%) are relatively small, with the major sources instead being domestic (35%) and transport (38%). The observation-based evaluation of reported emissions identifies errors in spatial allocation of BC sources in the inventory and highlights the importance of improving emission distribution and source attribution, to develop reliable mitigation strategies for efficient reduction of BC impact on the Russian Arctic, one of the fastest-warming regions on Earth.

  12. Sources of uncertainties in modelling Black Carbon at the global scale

    Directory of Open Access Journals (Sweden)

    F. Cavalli

    2009-11-01

    Full Text Available Our understanding of the global black carbon cycle is essentially qualitative due to uncertainties in our knowledge of the properties of black carbon. This work investigates uncertainties related to modelling black carbon: due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and due to the uncertainties in the definition and quantification of observed black carbon, which propagate through to both the emission inventories, and the measurements used for the model evaluation.

    The schemes for the atmospheric processing of black carbon that have been tested with the model are (i a simple approach considering black carbon as bulk aerosol and a simple treatment in the removal and (ii a more complete description of microphysical aging within an aerosol dynamics model, where removal is coupled to the microphysical properties of the aerosol. In the first approach a fixed 70% of black carbon is scavenged in clouds and removed when rain is present. The second leads to a global average of 40% black carbon that is scavenged in clouds and subsequently removed by rain, thus resulting in a longer lifetime. This difference is reflected in comparisons between both sets of modelled results and the measurements. Close to the sources, both anthropogenic and vegetation fire source regions, the model results do not differ significantly, showing that the emissions are the prevailing mechanism determining the concentrations and the choice of the aerosol scheme does not influence the levels. In more remote areas such as oceanic and polar regions the differences can be orders of magnitude, due to the differences between the two schemes. The more complete description reproduces the seasonal trend of the black carbon observations in those areas, although not always the magnitude of the signal, while the more simplified approach underestimates black carbon concentrations by orders of magnitude.

  13. Sources of uncertainties in modelling black carbon at the global scale

    OpenAIRE

    2010-01-01

    Our understanding of the global black carbon (BC) cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and those due to the uncertainties in the definition and quantification of the observations, which propagate through to both the emission inventories, and the...

  14. Sources of uncertainties in modelling black carbon at the global scale

    Directory of Open Access Journals (Sweden)

    E. Vignati

    2010-03-01

    Full Text Available Our understanding of the global black carbon (BC cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and those due to the uncertainties in the definition and quantification of the observations, which propagate through to both the emission inventories, and the measurements used for the model evaluation.

    The schemes for the atmospheric processing of black carbon that have been tested with the model are (i a simple approach considering BC as bulk aerosol and a simple treatment of the removal with fixed 70% of in-cloud black carbon concentrations scavenged by clouds and removed when rain is present and (ii a more complete description of microphysical ageing within an aerosol dynamics model, where removal is coupled to the microphysical properties of the aerosol, which results in a global average of 40% in-cloud black carbon that is scavenged in clouds and subsequently removed by rain, thus resulting in a longer atmospheric lifetime. This difference is reflected in comparisons between both sets of modelled results and the measurements. Close to the sources, both anthropogenic and vegetation fire source regions, the model results do not differ significantly, indicating that the emissions are the prevailing mechanism determining the concentrations and the choice of the aerosol scheme does not influence the levels. In more remote areas such as oceanic and polar regions the differences can be orders of magnitude, due to the differences between the two schemes. The more complete description reproduces the seasonal trend of the black carbon observations in those areas, although not always the magnitude of the signal, while the more simplified approach underestimates black carbon concentrations by orders of

  15. Sources of uncertainties in modelling black carbon at the global scale

    Science.gov (United States)

    Vignati, E.; Karl, M.; Krol, M.; Wilson, J.; Stier, P.; Cavalli, F.

    2010-03-01

    Our understanding of the global black carbon (BC) cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and those due to the uncertainties in the definition and quantification of the observations, which propagate through to both the emission inventories, and the measurements used for the model evaluation. The schemes for the atmospheric processing of black carbon that have been tested with the model are (i) a simple approach considering BC as bulk aerosol and a simple treatment of the removal with fixed 70% of in-cloud black carbon concentrations scavenged by clouds and removed when rain is present and (ii) a more complete description of microphysical ageing within an aerosol dynamics model, where removal is coupled to the microphysical properties of the aerosol, which results in a global average of 40% in-cloud black carbon that is scavenged in clouds and subsequently removed by rain, thus resulting in a longer atmospheric lifetime. This difference is reflected in comparisons between both sets of modelled results and the measurements. Close to the sources, both anthropogenic and vegetation fire source regions, the model results do not differ significantly, indicating that the emissions are the prevailing mechanism determining the concentrations and the choice of the aerosol scheme does not influence the levels. In more remote areas such as oceanic and polar regions the differences can be orders of magnitude, due to the differences between the two schemes. The more complete description reproduces the seasonal trend of the black carbon observations in those areas, although not always the magnitude of the signal, while the more simplified approach underestimates black carbon concentrations by orders of magnitude. The sensitivity to wet

  16. Factorial Based Response Surface Modeling with Confidence Intervals for Optimizing Thermal Optical Transmission Analysis of Atmospheric Black Carbon

    Science.gov (United States)

    We demonstrate how thermal-optical transmission analysis (TOT) for refractory light-absorbing carbon in atmospheric particulate matter was optimized with empirical response surface modeling. TOT employs pyrolysis to distinguish the mass of black carbon (BC) from organic carbon (...

  17. Black carbon fractal morphology and short-wave radiative impact: a modelling study

    Directory of Open Access Journals (Sweden)

    M. Kahnert

    2011-11-01

    Full Text Available We investigate the impact of the morphological properties of freshly emitted black carbon aerosols on optical properties and on radiative forcing. To this end, we model the optical properties of fractal black carbon aggregates by use of numerically exact solutions to Maxwell's equations within a spectral range from the UVC to the mid-IR. The results are coupled to radiative transfer computations, in which we consider six realistic case studies representing different atmospheric pollution conditions and surface albedos. The spectrally integrated radiative impacts of black carbon are compared for two different fractal morphologies, which brace the range of recently reported experimental observations of black carbon fractal structures. We also gauge our results by performing corresponding calculations based on the homogeneous sphere approximation, which is commonly employed in climate models. We find that at top of atmosphere the aggregate models yield radiative impacts that can be as much as 2 times higher than those based on the homogeneous sphere approximation. An aggregate model with a low fractal dimension can predict a radiative impact that is higher than that obtained with a high fractal dimension by a factor ranging between 1.1–1.6. Although the lower end of this scale seems like a rather small effect, a closer analysis reveals that the single scattering optical properties of more compact and more lacy aggregates differ considerably. In radiative flux computations there can be a partial cancellation due to the opposing effects of different error sources. However, this cancellation effect can strongly depend on atmospheric conditions and is therefore quite unpredictable. We conclude that the fractal morphology of black carbon aerosols and their fractal parameters can have a profound impact on their radiative forcing effect, and that the use of the homogeneous sphere model introduces unacceptably high biases in radiative impact studies. We

  18. Modelling black spruce primary production and carbon allocation in the Quebec boreal forest

    Science.gov (United States)

    Gennaretti, Fabio; Guiot, Joel; Berninger, Frank; Boucher, Etienne; Gea-Izquierdo, Guillermo

    2017-04-01

    Boreal ecosystems are crucial carbon stores that must be urgently quantified and preserved. Their future evolution is extremely important for the global carbon budget. Here, we will show the progresses achieved with the MAIDEN forest ecophysiological model in simulating carbon fluxes of black spruce (Picea mariana (Mill.) B.S.P.) forests, the most representative ecosystem of the North American boreal biome. Starting from daily minimum-maximum air temperature, precipitation and CO2 atmospheric concentration, MAIDEN models the phenological (5 phenological phases are simulated each year) and meteorological controls on gross primary production (GPP) and carbon allocation to stem. The model is being calibrated on eddy covariance and tree-ring data. We will discuss the model's performance and the modifications introduced in MAIDEN to adapt the model to temperature sensitive forests of the boreal region.

  19. Black carbon fractal morphology and short-wave radiative impact: a modelling study

    Directory of Open Access Journals (Sweden)

    M. Kahnert

    2011-08-01

    Full Text Available We investigate the impact of the morphological properties of freshly emitted black carbon aerosols on optical properties and on radiative forcing. To this end, we model the optical properties of fractal black carbon aggregates by use of numerically exact solutions to Maxwell's equations within a spectral range from the UVC to the mid-IR. The results are coupled to radiative transfer computations, in which we consider six realistic case studies representing different atmospheric pollution conditions and surface albedos. The spectrally integrated radiative impacts of black carbon are compared for two different fractal morphologies, which brace the range of recently reported experimental observations of black carbon fractal structures. We also gauge our results by performing corresponding calculations based on the homogeneous sphere approximation, which is commonly employed in climate models. We find that at top of atmosphere the aggregate models yield radiative impacts that can be as much as 2 times higher than those based on the homogeneous sphere approximation. An aggregate model with a low fractal dimension can predict a radiative impact that is higher than that obtained with a high fractal dimension by a factor ranging between 1.1–1.6. Although the lower end of this scale seems like a rather small effect, a closer analysis reveals that the single scattering optical properties of more compact and more lacy aggregates differ considerably. In radiative flux computations there can be a partial cancellation due to the opposing effects of differences in the optical cross sections and asymmetry parameters. However, this cancellation effect can strongly depend on atmospheric conditions and is therefore quite unpredictable. We conclude that the fractal morphology of black carbon aerosols and their fractal parameters can have a profound impact on their radiative forcing effect, and that the use of the homogeneous sphere model introduces unacceptably

  20. Black carbon in marine sediments

    NARCIS (Netherlands)

    Middelburg, J.J.; Nieuwenhuize, J.; Van Breugel, P.

    1999-01-01

    Concentrations of black carbon were determined for a number of marine sediments. A comparison of black carbon based on thermal oxidation and hot concentrated nitric acid pretreatments revealed that the latter significantly overestimates combustion derived carbon phases. Black carbon accounts for

  1. Modelling of deposited black carbon with the Lagrangian particle dispersion model FLEXPART in backward mode

    Science.gov (United States)

    Eckhardt, Sabine; Cassiani, Massimo; Sollum, Espen; Evangeliou, Nikolaos; Stohl, Andreas

    2017-04-01

    Lagrangian particle dispersion models are popular tools to simulate the dispersion of trace gases, aerosols or radionuclides in the atmosphere. If they consider only linear processes, they are self-adjoint, i.e., they can be run forward and backward in time without changes to the source code. Backward simulations are very efficient if the number of receptors is smaller than the number of sources, and they are well suited to establish source-receptor (s-r) relationships for measurements of various trace substances in air. However, not only the air concentrations are of interest, but also the s-r relationships for deposition are important for interpreting measurement data. E.g., deposition of dust is measured regularly in ice cores, partly also as a proxy to understand changes in aridity in dust source regions. Contamination of snow by black carbon (BC) aerosols has recently become a hot topic because of the potential impact of BC on the snow albedo. To interpret such deposition measurements and study the sources of the deposited substance, it would be convenient to have a model that is capable of efficient s-r relationship calculations for such types of measurements. We present here the implementation of such an algorithm into the Lagrangian particle dispersion model FLEXPART, and test the new scheme by comparisons with results from forward simulations as well as comparisons with measurements. As an application, we analyse source regions for elemental carbon (EC) measured in snow over the years 2014-2016 in the Russian Arctic. Simulations using an annual constant black carbon inventory based on ECLIPSE V5 and GFED (Global Fire Emission Database), have been performed. The meteorological data used in the simulation are 3 hourly operational data from the European Centre of Medium Range Weather Forecast (ECMWF) on a 1 degree grid resolution and 138 vertical levels. The model is able to capture very well the measured concentrations. Gas flaring and residential

  2. Black carbon ageing in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    B. Croft

    2005-01-01

    Full Text Available Black carbon (BC particles in the atmosphere have important impacts on climate. The amount of BC in the atmosphere must be carefully quantified to allow evaluation of the climate effects of this type of aerosol. In this study, we present the treatment of BC aerosol in the developmental version of the 4th generation Canadian Centre for Climate modelling and analysis (CCCma atmospheric general circulation model (AGCM. The focus of this work is on the conversion of insoluble BC to soluble/mixed BC by physical and chemical ageing. Physical processes include the condensation of sulphuric and nitric acid onto the BC aerosol, and coagulation with more soluble aerosols such as sulphates and nitrates. Chemical processes that may age the BC aerosol include the oxidation of organic coatings by ozone. Four separate parameterizations of the ageing process are compared to a control simulation that assumes no ageing occurs. These simulations use 1 an exponential decay with a fixed 24h half-life, 2 a condensation and coagulation scheme, 3 an oxidative scheme, and 4 a linear combination of the latter two ageing treatments. Global BC burdens are 2.15, 0.15, 0.11, 0.21, and 0.11TgC for the control run, and four ageing schemes, respectively. The BC lifetimes are 98.1, 6.6, 5.0, 9.5, and 4.9 days, respectively. The sensitivity of modelled BC burdens, and concentrations to the factor of two uncertainty in the emissions inventory is shown to be greater than the sensitivity to the parameterization used to represent the BC ageing, except for the oxidation based parameterization. A computationally efficient parameterization that represents the processes of condensation, coagulation, and oxidation is shown to simulate BC ageing well in the CCCma AGCM. As opposed to the globally fixed ageing time scale, this treatment of BC ageing is responsive to varying atmospheric composition.

  3. Modelling of Black and Organic Carbon Variability in the Northern Hemisphere

    Science.gov (United States)

    Kurganskiy, Alexander; Nuterman, Roman; Mahura, Alexander; Kaas, Eigil; Baklanov, Alexander; Hansen Sass, Bent

    2016-04-01

    Black and organic carbon as short-lived climate forcers have influence on air quality and climate in Northern Europe and Arctic. Atmospheric dispersion, deposition and transport of these climate forcers from remote sources is especially difficult to model in Arctic regions due to complexity of meteorological and chemical processes and uncertainties of emissions. In our study, the online integrated meteorology-chemistry/aerosols model Enviro-HIRLAM (Environment - High Resolution Limited Area Model) was employed for evaluating spatio-temporal variability of black and organic carbon aerosols in atmospheric composition in the Northern Hemisphere regions. The model setup included horizontal resolution of 0.72 deg, time step of 450 sec, 6 h meteorological surface data assimilation, 1 month spin-up; and model was run for the full year of 2010. Emissions included anthropogenic (ECLIPSE), shipping (AU_RCP&FMI), wildfires (IS4FIRES), and interactive sea salt, dust and DMS. Meteorological (from IFS at 0.75 deg) and chemical (from MACC Reanalysis at 1.125 deg) boundary conditions were obtained from ECMWF. Annual and month-to-month variability of mean concentration, accumulated dry/wet and total deposition fluxes is analyzed for the model domain and selected European and Arctic observation sites. Modelled and observed BC daily mean concentrations during January and July showed fair-good correlation (0.31-0.64) for stations in Germany, UK and Italy; however, for Arctic stations (Tiksi, Russia and Zeppelin, Norway) the correlations were negative in January, but higher correlations and positive (0.2-0.7) in July. For OC, it varied 0.45-0.67 in January and 0.19-0.57 in July. On seasonal scale, during both summer and winter seasons the BC and OC correlations are positive and higher for European stations compared with Arctic. On annual scale, both BC and OC correlations are positive and vary between 0.4-0.6 for European stations, and these are smoothed to negligible values for Arctic

  4. Modeling water column partitioning of polychlorinated biphenyls to natural organic matter and black carbon.

    Science.gov (United States)

    Greene, Richard W; Di Toro, Dominic M; Farley, Kevin J; Phillips, Kathy L; Tomey, Cynthia

    2013-06-18

    High volume in situ surface water samples were collected from a tidal tributary of the Delaware Estuary using an Infiltrex sampling system equipped with a 1 μm particle filter and a XAD-2 resin column. Particulate and dissolved phase polychlorinated biphenyl (PCB) congeners were analyzed using high resolution gas chromatography/high resolution mass spectrometry to obtain detection levels in the femtograms per liter range. The data were fit to a four-phase equilibrium partitioning model including freely dissolved PCB, PCB bound to particulate organic carbon (POC), PCB bound to dissolved organic carbon (DOC), and PCB bound to black carbon (BC). Isotherms were assumed to be linear for POC and DOC and nonlinear for BC. The partition coefficient between BC and dissolved PCB was assumed to depend on the dihedral angle between the phenyl rings. Following parameter optimization, the correlation coefficient between the log of the modeled and measured apparent distribution coefficient Kp,app was 0.94, and the RMSE was 0.189 log units. Including BC in the model reduces the dissolved PCB phase concentration in the water column for all congeners, especially for the non-ortho and mono-ortho substituted congeners.

  5. Analysis and high resolution modelling of black carbon vertical profiles measured over three Italian valleys

    Science.gov (United States)

    Gandolfi, Ilaria; Curci, Gabriele; Falasca, Serena; Ferrero, Luca

    2017-04-01

    Analysis and high resolution modelling of black carbon vertical profiles measured over three Italian valleys Ilaria Gandolfi1,2, Gabriele Curci1,2, Serena Falasca1,2, Luca Ferrero3 1 Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy 2 Center of Excellence CETEMPS, University of L'Aquila, L'Aquila, Italy 3 POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy Last decades were characterized by a growing interest in aerosols: mainly for their effect on human health and on the energy balance of solar and planetary radiation, thus their role in climate change. In this study, we analyze the evolution of vertical profile of black carbon (BC) through tethered balloon observations and chemistry-transport modelling. Black carbon is regarded as the second most important anthropogenic climate forcing agent and its concentration varies significantly depending on the altitude and the sources on the territory. In winter of 2010 University Of Milan Bicocca conducted three intensive measurements campaigns over three Italian basin valleys (Terni, Po Valley, Passiria Valley). The choice of the valleys was made taking into consideration the orography and the river basin structure. The measurement campaign was based on a helium-filled tethered balloon, on which the instrumentation for the analysis has been mounted; the instrumentation consisted on a meteorological station, an OPC, a cascade impactor and a micro-Aethalometer. Subsequently, at University of L'Aquila simulations were produced to help interpretation of these vertical aerosol profiles (mass, composition and distribution) and related optical properties (scattering, absorption) using a chemistry-transport model (WRF-CHIMERE) at high horizontal resolution (1 km). The analysis focused primarily on the calculation of the heating rate and of the Direct Radiative Effect (DRE), and on the analysis of the

  6. Variability in and agreement between modeled and personal continuously measured black carbon levels using novel smartphone and sensor technologies.

    Science.gov (United States)

    Nieuwenhuijsen, Mark J; Donaire-Gonzalez, David; Rivas, Ioar; de Castro, Montserrat; Cirach, Marta; Hoek, Gerard; Seto, Edmund; Jerrett, Michael; Sunyer, Jordi

    2015-03-01

    Novel technologies, such as smartphones and small personal continuous air pollution sensors, can now facilitate better personal estimates of air pollution in relation to location. Such information can provide us with a better understanding about whether and how personal exposures relate to residential air pollution estimates, which are normally used in epidemiological studies. The aims of this study were to examine (1) the variability in personal air pollution levels during the day and (2) the relationship between modeled home and school estimates and continuously measured personal air pollution exposure levels in different microenvironments (e.g., home, school, and commute). We focused on black carbon as an indicator of traffic-related air pollution. We recruited 54 school children (aged 7-11) from 29 different schools around Barcelona as part of the BREATHE study, an epidemiological study of the relation between air pollution and brain development. For 2 typical week days during 2012-2013, the children were given a smartphone with CalFit software to obtain information on their location and physical activity level and a small sensor, the micro-aethalometer model AE51, to measure their black carbon levels simultaneously and continuously. We estimated their home and school exposure to PM2.5 filter absorbance, which is well-correlated with black carbon, using a temporally adjusted PM2.5 absorbance land use regression (LUR) model. We found considerable variation in the black carbon levels during the day, with the highest levels measured during commuting periods (geometric mean = 2.8 μg/m(3)) and the lowest levels at home (geometric mean = 1.3 μg/m(3)). Hourly temporally adjusted LUR model estimates for the home and school showed moderate to good correlation with measured personal black carbon levels at home and school (r = 0.59 and 0.68, respectively) and lower correlation with commuting trips (r = 0.32 and 0.21, respectively). The correlation between modeled home

  7. Numerical modelling of the internal mixing by coagulation of black carbon particles in aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Ohlsson, S.; Stroem, J. [Stockholm Univ. (Sweden). Dept. of Meteorology

    1997-12-31

    When exhaust gases from an aircraft engine mix with ambient air the humidity may reach water saturation and water droplets will form on the available cloud condensation nuclei (CCN). It is still not resolved if the CCN, on which the cloud droplets form, are mainly particles present in the ambient air or particles emitted by the aircraft. It the exhaust from a jet engine the particles are believed to consist mainly of black carbon (BC) and sulfate. The aim is to study, with the help of a numerical model, how a two-component aerosol (i.e. BC and sulfate) in an exhaust trail may be transformed in terms of hygroscopicity by coagulation mixing and how this may depend on the sulfur content in the fuel. (R.P.) 15 refs.

  8. Black carbon concentration and deposition estimations in Finland by the regional aerosol–climate model REMO-HAM

    Directory of Open Access Journals (Sweden)

    A. I. Hienola

    2013-04-01

    Full Text Available The prediction skill of the regional aerosol–climate model REMO-HAM was assessed against the black carbon (BC concentration measurements from five locations in Finland, with focus on Hyytiälä station for the year 2005. We examined to what extent the model is able to reproduce the measurements using several statistical tools: median comparison, overlap coefficient (OVL; the common area under two probability distributions curves and Z score (a measure of standard deviation, shape and spread of the distributions. The results of the statistics showed that the model is biased low. The local and regional emissions of BC have a significant contribution, and the model tendency to flatten the observed BC is most likely dominated by the lack of domestic burning of biofuel in the emission inventories. A further examination of the precipitation data from both measurements and model showed that there is no correlation between REMO's excessive precipitation and BC underestimation. This suggests that the excessive wet removal is not the main cause of the low black carbon concentration output. In addition, a comparison of wind directions in relation with high black carbon concentrations shows that REMO-HAM is able to predict the BC source directions relatively well. Cumulative black carbon deposition fluxes over Finland were estimated, including the deposition on snow.

  9. Parametric uncertainties in global model simulations of black carbon column mass concentration

    Science.gov (United States)

    Pearce, Hana; Lee, Lindsay; Reddington, Carly; Carslaw, Ken; Mann, Graham

    2016-04-01

    Previous studies have deduced that the annual mean direct radiative forcing from black carbon (BC) aerosol may regionally be up to 5 W m-2 larger than expected due to underestimation of global atmospheric BC absorption in models. We have identified the magnitude and important sources of parametric uncertainty in simulations of BC column mass concentration from a global aerosol microphysics model (GLOMAP-Mode). A variance-based uncertainty analysis of 28 parameters has been performed, based on statistical emulators trained on model output from GLOMAP-Mode. This is the largest number of uncertain model parameters to be considered in a BC uncertainty analysis to date and covers primary aerosol emissions, microphysical processes and structural parameters related to the aerosol size distribution. We will present several recommendations for further research to improve the fidelity of simulated BC. In brief, we find that the standard deviation around the simulated mean annual BC column mass concentration varies globally between 2.5 x 10-9 g cm-2 in remote marine regions and 1.25 x 10-6 g cm-2 near emission sources due to parameter uncertainty Between 60 and 90% of the variance over source regions is due to uncertainty associated with primary BC emission fluxes, including biomass burning, fossil fuel and biofuel emissions. While the contributions to BC column uncertainty from microphysical processes, for example those related to dry and wet deposition, are increased over remote regions, we find that emissions still make an important contribution in these areas. It is likely, however, that the importance of structural model error, i.e. differences between models, is greater than parametric uncertainty. We have extended our analysis to emulate vertical BC profiles at several locations in the mid-Pacific Ocean and identify the parameters contributing to uncertainty in the vertical distribution of black carbon at these locations. We will present preliminary comparisons of

  10. Exposure to ambient black carbon derived from a unique inventory and high-resolution model.

    Science.gov (United States)

    Wang, Rong; Tao, Shu; Balkanski, Yves; Ciais, Philippe; Boucher, Olivier; Liu, Junfeng; Piao, Shilong; Shen, Huizhong; Vuolo, Maria Raffaella; Valari, Myrto; Chen, Han; Chen, Yuanchen; Cozic, Anne; Huang, Ye; Li, Bengang; Li, Wei; Shen, Guofeng; Wang, Bin; Zhang, Yanyan

    2014-02-18

    Black carbon (BC) is increasingly recognized as a significant air pollutant with harmful effects on human health, either in its own right or as a carrier of other chemicals. The adverse impact is of particular concern in those developing regions with high emissions and a growing population density. The results of recent studies indicate that BC emissions could be underestimated by a factor of 2-3 and this is particularly true for the hot-spot Asian region. Here we present a unique inventory at 10-km resolution based on a recently published global fuel consumption data product and updated emission factor measurements. The unique inventory is coupled to an Asia-nested (∼50 km) atmospheric model and used to calculate the global population exposure to BC with fully quantified uncertainty. Evaluating the modeled surface BC concentrations against observations reveals great improvement. The bias is reduced from -88% to -35% in Asia when the unique inventory and higher-resolution model replace a previous inventory combined with a coarse-resolution model. The bias can be further reduced to -12% by downscaling to 10 km using emission as a proxy. Our estimated global population-weighted BC exposure concentration constrained by observations is 2.14 μg⋅m(-3); 130% higher than that obtained using less detailed inventories and low-resolution models.

  11. A Multi-Model Comparison of Black Carbon Budgets in the Arctic Region.

    Science.gov (United States)

    Mahmood, R.; von Salzen, K.; Flanner, M.; Sand, M.; Langner, J.; Wang, H.; Huang, L.

    2015-12-01

    In this study we quantify modeled aerosol processes related to black carbon (BC) concentrations in the Arctic region in several general circulation models used by the Expert Group on Arctic Monitoring and Assessment Program (AMAP). All models simulated well the observed seasonal cycle of BC concentrations in the high Canadian Arctic region, however, most models (except CanAM) underestimate the total concentrations. Transport of BC from lower latitudes is the major source for the Arctic region where emissions are small. The models produce similar seasonal cycle of BC transport towards the Arctic with maximum transport in July. However, substantial differences were found among the models in simulating BC burdens and vertical distributions with some models producing very week seasonal cycle while others producing stronger seasonality. The annual mean BC residence times in models also differs markedly with CanAM having the shortest residence times followed by SMHI-MATCH, CESM and NorESM. There are substantial differences among the models in simulating the relative role of wet and dry deposition rates which is one of the major factors causing variations in the seasonality of BC burdens in the models. Similarly, significant differences in wet deposition efficiencies among the models exist and are the leading cause of differences in simulated BC burdens. To further explore these processes, we performed several sensitivity tests in CanAM and CESM. Overall, the results indicate that scavenging of BC in convective clouds as compared to simulations without convective BC scavenging substantially increases the overall efficiency of BC wet deposition which leads to low BC burdens and a more pronounced seasonal cycle.

  12. Seasonality of global and Arctic black carbon processes in the Arctic Monitoring and Assessment Programme models

    Science.gov (United States)

    Mahmood, Rashed; Salzen, Knut; Flanner, Mark; Sand, Maria; Langner, Joakim; Wang, Hailong; Huang, Lin

    2016-06-01

    This study quantifies black carbon (BC) processes in three global climate models and one chemistry transport model, with focus on the seasonality of BC transport, emissions, wet and dry deposition in the Arctic. In the models, transport of BC to the Arctic from lower latitudes is the major BC source for this region. Arctic emissions are very small. All models simulated a similar annual cycle of BC transport from lower latitudes to the Arctic, with maximum transport occurring in July. Substantial differences were found in simulated BC burdens and vertical distributions, with Canadian Atmospheric Global Climate Model (CanAM) (Norwegian Earth System Model, NorESM) producing the strongest (weakest) seasonal cycle. CanAM also has the shortest annual mean residence time for BC in the Arctic followed by Swedish Meteorological and Hydrological Institute Multiscale Atmospheric Transport and Chemistry model, Community Earth System Model, and NorESM. Overall, considerable differences in wet deposition efficiencies in the models exist and are a leading cause of differences in simulated BC burdens. Results from model sensitivity experiments indicate that convective scavenging outside the Arctic reduces the mean altitude of BC residing in the Arctic, making it more susceptible to scavenging by stratiform (layer) clouds in the Arctic. Consequently, scavenging of BC in convective clouds outside the Arctic acts to substantially increase the overall efficiency of BC wet deposition in the Arctic, which leads to low BC burdens and a more pronounced seasonal cycle compared to simulations without convective BC scavenging. In contrast, the simulated seasonality of BC concentrations in the upper troposphere is only weakly influenced by wet deposition in stratiform clouds, whereas lower tropospheric concentrations are highly sensitive.

  13. Simulation of black carbon in snow and its climate impact in the Canadian Global Climate Model

    Science.gov (United States)

    Namazi, M.; von Salzen, K.; Cole, J. N. S.

    2015-09-01

    A new physically based parameterisation of black carbon (BC) in snow was developed and implemented in the Canadian Atmospheric Global Climate Model (CanAM4.2). Simulated BC snow mixing ratios and BC snow radiative forcings are in good agreement with measurements and results from other models. Simulations with the improved model yield considerable trends in regional BC concentrations in snow and BC snow radiative forcings during the time period from 1950-1959 to 2000-2009. Increases in radiative forcings for Asia and decreases for Europe and North America are found to be associated with changes in BC emissions. Additional sensitivity simulations were performed in order to study the impact of BC emission changes between 1950-1959 and 2000-2009 on surface albedo, snow cover fraction, and surface air temperature. Results from these simulations indicate that impacts of BC emission changes on snow albedos between these 2 decades are small and not significant. Overall, changes in BC concentrations in snow have much smaller impacts on the cryosphere than the net warming surface air temperatures during the second half of the 20th century.

  14. Simulation of black carbon in snow and its climate impact in the Canadian Global Climate Model

    Directory of Open Access Journals (Sweden)

    M. Namazi

    2015-07-01

    Full Text Available A new physically-based parameterization of black carbon (BC in snow was developed and implemented in the Canadian Atmospheric Global Climate Model (CanAM4.2. Simulated BC snow mixing ratios and BC snow radiative forcings are in good agreement with measurements and results from other models. Simulations with the improved model yield considerable trends in regional BC concentrations in snow and BC snow radiative forcings during the time period from 1950–1959 to 2000–2009. Increases in radiative forcings for Asia and decreases for Europe and North America are found to be associated with changes in BC emissions. Additional sensitivity simulations were performed in order to study the impact of BC emission changes between 1950–1959 and 2000–2009 on surface albedo, snow cover fraction, and surface air temperature. Results from these simulations indicate that impacts of BC emission changes on snow albedos between these two decades are small and not significant. Overall, changes in BC concentrations in snow have much smaller impacts on the cryosphere than the net warming surface air temperatures during the second half of the 20th century.

  15. Seasonality of global and Arctic black carbon processes in the Arctic Monitoring and Assessment Programme models: Global and Arctic Black Carbon Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, Rashed [School of Earth and Ocean Sciences, University of Victoria, Victoria British Columbia Canada; Department of Meteorology, COMSATS Institute of Information Technology, Islamabad Pakistan; von Salzen, Knut [School of Earth and Ocean Sciences, University of Victoria, Victoria British Columbia Canada; Canadian Center for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria British Columbia Canada; Flanner, Mark [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor Michigan USA; Sand, Maria [Center for International Climate and Environmental Research-Oslo, Oslo Norway; Langner, Joakim [Swedish Meteorological and Hydrological Institute, Norrköping Sweden; Wang, Hailong [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Huang, Lin [Climate Chemistry Measurements and Research, Environment and Climate Change Canada, Toronto Ontario Canada

    2016-06-22

    This study quantifies black carbon (BC) processes in three global climate models and one chemistry transport model, with focus on the seasonality of BC transport, emissions, wet and dry deposition in the Arctic. In the models, transport of BC to the Arctic from lower latitudes is the major BC source for this region while Arctic emissions are very small. All models simulated a similar annual cycle of BC transport from lower latitudes to the Arctic, with maximum transport occurring in July. Substantial differences were found in simulated BC burdens and vertical distributions, with CanAM (NorESM) producing the strongest (weakest) seasonal cycle. CanAM also has the shortest annual mean residence time for BC in the Arctic followed by SMHI-MATCH, CESM and NorESM. The relative contribution of wet and dry deposition rates in removing BC varies seasonally and is one of the major factors causing seasonal variations in BC burdens in the Arctic. Overall, considerable differences in wet deposition efficiencies in the models exist and are a leading cause of differences in simulated BC burdens. Results from model sensitivity experiments indicate that scavenging of BC in convective clouds acts to substantially increase the overall efficiency of BC wet deposition in the Arctic, which leads to low BC burdens and a more pronounced seasonal cycle compared to simulations without convective BC scavenging. In contrast, the simulated seasonality of BC concentrations in the upper troposphere is only weakly influenced by wet deposition in stratiform (layer) clouds whereas lower tropospheric concentrations are highly sensitive.

  16. Simulations of phenol adsorption on activated carbon and carbon black

    OpenAIRE

    Prosenjak, Claudia; Valente Nabais, Joao; Laginhas, Carlos; Carrott, Peter; Carrott, Manuela

    2010-01-01

    We use grand canonical Monte Carlo and molecular dynamics simulations to study the adsorption of phenol on carbon materials. Activated carbon is modelled by pore size distributions based on DFT methods; carbon black is represented by a single carbon slab with varying percentages of surface atoms removed. GCMC results for the adsorption from the corresponding gas phase gave reasonable agreement with experimental adsorption results. MD simulations, that studied the influence of the presence of ...

  17. Finding consistency between different views of the absorption enhancement of black carbon: An observationally constrained hybrid model to support a transition in optical properties with mass fraction

    Science.gov (United States)

    Coe, H.; Allan, J. D.; Whitehead, J.; Alfarra, M. R. R.; Villegas, E.; Kong, S.; Williams, P. I.; Ting, Y. C.; Haslett, S.; Taylor, J.; Morgan, W.; McFiggans, G.; Spracklen, D. V.; Reddington, C.

    2015-12-01

    The mixing state of black carbon is uncertain yet has a significant influence on the efficiency with which a particle absorbs light. In turn, this may make a significant contribution to the uncertainty in global model predictions of the black carbon radiative budget. Previous modelling studies that have represented this mixing state using a core-shell approach have shown that aged black carbon particles may be considerably enhanced compared to freshly emitted black carbon due to the addition of co-emitted, weakly absorbing species. However, recent field results have demonstrated that any enhancement of absorption is minor in the ambient atmosphere. Resolving these differences in absorption efficiency is important as they will have a major impact on the extent to which black carbon heats the atmospheric column. We have made morphology-independent measurements of refractory black carbon mass and associated weakly absorbing material in single particles from laboratory-generated diesel soot and black carbon particles in ambient air influenced by traffic and wood burning sources and related these to the optical properties of the particles. We compared our calculated optical properties with optical models that use varying mixing state assumptions and by characterising the behaviour in terms of the relative amounts of weakly absorbing material and black carbon in a particle we show a sharp transition in mixing occurs. We show that the majority of black carbon particles from traffic-dominated sources can be treated as externally mixed and show no absorption enhancement, whereas models assuming internal mixing tend to give the best estimate of the absorption enhancement of thickly coated black carbon particles from biofuel or biomass burning. This approach reconciles the differences in absorption enhancement previously observed and offers a systematic way of treating the differences in behaviour observed.

  18. Modeling Study of the Contribution of Wildfires to Ambient Black Carbon Concentrations

    Science.gov (United States)

    Chung, S. H.; Gonzalez-Abraham, R.; Lamb, B. K.; Larkin, N. K.; Strand, T.; O'Neill, S.

    2013-12-01

    Wildland fires are a major source of particulate emissions, including black carbon (BC). In combination with other emissions, these BC and particulate emissions can directly lead to air quality degradation, both locally and more regionally. BC and other particulate matter (PM) can also affect climate in various ways, including by scattering and absorbing radiation, modifying cloud formation and properties, and changing snow albedo. BC emissions reduction is a potential strategy for mitigating global warming because it is emitted in large quantities and has a relatively short lifetime in the atmosphere in comparison to long-live greenhouse gases. Due to the highly variable nature of wildland fires, both in terms of fire occurrences on the landscape and the high spatial and temporal variability of fuels, consumption, and emissions, the impact of wildfire emissions varies significantly over the period of the wildfire season as well as inter-annually. In the U.S., while anthropogenic emissions are projected to decrease, as the climate warms wildfire activity is predicted to increase along with the contribution of fire emissions. Thus, a robust analysis of the effects of BC from fire emissions on air quality and climate necessitates a comprehensive, multi-scale study of all fire-related pollutants and other emission sources spanning multiple years of fire data and weather conditions. In this study we apply the WRF-BlueSky-SMOKE-CMAQ regional air-quality modeling system for multi-year (1997-2005) summertime simulations to evaluate the contribution of fire emissions to atmospheric BC and total PM2.5 concentrations. Historical fire records from the Bureau of Land Management are used by the BlueSky framework to calculate fire emissions. Plume rise is calculated by the SMOKE emission processor, taking into account meteorology from the WRF model. These emissions are combined with anthropogenic emissions from the NEI 2002 and biogenic emissions from the MEGAN model. CMAQ is

  19. Modeling the impact of black carbon on snowpack properties at an high altitude site in the Himalayas

    Science.gov (United States)

    Jacobi, Hans-Werner; Ménégoz, Martin; Gallée, Hubert; Lim, Saehee; Zanatta, Marco; Jaffrezo, Jean-Luc; Cozic, Julie; Laj, Paolo; Bonasoni, Paolo; Cristofanelli, Paolo; Stocchi, Paolo; Marinoni, Angela; Verza, Gianpietro; Vuillermoz, Elisa

    2013-04-01

    Light absorbing aerosols in the snow can modify the snow albedo. As a result, the seasonal snowpack can melt earlier compared to the unaffected snow leading to a warming effect on the atmosphere. Several global model studies have indicated that the long-range transport of light absorbing aerosols into the Himalayas and the subsequent deposition to the snow have contributed to a temperature rise in these regions. Due to its strong light absorbing properties, black carbon (BC) may play an important role in this process. To evaluate the possible impact of BC on snow albedo we determined BC concentrations in a range of fresh and older snow samples collected between 2009 and 2012 in the vicinity of the Pyramid station, Nepal at an altitude of more than 5000 m. BC concentrations in the snow were obtained after nebulizing the melted samples using a single particle soot photometer. The observed seasonal cycle in BC concentrations in the snow corresponds to observed seasonal cycles in atmospheric BC detected at the Pyramid station. Older snow showed somewhat higher concentrations compared to fresh snow samples indicating the influence of dry deposition of BC. In order to study in detail the impact of black carbon on snow properties, we upgraded the existing one-dimensional physical snowpack model CROCUS to account for the influence of black carbon on the absorption of radiation by the snow. A radiative transfer scheme was implemented into the snowpack model taking into account the solar zenith angle, the snow water equivalent and grain size, the soil albedo, and the concentration of black carbon in the snow. The upgraded model was applied to a high altitude site in the Himalayas using observed BC concentrations and meteorological data recorded at Pyramid station. First results of the simulations will be presented.

  20. Are there "black holes" in carbonate deposystems?

    OpenAIRE

    Wright, V.P.; Cherns, L.

    2009-01-01

    The likelihood that extensive dissolution of aragonite (and high magnesian calcite) takes place during very early burial, even in relatively shallow tropical settings, has wide implications for interpreting and modelling ancient limestones. Some low energy environments may constitute net sinks (“black holes”) for carbonates. If this is the case attempts to model sediment budgets and develop depth-productivity profiles for carbonate systems require as yet unavailable quantitative data on the e...

  1. Modeling black carbon and its potential radiative effects over the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Zhen-Ming Ji

    2016-09-01

    Full Text Available A regional climate model (RegCM4.3.4 coupled with an aerosol–snow/ice feedback module was used to simulate the deposition of anthropogenic light-absorbing impurities in snow/ice and the potential radiative feedback of black carbon (BC on temperature and snow cover over the Tibetan Plateau (TP in 1990–2009. Two experiments driven by ERA-interim reanalysis were performed, i.e., with and without aerosol–snow/ice feedback. Results indicated that the total deposition BC and organic matter (OM in snow/ice in the monsoon season (May–September were much more than non-monsoon season (the remainder of the year. The great BC and OM deposition were simulated along the margin of the TP in the non-monsoon season, and the higher deposition values also occurred in the western TP than the other regions during the monsoon period. BC-in-snow/ice decreased surface albedo and caused positive surface radiative forcing (SRF (3.0–4.5 W m-2 over the western TP in the monsoon season. The maximum SRF (5–6 W m-2 simulated in the Himalayas and southeastern TP in the non-monsoon season. The surface temperature increased by 0.1–1.5 °C and snow water equivalent decreased by 5–25 mm over the TP, which showed similar spatial distributions with the variations of SRF in each season. This study provided a useful tool to investigate the mechanisms involved in the effect of aerosols on climate change and the water cycle in the cryospheric environment of the TP.

  2. CCN activation of pure and coated carbon black particles.

    Science.gov (United States)

    Dusek, U; Reischl, G P; Hitzenberger, R

    2006-02-15

    The CCN (cloud condensation nucleus) activation of pure and coated carbon black particles was investigated using the University of Vienna cloud condensation nuclei counter (Giebl, H.; Berner, A.; Reischl, G.; Puxbaum, H.; Kasper-Giebl, A.; Hitzenberger, R. J. Aerosol Sci. 2002, 33, 1623-1634). The particles were produced by nebulizing an aqueous suspension of carbon black in a Collison atomizer. The activation of pure carbon black particles was found to require higher supersaturations than predicted by calculations representing the particles as insoluble, wettable spheres with mobility equivalent diameter. To test whether this effect is an artifact due to heating of the light-absorbing carbon black particles in the laser beam, experiments at different laser powers were conducted. No systematic dependence of the activation of pure carbon black particles on laser power was observed. The observations could be modeled using spherical particles and an effective contact angle of 4-6 degrees of water at their surface. The addition of a small amount of NaCl to the carbon black particles (by adding 5% by mass NaCl to the carbon black suspension) greatly enhanced their CCN efficiency. The measured CCN efficiencies were consistent with Kohler theory for particles consisting of insoluble and hygroscopic material. However, coating the carbon black particles with hexadecanol (a typical film-forming compound with one hydrophobic and one hydrophilic end) efficiently suppressed the CCN activation of the carbon black particles.

  3. Chemical analysis and molecular models for calcium-oxygen-carbon interactions in black carbon found in fertile Amazonian anthrosoils.

    Science.gov (United States)

    Archanjo, Braulio S; Araujo, Joyce R; Silva, Alexander M; Capaz, Rodrigo B; Falcão, Newton P S; Jorio, Ado; Achete, Carlos A

    2014-07-01

    Carbon particles containing mineral matter promote soil fertility, helping it to overcome the rather unfavorable climate conditions of the humid tropics. Intriguing examples are the Amazonian Dark Earths, anthropogenic soils also known as "Terra Preta de Índio'' (TPI), in which chemical recalcitrance and stable carbon with millenary mean residence times have been observed. Recently, the presence of calcium and oxygen within TPI-carbon nanoparticles at the nano- and mesoscale ranges has been demonstrated. In this work, we combine density functional theory calculations, scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, Fourier transformed infrared spectroscopy, and high resolution X-ray photoelectron spectroscopy of TPI-carbons to elucidate the chemical arrangements of calcium-oxygen-carbon groups at the molecular level in TPI. The molecular models are based on graphene oxide nanostructures in which calcium cations are strongly adsorbed at the oxide sites. The application of material science techniques to the field of soil science facilitates a new level of understanding, providing insights into the structure and functionality of recalcitrant carbon in soil and its implications for food production and climate change.

  4. Admix Compatibility in Carbon Black Loaded Toners

    Institute of Scientific and Technical Information of China (English)

    Paul C. Julien

    2004-01-01

    In a xerographic system where the charge on the toner is controlled by the electrical nature of the carbon black used as a pigment, it is found that the speed with which added toner is charged to the proper level depends on the relative electrical negativity of the carbon black in the original and added toner. This is due to the fact that the incumbent toner typically shares its charge with the new toner through charge exchange among the conductive carbon black particles. If the carbon blacks are electrically dissimilar, this charge sharing may fail.Thus, a toner may work well by itself in a machine, but the same toner may fail when added to a machine already running with a toner from a different vendor or even a different lot of toner from the same vendor. Thus the electrical nature of the carbon black needs to be controlled. This can be done by controlling the oxidation of the carbon black.

  5. Carbon, nitrogen, oxygen and sulfide budgets in the Black Sea : a biogeochemical model of the whole water column coupling the oxic and anoxic parts

    NARCIS (Netherlands)

    Grégoire, M.; Soetaert, K.E.R.

    2010-01-01

    Carbon, nitrogen, oxygen and sulfide budgets are derived for the Black Sea water column from a coupled physical–biogeochemical model. The model is applied in the deep part of the sea and simulates processes over the whole water column including the anoxic layer that extends from similar, equals115 m

  6. Carbon, nitrogen, oxygen and sulfide budgets in the Black Sea : a biogeochemical model of the whole water column coupling the oxic and anoxic parts

    NARCIS (Netherlands)

    Grégoire, M.; Soetaert, K.E.R.

    2010-01-01

    Carbon, nitrogen, oxygen and sulfide budgets are derived for the Black Sea water column from a coupled physical–biogeochemical model. The model is applied in the deep part of the sea and simulates processes over the whole water column including the anoxic layer that extends from similar, equals115 m

  7. PCDD/F and PCB water column partitioning examination using natural organic matter and black carbon partition coefficient models.

    Science.gov (United States)

    Howell, Nathan L; Rifai, Hanadi S

    2016-04-01

    A 9-year water dataset from the Houston Ship Channel (HSC) was analyzed to understand partitioning in polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/Fs). Total PCBs had more mass as dissolved (74%) whereas total PCDD/Fs did not (11%). Generally, the limited number of PCDD/Fs (only 2378 substituted) explained these differences though differences in chemical behavior beyond log K ow also likely influence partitioning. The particular fractionation seen in the HSC also seemed related to a wide variation in particulate organic carbon (POC)/dissolved organic carbon (DOC) ratio (0.42-180%). Published and unaltered linear free energy and linear solvation energy relationships for DOC, POC, and particulate black carbon (BC) resulted in predictions that were at best 27% (PCB) and 25% root-mean-square error (RMSE) (PCDD/F) partition fraction compared to observed (using estimated BC/POC fractions of 10 and 25%, respectively). These results show, at least in light of the uncertainties in this data (e.g., precise fraction of BC), that a 25% accuracy in model prediction of operationally dissolved or suspended fraction for any one PCB or PCDD/F congener is the best prediction that may be expected. It is therefore recommended that site-specific data be used to calibrate most any water column-partitioning model if it is to be expected to describe what actually occurs in field conditions.

  8. Investigating the Climate Impacts of Black Carbon in GFDL's AM2.1 Atmospheric General Circulation Model

    Science.gov (United States)

    Persad, G.; Ming, Y.

    2009-12-01

    Black carbon aerosols (BC) have been shown to significantly impact the climate system through their radiative effects. Many of the physical processes that drive BC climate impacts, however, are not yet well characterized across general circulation models. This has made it increasingly difficult to reach a consensus within the modeling community on how best to calculate BC radiative forcing in a way that is both representative and comparable between models. Calculation methodologies that include atmospheric perturbations, while more representative, are also more sensitive to model-specific representation of physical processes than those that do not. This study investigates the physical processes behind atmospheric perturbations due to BC using a modified version of the Geophysical Fluid Dynamics Laboratory's Atmospheric General Circulation Model (AM2.1). The preindustrial control case is perturbed by inserting a globally uniform BC burden into the atmosphere at a series of layers, and the TOA flux change is analyzed. We use a theoretical framework to establish the robustness of the atmospheric response produced by the model in order to determine the comparability of forcing calculations derived using atmospheric perturbations in AM2.1. Responses vary based on the cloud environment and the level of BC emplacement. Results, however, exhibit robust correlation with theory with positive implications for the inclusion of the atmospheric response in the calculation of BC radiative forcing.

  9. Modeled Influence of East Asian Black Carbon on Inter-Decadal Shifts in East China Summer Rainfall

    Institute of Scientific and Technical Information of China (English)

    Rashed MAHMOOD; LI Shuang-Lin

    2011-01-01

    Two inter-decadal shifts in East China sum- mer rainfall during the last three decades of the 20th century have been identified. One shift occurred in the late 1970s and featured more rainfall in the Yangtze River valley and prolonged drought in North China. The other shift occurred in the early 1990s and featured increased rainfall in South China. The role of black carbon (BC) aerosol in the first shift event is controversial, and it has not been documented for the second event. In this study, the authors used Geophysical Fluid Dynamics Laboratory's (GFDL's) atmospheric general circulation model known as Atmosphere and Land Model (AM2.1), which has been shown to capture East Asian climate variability well, to investigate these issues by conducting sensitive experiments with or without historical BC in East Asia. The results suggest that the model reproduces the first shift well, including intensified rainfall in the Yangtze River and weakened monsoonal circulation. However, the model captures only a fraction of the observed variations for the second shift event. Thus, the role of BC in modu- lating the two shift events is different, and its impact is relatively less important for the early 1990s event.

  10. Adsorption of Remazol Black B dye on Activated Carbon Felt

    Directory of Open Access Journals (Sweden)

    Donnaperna Lucio

    2008-11-01

    Full Text Available The adsorption of Remazol Black B (anionic dye on a microporous activated carbon felt is investigated from its aqueous solution. The surface chemistry of activated carbon is studied using X-ray microanalysis, "Boehm" titrations and pH of PZC measurements which indicates that the surface oxygenated groups are mainly acidic in nature. The kinetics of Remazol Black B adsorption is observed to be pH dependent and governed by the diffusion of the dye molecules. The experimental data can be explained by "intra-particle diffusion model". For Remazol Black B, the Khan model is best suited to simulate the adsorption isotherms.

  11. Prenatal Exposure to Carbon Black (Printex 90)

    DEFF Research Database (Denmark)

    Jackson, Petra; Vogel, Ulla; Wallin, Håkan;

    2011-01-01

    Maternal pulmonary exposure to ultrafine particles during pregnancy may affect the health of the child. Developmental toxicity of carbon black (Printex 90) nanoparticles was evaluated in a mouse model. Time-mated mice were intratracheally instilled with Printex 90 dispersed in Millipore water on ...... on gestation days (GD) 7, 10, 15 and 18, with total doses of 11, 54 and 268 mu g Printex 90/animal. The female offspring prenatally exposed to 268 mu g Printex 90/animal displayed altered habituation pattern during the Open field test....

  12. Inferring ice formation processes from global-scale black carbon profiles observed in the remote atmosphere and model simulations

    Science.gov (United States)

    Fan, S.-M.; Schwarz, J. P.; Liu, J.; Fahey, D. W.; Ginoux, P.; Horowitz, L. W.; Levy, H., II; Ming, Y.; Spackman, J. R.

    2012-12-01

    Black carbon (BC) aerosol absorbs solar radiation and can act as cloud condensation nucleus and ice formation nucleus. The current generation of climate models have difficulty in accurately predicting global-scale BC concentrations. Previously, an ensemble of such models was compared to measurements, revealing model biases in the tropical troposphere and in the polar troposphere. Here global aerosol distributions are simulated using different parameterizations of wet removal, and model results are compared to BC profiles observed in the remote atmosphere to explore the possible sources of these biases. The model-data comparison suggests a slow removal of BC aerosol during transport to the Arctic in winter and spring, because ice crystal growth causes evaporation of liquid cloud via the Bergeron process and, hence, release of BC aerosol back to ambient air. By contrast, more efficient model wet removal is needed in the cold upper troposphere over the tropical Pacific. Parcel model simulations with detailed droplet and ice nucleation and growth processes suggest that ice formation in this region may be suppressed due to a lack of ice nuclei (mainly insoluble dust particles) in the remote atmosphere, allowing liquid and mixed-phase clouds to persist under freezing temperatures, and forming liquid precipitation capable of removing aerosol incorporated in cloud water. Falling ice crystals can scavenge droplets in lower clouds, which also results in efficient removal of cloud condensation nuclei. The combination of models with global-scale BC measurements in this study has provided new, latitude-dependent information on ice formation processes in the atmosphere, and highlights the importance of a consistent treatment of aerosol and moist physics in climate models.

  13. Modelled Black Carbon Radiative Forcing and Atmospheric Lifetime in AeroCom Phase II Constrained by Aircraft Observations

    Energy Technology Data Exchange (ETDEWEB)

    Samset, B. H.; Myhre, G.; Herber, Andreas; Kondo, Yutaka; Li, Shao-Meng; Moteki, N.; Koike, Makoto; Oshima, N.; Schwarz, Joshua P.; Balkanski, Y.; Bauer, S.; Bellouin, N.; Berntsen, T.; Bian, Huisheng; Chin, M.; Diehl, Thomas; Easter, Richard C.; Ghan, Steven J.; Iversen, T.; Kirkevag, A.; Lamarque, Jean-Francois; Lin, Guang; Liu, Xiaohong; Penner, Joyce E.; Schulz, M.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, Kostas; Zhang, Kai

    2014-11-27

    Black carbon (BC) aerosols absorb solar radiation, and are generally held to exacerbate global warming through exerting a positive radiative forcing1. However, the total contribution of BC to the ongoing changes in global climate is presently under debate2-8. Both anthropogenic BC emissions and the resulting spatial and temporal distribution of BC concentration are highly uncertain2,9. In particular, long range transport and processes affecting BC atmospheric lifetime are poorly understood, leading to large estimated uncertainty in BC concentration at high altitudes and far from emission sources10. These uncertainties limit our ability to quantify both the historical, present and future anthropogenic climate impact of BC. Here we compare vertical profiles of BC concentration from four recent aircraft measurement campaigns with 13 state of the art aerosol models, and show that recent assessments may have overestimated present day BC radiative forcing. Further, an atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in transport dominated remote regions. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in the multi-model median direct BC forcing from fossil fuel and biofuel burning over the industrial era.

  14. Modeled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations

    Science.gov (United States)

    Samset, B. H.; Myhre, G.; Herber, A.; Kondo, Y.; Li, S.-M.; Moteki, N.; Koike, M.; Oshima, N.; Schwarz, J. P.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Berntsen, T. K.; Bian, H.; Chin, M.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J. E.; Schulz, M.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2014-08-01

    Atmospheric black carbon (BC) absorbs solar radiation, and exacerbates global warming through exerting positive radiative forcing (RF). However, the contribution of BC to ongoing changes in global climate is under debate. Anthropogenic BC emissions, and the resulting distribution of BC concentration, are highly uncertain. In particular, long range transport and processes affecting BC atmospheric lifetime are poorly understood. Here we discuss whether recent assessments may have overestimated present day BC radiative forcing in remote regions. We compare vertical profiles of BC concentration from four recent aircraft measurement campaigns to simulations by 13 aerosol models participating in the AeroCom Phase II intercomparision. An atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in remote ocean regions, in line with other recent studies. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in AeroCom Phase II median direct BC forcing, from fossil fuel and biofuel burning, over the industrial era. The sensitivity of modeled forcing to BC vertical profile and lifetime highlights an urgent need for further flight campaigns, close to sources and in remote regions, to provide improved quantification of BC effects for use in climate policy.

  15. Estimates of spatially and temporally resolved constrained black carbon emission over the Indian region using a strategic integrated modelling approach

    Science.gov (United States)

    Verma, S.; Reddy, D. Manigopal; Ghosh, S.; Kumar, D. Bharath; Chowdhury, A. Kundu

    2017-10-01

    We estimated the latest spatially and temporally resolved gridded constrained black carbon (BC) emissions over the Indian region using a strategic integrated modelling approach. This was done extracting information on initial bottom-up emissions and atmospheric BC concentration from a general circulation model (GCM) simulation in conjunction with the receptor modelling approach. Monthly BC emission (83-364 Gg) obtained from the present study exhibited a spatial and temporal variability with this being the highest (lowest) during February (July). Monthly BC emission flux was considerably high (> 100 kg km- 2) over the entire Indo-Gangetic plain (IGP), east and the west coast during winter months. This was relatively higher over the central and western India than over the IGP during summer months. Annual BC emission rate was 2534 Gg y- 1 with that over the IGP and central India respectively comprising 50% and 40% of the total annual BC emissions over India. A high relative increase was observed in modified BC emissions (more than five times the initial emissions) over the most part of the IGP, east coast, central/northwestern India. The relative predominance of monthly BC emission flux over a region (as depicted from z-score distribution maps) was inferred being consistent with the prevalence of region- and season-specific anthropogenic activity.

  16. Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations

    Science.gov (United States)

    Samset, B. H.; Myhre, G.; Herber, A.; Kondo, Y.; Li, S.-M.; Moteki, N.; Koike, M.; Oshima, N.; Schwarz, J. P.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Berntsen, T. K.; Bian, H.; Chin, M.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J. E.; Schulz, M.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2014-11-01

    Atmospheric black carbon (BC) absorbs solar radiation, and exacerbates global warming through exerting positive radiative forcing (RF). However, the contribution of BC to ongoing changes in global climate is under debate. Anthropogenic BC emissions, and the resulting distribution of BC concentration, are highly uncertain. In particular, long-range transport and processes affecting BC atmospheric lifetime are poorly understood. Here we discuss whether recent assessments may have overestimated present-day BC radiative forcing in remote regions. We compare vertical profiles of BC concentration from four recent aircraft measurement campaigns to simulations by 13 aerosol models participating in the AeroCom Phase II intercomparison. An atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in remote ocean regions, in line with other recent studies. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in AeroCom Phase II median direct BC forcing, from fossil fuel and biofuel burning, over the industrial era. The sensitivity of modelled forcing to BC vertical profile and lifetime highlights an urgent need for further flight campaigns, close to sources and in remote regions, to provide improved quantification of BC effects for use in climate policy.

  17. Modeled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations

    Directory of Open Access Journals (Sweden)

    B. H. Samset

    2014-08-01

    Full Text Available Atmospheric black carbon (BC absorbs solar radiation, and exacerbates global warming through exerting positive radiative forcing (RF. However, the contribution of BC to ongoing changes in global climate is under debate. Anthropogenic BC emissions, and the resulting distribution of BC concentration, are highly uncertain. In particular, long range transport and processes affecting BC atmospheric lifetime are poorly understood. Here we discuss whether recent assessments may have overestimated present day BC radiative forcing in remote regions. We compare vertical profiles of BC concentration from four recent aircraft measurement campaigns to simulations by 13 aerosol models participating in the AeroCom Phase II intercomparision. An atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in remote ocean regions, in line with other recent studies. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in AeroCom Phase II median direct BC forcing, from fossil fuel and biofuel burning, over the industrial era. The sensitivity of modeled forcing to BC vertical profile and lifetime highlights an urgent need for further flight campaigns, close to sources and in remote regions, to provide improved quantification of BC effects for use in climate policy.

  18. Hydrological response to Black Carbon deposition in seasonally snow covered catchments in Norway using two different atmospheric transport models

    Science.gov (United States)

    Matt, F.; Burkhart, J. F.; Pietikäinen, J. P.

    2015-12-01

    Black Carbon (BC) has been shown to significantly impact snow melt through lowering the albedo of snow and increasing the absorption rate of short wave radiation. Yet few studies have investigated the effect of the enhanced melt on hydrological variability. BC sources for Norway are rather remote and deposition rates low. However, once deposited on snow even low concentrations of BC can have a detectable effect on the snow melt. Variations in snow melt have a direct impact on the snow cover duration and the timing and magnitude of peak outflow. In this study, we use two different atmospheric transport models (the Lagrangian transport and dispersion model FELXPART and the regional aerosol-climate model REMO-HAM) and GAINS emissions to simulate deposition rates over Norway and Statkraft's Hydrologic Forecasting Toolbox (ShyFT) to simulate the impact of BC deposition on the seasonal snow melt. The Snow, Ice, and Aerosol Radiation (SNICAR) model coupled to the snow routine of the hydrological model is used to determine the albedo of the snow as a function of the BC concentration in two snow layers. To investigate the impact range of BC on the seasonal snow melt, we simulate the catchment hydrology of catchments in south-east, south-west and northern Norway under the impact of deposition rates from both transport models, respectively. Comparing the deposition rates from the two transport models, we observe large differences in the seasonal cycle which in turn results in a significantly different response in the snow melt. Furthermore, we investigate the overall impact of BC deposition on the snow melt and duration on a catchment scale for both transport models.

  19. Evaluation of black carbon emission inventories using a Lagrangian dispersion model – a case study over Southern India

    Directory of Open Access Journals (Sweden)

    H. S. Gadhavi

    2014-10-01

    Full Text Available We evaluated three emission inventories of black carbon (BC using Lagrangian particle dispersion model simulations and BC observations from a rural site in Southern India (Gadanki; 13.48° N, 79.18° E from 2008 to 2012. We found that 93 to 95% of the BC load at the observation site originated from emissions in India and the rest from the neighbouring countries and shipping. A substantial fraction (33 to 43% of the BC was transported from Northern India. Wet deposition is found to play a minor role in reducing BC mass at the site because of its proximity to BC sources during rainy season and relatively short rainy season over western and northern parts of India. Seasonally, the highest BC concentration (approx. 3.3 μg m−3 is observed during winter, followed by spring (approx. 2.8 μg m−3. While the model reproduced well the seasonal cycle, the modelled BC concentrations are significantly lower than observed values, especially in spring. The model bias is correlated to fire radiative power – a proxy of open biomass burning activity. Using potential emission sensitivity maps derived using the model, we suggest that underestimation of BC mass in the model during spring is due to the underestimation of BC fluxes over Southern India (possibly from open-biomass-burning/forest-fires. The overall performance of the model simulations using three different emission inventories (SAFAR-India, ECLIPSE and RETRO is similar, with ECLIPSE and SAFAR-India performing marginally better as both have about 30% higher emissions for India than RETRO. The ratio of observed to modelled annual mean BC concentration was estimated as 1.5 for SAFAR, 1.7 for ECLIPSE and 2.4 for RETRO.

  20. Source attribution of black carbon in Arctic snow.

    Science.gov (United States)

    Hegg, Dean A; Warren, Stephen G; Grenfell, Thomas C; Doherty, Sarah J; Larson, Timothy V; Clarke, Antony D

    2009-06-01

    Snow samples obtained at 36 sites in Alaska, Canada, Greenland, Russia, and the Arctic Ocean in early 2007 were analyzed for light-absorbing aerosol concentration together with a suite of associated chemical species. The light absorption data, interpreted as black carbon concentrations, and other chemical data were input into the EPA PMF 1.1 receptor model to explore the sources for black carbon in the snow. The analysis found four factors or sources: two distinct biomass burning sources, a pollution source, and a marine source. The first three of these were responsible for essentially all of the black carbon, with the two biomass sources (encompassing both open and closed combustion) together accounting for >90% of the black carbon.

  1. Vertical and Spatial Profiling of Arctic Black Carbon on the North Slope of Alaska 2015: Comparison of Model and Observation

    Science.gov (United States)

    Sedlacek, A. J., III; Feng, Y.; Biraud, S.; Springston, S. R.

    2015-12-01

    One of the major issues confronting aerosol climate simulations of the Arctic and Antarctic Cryospheres is the lack of detailed data on the vertical and spatial distribution of aerosols with which to test these models. This is due, in part, to the inherent difficulty of conducting such measurements in extreme environments. One class of under measured radiative forcing agents in the Polar Region is the absorbing aerosol - black carbon and brown carbon. In particular, vertical profile information of BC is critical in reducing uncertainty in model assessment of aerosol radiative impact at high latitudes. During the summer of 2015, a Single-Particle Soot Photometer (SP2) was deployed aboard the Department of Energy (DOE) Gultstream-1 (G-1) aircraft to measure refractory BC (rBC) concentrations as part of the DOE-sponsored ACME-V (ARM Airborne Carbon Measurements) campaign. This campaign was conducted from June through to mid-September along the North Slope of Alaska and was punctuated by vertical profiling over 5 sites (Atquasuk, Barrow, Ivotuk, Oliktok, and Toolik). In addition, measurement of CO, CO2 and CH4were also taken to provide information on the spatial and seasonal differences in GHG sources and how these sources correlate with BC. Lastly, these aerosol and gas measurements provide an important dataset to assess the representativeness of ground sites at regional scales. Comparisons between observations and a global climate model (CAM5) simulations will be agumented with a discussion on the capability of the model to capture observed monthly mean profiles of BC and stratified aerosol layers. Additionally, the ability of the SP2 to partition rBC-containing particles into nascent or aged species allows an evaluation of how well the CAM5 model captures aging of long distant transported carbonaceous aerosols. Finally model sensitivity studies will be aso be presented that investigated the relative importance of the different emission sectors to the summer Arctic

  2. Modelling quantum black hole

    CERN Document Server

    Govindarajan, T R

    2016-01-01

    Novel bound states are obtained for manifolds with singular potentials. These singular potentials require proper boundary conditions across boundaries. The number of bound states match nicely with what we would expect for black holes. Also they serve to model membrane mechanism for the black hole horizons in simpler contexts. The singular potentials can also mimic expanding boundaries elegantly, there by obtaining appropriately tuned radiation rates.

  3. Bioanalytical effect-balance model to determine the bioavailability of organic contaminants in sediments affected by black and natural carbon.

    Science.gov (United States)

    Bräunig, Jennifer; Tang, Janet Y M; Warne, Michael St J; Escher, Beate I

    2016-08-01

    In sediments several binding phases dictate the fate and bioavailability of organic contaminants. Black carbon (BC) has a high sorptive capacity for organic contaminants and can limit their bioavailability, while the fraction bound to organic carbon (OC) is considered to be readily desorbable and bioavailable. We investigated the bioavailability and mixture toxicity of sediment-associated contaminants by combining different extraction techniques with in vitro bioanalytical tools. Sediments from a harbour with high fraction of BC, and sediments from remote, agricultural and urban areas with lower BC were treated with exhaustive solvent extraction, Tenax extraction and passive sampling to estimate total, bioaccessible and bioavailable fractions, respectively. The extracts were characterized with cell-based bioassays that measure dioxin-like activity (AhR-CAFLUX) and the adaptive stress response to oxidative stress (AREc32). Resulting bioanalytical equivalents, which are effect-scaled concentrations, were applied in an effect-balance model, consistent with a mass balance-partitioning model for single chemicals. Sediments containing BC had most of the bioactivity associated to the BC fraction, while the OC fraction played a role for sediments with lower BC. As effect-based sediment-water distribution ratios demonstrated, most of the bioactivity in the AhR-CAFLUX was attributable to hydrophobic chemicals while more hydrophilic chemicals activated AREc32, even though bioanalytical equivalents in the aqueous phase remained negligible. This approach can be used to understand the fate and effects of mixtures of diverse organic contaminants in sediments that would not be possible if single chemicals were targeted by chemical analysis; and make informed risk-based decisions concerning the management of contaminated sediments.

  4. Black carbon and organic carbon emissions from wildfires in Mexico

    OpenAIRE

    XÓCHITL CRUZ NÚÑEZ; LOURDES VILLERS RUIZ; CARLOS GAY GARCÍA

    2014-01-01

    In Mexico, approximately 7650 wildfires occur annually, affecting 263 115 hectares of land. In addition to their impact on land degradation, wildfires cause deforestation, damage to ecosystems and promote land use change; apart from being the source of emissions of toxic substances to the environment (i.e., hydrogen cya - nide, black carbon and organic carbon). Black carbon is a short-lived greenhouse pollutant that also promotes snow and ice melting and decreased rainfall; it has an estimate...

  5. Dependence of climate forcing and response on the altitude of black carbon aerosols

    Science.gov (United States)

    Ban-Weiss, George A.; Cao, Long; Bala, G.; Caldeira, Ken

    2012-03-01

    Black carbon aerosols absorb solar radiation and decrease planetary albedo, and thus can contribute to climate warming. In this paper, the dependence of equilibrium climate response on the altitude of black carbon is explored using an atmospheric general circulation model coupled to a mixed layer ocean model. The simulations model aerosol direct and semi-direct effects, but not indirect effects. Aerosol concentrations are prescribed and not interactive. It is shown that climate response of black carbon is highly dependent on the altitude of the aerosol. As the altitude of black carbon increases, surface temperatures decrease; black carbon near the surface causes surface warming, whereas black carbon near the tropopause and in the stratosphere causes surface cooling. This cooling occurs despite increasing planetary absorption of sunlight (i.e. decreasing planetary albedo). We find that the trend in surface air temperature response versus the altitude of black carbon is consistent with our calculations of radiative forcing after the troposphere, stratosphere, and land surface have undergone rapid adjustment, calculated as "regressed" radiative forcing. The variation in climate response from black carbon at different altitudes occurs largely from different fast climate responses; temperature dependent feedbacks are not statistically distinguishable. Impacts of black carbon at various altitudes on the hydrological cycle are also discussed; black carbon in the lowest atmospheric layer increases precipitation despite reductions in solar radiation reaching the surface, whereas black carbon at higher altitudes decreases precipitation.

  6. Soil Black Carbon Loss and Sediment Black Carbon Accumulation in a Central Texas Woodland

    Science.gov (United States)

    Schieve, E. A.; Hockaday, W. C.; White, J. D.

    2016-12-01

    The Balcones Canyonlands National Wildlife Refuge is located along the eastern edge of the Edwards Plateau in Texas, and was established in 1992 for the purpose of conserving habitat for two endangered bird species. The landscape is composed of hilly, mesa-valley terrain, which is mostly covered by grasslands and woodlands dominated by juniper with intermingling of various oak species. Based on historical photo analysis and tree fire scar dendrochronology, the area has experienced major land use changes over the last century due to wildfire, logging, and drought affecting soil stability and woodland species composition. A previous study on soil black carbon showed that site-specific soil erosion potential and time since last fire may act as controls on soil black carbon concentrations. However, the black carbon transport flux, depositional fate, or the magnitude of soil erosion effects upon the black carbon budget are unconstrained at the watershed scale. To address this, we sampled the sediments accumulating in small ponds constructed during the 1950's for livestock watering. We are quantifying black carbon in sediments using solid-state 13C nuclear magnetic resonance spectroscopy. Preliminary data suggest that the pond sediments are a black carbon sink. Black carbon comprises 15 % - 25 %, of the sedimentary organic carbon, as substantial enrichment relative to soils within the watershed. We will present an early assessment of the black carbon erosion and sediment accumulation rates in first- and second-order watersheds.

  7. Black carbon in deep-Sea sediments

    Science.gov (United States)

    Masiello; Druffel

    1998-06-19

    Black carbon (BC) enters the ocean through aerosol and river deposition. BC makes up 12 to 31 percent of the sedimentary organic carbon (SOC) at two deep ocean sites, and it is 2400 to 13,900 carbon-14 years older than non-BC SOC deposited concurrently. BC is likely older because it is stored in an intermediate reservoir before sedimentary deposition. Possible intermediate pools are oceanic dissolved organic carbon (DOC) and terrestrial soils. If DOC is the intermediate reservoir, then BC is 4 to 22 percent of the DOC pool. If soils are the intermediate reservoir, then the importance of riverine carbon in the ocean carbon cycle has been underestimated.

  8. Modeling black hole evaporation

    CERN Document Server

    Fabbri, Alessandro

    2005-01-01

    The scope of this book is two-fold: the first part gives a fully detailed and pedagogical presentation of the Hawking effect and its physical implications, and the second discusses the backreaction problem, especially in connection with exactly solvable semiclassical models that describe analytically the black hole evaporation process. The book aims to establish a link between the general relativistic viewpoint on black hole evaporation and the new CFT-type approaches to the subject. The detailed discussion on backreaction effects is also extremely valuable.

  9. Trade and the Future of China's Black Carbon Emissions

    Science.gov (United States)

    Persad, G.; Oppenheimer, M.; Naik, V.

    2016-12-01

    Emissions of black carbon aerosols in China have increased by over 200% during the last 50 years, with negative implications both for human health and for regional and global climate. The Representative Concentration Pathway (RCP) emissions scenarios all assume that China's future black carbon emissions will decrease. However, this decline partially depends on the assumption that the evolution of future pollutant emissions in developing nations will match the observed historical relationship between air quality and income in developed nations. Recent research has demonstrated that a substantial portion of China's current black carbon emissions are driven by the production of goods exported for consumption elsewhere. This constitutes an external demand for black carbon-emitting activity in China that is much smaller in the developed nations on which the historical air quality/income relationship is based. We here show using integrated assessment model output, general circulation modeling, and emissions and economic data that (1) China must achieve a faster technological and regulatory evolution than did developed countries in order achieve the same air quality/income trajectory; (2) China's uniquely large share of export-related black carbon-emitting activities and their potential growth are a plausible explanation for this disparity; and (3) the climate and health implications of these export-related black carbon emissions, if unmitigated, are of interest from a policy perspective. Together these results indicate that the production of goods for export will steepen the mitigation curve for China relative to developed nations, if China is to achieve the future black carbon emissions reductions assumed in the RCPs.

  10. A Modelling Study of the Impact of On-Road Diesel Emissions on Arctic Black Carbon and Solar Radiation Transfer

    Directory of Open Access Journals (Sweden)

    Giovanni Pitari

    2015-03-01

    Full Text Available Market strategies have greatly incentivized the use of diesel engines for land transportation. These engines are responsible for a large fraction of black carbon (BC emissions in the extra-tropical Northern Hemisphere, with significant effects on both air quality and global climate. In addition to direct radiative forcing, planetary-scale transport of BC to the Arctic region may significantly impact the surface albedo of this region through wet and dry deposition on ice and snow. A sensitivity study is made with the University of L’Aquila climate-chemistry-aerosol model by eliminating on-road diesel emissions of BC (which represent approximately 50% of BC emissions from land transportation. According to the model and using emission scenarios for the year 2000, this would imply an average change in tropopause direct radiative forcing (RF of −0.054 W∙m−2 (globally and −0.074 W∙m−2 over the Arctic region, with a peak of −0.22 W∙m−2 during Arctic springtime months. These RF values increase to −0.064, −0.16 and −0.50 W∙m−2, respectively, when also taking into account the BC snow-albedo forcing. The calculated BC optical thickness decrease (at λ = 0.55 µm is 0.48 × 10−3 (globally and 0.74 × 10−3 over the Arctic (i.e., 10.5% and 16.5%, respectively, with a peak of 1.3 × 10−3 during the Arctic springtime.

  11. Pyrolytic carbon black composite and method of making the same

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit K.; Paranthaman, Mariappan Parans; Bi, Zhonghe

    2016-09-13

    A method of recovering carbon black includes the step of providing a carbonaceous source material containing carbon black. The carbonaceous source material is contacted with a sulfonation bath to produce a sulfonated material. The sulfonated material is pyrolyzed to produce a carbon black containing product comprising a glassy carbon matrix phase having carbon black dispersed therein. A method of making a battery electrode is also disclosed.

  12. Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments

    Directory of Open Access Journals (Sweden)

    D. Streets

    2012-09-01

    Full Text Available Two historical emission inventories of black carbon (BC, primary organic carbon (OC, and SO2 emissions from land-based anthropogenic sources, ocean-going vessels, air traffic, biomass burning, and volcanoes are presented and discussed for the period 1980–2010. These gridded inventories are provided to the internationally coordinated AeroCom Phase II multi-model hindcast experiments. The horizontal resolution is 0.5°×0.5° and 1.0°×1.0°, while the temporal resolution varies from daily for volcanoes to monthly for biomass burning and aircraft emissions, and annual averages for land-based and ship emissions. One inventory is based on inter-annually varying activity rates of land-based anthropogenic emissions and shows strong variability within a decade, while the other one is derived from interpolation between decadal endpoints and thus exhibits linear trends within a decade. Both datasets capture the major trends of decreasing anthropogenic emissions over the USA and Western Europe since 1980, a sharp decrease around 1990 over Eastern Europe and the former USSR, and a steep increase after 2000 over East and South Asia. The inventory differences for the combined anthropogenic and biomass burning emissions in the year 2005 are 34% for BC, 46% for OC, and 13% for SO2. They vary strongly depending on species, year and region, from about 10% to 40% in most cases, but in some cases the inventories differ by 100% or more. Differences in emissions from wild-land fires are caused only by different choices of the emission factors for years after 1996 which vary by a factor of about 1 to 2 for OC depending on region, and by a combination of emission factors and the amount of dry mass burned for years up to 1996. Volcanic SO2 emissions, which are only provided in one inventory, include emissions from explosive, effusive, and quiescent degassing events for 1167 volcanoes.

  13. Assessing the carbon sequestration potential of poplar and black locust short rotation coppices on mine reclamation sites in Eastern Germany - Model development and application.

    Science.gov (United States)

    Quinkenstein, A; Jochheim, H

    2016-03-01

    In the temperate zone short rotation coppice systems for the production of woody biomass (SRC) have gained great interest as they offer a pathway to both sustainable bioenergy production and the potential sequestration of CO2 within the biomass and the soil. This study used the carbon model SHORTCAR to assess the carbon cycle of a poplar (Populus suaveolens Fisch. x Populus trichocarpa Torr. et Gray cv. Androscoggin) and a black locust (Robinia pseudoacacia L.) SRC. The model was calibrated using data from established SRC plantations on reclaimed mine sites in northeast Germany and validated through the determination of uncertainty ranges of selected model parameters and a sensitivity analysis. In addition to a 'reference scenario', representing the actual site conditions, 7 hypothetical scenarios, which varied in climate conditions, rotation intervals, runtimes, and initial soil organic carbon (SOC) stocks, were defined for each species. Estimates of carbon accumulation within the biomass, the litter layer, and the soil were compared to field data and previously published results. The model was sensitive to annual stem growth and initial soil organic carbon stocks. In the reference scenario net biome production for SRC on reclaimed sites in Lusatia, Germany amounted to 64.5 Mg C ha(-1) for R. pseudoacacia and 8.9 Mg C ha(-1) for poplar, over a period of 36 years. These results suggest a considerable potential of SRC for carbon sequestration at least on marginal sites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Studies of activated carbon and carbon black for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Richner, R.; Mueller, S.; Koetz, R.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Carbon Black and activated carbon materials providing high surface areas and a distinct pore distribution are prime materials for supercapacitor applications at frequencies < 0.5 Hz. A number of these materials were tested for their specific capacitance, surface and pore size distribution. High capacitance electrodes were manufactured on the laboratory scale with attention to ease of processability. (author) 1 fig., 1 ref.

  15. UV-B Measurements in Mexico City: Comparison with Modeled UVB and Black Carbon

    Science.gov (United States)

    Marley, N. A.; Gaffney, J. S.; Frederick, J. E.

    2004-12-01

    Ultraviolet-B radiation (UV-B) represents a chemically important region of the sun's spectrum. At the earth's surface, UV-B can initiate a number of important photochemical reactions (e.g., ozone photolysis) that lead to the formation of OH radicals. Where levels of nitrogen oxides are high and reactive hydrocarbons are found, as in Mexico City and other megacities, UV-B can initiate photochemical smog formation. We used a broadband instrument to obtain UV-B measurements in Mexico City during the Mexico City Metropolitan Area 2003/Mexico City Megacity 2003 field study. We then used a simple radiation model for the Mexico City latitude, altitude, and time of year to construct UV-B contours for comparison with our results. Early morning discrepancies involve reductions in UV-B that are consistent with the presence of significant levels of BC in the Mexico City environment. During most afternoons, UV-B reductions were dominated by clouds. The results are discussed in terms of the potential impacts of BC on UV-B and downwind photochemical processes. The authors wish to thank the researchers at Centro Nacional de Investigación en Calidad Ambiental (CENICA), Mexico City. This work was supported by the U.S. Department of Energy, Atmospheric Science Program (Marley and Gaffney), and the U.S. Environmental Protection Agency (Frederick). We also wish to acknowledge Drs. Mario and Luisa Molina for their help in organizing and directing the Mexico City Metropolitan Area 2003 field study, during which these data were collected.

  16. Black carbon in deep-sea sediments

    OpenAIRE

    1998-01-01

    Black carbon (BC) enters the ocean through aerosol and river deposition. BC makes up 12 to 31 percent of the sedimentary organic carbon (SOC) at two deep ocean sites, and it is 2400 to 13,900 carbon-14 years older than non-BC SOC deposited concurrently. BC is likely older because it is stored in an intermediate reservoir before sedimentary deposition. Possible intermediate pools are oceanic dissolved organic carbon (DOC) and terrestrial soils. If DOC is the intermediate reservoir, then BC is ...

  17. Black-carbon absorption enhancement in the atmosphere determined by particle mixing state

    Science.gov (United States)

    Liu, Dantong; Whitehead, James; Alfarra, M. Rami; Reyes-Villegas, Ernesto; Spracklen, Dominick V.; Reddington, Carly L.; Kong, Shaofei; Williams, Paul I.; Ting, Yu-Chieh; Haslett, Sophie; Taylor, Jonathan W.; Flynn, Michael J.; Morgan, William T.; McFiggans, Gordon; Coe, Hugh; Allan, James D.

    2017-02-01

    Atmospheric black carbon makes an important but poorly quantified contribution to the warming of the global atmosphere. Laboratory and modelling studies have shown that the addition of non-black-carbon materials to black-carbon particles may enhance the particles’ light absorption by 50 to 60% by refracting and reflecting light. Real-world experimental evidence for this `lensing’ effect is scant and conflicting, showing that absorption enhancements can be less than 5% or as large as 140%. Here we present simultaneous quantifications of the composition and optical properties of individual atmospheric black-carbon particles. We show that particles with a mass ratio of non-black carbon to black carbon of less than 1.5, which is typical of fresh traffic sources, are best represented as having no absorption enhancement. In contrast, black-carbon particles with a ratio greater than 3, which is typical of biomass-burning emissions, are best described assuming optical lensing leading to an absorption enhancement. We introduce a generalized hybrid model approach for estimating scattering and absorption enhancements based on laboratory and atmospheric observations. We conclude that the occurrence of the absorption enhancement of black-carbon particles is determined by the particles’ mass ratio of non-black carbon to black carbon.

  18. Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model

    Directory of Open Access Journals (Sweden)

    B. Scarnato

    2012-10-01

    Full Text Available According to recent studies, internal mixing of black carbon (BC with other aerosol materials in the atmosphere alters its aggregate shape, absorption of solar radiation, and radiative forcing. These mixing state effects are not yet fully understood. In this study, we characterize the morphology and mixing state of bare BC and BC internally mixed with sodium chloride (NaCl using electron microscopy and examine the sensitivity of optical properties to BC mixing state and aggregate morphology using a discrete dipole approximation model (DDSCAT. DDSCAT predicts a higher mass absorption coefficient, lower single scattering albedo (SSA, and higher absorption Angstrom exponent (AAE for bare BC aggregates that are lacy rather than compact. Predicted values of SSA at 550 nm range between 0.18 and 0.27 for lacy and compact aggregates, respectively, in agreement with reported experimental values of 0.25 ± 0.05. The variation in absorption with wavelength does not adhere precisely to a power law relationship over the 200 to 1000 nm range. Consequently, AAE values depend on the wavelength region over which they are computed. In the 300 to 550 nm range, AAE values ranged in this study from 0.70 for compact to 0.95 for lacy aggregates. The SSA of BC internally mixed with NaCl (100–300 nm in radius is higher than for bare BC and increases with the embedding in the NaCl. Internally mixed BC SSA values decrease in the 200–400 nm wavelength range, a feature also common to the optical properties of dust and organics. Linear polarization features are also predicted in DDSCAT and are dependent on particle morphology. The bare BC (with a radius of 80 nm presents in the linear polarization a bell shape feature, which is a characteristic of the Rayleigh regime (for particles smaller than the wavelength of incident radiation. When BC is internally mixed with NaCl (100–300 nm in radius, strong depolarization features for near-VIS incident radiation are evident

  19. Black carbon in aerosol during BIBLE B

    Science.gov (United States)

    Liley, J. Ben; Baumgardner, D.; Kondo, Y.; Kita, K.; Blake, D. R.; Koike, M.; Machida, T.; Takegawa, N.; Kawakami, S.; Shirai, T.; Ogawa, T.

    2003-02-01

    The Biomass Burning and Lightning Experiment (BIBLE) A and B campaigns over the tropical western Pacific during springtime deployed a Gulfstream-II aircraft with systems to measure ozone and numerous precursor species. Aerosol measuring systems included a MASP optical particle counter, a condensation nucleus (CN) counter, and an absorption spectrometer for black carbon. Aerosol volume was very low in the middle and upper troposphere during both campaigns, and during BIBLE A, there was little aerosol enhancement in the boundary layer away from urban areas. In BIBLE B, there was marked aerosol enhancement in the lowest 3 km of the atmosphere. Mixing ratios of CN in cloud-free conditions in the upper troposphere were in general higher than in the boundary layer, indicating new particle formation from gaseous precursors. High concentrations of black carbon were observed during BIBLE B, with mass loadings up to 40 μg m-3 representing as much as one quarter of total aerosol mass. Strong correlations with hydrocarbon enhancement allow the determination of a black carbon emission ratio for the fires at that time. Expressed as elemental carbon, it is about 0.5% of carbon dioxide and 6% of carbon monoxide emissions from the same fires, comparable to methane production, and greater than that of other hydrocarbons.

  20. Modified carbon black materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  1. Black Carbon, The Pyrogenic Clay Mineral?

    Science.gov (United States)

    Most soils contain significant amounts of black carbon, much of which is present as discrete particles admixed with the coarse clay fraction (0.2–2.0 µm e.s.d.) and can be physically separated from the more abundant diffuse biogenic humic materials. Recent evidence has shown that naturally occurring...

  2. Black carbon: The reverse of its dark side

    NARCIS (Netherlands)

    Koelmans, A.A.; Jonker, M.T.O.; Cornelissen, G.; Bucheli, T.D.; Noort, van P.C.M.; Gustafsson, O.

    2006-01-01

    The emission of black carbon is known to cause major environmental problems. Black carbon particles contribute to global warming, carry carcinogenic compounds and cause serious health risks. Here, we show another side of the coin. We review evidence that black carbon may strongly reduce the risk pos

  3. Opportunities and Challenges for Being a Carbon Black Great Power

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    1. The "Uth Five-year Plan" Lay- ing the Foundation for Carbon Black Great Power 1.1 Rapid growth of carbon black output and production capacity During the "llth Five-year Plan" Period, China carbon black output was increased by 1.1 times and realized doubling; and the production capacity of carbon black realized an average annu- al growth of 16.9%. In 2011, the carbon black output was 3.853 million tons, increased by 14.2% compared with that of the last year, and the pro- portion of carbon black output in the world carbon black output was increased from 16% to 36%. The carbon black production capacity was 5.345 mil- lion tons, increased by 6% compared with that of the last year, and the proportion of carbon black production capacity in the world carbon black out- put reached 38%. Chinese carbon black output has been ranking the 1st place throughout the world for 6 years successively, and China has become a great power of carbon black production in the world.

  4. Black carbon radiative forcing derived from AERONET measurements and models over an urban location in the southeastern Iberian Peninsula

    Science.gov (United States)

    Valenzuela, A.; Arola, A.; Antón, M.; Quirantes, A.; Alados-Arboledas, L.

    2017-07-01

    This paper provides an account of observed variations in Black carbon (BC) aerosol concentrations and their induced radiative forcing for the first time over Granada a measurement site in Southeastern Iberian Peninsula. Column-integrated BC concentrations were retrieved for the period 2005-2012. Monthly averages of BC concentrations (± one standard deviation) ranged from higher values in January and December with 4.0 ± 2.5 and 4 ± 3 mg/m2, respectively, to lower values in July and August with 1.6 ± 1.2 and 2.0 ± 0.5 mg/m2, respectively. This reduction is not only observed in the average values, but also in the median, third and first quartiles. The average BC concentration in winter (3.8 ± 0.6 mg/m2) was substantially higher than in summer (1.9 ± 0.3 mg/m2), being the eight-year average of 2.9 ± 0.9 mg/m2. The reduction in the use of fossil fuels during the economic crisis contributed significantly to reduced atmospheric loadings of BC. According to our analysis this situation persisted until 2010. BC concentration values were analyzed in terms of air mass influence using cluster analysis. BC concentrations for cluster 1 (local and regional areas) showed high correlations with air masses frequency in winter and autumn. In these seasons BC sources were related to the intense road traffic and increased BC emissions from domestic heating. High BC concentrations were found in autumn just when air mass frequencies for cluster 3 (Mediterranean region) were more elevated, suggesting that air masses coming from that area transport biomass burning particles towards Granada. BC aerosol optical properties were retrieved from BC fraction using aerosol AERONET size volume distribution and Mie theory. A radiative transfer model (SBDART) was used to estimate the aerosol radiative forcing separately for composite aerosol (total aerosols) and exclusively for BC aerosols. The mean radiative forcing for composite aerosol was + 23 ± 6 W/m2 (heating rate of + 0.21 ± 0.06 K

  5. A black carbon air quality network

    Science.gov (United States)

    Kirchstetter, T.; Caubel, J.; Cados, T.; Preble, C.; Rosen, A.

    2016-12-01

    We developed a portable, power efficient black carbon sensor for deployment in an air quality network in West Oakland, California. West Oakland is a San Francisco Bay Area residential/industrial community adjacent to regional port and rail yard facilities, and is surrounded by major freeways. As such, the community is affected by diesel particulate matter emissions from heavy-duty diesel trucks, locomotives, and ships associated with freight movement. In partnership with Environmental Defense Fund, the Bay Area Air Quality Management District, and the West Oakland Environmental Indicators Project, we are collaborating with community members to build and operate a 100-sensor black carbon measurement network for a period of several months. The sensor employs the filter-based light transmission method to measure black carbon. Each sensor node in the network transmits data hourly via SMS text messages. Cost, power consumption, and performance are considered in choosing components (e.g., pump) and operating conditions (e.g., sample flow rate). In field evaluation trials over several weeks at three monitoring locations, the sensor nodes provided black carbon concentrations comparable to commercial instruments and ran autonomously for a week before sample filters and rechargeable batteries needed to be replaced. Buildup to the 100-sensor network is taking place during Fall 2016 and will overlap with other ongoing air monitoring projects and monitoring platforms in West Oakland. Sensors will be placed along commercial corridors, adjacent to freeways, upwind of and within the Port, and throughout the residential community. Spatial and temporal black carbon concentration patterns will help characterize pollution sources and demonstrate the value of sensing networks for characterizing intra-urban air pollution concentrations and exposure to air pollution.

  6. Addressing inconsistencies in black carbon literature

    Science.gov (United States)

    Shonkoff, S. B.; Chafe, Z.; Smith, K. R.

    2010-12-01

    The literature describing black carbon (BC) emissions, and their effect on Earth’s climate, is growing rapidly. Unfortunately, inconsistencies in definitions; data collection and characterization; system boundaries; and time horizons have led to confusion about the relative importance of BC compared to other climate-active pollutant (CAPs). We discuss three sources of confusion: 1) Currently available BC inventories are not directly comparable to those used by the IPCC to track the greenhouse gases (GHGs) considered in the Kyoto Protocol (CO2, CH4, N2O). In particular, BC inventories often include all emissions: natural and anthropogenic in origin, controllable and non-controllable. IPCC inventories include only anthropogenic emissions. This BC accounting is appropriate for atmospheric science deliberations, but risks being interpreted as an overstatement against official Kyoto GHG inventories in a policy or control context. The IPCC convention of using 1750 as the starting year for emission inventories further complicates matters: significant BC emissions were emitted previous to that date by both human and natural sources. Though none of the pre-1750 BC emissions remain in the atmosphere today, their legacy presents challenges in assigning historical responsibility for associated global warming among sectors and regional populations. 2) Inconsistencies exist in the specific emissions sources considered in atmospheric models used to predict net BC forcing often lead to widely varying climate forcing estimates. For example, while some analyses consider only fossil fuel 1, others include both open biomass burning and fossil fuel combustion 2, and yet others include sources beyond biomass and fossil fuel burning 3. 3) Inconsistencies exist in how analyses incorporate the relationship between BC emissions and the associated cooling aerosols and processes, such as organic carbon (OC), and aerosol indirect effects (AIE). Unlike Kyoto GHGs, BC is rarely emitted in pure

  7. Cycling of black carbon in the ocean

    OpenAIRE

    2016-01-01

    Black carbon (BC) is a byproduct of combustion from wildfires and fossil fuels and is a slow-cycling component of the carbon cycle. Whether BC accumulates and ages on millennial timescales in the world oceans has remained unknown. Here, we quantified dissolved BC (DBC) in marine dissolved organic carbon (DOC) isolated by solid phase extraction (SPE) at several sites in the world ocean. We find that DBC in the Atlantic, Pacific and Arctic oceans ranges from 1.4 to 2.6 μM in the surface and is ...

  8. Cycling of black carbon in the ocean

    OpenAIRE

    Coppola, Alysha I; Druffel, Ellen R. M.

    2016-01-01

    Black carbon (BC) is a byproduct of combustion from wildfires and fossil fuels and is a slow-cycling component of the carbon cycle. Whether BC accumulates and ages on millennial timescales in the world oceans has remained unknown. Here, we quantified dissolved BC (DBC) in marine dissolved organic carbon (DOC) isolated by solid phase extraction (SPE) at several sites in the world ocean. We find that DBC in the Atlantic, Pacific and Arctic oceans ranges from 1.4 to 2.6 μM in the surface and is ...

  9. Black carbon measurements using an integrating sphere

    Science.gov (United States)

    Hitzenberger, R.; Dusek, U.; Berner, A.

    1996-08-01

    An integrating sphere was used to determine the black carbon (BC) content of aerosol filter samples dissolved in chloroform (method originally described by Heintzenberg [1982]). The specific absorption coefficient Ba (equal to absorption per mass) of the samples was also measured using the sphere as an integrating detector for transmitted light. Comparing the Ba of ambient samples taken in Vienna, Austria, to the BC concentrations measured on the dissolved filters, a value of approximately 6 m2/g was found to be a reasonable value for the Ba of the black carbon found at the site. The size dependence of Ba of a nebulized suspension of soot was measured using a rotating impactor, and a reasonable agreement between measured and calculated values was found.

  10. Black Carbon Contribution to Organic Carbon Stocks in Urban Soil

    DEFF Research Database (Denmark)

    Edmondson, Jill L.; Stott, Iain; Potter, Jonathan;

    2015-01-01

    Soil holds 75% of the total organic carbon (TOC) stock in terrestrial ecosystems. This comprises ecosystem-derived organic carbon (OC) and black carbon (BC), a recalcitrant product of the incomplete combustion of fossil fuels and biomass. Urban topsoils are often enriched in BC from historical...... increased with soil depth, and was enriched in topsoil under trees when compared to grassland. Our findings establish the importance of urban ecosystems in storing large amounts of OC in soils and that these soils also capture a large proportion of BC particulates emitted within urban areas....

  11. Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a comprehensive measurement data set

    Directory of Open Access Journals (Sweden)

    S. Eckhardt

    2015-04-01

    Full Text Available The concentrations of sulfate, black carbon (BC and other aerosols in the Arctic are characterized by high values in late winter and spring (so-called Arctic Haze and low values in summer. Models have long been struggling to capture this seasonality and especially the high concentrations associated with Arctic Haze. In this study, we evaluate sulfate and BC concentrations from eleven different models driven with the same emission inventory against a comprehensive pan-Arctic measurement data set over a time period of two years (2008–2009. The set of models consisted of one Lagrangian particle dispersion model, four chemistry-transport models (CTMs, one atmospheric chemistry-weather forecast model and five chemistry-climate models (CCMs, of which two were nudged to meteorological analyses and three were running freely. The measurement data set consisted of surface measurements of equivalent BC (eBC from five stations (Alert, Barrow, Pallas, Tiksi and Zeppelin, elemental carbon (EC from Station Nord and Alert and aircraft measurements of refractory BC (rBC from six different campaigns. We find that the models generally captured the measured eBC/rBC and sulfate concentrations quite well, compared to past comparisons. However, the aerosol seasonality at the surface is still too weak in most models. Concentrations of eBC and sulfate averaged over three surface sites are underestimated in winter/spring in all but one model (model means for January-March underestimated by 59 and 37% for BC and sulfate, respectively, whereas concentrations in summer are overestimated in the model mean (by 88 and 44% for July–September, but with over- as well as underestimates present in individual models. The most pronounced eBC underestimates, not included in the above multi-site average, are found for the station Tiksi in Siberia where the measured annual mean eBC concentration is three times higher than the average annual mean for all other stations. This suggests

  12. Black carbon network in Mexico. First Results

    Science.gov (United States)

    Barrera, Valter; Peralta, Oscar; Granado, Karen; Ortinez, Abraham; Alvarez-Ospina, Harry; Espinoza, Maria de la Luz; Castro, Telma

    2017-04-01

    After the United Nations Framework Convention on Climate Change celebrated in Paris 2016, many countries should adopt some mechanisms in the next years to contribute to mitigate greenhouse gas emissions and support sustainable development. Mexico Government has adopted an unconditional international commitment to carry out mitigation actions that would result in the reduction of 51% in black carbon (BC) emissions by year 2030. However, many BC emissions have been calculated by factor emissions. Since optical measurements of environmental BC concentrations can vary according the different components and their subsequence wavelength measure, it's important to obtain more accurate values. BC is formally defined as an ideally light-absorbing substance composed by carbon (Bond et al., 2013), and is the second main contributor (behind Carbon Dioxide; CO2) to positive radiative forcing (Ramanathan and Carmichael, 2008). Recently, BC has been used as an additional indicator in air quality management in some cities because is emitted from the incomplete combustion of fossil fuels, biofuel and biomass burning in both anthropogenic and it is always emitted with other particles and gases, such as organic carbon (OC), nitrogen oxides (NOx), and sulfur dioxide (SO2). Black Carbon, PM2.5 and pollutant gases were measured from January 2015 to December 2015 at three main cities in Mexico, and two other places to evaluate the BC concentration levels in the country. The urban background sites (Mexico City, Monterrey, Guadalajara, MXC-UB, GDL-UB, MTY-UB), a sub-urban background site (Juriquilla, Queretaro, JUR-SUB) and a regional background site (Altzomoni, ALT-RB). Results showed the relationship between BC and PM2.5 in the 3 large cities, with BC/PM2.5 ratios near 0.14 to 0.09 and a high BC-CO relationship in all the year in Mexico City, who showed that mobile sources are a common, at least in cities with a non-significant biomass burning emission related to agriculture or coal

  13. Modeling the effects of fire severity and climate warming on active layer and soil carbon dynamics of black spruce forests across the landscape in interior Alaska

    Science.gov (United States)

    Genet, H.; McGuire, Anthony David; Barrett, K.; Breen, A.; Euskirchen, E.S.; Johnstone, J.F.; Kasischke, E.S.; Melvin, A.M.; Bennett, A.; Mack, M.C.; Rupp, T.S.; Schuur, A.E.G.; Turetsky, M.R.; Yuan, F.

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  14. Centennial black carbon turnover observed in a Russian steppe soil

    Directory of Open Access Journals (Sweden)

    K. Hammes

    2008-02-01

    Full Text Available Black carbon (BC, from incomplete combustion of fuels and biomass, has been considered highly recalcitrant and a substantial sink for carbon dioxide. Recent studies have shown that BC can be degraded. We use soils sampled 100 years apart in a Russian steppe preserve to generate the first whole-profile estimate of BC stocks and turnover in the field. BC stocks (initially 2.5 kg m-2 decreased 25% with cessation of biomass burning. BC turnover in the soil was 293 y (best estimate; range 212–541 y, much faster than inert/passive carbon in soil models. Such results provide a new constraint on theories of soil carbon stabilization. Most importantly, BC cannot be assumed chemically recalcitrant in all soils; other explanations for very old soil carbon are needed.

  15. Assessing the Cytotoxicity of Black Carbon As A Model for Ultrafine Anthropogenic Aerosol Across Human and Murine Cells: A Chronic Exposure Model of Nanosized Particulate Matter

    Science.gov (United States)

    Salinas, E.

    2015-12-01

    Combustion-derived nanomaterials or ultrafine (Juarez, Chihuahua, Mexico, comprising the Paso del Norte air basin. A study conducted by scientists from the Research Triangle Park in North Carolina, analyzed sites adjacent to heavy-traffic highways in El Paso and elucidated higher UFP concentrations in comparison to previously published work exploring pollution and adverse health effects in the basin. UFPs can penetrate deep into the alveolar sacs of the lung, reaching distant alveolar sacs and inducing a series of immune responses that are detrimental to the body: evidence suggests that UFPs can also cross the alveolar-blood barrier and potentially endanger the body's immune response. The physical properties of UFPs and the dynamics of local atmospheric and topographical conditions indicate that emissions of nanosized carbonaceous aerosols could pose significant threats to biological tissues upon inhalation by local residents of the Paso del Norte. This study utilizes Black Carbon (BC) as a model for environmental UFPs and its effects on the immunological response. An in vitro approach is used to measure the ability of BC to promote cell death upon long-term exposure. Human epithelial lung cells (A549), human peripheral-blood monocytes (THP-1), murine macrophages (RAW264.7), and murine epithelial lung cells (LA-4) were treated with BC and assessed for metabolic activity after chronic exposure utilizing three distinct and independent cell viability assays. The cell viability experiments included a chronic study at 7, 10, and 14 days of UFP exposure at six different concentrations of BC: 100μM, 300μM, 600μM, 1,250μM, 2,500μM, and 5,000μM conducting the Trypan Blue (TB) Exclusion Assay, Calcein-AM Viability Assay, and CellTiter-Glo Viability Assay.

  16. Adsorption ability of the carbon black for nickel ions uptake from aqueous solution

    Directory of Open Access Journals (Sweden)

    Rađenović Ankica

    2013-01-01

    Full Text Available Surface modification can be performed by adsorption of certain organic compounds on the surface of carbon. The main objective of this work was to compare the adsorption ability of acid-modified carbon black with the non-modified one. Modification process was performed by adsorption of acetic acid onto commercial carbon black surface. A batch adsorption system was applied to study the both adsorption reaction, acetic acid and Ni(II adsorption onto the carbon black. Adsorption isotherms of acetic acid and Ni(II adsorption onto the non-modified and modified carbon black were fitted by classical adsorption models, such as Freundlich and Langmuir models. Modified carbon black surface become more active for Ni(II ions removal from aqueous solutions. The results showed that modification by acetic acid increases the adsorption capacity of carbon black from 18.3823 mg Ni(II g-1 to 86.9566 mg Ni(II g-1. SEM analysis enabled the observation of any surface changes in the carbon black that have occurred due to either acid modification or Ni(II adsorption.

  17. Supply Deficit of Feedstock Oils for Carbon Black

    Institute of Scientific and Technical Information of China (English)

    Li Bingyan

    2007-01-01

    @@ Feedstock oils used for carbon blackproduction mainly include ethylene tar,anthracene oil and coal tar. With thegrowing output of carbon black in re-cent years, demand for feedstock oilshas increased constantly.

  18. Surface analysis of carbon black waste materials from tire residues

    Science.gov (United States)

    Lee, W. H.; Kim, J. Y.; Ko, Y. K.; Reucroft, P. J.; Zondlo, J. W.

    1999-03-01

    X-ray photoelectron spectroscopy (XPS) has been used to obtain surface chemical state information on two carbon black waste materials in terms of the surface element distribution/concentration and chemical structure. Small amounts of sulfur in the form of CS 2 were detected on the surface (less than 1.7 mass %). C-H/C-C was the major carbon functional component on the surface of carbon black samples but other functional forms of carbon were also present such as CO and C-O. The surface of the carbon black obtained from a hydropyrolysis process was highly oxidized primarily in the form of carbon based oxygen groups. On the other hand, surface oxygen atoms on the surface of the carbon black obtained from a pyrolysis process in the absence of H 2 were in the form of both metal oxides and carbon based oxygen groups.

  19. Comparison of Spheroidal Carbonaceous Particle Data with Modelled Atmospheric Black Carbon Concentration and Deposition and Air Mass Sources in Northern Europe, 1850–2010

    Directory of Open Access Journals (Sweden)

    Meri Ruppel

    2013-01-01

    Full Text Available Spheroidal carbonaceous particles (SCP are a well-defined fraction of black carbon (BC, produced only by the incomplete combustion of fossil fuels such as coal and oil. Their past concentrations have been studied using environmental archives, but, additionally, historical trends of BC concentration and deposition can be estimated by modelling. These models are based on BC emission inventories, but actual measurements of BC concentration and deposition play an essential role in their evaluation and validation. We use the chemistry transport model OsloCTM2 to model historical time series of BC concentration and deposition from energy and industrial sources and compare these to sedimentary measurements of SCPs obtained from lake sediments in Northern Europe from 1850 to 2010. To determine the origin of SCPs we generated back trajectories of air masses to the study sites. Generally, trends of SCP deposition and modelled results agree reasonably well, showing rapidly increasing values from 1950, to a peak in 1980, and a decrease towards the present. Empirical SCP data show differences in deposition magnitude between the sites that are not captured by the model but which may be explained by different air mass transport patterns. The results highlight the need for numerous observational records to reliably validate model results.

  20. Dynamic performance of a multi-ribbed belt based on an overlay constitutive model of carbon-black-filled rubber and experimental validation

    Science.gov (United States)

    Hu, Yumei; Zhu, Hao; Zhu, W. D.; Li, Changlong; Pi, Yangjun

    2017-10-01

    The focus of this work is the accurate prediction of dynamic mechanical performances of a multi-ribbed belt span. An overlay constitutive model, which consists of hyperelastic, viscoelastic and elastoplastic parts coupled in parallel, is established to describe mechanical properties of carbon-black-filled rubber material used in the belt. A uniaxial tensile test and a uniaxial compressional test are conducted to obtain the hyperelastic material parameters of the constitutive model, and a simple dynamic shear test is used to identify the viscoplastic material parameters via a standard genetic algorithm. Finite element (FE) simulations with the constitutive model are performed to simulate static and hysteretic dynamic characteristics of rubber specimens in these tests. By comparing the simulation results with experiments, the accuracy of the constitutive model and its material parameters is validated. A three-dimensional FE model based on the constitutive model is established to predict both longitudinal and transverse dynamic performances of the multi-ribbed belt span and its good agreements with experimental results are achieved.

  1. The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol

    National Research Council Canada - National Science Library

    Browse, J; Carslaw, K. S; Arnold, S. R; Pringle, K; Boucher, O

    2012-01-01

    .... Here, we use a global aerosol microphysics model (GLOMAP) and surface-level aerosol observations to understand how wet scavenging processes control the seasonal variation in Arctic black carbon (BC...

  2. The Black Hole Universe Model

    Science.gov (United States)

    Zhang, Tianxi

    2014-06-01

    The black hole universe model is a multiverse model of cosmology recently developed by the speaker. According to this new model, our universe is a fully grown extremely supermassive black hole, which originated from a hot star-like black hole with several solar masses, and gradually grew up from a supermassive black hole with million to billion solar masses to the present state with trillion-trillion solar masses by accreting ambient matter or merging with other black holes. The entire space is structured with infinite layers or universes hierarchically. The innermost three layers include the universe that we live, the inside star-like and supermassive black holes called child universes, and the outside space called mother universe. The outermost layer is infinite in mass, radius, and entropy without an edge and limits to zero for both the matter density and absolute temperature. All layers are governed by the same physics and tend to expand physically in one direction (outward or the direction of increasing entropy). The expansion of a black hole universe decreases its density and temperature but does not alter the laws of physics. The black hole universe evolves iteratively and endlessly without a beginning. When one universe expands out, a new similar one is formed from inside star-like and supermassive black holes. In each of iterations, elements are resynthesized, matter is reconfigurated, and the universe is renewed rather than a simple repeat. The black hole universe is consistent with the Mach principle, observations, and Einsteinian general relativity. It has only one postulate but is able to explain all phenomena occurred in the universe with well-developed physics. The black hole universe does not need dark energy for acceleration and an inflation epoch for flatness, and thus has a devastating impact on the big bang model. In this talk, I will present how this new cosmological model explains the various aspects of the universe, including the origin

  3. Effect of sterilization on mineralization of straw and black carbon

    DEFF Research Database (Denmark)

    Bobul'ská, Lenka; Bruun, Sander; Fazekašová, Danica

    2013-01-01

    The study was aimed at investigating the role of microorganisms in the degradation of BC (black carbon). CO evolution was measured under sterilized and non-sterilized soil using BC and straw amendments. Black carbon and straw were produced from homogenously C labelled roots of barley (Hordeum vul...... abiotic source must also be present perhaps abiotic mineralization of labile BC components....

  4. Thermal properties of carbon black aqueous nanofluids for solar absorption

    Directory of Open Access Journals (Sweden)

    Han Dongxiao

    2011-01-01

    Full Text Available Abstract In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  5. Thermal properties of carbon black aqueous nanofluids for solar absorption.

    Science.gov (United States)

    Han, Dongxiao; Meng, Zhaoguo; Wu, Daxiong; Zhang, Canying; Zhu, Haitao

    2011-07-18

    In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  6. Thermal properties of carbon black aqueous nanofluids for solar absorption

    Science.gov (United States)

    Han, Dongxiao; Meng, Zhaoguo; Wu, Daxiong; Zhang, Canying; Zhu, Haitao

    2011-07-01

    In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  7. Cycling of black carbon in the ocean

    Science.gov (United States)

    Coppola, Alysha I.; Druffel, Ellen R. M.

    2016-05-01

    Black carbon (BC) is a by-product of combustion from wildfires and fossil fuels and is a slow-cycling component of the carbon cycle. Whether BC accumulates and ages on millennial time scales in the world oceans has remained unknown. Here we quantified dissolved BC (DBC) in marine dissolved organic carbon isolated by solid phase extraction at several sites in the world ocean. We find that DBC in the Atlantic, Pacific, and Arctic oceans ranges from 1.4 to 2.6 μM in the surface and is 1.2 ± 0.1 μM in the deep Atlantic. The average 14C age of surface DBC is 4800 ± 620 14C years and much older in a deep water sample (23,000 ± 3000 14C years). The range of DBC structures and 14C ages indicates that DBC is not homogeneous in the ocean. We show that there are at least two distinct pools of marine DBC, a younger pool that cycles on centennial time scales and an ancient pool that cycles on >105 year time scales.

  8. Organic carbon isotopes of the Sinian and Early Cambrian black shales on Yangtze Platform, China

    Institute of Scientific and Technical Information of China (English)

    李任伟; 卢家烂; 张淑坤; 雷加锦

    1999-01-01

    Organic matter of the Sinian and early Cambrian black shales on the Yangtze Platform belongs to the light carbon group of isotopes with the δ13C values from - 27 % to -35 % , which are lower than those of the contemporaneously deposited carbonates and phosphorites. A carbon isotope-stratified paleooceanographic model caused by upwelling is proposed, which can be used not only to interpret the characteristics of organic carbon isotopic compositions of the black shales, but also to interpret the paleogeographic difference in the organic carbon isotope compositions of various types of sedimentary rocks.

  9. Applicability of a noise-based model to estimate in-traffic exposure to black carbon and particle number concentrations in different cultures.

    Science.gov (United States)

    Dekoninck, Luc; Botteldooren, Dick; Panis, Luc Int; Hankey, Steve; Jain, Grishma; S, Karthik; Marshall, Julian

    2015-01-01

    Several studies show that a significant portion of daily air pollution exposure, in particular black carbon (BC), occurs during transport. In a previous work, a model for the in-traffic exposure of bicyclists to BC was proposed based on spectral evaluation of mobile noise measurements and validated with BC measurements in Ghent, Belgium. In this paper, applicability of this model in a different cultural context with a totally different traffic and mobility situation is presented. In addition, a similar modeling approach is tested for particle number (PN) concentration. Indirectly assessing BC and PN exposure through a model based on noise measurements is advantageous because of the availability of very affordable noise monitoring devices. Our previous work showed that a model including specific spectral components of the noise that relate to engine and rolling emission and basic meteorological data, could be quite accurate. Moreover, including a background concentration adjustment improved the model considerably. To explore whether this model could also be used in a different context, with or without tuning of the model parameters, a study was conducted in Bangalore, India. Noise measurement equipment, data storage, data processing, continent, country, measurement operators, vehicle fleet, driving behavior, biking facilities, background concentration, and meteorology are all very different from the first measurement campaign in Belgium. More than 24h of combined in-traffic noise, BC, and PN measurements were collected. It was shown that the noise-based BC exposure model gives good predictions in Bangalore and that the same approach is also successful for PN. Cross validation of the model parameters was used to compare factors that impact exposure across study sites. A pooled model (combining the measurements of the two locations) results in a correlation of 0.84 when fitting the total trip exposure in Bangalore. Estimating particulate matter exposure with traffic

  10. Evaluating the latest estimates of spatially and temporally resolved gridded black carbon emission over Indian region in a strategic integrated modelling approach

    Science.gov (United States)

    Verma, S.; Kumar, B. D.; Reddy, M.

    2016-12-01

    Among aerosol constituents, black carbon (BC) has a strong mass absorption efficiency and play an important role in modifying the climate system. Regional and global modelling studies using BC emissions as input and simulating BC distribution in general exhibit large inadequacy compared to observations especially over regions where atmosphere is observed laden with high pollution level of BC concentration (e.g. the Indo-Gangetic plain, IGP over the Indian region); thereby indicating discrepancy in emissions. In the present study, we evaluate the latest spatially and temporally resolved gridded black carbon (BC) emissions estimated over Indian region in a strategic integrated modelling approach; this estimation was done extracting information on initial bottom-up monthly emissions and atmospheric BC concentration from a general circulation model (GCM) simulation in conjunction with receptor modelling approach. Monthly BC emission obtained from the present study exhibited a spatial and temporal variability with this being the highest (lowest) during February (July). Monthly BC emission flux was considerably high (> 100 Kg.Km-2) over the entire Indo-Gangetic plain (IGP) and the east coast during winter months with this high value, however, being persistent throughout over the northern IGP. This was relatively higher over the central and western India than over the IGP during summer months. Annual BC emission rate was 2568 Gg y-1with that over the IGP and central India respectively being 58% and 34% of the total annual BC emissions over India. The relative predominance of monthly BC emission flux over a region (as depicted from z-score distribution maps) was inferred being consistent with the prevalence of region- and season-specific anthropogenic activity. Evaluation of emissions (modified and old) through simulations in a chemical transport model showed the mean BC surface concentration simulated using modified emission resembled relatively well with the measured

  11. Simplifying the calculation of light scattering properties for black carbon fractal aggregates

    Science.gov (United States)

    Smith, A. J. A.; Grainger, R. G.

    2014-02-01

    Black carbon fractal aggregates have complicated shapes that make the calculation of their optical properties particularly computationally expensive. Here, a method is presented to estimate fractal aggregate light scattering properties by optimising simplified models to full light scattering calculations. It is found that there are no possible spherical models (at any size or refractive index) that well represent the light scattering in the visible, or near-thermal infrared. As such, parameterisations of the light scattering as a function of the number of aggregate particles is presented as the most pragmatic choice for modelling distributions of black carbon when the large computational overheads of rigorous scattering calculations cannot be justified. This parameterisation can be analytically integrated to provide light scattering properties for log-normal distributions of black carbon fractal aggregates and return extinction cross-sections with 0.1% accuracy for typical black carbon size distributions. Scattering cross-sections and the asymmetry parameter can be obtained to within 3%.

  12. Simplifying the calculation of light scattering properties for black carbon fractal aggregates

    Directory of Open Access Journals (Sweden)

    A. J. A. Smith

    2014-08-01

    Full Text Available Black carbon fractal aggregates have complicated shapes that make the calculation of their optical properties particularly computationally expensive. Here, a method is presented to estimate fractal aggregate light scattering properties by optimising simplified models to full light scattering calculations. It is found that there are no possible spherical models (at any size or refractive index that well represent the light scattering in the visible or near-thermal infrared. As such, parameterisations of the light scattering as a function of the number of aggregate particles is presented as the most pragmatic choice for modelling distributions of black carbon when the large computational overheads of rigorous scattering calculations cannot be justified. This parameterisation can be analytically integrated to provide light scattering properties for lognormal distributions of black carbon fractal aggregates and return extinction cross sections with 0.1% accuracy for typical black carbon size distributions. Scattering cross sections and the asymmetry parameter can be obtained to within 3%.

  13. Historical and Future Black Carbon Deposition on the Three Ice Caps: Ice Core Measurements and Model Simulations from 1850 to 2100

    Science.gov (United States)

    Bauer, Susanne E.; Bausch, Alexandra; Nazarenko, Larissa; Tsigaridis, Kostas; Xu, Baiqing; Edwards. Ross; Bisiaux, Marion; McConnell, Joe

    2013-01-01

    Ice core measurements in conjunction with climate model simulations are of tremendous value when examining anthropogenic and natural aerosol loads and their role in past and future climates. Refractory black carbon (BC) records from the Arctic, the Antarctic, and the Himalayas are analyzed using three transient climate simulations performed with the Goddard Institute for Space Studies ModelE. Simulations differ in aerosol schemes (bulk aerosols vs. aerosol microphysics) and ocean couplings (fully coupled vs. prescribed ocean). Regional analyses for past (1850-2005) and future (2005-2100) carbonaceous aerosol simulations focus on the Antarctic, Greenland, and the Himalayas. Measurements from locations in the Antarctic show clean conditions with no detectable trend over the past 150 years. Historical atmospheric deposition of BC and sulfur in Greenland shows strong trends and is primarily influenced by emissions from early twentieth century agricultural and domestic practices. Models fail to reproduce observations of a sharp eightfold BC increase in Greenland at the beginning of the twentieth century that could be due to the only threefold increase in the North American emission inventory. BC deposition in Greenland is about 10 times greater than in Antarctica and 10 times less than in Tibet. The Himalayas show the most complicated transport patterns, due to the complex terrain and dynamical regimes of this region. Projections of future climate based on the four CMIP5 Representative Concentration Pathways indicate further dramatic advances of pollution to the Tibetan Plateau along with decreasing BC deposition fluxes in Greenland and the Antarctic.

  14. Climate effects of black carbon aerosols in China and India.

    Science.gov (United States)

    Menon, Surabi; Hansen, James; Nazarenko, Larissa; Luo, Yunfeng

    2002-09-27

    In recent decades, there has been a tendency toward increased summer floods in south China, increased drought in north China, and moderate cooling in China and India while most of the world has been warming. We used a global climate model to investigate possible aerosol contributions to these trends. We found precipitation and temperature changes in the model that were comparable to those observed if the aerosols included a large proportion of absorbing black carbon ("soot"), similar to observed amounts. Absorbing aerosols heat the air, alter regional atmospheric stability and vertical motions, and affect the large-scale circulation and hydrologic cycle with significant regional climate effects.

  15. Geolocating Russian sources for Arctic black carbon

    Science.gov (United States)

    Cheng, Meng-Dawn

    2014-08-01

    To design and implement an effective emission control strategy for black carbon (BC), the locations and strength of BC sources must be identified. Lack of accurate source information from the Russian Federation has created difficulty for a range of research and policy activities in the Arctic because Russia occupies the largest landmass in the Arctic Circle. A project was initiated to resolve emission sources of BC in the Russian Federation by using the Potential Source Contribution Function (PSCF). It used atmospheric BC data from two Arctic sampling stations at Alert Nunavut, Canada, and Tiksi Bay, Russia. The geographical regions of BC emission sources in Russia were identified and summarized as follows: (1) a region surrounding Moscow, (2) regions in Eurasia stretching along the Ural Mountains from the White Sea to the Black Sea, and (3) a number of scattered areas from western Siberia to the Russian Far East. Particulate potassium ions, non-marine sulfate, and vanadium were used to assist in resolving the source types: forest fire/biomass burning, coal-fired power plant, and oil combustion. Correlating these maps with the BC map helped to resolve source regions of BC emissions and connect them to their corresponding source types. The results imply that a region south of Moscow and another north of the Ural Mountains could be significant BC sources, but none of the grid cells in these regions could be linked to forest fires, oil combustion, or coal-fired power plants based on these three markers.

  16. Estimation and prediction of black carbon emissions in Beijing City

    Institute of Scientific and Technical Information of China (English)

    LIU Yuan; SHAO Min

    2007-01-01

    Black carbon is a by-product of incomplete combustion of carbon containing fuels. It can alter atmospheric radiation property and make adverse impacts on human health. The energy consumption in Beijing City depends largely on coal burning. Recently, Beijing City has been performing the municipal energy structure adjustment as a tool for air pollution abatement, aiming at the air quality goal for the Beijing 2008 Olympic Games. Based on Beijing energy use data in 2000, combined with emission factors of major sources of black carbon, the emission of black carbon in Beijing City is estimated to be 7.77 Gg. Coke, raw coal and biomass as non-commercial energy are the main contributors to municipal black carbon emissions. Based on Beijing energy planning in the year 2008, the emission of black carbon in 2008 will be 2.97 Gg if the contribution from biomass is not taken into account. Assuming that the black carbon emission from rural biomass in 2008 is the same as that in 2004, the biomass burning will be the largest emitter of black carbon to Beijing City in 2008.

  17. Land Use Regression Models of On-Road Particulate Air Pollution (Particle Number, Black Carbon, PM2.5, Particle Size) Using Mobile Monitoring.

    Science.gov (United States)

    Hankey, Steve; Marshall, Julian D

    2015-08-04

    Land Use Regression (LUR) models typically use fixed-site monitoring; here, we employ mobile monitoring as a cost-effective alternative for LUR development. We use bicycle-based, mobile measurements (∼85 h) during rush-hour in Minneapolis, MN to build LUR models for particulate concentrations (particle number [PN], black carbon [BC], fine particulate matter [PM2.5], particle size). We developed and examined 1224 separate LUR models by varying pollutant, time-of-day, and method of spatial and temporal smoothing of the time-series data. Our base-case LUR models had modest goodness-of-fit (adjusted R(2): ∼0.5 [PN], ∼0.4 [PM2.5], 0.35 [BC], ∼0.25 [particle size]), low bias (<4%) and absolute bias (2-18%), and included predictor variables that captured proximity to and density of emission sources. The spatial density of our measurements resulted in a large model-building data set (n = 1101 concentration estimates); ∼25% of buffer variables were selected at spatial scales of <100m, suggesting that on-road particle concentrations change on small spatial scales. LUR model-R(2) improved as sampling runs were completed, with diminishing benefits after ∼40 h of data collection. Spatial autocorrelation of model residuals indicated that models performed poorly where spatiotemporal resolution of emission sources (i.e., traffic congestion) was poor. Our findings suggest that LUR modeling from mobile measurements is possible, but that more work could usefully inform best practices.

  18. Preparation and application of active gangue's carbon black

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiang-lin; ZHANG Yi-dong

    2007-01-01

    After three-stage pulverization, dry-distillated activation and coupling agent surface modification, the kaolinite-typed gangue of Sichuan Hongni Coal Mine(SHCM) can be manufactured into activated gangue's carbon black. Its surface area is >25 m2/g, and possesses carbon black's carbon framework and structure. It can be used as strengthening agent of high polymer material such as rubber.

  19. The Influence of Unidirectional Pressure on Electrical Conductivity of Carbon Black Filled Polyethylene

    Institute of Scientific and Technical Information of China (English)

    WANG Ke; ZHANG Guo; ZHAO Zhudi; PENG Yi; DI Weihua; DU Chuang

    2006-01-01

    High density polyethylene filled with conductive carbon black was prepared by conventional melt-mixing method. The effect of unidirectional pressure on the conductivity was studied. Wide angle X-ray diffraction (WAXD) was used to show the influence of pressure on the aggregate structure of the polymer filled with carbon black (CB) fillers. A model on the basis of the formation and destruction of conductive networks was proposed to explain the change in the conductivity with the application of pressure.

  20. A Novel Approach for Determining Source–Receptor Relationships in Model Simulations: A Case Study of Black Carbon Transport in Northern Hemisphere Winter

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Po-Lun; Gattiker, J. R.; Liu, Xiaohong; Rasch, Philip J.

    2013-06-27

    A Gaussian process (GP) emulator is applied to quantify the contribution of local and remote emissions of black carbon (BC) on the BC concentrations in different regions using a Latin Hypercube sampling strategy for emission perturbations in the offline version of the Community Atmosphere Model Version 5.1 (CAM5) simulations. The source-receptor relationships are computed based on simulations constrained by a standard free-running CAM5 simulation and the ERA-Interim reanalysis product. The analysis demonstrates that the emulator is capable of retrieving the source-receptor relationships based on a small number of CAM5 simulations. Most regions are found susceptible to their local emissions. The emulator also finds that the source-receptor relationships retrieved from the model-driven and the reanalysis-driven simulations are very similar, suggesting that the simulated circulation in CAM5 resembles the assimilated meteorology in ERA-Interim. The robustness of the results provides confidence for applying the emulator to detect dose-response signals in the climate system.

  1. Influence of Dust and Black Carbon on the Snow Albedo in the NASA Goddard Earth Observing System Version 5 Land Surface Model

    Science.gov (United States)

    Yasunari, Teppei J.; Koster, Randal D.; Lau, K. M.; Aoki, Teruo; Sud, Yogesh C.; Yamazaki, Takeshi; Motoyoshi, Hiroki; Kodama, Yuji

    2011-01-01

    Present-day land surface models rarely account for the influence of both black carbon and dust in the snow on the snow albedo. Snow impurities increase the absorption of incoming shortwave radiation (particularly in the visible bands), whereby they have major consequences for the evolution of snowmelt and life cycles of snowpack. A new parameterization of these snow impurities was included in the catchment-based land surface model used in the National Aeronautics and Space Administration Goddard Earth Observing System version 5. Validation tests against in situ observed data were performed for the winter of 2003.2004 in Sapporo, Japan, for both the new snow albedo parameterization (which explicitly accounts for snow impurities) and the preexisting baseline albedo parameterization (which does not). Validation tests reveal that daily variations of snow depth and snow surface albedo are more realistically simulated with the new parameterization. Reasonable perturbations in the assigned snow impurity concentrations, as inferred from the observational data, produce significant changes in snowpack depth and radiative flux interactions. These findings illustrate the importance of parameterizing the influence of snow impurities on the snow surface albedo for proper simulation of the life cycle of snow cover.

  2. Influence of Dust and Black Carbon on the Snow Albedo in the NASA Goddard Earth Observing System Version 5 Land Surface Model

    Science.gov (United States)

    Yasunari, Teppei J.; Koster, Randal D.; Lau, K. M.; Aoki, Teruo; Sud, Yogesh C.; Yamazaki, Takeshi; Motoyoshi, Hiroki; Kodama, Yuji

    2011-01-01

    Present-day land surface models rarely account for the influence of both black carbon and dust in the snow on the snow albedo. Snow impurities increase the absorption of incoming shortwave radiation (particularly in the visible bands), whereby they have major consequences for the evolution of snowmelt and life cycles of snowpack. A new parameterization of these snow impurities was included in the catchment-based land surface model used in the National Aeronautics and Space Administration Goddard Earth Observing System version 5. Validation tests against in situ observed data were performed for the winter of 2003.2004 in Sapporo, Japan, for both the new snow albedo parameterization (which explicitly accounts for snow impurities) and the preexisting baseline albedo parameterization (which does not). Validation tests reveal that daily variations of snow depth and snow surface albedo are more realistically simulated with the new parameterization. Reasonable perturbations in the assigned snow impurity concentrations, as inferred from the observational data, produce significant changes in snowpack depth and radiative flux interactions. These findings illustrate the importance of parameterizing the influence of snow impurities on the snow surface albedo for proper simulation of the life cycle of snow cover.

  3. Recommendations for the interpretation of "black carbon" measurements

    Directory of Open Access Journals (Sweden)

    A. Petzold

    2013-04-01

    Full Text Available Although black carbon (BC is one of the key atmospheric particulate components driving climate change and air quality, there is no agreement on the terminology that considers all aspects of specific properties, definitions, measurement methods, and related uncertainties. As a result, there is much ambiguity in the scientific literature of measurements and numerical models that refer to BC with different names and based on different properties of the particles, with no clear definition of the terms. The authors present here a recommended terminology to clarify the terms used for BC in atmospheric research, with the goal of establishing unambiguous links between terms, targeted material properties and associated measurement techniques.

  4. Global emission inventory and atmospheric transport of black carbon. Evaluation of the associated exposure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rong

    2015-06-01

    This thesis presents research focusing on the improvement of high-resolution global black carbon (BC) emission inventory and application in assessing the population exposure to ambient BC. A particular focus of the thesis is on the construction of a high-resolution (both spatial and sectorial) fuel consumption database, which is used to develop the emission inventory of black carbon. Above all, the author updates the global emission inventory of black carbon, a resource subsequently used to study the atmospheric transport of black carbon over Asia with the help of a high-resolution nested model. The thesis demonstrates that spatial bias in fuel consumption and BC emissions can be reduced by means of the sub-national disaggregation approach. Using the inventory and nested model, ambient BC concentrations can be better validated against observations. Lastly, it provides a complete uncertainty analysis of global black carbon emissions, and this uncertainty is taken into account in the atmospheric modeling, helping to better understand the role of black carbon in regional and global air pollution.

  5. Black Carbon Contribution to Organic Carbon Stocks in Urban Soil.

    Science.gov (United States)

    Edmondson, Jill L; Stott, Iain; Potter, Jonathan; Lopez-Capel, Elisa; Manning, David A C; Gaston, Kevin J; Leake, Jonathan R

    2015-07-21

    Soil holds 75% of the total organic carbon (TOC) stock in terrestrial ecosystems. This comprises ecosystem-derived organic carbon (OC) and black carbon (BC), a recalcitrant product of the incomplete combustion of fossil fuels and biomass. Urban topsoils are often enriched in BC from historical emissions of soot and have high TOC concentrations, but the contribution of BC to TOC throughout the urban soil profile, at a regional scale is unknown. We sampled 55 urban soil profiles across the North East of England, a region with a history of coal burning and heavy industry. Through combined elemental and thermogravimetic analyses, we found very large total soil OC stocks (31-65 kg m(-2) to 1 m), exceeding typical values reported for UK woodland soils. BC contributed 28-39% of the TOC stocks, up to 23 kg C m(-2) to 1 m, and was affected by soil texture. The proportional contribution of the BC-rich fraction to TOC increased with soil depth, and was enriched in topsoil under trees when compared to grassland. Our findings establish the importance of urban ecosystems in storing large amounts of OC in soils and that these soils also capture a large proportion of BC particulates emitted within urban areas.

  6. Climate Response due to Black Carbon Aerosols and Black-Carbon-induced SST Effects in MIROC5.0

    Science.gov (United States)

    Yu, Y.; Nakajima, T.; Goto, D.

    2014-12-01

    This study used the Models for Interdisciplinary Research on Climate, MIROC5.0, one member of the Coupled Model Intercomparison Project (CMIP5), to investigate the effects of black carbon (BC) aerosols on atmospheric circulations and climate including intricate feedback mechanism. The simulations with and without BC were conducted and the difference between these two runs is the corresponding response due to BC. Both atmosphere-ocean coupled general circulation model simulation (CGCM with full ocean) and the fixed SST runs (AGCM with prescribed sea surface temperature and sea ice temperature) were used to study the effects from ocean boundary conditions. The regional effects due to BC may be much larger than models have assumed (Andreae and Ramanathan, 2013; Bond et al., 2013). There are many studies used simplified mixed-layer ocean under prescribed surface heat flux to estimate the climate effect of BC (Kim et al., 2014), however these ocean-atmosphere coupled processes act on seasonal and annual time scales more real than non-ocean-atmosphere coupled models. Our results showed that the comprehensively sea-air interaction amplified the heating effect of black carbon aerosols; the presence of BC affected climate not only at local source areas but also at remote regions due to changes on energy transport processes and atmospheric circulations; we also discussed how the feedback of SST induced by BC affected on the distribution and magnitudes of climate response such as temperature, precipitation and cloud coverage between CGCM and AGCM runs.

  7. The Role of Circulation Features on Black Carbon Transport into the Arctic in the Community Atmosphere Model Version 5 (CAM5)

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Po-Lun; Rasch, Philip J.; Wang, Hailong; Zhang, Kai; Easter, Richard C.; Tilmes, S.; Fast, Jerome D.; Liu, Xiaohong; Yoon, Jin-Ho; Lamarque, Jean-Francois

    2013-05-28

    Current climate models generally under-predict the surface concentration of black carbon (BC) in the Arctic due to the uncertainties associated with emissions, transport, and removal. This bias is also present in the Community Atmosphere Model Version 5.1 (CAM5). In this study, we investigate the uncertainty of Arctic BC due to transport processes simulated by CAM5 by configuring the model to run in an “offline mode” in which the large-scale circulations are prescribed. We compare the simulated BC transport when the offline model is driven by the meteorology predicted by the standard free-running CAM5 with simulations where the meteorology is constrained to agree with reanalysis products. Some circulation biases are apparent: the free-running CAM5 produces about 50% less transient eddy transport of BC than the reanalysis-driven simulations, which may be attributed to the coarse model resolution insufficient to represent eddies. Our analysis shows that the free-running CAM5 reasonably captures the essence of the Arctic Oscillation (AO), but some discernable differences in the spatial pattern of the AO between the free-running CAM5 and the reanalysis-driven simulations result in significantly different AO modulation of BC transport over Northeast Asia and Eastern Europe. Nevertheless, we find that the overall climatological circulation patterns simulated by the free-running CAM5 generally resembles those from the reanalysis products, and BC transport is very similar in both simulation sets. Therefore, the simulated circulation features regulating the long-range BC transport is unlikely the most important cause of the large under-prediction of surface BC concentration in the Arctic.

  8. Analysis of transpacific transport of black carbon during HIPPO-3: implications for black carbon aging

    Directory of Open Access Journals (Sweden)

    Z. Shen

    2014-01-01

    Full Text Available Long-range transport of black carbon (BC is a growing concern as a result of the efficiency of BC in warming the climate and its adverse impact on human health. We study transpacific transport of BC during HIPPO-3 using a combination of inverse modeling and sensitivity analysis. We use the GEOS-Chem chemical transport model and its adjoint to constrain Asian BC emissions and estimate the source of BC over the North Pacific. We find that different sources of BC dominate the transport to the North Pacific during the southbound (29 March 2010 and northbound (13 April 2010 measurements in HIPPO-3. While biomass burning in Southeast Asia (SE contributes about 60% of BC in March, more than 90% of BC comes from fossil fuel and biofuel combustion in East Asia (EA during the April mission. GEOS-Chem simulations generally resolve the spatial and temporal variation of BC concentrations over the North Pacific, but are unable to reproduce the low and high tails of the observed BC distribution. We find that the optimized BC emissions derived from inverse modeling fail to improve model simulations significantly. This failure indicates that uncertainties in BC transport, rather than in emissions, account for the major biases in GEOS-Chem simulations of BC. The aging process, transforming BC from hydrophobic into hydrophilic form, is one of the key factors controlling wet scavenging and remote concentrations of BC. Sensitivity tests on BC aging suggest that the aging time scale of anthropogenic BC from EA is several hours, faster than assumed in most global models, while the aging process of biomass burning BC from SE may occur much slower, with a time scale of a few days. To evaluate the effects of BC aging and wet deposition on transpacific transport of BC, we develop an idealized model of BC transport. We find that the mid-latitude air masses sampled during HIPPO-3 may have experienced a series of precipitation events, particularly near the EA and SE source

  9. Estimation of atmospheric aging time of black carbon particles in the polluted atmosphere over central-eastern China using microphysical process analysis in regional chemical transport model

    Science.gov (United States)

    Chen, Xueshun; Wang, Zifa; Yu, Fangqun; Pan, Xiaole; Li, Jie; Ge, Baozhu; Wang, Zhe; Hu, Min; Yang, Wenyi; Chen, Huansheng

    2017-08-01

    Mixing state of black carbon (BC) particles has significant impacts on their radiative forcing, visibility impairment and the ability in modifying cloud formation. In this study, an aging scheme of BC particles using prognostic variables based on aerosol microphysics was incorporated into a regional atmospheric chemistry model, Nested Air Quality Prediction Modeling System with Advanced Particle Microphysics (NAQPMS + APM), to investigate the temporal and spatial variations in aging time scale of BC particles in polluted atmosphere over central-eastern China. The model results show that the aging time scale has a clear diurnal variation with a lower value in the daytime and a higher value in the nighttime. The shorter aging time scale in the daytime is due to condensation aging associated with intense photochemical reaction while the longer aging time scale in the nighttime is due to coagulation aging, which is much slower than that due to condensation. In Beijing, the aging time scale is 2 h or less in the surface layer in daytime, which is far below the fixed 1.2 days used in many models. As a result, the fraction of hydrophilic BC particles by the new scheme is larger than that by the scheme with fixed aging time scale though the mean aging time scale by the new scheme is much larger than 1.2 days. Hydrophilic fraction of BC particles increases with the increase of height. Over central-eastern China, the averaged aging time scale calculated by the new scheme is in the range from 12 h to 7 days, with higher values in regions far from the source areas. Hydrophilic fraction of BC particles is more than 90% at the higher levels in polluted atmosphere. Difference of simulated BC concentration with internal mixing and microphysical aging is within 5%, indicating that the assumption of internal mixing for BC particles to respond to in-cloud scavenging is more appropriate than the external mixing assumption in polluted atmosphere over central-eastern China.

  10. The uptake of ethyl iodide on black carbon surface

    Institute of Scientific and Technical Information of China (English)

    YIN Shi; WANG WeiGang; GE MaoFa

    2008-01-01

    The importance of the iodine chemistry in the atmosphere has been demonstrated by recent observations. The uptake of ethyl iodine on black carbon surface was investigated at 298 K for the first time. Degussa FW2 (an amorphous black carbon comprising medium oxides) was used as black carbon sample. Black carbon surface was found to be deactivated in reaction with C2H5I, and the uptake coefficient (γ) was dependent on the time of exposure. The value of (2.3±0.9)×10-2 was determined for the initial uptake coefficient (γ0). The result suggests that the heterogeneous loss of C2H5I on carbonaceous aerosols may be important under the atmospheric conditions.

  11. Global civil aviation black carbon emissions.

    Science.gov (United States)

    Stettler, Marc E J; Boies, Adam M; Petzold, Andreas; Barrett, Steven R H

    2013-09-17

    Aircraft black carbon (BC) emissions contribute to climate forcing, but few estimates of BC emitted by aircraft at cruise exist. For the majority of aircraft engines the only BC-related measurement available is smoke number (SN)-a filter based optical method designed to measure near-ground plume visibility, not mass. While the first order approximation (FOA3) technique has been developed to estimate BC mass emissions normalized by fuel burn [EI(BC)] from SN, it is shown that it underestimates EI(BC) by >90% in 35% of directly measured cases (R(2) = -0.10). As there are no plans to measure BC emissions from all existing certified engines-which will be in service for several decades-it is necessary to estimate EI(BC) for existing aircraft on the ground and at cruise. An alternative method, called FOX, that is independent of the SN is developed to estimate BC emissions. Estimates of EI(BC) at ground level are significantly improved (R(2) = 0.68), whereas estimates at cruise are within 30% of measurements. Implementing this approach for global civil aviation estimated aircraft BC emissions are revised upward by a factor of ~3. Direct radiative forcing (RF) due to aviation BC emissions is estimated to be ~9.5 mW/m(2), equivalent to ~1/3 of the current RF due to aviation CO2 emissions.

  12. Centennial black carbon turnover observed in a Russia steppe soil

    Energy Technology Data Exchange (ETDEWEB)

    Hammes, K.; Torn, M.S.; Lapenas, A.G.; Schmidt, M.W.I.

    2008-09-15

    Black carbon (BC), from incomplete combustion of fuels and biomass, has been considered highly recalcitrant and a substantial sink for carbon dioxide. Recent studies have shown that BC can be degraded in soils. We use two soils with very low spatial variability sampled 100 years apart in a Russian steppe preserve to generate the first whole-profile estimate of BC stocks and turnover in the field. Quantities of fire residues in soil changed significantly over a century. Black carbon stock was 2.5 kg m{sup -2}, or about 7-10% of total organic C in 1900. With cessation of biomass burning, BC stocks decreased 25% over a century, which translates into a centennial soil BC turnover (293 years best estimate; range 182-541 years), much faster than so-called inert or passive carbon in ecosystem models. The turnover time presented here is for loss by all processes, namely decomposition, leaching, and erosion, although the latter two were probably insignificant in this case. Notably, at both time points, the peak BC stock was below 30 cm, a depth interval, which is not typically accounted for. Also, the quality of the fire residues changed with time, as indicated by the use benzene poly carboxylic acids (BPCA) as molecular markers. The proportions of less-condensed (and thus more easily degradable) BC structures decreased, whereas the highly condensed (and more recalcitrant) BC structures survived unchanged over the 100-year period. Our results show that BC cannot be assumed chemically recalcitrant in all soils, and other explanations for very old soil carbon are needed.

  13. Comparative DEMS study on the electrochemical oxidation of carbon blacks

    DEFF Research Database (Denmark)

    Ashton, Sean James; Arenz, Matthias

    2012-01-01

    heat-treated between 2100 and 3200 °C, such as those typically used as corrosion resistant carbon (CRC) supports for polymer electrolyte membrane fuel cell (PEMFC) catalysts. A methodology combining cyclic voltammetry (CV) and differential electrochemical mass spectrometry (DEMS) is used, which allows...... the characterisation and comparison of the complete electrochemical oxidation rates and behaviours of the various carbon blacks. It is observed that the behaviour of the carbon black towards electrochemical oxidation is highly dynamic, and dependent on the properties of the pristine carbon back, the degree...

  14. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments

    NARCIS (Netherlands)

    Koelmans, A.A.; Nowack, B.; Wiesner, M.

    2009-01-01

    In this paper, we show that concentrations of manufactured carbon-based nanoparticles (MCNPs) in aquatic sediments will be negligible compared to levels of black carbon nanoparticles (BCNPs). This is concluded from model calculations accounting for MCNP sedimentation fluxes, removal rates due to

  15. Effects of Surface-modification of Carbon Black on the Characteristics of Polymerized Toner

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Ho; Kim, Dae Su [Chungbuk National University, Cheongju (Korea, Republic of)

    2013-10-15

    Carbon black was surface-modified to prepare styrene-based suspension polymerized toner with excellent carbon black dispersibility inside toner particles. Carbon black was oxidized first to introduce hydroxyl groups on the surfaces, then esterification between the hydroxyl groups and carboxyl groups of organic acids (oleic acid, palmitic acid, acrylic acid) was followed to obtain organically surface-modified carbon black. The surface-modification of carbon black was confirmed by FTIR. Apparent carbon black dispersibility in the monomer mixture of the binder resin was tested and the particle size of dispersed carbon black was measured by particle size analyzer. Optical micrographs showed that carbon black dispersibility inside toner particles was improved considerably when the carbon black surface-modified with oleic acid was used. The polymerized toner prepared with the carbon black surface-modified with oleic acid showed ideal particle size and size distribution as a toner.

  16. Black carbon radiative forcing at TOA decreased during aging

    Science.gov (United States)

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao

    2016-12-01

    During aging processing, black carbon (also called soot) particles may tend to be mixed with other aerosols, and highly influence their radiative forcing. In this study, freshly emitted soot particles were simulated as fractal aggregates composed of small spherical primary monomers. After aging in the atmosphere, soot monomers were coated by a thinly layer of sulfate as thinly coated soot particles. These soot particles were entirely embedded into large sulfate particle by further aging, and becoming heavily coated soot particles. In clear-sky conditions, black carbon radiative forcing with different aging states were investigated for the bottom and top of atmosphere (BOA and TOA). The simulations showed that black carbon radiative forcing increased at BOA and decreased at TOA after their aging processes. Thinly and heavily coated states increased up to ~12% and ~35% black carbon radiative forcing at BOA, and black carbon radiative forcing at TOA can reach to ~20% and ~100% smaller for thinly and heavily coated states than those of freshly emitted states, respectively. The effect of aging states of black carbon radiative forcing was varied with surface albedo, aerosol optical depth and solar zenith angles. These findings would be helpful for the assessments of climate change.

  17. Quantifying sources of black carbon in Western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2015-05-01

    Full Text Available The Community Atmosphere Model (CAM5, equipped with a technique to tag black carbon (BC emissions by source regions and types, has been employed to establish source-receptor relationships for atmospheric BC and its deposition to snow over Western North America. The CAM5 simulation was conducted with meteorological fields constrained by reanalysis for year 2013 when measurements of BC in both near-surface air and snow are available for model evaluation. We find that CAM5 has a significant low bias in predicted mixing ratios of BC in snow but only a small low bias in predicted atmospheric concentrations over the Northwest USA and West Canada. Even with a strong low bias in snow mixing ratios, radiative transfer calculations show that the BC-in-snow darkening effect is substantially larger than the BC dimming effect at the surface by atmospheric BC. Local sources contribute more to near-surface atmospheric BC and to deposition than distant sources, while the latter are more important in the middle and upper troposphere where wet removal is relatively weak. Fossil fuel (FF is the dominant source type for total column BC burden over the two regions. FF is also the dominant local source type for BC column burden, deposition, and near-surface BC, while for all distant source regions combined the contribution of biomass/biofuel (BB is larger than FF. An observationally based Positive Matrix Factorization (PMF analysis of the snow-impurity chemistry is conducted to quantitatively evaluate the CAM5 BC source-type attribution. While CAM5 is qualitatively consistent with the PMF analysis with respect to partitioning of BC originating from BB and FF emissions, it significantly underestimates the relative contribution of BB. In addition to a possible low bias in BB emissions used in the simulation, the model is likely missing a significant source of snow darkening from local soil found in the observations.

  18. Synthesis of multiwalled carbon nanotube from different grades of carbon black using arc discharge method

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Neha, E-mail: n4neha31@gmail.com [Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani (India); Sharma, N. N. [Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani (India); Director, School of Automobile, Mechanical & Mechatronics, Manipal University,Jaipur,India (India)

    2016-04-13

    This paper describes the synthesis of nanotube from different grades (Tread * A(non-ASTM), N134,N121,N660 and N330)of carbon black using DC arc discharge method at 40A current for 60sec. Carbon black samples of different grades were procured from industry (Aditya Birla Science and Technology Limited, India). Scanning Electron Micrographs (SEM) of the deposited carbon nanostructures suggests that MWCNTs are formed at 40A and for a minimal exposure time of 60sec.The result formed indicates the N330 grade of carbon black gets converted to MWCNTs (Multiwall Carbon nanotube) as compared to other grades.

  19. Measurement of Black Carbon and Co-pollutants Emitted from Diesel Vehicles in Mexico

    Science.gov (United States)

    Zavala, M. A.; Molina, L. T.; Fortner, E.; Herndon, S.; Knighton, B.; Yacovitch, T. I.; Floerchinger, C. R.; Roscioli, J. R.; Kolb, C. E.; Paramo, V. H.; Zirath, S.; Mejia, J.; Jazcilevich, A. D.

    2013-12-01

    Freight, public transport, and heavy-duty trucks can contribute to harmful emissions of black carbon and other co-pollutants in many urban areas. Controlling the emissions of black carbon from the transport sector is important for the potential of mitigating its impacts on climate, ecosystems, and human health. However, reducing the emissions of black carbon from mobile sources is be a challenging task in many developing urban areas due to economic, social, and technical constrains, as well as the uncertainties surrounding the accurate quantification of the associated benefits. Several emissions control technologies offer a proven approach for reducing emissions of black carbon from diesel-powered mobile sources, but the accurate quantification of associated emissions benefits in developing urban areas is not well documented. We present the results of the measurement of black carbon and co-emitted pollutants of dozens of diesel powered vehicles, including freight trucks, public transport buses, and intra-city metrobuses sampled during a 4-day experiment in Mexico City in February of 2013 as part of the SLCFs-Mexico project. Measurements were obtained with the Aerodyne Mobile Laboratory, remote sensing, and portable emissions measurements, and encompassed the sampling of several vehicle models and technologies in experimental and real-world driving conditions. The results can help in the identification of key factors that hinder the implementation of control emissions for reducing emissions of black carbon elsewhere and the potential benefits of implementing various emission control technologies.

  20. Artificial black opal fabricated from nanoporous carbon spheres.

    Science.gov (United States)

    Yamada, Yuri; Ishii, Masahiko; Nakamura, Tadashi; Yano, Kazuhisa

    2010-06-15

    A nanocasting method via chemical vapor deposition of acetonitrile was successfully employed to fabricate porous carbon colloidal crystal using colloidal crystal from monodispersed mesoporous silica spheres (MMSS) as a sacrificial scaffold. The mesostructure as well as periodic arrays within (111) plane of MMSS were replicated for the carbon colloidal crystal (black opal) with the length scale in the centimeter range. Brilliant iridescent colors were clearly observed for the first time on the black carbon colloidal crystal fabricated from porous carbon spheres, and they changed dramatically in accordance with the observation angle, like natural black opals. Reflection spectra measurements based on 2D surface diffraction and Bragg diffraction in the mirror mode were conducted for the fabricated carbon periodic arrays. The periodicity in the (111) plane as well as in the direction perpendicular to the (111) plane of the colloidal crystal was evaluated by comparing the results obtained from these two measurements. It was found that the periodicity in the direction perpendicular to the (111) surface is not high for the obtained black carbon opal. On the other hand, the relationship between the incident angles and the peak wavelengths of the reflection spectra, collected in the condition where the incident light and the reflected light pass through in the same direction, is governed by an approximation based on 2D surface diffraction. The results imply that the origin of the iridescent colors on the fabricated black carbon opal is derived from the periodicity not in the direction perpendicular to the (111) plane but within the (111) plane.

  1. Black Carbon Vertical Profiles Strongly Affect Its Radiative Forcing Uncertainty

    Science.gov (United States)

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kinne, S.; Kirkevag, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J. E.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2013-01-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  2. Black carbon aerosol-induced Northern Hemisphere tropical expansion

    Science.gov (United States)

    Kovilakam, Mahesh; Mahajan, Salil

    2015-06-01

    Global climate models (GCMs) underestimate the observed trend in tropical expansion. Recent studies partly attribute it to black carbon (BC) aerosols, which are poorly represented in GCMs. We conduct a suite of idealized experiments with the Community Atmosphere Model version 4 coupled to a slab ocean model forced with increasing BC concentrations covering a large swath of the estimated range of current BC radiative forcing while maintaining their spatial distribution. The Northern Hemisphere (NH) tropics expand poleward nearly linearly as BC radiative forcing increases (0.7° W-1 m2), indicating that a realistic representation of BC could reduce GCM biases. We find support for the mechanism where BC-induced midlatitude tropospheric heating shifts the maximum meridional tropospheric temperature gradient poleward resulting in tropical expansion. We also find that the NH poleward tropical edge is nearly linearly correlated with the location of the Intertropical Convergence Zone, which shifts northward in response to increasing BC.

  3. The effects of additional black carbon on Arctic sea ice surface albedo: variation with sea ice type and snow cover

    Directory of Open Access Journals (Sweden)

    A. A. Marks

    2013-03-01

    Full Text Available Black carbon in sea ice will decrease sea ice surface albedo through increased absorption of incident solar radiation, exacerbating sea ice melting. Previous literature has reported different albedo responses to additions of black carbon in sea ice and has not considered how a snow cover may mitigate the effect of black carbon in sea ice. Sea ice is predominately snow covered. Visible light absorption and light scattering coefficients are calculated for a typical first year and multi-year sea ice and "dry" and "wet" snow types that suggest black carbon is the dominating absorbing impurity. The albedo response of first year and multi-year sea ice to increasing black carbon, from 1–1024 ng g−1, in a top 5 cm layer of a 155 cm thick sea ice was calculated using the radiative transfer model: TUV-snow. Sea ice albedo is surprisingly unresponsive to black carbon additions up to 100 ng g−1 with a decrease in albedo to 98.7% of the original albedo value due to an addition of 8 ng g−1 of black carbon in first year sea ice compared to an albedo decrease to 99.6% for the same black carbon mass ratio increase in multi-year sea ice. The first year sea ice proved more responsive to black carbon additions than the multi-year ice. Comparison with previous modelling of black carbon in sea ice suggests a more scattering sea ice environment will be less responsive to black carbon additions. Snow layers on sea ice may mitigate the effects of black carbon in sea ice. "Wet" and "dry" snow layers of 0.5, 1, 2, 5 and 10 cm were added onto the sea ice surface and the snow surface albedo calculated with the same increase in black carbon in the underlying sea ice. Just a 0.5 cm layer of snow greatly diminishes the effect of black carbon on surface albedo, and a 2–5 cm layer (less than half the e-folding depth of snow is enough to "mask" any change in surface albedo owing to additional black carbon in sea ice, but not thick enough to ignore the underlying sea ice.

  4. An Important Supplement to NAA in Study on Atmosphere Pollution:Determination of Black Carbon

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Light absorption in the atmosphere is dominated by elemental carbon (EC), sometimes called black carbon (BC). Black carbon is an important indication of man-made pollution in airborne particulate matter

  5. The distribution of snow black carbon observed in the Arctic and compared to the GISS-PUCCINI model

    Directory of Open Access Journals (Sweden)

    T. Dou

    2012-09-01

    Full Text Available In this study, we evaluate the ability of the latest NASA GISS composition-climate model, GISS-E2-PUCCINI, to simulate the spatial distribution of snow BC (sBC in the Arctic relative to present-day observations. Radiative forcing due to BC deposition onto Arctic snow and sea ice is also estimated. Two sets of model simulations are analyzed, where meteorology is linearly relaxed towards National Centers for Environmental Prediction (NCEP and towards NASA Modern Era Reanalysis for Research and Applications (MERRA reanalyses. Results indicate that the modeled concentrations of sBC are comparable with present-day observations in and around the Arctic Ocean, except for apparent underestimation at a few sites in the Russian Arctic. That said, the model has some biases in its simulated spatial distribution of BC deposition to the Arctic. The simulations from the two model runs are roughly equal, indicating that discrepancies between model and observations come from other sources. Underestimation of biomass burning emissions in Northern Eurasia may be the main cause of the low biases in the Russian Arctic. Comparisons of modeled aerosol BC (aBC with long-term surface observations at Barrow, Alert, Zeppelin and Nord stations show significant underestimation in winter and spring concentrations in the Arctic (most significant in Alaska, although the simulated seasonality of aBC has been greatly improved relative to earlier model versions. This is consistent with simulated biases in vertical profiles of aBC, with underestimation in the lower and middle troposphere but overestimation in the upper troposphere and lower stratosphere, suggesting that the wet removal processes in the current model may be too weak or that vertical transport is too rapid, although the simulated BC lifetime seems reasonable. The combination of observations and modeling provides a comprehensive distribution of sBC over the Arctic. On the basis of this distribution, we estimate the

  6. The Distribution of Snow Black Carbon observed in the Arctic and Compared to the GISS-PUCCINI Model

    Science.gov (United States)

    Dou, T.; Xiao, C.; Shindell, D. T.; Liu, J.; Eleftheriadis, K.; Ming, J.; Qin, D.

    2012-01-01

    In this study, we evaluate the ability of the latest NASA GISS composition-climate model, GISS-E2- PUCCINI, to simulate the spatial distribution of snow BC (sBC) in the Arctic relative to present-day observations. Radiative forcing due to BC deposition onto Arctic snow and sea ice is also estimated. Two sets of model simulations are analyzed, where meteorology is linearly relaxed towards National Centers for Environmental Prediction (NCEP) and towards NASA Modern Era Reanalysis for Research and Applications (MERRA) reanalyses. Results indicate that the modeled concentrations of sBC are comparable with presentday observations in and around the Arctic Ocean, except for apparent underestimation at a few sites in the Russian Arctic. That said, the model has some biases in its simulated spatial distribution of BC deposition to the Arctic. The simulations from the two model runs are roughly equal, indicating that discrepancies between model and observations come from other sources. Underestimation of biomass burning emissions in Northern Eurasia may be the main cause of the low biases in the Russian Arctic. Comparisons of modeled aerosol BC (aBC) with long-term surface observations at Barrow, Alert, Zeppelin and Nord stations show significant underestimation in winter and spring concentrations in the Arctic (most significant in Alaska), although the simulated seasonality of aBC has been greatly improved relative to earlier model versions. This is consistent with simulated biases in vertical profiles of aBC, with underestimation in the lower and middle troposphere but overestimation in the upper troposphere and lower stratosphere, suggesting that the wet removal processes in the current model may be too weak or that vertical transport is too rapid, although the simulated BC lifetime seems reasonable. The combination of observations and modeling provides a comprehensive distribution of sBC over the Arctic. On the basis of this distribution, we estimate the decrease in snow

  7. Probing Black Carbon-containing Particle Microphysics with the Single-Particle Soot Photometer (SP2)

    Science.gov (United States)

    Sedlacek, A. J.; Lewis, E. R.; Onasch, T. B.; Lambe, A. T.; Davidovits, P.; Kleinman, L. I.

    2012-12-01

    Knowledge of the structure and mixing state of black-carbon containing particles is important for calculating their radiative forcing and provides insight into their source and life cycle. Recently analysis of black carbon-containing particles has demonstrated that for a fraction of such particles, the black carbon may reside on or near the surface of the particle as opposed to the traditional core-shell configuration typically assumed in which the black carbon core is surrounded by a shell of non-refractory material. During the DOE-sponsored Aerosol Lifecycle field campaign held in summer, 2011 at Brookhaven National Laboratory on Long Island, NY, episodes were encountered in which a high fraction of particles containing black carbon had such configurations, and these episodes corresponded to air masses that contained biomass burning plumes (Sedlacek et al., 2012). Subsequent analysis found other episodes in field campaigns in Colorado and California in which high fractions this configuration corresponded to biomass burning plumes. In an effort to evaluate this interpretation and explore formation mechanisms, a series of laboratory-based experiments examining the coagulation of regal black (surrogate for collapsed soot) with model non-refractory coatings [dioctyl sebacate (surrogate for organic aerosols with liquid-like character) and deliquesced ammonium sulfate (solid)] were carried out. The results of these experiments and their potential implications on black carbon radiative forcing will be discussed. Sedlacek, III, Arthur, E. R. Lewis, L. I. Kleinman, J. Xu and Q. Zhang (2012), Determination of and Evidence for Non-core-shell structure of particles containing black carbon using the single particle soot photometer (SP2). Geophys. Res. Lett., 39 L06802, doi:10.1029/2012GL050905

  8. Catalytic Enhancement of Carbon Black and Coal-Fueled Hybrid Direct Carbon Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    Hybrid direct carbon fuel cells (HDCFCs) consisting of a solid carbon (carbon black)-molten carbonate ((62–38 wt% Li-K)2CO3) mixtures in the anode chamber of an anode-supported solid oxide fuel cell type full-cell are tested for their electrochemical performance between 700 and 800°C. Performance...

  9. Changing Export of Dissolved Black Carbon from Arctic Rivers

    Science.gov (United States)

    Stubbins, A.; Spencer, R. G.; Mann, P. J.; Dittmar, T.; Niggemann, J.; Holmes, R. M.; McClelland, J. W.

    2014-12-01

    Arctic rivers carry black carbon (BC) from Arctic soils to the ocean, linking two of the largest carbon stores on Earth. Wildfires have charred biomass since land plants emerged. BC, a refractory component of char, has accumulated in soils. In the oceans, dissolved BC (DBC) has also accumulated. Here we use samples and data collected as part of the long-term, high temporal resolution Arctic Great Rivers Observatory to model export of DBC from the six largest Arctic Rivers. Scaling to the pan-Arctic catchment, we report that ~3 million tons of DBC are delivered to the Arctic Ocean each year, which is ~8% of dissolved organic carbon loads to the Arctic Ocean. We suggest the transfer of Arctic river DBC to areas of deep water formation is a major source of DBC to the deep ocean carbon store. As the Arctic warms, greater wildfire occurrence is expected to produce more BC and changing hydrology and permafrost thaw to promote DBC export. Thus, the transfer of BC from Arctic soils to the ocean is predicted to increase.

  10. The distribution of snow black carbon observed in the Arctic and compared to the GISS-PUCCINI model

    Directory of Open Access Journals (Sweden)

    T. Dou

    2012-05-01

    Full Text Available In this study, we focus on the latest NASA GISS composition-climate model to evaluate its performance in simulating the spatial distribution of snow BC (sBC in the Arctic relative to present observations. The radiative forcing due to BC deposition to the Arctic snow and sea ice is also estimated. Two sets of model simulations have been done in the analysis, where meteorology is linearly relaxed towards National Centers for Environmental Prediction (NCEP and towards NASA Modern Era Reanalysis for Research and Applications (MERRA reanalyses. Results indicate that both of the modeled sBC are in good agreement with present-day observations in and around the Arctic Ocean, except for underestimation at a few sites in the Russian Arctic. The overall ratio of observed to modeled sBC is 1.1. The result from the NCEP run is slightly better than that from the MERRA run. This suggests that the latest GISS-E2-PUCCINI model does not have significant biases in its simulated spatial distribution of BC deposition to the Arctic, and underestimation of biomass burning emissions in Northern Eurasia is preliminarily considered to be the main cause of the simulation biases in the Russian Arctic. The combination of observations and modeling provides a comprehensive distribution of sBC over the Arctic. On the basis of this distribution, we estimate the decrease in snow and sea ice albedo and the resulting radiative forcing. It is concluded that the averaged decrease in snow and sea ice albedo in and around the Arctic Ocean (66–90° N due to BC deposition is 0.4–0.6% from spring 2007–2009, leading to regional surface radiative forcings of 0.7 W m−2, 1.1 W m−2 and 1.0 W m−2, respectively in spring 2007, 2008 and 2009.

  11. Evaluation of preindustrial to present-day black carbon and its albedo forcing from ACCMIP (Atmospheric Chemistry and Climate Model Intercomparison Project

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2012-08-01

    Full Text Available As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, we evaluate the historical black carbon (BC aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996–2000. We evaluated the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements.

    Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5–3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period. We find a large divergence among models at both Northern Hemisphere (NH and Southern Hemisphere (SH high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Jungfraujoch and Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2–3 of the BC snowpack measurements except for Greenland and the Arctic Ocean.

    For the ice core evaluation, models tend to capture both the observed temporal trends and the magnitudes well at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice-core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct

  12. Inkjet printing of carbon black electrodes for dielectric elastomer actuators

    Science.gov (United States)

    Schlatter, Samuel; Rosset, Samuel; Shea, Herbert

    2017-04-01

    Inkjet printing is an appealing technique to print electrodes for Dielectric Elastomer Actuators (DEAs). Here we present the preparation and ink-jet printing of a carbon black electrode mixture and characterise its properties. Carbon black has been used extensively in the past because it is very compliant; however, it has a high resistance and can be very dirty to work with. In this paper we show that carbon black remains an appropriate electrode material, and when inkjet printed can be used to fabricate devices meeting today's demanding requirements. DEAs are becoming thinner to decrease actuation voltages and are shrinking in size to match the scale of the devices in the biomedical field, tuneable optics, and microfluidics. Inkjet printing addresses both of these problems. Firstly, Inkjet printing is a non-contact technique and can print on very thin freestanding membranes. Secondly, the high precision of inkjet printers makes it possible to print complex electrode geometries in the millimetre scale. We demonstrate the advantages of inkjet printing and carbon black electrodes by conducting a full characterisation of the printed electrodes. The printed carbon black electrodes have resistances as low as 13kΩ/□, an elastic modulus of approximately 1MPa, and a cyclic resistance swing which increases by 7% over 1500 cycles at 50% stretch. We also demonstrate a DEA with printed carbon black electrodes with a diametral stretch of 8.8% at an electric field of approximately 94V/μm. Finally a qualitative test is conducted to show that the printed carbon black electrode is extremely hardwearing.

  13. Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    Science.gov (United States)

    Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, D. T.; Bernsten, T.; Bisiaux, M. M.; Cao, J.; Collins, W. J.; Curran, M.; Edwards, R.; Faluvegi, G.; Ghan, S.; Horowitz, L. W.; McConnell, J. R.; Ming, J.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S. T.; Skeie, R. B.; Sudo, K.; Takemura, T.; Thevenon, F.; Xu, B.; Yoon, J.-H.

    2013-01-01

    As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations, and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996-2000. We evaluate the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5-3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period.We find a large divergence among models at both Northern Hemisphere (NH) and Southern Hemisphere (SH) high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to adequately capture both the observed temporal trends and the magnitudes at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct temporal trend at the Tibetan Plateau ice cores

  14. Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2013-03-01

    Full Text Available As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, we evaluate the historical black carbon (BC aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations, and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996–2000. We evaluate the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5–3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period. We find a large divergence among models at both Northern Hemisphere (NH and Southern Hemisphere (SH high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2–3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to adequately capture both the observed temporal trends and the magnitudes at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct temporal trend at the Tibetan

  15. Optical Properties of Small Ice Crystals with Black Carbon Inclusions

    Science.gov (United States)

    Yang, X.; Geier, M.; Arienti, M.

    2013-12-01

    The optical properties of ice crystals play a fundamental role in modeling atmospheric radiation and hydrological cycle, which are critical in monitoring climate change. While Black Carbon (BC) is recognized as the dominant absorber with positive radiative forcing (warming) (Ramanathan & Carmichael, 2008), in-situ observations (Cappa, et al, 2012) indicate that the characterization of the mixing state of BC with ice crystals and other non-BC particles in global climate models (Ghan & Schwartz, 2007) needs further investigation. The limitation in the available mixing models is due to the drastically different absorbing properties of BC compared to other aerosols. We explore the scattering properties of ice crystals (in shapes commonly found in cirrus clouds and contrails - Yang, et al. 2012) with the inclusion of BC particles. The Discrete Dipole Approximation (DDA) (Yurkin & Hoekstra, 2011) is utilized to directly calculate the optical properties of the crystals with multiple BC inclusions, modeled as a distribution of spheres. The results are then compared with the most popular models of internal and external mixing (Liou, et al. 2011). The DDA calculations are carried out over a broad range of BC particle sizes and volume fractions within the crystal at the 532 nm wavelength and for ice crystals smaller than 50 μm. The computationally intensive database generated in this study is critical for understanding the effect of different types of BC inclusions on the atmosphere radiative forcing. Examples will be discussed to illustrate the modification of BC optical properties by encapsulation in ice crystals and how the parameterization of the BC mixing state in global climate models can be improved. Acknowledgements Support by Sandia National Laboratories' LDRD (Laboratory Directed Research and Development) is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of

  16. Light Absorption in Arctic Sea Ice - Black Carbon vs Chlorophyll

    Science.gov (United States)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Hunke, E. C.; Flanner, M.; Wang, H.; Dubey, M. K.; Jeffery, N.

    2015-12-01

    The fingerprint of climate change is more obvious in the Arctic than any other place on Earth. This is not only because the surface temperature there has increased at twice the rate of global mean temperature but also because Arctic sea ice extent has reached a record low of 49% reduction relative to the 1979-2000 climatology. Radiation absorption through black carbon (BC) deposited on Arctic snow and sea ice surface is one of the major hypothesized contributors to the decline. However, we note that chlorophyll-a absorption owing to increasing biology activity in this region could be a major competitor during boreal spring. Modeling of sea-ice physical and biological processes together with experiments and field observations promise rapid progress in the quality of Arctic ice predictions. Here we develop a dynamic ice system module to investigate discrete absorption of both BC and chlorophyll in the Arctic, using BC deposition fields from version 5 of Community Atmosphere Model (CAM5) and vertically distributed layers of chlorophyll concentrations from Sea Ice Model (CICE). To this point, our black carbon mixing ratios compare well with available in situ data. Both results are in the same order of magnitude. Estimates from our calculations show that sea ice and snow around the Canadian Arctic Archipelago and Baffin Bay has the least black carbon absorption while values at the ice-ocean perimeter in the region of the Barents Sea peak significantly. With regard to pigment concentrations, high amounts of chlorophyll are produced in Arctic sea ice by the bottom microbial community, and also within the columnar pack wherever substantial biological activity takes place in the presence of moderate light. We show that the percentage of photons absorbed by chlorophyll in the spring is comparable to the amount attributed to BC, especially in areas where the total deposition rates are decreasing with time on interannual timescale. We expect a continuous increase in

  17. MORPHOLOGY OF BLACK CARBON AEROSOLS AND UBIQUITY OF 50-NANOMETER BLACK CARBON AEROSOLS IN THE ATMOSPHERE

    Institute of Scientific and Technical Information of China (English)

    Fengfu Fu; Liangjun Xu; Wei Ye; Yiquan Chen; Mingyu Jiang; Xueqin Xu

    2006-01-01

    Different-sized aerosols were collected by an Andersen air sampler to observe the detailed morphology of the black carbon (BC) aerosols which were separated chemically from the other accompanying aerosols, using a Scanning Electron Microscope equipped with an Energy Dispersive X-ray Spectrometer (SEM-EDX). The results indicate that most BC aerosols are spherical particles of about 50 nm in diameter and with a homogeneous surface. Results also show that these particles aggregate with other aerosols or with themselves to form larger agglomerates in the micrometer range. The shape of these 50-nm BC spherical particles was found to be very similar to that of BC particles released from petroleum-powered vehicular internal combustion engines. These spherical BC particles were shown to be different from the previously reported fullerenes found using Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS).

  18. Characterisation of surface ionisation and adsorption of phenol and 4-nitrophenol on non-porous carbon blacks

    OpenAIRE

    Carrott, Peter; Carrott, Manuela; Vale, Tania; Valente Nabais, Joao; Mourao, Paulo

    2008-01-01

    The adsorption of phenol and 4-nitrophenol from aqueous solutions by carbon blacks was studied. Particular attention was paid to the characterisation of the surface chemistry and ionisation of the carbon blacks by use of a simple carbon surface ionisation model, as well as the use of a normalised form of the Freundlich equation for the analysis of the adsorption isotherms. The results indicated that the solutes interact directly with the graphene layers and that the adsorpti...

  19. Estimate the influence of snow grain size and black carbon on albedo

    Institute of Scientific and Technical Information of China (English)

    ZhongMing Guo; NingLian Wang; XiaoBo Wu; HongBo Wu; YuWei Wu

    2015-01-01

    Estimation of the influence of snow grain size and black carbon on albedo is essential in obtaining the accurate albedo. In this paper, field measurement data, including snow grain size, snow depth and density was obtained. Black carbon samples were collected from the snow surface. A simultaneous observation using Analytical Spectral Devices was employed in the Qiyi Glacier located in the Qilian Mountain. Analytical Spectral Devices spectrum data were used to analyze spectral re-flectance of snow for different grain size and black carbon content. The measurements were compared with the results obtained from the Snow, Ice, and Aerosol Radiation model, and the simulation was found to correlate well with the ob-served data. However, the simulated albedo was near to 0.98 times of the measured albedo, so the other factors were as-sumed to be constant using the corrected Snow, Ice, and Aerosol Radiation model to estimate the influence of measured snow grain size and black carbon on albedo. Field measurements were controlled to fit the relationship between the snow grain size and black carbon in order to estimate the influence of these factors on the snow albedo.

  20. Seasonal variation and four-year trend of black carbon in the Mid-west China: The analysis of the ambient measurement and WRF-Chem modeling

    Science.gov (United States)

    Zhao, Shuyu; Tie, Xuexi; Cao, Junji; Li, Nan; Li, Guohui; Zhang, Qiang; Zhu, Chongshu; Long, Xin; Li, Jiandong; Feng, Tian; Su, Xiaoli

    2015-12-01

    In-situ measurement of black carbon (BC) concentration from September 2003 to August 2007 in the Xi'an City at the Guanzhong Basin located in the mid-western China (the Guanzhong Basin) was analyzed. A regional dynamics and aerosol model (WRF-Chem) was used to quantify the impacts of local emission, meteorological conditions, and regional atmospheric transport on seasonal variation of BC concentration at the Guanzhong Basin. The results show that the regional prevailing winds at the Guanzhong Basin were unfavorable for the horizontal transport. The mean wind speeds ranged from 1.0 m/s to 1.9 m/s. During winter, the wind at the Guanzhong Basin was very weak (˜1.0 m/s). During spring and autumn, there was a wind convergent zone at the Guanzhong Basin, constraining the BC concentrations inside the Guanzhong Basin. As a result, the BC concentrations were persistently high at the Guanzhong Basin. In addition to the high background concentrations, there was a strong seasonal variation, with a maximum in winter (winter maximum) and a minimum in summer (summer minimum), with the maximum of the mean concentration of 30 μg m-3 in 2003-2004 winter, and the minimum of 5 μg m-3 in 2004 summer. The model sensitivity study shows that the seasonal variation of BC concentration was largely due to the seasonal variation of BC emission, especially during winter with the maximum of BC emission. A strong annual decrease trend of the BC concentration was found from 2004 to 2007. It is interesting to note that the decrease of the BC concentration only occurred in winter. For example, the winter maximum was 20 μg m-3 in 2003, and reduced to 11 μg m-3 in 2006, with about 50% decrease. In contrast, the summer minimum was 10 μg m-3 in 2004 and 9 μg m-3 in 2007, with only 10% decrease. This study suggests that the rapid decrease in the winter maximum was mainly due to the reduction of the BC emission in winter, implying the effective winter emission control at the Guanzhong Basin.

  1. Estimates of black carbon and size-resolved particle number emission factors from residential wood burning based on ambient monitoring and model simulations.

    Science.gov (United States)

    Olivares, Gustavo; Ström, Johan; Johansson, Christer; Gidhagen, Lars

    2008-06-01

    In this paper we derive typical emission factors for coarse particulate matter (PM(10)), oxides of nitrogen (NO(x)), black carbon (BC), and number particle size distributions based on a combination of measurements and air quality dispersion modeling. The advantage of this approach is that the emission factors represent integrated emissions from several vehicle types and different types of wood stoves. Normally it is very difficult to estimate the total emissions in cities on the basis of laboratory measurements on single vehicles or stoves because of the large variability in conditions. The measurements were made in Temuco, Chile, between April 18 and June 15, 2005 at two sites. The first one was located in a residential area relatively far from major roads. The second site was located in a busy street in downtown Temuco where wood consumption is low. The measurements support the assumption that the monitoring sites represent the impact of different emission sources, namely traffic and residential wood combustion (RWC). Fitting model results to the available measurements, emission factors were obtained for PM(10) (RWC = 2160 +/- 100 mg/kg; traffic = 610 +/- 51 mg/veh-km), NO(x) (RWC = 800 +/- 100 mg/kg; traffic = 4400 +/- 100 mg/veh-km), BC (RWC = 74 +/- 6 mg/kg; traffic = 60 +/- 3 mg/veh-km) and particle number (N) with size distribution between 25 and 600 nm (N(25-600)) (RWC = 8.9 +/- 1 x 10(14) pt/kg; traffic = 6.7 +/- 0.5 x 10(14) pt/veh-km). The obtained emission factors are comparable to results reported in the literature. The size distribution of the N emission factors for traffic was shown to be different than for RWC. The main difference is that although traffic emissions show a bimodal size distribution with a main mode below 30 nm and a secondary one around 100 nm, RWC emissions show the main mode slightly below 100 nm and a smaller nucleation mode below 50 nm.

  2. Fluxes of soot black carbon to South Atlantic sediments

    Science.gov (United States)

    Lohmann, Rainer; Bollinger, Kevyn; Cantwell, Mark; Feichter, Johann; Fischer-Bruns, Irene; Zabel, Matthias

    2009-03-01

    Deep sea sediment samples from the South Atlantic Ocean were analyzed for soot black carbon (BC), total organic carbon (TOC), stable carbon isotope ratios (δ13C), and polycyclic aromatic hydrocarbons (PAHs). Soot BC was present at low concentrations (0.04-0.17% dry weight), but accounted for 3-35% of TOC. Fluxes of soot BC were calculated on the basis of known sedimentation rates and ranged from 0.5 to 7.8 μg cm-2 a-1, with higher fluxes near Africa compared to South America. Values of δ13C indicated a marine origin for the organic carbon but terrestrial sources for the soot BC. PAH ratios implied a pyrogenic origin for most samples and possibly a predominance of traffic emissions over wood burning off the African coast. A coupled ocean-atmosphere-aerosol-climate model was used to determine fluxes of BC from 1860 to 2000 to the South Atlantic. Model simulation and measurements both yielded higher soot BC fluxes off the African coast and lower fluxes off the South American coast; however, measured sedimentary soot BC fluxes exceeded simulated values by ˜1 μg cm-2 a-1 on average (within a factor of 2-4). For the sediments off the African coast, soot BC delivery from the Congo River could possibly explain the higher flux rates, but no elevated soot BC fluxes were detected in the Amazon River basin. In total, fluxes of soot BC to the South Atlantic were ˜480-700 Gg a-1 in deep sea sediments. Our results suggest that attempts to construct a global mass balance of BC should include estimates of the atmospheric deposition of BC.

  3. Radiocarbon Studies of Black Carbon in the Marine Environment

    OpenAIRE

    2015-01-01

    The incomplete combustion of biomass and fossil fuels produces black carbon (BC). BC is recalcitrant and serves as a long term holding pool for carbon, with a mean residence time of one to two orders of magnitude greater than unburnt carbon on land. Yet the known sources of BC are far larger than the known sinks, which led to studies of BC in the ocean’s dissolved organic carbon (DOC) reservoir. The goal of this dissertation was to measure the abundance and residence times of BC in sedime...

  4. Migration of nanoparticles from plastic packaging materials containing carbon black into foodstuffs.

    Science.gov (United States)

    Bott, Johannes; Störmer, Angela; Franz, Roland

    2014-01-01

    Carbon black was investigated to assess and quantify the possibility that nanoparticles might migrate out of plastic materials used in the food packaging industry. Two types of carbon black were incorporated in low-density polyethylene (LDPE) and polystyrene (PS) at 2.5% and 5.0% loading (w/w), and then subjected to migration studies. The samples were exposed to different food simulants according to European Union Plastics Regulation 10/2011, simulating long-term storage with aqueous and fatty foodstuffs. Asymmetric flow field-flow fractionation (AF4) coupled to a multi-angle laser light-scattering (MALLS) detector was used to separate, characterise and quantify the potential release of nanoparticles. The AF4 method was successful in differentiating carbon black from other matrix components, such as extracted polymer chains, in the migration solution. At a detection limit of 12 µg kg⁻¹, carbon black did not migrate from the packaging material into food simulants. The experimental findings are in agreement with theoretical considerations based on migration modelling. From both the experimental findings and theoretical considerations, it can be concluded that carbon black does not migrate into food once it is incorporated into a plastics food contact material.

  5. Effect of molecular weight on the electrophoretic deposition of carbon black nanoparticles in moderately viscous systems.

    Science.gov (United States)

    Modi, Satyam; Panwar, Artee; Mead, Joey L; Barry, Carol M F

    2013-08-06

    Electrophoretic deposition from viscous media has the potential to produce in-mold assembly of nanoparticles onto three-dimensional parts in high-rate, polymer melt-based processes like injection molding. The effects of the media's molecular weight on deposition behavior were investigated using a model system of carbon black and polystyrene in tetrahydrofuran. Increases in molecular weight reduced the electrophoretic deposition of the carbon black particles due to increases in suspension viscosity and preferential adsorption of the longer polystyrene chains on the carbon black particles. At low deposition times (≤5 s), only carbon black deposited onto the electrodes, but the deposition decreased with increasing molecular weight and the resultant increases in suspension viscosity. For longer deposition times, polystyrene codeposited with the carbon black, with the amount of polystyrene increasing with molecular weight and decreasing with greater charge on the polystyrene molecules. This deposition behavior suggests that use of lower molecular polymers and control of electrical properties will permit electrophoretic deposition of nanoparticles from polymer melts for high-rate, one-step fabrication of nano-optical devices, biochemical sensors, and nanoelectronics.

  6. Using an Explicit Emission Tagging Method in Global Modeling of Source-Receptor Relationships for Black Carbon in the Arctic: Variations, Sources and Transport Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hailong; Rasch, Philip J.; Easter, Richard C.; Singh, Balwinder; Zhang, Rudong; Ma, Po-Lun; Qian, Yun; Ghan, Steven J.; Beagley, Nathaniel

    2014-11-27

    We introduce an explicit emission tagging technique in the Community Atmosphere Model to quantify source-region-resolved characteristics of black carbon (BC), focusing on the Arctic. Explicit tagging of BC source regions without perturbing the emissions makes it straightforward to establish source-receptor relationships and transport pathways, providing a physically consistent and computationally efficient approach to produce a detailed characterization of the destiny of regional BC emissions and the potential for mitigation actions. Our analysis shows that the contributions of major source regions to the global BC burden are not proportional to the respective emissions due to strong region-dependent removal rates and lifetimes, while the contributions to BC direct radiative forcing show a near-linear dependence on their respective contributions to the burden. Distant sources contribute to BC in remote regions mostly in the mid- and upper troposphere, having much less impact on lower-level concentrations (and deposition) than on burden. Arctic BC concentrations, deposition and source contributions all have strong seasonal variations. Eastern Asia contributes the most to the wintertime Arctic burden. Northern Europe emissions are more important to both surface concentration and deposition in winter than in summer. The largest contribution to Arctic BC in the summer is from Northern Asia. Although local emissions contribute less than 10% to the annual mean BC burden and deposition within the Arctic, the per-emission efficiency is much higher than for major non-Arctic sources. The interannual variability (1996-2005) due to meteorology is small in annual mean BC burden and radiative forcing but is significant in yearly seasonal means over the Arctic. When a slow aging treatment of BC is introduced, the increase of BC lifetime and burden is source-dependent. Global BC forcing-per-burden efficiency also increases primarily due to changes in BC vertical distributions. The

  7. Evaluating the Utility of Adjoint-based Inverse Modeling with Aircraft and Surface Measurements during ARCTAS-CARB to Constrain Wildfire Emissions of Black Carbon

    Science.gov (United States)

    Henze, D. K.; Guerrette, J.; Bousserez, N.

    2016-12-01

    Wildfires contribute significantly to regional haze events globally, and they are potentially becoming more commonplace with increasing droughts due to climate change. Aerosol emissions from wildfires are highly uncertain, with global annual totals varying by a factor of 2 to 3 and regional rates varying by up to a factor of 10. At the high resolution required to predict PM2.5 exposure events, this variance is attributable to differences in methodology, differing land cover datasets, spatial variation in fire locations, and limited understanding of fast transient fire behavior. Here we apply an adjoint-based online chemical inverse modeling tool, WRFDA-Chem, to constrain black carbon aerosol (BC) emissions from fires during the 2008 ARCTAS-CARB field campaign. We identify several weaknesses in the prior diurnal distribution of emissions, including a missing early morning emission peak associated with local, persistent, large-scale forest fires. On 22 June, 2008, aircraft observations are able to reduce the spread between FINNv1.0 and QFEDv2.4r8 from ×3.5 to ×2.1. On 23 and 24 June, the spread is reduced from ×3.4 to ×1.4. Using posterior error estimates, we found that emission variance improvements are limited to a small footprint surrounding the measurements. Relative BB emission variances are reduced by up to 35% near aircraft flight paths and up to 60% near IMPROVE surface sites. Due to the spatial variation of observations on multiple days, and the heterogeneous biomass burning errors on daily scales, cross-validation was not successful. Future high-resolution measurements need to be carefully planned to characterize biomass burning emission errors and control for day-to-day variation. In general, the 4D-Var inversion framework would benefit from reduced wall-time. For the problem presented, incremental 4D-Var requires 20 hours on 96 cores to reach practical optimization convergence and generate the posterior covariance matrix for a 24-hour assimilation

  8. A method for monitoring mass concentration of black carbon particulate matter using photothermal interferometry.

    Science.gov (United States)

    Li, Baosheng; Wang, Yicheng; Li, Zhengqiang

    2016-03-01

    A method for measurements of mass concentration of black carbon particulate matter (PM) is proposed based on photothermal interferometry (PTI). A folded Jamin photothermal interferometer was used with a laser irradiation of particles deposited on a filter paper. The black carbon PM deposited on the filter paper was regarded as a film while the quartz filter paper was regarded as a substrate to establish a mathematical model for measuring the mass concentration of PM using a photothermal method. The photothermal interferometry system was calibrated and used to measure the atmospheric PM concentration corresponding to different dust-treated filter paper. The measurements were compared to those obtained using β ray method and were found consistent. This method can be particularly relevant to polluted atmospheres where PM is dominated by black carbon.

  9. Black hole collapse and democratic models

    Science.gov (United States)

    Jansen, Aron; Magán, Javier M.

    2016-11-01

    We study the evolution of black hole entropy and temperature in collapse scenarios in asymptotically anti-de Sitter spacetime, finding three generic lessons. First, entropy evolution is extensive. Second, at large times, entropy and temperature ring with twice the frequency of the lowest quasinormal mode. Third, the entropy oscillations saturate black hole area theorems in general relativity. The first two features are characteristic of entanglement dynamics in "democratic" models. Solely based on general relativity and the Bekenstein-Hawking entropy formula, our results point to democratic models as microscopic theories of black holes. The third feature can be taken as a prediction for microscopic models of black hole physics.

  10. Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring

    Science.gov (United States)

    Ryan, M. A.; Shevade, A. V.; Zhou, H.; Homer, M. L.

    2004-01-01

    An electronic nose that uses an array of 32 polymer-carbon black composite sensors has been developed, trained, and tested. By selecting a variety of chemical functionalities in the polymers used to make sensors, it is possible to construct an array capable of identifying and quantifying a broad range of target compounds, such as alcohols and aromatics, and distinguishing isomers and enantiomers (mirror-image isomers). A model of the interaction between target molecules and the polymer-carbon black composite sensors is under development to aid in selecting the array members and to enable identification of compounds with responses not stored in the analysis library.

  11. Aerosol Absorption by Black Carbon and Dust: Implications of Climate Change and Air Quality in Asia

    Science.gov (United States)

    Chin, Mian

    2010-01-01

    Atmospheric aerosol distributions from 2000 to 2007 are simulated with the global model GOCART to attribute light absorption by aerosol to its composition and sources. We show the seasonal and interannual variations of absorbing aerosols in the atmosphere over Asia, mainly black carbon and dust. and their linkage to the changes of anthropogenic and dust emissions in the region. We compare our results with observations from satellite and ground-based networks, and estimate the importance of black carbon and dust on regional climate forcing and air quality.

  12. Aerosol Absorption by Black Carbon and Dust: Implications of Climate Change and Air Quality in Asia

    Science.gov (United States)

    Chin, Mian

    2010-01-01

    Atmospheric aerosol distributions from 2000 to 2007 are simulated with the global model GOCART to attribute light absorption by aerosol to its composition and sources. We show the seasonal and interannual variations of absorbing aerosols in the atmosphere over Asia, mainly black carbon and dust. and their linkage to the changes of anthropogenic and dust emissions in the region. We compare our results with observations from satellite and ground-based networks, and estimate the importance of black carbon and dust on regional climate forcing and air quality.

  13. Costs and global impacts of black carbon abatement strategies

    OpenAIRE

    K. Rypdal; Rive, N.; T. K. Berntsen; Z. Klimont; Mideksa, T.K.; G. Myhre; R. B. Skeie

    2009-01-01

    Abatement of particulate matter has traditionally been driven by health concerns rather than its role in global warming. Here we assess future abatement strategies in terms of how much they reduce the climate impact of black carbon (BC) and organic carbon (OC) from contained combustion. We develop global scenarios which take into account regional differences in climate impact, costs of abatement and ability to pay, as well as both the direct and indirect (snow-albedo) climate impact of BC ...

  14. Black silicon maskless templates for carbon nanotube forests

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Schmidt, Michael Stenbæk; Boisen, Anja

    2013-01-01

    We present here a proof of concept for a novel fabrication method of vertically aligned carbon nanotube forests, utilizing black silicon nanograss (a forest of silicon nanometer-sized spikes created with reactive ion etching) coated with titanium tungsten diffusion barrier as a template. The meth...

  15. Potential impacts of black carbon on the marine microbial community

    NARCIS (Netherlands)

    Malits, A.; Cattaneo, R.; Sintes, E.; Gasol, J.M.; Herndl, G.J.; Weinbauer, M.G.

    2015-01-01

    Black carbon (BC) is the carbonaceous residue of the incomplete combustion of fossil fuels and biomass and encompasses a range of chemically heterogeneous substances from partly charred plant material to highly condensed soot aerosols. We addressed the potential role of BC aerosol deposition on mari

  16. Molecular simulation of polycyclic aromatic hydrocarbon sorption to black carbon

    NARCIS (Netherlands)

    Haftka, J.J.H.; Parsons, J.R.; Govers, H.A.J.

    2009-01-01

    Strong sorption of hydrophobic organic contaminants to soot or black carbon (BC) is an important environmental process limiting the bioremediation potential of contaminated soils and sediments. Reliable methods to predict BC sorption coefficients for organic contaminants are therefore required. A co

  17. Low-wind and other microclimatic factors in near-road black carbon variability: A case study and assessment implications

    Science.gov (United States)

    Liang, Marissa S.; Keener, Timothy C.; Birch, M. Eileen; Baldauf, Richard; Neal, Jill; Yang, Y. Jeffrey

    2013-12-01

    Airborne black carbon from urban traffic is a climate forcing agent and has been associated with health risks to near-road populations. In this paper, we describe a case study of black carbon concentration and compositional variability at and near a traffic-laden multi-lane highway in Cincinnati, Ohio, using an onsite aethalometer and filter-based NIOSH Method 5040 measurements; the former measured 1-min average black carbon concentrations and the latter determined the levels of organic and elemental carbon (OC and EC) averaged over an approximately 2-h time interval. The results show significant wind and temperature effects on black carbon concentration and composition in a way more complex than predicted by Gaussian dispersion models. Under oblique low winds, namely ux[=u×sin(θ)]˜ (0, -0.5 m s-1), which mostly occurred during morning hours, black carbon concentrations per unit traffic flow were highest and had large variation. The variability did not always follow Gaussian dispersion but was characteristic of a uniform distribution at a near-road distance. Under all other wind conditions, the near-road black carbon variation met Gaussian dispersion characteristics. Significant differences in roadside dispersion are observed between OC and EC fractions, between PM2.5 and PM10-2.5, and between the morning period and rest of the day. In a general case, the overall black carbon variability at the multi-lane highway can be stated as bimodal consisting of Gaussian dispersion and non-Gaussian uniform distribution. Transition between the two types depends on wind velocity and wind angle to the traffic flow. In the order of decreasing importance, the microclimatic controlling factors over the black carbon variability are: 1) wind velocity and the angle with traffic; 2) diurnal temperature variations due to thermal buoyancy; and 3) downwind Gaussian dispersion. Combinations of these factors may have created various traffic-microclimate interactions that have significant

  18. Black carbon in snow in the upper Himalayan Khumbu Valley, Nepal: observations and modeling of the impact on snow albedo, melting, and radiative forcing

    Directory of Open Access Journals (Sweden)

    H.-W. Jacobi

    2014-10-01

    Full Text Available Black carbon (BC in the snow in the Himalayas has recently attracted considerable interest due to its impact on snow albedo, snow and glacier melting, regional climate and water resources. A single particle soot photometer (SP2 instrument was used to measure refractory BC (rBC in a series of surface snow samples collected in the upper Khumbu Valley in Nepal between November 2009 and February 2012. The obtained time series indicates annual cycles with maximum concentration before the onset of the monsoon season and fast decreases in rBC during the monsoon period. Measured concentrations ranged from a few ppb up to 70 ppb rBC. However, due to the handling of the samples the measured concentrations possess rather large uncertainties. Detailed modeling of the snowpack including the measured range and an estimated upper limit of rBC concentrations was performed to study the role of BC in the seasonal snowpack. Simulations were performed for three winter seasons with the snowpack model Crocus including a detailed description of the radiative transfer inside the snowpack. While the standard Crocus model strongly overestimates the height and the duration of the seasonal snowpack, a better calculation of the snow albedo with the new radiative transfer scheme enhanced the representation of the snow. However, the period with snow on the ground neglecting BC in the snow was still over-estimated between 37 and 66 days, which was further diminished by 8 to 15% and more than 40% in the presence of 100 or 300 ppb of BC. Compared to snow without BC the albedo is on average reduced by 0.027 and 0.060 in the presence of 100 and 300 ppb BC. While the impact of increasing BC in the snow on the albedo was largest for clean snow, the impact on the local radiative forcing is the opposite. Here, increasing BC caused an even larger impact at higher BC concentrations. This effect is related to an accelerated melting of the snowpack caused by a more efficient metamorphism

  19. Soil Fraction and Black Carbon Particles of Amazonian Dark Earth Harbor Different Fungal Abundance and Diversity

    NARCIS (Netherlands)

    Reis Lucheta, Adriano; Souza Cannavan, F.S.; Tsai, S.M.; Kuramae, E.E.

    2017-01-01

    Amazonian Dark Earth (ADE) is a highly fertile soil of anthropogenic origin characterized by higher amount of charred black carbon (BC). ADE is considered a fertility model, however knowledge about the fungal community structure and diversity inhabiting ADE and BC is scarce. Fungal community

  20. Study of positron annihilation lifetime spectroscopy in carbon black-filled HDPE composite

    CERN Document Server

    Zhang Xian Feng; Zhou Xian Yi; Weng Hu Imin; Ye Bang Jiao; Han Rong Dian; Jia Shao Jin; Zhang Zhi Cheng

    2002-01-01

    The variation of the electrical conductivity of high density polyethylene (HDPE) with the carbon black (CB) content was studied using positron annihilation lifetime spectroscopy (PALS) and free-volume model, the crystallinity of HDPE/CB composite and 'percolation' effect were discussed with measurements of conductivity and DSC test

  1. Pulmonary exposure to carbon black nanoparticles and vascular effects

    Directory of Open Access Journals (Sweden)

    Wallin Håkan

    2010-11-01

    Full Text Available Abstract Background Exposure to small size particulates is regarded as a risk factor for cardiovascular diseases. Methods We exposed young and aged apolipoprotein E knockout mice (apoE-/- to carbon black (Printex 90, 14 nm by intratracheal instillation, with different dosing and timing, and measured vasomotor function, progression of atherosclerotic plaques, and VCAM-1, ICAM-1, and 3-nitrotyrosine in blood vessels. The mRNA expression of VCAM-1, ICAM-1, HO-1, and MCP-1 was examined in lung tissue. Results Young apoE-/- mice exposed to two consecutive 0.5 mg/kg doses of carbon black exhibited lower acetylcholine-induced vasorelaxation in aorta segments mounted in myographs, whereas single doses of 0.05-2.7 mg/kg produced no such effects. The phenylephrine-dependent vasocontraction response was shifted toward a lower responsiveness in the mice exposed once to a low dose for 24 hours. No effects were seen on the progression of atherosclerotic plaques in the aged apoE-/- mice or on the expression of VCAM-1 and ICAM-1 and the presence of 3-nitrotyrosine in the vascular tissue of either young or aged apoE-/- mice. The expression of MCP-1 mRNA was increased in the lungs of young apoE-/- mice exposed to 0.9-2.7 mg/kg carbon black for 24 hours and of aged apoE-/- mice exposed to two consecutive 0.5 mg/kg doses of carbon black seven and five weeks prior to sacrifice. Conclusion Exposure to nano-sized carbon black particles is associated with modest vasomotor impairment, which is associated neither with nitrosative stress nor with any obvious increases in the expression of cell adhesion proteins on endothelial cells or in plaque progression. Evidence of pulmonary inflammation was observed, but only in animals exposed to higher doses.

  2. Offsetting features of climate responses to anthropogenic sulfate and black carbon direct radiative forcings

    Science.gov (United States)

    Ocko, I.; Ramaswamy, V.

    2012-12-01

    The two most prominent anthropogenic aerosols—sulfate and black carbon—affect Earth's radiation budget in opposing ways. Here we examine how these aerosols independently impact the climate, by simulating climate responses from pre-industrial times (1860) to present-day (2000) for isolated sulfate and black carbon direct radiative forcings. The NOAA Geophysical Fluid Dynamics Laboratory CM2.1 global climate model is employed with prescribed distributions of externally mixed aerosols. We find that sulfate and black carbon induce opposite effects for a myriad of climate variables. Sulfate (black carbon) is generally cooling (warming), shifts the ITCZ southward (northward), reduces (enhances) the SH Hadley Cell, enhances (reduces) the NH Hadley Cell, and increases (decreases) total sea ice volume. Individually, sulfate and black carbon affect Hadley Cell circulation more than long-lived greenhouse gases, but the net aerosol effect is a weakened response due to opposite behaviors somewhat canceling out the individual effects. Because anthropogenic aerosols are a critical contributor to Earth's climate conditions, this study has implications for future climate changes as well.

  3. Atmospheric black carbon and sulfate concentrations in Northeast Greenland

    Directory of Open Access Journals (Sweden)

    A. Massling

    2015-04-01

    Full Text Available Measurements of Black Carbon (BC in aerosols at the high Arctic field site Villum Research Station (VRS at Station Nord in North Greenland showed a seasonal variation in BC concentrations with a maximum in winter and spring at ground level. The data was obtained using a Multi Angle Absorption Photometer (MAAP. A similar seasonal pattern was found for sulfate concentrations with a maximum level during winter and spring analyzed by ion chromatography. A correlation between BC and sulfate concentrations was observed over the years 2011 to 2013. This finding gives the hint that most likely transport of primary emitted BC particles to the Arctic was accompanied by aging of the aerosols through condensational processes. This process may have led to the formation of secondary inorganic matter and further transport of BC particles as cloud processing and further washout of particles is less likely based on the typically observed transport patterns of air masses arriving at VRS. Additionally, concentrations of EC (elemental carbon based on a thermo-optical method were determined and compared to BC measurements. Model estimates of the climate forcing due to BC in the Arctic are based on contributions of long-range transported BC during spring and summer. The measured concentrations were here compared with model results obtained by the Danish Hemispheric Model, DEHM. Good agreement between measured and modeled concentrations of both BC and sulfate was observed. The dominant source is found to be combustion of fossil fuel with biomass burning as a minor though significant source. During winter and spring the Arctic atmosphere is known to be impacted by long-range transport of BC and associated with the Arctic haze phenomenon.

  4. Simplifying the calculation of light scattering properties for black carbon fractal aggregates

    Directory of Open Access Journals (Sweden)

    A. J. A. Smith

    2014-02-01

    Full Text Available Black carbon fractal aggregates have complicated shapes that make the calculation of their optical properties particularly computationally expensive. Here, a method is presented to estimate fractal aggregate light scattering properties by optimising simplified models to full light scattering calculations. It is found that there are no possible spherical models (at any size or refractive index that well represent the light scattering in the visible, or near-thermal infrared. As such, parameterisations of the light scattering as a function of the number of aggregate particles is presented as the most pragmatic choice for modelling distributions of black carbon when the large computational overheads of rigorous scattering calculations cannot be justified. This parameterisation can be analytically integrated to provide light scattering properties for log-normal distributions of black carbon fractal aggregates and return extinction cross-sections with 0.1% accuracy for typical black carbon size distributions. Scattering cross-sections and the asymmetry parameter can be obtained to within 3%.

  5. Time-resolved analysis of particle emissions from residential biomass combustion - Emissions of refractory black carbon, PAHs and organic tracers

    Science.gov (United States)

    Nielsen, Ingeborg E.; Eriksson, Axel C.; Lindgren, Robert; Martinsson, Johan; Nyström, Robin; Nordin, Erik Z.; Sadiktsis, Ioannis; Boman, Christoffer; Nøjgaard, Jacob K.; Pagels, Joakim

    2017-09-01

    Time-resolved particle emissions from a conventional wood stove were investigated with aerosol mass spectrometry to provide links between combustion conditions, emission factors, mixing state of refractory black carbon and implications for organic tracer methods. The addition of a new batch of fuel results in low temperature pyrolysis as the fuel heats up, resulting in strong, short-lived, variable emission peaks of organic aerosol-containing markers of anhydrous sugars, such as levoglucosan (fragment at m/z 60). Flaming combustion results in emissions dominated by refractory black carbon co-emitted with minor fractions of organic aerosol and markers of anhydrous sugars. Full cycle emissions are an external mixture of larger organic aerosol-dominated and smaller thinly coated refractory black carbon particles. A very high burn rate results in increased full cycle mass emission factors of 66, 2.7, 2.8 and 1.3 for particulate polycyclic aromatic hydrocarbons, refractory black carbon, total organic aerosol and m/z 60, respectively, compared to nominal burn rate. Polycyclic aromatic hydrocarbons are primarily associated with refractory black carbon-containing particles. We hypothesize that at very high burn rates, the central parts of the combustion zone become air starved, leading to a locally reduced combustion temperature that reduces the conversion rates from polycyclic aromatic hydrocarbons to refractory black carbon. This facilitates a strong increase of polycyclic aromatic hydrocarbons emissions. At nominal burn rates, full cycle emissions based on m/z 60 correlate well with organic aerosol, refractory black carbon and particulate matter. However, at higher burn rates, m/z 60 does not correlate with increased emissions of polycyclic aromatic hydrocarbons, refractory black carbon and organic aerosol in the flaming phase. The new knowledge can be used to advance source apportionment studies, reduce emissions of genotoxic compounds and model the climate impacts of

  6. Characterization of Black Carbon Mixing State Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Davidovits, P. [Boston College, Chestnut Hill, MA (United States); Lewis, E. R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Onasch, T. B. [Aerodyne Research, Billerica, MA (United States)

    2016-04-01

    Interpreting the temporal relationship between the scattering and incandescence signals recorded by the Single Particle Soot Photometer (SP2), Sedlacek et al. (2012) reported that 60% of the refractory black carbon containing particles in a plume containing biomass burning tracers exhibited non-core-shell structure. Because the relationship between the rBC (refractory black carbon) incandescence and the scattering signals had not been reported in the peer-reviewed literature, and to further evaluate the initial interpretation by Sedlacek et al., a series of experiments was undertaken to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance to characterize this signal relationship. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate), and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermochemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources. This work was communicated in a 2015 publication (Sedlacek et al. 2015)

  7. Black Carbon at the Mt. Bachelor Observatory Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, Dan A. [Univ. of Washington, Bothell, WA (United States); Sedlacek, Arthur [Brookhaven National Lab. (BNL), Upton, NY (United States); Laing, James R. [Univ. of Washington, Bothell, WA (United States)

    2017-03-01

    This campaign was initiated to measure refractory black carbon (rBC, as defined in Schwarz et al. (2010)) at the Mt. Bachelor Observatory (MBO) using the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility single-particle soot photometer (SP2; unit 54). MBO is a high-elevation site located on the summit of Mt. Bachelor in central Oregon, USA (43.979°N, 121.687°W, 2,763 meters ASL). This site is operated by Professor Dan Jaffe’s group at the University of Washington Bothell and has been used continuously as an atmospheric observatory for the past 12 years (Jaffe et al., 2005; Gratz et al., 2014). The location of MBO allows frequent sampling of the free troposphere along with a wide array of plumes from regional and distant sources. MBO is currently supported with funding from the National Science Foundation (NSF) to the Principal Investigator (PI; D. Jaffe) via the project “Influence of Free Tropospheric Ozone and PM on Surface Air Quality in the Western U.S.” (#1447832) covering the period 03/15/2015 to 02/28/2018. The SP2 instrument from Droplet Measurement Technologies provides particle-resolved measurements of rBC mass loading, size and mass distributions, and mixing state. The SP2 was installed at MBO on 6/27/2016 and ran through 9/23/2016. Additional measurements at MBO during this campaign included carbon monoxide (CO), fine particulate matter (PM1), aerosol light scattering coefficients (σscat) at three wavelengths using a TSI nephelometer, aerosol absorption coefficients (σabs) with the Brechtel tricolor absorption photometer (TAP), aerosol number size distributions with a scanning mobility particle sizer spectrometer (SMPS), and black carbon (eBC) with an aethalometer. BC data from this campaign have been submitted to the ARM Data Archive. Black carbon (BC) is the predominant light-absorbing aerosol constituent in the atmosphere, and is estimated to exert a positive radiative forcing second only to CO

  8. Long-term airborne black carbon measurements on a Lufthansa passenger aircraft

    Science.gov (United States)

    Ditas, Jeannine; Su, Hang; Scharffe, Dieter; Wang, Siwen; Zhang, Yuxuan; Brenninkmeijer, Carl; Pöschl, Ulrich; Cheng, Yafang

    2016-04-01

    Aerosol particles containing black carbon are the most absorbing component of incoming solar radiation and exert a significant positive radiative forcing thus forming next to CO² the strongest component of current global warming (Bond, 2013). Nevertheless, the role of black carbon particles and especially their complex interaction with clouds needs further research which is hampered by the limited experimental data, especially observations in the free and upper troposphere, and in the UTLS (upper troposphere and lower stratosphere). Many models underestimate the global atmospheric absorption attributable to black carbon by a factor of almost 3 (Bond, 2013). In August 2014, a single particle soot photometer was included in the extensive scientific payload of the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) project. CARIBIC is in operation since 1997 (with an interruption for 2002-2005) and carries out systematic observations at 10-12 km altitude. For this a special air freight container combining different instruments is transported on a monthly basis using a Lufthansa Airbus A340-600 passenger aircraft with destinations from 120°W to 120°E and 10°N to 75°N. The container has equipment for trace gas analyses and sampling and aerosol analyses and sampling and is connected to an inlet system that is part of the aircraft which contains a camera and DOAS remote sensing system. The integration of a single particle soot photometer (SP2) offers the possibility for the first long-term measurement of global distribution of black carbon and so far flights up to November 2015 have been conducted with more than 400 flight hours. So far the SP2 measurements have been analysed for flights over four continents from Munich to San Francisco, Sao Paulo, Tokyo, Beijing, Cape Town, Los Angeles and Hong Kong). The first measurements show promising results of black carbon measurements. Background concentrations in the UTLS

  9. Phase Transformations of Graphite and Carbon Black by Laser with Low Power Density

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The structure phase transformations of graphite and carbon black induced by pulsed laser were studied in this paper. Under irradiation with laser beam of 1.06μm wavelength and power density of 106 W· cm- 2, both graphite structure and carbon black structure were changed obviously. The results of Raman analyses and Transmission Electron Microscopy (TEM) observations show that graphite transforms into nanodiamond about 5 nm and carbon black is graphitized. It is demonstrated that graphite is the intermediate phase in the transformation from carbon black to diamond, and graphite is easier to transform into diamond by laser irradiation than carbon black.

  10. Hydrogen and Carbon Black Production from Thermal Decomposition of Sub-Quality Natural Gas

    Directory of Open Access Journals (Sweden)

    M. Javadi

    2010-03-01

    Full Text Available The objective of this paper is computational investigation of the hydrogen and carbon black production through thermal decomposition of waste gases containing CH4 and H2S, without requiring a H2S separation process. The chemical reaction model, which involves solid carbon, sulfur compounds and precursor species for the formation of carbon black, is based on an assumed Probability Density Function (PDF parameterized by the mean and variance of mixture fraction and β-PDF shape. The effects of feedstock mass flow rate and reactor temperature on hydrogen, carbon black, S2, SO2, COS and CS2 formation are investigated. The results show that the major factor influencing CH4 and H2S conversions is reactor temperature. For temperatures higher than 1100° K, the reactor CH4 conversion reaches 100%, whilst H2S conversion increases in temperatures higher than 1300° K. The results reveal that at any temperature, H2S conversion is less than that of CH4. The results also show that in the production of carbon black from sub-quality natural gas, the formation of carbon monoxide, which is occurring in parallel, play a very significant role. For lower values of feedstock flow rate, CH4 mostly burns to CO and consequently, the production of carbon black is low. The results show that the yield of hydrogen increases with increasing feedstock mass flow rate until the yield reaches a maximum value, and then drops with further increase in the feedstock mass flow rate.

  11. Study on Microwave Dielectric Property of Carbon Black and Short Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    WU Hong-huan; ZHU Dong-mei; LUO Fa; ZHOU Wan-cheng; WANG Xiao-yan

    2006-01-01

    Carbon black and carbon fibers of different lengths were introduced in different matrices at different ratios to explore their microwave dielectric properties under 8.2 GHz-12.4 GHz. It is found that the actual dielectric constants of the samples containing carbon black are in a two-order function of the contents of carbon black ((з)′,(з)″=Av2+Bv+C) and the complex dielectric constants show an obvious frequency response. Of the added fibers of different lengths, the 4 mm-long one could well disperse in the matrices having not only good frequency response, but also larger real parts, imaginary parts and loss values. The imaginary parts and the loss values (tanδ) of the samples with 4 mm-long carbon fibers added increase linearly with the contents of fiber increasing. So it is practicable to adjust the dielectric parameters of the material in a wide range by changing the added amount of carbon black, and the carbon fiber or altering the lengths of the carbon fiber added.

  12. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars).

    Science.gov (United States)

    Harvey, Omar R; Kuo, Li-Jung; Zimmerman, Andrew R; Louchouarn, Patrick; Amonette, James E; Herbert, Bruce E

    2012-02-07

    The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R(50), for assessing biochar quality for carbon sequestration is proposed. The R(50) is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R(50), with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R(50) and biochar recalcitrance. As presented here, the R(50) is immediately applicable to pre-land application screening of biochars into Class A (R(50) ≥ 0.70), Class B (0.50 ≤ R(50) carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R(50), to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.

  13. Global anthropogenic emissions of particulate matter including black carbon

    Directory of Open Access Journals (Sweden)

    Z. Klimont

    2017-07-01

    Full Text Available This paper presents a comprehensive assessment of historical (1990–2010 global anthropogenic particulate matter (PM emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10, as well as primary carbonaceous aerosols including black carbon (BC and organic carbon (OC. The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping, presented for 25 global regions, and allocated to 0.5°  ×  0.5° longitude–latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global

  14. Global anthropogenic emissions of particulate matter including black carbon

    Science.gov (United States)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion

  15. Black Carbon in Seasonal Snow across Northern Xinjiang, Northwestern China

    Science.gov (United States)

    Ye, H.; Zhang, R.; Shi, J.; Huang, J.; Warren, S. G.; Fu, Q.

    2012-12-01

    Black carbon (BC) particles in snow can significantly reduce the snow albedo and enhance the absorption of solar radiation, with important impacts on climate and the hydrological cycle. A field campaign was carried out to measure the BC content in seasonal snow in Qinghai and Xinjiang provinces of western China, in January and February, 2012. About 300 snow samples were collected at 38 sites, 6 in Qinghai and 32 in Xinjiang. The observational results at the sites in Xinjiang, where the dominant absorbing impurities in snow are BC particles, are reported in this paper. The BC mass-fractions in seasonal snow across northern Xinjiang have a median value of ~70 ng/g, lower than those in northeast China but comparable to those in snow on glaciers of the Tianshan Mountains. The estimated concentration of BC at the cleanest site in Xinjiang is 20 ng/g, which is similar to that found along the coast of the Arctic Ocean. In general, the BC content of snow decreases with altitude. The data from this field campaign should be useful for testing transport models and climate models for the simulated BC in snow.

  16. Black carbon absorption effects on cloud cover, review and synthesis

    Directory of Open Access Journals (Sweden)

    D. Koch

    2010-03-01

    Full Text Available Absorbing aerosols (AA's such as black carbon (BC or dust absorb incoming solar radiation, perturb the temperature structure of the atmosphere, and influence cloud cover. Previous studies have described conditions where AA's either increase or decrease cloud cover. The effect depends on several factors, including the altitude of the AA relative to the cloud and on the cloud type. Cloud cover is decreased if the AA's are embedded in the cloud layer. AA's below cloud may enhance convection and cloud cover. AA's over cloud-level stabilize the underlying layer and tend to enhance stratocumulus clouds but may reduce cumulus clouds. AA's can also promote cloud cover in convergent regions as they enhance deep convection and low level convergence as it draws in moisture from ocean to land regions. Most global model studies indicate a regional variation in the cloud response but generally increased cloud cover over oceans and some land regions, with net increased low-level and/or reduced upper level cloud cover. The result is net negative radiative forcing from cloud response to AA's. In some of these climate model studies, the cooling effect of BC due to cloud changes was strong enough to essentially cancel the warming direct effects.

  17. Black hole mining in the RST model

    CERN Document Server

    Basavaraju, Rohitvarma

    2016-01-01

    We consider the possibility of mining black holes in the 1+1-dimensional dilaton gravity model of Russo, Susskind and Thorlacius. The model correctly incorporates Hawking radiation and back-reaction in a semiclassical expansion in 1/N, where N is the number of matter species. It is shown that the lifetime of a perturbed black hole is independent of the addition of any extra apparatus when realized by an arbitrary positive energy matter source. We conclude that mining does not occur in the RST model and comment on the implications of this for the black hole information paradox.

  18. Bounding the role of black carbon in the climate system: A scientific assessment

    Science.gov (United States)

    Bond, T. C.; Doherty, S. J.; Fahey, D. W.; Forster, P. M.; Berntsen, T.; Deangelo, B. J.; Flanner, M. G.; Ghan, S.; KäRcher, B.; Koch, D.; Kinne, S.; Kondo, Y.; Quinn, P. K.; Sarofim, M. C.; Schultz, M. G.; Schulz, M.; Venkataraman, C.; Zhang, H.; Zhang, S.; Bellouin, N.; Guttikunda, S. K.; Hopke, P. K.; Jacobson, M. Z.; Kaiser, J. W.; Klimont, Z.; Lohmann, U.; Schwarz, J. P.; Shindell, D.; Storelvmo, T.; Warren, S. G.; Zender, C. S.

    2013-06-01

    carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr-1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m-2 with 90% uncertainty bounds of (+0.08, +1.27) W m-2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m-2 with 90% uncertainty bounds of +0.17 to +2.1 W m-2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm

  19. Oxidation behavior of a kind of carbon black

    Institute of Scientific and Technical Information of China (English)

    TANG JunShi; SONG Qiang; HE BaiLei; YAO Qiang

    2009-01-01

    The DTG curves of a kind of carbon black during TPO tests were found to have multiple peaks with an unusual sharp peak after the main peak. TPO tests with different sample loads, oxygen fractions and heating rates were carried out to study the influence of the experimental parameters on the sharp peak. The results show that the sharp peak is not caused by heat and mass transfer limitations, but by the intrinsic oxidation kinetics of the carbon black. The evolution of the specific surface area during the intrinsic kinetic controlled oxidation process was then analyzed using isothermal oxidation at low temperatures which showed that the sharp peak is caused by the increase of the specific surface area. The pore structure changes greatly influence the oxidation process when the reaction is controlled by the intrinsic kinetics. When there were no heat and mass transfer limitations, the different oxidation processes result in the same specific surface area evolution.

  20. Electromagnetic properties of carbon black and barium titanate composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guiqin [School of Material Science and Engineering, Dalian University of Technology, Dalian 116023 (China)], E-mail: c2b2chen@163.com; Chen Xiaodong; Duan Yuping; Liu Shunhua [School of Material Science and Engineering, Dalian University of Technology, Dalian 116023 (China)

    2008-04-24

    Nanocrystalline carbon black/barium titanate compound particle (CP) was synthesized by sol-gel method. The phase structure and morphology of compound particle were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM) and Raman spectrum measurements, the electroconductivity was test by trielectrode arrangement and the precursor powder was followed by differential scanning calorimetric measurements (DSC) and thermal gravimetric analysis (TGA). In addition, the complex relative permittivity and permeability of compound particle were investigated by reflection method. The compound particle/epoxide resin composite (CP/EP) with different contents of CP were measured. The results show barium titanate crystal is tetragonal phase and its grain is oval shape with 80-100 nm which was coated by carbon black film. As electromagnetic (EM) complex permittivity, permeability and reflection loss (RL) shown that the compound particle is mainly a kind of electric and dielectric lossy materials and exhibits excellent microwave absorption performance in the X- and Ku-bands.

  1. Final recommendations for reference materials in black carbon analysis

    Science.gov (United States)

    Schmidt, Michael W. I.; Masiello, Caroline A.; Skjemstad, Jan O.

    Last summer, a symposium was held to discuss aspects of global biogeochemical cycles, including organic matter cycling in soils, rivers, and marine environments; black carbon particle fluxes and the biological pump; dissolved organic matter; and organic matter preservation. Seventy scientists from various disciplines, including oceanography, soil science, geology, and chemistry attended the 3-day meeting at the Friday Harbor Laboratories, a research station of the University of Washington.“New Approaches in Marine Organic Biogeochemistry” commemorated the life and science of a colleague and friend, John I. Hedges, who was also involved in several groups developing chemical reference materials. Part of this symposium included a workshop on chemical reference materials, where final recommendations of the Steering Committee for Black Carbon Reference Materials were presented.

  2. Evaluation of the genetic activity of industrially produced carbon black.

    Science.gov (United States)

    Kirwin, C J; LeBlanc, J V; Thomas, W C; Haworth, S R; Kirby, P E; Thilagar, A; Bowman, J T; Brusick, D J

    1981-06-01

    Commercially produced oil furnace carbon black (Chemical Abstract Service Registry No. 1333-86-4) has been evaluated by five different assay for genetic activity. These were the Ames Salmonella typhimurium reverse mutation test, sister chromatid exchange test in CHO cells, mouse lymphoma test, cell transformation assay in C3H/10T1/2 cells, and assay for genetic effects in Drosophila melanogaster. Limited cellular toxicity was exhibited but no significant genetic activity was noted.

  3. Laboratory estimation of black carbon emissions from cookstoves

    OpenAIRE

    Sota, Candela de la; Kane, M.; M. Viana; Lumbreras Martin, Julio; Ba, M.B.; Querol, Xavier; Mazorra, J.; Narros Sierra, Adolfo; Borge, R.; Youm, I.

    2016-01-01

    Recent estimations show that residential solid fuel combustion accounts for 25% of global black carbon (BC) emissions (Lamarque et al., 2010). Thus, the control of these emissions through the implementation of cleaner cooking technologies could be crucial for climate change mitigation (Venkataraman et al., 2005). However, BC emission factors for biofuel cooking stoves have been poorly estimated due to the wide distribution and remote location of the stoves and the relatively complex existing ...

  4. Barrow Black Carbon Source and Impact Study Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Tate [Baylor Univ., Waco, TX (United States)

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact (BBCSI) Study was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement site in Barrow, AK. The carbonaceous component was characterized via measurement of the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the particulate matter, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine (PM2.5) and 49 coarse (PM10) particulate matter fractions were collected at weekly and bi-monthly intervals. The PM2.5 sampler operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the BBCSI used standard Tisch hi-vol motors which have a known lifetime of ~1 month under constant use; this necessitated monthly maintenance and it is suggested that the motors be upgraded to industrial blowers for future deployment in the Arctic. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric particulate matter samples from Barrow, AK from July 2012 to June 2013. Preliminary analysis of the organic and black carbon concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer.

  5. Worker exposure to ultrafine particles during carbon black treatment

    Directory of Open Access Journals (Sweden)

    Urszula Mikołajczyk

    2015-07-01

    Full Text Available Background: The aim of the project was to assess the exposure of workers to ultrafine particles released during handling and packing of carbon black. The assessment included the results of the measurements performed in a carbon black handling plant before, during, and after work shift. Material and Methods: The number concentration of particles within the dimension range 10–1000 nm and 10–100 nm was assayed by a condensation particle counter (CPC. The mass concentration of particles was determined by a DustTrak II DRX aerosol concentration monitor. The surface area concentration of the particles potentially deposited in the alveolar (A and tracheo-bronchial (TB regions was estimated by an AeroTrak 9000 nanoparticle monitor. Results: An average mass concentration of particles during the process was 6-fold higher than that before its start, while a 3-fold increase in the average number concentration of particles within the dimension range 10–1000 nm and 10–100 nm was observed during the process. At the same time a 4-fold increase was found in the surface area concentration of the particles potentially deposited in the A and TB regions. Conclusions: During the process of carbon black handling and packing a significantly higher values of each of the analysed parameters, characterizing the exposure to ultrafine particles, were noted. Med Pr 2015;66(3:317–326

  6. Personal exposure to Black Carbon in transport microenvironments

    Science.gov (United States)

    Dons, Evi; Int Panis, Luc; Van Poppel, Martine; Theunis, Jan; Wets, Geert

    2012-08-01

    We evaluated personal exposure of 62 individuals to the air pollutant Black Carbon, using 13 portable aethalometers while keeping detailed records of their time-activity pattern and whereabouts. Concentrations encountered in transport are studied in depth and related to trip motives. The evaluation comprises more than 1500 trips with different transport modes. Measurements were spread over two seasons. Results show that 6% of the time is spent in transport, but it accounts for 21% of personal exposure to Black Carbon and approximately 30% of inhaled dose. Concentrations in transport were 2-5 times higher compared to concentrations encountered at home. Exposure was highest for car drivers, and car and bus passengers. Concentrations of Black Carbon were only half as much when traveling by bike or on foot; when incorporating breathing rates, dose was found to be twice as high for active modes. Lowest 'in transport' concentrations were measured in trains, but nevertheless these concentrations are double the concentrations measured at home. Two thirds of the trips are car trips, and those trips showed a large spread in concentrations. In-car concentrations are higher during peak hours compared to off-peak, and are elevated on weekdays compared to Saturdays and even more so on Sundays. These findings result in significantly higher exposure during car commute trips (motive 'Work'), and lower concentrations for trips with motive 'Social and leisure'. Because of the many factors influencing exposure in transport, travel time is not a good predictor of integrated personal exposure or inhaled dose.

  7. Russia's black carbon emissions: focus on diesel sources

    Science.gov (United States)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    2016-09-01

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25-30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60 % of the on-road BC emissions, while cars represent only 5 % (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58 % of all diesel BC in Russia.

  8. Black carbon reduction will weaken the aerosol net cooling effect

    Directory of Open Access Journals (Sweden)

    Z. L. Wang

    2014-12-01

    Full Text Available Black carbon (BC, a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in a short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate coupled model BCC_AGCM2.0.1_CUACE/Aero, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA will be enhanced by 0.12 W m−2 compared with present-day conditions if the BC emission is reduced exclusively to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial for the mitigation of global warming. However, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7–2.0 W m−2 relative to present-day conditions if emissions of BC and co-emitted sulfur dioxide and organic carbon are simultaneously reduced as the most close conditions to the actual situation to the level projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  9. Adsorption ability of the carbon black for nickel ions uptake from aqueous solution

    OpenAIRE

    Rađenović Ankica; Malina Jadranka

    2013-01-01

    Surface modification can be performed by adsorption of certain organic compounds on the surface of carbon. The main objective of this work was to compare the adsorption ability of acid-modified carbon black with the non-modified one. Modification process was performed by adsorption of acetic acid onto commercial carbon black surface. A batch adsorption system was applied to study the both adsorption reaction, acetic acid and Ni(II) adsorption onto the carbon black. Adsorption isotherms ...

  10. Black carbon aerosols and the third polar ice cap

    Directory of Open Access Journals (Sweden)

    S. Menon

    2009-12-01

    Full Text Available Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by ~0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is ~30%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000, and are mainly obtained with the newer BC estimates.

  11. Black carbon aerosols and the third polar ice cap

    Directory of Open Access Journals (Sweden)

    S. Menon

    2010-05-01

    Full Text Available Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by ~0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is ~36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000, and are mainly obtained with the newer BC estimates.

  12. Factors controlling seasonal variations in Arctic black carbon

    Science.gov (United States)

    Shen, Z.; Ming, Y.; Horowitz, L. W.

    2015-12-01

    Arctic haze has a distinct seasonality with higher concentrations in winter and spring. This study evaluates how different processes of large-scale circulation and removal control seasonal variations in Arctic black carbon (BC) using the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric general circulation model (AM3). We find that transport and wet deposition play unequal roles in determining Arctic BC seasonal cycle. Despite seasonal differences in general circulation patterns, the eddy-driven BC transport changes little throughout the year, and the seasonal cycle of Arctic BC is attributed to wet removal. BC hydrophilic fraction affected by the aging process and hydrophilic BC (BCpi) wet deposition rate affected by cloud microphysics determine wet deposition. Both low hydrophilic fraction and low wet deposition rate account for the peak of BC in winter. The transition to low BC in summer results from an increase in wet deposition rate, while the return of BC in late autumn is mainly caused by a sharp decrease in hydrophilic fraction. The results suggest that the concentrations of Arctic aerosols as well as their climate impacts may be susceptible to modification in a future climate.

  13. Black carbon aerosols and the third polar ice cap

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Koch, Dorothy; Beig, Gufran; Sahu, Saroj; Fasullo, John; Orlikowski, Daniel

    2010-04-15

    Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by {approx}0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is {approx}36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates.

  14. Modeling Flows Around Merging Black Hole Binaries

    Science.gov (United States)

    Centrella, Joan

    2008-01-01

    Coalescing massive black hole binaries are produced by the merger of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases in which the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.

  15. Climate effects of black carbon and the emission reduction for mitigating climate change /

    OpenAIRE

    Xu, Yangyang

    2014-01-01

    Black carbon (BC) aerosols are significant contributors to anthropogenic climate change and are considered as the second largest warming agent only after CO₂. To better quantify the present-day Asian BC aerosol forcing, in Chapter 2 we utilize both a top-down approach using ground -based and satellite observations, as well as a bottom-up approach using a latest global climate model. By comparing the observations with the model simulations, we show that the emission inventory over Asia used in...

  16. Atmospheric black carbon and sulfate concentrations in Northeast Greenland

    Science.gov (United States)

    Massling, A.; Nielsen, I. E.; Kristensen, D.; Christensen, J. H.; Sørensen, L. L.; Jensen, B.; Nguyen, Q. T.; Nøjgaard, J. K.; Glasius, M.; Skov, H.

    2015-08-01

    Measurements of equivalent black carbon (EBC) in aerosols at the high Arctic field site Villum Research Station (VRS) at Station Nord in North Greenland showed a seasonal variation in EBC concentrations with a maximum in winter and spring at ground level. Average measured concentrations were about 0.067 ± 0.071 for the winter and 0.011 ± 0.009 for the summer period. These data were obtained using a multi-angle absorption photometer (MAAP). A similar seasonal pattern was found for sulfate concentrations with a maximum level during winter and spring analyzed by ion chromatography. Here, measured average concentrations were about 0.485 ± 0.397 for the winter and 0.112 ± 0.072 for the summer period. A correlation between EBC and sulfate concentrations was observed over the years 2011 to 2013 stating a correlation coefficient of R2 = 0.72. This finding gives the hint that most likely transport of primary emitted BC particles to the Arctic was accompanied by aging of the aerosols through condensational processes. BC and sulfate are known to have only partly similar sources with respect to their transport pathways when reaching the high Arctic. Aging processes may have led to the formation of secondary inorganic matter and further transport of BC particles as cloud processing and further washout of particles is less likely based on the typically observed transport patterns of air masses arriving at VRS. Additionally, concentrations of EC (elemental carbon) based on a thermo-optical method were determined and compared to EBC measurements. EBC measurements were generally higher, but a correlation between EC and EBC resulted in a correlation coefficient of R2 = 0.64. Model estimates of the climate forcing due to BC in the Arctic are based on contributions of long-range transported BC during spring and summer. The measured concentrations were here compared with model results obtained by the Danish Eulerian Hemispheric Model, DEHM. Good agreement between measured and

  17. Measurements of Black Carbon and aerosol absorption during global circumnavigation and Arctic campaigns

    Science.gov (United States)

    Močnik, Griša; Drinovec, Luka; Vidmar, Primož; Lenarčič, Matevž

    2015-04-01

    During two flight campaigns: around the world (2012) and over the Arctic (2013) we demonstrated the feasibility of scientific research and aerial measurements of aerosolized Black Carbon with ultra-light aircraft. Conducted measurements provided first ever information on Black Carbon concentrations and sources over such a large area at altitude. Ground-level measurements of atmospheric aerosols are routinely performed around the world, but there exists very little data on their vertical and geographical distribution in the global atmosphere. These data is a crucial requirement for our understanding of the dispersion of pollutant species of anthropogenic origin, and their possible effects on radiative forcing, cloud condensation, and other phenomena which can contribute to adverse outcomes. Light absorbing carbonaceous aerosols and black carbon (BC) in particular are a unique tracer for combustion emissions, and can be detected rapidly and with great sensitivity by filter-based optical methods. A single-seat ultra-light aircraft flew around the world and on a Arctic expedition. The flights covered all seven continents; crossed all major oceans; and operated at altitudes around 3000 m ASL and up to 8900 m ASL. The aircraft carried a specially-developed high-sensitivity miniaturized dual-wavelength Aethalometer, which recorded BC concentrations with very high temporal resolution and sensitivity [1, 2]. We present examples of data from flight tracks over remote oceans, uninhabited land masses, and densely populated areas. Measuring the dependence of the aerosol absorption on the wavelength, we show that aerosols produced during biomass combustion can be transported to high altitude in high concentrations and we estimate the underestimation of the direct forcing by models assuming a simple linear relationship between BC concentration and forcing in comparison to observations [3,4]. 1. , Carbon Sampling Takes Flight, Science 2012, 335, 1286. 2. G. Močnik, L. Drinovec, M

  18. Climate Response of Direct Radiative Forcing of Anthropogenic Black Carbon

    Science.gov (United States)

    Chung, Serena H.; Seinfeld,John H.

    2008-01-01

    The equilibrium climate effect of direct radiative forcing of anthropogenic black carbon (BC) is examined by 100-year simulations in the Goddard Institute for Space Studies General Circulation Model II-prime coupled to a mixed-layer ocean model. Anthropogenic BC is predicted to raise globally and annually averaged equilibrium surface air temperature by 0.20 K if BC is assumed to be externally mixed. The predicted increase is significantly greater in the Northern Hemisphere (0.29 K) than in the Southern Hemisphere (0.11 K). If BC is assumed to be internally mixed with the present day level of sulfate aerosol, the predicted annual mean surface temperature increase rises to 0.37 K globally, 0.54 K for the Northern Hemisphere, and 0.20 K for the Southern Hemisphere. The climate sensitivity of BC direct radiative forcing is calculated to be 0.6 K W (sup -1) square meters, which is about 70% of that of CO2, independent of the assumption of BC mixing state. The largest surface temperature response occurs over the northern high latitudes during winter and early spring. In the tropics and midlatitudes, the largest temperature increase is predicted to occur in the upper troposphere. Direct radiative forcing of anthropogenic BC is also predicted to lead to a change of precipitation patterns in the tropics; precipitation is predicted to increase between 0 and 20 N and decrease between 0 and 20 S, shifting the intertropical convergence zone northward. If BC is assumed to be internally mixed with sulfate instead of externally mixed, the change in precipitation pattern is enhanced. The change in precipitation pattern is not predicted to alter the global burden of BC significantly because the change occurs predominantly in regions removed from BC sources.

  19. Thermal Analysis Characterization of Elastomers and Carbon Black Filled Rubber Composites for Army Applications

    Science.gov (United States)

    1985-06-01

    Organ~ce, 60.40 % Carbon Black, 36.15 450(S) 2 Carbon black, 36.40 500 % Residue, 2.09 410(SH) 2 Residue, 3.20 22 2 Organica , 64.99 2 Organics, 62.97 2...64.92 1 Organics, 62.30 I Carbon Black, 31.42 395(S) I Carbon Black, 34.02 420 Z Residue, 3.66 440(SR) 1 Reuidue, 3.69 73 - C I Organica , 6’.33 470... Organica , 62.80 % Organics, 62.80 % Carbon black, 36.27 470(S) 2 Carbon black, It.60 505 2 Residue, 0.963 435(51) 2 Residue, 1.60 Iii 2 Organics

  20. Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon

    Science.gov (United States)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Zhang, Qianggong; Guo, Junming; Li, Yang; Schwikowski, Margit; Farinotti, Daniel

    2017-01-01

    Deposited mineral dust and black carbon are known to reduce the albedo of snow and enhance melt. Here we estimate the contribution of anthropogenic black carbon (BC) to snowmelt in glacier accumulation zones of Central Asia based on in-situ measurements and modelling. Source apportionment suggests that more than 94% of the BC is emitted from mostly regional anthropogenic sources while the remaining contribution comes from natural biomass burning. Even though the annual deposition flux of mineral dust can be up to 20 times higher than that of BC, we find that anthropogenic BC causes the majority (60% on average) of snow darkening. This leads to summer snowmelt rate increases of up to 6.3% (7 cm a‑1) on glaciers in three different mountain environments in Kyrgyzstan, based on albedo reduction and snowmelt models.

  1. Biomass burning in boreal forests and peatlands: Effects on ecosystem carbon losses and soil carbon stabilization as black carbon

    Science.gov (United States)

    Turetsky, M. R.; Kane, E. S.; Benscoter, B.

    2011-12-01

    Climate change has increased both annual area burned and the severity of biomass combustion in some boreal regions. For example, there has been a four-fold increase in late season fires in boreal Alaska over the last decade relative to the previous 50 years. Such changes in the fire regime are expected to stimulate ecosystem carbon losses through fuel combustion, reduced primary production, and increased decomposition. However, biomass burning also will influence the accumulation of black carbon in soils, which could promote long-term soil carbon sequestration. Variations in slope and aspect regulate soil temperatures and drainage conditions, and affect the development of permafrost and thick peat layers. Wet soil conditions in peatlands and permafrost forests often inhibit combustion during wildfires, leading to strong positive correlations between pre- and post- fire organic soil thickness that persist through multiple fire cycles. However, burning can occur in poorly drained ecosystems through smouldering combustion, which has implications for emission ratios of CO2:CH4:CO as well as black carbon formation. Our studies of combustion severity and black carbon concentrations in boreal soils show a negative relationship between concentrations of black carbon and organic carbon in soils post-fire. Relative to well drained stands, poorly drained sites with thick peat layers (such as north-facing stands) had less severe burning and low concentrations of black carbon in mineral soils post-fire. Conversely, drier forests lost a greater proportion of their organic soils during combustion but retained larger black carbon stocks following burning. Overall, we have quantified greater black carbon concentrations in surface mineral soil horizons than in organic soil horizons. This is surprising given that wildfires typically do not consume the entire organic soil layer in boreal forests, and could be indicative of the vulnerability of black carbon formed in organic horizons

  2. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    Science.gov (United States)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Black carbon (BC) in ultrafiltered high-molecular-weight DOM (UDOM) was measured in surface waters of Delaware Bay, Chesapeake Bay and the adjacent Atlantic Ocean (USA) to ascertain the importance of riverine and estuarine DOM as a source of BC to the ocean. BC comprised 5-72% of UDOM-C (27+/-l7%) and on average 8.9+/-6.5% of dissolved organic carbon (DOC) with higher values in the turbid region of the Delaware Estuary and lower yields in the river and coastal ocean. The spatial and seasonal distributions of BC along the salinity gradient of Delaware Bay suggest that the higher levels of BC in surface water UDOM originated from localized sources, possibly from atmospheric deposition or released from resuspended sediments. Black carbon comprised 4 to 7% of the DOC in the coastal Atlantic Ocean, revealing that river-estuary systems are important exporters of colloidal BC to the ocean. The annual flux of BC from Delaware Bay UDOM to the Atlantic Ocean was estimated at 2.4x10(exp 10) g BC yr(exp -1). The global river flux of BC through DOM to the ocean could be on the order of 5.5x1O(exp 12)g BC yr (exp -1). These results support the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition.

  3. Black Carbon Emissions from Associated Natural Gas Flaring.

    Science.gov (United States)

    Weyant, Cheryl L; Shepson, Paul B; Subramanian, R; Cambaliza, Maria O L; Heimburger, Alexie; McCabe, David; Baum, Ellen; Stirm, Brian H; Bond, Tami C

    2016-02-16

    Approximately 150 billion cubic meters (BCM) of natural gas is flared and vented in the world annually, emitting greenhouse gases and other pollutants with no energy benefit. About 7 BCM per year is flared in the United States, and half is from North Dakota alone. There are few emission measurements from associated gas flares and limited black carbon (BC) emission factors have been previously reported from the field. Emission plumes from 26 individual flares in the Bakken formation in North Dakota were sampled. Methane, carbon dioxide, and BC were measured simultaneously, allowing the calculation of BC mass emission factors using the carbon balance method. Particle optical absorption was measured using a three-wavelength particle soot absorption photometer (PSAP) and BC particle number and mass concentrations were measured with a single particle soot photometer. The BC emission factors varied over 2 orders of magnitude, with an average and uncertainty range of 0.14 ± 0.12 g/kg hydrocarbons in associated gas and a median of 0.07 g/kg which represents a lower bound on these measurements. An estimation of the BC emission factor derived from PSAP absorption provides an upper bound at 3.1 g/kg. These results are lower than previous estimations and laboratory measurements. The BC mass absorption cross section was 16 ± 12 m(2)/g BC at 530 nm. The average absorption Ångström exponent was 1.2 ± 0.8, suggesting that most of the light absorbing aerosol measured was black carbon and the contribution of light absorbing organic carbon was small.

  4. Barrow Black Carbon Source and Impact Study Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Tate

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact campaign was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility site in Barrow, Alaska. The carbonaceous component was characterized by measuring the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the PM, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine PM fractions (PM2.5) and 49 coarse (PM10) PM fractions were collected at weekly and bi-monthly intervals. The PM2.5 sampler operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the Barrow Black Carbon Source and Impact (BBCSI) study used standard Tisch “hi-vol” motors that have a known lifetime of approximately 1 month under constant use; this necessitated monthly maintenance, and it is suggested that, for future deployment in the Arctic, the motors be upgraded to industrial blowers. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric PM samples from Barrow, Alaska, from July 2012 to June 2013. Preliminary analysis of the OC and BC concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer. However, the annual OC concentrations had a very different seasonal pattern with the highest concentrations during the summer, lowest concentrations during the fall, and increased concentrations during the winter and spring (Figure 1).

  5. Mesozoic black shales, source mixing and carbon isotopes

    Science.gov (United States)

    Suan, Guillaume

    2016-04-01

    Over the last decades, considerable attention has been devoted to the paleoenvironmental and biogeochemical significance of Mesozoic black shales. Black shale-bearing successions indeed often display marked changes in the organic carbon isotope composition (δ13Corg), which have been commonly interpreted as evidence for dramatic perturbations of global carbon budgets and CO2 levels. Arguably the majority of these studies have discarded some more "local" explanations when interpreting δ13Corg profiles, most often because comparable profiles occur on geographically large and distant areas. Based on newly acquired data and selected examples from the literature, I will show that the changing contribution of organic components with distinct δ13C signatures exerts a major but overlooked influence of Mesozoic δ13Corg profiles. Such a bias occurs across a wide spectrum of sedimentological settings and ages, as shown by the good correlation between δ13Corg values and proxies of kerogen proportions (such as rock-eval, biomarker, palynofacies and palynological data) recorded in Mesozoic marginal to deep marine successions of Triassic, Jurassic and Cretaceous age. In most of these successions, labile, 12C-enriched amorphous organic matter of marine origin dominates strata deposited under anoxic conditions, while oxidation-resistant, 13C-rich terrestrial particles dominate strata deposited under well-oxygenated conditions. This influence is further illustrated by weathering profiles of Toarcian (Lower Jurassic) black shales from France, where weathered areas dominated by refractory organic matter show dramatic 13C-enrichment (and decreased total organic carbon and pyrite contents) compared to non-weathered portions of the same horizon. The implications of these results for chemostratigraphic correlations and pCO2 reconstructions of Mesozoic will be discussed, as well as strategies to overcome this major bias.

  6. Seasonal features of black carbon measured at Syowa Station, Antarctica

    Science.gov (United States)

    Hara, K.; Osada, K.; Yabuki, M.; Shiobara, M.; Yamanouchi, T.

    2015-12-01

    Black carbon (BC) is one of important aerosol constituents because the strong light absorption ability. Low concentrations of aerosols and BC let BC make insignificant contribution to aerosol radiative forcing in the Antarctica at the moment. Because of less or negligible source strength of BC in the Antarctic circle, BC can be used as a tracer of transport from the mid-latitudes. This study aims to understand seasonal feature, transport pathway, and origins of black carbon in the Antarctic coats. Black carbon measurement has been made using 7-wavelength aethalometer at Syowa Station, Antarctica since February, 2005. Mass BC concentrations were estimated from light attenuation by Weingartner's correction procedure (Weingartner et al., 2003) in this study. Detection limit was 0.2 - 0.4 ng/m3 in our measurement conditions (2-hour resolution and flow rate of ca. 10LPM). BC concentrations ranged from near detection limit to 55.7 ng/m3 at Syowa Station, Antarctica during the measurements. No trend has been observed since February, 2005. High BC concentrations were coincident with poleward flow from the mid-latitudes under the storm conditions by cyclone approach, whereas low BC concentrations were found in transport from coastal regions and the Antarctic continent. Considering that outflow from South America and Southern Africa affect remarkably air quality in the Southern Ocean of Atlantic and Indian Ocean sectors, BC at Syowa Station might be originated from biomass burning and human activity on South America and Southern Africa. Seasonal features of BC at Syowa Station shows maximum in September - October and lower in December - April. Spring maximum in September - October was obtained at the other Antarctic stations (Neumayer, Halley, South pole, and Ferraz). Although second maximum was found in January at the other stations, the maximum was not observed at Syowa Station.

  7. The river model of black holes

    OpenAIRE

    Hamilton, Andrew J. S.; Lisle, Jason P.

    2004-01-01

    This paper presents an under-appreciated way to conceptualize stationary black holes, which we call the river model. The river model is mathematically sound, yet simple enough that the basic picture can be understood by non-experts. %that can by understood by non-experts. In the river model, space itself flows like a river through a flat background, while objects move through the river according to the rules of special relativity. In a spherical black hole, the river of space falls into the b...

  8. World Carbon Black Output to Reach 12.7 Million Tons in 2015

    Institute of Scientific and Technical Information of China (English)

    Zhu Yongkang

    2012-01-01

    From April 13 to April 17, "Carbon Black China of 2012" (CBC2012) was held in Hangzhou, China. Mr. Paul Ita, the president of US marketing research institution Notch Consulting Group, announced that the prospect of carbon black industry was closely linked with the development of auto industry and tire industry. The demand for carbon black of 2010 increased by 15% compared with that of 2009; the growth rate of demand for carbon black was 5.8% in 2011 and the total output was 10.7 million tons, which increased by about 5.5% compared with that of 2010.

  9. Modal character of atmospheric black carbon size distributions

    Science.gov (United States)

    Berner, A.; Sidla, S.; Galambos, Z.; Kruisz, C.; Hitzenberger, R.; ten Brink, H. M.; Kos, G. P. A.

    1996-08-01

    Samples of atmospheric aerosols, collected with cascade impactors in the urban area of Vienna (Austria) and at a coastal site on the North Sea, were investigated for black carbon (BC) as the main component of absorbing material and for mass. The size distributions are structured. The BC distributions of these samples show a predominant mode, the accumulation aerosol, in the upper submicron size range, a less distinct finer mode attributable to fresh emissions from combustion sources, and a distinct coarse mode of unclear origin. It is important to note that some parameters of the accumulation aerosol are related statistically, indicating the evolution of the atmospheric accumulation aerosol.

  10. Black carbon concentrations and mixing state in the Finnish Arctic

    Science.gov (United States)

    Raatikainen, T.; Brus, D.; Hyvärinen, A.-P.; Svensson, J.; Asmi, E.; Lihavainen, H.

    2015-09-01

    Atmospheric aerosol composition was measured using a Single Particle Soot Photometer (SP2) in the Finnish Arctic during winter 2011-2012. The Sammaltunturi measurement site at the Pallas GAW (Global Atmosphere Watch) station receives air masses from different source regions including the Arctic Ocean and continental Europe. The SP2 provides detailed information about mass distributions and mixing state of refractory black carbon (rBC). The measurements showed widely varying rBC mass concentrations (0-120 ng m-3), which were related to varying contributions of different source regions and aerosol removal processes. The rBC mass was log-normally distributed showing a relatively constant rBC core mass mean diameter with an average of 194 nm (75-655 nm sizing range). On average, the number fraction of particles containing rBC was 0.24 (integrated over 350-450 nm particle diameter range) and the average particle diameter to rBC core volume equivalent diameter ratio was 2.0 (averaged over particles with 150-200 nm rBC core volume equivalent diameters). These average numbers mean that the observed rBC core mass mean diameter is similar to those of aged particles, but the observed particles seem to have unusually high particle to rBC core diameter ratios. Comparison of the measured rBC mass concentration with that of the optically detected equivalent black carbon (eBC) using an Aethalometer and a MAAP showed that eBC was larger by a factor of five. The difference could not be fully explained without assuming that only a part of the optically detected light absorbing material is refractory and absorbs light at the wavelength used by the SP2. Finally, climate implications of five different black carbon mixing state representations were compared using the Mie approximation and simple direct radiative forcing efficiency calculations. These calculations showed that the observed mixing state means significantly lower warming effect or even a net cooling effect when compared with

  11. 20 years of Black Carbon measurements in Germany

    Science.gov (United States)

    Kutzner, Rebecca; Quedenau, Jörn; Kuik, Friderike; von Schneidemesser, Erika; Schmale, Julia

    2016-04-01

    Black Carbon (BC) is an important short-lived climate-forcing pollutant contributing to global warming through absorption of sunlight. At the same time, BC, as a component of particulate matter (PM) exerts adverse health effects, like decreased lung function and exacerbated asthma. Globally, anthropogenic emission sources of BC include residential heating, transport, and agricultural fires, while the dominant natural emission sources are wildfires. Despite the various adverse effects of BC, legislation that requires mandatory monitoring of BC concentrations does not currently exist in the European Union. Instead, BC is only indirectly monitored as component of PM10 and PM2.5 (particulate matter with a diameter smaller 10 μm and 2.5 μm). Before the introduction of mandatory PM10 and PM2.5 monitoring in the European Union in 2005 and 2015, respectively, 'black smoke', a surrogate for BC, was a required measurement in Germany from the early 1990s. The annual mean limit value was 14 μg m-3 from 1995 and 8 μg m-3 from 1998 onwards. Many 'black smoke' measurements were stopped in 2004, with the repeal of the regulations obtaining at the time. However, in most German federal states a limited number BC monitoring stations continued to operate. Here we present a synthesis of BC data from 213 stations across Germany covering the period between 1994 and 2014. Due to the lack of a standardized method and respective legislation, the data set is very heterogeneous relying on twelve different measurement methods including chemical, optical, and thermal-optical methods. Stations include locations classified as background, urban-background, industrial and traffic among other types. Raw data in many different formats has been modelled and integrated in a relational database, allowing various options for further data analysis. We highlight results from the year 2009, as it is the year with the largest measurement coverage based on the same measurement method, with 30 stations. In

  12. Canonical Ensemble Model for Black Hole Radiation

    Indian Academy of Sciences (India)

    Jingyi Zhang

    2014-09-01

    In this paper, a canonical ensemble model for the black hole quantum tunnelling radiation is introduced. In this model the probability distribution function corresponding to the emission shell is calculated to second order. The formula of pressure and internal energy of the thermal system is modified, and the fundamental equation of thermodynamics is also discussed.

  13. A photochemically resistant component in riverine dissolved black carbon

    Science.gov (United States)

    Dittmar, Thorsten; Riedel, Thomas; Niggemann, Jutta; Vähätalo, Anssi

    2015-04-01

    Rivers transport combustion-derived dissolved black carbon (DBC) to the oceans at an annual flux that is much higher than required to balance the oceanic inventory of DBC. To resolve this mismatch we studied the long-term stability of DBC in ten major world rivers that together account for approximately 1/3 of the global freshwater discharge to the oceans. Riverine DBC was remarkably resistant against microbial degradation, but decomposition of nearly all chromophoric dissolved organic matter under extensive irradiation with simulated sunlight removed almost 80% of DBC. Photochemically transformed DBC was further microbially decomposed by more than 10% in a subsequent one-year long bioassay. Based on these findings, on a global scale, the estimated riverine flux of microbially degraded and photo-resistant DBC is sufficient to replenish the oceans with DBC and likely contributes to the dissolved organic matter pool that persists in the oceans and sequesters carbon for centuries to millennia.

  14. Implications of multiple scattering on the assessment of black carbon aerosol radiative forcing

    Science.gov (United States)

    Nair, Vijayakumar S.; Suresh Babu, S.; Krishna Moorthy, K.; Satheesh, S. K.

    2014-11-01

    The effects of radiative coupling between scattering and absorbing aerosols, in an external mixture, on the aerosol radiative forcing (ARF) due to black carbon (BC), its sensitivity to the composite aerosol loading and composition, and surface reflectance are investigated using radiative transfer model simulations. The ARF due to BC is found to depend significantly on the optical properties of the ‘neighboring’ (non-BC) aerosol species. The scattering due to these species significantly increases the top of the atmospheric warming due to black carbon aerosols, and significant changes in the radiative forcing efficiency of BC. This is especially significant over dark surfaces (such as oceans), despite the ARF due to BC being higher over snow and land-surfaces. The spatial heterogeneity of this effect (coupling or multiple scattering by neighboring aerosol species) imposes large uncertainty in the estimation ARF due to BC aerosols, especially over the oceans.

  15. Effect of the Purple carbon black on the properties of NR/BR blend

    Science.gov (United States)

    Yanfang, Zhao; Dan, Liu; Shengbo, Lin; Binjian; Yinmei, Zhao; Shuangquan, Liao

    2014-08-01

    Purple black is light colored mineral filler mining in recent years in Hainan. The effect of the dosage of the purple carbon black and purple carbon black modificated by Si69 on the vulcanization characteristics, mechanical properties, thermal stability, the damping performance of NR/BR blend rubber were studied, and the blending adhesive tensile sections were analyzed by SEM. Research showed that, with the increasing dosage of the purple carbon black, vulcanization characteristics of NR/BR blend had a little change. Adding the purple carbon black into blending had a reinforcing effect. when the dosage of the purple carbon black was 20, the mechanical properties of blending adhesive was good; Coupling agent Si69 had a modification effect on the purple carbon black. With increasing dosage of Si69, performance of the rubber was improved initially and then decreased; when the mass fraction of Si69 was 8% of the dosage of the purple carbon black, rubber performance was optimal. Purple carbon black had no obvious effect on thermal stability of the rubber, but it improved the damping rubber temperature and damping factor.

  16. An Investigation of the Effects of Black Carbon on Precipitation in the Western United States

    Science.gov (United States)

    Tseng, Hsien-Liang Rose

    Black carbon (BC), the byproduct of incomplete combustion, is considered to be the second most important anthropogenic climate forcing agent after carbon dioxide. BC warms the atmosphere by absorbing solar radiation (direct effect), alters cloud and precipitation formation by acting as cloud condensation nuclei (indirect effect), and modifies cloud distribution via cloud burn-off (semi-direct effect). Currently, there are large discrepancies in general circulation model estimates of the influence of BC on precipitation. Even less known is how BC changes precipitation on regional scales. In the drought-stricken western United States (WUS), where BC emissions are known to affect the hydrological cycle, an investigation on how BC influences precipitation is warranted. In this study, we employ the Weather Research and Forecasting-Chemistry (WRF Chem) model (version 3.6.0) with the newly chemistry- and microphysics-coupled Fu-Liou-Gu radiation scheme to study how black carbon affects precipitation by separating BC-related effects into direct and semi-direct, and indirect effects. In this three-part study, we use a recent wet year (2005) to investigate black carbon effects. We first examine BC effects during a heavy wintertime heavy precipitation event (7-11 January 2005), a heavy summertime precipitation week for comparison to the wintertime event (20-24 July 2005), and finally, examine these same effects for the months of January to June 2005 to investigate month-long trends. We find that BC suppresses precipitation, predominantly through its direct and semi-direct effects. The direct and semi-direct effects warm the air aloft, and cool the lower levels of the atmosphere (surface dimming) through the reduction of downward shortwave radiation flux at the surface. These changes in vertical temperature increase the stability of the atmosphere and reduce convective precipitation. Convective precipitation reduction accounts for approximately 60 75% of the total

  17. Birchwood biochar as partial carbon black replacement in styrene-butadiene rubber composites

    Science.gov (United States)

    Birchwood feedstock was used to make slow pyrolysis biochar that contained 89% carbon and rubber. Composites made from blended fillers of 25/75 biochar/carbon black were equivalent to or superior to their 100% carbo...

  18. Black carbon mixing state impacts on cloud microphysical properties: effects of aerosol plume and environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Ping Pui; Riemer, Nicole; West, Matthew

    2016-05-27

    Black carbon (BC) is usually mixed with other aerosol species within individual aerosol particles. This mixture, along with the particles' size and morphology, determines the particles' optical and cloud condensation nuclei properties, and hence black carbon's climate impacts. In this study the particle-resolved aerosol model PartMC-MOSAIC was used to quantify the importance of black carbon mixing state for predicting cloud microphysical quantities. Based on a set of about 100 cloud parcel simulations a process level analysis framework was developed to attribute the response in cloud microphysical properties to changes in the underlying aerosol population ("plume effect") and the cloud parcel cooling rate ("parcel effect"). It shows that the response of cloud droplet number concentration to changes in BC emissions depends on the BC mixing state. When the aerosol population contains mainly aged BC particles an increase in BC emission results in increasing cloud droplet number concentrations ("additive effect"). In contrast, when the aerosol population contains mainly fresh BC particles they act as sinks for condensable gaseous species, resulting in a decrease in cloud droplet number concentration as BC emissions are increased ("competition effect"). Additionally, we quantified the error in cloud microphysical quantities when neglecting the information on BC mixing state, which is often done in aerosol models. The errors ranged from -12% to +45% for the cloud droplet number fraction, from 0% to +1022% for the nucleation-scavenged black carbon (BC) mass fraction, from -12% to +4% for the effective radius, and from -30% to +60% for the relative dispersion.

  19. High Black Carbon (BC) Concentrations along Indian National Highways

    Science.gov (United States)

    Kumar, S.; Singh, A. K.; Singh, R. P.

    2015-12-01

    Abstract:Black carbon (BC), the optically absorbing component of carbonaceous aerosol, has direct influence on radiation budget and global warming. Vehicular pollution is one of the main sources for poor air quality and also atmospheric pollution. The number of diesel vehicles has increased on the Indian National Highways during day and night; these vehicles are used for the transport of goods from one city to another city and also used for public transport. A smoke plume from the vehicles is a common feature on the highways. We have made measurements of BC mass concentrations along the Indian National Highways using a potable Aethalometer installed in a moving car. We have carried out measurements along Varanasi to Kanpur (NH-2), Varanasi to Durgapur (NH-2), Varanasi to Singrauli (SH-5A) and Varanasi to Ghazipur (NH-29). We have found high concentration of BC along highways, the average BC mass concentrations vary in the range 20 - 40 µg/m3 and found high BC mass concentrations up to 600 μg/m3. Along the highways high BC concentrations were characteristics of the presence of industrial area, power plants, brick kilns and slow or standing vehicles. The effect of increasing BC concentrations along the National Highways and its impact on the vegetation and human health will be presented. Key Words: Black Carbon; Aethalometer; mass concentration; Indian National Highways.

  20. Oxidation behavior of a kind of carbon black

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The DTG curves of a kind of carbon black during TPO tests were found to have multiple peaks with an unusual sharp peak after the main peak.TPO tests with different sample loads,oxygen fractions and heating rates were carried out to study the influence of the experimental parameters on the sharp peak.The results show that the sharp peak is not caused by heat and mass transfer limitations,but by the intrinsic oxidation kinetics of the carbon black.The evolution of the specific surface area during the intrinsic kinetic controlled oxidation process was then analyzed using isothermal oxidation at low temperatures which showed that the sharp peak is caused by the increase of the specific surface area.The pore structure changes greatly influence the oxidation process when the reaction is controlled by the intrinsic kinetics.When there were no heat and mass transfer limitations,the different oxidation processes result in the same specific surface area evolution.

  1. Gravitational lens models for cosmological black holes

    Science.gov (United States)

    Zakharov, A. F.; Capozziello, S.; Stornaiolo, C.

    2017-03-01

    If really such objects like cosmological black holes exist they may be studied with a standard technique like strong and weak gravitational lensing. Cosmological voids can be explained as the result the collapse of large perturbations into black hole with masses of the order of 1014 M ⊙ and the expansion of the universe. The resulting image of the universe is that it is more homogeneous than expected from present observations. In this paper we discuss some lensing properties related to the cosmological black holes (CBHs), namely we consider differences in gravitational lensing for point like mass and extended mass distributions. We consider the singular isothermal sphere model as a toy (illustrative) model for an extended distribution of dark matter and a slightly more complicated isothermal sphere with a core.

  2. Chapter 8. Black Holes in Braneworld Models

    Science.gov (United States)

    Tanahashi, N.; Tanaka, T.

    In this review, we summarize current understandings of blackhole solutions in various braneworld models, including the Arkani-Hamed-Dimopoulos-Dvali model, the Randall-Sundrum (RS) models, Karch-Randall (KR) model and the Dvali-Gabadadze-Porrati model. After illustrating basic properties of each braneworld model, we introduce the bulk/brane correspondence in the RS and KR braneworld models, adding supporting evidence for it. We then summarize the studies on braneworld black hole solutions, which consist of constructing exact or approximate solutions and investigating the phase diagram of solutions. In the study of phase diagram, we will also expound the implications of the bulk/brane correspondence to the braneworld black holes.

  3. A New Cosmological Model: Black Hole Universe

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2009-07-01

    Full Text Available A new cosmological model called black hole universe is proposed. According to this model, the universe originated from a hot star-like black hole with several solar masses, and gradually grew up through a supermassive black hole with billion solar masses to the present state with hundred billion-trillion solar masses by accreting ambient mate- rials and merging with other black holes. The entire space is structured with infinite layers hierarchically. The innermost three layers are the universe that we are living, the outside called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer is infinite in radius and limits to zero for both the mass density and absolute temperature. The relationships among all layers or universes can be connected by the universe family tree. Mathematically, the entire space can be represented as a set of all universes. A black hole universe is a subset of the en- tire space or a subspace. The child universes are null sets or empty spaces. All layers or universes are governed by the same physics - the Einstein general theory of relativity with the Robertson-walker metric of spacetime - and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. The entire life of a universe begins from the birth as a hot star-like or supermassive black hole, passes through the growth and cools down, and expands to the death with infinite large and zero mass density and absolute temperature. The black hole universe model is consistent with the Mach principle, the observations of the universe, and the Einstein general theory of relativity. Its various aspects can be understood with the well-developed physics without any difficulty. The dark energy is not required for the universe to accelerate its expansion. The inflation is not necessary because the black hole universe

  4. Factors Controlling Black Carbon Deposition in Snow in the Arctic

    Science.gov (United States)

    Qi, L.; Li, Q.; He, C.; Li, Y.

    2015-12-01

    This study evaluates the sensitivity of black carbon (BC) concentration in snow in the Arctic to BC emissions, dry deposition and wet scavenging efficiency using a 3D global chemical transport model GEOS-Chem driven by meteorological field GEOS-5. With all improvements, simulated median BC concentration in snow agrees with observation (19.2 ng g-1) within 10%, down from -40% in the default GEOS-Chem. When the previously missed gas flaring emissions (mainly located in Russia) are included, the total BC emission in the Arctic increases by 70%. The simulated BC in snow increases by 1-7 ng g-1, with the largest improvement in Russia. The discrepancy of median BC in snow in the whole Arctic reduces from -40% to -20%. In addition, recent measurements of BC dry deposition velocity suggest that the constant deposition velocity of 0.03 cm s-1 over snow and ice used in the GEOS-Chem is too low. So we apply resistance-in-series method to calculate the dry deposition velocity over snow and ice and the resulted dry deposition velocity ranges from 0.03 to 0.24 cm s-1. However, the simulated total BC deposition flux in the Arctic and BC in snow does not change, because the increased dry deposition flux has been compensated by decreased wet deposition flux. However, the fraction of dry deposition to total deposition increases from 16% to 25%. This may affect the mixing of BC and snow particles and further affect the radative forcing of BC deposited in snow. Finally, we reduced the scavenging efficiency of BC in mixed-phase clouds to account for the effect of Wegener-Bergeron-Findeisen (WBF) process based on recent observations. The simulated BC concentration in snow increases by 10-100%, with the largest increase in Greenland (100%), Tromsø (50%), Alaska (40%), and Canadian Arctic (30%). Annual BC loading in the Arctic increases from 0.25 to 0.43 mg m-2 and the lifetime of BC increases from 9.2 to 16.3 days. This indicates that BC simulation in the Arctic is really sensitive to

  5. Online single particle measurements of black carbon coatings, structure and optical properties

    Science.gov (United States)

    Allan, James; Liu, Dantong; Taylor, Jonathan; Flynn, Michael; Williams, Paul; Morgan, William; Whitehead, James; Alfarra, Rami; McFiggans, Gordon; Coe, Hugh

    2016-04-01

    The impacts of black carbon on meteorology and climate remain a major source of uncertainty, owing in part to the complex relationship between the bulk composition of the particulates and their optical properties. A particular complication stems from how light interacts with particles in response to the microphysical configuration and any 'coatings', i.e. non-black carbon material that is either co-emitted or subsequently obtained through atmospheric processing. This may cause the particle to more efficiently absorb or scatter light and may even change the sign of its radiative forcing potential. While much insight has been gained through measurements of bulk aerosol properties, either while suspended or after collection on a filter or impactor substrate, this does not provide a complete picture and thus may not adequately constrain the system. Here we present an overview of recent work to better constrain the properties of black carbon using online, in situ measurements of single particles, primarily using a Single Particle Soot Photometer (SP2). We have developed novel methods of inverting the data produced and combining the different metrics derived so as to give the most effective insights into black carbon sources, processes and properties. We have also used this measurement in conjunction with other instruments (sometimes in series) and used the data to challenge many commonly used models of optical properties such as core-shell Mie, Rayleigh-Debeye-Gans and effective medium. This work has been carried out in a variety of atmospheric environments and with laboratory-produced soots, e.g. from a diesel engine rig. Highlights include the finding that with real-world atmospheric aerosols, bulk optical measurements may be insufficient to derive brown carbon parameters without detailed morphological data. We also show that the enhancement of absorption for both ambient and laboratory generated particles only occurs after the coating mass fraction reaches a certain

  6. An improved method for quantitatively measuring the sequences of total organic carbon and black carbon in marine sediment cores

    Science.gov (United States)

    Xu, Xiaoming; Zhu, Qing; Zhou, Qianzhi; Liu, Jinzhong; Yuan, Jianping; Wang, Jianghai

    2017-04-01

    Understanding global carbon cycle is critical to uncover the mechanisms of global warming and remediate its adverse effects on human activities. Organic carbon in marine sediments is an indispensable part of the global carbon reservoir in global carbon cycling. Evaluating such a reservoir calls for quantitative studies of marine carbon burial, which closely depend on quantifying total organic carbon and black carbon in marine sediment cores and subsequently on obtaining their high-resolution temporal sequences. However, the conventional methods for detecting the contents of total organic carbon or black carbon cannot resolve the following specific difficulties, i.e., (1) a very limited amount of each subsample versus the diverse analytical items, (2) a low and fluctuating recovery rate of total organic carbon or black carbon versus the reproducibility of carbon data, and (3) a large number of subsamples versus the rapid batch measurements. In this work, (i) adopting the customized disposable ceramic crucibles with the micropore-controlled ability, (ii) developing self-made or customized facilities for the procedures of acidification and chemothermal oxidization, and (iii) optimizing procedures and carbon-sulfur analyzer, we have built a novel Wang-Xu-Yuan method (the WXY method) for measuring the contents of total organic carbon or black carbon in marine sediment cores, which includes the procedures of pretreatment, weighing, acidification, chemothermal oxidation and quantification; and can fully meet the requirements of establishing their highresolution temporal sequences, whatever in the recovery, experimental efficiency, accuracy and reliability of the measurements, and homogeneity of samples. In particular, the usage of disposable ceramic crucibles leads to evidently simplify the experimental scenario, which further results in the very high recovery rates for total organic carbon and black carbon. This new technique may provide a significant support for

  7. The river model of black holes

    CERN Document Server

    Hamilton, A J S; Hamilton, Andrew J. S.; Lisle, Jason P.

    2004-01-01

    This paper presents a new way to conceptualize stationary black holes, which we call the river model. The river model is mathematically sound, yet simple enough that the basic picture can be understood by non-experts. In the river model, space itself flows like a river through a flat background, while objects move through the river according to the rules of special relativity. In a spherical black hole, the river of space falls into the black hole at the Newtonian escape velocity, hitting the speed of light at the horizon. Inside the horizon, the river flows inward faster than light, carrying everything with it. We show that the river model works also for rotating (Kerr-Newman) black holes, though with a surprising twist. As in the spherical case, the river of space can be regarded as moving through a flat background. However, the river does not spiral inward, as one might have anticipated, but rather falls inward with no azimuthal swirl at all. Instead, the river has at each point not only a velocity but als...

  8. Photo-lability of deep ocean dissolved black carbon

    Directory of Open Access Journals (Sweden)

    A. Stubbins

    2012-01-01

    Full Text Available Dissolved black carbon (DBC, defined here as condensed aromatics isolated from seawater via PPL solid phase extraction and quantified as benzene polycarboxylic acid oxidation products, is a significant component of the oceanic dissolved organic carbon (DOC pool. These condensed aromatics are widely distributed in the open ocean and appear to be tens of thousands of years old. As such DBC is regarded as highly refractory. In the current study, the photo-lability of DBC, DOC and coloured dissolved organic matter (CDOM; ultraviolet-visible absorbance were determined over the course of a 28 d irradiation of North Atlantic Deep Water under a solar simulator. During the irradiation DBC fell from 1044 ± 164 nM C to 55 ± 15 nM C, a 20-fold decrease in concentration. Dissolved black carbon photo-degradation was more rapid and more extensive than for bulk CDOM and DOC. Further, the photo-lability of components of the DBC pool increased with their degree of aromatic condensation. These trends indicate that a continuum of compounds of varying photo-lability exists within the marine DOC pool. In this continuum, photo-lability scales with aromatic character, specifically the degree of condensation. Scaling the rapid photo-degradation of DBC to rates of DOC photo-mineralisation for the global ocean leads to an estimated photo-chemical half-life for oceanic DBC of less than 800 yr. This is more than an order of magnitude shorter than the apparent age of DBC in the ocean. Photo-degradation is therefore posited as the primary sink for oceanic DBC and the survival of DBC molecules in the oceans for millennia appears to be facilitated not by their inherent inertness but by the rate at which they are cycled through the surface ocean's photic zone.

  9. Plasma Polymerization Surface Modification of Carbon Black and its Effect in Elastomers

    NARCIS (Netherlands)

    Mathew, T.; Datta, R.N.; Dierkes, W.K.; Talma, A.G.; Ooij, van W.J.; Noordermeer, J.W.M.

    2011-01-01

    Surface modification of carbon black by plasma polymerization was aimed to reduce its surface energy in order to compatibilize the filler with various elastomers. A fullerenic carbon black was used for the modification process. Thermogravimetric analysis, wetting behavior with liquids of known surfa

  10. Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver

    DEFF Research Database (Denmark)

    Bourdon, Julie A; Saber, Anne T; Jacobsen, Nicklas R;

    2012-01-01

    Widespread occupational exposure to carbon black nanoparticles (CBNPs) raises concerns over their safety. CBNPs are genotoxic in vitro but less is known about their genotoxicity in various organs in vivo.......Widespread occupational exposure to carbon black nanoparticles (CBNPs) raises concerns over their safety. CBNPs are genotoxic in vitro but less is known about their genotoxicity in various organs in vivo....

  11. Associations between Prenatal Exposure to Black Carbon and Memory Domains in Urban Children: Modification by Sex and Prenatal Stress.

    Science.gov (United States)

    Cowell, Whitney J; Bellinger, David C; Coull, Brent A; Gennings, Chris; Wright, Robert O; Wright, Rosalind J

    2015-01-01

    Whether fetal neurodevelopment is disrupted by traffic-related air pollution is uncertain. Animal studies suggest that chemical and non-chemical stressors interact to impact neurodevelopment, and that this association is further modified by sex. To examine associations between prenatal traffic-related black carbon exposure, prenatal stress, and sex with children's memory and learning. Analyses included N = 258 mother-child dyads enrolled in a Boston, Massachusetts pregnancy cohort. Black carbon exposure was estimated using a validated spatiotemporal land-use regression model. Prenatal stress was measured using the Crisis in Family Systems-Revised survey of negative life events. The Wide Range Assessment of Memory and Learning (WRAML2) was administered at age 6 years; outcomes included the General Memory Index and its component indices [Verbal, Visual, and Attention Concentration]. Relationships between black carbon and WRAML2 index scores were examined using multivariable-adjusted linear regression including effect modification by stress and sex. Mothers were primarily minorities (60% Hispanic, 26% Black); 67% had ≤12 years of education. The main effect for black carbon was not significant for any WRAML2 index; however, in stratified analyses, among boys with high exposure to prenatal stress, Attention Concentration Index scores were on average 9.5 points lower for those with high compared to low prenatal black carbon exposure (P3-way interaction = 0.04). The associations between prenatal exposure to black carbon and stress with children's memory scores were stronger in boys than in girls. Studies assessing complex interactions may more fully characterize health risks and, in particular, identify vulnerable subgroups.

  12. Is marine dissolved organic matter the "missing sink" for soil-derived black carbon?

    Science.gov (United States)

    Dittmar, Thorsten; Suryaputra, I. Gusti N. A.; Niggemann, Jutta

    2010-05-01

    The thermal alteration of biomass during wildfires can be an important factor for the stabilization of organic matter in soils. Black carbon, i.e. biochars and soot, is more resistant to biodegradation than unaltered biomass, and it can therefore accumulate in soils and sediments. Our knowledge on the turnover of black carbon is still very fragmentary, and the known loss rates do not account for the estimated production rates. Major loss mechanisms remain unidentified or have been underestimated. Recently, we have identified a major thermogenic component in dissolved organic matter (DOM) of the deep ocean. We hypothesize that black carbon in soils is solubilized over time, probably via microbial interaction, and transported via rivers into the ocean. DOM, one of the largest organic carbon pools on earth, could therefore be an important transport medium of soil-derived black carbon. A case study was performed in the Suwannee River estuary and adjacent oceanic shelf (Florida, USA). The Suwannee River drains extensive wetlands and fire-impacted forests. The fate of dissolved black carbon was traced from the river through its estuary into the open Gulf of Mexico. Black carbon was molecularly quantified as benzenepolycarboxylic acids after nitric acid oxidation via a new UPLC method (ultra-performance liquid chromatography). The molecular analysis was accompanied by optical (excitation-emission matrix fluorescence and absorbance spectroscopy) and elemental characterization of DOM. A major component (approx. 10% on a carbon basis) of Suwannee River DOM could be identified as black carbon. The concentration of black carbon decreased offshore, and on the open ocean only about 1% of DOM could be identified as black carbon. In the deep ocean, the thermogenic component of DOM is higher and approx. 2.4% of DOM. The surface ocean must therefore be an efficient sink for dissolved black carbon. We hypothesize that sunlight may initiate photochemical reactions that cause a loss of

  13. Influence of carbon black and indium tin oxide absorber particles on laser transmission welding

    Science.gov (United States)

    Aden, Mirko; Mamuschkin, Viktor; Olowinsky, Alexander

    2015-06-01

    For laser transmission welding of polypropylene carbon black and indium tin oxide (ITO) are used as absorber particles. Additionally, the colorant titanium dioxide is mixed to the absorbing part, while the transparent part is kept in natural state. The absorption coefficients of ITO and carbon black particles are obtained, as well as the scattering properties of polypropylene loaded with titanium dioxide (TiO2). At similar concentrations the absorption coefficient of ITO is an order of magnitude smaller than that of carbon black. Simulations of radiation propagation show that the penetration depth of laser light is smaller for carbon black. Therefore, the density of the released heat is higher. Adding TiO2 changes the distribution of heat in case of ITO, whereas for carbon black the effect is negligible. Thermal simulations reveal the influence of the two absorbers and TiO2 on the heat affected zone. The results of the thermal simulations are compared to tensile test results.

  14. Towards Soil and Sediment Inventories of Black Carbon

    Science.gov (United States)

    Masiello, C. A.

    2008-12-01

    A body of literature on black carbon (BC) concentrations in soils and sediments is rapidly accumulating, but as of yet, there are no global or regional inventories of BC in either reservoir. Soil and sediment BC inventories are badly needed for a range of fields. For example, in oceanography a global sediment BC inventory is crucial in understanding the role of biomass burning in the development of stable marine carbon reservoirs, including dissolved organic carbon and sedimentary organic carbon. Again in the marine environment, BC likely strongly impacts the fate and transport of anthropogenic pollutants: regional inventories of BC in sediments will help develop better environmental remediation strategies. In terrestrial systems well-constrained natural BC soil inventories would help refine ecological, agricultural, and soil biogeochemical studies. BC is highly sorptive of nutrients including nitrogen and phosphorous. The presence of BC in ecosystems almost certainly alters N and P cycling; however, without soil BC inventories, we cannot know where BC has a significant impact. BC's nutrient sorptivity and water-holding capacity make it an important component of agricultural soils, and some researchers have proposed artificially increasing soil BC inventories to improve soil fertility. Natural soil BC concentrations in some regions are quite high, but without a baseline inventory, it is challenging to predict when agricultural amendment will significantly exceed natural conditions. And finally, because BC is one of the most stable fractions of organic carbon in soils, understanding its concentration and regional distribution will help us track the dynamics of soil organic matter response to changing environmental conditions. Developing effective regional and global BC inventories is challenging both because of data sparsity and methodological intercomparison issues. In this presentation I will describe a roadmap to generating these valuable inventories.

  15. Multiple scattering of light by water cloud droplets with external and internal mixing of black carbon aerosols

    Institute of Scientific and Technical Information of China (English)

    Wang Hai-Hua; Sun Xian-Ming

    2012-01-01

    The mixture of water cloud droplets with black carbon impurities is modeled by external and internal mixing models.The internal mixing model is modeled with a two-layered sphere(water cloud droplets containing black carbon(BC)inclusions),and tihe single scattering and absorption characteristics are calculated at the visible wavelength of 0.55 μm by using the Lorenz Mie theory.The external mixing model is developed assuming that the same amount of BC particles are mixed with the water droplets externally.The multiple scattering characteristics we computed by using the Monte Carlo method.The results show that when the size of the BC aerosol is small,the reflection intensity of the internal mixing model is bigger than that of the external mixing model.However,if the size of the BC aerosol is big,the absorption of the internal mixing model will be larger than that of the external mixing model.

  16. Black Carbon in Marine Dissolved Organic Carbon: Abundance and Radiocarbon Measurements in the Global Ocean

    Science.gov (United States)

    Coppola, A. I.; Walker, B. D.; Druffel, E. R. M.

    2014-12-01

    Compound specific radiocarbon analysis is a powerful tool for understanding the cycling of individual components, such as black carbon (BC) produced from biomass burning and fossil fuel combustion, within bulk pools, like the marine dissolved organic carbon pool. Here, we use a solid phase extraction method and a wide range of solvent polarities to concentrate dissolved organic carbon from seawater. Then we isolate BC in sufficient quantities for radiocarbon analysis. We report the radiocarbon age of BC, concentrations and its relative structure, from coastal and open ocean surface samples. We will discuss our progress towards measuring these quantities in dissolved organic carbon collected from the Pacific and Atlantic oceans to understand the fate, transformation and cycling of BC in the world ocean. These measurements are paired with bulk DOC Δ14C profiles, providing insight into the role of BC as a missing sink in the ultra-refractory DOC pool.

  17. Analysis of the Thermal Conductivity of Polymer Nanocomposites Filled with Carbon Nanotubes and Carbon Black

    Directory of Open Access Journals (Sweden)

    R.V. Dinzhos

    2014-04-01

    Full Text Available Experimental results and theoretical studies of thermophysical characteristics crystalline polyethylene nanocomposites containing from 0.3 to 2.5 wt. % carbon black and nanocomposites containing from 0.2 to 1.5 wt. % carbon nanotubes is done in the article. The fundamentals of the effective medium theory and percolation theory and how they correlate with the experimental data is shown. The features of the structure’s influence of polymer composites on their thermal properties is studied. A comparative analysis of the thermal conductivity of the compositions according to the geometry of the filler is done.

  18. Brief Analysis on the Production & Operation Situation of Chinese Carbon Black Industry in the First Half Year

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    At present, there are about 120 carbon black manufacturing enterprises in China with the production capacity of 3.41 million tons, accounting for 78% of the total production capacity of the country, in which there are 31 carbon black enterprises with the production capacity of over 50,000 tons. Compared with the international carbon black industry, our carbon black industry has a low intensification.

  19. Critical review of black carbon and elemental carbon source apportionment in Europe and the United States

    Science.gov (United States)

    Briggs, Nicole L.; Long, Christopher M.

    2016-11-01

    An increasing number of air pollution source apportionment studies in Europe and the United States have focused on the black carbon (BC) fraction of ambient particulate matter (PM) given its linkage with adverse public health and climate impacts. We conducted a critical review of European and US BC source apportionment studies published since 2003. Since elemental carbon (EC) has been used as a surrogate measure of BC, we also considered source apportionment studies of EC measurements. This review extends the knowledge presented in previous ambient PM source apportionment reviews because we focus on BC and EC and critically examine the differences between source apportionment results for different methods and source categories. We identified about 50 BC and EC source apportionment studies that have been conducted in either Europe or the US since 2003, finding a striking difference in the commonly used source apportionment methods between the two regions and variations in the assigned source categories. Using three dominant methodologies (radiocarbon, aethalometer, and macro-tracer methods) that only allow for BC to be broadly apportioned into either fossil fuel combustion or biomass burning source categories, European studies generally support fossil fuel combustion as the dominant ambient BC source, but also show significant biomass burning contributions, in particular in wintertime at non-urban locations. Among US studies where prevailing methods such as chemical mass balance (CMB) and positive matrix factorization (PMF) models have allowed for estimation of more refined source contributions, there are fewer findings showing the significance of biomass burning and variable findings on the relative proportion of BC attributed to diesel versus gasoline emissions. Overall, the available BC source apportionment studies provide useful information demonstrating the significance of both fossil fuel combustion and biomass burning BC emission sources in Europe and the US

  20. Electrical properties of foamed polypropylene/carbon black composites

    Science.gov (United States)

    Iliev, M.; Kotzev, G.; Vulchev, V.

    2016-02-01

    Polypropylene composites containing carbon black fillers were produced by vibration assisted extrusion process. Solid (unfoamed) composite samples were molded by conventional injection molding method, while structural foams were molded by a low pressure process. The foamed samples were evidenced to have a solid skin-foamed core structure which main parameters were found to depend on the quantity of material injected in the mold. The average bubbles' sizes and their distribution were investigated by scanning electron microscopy. It is established that the conductivity of the foamed samples gradually decreases when reducing the sample density. Nevertheless, the conductivity is found to be lower than the conductivity of the unfoamed samples both being of the same order. The flexural properties of the composites were studied and the results were discussed in the context of the structure parameters of the foamed samples.

  1. Characterization of black carbon in the ambient air of Agra, India: Seasonal variation and meteorological influence

    Science.gov (United States)

    Gupta, Pratima; Singh, Shalendra Pratap; Jangid, Ashok; Kumar, Ranjit

    2017-09-01

    This study characterizes the black carbon in Agra, India home to the Taj Mahal—and situated in the Indo-Gangetic basin. The mean black carbon concentration is 9.5 μg m-3 and, owing to excessive biomass/fossil fuel combustion and automobile emissions, the concentration varies considerably. Seasonally, the black carbon mass concentration is highest in winter, probably due to the increased fossil fuel consumption for heating and cooking, apart from a low boundary layer. The nocturnal peak rises prominently in winter, when the use of domestic heating is excessive. Meanwhile, the concentration is lowest during the monsoon season because of the turbulent atmospheric conditions and the process of washout by precipitation. The ratio of black carbon to brown carbon is less than unity during the entire study period, except in winter (December). This may be because that biomass combustion and diesel exhaust are major black carbon contributors in this region, while a higher ratio in winter may be due to the increased consumption of fossil fuel and wood for heating purposes. ANOVA reveals significant monthly variation in the concentration of black carbon; plus, it is negatively correlated with wind speed and temperature. A high black carbon mass concentration is observed at moderate (1-2 m s-1) wind speed, as compared to calm or turbulent atmospheric conditions.

  2. Sorption of organic compounds to activated carbons. Evaluation of isotherm models

    NARCIS (Netherlands)

    Pikaar, I.; Koelmans, A.A.; Noort, van P.C.M.

    2006-01-01

    Sorption to 'hard carbon' (black carbon, coal, kerogen) in soils and sediments is of major importance for risk assessment of organic pollutants. We argue that activated carbon (AC) may be considered a model sorbent for hard carbon. Here, we evaluate six sorption models on a literature dataset for so

  3. Factors controlling black carbon distribution in the Arctic

    Science.gov (United States)

    Qi, Ling; Li, Qinbin; Li, Yinrui; He, Cenlin

    2017-01-01

    We investigate the sensitivity of black carbon (BC) in the Arctic, including BC concentration in snow (BCsnow, ng g-1) and surface air (BCair, ng m-3), as well as emissions, dry deposition, and wet scavenging using the global three-dimensional (3-D) chemical transport model (CTM) GEOS-Chem. We find that the model underestimates BCsnow in the Arctic by 40 % on average (median = 11.8 ng g-1). Natural gas flaring substantially increases total BC emissions in the Arctic (by ˜ 70 %). The flaring emissions lead to up to 49 % increases (0.1-8.5 ng g-1) in Arctic BCsnow, dramatically improving model comparison with observations (50 % reduction in discrepancy) near flaring source regions (the western side of the extreme north of Russia). Ample observations suggest that BC dry deposition velocities over snow and ice in current CTMs (0.03 cm s-1 in the GEOS-Chem) are too small. We apply the resistance-in-series method to compute a dry deposition velocity (vd) that varies with local meteorological and surface conditions. The resulting velocity is significantly larger and varies by a factor of 8 in the Arctic (0.03-0.24 cm s-1), which increases the fraction of dry to total BC deposition (16 to 25 %) yet leaves the total BC deposition and BCsnow in the Arctic unchanged. This is largely explained by the offsetting higher dry and lower wet deposition fluxes. Additionally, we account for the effect of the Wegener-Bergeron-Findeisen (WBF) process in mixed-phase clouds, which releases BC particles from condensed phases (water drops and ice crystals) back to the interstitial air and thereby substantially reduces the scavenging efficiency of clouds for BC (by 43-76 % in the Arctic). The resulting BCsnow is up to 80 % higher, BC loading is considerably larger (from 0.25 to 0.43 mg m-2), and BC lifetime is markedly prolonged (from 9 to 16 days) in the Arctic. Overall, flaring emissions increase BCair in the Arctic (by ˜ 20 ng m-3), the updated vd more than halves BCair (by ˜ 20 ng m-3

  4. Observation of black carbon, ozone and carbon monoxide in the Kali Gandaki Valley Nepal

    Science.gov (United States)

    Dhungel, S.; Panday, A. K.; Kathayat, B.

    2014-12-01

    The increased melting of snow and ice in the arctic and the Himalaya is a growing concern for all of the earth's population. Deposition of black carbon (BC) on the snow and ice surface accelerates melting by absorbing the radiative energy and directly transferring all that energy onto the underlying surface. During pre-monsoon season, satellite images show a thick layer of haze covering the Indo-Gangetic plain (IGP) and the Himalayan foothills. Sub-micron particles are transported to the Himalaya from the IGP predominantly driven by the thermal valley wind system. The Himalayas consist of some of the tallest mountain ranges in the world, over 8000m tall that reach the stratosphere. The Kali Gandaki Valley in Nepal is one of the deepest gorges in the world, and has some of the highest up-valley winds in the world. It is also one of the most open connecting points for air from IGP to reach the Tibetan Plateau. In 2010 the University of Virginia, in collaboration with ICIMOD and Nepal Wireless, established an atmospheric research station in Jomsom, Nepal (28.78N, 83.42E, 2900 m.a.s.l.) half-way along the Kali Gandaki valley. The station is equipped to measure black carbon (BC), carbon monoxide (CO), and ozone concentrations. It also has an automated weather station, a filter sampler, and a NASA Aeronet Sunphotometer. Here we present our observations of black carbon, ozone, carbon monoxide at Jomsom to show the diurnal and seasonal variability of the pollutants. The results show diurnal patterns in the concentration of these pollutants and also episodes of high pollutant transport along the valley. These transport episodes are more common during the pre-monsoon season which indicates that deep mountain valleys like the Kali Gandaki valley facilitate the transport of pollutants and thus promote snow and glacial melting.

  5. Carbon black dispersion pre-plating technology for printed wire board manufacturing. Final technology evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    Folsom, D.W.; Gavaskar, A.R.; Jones, J.A.; Olfenbuttel, R.F.

    1993-10-01

    The project compared chemical use, waste generation, cost, and product quality between electroless copper and carbon-black-based preplating technologies at the printed wire board (PWB) manufacturing facility of McCurdy Circuits in Orange, CA. The carbon-black based preplating technology evaluated is used as an alternative process for electroless copper (EC) plating of through-holes before electrolytic copper plating. The specific process used at McCurdy is the BlackHole (BH) technology process, which uses a dispersion of carbon black in an aqueous solution to provide a conductive surface for subsequent electrolytic copper plating. The carbon-black dispersion technology provided effective waste reduction and long-term cost savings. The economic analysis determined that the new process was cost efficient because chemical use was reduced and the process proved more efficient; the payback period was less than 4 yrs.

  6. Black carbon emissions in Russia: A critical review

    Science.gov (United States)

    Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa; Denysenko, Artur; Smith, Steven J.; Staniszewski, Aaron; Hao, Wei Min; Liu, Liang; Bond, Tami C.

    2017-08-01

    This study presents a comprehensive review of estimated black carbon (BC) emissions in Russia from a range of studies. Russia has an important role regarding BC emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data on Russia's associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 688 Gg in 2014, with an uncertainty range 401 Gg-1453 Gg, while OC emissions are 9224 Gg with uncertainty ranging between 5596 Gg and 14,736 Gg. Wildfires dominated and contributed about 83% of the total BC emissions: however, the effect on radiative forcing is mitigated in part by OC emissions. We also present an adjusted estimate of Arctic forcing from Russia's BC and OC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.

  7. Dissolved Black Carbon in the South China Sea

    Science.gov (United States)

    Fang, Z.; Yang, W.; Chen, M.; Ma, H.

    2015-12-01

    Dissolved black carbon (DBC) has been ubiquitously reported in dissolved organic matter (DOM). However, the abundance and provenance of DBC in the ocean are not well understood. Here, DBC in the South China Sea (SCS) was determined at molecular level using the benzenepolycarboxylic acids (BPCAs) method. DBC showed high concentrations in the upper 100 m seawater with the average of 1.13 μmol l-1 (n=55). In the intermediate seawater (200-1500 m), DBC ranged from 0.67 to 0.89 μmol l-1 with the average of 0.78 μmol l-1 (n=9), exhibiting nearly homogeneous distributions. The vertical distribution pattern indicated that DBC significantly degraded in the photic zone, corresponding to an attenuate constant of 12.5±4.9 km-1. The ratios of B6CA/B3CAs increased downward, implying that aromatic condensation degree of DBC increase during transport from surface to deep water. Using the standing crops of DBC in the upper 200 m and the residence time of seawater, atmospheric deposition of DBC was estimated to be 1.94 TgC yr-1, accounting for around 16% of the global BC deposition. Our study highlights that DBC could be an important component of ocean carbon cycling in Pacific Asia Marginal Seas.

  8. Black carbon emissions in Russia: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa; Denysenko, Artur; Smith, Steven J.; Staniszewski, Aaron; Hao, Wei Min; Liu, Liang; Bond, Tami C.

    2017-08-01

    Russia has a particularly important role regarding black carbon (BC) emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. This study presents a comprehensive review of BC estimates from a range of studies. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data on Russian associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 689 Gg in 2014, with an uncertainty range between (407-1,416), while OC emissions are 9,228 Gg (with uncertainty between 5,595 and 14,728). Wildfires dominated and contributed about 83% of the total BC emissions, however the effect on radiative forcing is mitigated by OC emissions. We also present an adjusted estimate of Arctic forcing from Russian OC and BC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.

  9. Structure aggregation of carbon black in ethylene-propylene diene polymer

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The modulus of filled and unfilled Ethylene-propylene diene rubber (EPDM vulcanizates was used to predict the shape-factor of carbon black aggregation in the polymer. Four types of carbon black that vary in particle size and structure were used in this study. Quadratic curves relating the carbon black volume concentration and the modulus ratio of filled and unfilled rubber vulcanizates were used to adopt the shape factor of certain carbon black type. The shape factor of MT, HAF, SRF and Lampblack were 3, 3.75, 4 and 4.25 respectively. X-ray diffraction technique (XRD was also used to evaluate the relative size of crystallite on the filler surface to that of the rubber and correlating it to the shape factor of carbon black aggregation in the polymer. Effect of the pH values and structure of carbon blacks used on the shape factor of filler aggregates were also studied. It was found that the shape factor is independent on the particle size while it is dependent on the pH value and structure of carbon black. Also the crystallites size of the filler is proportional to the shape factor.

  10. Photo-lability of deep ocean dissolved black carbon

    Directory of Open Access Journals (Sweden)

    A. Stubbins

    2012-05-01

    Full Text Available Dissolved black carbon (DBC, defined here as condensed aromatics isolated from seawater via PPL solid phase extraction and quantified as benzenepolycarboxylic acid (BPCA oxidation products, is a significant component of the oceanic dissolved organic carbon (DOC pool. These condensed aromatics are widely distributed in the open ocean and appear to be tens of thousands of years old. As such DBC is regarded as highly refractory. In the current study, the photo-lability of DBC, DOC and coloured dissolved organic matter (CDOM; ultraviolet-visible absorbance were determined over the course of a 28 day irradiation of North Atlantic Deep Water under a solar simulator. During the irradiation DBC fell from 1044 ± 164 nM-C to 55 ± 15 nM-C, a 20-fold decrease in concentration. Dissolved black carbon photo-degradation was more rapid and more extensive than for bulk CDOM and DOC. The concentration of DBC correlated with CDOM absorbance and the quality of DBC indicated by the ratios of different BPCAs correlated with CDOM absorbance spectral slope, suggesting the optical properties of CDOM may provide a proxy for both DBC concentrations and quality in natural waters. Further, the photo-lability of components of the DBC pool increased with their degree of aromatic condensation. These trends indicate that a continuum of compounds of varying photo-lability exists within the marine DOC pool. In this continuum, photo-lability scales with aromatic character, specifically the degree of condensation. Scaling the rapid photo-degradation of DBC to rates of DOC photo-mineralisation for the global ocean leads to an estimated photo-chemical half-life for oceanic DBC of less than 800 years. This is more than an order of magnitude shorter than the apparent age of DBC in the ocean. Consequently, photo-degradation is posited as the primary sink for oceanic DBC and the apparent survival of DBC molecules in the oceans for millennia appears to be facilitated not by their

  11. Photo-lability of deep ocean dissolved black carbon

    Science.gov (United States)

    Stubbins, A.; Niggemann, J.; Dittmar, T.

    2012-05-01

    Dissolved black carbon (DBC), defined here as condensed aromatics isolated from seawater via PPL solid phase extraction and quantified as benzenepolycarboxylic acid (BPCA) oxidation products, is a significant component of the oceanic dissolved organic carbon (DOC) pool. These condensed aromatics are widely distributed in the open ocean and appear to be tens of thousands of years old. As such DBC is regarded as highly refractory. In the current study, the photo-lability of DBC, DOC and coloured dissolved organic matter (CDOM; ultraviolet-visible absorbance) were determined over the course of a 28 day irradiation of North Atlantic Deep Water under a solar simulator. During the irradiation DBC fell from 1044 ± 164 nM-C to 55 ± 15 nM-C, a 20-fold decrease in concentration. Dissolved black carbon photo-degradation was more rapid and more extensive than for bulk CDOM and DOC. The concentration of DBC correlated with CDOM absorbance and the quality of DBC indicated by the ratios of different BPCAs correlated with CDOM absorbance spectral slope, suggesting the optical properties of CDOM may provide a proxy for both DBC concentrations and quality in natural waters. Further, the photo-lability of components of the DBC pool increased with their degree of aromatic condensation. These trends indicate that a continuum of compounds of varying photo-lability exists within the marine DOC pool. In this continuum, photo-lability scales with aromatic character, specifically the degree of condensation. Scaling the rapid photo-degradation of DBC to rates of DOC photo-mineralisation for the global ocean leads to an estimated photo-chemical half-life for oceanic DBC of less than 800 years. This is more than an order of magnitude shorter than the apparent age of DBC in the ocean. Consequently, photo-degradation is posited as the primary sink for oceanic DBC and the apparent survival of DBC molecules in the oceans for millennia appears to be facilitated not by their inherent inertness but

  12. Toxicity assessment of carbon black waste: A by-product from oil refineries.

    Science.gov (United States)

    Zhen, Xu; Ng, Wei Cheng; Fendy; Tong, Yen Wah; Dai, Yanjun; Neoh, Koon Gee; Wang, Chi-Hwa

    2017-01-05

    In Singapore, approximately 30t/day of carbon-based solid waste are produced from petrochemical processes. This carbon black waste has been shown to possess physical properties that are characteristic of a good adsorbent such as high external surface area. Therefore, there is a growing interest to reutilize and process this carbon black waste into secondary materials such as adsorbents. However, the carbon black waste obtained from petrochemical industries may contain heavy metals that are hazardous to human health and the environment, hence restricting its full potential for re-utilization. Therefore, it is important to examine the possible toxicity effects and toxicity mechanism of carbon black waste on human health. In this study, inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis showed that the heavy metals, vanadium (V), molybdenum (Mo) and nickel (Ni), were present in the carbon black waste in high concentrations. Three human cell lines (HepG2 cells, MRC-5 cells and MDA-MB-231 cells) were used to investigate the toxicity of carbon black waste extract in a variety of in vitro assays. Results from MTS assays indicated that carbon black waste extract decreased the viability of all three cell lines in a dose and time-dependent manner. Observations from confocal microscopy further confirmed this phenomenon. Flow cytometry assay also showed that carbon black waste extract induced apoptosis of human cell lines, and the level of apoptosis increased with increasing waste concentration. Results from reactive oxygen species (ROS) assay indicated that carbon black waste extract induced oxidative stress by increasing intracellular ROS generation in these three human cell lines. Moreover, induction of oxidative damage in these cells was also observed through the alteration of glutathione (GSH) and superoxide dismutase (SOD) activities. Last but not least, by treating the cells with V-spiked solution of concentration equivalent to that found in the

  13. Feasibility study of production of radioactive carbon black or carbon nanotubes in cyclotron facilities for nanobioscience applications.

    Science.gov (United States)

    Abbas, K; Simonelli, F; Holzwarth, U; Cydzik, I; Bulgheroni, A; Gibson, N; Kozempel, J

    2013-03-01

    A feasibility study regarding the production of radioactive carbon black and nanotubes has been performed by proton beam irradiation. Experimental and theoretical excitation functions of the nuclear reaction (nat)C(p,x)(7)Be in the proton energy range 24-38 MeV are reported, with an acceptable agreement. We have demonstrated that sufficient activities of (7)Be radioisotope can be produced in carbon black and nanotube that would facilitate studies of their possible impact on human and environment.

  14. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2006-01-01

    Full Text Available Although the definition and measurement techniques for atmospheric 'black carbon' ('BC' or 'elemental carbon'' ('EC' have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black ('brown carbon, Cbrown' makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC in the atmosphere. Evidence for the atmospheric presence of Cbrown comes from (1 spectral aerosol light absorption measurements near specific combustion sources, (2 observations of spectral properties of water extracts of continental aerosol, (3 laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and (4 indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that brown carbon may severely bias measurements of 'BC' and 'EC' over vast parts of the troposphere, especially those strongly polluted by biomass burning, where the mass concentration of Cbrown is high relative to that of soot carbon. Chemical measurements to determine 'EC' are biased by the refractory nature of Cbrown as well as by complex matrix interferences. Optical measurements of 'BC' suffer from a number of problems: (1 many of the presently used instruments introduce a substantial bias into the determination of aerosol light absorption, (2 there is no unique conversion factor between light absorption and 'EC' or 'BC' concentration in ambient aerosols, and (3 the difference in spectral properties between the different types of LAC, as well as the chemical complexity of Cbrown, lead to several conceptual as well as practical complications. We also suggest that due to the sharply increasing absorption of Cbrown towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. We discuss the possible consequences of these effects for our

  15. Influence of sample composition on aerosol organic and black carbon determinations

    Energy Technology Data Exchange (ETDEWEB)

    Novakov, T.; Corrigan, C.E.

    1995-07-01

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550{degrees}C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations.

  16. An approach to a black carbon emission inventory for Mexico by two methods.

    Science.gov (United States)

    Cruz-Núñez, Xochitl

    2014-05-01

    A black carbon (BC) emission inventory for Mexico is presented. Estimate was performed by using two approaches, based on fuel consumption and emission factors in a top-down scheme, and the second from PM25 emission data and its correlation with black carbon by source category, assuming that black carbon=elemental carbon. Results show that black carbon emissions are in interval 53-473Gg using the fuel consumption approach and between 62 and 89 using the sector method. Black carbon key sources come from biomass burning in the rural sector, with 47 percent share to the National total. Mobile sources emissions account to 16% to the total. An opportunity to reduce, in the short-term, carbon dioxide equivalent (CO2-eq) emissions by reducing black carbon emissions would be obtained in reducing emissions mainly from biomass burning in rural housing sector and diesel emissions in the transport sector with important co-benefits in direct radiative forcing, public health and air quality.

  17. Evaluation of a protocol for the quantification of black carbon in sediments

    Science.gov (United States)

    Gustafsson, Örjan; Bucheli, Thomas D.; Kukulska, Zofia; Andersson, Mette; Largeau, Claude; Rouzaud, Jean-NoëL.; Reddy, Christopher M.; Eglinton, Timothy I.

    2001-12-01

    Formation of highly condensed black carbon (BC) from vegetation fires and wood fuel combustion presumably transfers otherwise rapidly cycling carbon from the atmosphere-biosphere cycle into a much slower cycling geological form. Recently reported BC fractions of total organic carbon (TOC) in surficial marine sediments span a wide range (2-90%), leaving it presently unclear whether this variation reflects natural processes or is largely due to method differences. In order to elucidate the importance of BC to carbon burial the specificity of applied methods needs to be constrained. Here the operating range and applicability of a commonly used chemothermal oxidation (CTO) method is evaluated using putative BC standards, potentially interfering substances, and natural matrix standards. Test results confirm the applicability of the method to marine sediments. Integrity tests with model substrates suggest applicability to low-carbon soils but only with a lower specificity to seawater particulate matter. The BC content of marine sediment samples in a set of studies employing the CTO method proved to be consistent with associated geochemical information. The radiocarbon content of the BC isolate in an environmental matrix standard was shown to be similar to the radiocarbon signature of pyrogenic polycyclic aromatic hydrocarbons (PAHs), here serving as molecular markers of combustion (fraction modern fM of BC was 0.065 ± 0.014 and of PAHs 0.056 ± 0.020), while being clearly distinct from the radiocarbon content of the bulk TOC (fM = 0.61 ± 0.08). Urgent questions such as the global accumulation rate of black carbon in soils and sediments may prove approachable with the chemothermal oxidation technique of BC quantification.

  18. Grafted, cross-linked carbon black as a double-layer capacitor electrode material

    Energy Technology Data Exchange (ETDEWEB)

    Richner, R.; Mueller, S.; Wokaun, A.

    2001-03-01

    Isocyanate prepolymers readily react with oxidic functional groups on carbon black. On carbon black grafted with diisocyanates, reactive isocyanate groups are available for cross-linking to a polyurethane system. This cross-linked carbon black was considered as a new active material for electrochemical electrodes. Active material for electric double-layer capacitor electrodes was produced which had values of specific capacitance of up to 200 F/g. Cross-linking efficiencies of up to 58 % of the polymers utilised were achieved. (author)

  19. The impact of black wattle encroachment of indigenous grasslands on soil carbon, Eastern Cape, South Africa

    DEFF Research Database (Denmark)

    Oelofse, Myles; Birch-Thomsen, Torben; Magid, Jakob;

    2016-01-01

    adverse environmental impacts in South Africa. Little is known about the effects of black wattle encroachment on soil carbon, therefore the aim of this study was to investigate the impact of black wattle encroachment of natural grassland on soil carbon stocks and dynamics. Focussing on two sites...... in the Eastern Cape, South Africa, the study analysed carbon stocks in soil and litter on a chronosequence of black wattle stands of varying ages (up to >50 years) and compared these with adjacent native grassland. The study found that woody encroachment of grassland at one site had an insignificant effect...

  20. Variable effects of labile carbon on the carbon use of different microbial groups in black slate degradation

    Science.gov (United States)

    Seifert, Anne-Gret; Trumbore, Susan; Xu, Xiaomei; Zhang, Dachung; Kothe, Erika; Gleixner, Gerd

    2011-05-01

    Weathering of ancient organic matter contributes significantly to biogeochemical carbon cycles over geological times. The principle role of microorganisms in this process is well recognized. However, information is lacking on the contribution of individual groups of microorganisms and on the effect of labile carbon sources to the degradation process. Therefore, we investigated the contribution of fungi, Gram-positive and Gram-negative bacteria in the degradation process using a column experiment. Investigations were performed on low metamorphic black slates. All columns contained freshly crushed, sieved (0.63-2 mm), not autoclaved black slates. Two columns were inoculated with the lignite-degrading fungus Schizophyllum commune and received a culture medium containing 13C labeled glucose, two columns received only this culture medium and two control columns received only water. The total mass balance was calculated from all carbon added to the slate and the CO 2 and DOC losses. Phospholipid fatty acids (PLFA) were extracted to investigate microbial communities. We used both the compound specific 14C and 13C signal of the PLFA to quantify carbon uptake from black slates and the glucose of the culture medium, respectively. The total carbon loss in these columns exceeded the amount of added carbon by approximately 60%, indicating that black slate carbon has been used. PLFA associated with Gram-positive bacteria dominated the indigenous community and took up 22% of carbon from black slate carbon, whereas PLFA of Gram-negative bacteria used only 8% of carbon from the slates. PLFA of Gram-negative bacteria and fungi were both mostly activated by the glucose addition. The added Schizophyllum did not establish well in the columns and was overgrown by the indigenous microbial community. Our results suggest that especially Gram-positive bacteria are able to live on and degrade black slate material. They also benefit from easy degradable carbon from the nutrient broth. In

  1. A holographic model for black hole complementarity

    CERN Document Server

    Lowe, David A

    2016-01-01

    In the version of black hole complementarity advocated by the authors, interior infalling degrees of freedom evolve according to the usual semiclassical effective field theory, generating the black hole interior via propagation along geodesics. Meanwhile the exterior degrees of freedom evolve according to an exact description of holographic origin. The infalling degrees of freedom have a complementary description in terms of outgoing Hawking radiation and must eventually decohere with respect to the exterior Hamiltonian, leading to apparent violations of quantum mechanics for an infaller. Trace distance is used to quantify the difference between these complementary time evolutions, and to define the decoherence time and the scrambling time. In a particular model for the holographic theory which exhibits fast scrambling, we show these timescales coincide. Moreover we propose a dictionary between the holographic theory and the bulk description where mean field evolution corresponds to the evolution with respect...

  2. Retrieval of Black Carbon Absorption from Proposed Satellite Measurements Over the Ocean Glint

    Science.gov (United States)

    Kaufman, Y. J.; Matins, J. V.; Remer, L. A.; Schoeberl, M. R.; Yamasoe, M. A.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Haze and air pollution includes many chemicals that together form small particles suspended in the air called aerosols. One of the main ingredients found to affect climate and human health is Black Carbon. Black particles emitted from engines that do not burn the fuel completely, e.g. old trucks. Black carbon absorption of sunlight emerges as one of the key components of man-made forcing of climate. However, global characterization of black carbon emissions, distribution and pathways in which it can affect the amount of solar radiation absorbed by the atmosphere is very uncertain. A new method is proposed to measure sunlight absorption by fine aerosol particles containing black carbon over the ocean glint from a satellite mission designed for this purpose. The satellite will scan the same spot over the ocean in the glint plane and a plane 40 degrees off-glint a minute apart, collecting measurements of the reflected light across the solar spectrum. First the dark ocean off the glint is used to derive aerosol properties. Then the black carbon absorption is derived prop the attenuation of the bright glint by the aerosol layer. Such measurements if realized in a proposed future mission - COBRA are expected to produce global monthly climatology of black carbon absorption with high accuracy (110 to 15%) that can show their effect on climate.

  3. Black carbon, a 'hidden' player in the global C cycle

    Science.gov (United States)

    Santín, C.; Doerr, S. H.

    2012-04-01

    During the 2011 alone more than 600 scientific papers about black carbon (BC) were published, half of them dealing with soils (ISI Web of Knowledge, accessed 15/01/2012). If the search is extended to the other terms by which BC is commonly named (i.e. biochar, charcoal, pyrogenic C or soot), the number of 2011 publications increases to >2400, 20% of them also related to soils. These figures confirm BC as a well-known feature in the scientific literature and, thus, in our research community. In fact, there is a wide variety of research topics where BC is currently studied: from its potential as long-term C reservoir in soils (man-made biochar), to its effects on the Earth's radiation balance (soot-BC), including its value as indicator in paleoenvironmental studies (charcoal) or, even surprisingly, its use in suicide attempts. BC is thus relevant to many aspects of our environment, making it a very far-reaching, but also very complex topic. When focusing 'only' on the role of BC in the global C cycle, numerous questions arise. For example: (i) how much BC is produced by different sources (i.e. vegetation fires, fossil fuel and biofuel combustion); (ii) what are the main BC forms and their respective proportions generated (i.e. proportion of atmospheric BC [BC-soot] and the solid residues [char-BC]); (iii) where does this BC go (i.e. main mobilization pathways and sinks); (iv) how long does BC stay in the different systems (i.e. residence times in soils, sediments, water and atmosphere); (v) which are the BC stocks and its main transformations within and between the different systems (i.e. BC preservation, alteration and mineralization); (vi) what is the interaction of BC with other elements and how does this influence BC half-life (i.e. physical protection, interaction with pollutants, priming effects in other organic materials)? These questions, and some suggestions about how to tackle these, will be discussed in this contribution. It will focus in particular on the

  4. Seasonality of Black Carbon over the Great Lakes

    Science.gov (United States)

    Spak, S. N.; Holloway, T.

    2006-12-01

    We employ a 2001 annual simulation with the Community Multiscale Air Quality Model to identify patterns in the mass concentration and aerosol fraction of elemental carbon in the Upper Midwestern United States. CMAQ 4.3 is run at 36 km resolution using the 2001 EPA Clean Air Interstate Rule emissions inventory, MM5 meteorology, and boundary conditions from the MOZART global atmospheric chemistry model. Results are compared to daily-average surface observations from the IMPROVE and EPA Speciation Trends networks. Effects of CMAQ model configuration (plume-in-grid dispersion, advection scheme, sectional PM) are compared, identifying common findings and model-dependent features.

  5. A conservation model for black rhino

    Directory of Open Access Journals (Sweden)

    H.C. Hearne

    2003-12-01

    Full Text Available Over the past thirty years the black rhinoceros (Diceros bicornis population in Africa has declined from about 65 000 to 3 500. In contrast the South African and Namibian population has increased four-fold to 1 000 over the same period. The recently developed national conservation strategy for black rhino has as its main goal a further four-fold increase in the current population in as short a period as possible. To achieve this, the growth rate of the population as a whole will have to be maximised. This involves removing animals from areas where the population is approaching the ecological carrying capacity and establishing new viable populations in other suitable reserves. A model incorporating what is known about the population biology of black rhino, was developed to give guidance to managers on the most appropirate harvesting strategy to adopt for their populations; in particular, to determine the rate of removals and the age and sex of individuals to be removed to attain the conservation goal as soon as possible.

  6. Micromorphological evidence of black carbon in colluvial soils from NW Spain

    NARCIS (Netherlands)

    Kaal, J.; van Mourik, J.M.

    2008-01-01

    Biomass burning produces a residue called black carbon (BC). Black C is generally considered to be highly resistant against biodegradation and has a potential role in the global C cycle, but is difficult to identify and quantify when subjected to prolonged degradation in terrestrial sediments. The c

  7. Characterization of Black and Brown Carbon Concentrations and Sources during winter in Beijing

    Science.gov (United States)

    Yan, Caiqing; Liu, Yue; Hansen, Anthony D. A.; Močnik, Griša; Zheng, Mei

    2017-04-01

    Carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), play important roles in air quality, human health, and climate change. A better understanding of sources of light-absorbing carbonaceous aerosol (including black carbon and brown carbon) is particular critical for formulating emission-based control strategies and reducing uncertainties in current aerosol radiative forcing estimates. Beijing, the capital of China, has experienced serious air pollution problems and high concentrations of carbonaceous aerosols in recent years, especially during heating seasons. During November and December of 2016, several severe haze episodes occurred in Beijing, with hourly average PM2.5 mass concentration up to 400 μg/m3. In this study, concentration levels and sources of black carbon and brown carbon were investigated based on 7-wavelength Aethalometer (AE-33) with combination of other PM2.5 chemical composition information. Contributions of traffic and non-traffic emissions (e.g., coal combustion, biomass burning) were apportioned, and brown carbon was separated from black carbon. Our preliminary results showed that (1) Concentrations of BC were around 5.3±4.2 μg/m3 during the study period, with distinct diurnal variations during haze and non-haze days. (2) Traffic emissions contributed to about 37±17% of total BC, and exhibited higher contributions during non-haze days compared to haze days. (3) Coal combustion was a major source of black carbon and brown carbon in Beijing, which was more significant compared to biomass burning. Sources and the relative contributions to black carbon and brown carbon during haze and non-haze days will be further discussed.

  8. Characterization of PZT/PVC Composites Added with Carbon Black

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaofang; XIONG Chuanxi; SUN Huajun; DONG Lijie; LI Rui; LIU Yang

    2005-01-01

    A new three-phase PZT/ C/ PVC composite comprising PZT (50vol%), nanocrystalline PVC (50 vol% ) and a small volume fraction f of carbon black (C) was prepared by the hot-pressing technique. The dielectric property of the composite as a function of the frequency and the dielectric and piezoelectric properties as a function of the volume fraction f of C were studied. The measured dielectric property demonstrates that a percolation transition occurs in the three-phase composites as in normal two-phase metal-insulator continuum media. The dielectric constant varies slightly with f at f < 0.1 and increases rapidly when f is close to the percolation threshold at 1 kHz. The optimum properties were obtained for f = 0.5 before the percolation threshold in the PZT/ C/ PVC (50/f/(50 - f) vol% ) composite with its d33 (20 pC/N) being 50% higher than that of the PZT/ PVC (50/50vol% ), and its g33(47.23 × 10-3 Vm/N) and Kp (0.25) much higher than the earlier reported values.XRD patterns and P-E hysteresis loops were used to interpret the experimental results.

  9. Improved piezoelectricity of PVDF-HFP/carbon black composite films

    Science.gov (United States)

    Wu, Liangke; Yuan, Weifeng; Hu, Ning; Wang, Zhongchang; Chen, Chunlin; Qiu, Jianhui; Ying, Ji; Li, Yuan

    2014-04-01

    We report a substantial improvement of piezoelectricity for poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) copolymer films by introducing carbon black (CB) into the PVDF-HFP to form PVDF-HFP/CB composite films. The optimized output voltage of the composite film at an optimal CB content of 0.5 wt% is found to be 204% of the pristine PVDF-HFP film. Its harvested electrical power density is 464% and 561% of the pristine PVDF-HFP film by using ac and dc circuits, respectively. Through Fourier transform infrared spectroscopy analysis, differential scanning calorimetry analysis, and polarized optical microscopy observations, we clarify the enhancement mechanism of piezoelectricity for the PVDF-HFP/CB composite films. We find that the added CB acts as nucleating agent during the initial formation of crystals, but imposes an insignificant effect on the α-β phase transformation during stretching. We also demonstrate that the addition of optimal CB reduces crystal size yet increases the number of crystals in the composite films. This is beneficial for the formation of elongated, oriented and fibrillar crystalline morphology during stretching and consequently results in a highly efficient poling process. The addition of overdosed CB leads to the formation of undersized crystals, lowered crystallinity, and hence reduced piezoelectric performance of the PVDF-HFP/CB composite films.

  10. Field Measurements of Black Carbon Yields from Gas Flaring.

    Science.gov (United States)

    Conrad, Bradley M; Johnson, Matthew R

    2017-02-07

    Black carbon (BC) emissions from gas flaring in the oil and gas industry are postulated to have critical impacts on climate and public health, but actual emission rates remain poorly characterized. This paper presents in situ field measurements of BC emission rates and flare gas volume-specific BC yields for a diverse range of flares. Measurements were performed during a series of field campaigns in Mexico and Ecuador using the sky-LOSA optical measurement technique, in concert with comprehensive Monte Carlo-based uncertainty analyses. Parallel on-site measurements of flare gas flow rate and composition were successfully performed at a subset of locations enabling direct measurements of fuel-specific BC yields from flares under field conditions. Quantified BC emission rates from individual flares spanned more than 4 orders of magnitude (up to 53.7 g/s). In addition, emissions during one notable ∼24-h flaring event (during which the plume transmissivity dropped to zero) would have been even larger than this maximum rate, which was measured as this event was ending. This highlights the likely importance of superemitters to global emission inventories. Flare gas volume-specific BC yields were shown to be strongly correlated with flare gas heating value. A newly derived correlation fitting current field data and previous lab data suggests that, in the context of recent studies investigating transport of flare-generated BC in the Arctic and globally, impacts of flaring in the energy industry may in fact be underestimated.

  11. Black Carbon Trends over Several Decades at Multiple Locations

    Science.gov (United States)

    Preble, C. V.; Hadley, O. L.; Bond, T. C.; Kirchstetter, T.

    2012-12-01

    Archived air quality data in the U.S. and Europe can be used to reconstruct past trends in black carbon (BC), an indicator of fossil fuel combustion and biomass burning. Here, we consider coefficient of haze (COH) data that was extensively measured in California, New Jersey, and other North American locations from the mid-1960s to the turn of the century. We reinstated COH monitors alongside aethalometers in Vallejo and San Jose, California, and after two years of air monitoring determined that COH is proportional to and, thus, can be used to infer past concentrations of BC. Analyzing COH data sets, we found that BC concentrations markedly decreased from 1965 to 2000 in both California and New Jersey. The opposing trend of increasing energy consumption over the same period indicates successful regulatory control of sources and a shift from dirtier to cleaner fuels. As air quality improved over four decades, a seasonal trend of maximum BC concentrations in winter persisted in California but, somewhat surprisingly, disappeared in New Jersey. A strong weekly cycle of lowest BC concentrations on weekends was evident in California and New Jersey, suggesting that diesel traffic, which exhibits a similar weekly cycle, has been a major source of BC in both states. Our extended analysis will include BC trends in other regions of North America and Europe and will be applied to understand BC radiative forcing in California and deposition of pollutants in the Arctic.

  12. Characteristics and source of black carbon aerosol over Taklimakan Desert

    Institute of Scientific and Technical Information of China (English)

    FU; S.Joshua

    2010-01-01

    Black carbon(BC) and PM10 in the center of the Taklimakan Desert were online monitored in the whole year of 2007.In addi-tion,TSP samples were also synchronously daily collected by medium-volume samplers with Whatman41 filters in the spring of 2007.BC in the dust aerosol was up to 1.14%of the total mass of PM10.A remarkable seasonal variation of BC in the aerosol was observed in the order of winter>spring>autumn>summer.The peak value of BC appeared at midnight while the lowest one in the evening each day,which was just the reverse of that in the urban area.The contribution of BC to the total mass of PM10 on non-dust storm days was~11 times of that in dust storm.Through back trajectory and principal component analysis,it was found that BC in the dust aerosol over Taklimakan Desert might be attributed to the emission from the anthropogenic activities,including domestic heating,cooking,combustion of oil and natural gas,and the medium-range transport from those oases located in the margins of the desert.The total BC aerosol from the Taklimakan Desert to be transported to the eastward downstream was estimated to be 6.3×104 ton yr-1.

  13. Preparation and characterization of dopamine-decorated hydrophilic carbon black

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Lijun; Lu Yonglai [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Yiqing [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China); Zhang Liqun [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Wencai, E-mail: wangw@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China)

    2012-05-01

    Inspired by the bio-adhesive proteins secreted by mussels for attachment to almost all wet substrates, a facile method involving oxidative polymerization of dopamine was proposed to prepare highly hydrophilic carbon black (CB) particles. A self-assembled polydopamine (PDA) ad-layer was formed via the oxidative polymerization of dopamine on the surface of CB simply by dipping the CB into an alkaline dopamine solution and mildly stirring at room temperature. The process is simple, controllable, and environment-friendly. The surface composition and structure of the CB were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The surface morphology of the CB was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the PDA ad-layer was successfully deposited on the CB surfaces. The PDA-functionalized CB (CB-PDA) gave a stable colloidal dispersion in water. Contact angle measurement results indicated that the hydrophilicity of CB was significantly improved after dopamine modification. TGA results confirmed that the modified CB maintained good heat resistance. The method provided a facile route to prepare hydrophilic CB having terminal hydroxyl groups.

  14. Atmospheric deposition of organic and black carbon to the global oceans

    Science.gov (United States)

    Jurado, Elena; Dachs, Jordi; Duarte, Carlos M.; Simó, Rafel

    Atmospheric deposition of total organic carbon (OC) and black carbon (BC) is lacking or not fully accounted in most current models of the global carbon cycling, specially those fluxes related to gas phase OC. Here, we develop and apply a methodology to estimate wet and dry deposition of total OC to the oceans, based on monthly satellite measurements of aerosol size distributions, wind speed, etc., and estimates of deposition for aerosols and organic compounds. The parameterization of dry deposition velocities account for the dependence of turbulent transport with aerosol diameter, wind speed and the formation of marine aerosol, etc. Gravitational settling is estimated as a function of wet particle diameter, thus including hygroscopic growth due to ambient humidity. Global dry deposition of aerosol OC is estimated to be 11 Tg C y -1 and wet deposition of particle and gaseous OC are estimated as 47 and 187 Tg C y -1, respectively. Due to their pulsing variability, wet deposition fluxes can be important locally and as a temporal source of OC to surface waters. Dry and wet deposition of black carbon to the global ocean are estimated to be 2 and 10 Tg C yr -1, respectively, with higher fluxes in the northern hemisphere and for inter-tropical regions. Finally, considerations on the potential magnitude of the hitherto neglected gross air-sea diffusive exchange fluxes of OC are discussed. Even though the magnitude and direction of these cannot be constrained here, evidence of its important role is given. This study, thus, shows that there is an important spatial and temporal variability in atmosphere-ocean exchanges of OC and BC at different scales, and calls for the need for further research on the important role that these exchanges play in the global carbon cycle.

  15. Preservation of black carbon in the shelf sediments of the East China Sea

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Concentrations and carbon isotopic (14C, 13C) compositions of black carbon (BC) were measured for three sediment cores collected from the Changjiang River estuary and the shelf of the East China Sea. BC concentrations ranged from 0.02 to 0.14 mg/g (dry weight), and accounted for 5% to 26% of the sedimentary total organic carbon (TOC) pool. Among the three sediment cores collected at each site, sediment from the Changjiang River estuary had relatively high BC contents compared with the sediments from the East China Sea shelf, suggesting that the Changjiang River discharge played an important role in the delivery of BC to the coastal region. Radiocarbon measurements indicate that the ages of BC are in the range of 6910 to 12250 years old B.P. (before present), that is in general, 3700 to 9000 years older than the 14C ages of TOC in the sediments. These variable radiocarbon ages suggest that the BC preserved in the sediments was derived from the products of both biomass fire and fossil fuel combustion, as well as from ancient rock weathering. Based on an isotopic mass balance model, we calculated that fossil fuel combustion contributed most (60%―80%) of the BC preserved in these sediments and varied with depth and locations. The deposition and burial of this "slow-cycling" BC in the sediments of the East China Sea shelf represent a significant pool of carbon sink and could greatly in-fluence carbon cycling in the region.

  16. Selection and Characterization of Carbon Black and Surfactants for Development of Small Scale Uranium Oxicarbide Kernels

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL

    2006-01-01

    This report supports the effort for development of small scale fabrication of UCO (a mixture of UO{sub 2} and UC{sub 2}) fuel kernels for the generation IV high temperature gas reactor program. In particular, it is focused on optimization of dispersion conditions of carbon black in the broths from which carbon-containing (UO{sub 2} {center_dot} H{sub 2}O + C) gel spheres are prepared by internal gelation. The broth results from mixing a hexamethylenetetramine (HMTA) and urea solution with an acid-deficient uranyl nitrate (ADUN) solution. Carbon black, which is previously added to one or other of the components, must stay dispersed during gelation. The report provides a detailed description of characterization efforts and results, aimed at identification and testing carbon black and surfactant combinations that would produce stable dispersions, with carbon particle sizes below 1 {micro}m, in aqueous HMTA/urea and ADUN solutions. A battery of characterization methods was used to identify the properties affecting the water dispersability of carbon blacks, such as surface area, aggregate morphology, volatile content, and, most importantly, surface chemistry. The report introduces the basic principles for each physical or chemical method of carbon black characterization, lists the results obtained, and underlines cross-correlations between methods. Particular attention is given to a newly developed method for characterization of surface chemical groups on carbons in terms of their acid-base properties (pK{sub a} spectra) based on potentiometric titration. Fourier-transform infrared (FTIR) spectroscopy was used to confirm the identity of surfactants, both ionic and non-ionic. In addition, background information on carbon black properties and the mechanism by which surfactants disperse carbon black in water is also provided. A list of main physical and chemical properties characterized, samples analyzed, and results obtained, as well as information on the desired trend or

  17. The Effectiveness of the Regulatory Regime for Black Carbon Mitigation in the Arctic

    Directory of Open Access Journals (Sweden)

    Daria Shapovalova

    2016-11-01

    Full Text Available In addition to being a hazardous air pollutant, Black Carbon is the second-largest contributor to Arctic warming. Its mitigation is being addressed at the international regulatory level by the Arctic Council and the Convention on Long-Range Transboundary Air Pollution (CLRTAP. Whilst the Convention and its protocols are binding documents, the Black Carbon regulation under their framework appears to have ‘soft law’ characteristics. At the same time, the voluntary Black Carbon and Methane Framework, adopted by the Arctic Council, demonstrates positive compliance and follow-up dynamics compared to earlier norm-creating attempts. This paper argues that the nature of the norm (binding or non-binding is not the decisive factor regarding effective implementation in the Arctic region. Current efforts to mitigate Black Carbon by means of a non-binding Arctic Council Black Carbon and Methane Framework represent an improvement in the Council's normative function and may have more effect on the behaviour of Arctic States than relevant provisions under the Gothenburg Protocol to the CLRTAP. To support this argument, the first section presents an overview of the Arctic Council as an actor in Arctic policy-making. It then provides an assessment of current efforts to combat Black Carbon carried out by the Arctic Council and the CLRTAP.

  18. Challenges for Reducing Emissions of Black Carbon from the Transport Sector in Urban Areas

    Science.gov (United States)

    Zavala, M. A.; Molina, L. T.

    2013-05-01

    The transport sector is a large contributor of harmful gaseous and particulate emissions in many urban areas. Black carbon is a component of short-lived particulate matter emitted predominantly by freight, public transport, and heavy- duty trucks. Controlling the emissions of black carbon from the transport sector is important for mitigating its impacts on climate, ecosystems, and human health. However, reducing the emissions of black carbon from mobile sources may be a challenging task in many developing urban areas due to economic, social, and technical constrains. Several emissions control technologies offer a proven approach for reducing emissions of black carbon from diesel-powered mobile sources, but the accurate quantification of associated emissions benefits in developing urban areas is not well documented. We describe recent advances for the estimation of black carbon emissions from the transport sector in real world driving conditions and present examples of the potential benefits of implementing various emission control technologies in Mexico. The results can help in the identification of key factors that hinder the implementation of control emissions for reducing emissions of black carbon elsewhere.

  19. The nature of carbon material in the black shale rock mass of Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, L.G.

    1981-01-01

    Carbon material is closely tied to ores of various origin lying in the carbon (black shale) rock masses of Kazakhastan. The nature of the carbon material in several gold fields is closely examined. Shungite, its paragenesis with ore materials and its role in the carbon and ore material processes, is described. The accumulation of shungite in zones determined to consist of ores, is looked at in terms of prospecting criteria.

  20. Quantification of black carbon mixing state from traffic: implications for aerosol optical properties

    Science.gov (United States)

    Willis, Megan D.; Healy, Robert M.; Riemer, Nicole; West, Matthew; Wang, Jon M.; Jeong, Cheol-Heon; Wenger, John C.; Evans, Greg J.; Abbatt, Jonathan P. D.; Lee, Alex K. Y.

    2016-04-01

    The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) in two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.

  1. Analyzing 20 years of Black Carbon measurements in Germany

    Science.gov (United States)

    Kutzner, R. D.; Quedenau, J.; Kuik, F.; von Schneidemesser, E.; Schmale, J.

    2016-12-01

    Black Carbon (BC) is an important short-lived climate-forcing pollutant contributing to global warming through absorption of sunlight. In addition, BC, as a component of particulate matter (PM) exerts adverse health effects. Anthropogenic emission sources of BC include residential heating, transport, and agricultural fires, and the dominant natural emission source is wildfires. Despite the adverse effects of BC, legislation that requires mandatory monitoring of BC concentrations does not currently exist in the European Union (EU). Instead, BC is only indirectly monitored as component of PM10 and PM2.5 (PM with a diameter smaller 10 µm and 2.5 µm, respectively). Before the introduction of mandatory PM10 and PM2.5 monitoring in the EU in 2005 and 2015, respectively, `black smoke' (BS), a surrogate for BC, was a required measurement in Germany from the early 1990s. The annual mean limit value was 14 µg/m3 from 1995 and 8 µg/m³ from 1998. In 2004, many measurements were stopped, with the repeal of the regulations. In most German federal states a limited number BC monitoring stations continued to operate. We present a synthesis of BC data from 213 stations across Germany covering the period between 1994 and 2014. Due to the lack of a standardized method and respective legislation, the data set is very heterogeneous relying on twelve different measurement methods including chemical, optical, and thermal-optical methods. Stations include, among others, urban background, traffic and rural. We highlight results from the year 2009, as it is the year with the largest measurement coverage based on the same measurement method, with 28 stations. Further, we calculated trends in BC concentrations for 13 stations with at least 10 years of data, for median concentrations, as well as 5th percentile (background) and 95th percentile (peak episodes). Preliminary results suggest that concentrations have generally declined, with a larger trend at traffic stations compared to urban

  2. Are emissions of black carbon from gasoline vehicles overestimated? Real-time, in situ measurement of black carbon emission factors.

    Science.gov (United States)

    Wang, Yang; Xing, Zhenyu; Zhao, Shuhui; Zheng, Mei; Mu, Chao; Du, Ke

    2016-03-15

    Accurately quantifying black carbon (BC) emission factors (EFs) is a prerequisite for estimation of BC emission inventory. BC EFs determined by measuring BC at the roadside or chasing a vehicle on-road may introduce large uncertainty for low emission vehicles. In this study, BC concentrations were measured inside the tailpipe of gasoline vehicles with different engine sizes under different driving modes to determine the respective EFs. BC EFs ranged from 0.005-7.14 mg/kg-fuel under the speeds of 20-70 km/h, 0.05-28.95 mg/kg-fuel under the accelerations of 0.5-1.5m/s(2). Although the water vapor in the sampling stream could result in an average of 12% negative bias, the BC EFs are significantly lower than the published results obtained with roadside or chasing vehicle measurement. It is suggested to conduct measurement at the tailpipe of gasoline vehicles instead of in the atmosphere behind the vehicles to reduce the uncertainty from fluctuation in ambient BC concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Impacts of black carbon and co-pollutant emissions from transportation sector in Mexico City

    Science.gov (United States)

    Zavala, Miguel; Almanza, Victor; Garcia, Agustin; Jazcilevich, Aron; Lei, Wenfang; Molina, Luisa

    2016-04-01

    Black carbon is one of the most important short-lived climate-forcing agents, which is harmful to human health and also contributes significantly to climate change. Transportation is one of the largest sources of black carbon emissions in many megacities and urban complexes, with diesel vehicles leading the way. Both on-road and off-road vehicles can emit substantial amounts of harmful BC-containing particulate matter (PM) and are also responsible for large emissions of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), and many other co-emitted volatile organic compounds (VOCs). Regionally, black carbon emissions contributions from mobile sources may vary widely depending on the technical characteristics of the vehicle fleet, the quality and chemical properties of the fuels consumed, and the degree of local development and economic activities that foster wider and more frequent or intensive use of vehicles. This presentation will review and assess the emissions of black carbon from the on-road and off-road transportation sector in the Mexico City Metropolitan Area. Viable mitigation strategies, including innovative technological alternatives to reduce black carbon and co-pollutants in diesel vehicles and their impacts on climate, human health and ecosystems will be described.

  4. Role of Black Carbon and Absorbing Organic Carbon Aerosols in Surface Dimming Trends

    Science.gov (United States)

    Feng, Y.; Ramanathan, V.; Kotamarthi, V. R.

    2010-12-01

    Solar radiation reaching at the Earth’s surface plays an essential role in driving both atmosphere hydrological and land/ocean biogeochemical processes. Measurements have shown significant decreases in surface solar radiation (dimming) in many regions since 1960s. At least half of the observed dimming could be linked to the direct radiative effect of anthropogenic aerosols, especially absorbing aerosols like black carbon (BC) due to their strong atmospheric absorption. However, previous model-data comparisons indicate that absorption by aerosols is commonly and significantly underestimated in current GCM simulations by several factors over regions. Using a global chemical transport model coupled with a radiative transfer model, we include a treatment for absorbing organic carbons (OC) from bio-fuel and open biomass burnings in optical calculations and estimate aerosol radiative forcings for two anthropogenic aerosol emission scenarios representative of 1975 and 2000. Assumptions about aerosol mixing and the OC absorption spectrum are examined by comparing simulated atmospheric heating against aircraft optical and radiation measurements. The calculated aerosol single scattering albedo distribution (0.93+/-0.044) is generally comparable to the AERONET data (0.93+/-0.030) for year 2001, with best agreements in Europe and N. America, while overestimated in E. Asia and underestimated in the S. American biomass burning areas. On a global scale, inclusion of absorbing OC enhances the absorption in the atmosphere by 11% for July. The estimated aerosol direct radiative forcing at TOA (-0.24 W/m2) is similar to the average value of the AeroCom models based on the same 2000 emissions, but significantly enhanced negatively at surface by about 53% (-1.56 W/m2) and the atmosphere absorption is increased by +61% (+1.32 W/m2). About 87% of the estimated atmosphere absorption and 42% of the surface dimming is contributed by BC. Between 1975 and 2000, the calculated all-sky flux

  5. Interaction between carboxyl-functionalized carbon black nanoparticles and porous media

    Science.gov (United States)

    Kim, Song-Bae; Kang, Jin-Kyu; Yi, In-Geol

    2015-04-01

    Carbon nanomaterials, such as carbon nanotubes, fullerene, and graphene, have received considerable attention due to their unique physical and chemical characteristics, leading to mass production and widespread application in industrial, commercial, and environmental fields. During their life cycle from production to disposal, however, carbon nanomaterials are inevitably released into water and soil environments, which have resulted in concern about their health and environmental impacts. Carbon black is a nano-sized amorphous carbon powder that typically contains 90-99% elemental carbon. It can be produced from incomplete combustion of hydrocarbons in petroleum and coal. Carbon black is widely used in chemical and industrial products or applications such as ink pigments, coating plastics, the rubber industry, and composite reinforcements. Even though carbon black is strongly hydrophobic and tends to aggregate in water, it can be dispersed in aqueous media through surface functionalization or surfactant use. The aim of this study was therefore to investigate the transport behavior of carboxyl-functionalized carbon black nanoparticles (CBNPs) in porous media. Column experiments were performed for potassium chloride (KCl), a conservative tracer, and CBNPs under saturated flow conditions. Column experiments was conducted in duplicate using quartz sand, iron oxide-coated sand (IOCS), and aluminum oxide-coated sand (AOCS) to examine the effect of metal (Fe, Al) oxide presence on the transport of CBNPs. Breakthrough curves (BTCs) of CBNPs and chloride were obtained by monitoring effluent, and then mass recovery was quantified from these curves. Additionally, interaction energy profiles for CBNP-porous media were calculated using DLVO theory for sphere-plate geometry. The BTCs of chloride had relative peak concentrations ranging from 0.895 to 0.990. Transport parameters (pore-water velocity v, hydrodynamic dispersion coefficient D) obtained by the model fit from the

  6. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    Science.gov (United States)

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  7. Radiative absorption enhancements due to the mixing state of atmospheric black carbon

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, Christopher D.; Onasch, Timothy B.; Massoli, Paola; Worsnop, Douglas R.; Bates, Timothy S.; Cross, Eben S.; Davidovits, Paul; Hakala, Jani; Hayden, Katherine; Jobson, Bertram Thomas; Kolesar, K. R.; Lack, D. A.; Lerner, Brian M.; Li, Shao-Meng; Mellon, Daniel; Nuaaman, Ibraheem; Olfert, Jason; Petaja, Tuukka; Quinn, P. K.; Song, Chen; Subramanian, R.; Williams, Eric; Zaveri, Rahul A.

    2012-08-30

    Atmospheric particulate black carbon (BC) leads to warming of the Earth's climate. Many models that include forcing by BC assume that non-BC aerosol species internally mixed with BC enhance BC absorption, often by a factor of {approx}2. However, such model estimates have yet to be clearly validated through atmospheric observations. Here, we report on direct measurements of the absorption enhancement (Eabs) of BC in the atmosphere around California and find that it is negligible at 532 nm and much smaller than predicted from theoretical calculations that are uniquely constrained by observations, suggesting that the warming by BC may be significantly overestimated (factor of 2) in many climate models. Additionally, non-BC particulate matter is found to contribute {approx}10% to the total absorption at 405 nm.

  8. Projection of SO2, NOx, NMVOC, particulate matter and black carbon emissions - 2015-2030

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Hjelgaard, Katja Hossy

    This report contains a description of models and background data for projection of SO2, NOX, NMVOC, PM2.5 and black carbon for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts...... of activity rates are used in the models for those sectors for which the forecasts are available, i.e. the latest official forecast from the Danish Energy Agency. The emission factors refer either to international guidelines or are country-specific and refer to Danish legislation, Danish research reports...... or calculations based on emission data from a considerable number of plants. The projection models are based on the same structure and method as the Danish emission inventories in order to ensure consistency....

  9. The sources of atmospheric black carbon at a European gateway to the Arctic

    Science.gov (United States)

    Winiger, P.; Andersson, A.; Eckhardt, S.; Stohl, A.; Gustafsson, Ö.

    2016-09-01

    Black carbon (BC) aerosols from incomplete combustion of biomass and fossil fuel contribute to Arctic climate warming. Models--seeking to advise mitigation policy--are challenged in reproducing observations of seasonally varying BC concentrations in the Arctic air. Here we compare year-round observations of BC and its δ13C/Δ14C-diagnosed sources in Arctic Scandinavia, with tailored simulations from an atmospheric transport model. The model predictions for this European gateway to the Arctic are greatly improved when the emission inventory of anthropogenic sources is amended by satellite-derived estimates of BC emissions from fires. Both BC concentrations (R2=0.89, PArctic, and a more credible scientific underpinning of policy efforts aimed at efficiently reducing BC emissions reaching the European Arctic.

  10. Cellphones as a Distributed Platform for Black Carbon Data Collection

    Science.gov (United States)

    Ramanathan, N.; Ramana, M.; Lukac, M. L.; Siva, P.; Ahmed, T.; Kar, A.; Rehman, I.; Ramanathan, V.

    2010-12-01

    Black carbon (BC), the visible component of soot that gives emissions such as diesel engine exhaust their dark color, has come to be recognized as a major contributor to global warming, and a frontline concern for climate change strategies (Ramanathan 2001, Jacobson 2010). We have developed a new low-cost instrument for gathering and measuring atmospheric BC concentrations that leverages cellphones to transmit data from an air filtration unit to a centralized database for analysis. Our new system relies on image processing techniques, as opposed to other more expensive optical methods, to interpret images of filters captured with a cellphone camera. As a result, the entire system costs less than $500 (and is orders of magnitude cheaper than an Aethalometer, the prevailing method for measuring atmospheric BC). We are working with three community groups in Los Angeles, and will recruit three groups in the San Francisco Bay Area, to enable 40 citizens to be actively engaged in monitoring BC across California. We are working with The Energy Resources Institute, an international NGO based in India, to deploy this instrument with 60 people in conjunction with Project Surya, which aims to deploy clean cookstoves and rigorously evaluate their impact on BC emissions. Field tests of this new instrument performed in California report an average error of 0.28 µg/m3 when compared with an Aethelometer. These excellent results hold the promise of making large-scale data collection of BC feasible and relatively easy to reproduce (Ramanathan et al., forthcoming). The use of cellphones for data collection permits monitoring of BC to occur on a greater, more comprehensive scale not previously possible, and serves as a means of instituting more precise, variation-sensitive evaluations of emissions. By storing the data in a publicly available repository, our system will provide real-time access to mass-scale BC measurements to researchers and the public. Through our pilot

  11. Correction to "Influence of Dust and Black Carbon on the Snow Albedo in the NASA Goddard Earth Observing System Version 5 Land Surface Model"

    Science.gov (United States)

    Yasunari, Teppei J.; Koster, Randal D.; Kau, K. M.; Aoki, Teruo; Sud, Yogesh C.; Yamazaki, Takeshi; Motoyoshi, Hiroki; Kokdama, Yuji

    2012-01-01

    The website information describing the forcing meteorological data used for the land surface model (LSM) simulation, which were observed at an Automated Meteorological Station CAWS) at the Sapporo District Meteorological Observatory maintained by the Japan Meteorological Agency (JMA), was missing from the text. The 1-hourly data were obtained from the website of Kisyoutoukeijouhou (Information for available JMA-observed meteorological data in the past) on the website of JMA (in Japanese) (available at: http://www.jma.go.jpijmaimenulreport.html). The measurement height information of 59.5 m for the anemometer at the Sapporo Observatory was also obtained from the website of JMA (in Japanese) (available at: http://www.jma.go.jp/jma/menu/report.html). In addition, the converted 10-m wind speed, based on the AWS/JMA data, was further converted to a 2-m wind speed prior to its use with the land model as a usual treatment of off-line Catchment simulation. Please ignore the ice absorption data on the website mentioned in paragraph [15] which was not used for our calculations (but the data on the website was mostly the same as the estimated ice absorption coefficients by the following method because they partially used the same data by Warren [1984]). We calculated the ice absorption coefficients with the method mentioned in the same paragraph, for which some of the refractive index data by Warren [1984] were used and then interpolated between wavelengths, and also mentioned in paragraph [20] for the visible (VIS) and near-infrared (NIR) ranges. The optical data we used were interpolated between wavelengths as necessary.

  12. Chemical and biological oxidative effects of carbon black nanoparticles.

    Science.gov (United States)

    Koike, Eiko; Kobayashi, Takahiro

    2006-11-01

    Several studies show that ultrafine particles have a larger surface area than coarse particles, thus causing a greater inflammatory response. In this study, we investigated chemical and biological oxidative effects of nanoparticles in vitro. Carbon black (CB) nanoparticles with mean aerodynamic diameters of 14, 56, and 95nm were examined. The innate oxidative capacity of the CB nanoparticles was measured by consumption of dithiothreitol (DTT) in cell-free system. The expression of heme oxygenase-1 (HO-1) in rat alveolar type II epithelial cell line (SV40T2) and alveolar macrophages (AM) exposed to CB nanoparticles was measured by ELISA. DTT consumption of 14nm CB was higher than that of other CB nanoparticles having the same particle weight. However, DTT consumption was directly proportional to the particle surface area. HO-1 protein in SV40T2 cells was significantly increased by the 14nm and 56nm CB, however, 95nm CB did not affect. HO-1 protein in AM was significantly increased by the 14, 56, and 95nm CB. The increase in HO-1 expression was diminished by N-acetyl-l-cysteine (NAC) treatment of each CB nanoparticles before exposure although the difference between the effects of NAC-treated and untreated 14nm CB did not achieve significant. In conclusion, CB nanoparticles have innate oxidative capacity that may be dependent on the surface area. CB nanoparticles can induce oxidative stress in alveolar epithelial cells and AM that is more prominent with smaller particles. The oxidative stress may, at least partially, be mediated by surface function of particles.

  13. Radiative absorption enhancement from coatings on black carbon aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xinjuan; Wang, Xinfeng; Yang, Lingxiao [Environmental Research Institute, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Chen, Bing, E-mail: bingchen@sdu.edu.cn [Environmental Research Institute, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Chen, Jianmin, E-mail: jmchen@sdu.edu.cn [Environmental Research Institute, School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Andersson, August; Gustafsson, Örjan [Department of Environmental Science and Analytical Chemistry (ACES) and the Bolin Centre for Climate Research, Stockholm University, SE-10691 Stockholm (Sweden)

    2016-05-01

    The radiative absorption enhancement of ambient black carbon (BC), by light-refractive coatings of atmospheric aerosols, constitutes a large uncertainty in estimates of climate forcing. The direct measurements of radiative absorption enhancement require the experimentally-removing the coating materials in ambient BC-containing aerosols, which remains a challenge. Here, the absorption enhancement of the BC core by non-absorbing aerosol coatings was quantified using a two-step removal of both inorganic and organic matter coatings of ambient aerosols. The mass absorption cross-section (MAC) of decoated/pure atmospheric BC aerosols of 4.4 ± 0.8 m{sup 2}g{sup −1} was enhanced to 9.6 ± 1.8 m{sup 2}g{sup −1} at 678-nm wavelength for ambiently-coated BC aerosols at a rural Northern China site. The enhancement of MAC (E{sub MAC}) rises from 1.4 ± 0.3 in fresh combustion emissions to ~ 3 for aged ambient China aerosols. The three-week high-intensity campaign observed an average E{sub MAC} of 2.25 ± 0.55, and sulfates were primary drivers of the enhanced BC absorption. - Highlights: • A method was developed to remove coatings surrounding BC in ambient aerosols. • The MAC of decoated BC of 4.4 was enhanced to 9.6 m{sup 2}g{sup −1} for ambient BC aerosols. • BC radiative forcing in the ambient atmosphere was enhanced by a factor of ~ 2. • BC absorption enhancement peaked in day time driven by secondary sulfate.

  14. Increased fire frequency optimization of black carbon mixing and storage

    Science.gov (United States)

    Pyle, Lacey; Masiello, Caroline; Clark, Kenneth

    2016-04-01

    Soil carbon makes up a substantial part of the global carbon budget and black carbon (BC - produced from incomplete combustion of biomass) can be significant fraction of soil carbon. Soil BC cycling is still poorly understood - very old BC is observed in soils, suggesting recalcitrance, yet in short term lab and field studies BC sometimes breaks down rapidly. Climate change is predicted to increase the frequency of fires, which will increase global production of BC. As up to 80% of BC produced in wildfires can remain at the fire location, increased fire frequency will cause significant perturbations to soil BC accumulation. This creates a challenge in estimating soil BC storage, in light of a changing climate and an increased likelihood of fire. While the chemical properties of BC are relatively well-studied, its physical properties are much less well understood, and may play crucial roles in its landscape residence time. One important property is density. When BC density is less than 1 g/cm3 (i.e. the density of water), it is highly mobile and can easily leave the landscape. This landscape mobility following rainfall may inflate estimates of its degradability, making it crucial to understand both the short- and long term density of BC particles. As BC pores fill with minerals, making particles denser, or become ingrown with root and hyphal anchors, BC is likely to become protected from erosion. Consequently, how quickly BC is mixed deeper into the soil column is likely a primary controller on BC accumulation. Additionally the post-fire recovery of soil litter layers caps BC belowground, protecting it from erosional forces and re-combustion in subsequent fires, but still allowing bioturbation deeper into the soil column. We have taken advantage of a fire chronosequence in the Pine Barrens of New Jersey to investigate how density of BC particles change over time, and how an increase in fire frequency affects soil BC storage and soil column movement. Our plots have

  15. Distribution and Sources of Black Carbon in the Arctic

    Science.gov (United States)

    Qi, Ling

    The Arctic is warming at twice the global rate over recent decades. To slow down this warming trend, there is growing interest in reducing the impact from short-lived climate forcers, such as black carbon (BC), because the benefits of mitigation are seen more quickly relative to CO2 reduction. To propose efficient mitigation policies, it is imperative to improve our understanding of BC distribution in the Arctic and to identify the sources. In this dissertation, we investigate the sensitivity of BC in the Arctic, including BC concentrations in snow (BCsnow) and BC concentrations in air (BCair), to emissions, dry deposition and wet scavenging using a global 3-D chemical transport model (CTM) GEOS-Chem. By including flaring emissions, estimating dry deposition velocity using resistance-in-series method, and including Wegener-Bergeron-Findeisen (WBF) in wet scavenging, simulated BCsnow in the eight Arctic sub-regions agree with the observations within a factor of two, and simulated BCair fall within the uncertainty range of observations. Specifically, we find that natural gas flaring emissions in Western Extreme North of Russia (WENR) strongly enhance BCsnow (by up to ?50%) and BCair (by 20-32%) during snow season in the so-called 'Arctic front', but has negligible impact on BC in the free troposphere. The updated dry deposition velocity over snow and ice is much larger than those used in most of global CTMs and agrees better with observation. The resulting BCsnow changes marginally because of the offsetting of higher dry and lower wet deposition fluxes. In contrast, surface BCair decreases strongly due to the faster dry deposition (by 27-68%). WBF occurs when the environmental vapor pressure is in between the saturation vapor pressure of ice crystals and water drops in mixed-phase clouds. As a result, water drops evaporate and releases BC particles in them back into the interstitial air. In most CTMs, WBF is either missing or represented by a uniform and low BC

  16. Contribution of regional transport to the black carbon aerosol during winter haze period in Beijing

    Science.gov (United States)

    Wang, Qiyuan; Huang, Ru-Jin; Cao, Junji; Tie, Xuexi; Shen, Zhenxing; Zhao, Shuyu; Han, Yongming; Li, Guohui; Li, Zhengqiang; Ni, Haiyan; Zhou, Yaqing; Wang, Meng; Chen, Yang; Su, Xiaoli

    2016-05-01

    The mass concentrations of atmospheric refractory black carbon (rBC), an important absorber of solar radiation, were continuously measured with a single particle soot photometer (SP2) during wintertime haze period to investigate the transport of pollution to Beijing. The average mass concentration of rBC was 6.1 ± 3.9 μg m-3 during hazy periods, which was 4.7 times higher than it during non-hazy periods. Cluster analysis showed that the air parcels arriving at Beijing mainly originated from the northwest, passed through the south and brought the most polluted air to Beijing. Concentration-weighted trajectory analyses indicated that the central North China Plain were the most likely source region for the rBC that impacted Beijing. Furthermore, the Weather Research and Forecasting-Black Carbon model showed that 71.4-82.0% of the rBC at Beijing was from regional transport during the high rBC episodes and that 47.9-56.8% of the rBC can be attributed to sources in the central North China Plain. These results suggest that regional transport from the central North China Plain, rather than local emissions, was a more important source for rBC pollution in Beijing.

  17. Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat

    Directory of Open Access Journals (Sweden)

    O. L. Hadley

    2010-04-01

    Full Text Available Modeling studies show that the darkening of snow and ice by black carbon (BC deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition on the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.

  18. Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat

    Directory of Open Access Journals (Sweden)

    O. L. Hadley

    2010-08-01

    Full Text Available Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.

  19. Sensitivity of Stratospheric Geoengineering with Black Carbon to Aerosol Size and Altitude of Injection

    Science.gov (United States)

    Kravitz, Ben; Robock, Alan; Shindell, Drew T.; Miller, Mark A.

    2012-01-01

    Simulations of stratospheric geoengineering with black carbon (BC) aerosols using a general circulation model with fixed sea surface temperatures show that the climate effects strongly depend on aerosol size and altitude of injection. 1 Tg BC/a injected into the lower stratosphere would cause little surface cooling for large radii but a large amount of surface cooling for small radii and stratospheric warming of over 60 C. With the exception of small particles, increasing the altitude of injection increases surface cooling and stratospheric warming. Stratospheric warming causes global ozone loss by up to 50% in the small radius case. The Antarctic shows less ozone loss due to reduction of polar stratospheric clouds, but strong circumpolar winds would enhance the Arctic ozone hole. Using diesel fuel to produce the aerosols is likely prohibitively expensive and infeasible. Although studying an absorbing aerosol is a useful counterpart to previous studies involving sulfate aerosols, black carbon geoengineering likely carries too many risks to make it a viable option for deployment.

  20. Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.; Cliff, S.S.; Ramanathan, V.

    2010-01-12

    Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.

  1. Fluvial organic carbon losses from a Bornean black water river

    OpenAIRE

    2010-01-01

    The transport of carbon from terrestrial ecosystems such as peatlands into rivers and out to the oceans plays an important role in the carbon cycle because it provides a link between the terrestrial and marine carbon cycles. Concentrations of dissolved organic carbon (DOC) and particulate organic carbon (POC) were analysed from the source to the mouth of the River Sebangau in Central Kalimantan, Indonesia during the dry and wet seasons in 2008/2009 and an annual total organic carbon (TOC) flu...

  2. A holographic model for black hole complementarity

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, David A. [Physics Department, Brown University,Providence, RI 02912 (United States); Thorlacius, Larus [University of Iceland, Science Institute,Dunhaga 3, IS-107, Reykjavik (Iceland); The Oskar Klein Centre for Cosmoparticle Physics,Department of Physics, Stockholm University,AlbaNova University Centre, 10691 Stockholm (Sweden)

    2016-12-07

    We explore a version of black hole complementarity, where an approximate semiclassical effective field theory for interior infalling degrees of freedom emerges holographically from an exact evolution of exterior degrees of freedom. The infalling degrees of freedom have a complementary description in terms of outgoing Hawking radiation and must eventually decohere with respect to the exterior Hamiltonian, leading to a breakdown of the semiclassical description for an infaller. Trace distance is used to quantify the difference between the complementary time evolutions, and to define a decoherence time. We propose a dictionary where the evolution with respect to the bulk effective Hamiltonian corresponds to mean field evolution in the holographic theory. In a particular model for the holographic theory, which exhibits fast scrambling, the decoherence time coincides with the scrambling time. The results support the hypothesis that decoherence of the infalling holographic state and disruptive bulk effects near the curvature singularity are complementary descriptions of the same physics, which is an important step toward resolving the black hole information paradox.

  3. A holographic model for black hole complementarity

    Science.gov (United States)

    Lowe, David A.; Thorlacius, Larus

    2016-12-01

    We explore a version of black hole complementarity, where an approximate semiclassical effective field theory for interior infalling degrees of freedom emerges holo-graphically from an exact evolution of exterior degrees of freedom. The infalling degrees of freedom have a complementary description in terms of outgoing Hawking radiation and must eventually decohere with respect to the exterior Hamiltonian, leading to a breakdown of the semiclassical description for an infaller. Trace distance is used to quantify the difference between the complementary time evolutions, and to define a decoherence time. We propose a dictionary where the evolution with respect to the bulk effective Hamiltonian corresponds to mean field evolution in the holographic theory. In a particular model for the holographic theory, which exhibits fast scrambling, the decoherence time coincides with the scrambling time. The results support the hypothesis that decoherence of the infalling holographic state and disruptive bulk effects near the curvature singularity are comple-mentary descriptions of the same physics, which is an important step toward resolving the black hole information paradox.

  4. Dynamac molecular structure of plant biomass-derived black carbon (Biochar)

    Science.gov (United States)

    Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration (“biochar”). Here we present a molecular-level assessment o...

  5. Robust Means for Estimating Black Carbon-Water Sorption Coefficients of Organic Contaminants in Sediments

    Science.gov (United States)

    2015-07-01

    include "black carbons" (BCs) such as soots and biomass chars, and that 4 these special components of the organic carbon content must be distinguished... disadvantages of the traditional batch method: difficult soot-water separation, long equilibrium time, high sorbents consumption, and uncertainty

  6. Quantification of extraneous carbon during compound specific radiocarbon analysis of black carbon.

    Science.gov (United States)

    Ziolkowski, Lori A; Druffel, Ellen R M

    2009-12-15

    Radiocarbon ((14)C) is a radioactive isotope that is useful for determining the age and cycling of carbon-based materials in the Earth system. Compound specific radiocarbon analysis (CSRA) provides powerful insight into the turnover of individual components that make up the carbon cycle. Extraneous or nonspecific background carbon (C(ex)) is added during sample processing and subsequent isolation of CSRA samples. Here, we evaluate the quantity and radiocarbon signature of C(ex) added from two sources: preparative capillary gas chromatography (PCGC, C(PCGC)) and chemical preparation of CSRA of black carbon samples (C(chemistry)). We evaluated the blank directly using process blanks and indirectly by quantifying the difference in the isotopic composition between processed and unprocessed samples for a range of sample sizes. The direct and indirect assessment of C(chemistry+PCGC) agree, both in magnitude and radiocarbon value (1.1 +/- 0.5 microg of C, fraction modern = 0.2). Half of the C(ex) is introduced before PCGC isolation, likely from coeluting compounds in solvents used in the extraction method. The magnitude of propagated uncertainties of CSRA samples are a function of sample size and collection duration. Small samples collected for a brief amount of time have a smaller propagated (14)C uncertainty than larger samples collected for a longer period of time. CSRA users are cautioned to consider the magnitude of uncertainty they require for their system of interest, to frequently evaluate the magnitude of C(ex) added during sampling processing, and to avoid isolating samples < or = 5 microg of carbon.

  7. Sedimentary records of black carbon in the sea area of the Nansha Islands since the last glaciation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Core 17962 taken from the sea area of the Nansha Islands recorded a sedimentary history of more than 30 000 years. The black carbon data from the core, which can inform us of the history of vegetation fires, show that during the last glaciation, especially during the last glacial maximum at about 18 kaBP, the fluctuation of the concentration and accumulation rate of the black carbon was relatively great, whereas it was small during the Holocene. The isotope composition of the black carbon indicates that the precursors of black carbon were mainly grasses from the last glaciation to the Holocene. The sub-alpine and alpine vegetation zones covered mainly with grass and bush on the lands around the southern South China Sea were probably the sources of black carbon. The altitudinal vegetation changes from the last glaciation to the Holocene gave rise to the changes of the sedimentary characteristics of black carbon.

  8. Black carbon from the Mississippi River: quantities, sources, and potential implications for the global carbon cycle.

    Science.gov (United States)

    Mitra, Siddhartha; Bianchi, Thomas S; McKee, Brent A; Sutula, Martha

    2002-06-01

    Black carbon (BC) may be a major component of riverine carbon exported to the ocean, but its flux from large rivers is unknown. Furthermore, the global distribution of BC between natural and anthropogenic sources remains uncertain. We have determined BC concentrations in suspended sediments of the Mississippi River, the 7th largest river in the world in terms of sediment and water discharge, during high flow and low flow in 1999. The 1999 annual flux of BC from the Mississippi River was 5 x 10(-4) petagrams (1 Pg = 10(15) g = 1 gigaton). We also applied a principal components analysis to particulate-phase high molecular weight polycyclic aromatic hydrocarbon isomer ratios in Mississippi River suspended sediments. In doing so, we determined that approximately 27% of the BC discharged from the Mississippi River in 1999 originated from fossil fuel combustion (coal and smelter-derived combustion), implicating fluvial BC as an important source of anthropogenic BC contamination into the ocean. Using our value for BC flux and the annual estimate for BC burial in ocean sediments, we calculate that, in 1999, the Mississippi River discharged approximately 5% of the BC buried annually in the ocean. These results have important implications, not only for the global carbon cycle but also for the fluvial discharge of particulate organic contaminants into the world's oceans.

  9. A Numerical Study on Electrical Percolation of Polymer-Matrix Composites with Hybrid Fillers of Carbon Nanotubes and Carbon Black

    Directory of Open Access Journals (Sweden)

    Yuli Chen

    2014-01-01

    Full Text Available The electrical percolation of polymer-matrix composites (PMCs containing hybrid fillers of carbon nanotubes (CNTs and carbon black (CB is estimated by studying the connection possibility of the fillers using Monte Carlo simulation. The 3D simulation model of CB-CNT hybrid filler is established, in which CNTs are modeled by slender capped cylinders and CB groups are modeled by hypothetical spheres with interspaces because CB particles are always agglomerated. The observation on the effects of CB and CNT volume fractions and dimensions on the electrical percolation threshold of hybrid filled composites is then carried out. It is found that the composite electrical percolation threshold can be reduced by increasing CNT aspect ratio, as well as increasing the diameter ratio of CB groups to CNTs. And adding CB into CNT composites can decrease the CNT volume needed to convert the composite conductivity, especially when the CNT volume fraction is close to the threshold of PMCs with only CNT filler. Different from previous linear assumption, the nonlinear relation between CB and CNT volume fractions at composite percolation threshold is revealed, which is consistent with the synergistic effect observed in experiments. Based on the nonlinear relation, the estimating equation for the electrical percolation threshold of the PMCs containing CB-CNT hybrid fillers is established.

  10. Polycyclic aromatic hydrocarbon (PAH) sorption process to the "black carbon" (BC) component in river sediments

    Science.gov (United States)

    Zhang, Jing; Séquaris, Jean-Marie; Narres, Hans-Dieter; Vereecken, Harry; Klumpp, Erwin

    2010-05-01

    The importance of BC for the long term sequestration of organic carbon is actually discussed for mitigating climate change. In this context, the role of BC as a filter or source of nutrients or toxic chemicals is questioned. The fate of polycyclic aromatic hydrocarbons (PAHs) is especially concerned. In this study, we have investigated the binding of PAH compounds, pyrene and phenanthrene, to Yangtze River sediments. For this purpose, the PAHs sorption to pristine and preheated sediments at 375°C was studied, which allow discriminating the contributions of amorphous organic carbon (AOC) and black carbon (BC) fractions to the PAH sorption extent. An analytical procedure for the determination of PAHs in the solution phase of the batch experiments has been developed with fluorescence spectroscopy. The PAHs sorption isotherms to pristine sediments were fitted by Freundlich and composite models as linear Langmuir model (LLM) and linear Polanyi-Dubinin-Manes model (LPDMM). The sequential application of composite models LLM and LPDMM to the sorption isotherms allows assessing the partition of PAHs into AOC and its nonlinear adsorption in the porous structure of BC. The modelling results indicate that the PAHs sorption to minor BC component of sediments (molecular sieving plays an important role in the competitive PAHs sorption in a multi-solute system. J. Zhang, Ph.D. Dissertation, RWTH Aachen, Germany, 2010 J. Zhang et al., Effects of organic carbon and clay fractions on the pyrene sorption and distribution in Yangtze River sediments (submitted). J. Zhang et al., Pyrene and phenanthrene sorptions to Yangtze River sediments and their components in single and binary solute systems (submitted)

  11. Continental Scale Antarctic deposition of sulphur and black carbon from anthropogenic and volcanic sources

    Directory of Open Access Journals (Sweden)

    H.-F. Graf

    2009-12-01

    Full Text Available While Antarctica is often described as a pristine environment, the potential threats from local pollution sources including tourist ships and emissions associated with scientific activities have recently been raised. However, to date there has been no systematic attempt to model the impacts of such pollutants at the continental scale. Indeed, until very recently there was not even a sulphur emission budget available for Antarctica. Here we present the first comprehensive study of atmospheric pollution in Antarctica using a limited area chemistry climate model, and a monthly emissions inventory for sulphur from maintenance of research stations, ground and air traffic, shipping and the active volcano Mt. Erebus. We find that ship emissions, both sulphurous and black carbon, dominate anthropogenic pollution near the ground. These are likely to rise considerably if recent trends in tourism continue.

  12. Continental scale Antarctic deposition of sulphur and black carbon from anthropogenic and volcanic sources

    Directory of Open Access Journals (Sweden)

    H.-F. Graf

    2010-03-01

    Full Text Available While Antarctica is often described as a pristine environment, there is an increasing awareness of the potential threats from local pollution sources including tourist ships and emissions associated with scientific activities. However, to date there has been no systematic attempt to model the impacts of such pollutants at the continental scale. Indeed, until very recently there was not even a sulphur emission budget available for Antarctica. Here we present the first comprehensive study of atmospheric pollution in Antarctica using a limited area chemistry climate model, and a monthly emissions inventory for sulphur from maintenance of research stations, ground and air traffic, shipping and the active Erebus volcano. We find that ship emissions, both sulphurous and black carbon, dominate anthropogenic pollution near the ground. Their prevalence is likely to rise dramatically if recent trends in tourism continue.

  13. Thermal Oxidation of Tail Gases from the Production of Oil-furnace Carbon Black

    Directory of Open Access Journals (Sweden)

    Bosak, Z.

    2009-01-01

    Full Text Available This paper describes the production technology of oil-furnace carbon black, as well as the selected solution for preventing the emissions of this process from contaminating the environment.The products of industrial oil-furnace carbon black production are different grades of carbon black and process tail gases. The qualitative composition of these tail gases during the production of oil-furnace carbon black are: carbon(IV oxide, carbon(II oxide, hydrogen, methane, hydrogen sulfide, nitrogen, oxygen, and water vapor.The quantitative composition and lower caloric value of process tail gases change depending on the type of feedstock used in the production, as well as the type of process. The lower caloric value of process tail gases is relatively small with values ranging between 1500 and 2300 kJ m–3.In the conventional production of oil-furnace carbon black, process tail gases purified from carbon black dust are freely released into the atmosphere untreated. In this manner, the process tail gases pollute the air in the town of Kutina, because their quantitative values are much higher than the prescribed emissions limits for hydrogen sulfide and carbon(II oxide. A logical solution for the prevention of such air pollution is combustion of the process tail gases, i. e. their thermal oxidation. For this purpose, a specially designed flare system has been developed. Consuming minimum amounts of natural gas needed for oxidation, the flare system is designed to combust low caloric process tail gases with 99 % efficiency. Thus, the toxic and flammable components of the tail gases (hydrogen sulfide, hydrogen, carbon(II oxide, methane and other trace hydrocarbons would be transformed into environmentally acceptable components (sulfur(IV oxide, water, carbon(IV oxide and nitrogen(IV oxide, which are in compliance with the emissions limit values prescribed by law.Proper operation of this flare system in the production of oil-furnace carbon black would solve

  14. Simulation of the Radiative Effect of Black Carbon Aerosols and the Regional Climate Responses over China

    Institute of Scientific and Technical Information of China (English)

    吴涧; 蒋维楣; 符淙斌; 苏炳凯; 刘红年; 汤剑平

    2004-01-01

    As part of the development work of the Chinese new regional climate model (RIEMS), the radiative process of black carbon (BC) aerosols has been introduced into the original radiative procedures of RIEMS,and the transport model of BC aerosols has also been established and combined with the RIEMS model.Using the new model system, the distribution of black carbon aerosols and their radiative effect over the China region are investigated. The influences of BC aerosole on the atmospheric radiative transfer and on the air temperature, land surface temperature, and total rainfall are analyzed. It is found that BC aerosols induce a positive radiative forcing at the top of the atmosphere (TOA), which is dominated by shortwave radiative forcing. The maximum radiative forcing occurs in North China in July and in South China in April. At the same time, negative radiative forcing is observed on the surface. Based on the radiative forcing comparison between clear sky and cloudy sky, it is found that cloud can enforce the TOA positive radiative forcing and decrease the negative surface radiative forcing. The responses of the climate system in July to the radiative forcing due to BC aerosols are the decrease in the air temperature in the middle and lower reaches of the Changjiang River and Huaihe area and most areas of South China, and the weak increase or decrease in air temperature over North China. The total rainfall in the middle and lower reaches of the Changjiang River area is increased, but it decreased in North China in July.

  15. Aerosol light absorption, black carbon, and elemental carbon at the Fresno Supersite, California

    Science.gov (United States)

    Chow, Judith C.; Watson, John G.; Doraiswamy, Prakash; Chen, Lung-Wen Antony; Sodeman, David A.; Lowenthal, Douglas H.; Park, Kihong; Arnott, W. Patrick; Motallebi, Nehzat

    2009-08-01

    Particle light absorption ( bap), black carbon (BC), and elemental carbon (EC) measurements at the Fresno Supersite during the summer of 2005 were compared to examine the equivalency of current techniques, evaluate filter-based bap correction methods, and determine the EC mass absorption efficiency (σ ap) and the spectral dependence of bap. The photoacoustic analyzer (PA) was used as a benchmark for in-situ bap. Most bap measurement techniques were well correlated ( r ≥ 0.95). Unadjusted Aethalometer (AE) and Particle Soot Absorption Photometer (PSAP) bap were up to seven times higher than PA bap at similar wavelengths because of absorption enhancement by backscattering and multiple scattering. Applying published algorithms to correct for these effects reduced the differences to 24 and 17% for the AE and PSAP, respectively, at 532 nm. The Multi-Angle Absorption Photometer (MAAP), which accounts for backscattering effects, overestimated bap relative to the PA by 51%. BC concentrations determined by the AE, MAAP, and Sunset Laboratory semi-continuous carbon analyzer were also highly correlated ( r ≥ 0.93) but differed by up to 57%. EC measured with the IMPROVE/STN thermal/optical protocols, and the French two-step thermal protocol agreed to within 29%. Absorption efficiencies determined from PA bap and EC measured with different analytical protocols averaged 7.9 ± 1.5, 5.4 ± 1.1, and 2.8 ± 0.6 m 2/g at 532, 670, and 1047 nm, respectively. The Angström exponent (α) determined from adjusted AE and PA bap ranged from 1.19 to 1.46. The largest values of α occurred during the afternoon hours when the organic fraction of total carbon was highest. Significant biases associated with filter-based measurements of bap, BC, and EC are method-specific. Correcting for these biases must take into account differences in aerosol concentration, composition, and sources.

  16. The effects of additional black carbon on the albedo of Arctic sea ice: variation with sea ice type and snow cover

    Directory of Open Access Journals (Sweden)

    A. A. Marks

    2013-07-01

    Full Text Available The response of the albedo of bare sea ice and snow-covered sea ice to the addition of black carbon is calculated. Visible light absorption and light-scattering cross-sections are derived for a typical first-year and multi-year sea ice with both "dry" and "wet" snow types. The cross-sections are derived using data from a 1970s field study that recorded both reflectivity and light penetration in Arctic sea ice and snow overlying sea ice. The variation of absorption cross-section over the visible wavelengths suggests black carbon is the dominating light-absorbing impurity. The response of first-year and multi-year sea ice albedo to increasing black carbon, from 1 to 1024 ng g−1, in a top 5 cm layer of a 155 cm-thick sea ice was calculated using a radiative-transfer model. The albedo of the first-year sea ice is more sensitive to additional loadings of black carbon than the multi-year sea ice. An addition of 8 ng g−1 of black carbon causes a decrease to 98.7% of the original albedo for first-year sea ice compared to a decrease to 99.7% for the albedo of multi-year sea ice, at a wavelength of 500 nm. The albedo of sea ice is surprisingly unresponsive to additional black carbon up to 100 ng g−1 . Snow layers on sea ice may mitigate the effects of black carbon in sea ice. Wet and dry snow layers of 0.5, 1, 2, 5 and 10 cm depth were added onto the sea ice surface. The albedo of the snow surface was calculated whilst the black carbon in the underlying sea ice was increased. A layer of snow 0.5 cm thick greatly diminishes the effect of black carbon in sea ice on the surface albedo. The albedo of a 2–5 cm snow layer (less than the e-folding depth of snow is still influenced by the underlying sea ice, but the effect of additional black carbon in the sea ice is masked.

  17. End of the "Little Ice Age" in the Alps not forced by industrial black carbon

    Science.gov (United States)

    Sigl, Michael; Osmont, Dimtri; Gabrieli, Jacopo; Barbante, Carlo; Schwikowski, Margit

    2016-04-01

    Light absorbing aerosols present in the atmosphere and cryosphere play an important role in the climate system. Their presence in ambient air and snow changes radiative properties of these media, thus contributing to increased atmospheric warming and snowmelt. High spatio-temporal variability of aerosol concentrations in these media and a shortage of long-term observations contribute to large uncertainties in properly assigning the climate effects of these aerosols through time. Glaciers in the European Alps began to retreat abruptly from their mid-19th century maximum, marking what appeared to be the end of the Little Ice Age. Radiative forcing by increasing deposition of industrial black carbon to snow has been suggested as the main driver of the abrupt glacier retreats in the Alps (Painter et al. 2012). Basis for this hypothesis were model simulations using ice-core measurements of elemental carbon at low temporal resolution from two ice cores in the Alps. Here we present sub-annually resolved, well replicated ice-core measurements of refractory black carbon (rBC; using a SP2 soot photometer), mineral dust (Fe, Ca), biomass burning (NH4, K) and distinctive industrial pollution tracers (Bi, Pb, SO4) from an ice core in the Alps covering the past 250 years. These reconstructions allow to precisely compare the timing of observed acceleration of glacier melt in the mid-19th century with that of the increase of soot deposition on ice-sheets caused by the industrialization of Western Europe. Our study suggests that at the time when European rBC emission rates started to significantly increase Alpine glaciers have already experienced more than 70% of their total 19th century length reduction. Industrial BC emissions can therefore not been considered as the primary forcing of the rapid deglaciation at the end of the Little Ice Age in the Alps. References: Painter, T. H., M. G. Flanner, G. Kaser, B. Marzeion, R. A. VanCuren, and W. Abdalati (2013), End of the Little Ice

  18. Adsorption removal of acid black 1 from aqueous solution using ordered mesoporous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xiaoming, E-mail: pengxiaoming70@126.com [School of Civil Engineering, Southeast University, Nanjing 210096 (China); Hu, Xijun [Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,China (China); Fu, Dafang, E-mail: fdf@seu.edu.cn [School of Civil Engineering, Southeast University, Nanjing 210096 (China); Lam, Frank L.Y. [Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,China (China)

    2014-03-01

    Highlights: • Ordered mesoporous carbon was prepared using template. • Ordered mesoporous carbon was introduced of N-containing group by Chemical vapor deposition method. • Modified CMK-3 have better adsorption capacity and efficiency than virgin CMK-3 to removal AB1 dye. - Abstract: A novel ordered mesoporous carbon CMK-3 and synthetic CMK-3 containing nitrogen functional groups by ammonia-treated were applied for acid black 1(AB1) dye adsorption. The ammonia-treated(chemical vapor deposition method) before and after CMK-3 were characterized by using a Micrometitics ASAP 2020 surface area analyzer (ASAP 2020), Fourier transform infrared spectrophotometer (FT–IR), X-ray Photoelectron Spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscope (SEM) and equilibrium studies. This result indicates that the prepared CMK-3 and modified CMK-3 were almost uniform, as rope-like domains and their uniform mesopore with diameter centered at 3.2 nm and 3.7 nm. The FIIR analysis depicted that the presence of a variety of new basic functional groups on the modified CMK-3 surface. Several effect variables of pH, dye concentration and temperature were studied. The pseudo second-order model showed the fitter well to agree with the kinetic data. The experimental data were analyzed by the Langmuir and Freundlich models, with the latter found to closely the isotherm model. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The results show that CMK-3 using ammonia gas modified by thermal treatment system is an effective method to improvement capacity as it shows the highest adsorption capacity of AB1, as compared to the unmodified CMK-3 and the bamboo-based carbon, respectively.

  19. Estimation of Black Carbon Emissions from Dry Dipterocarp Forest Fires in Thailand

    Directory of Open Access Journals (Sweden)

    Ubonwan Chaiyo

    2014-12-01

    Full Text Available This study focused on the estimation of black carbon emissions from dry dipterocarp forest fires in Thailand. Field experiments were set up at the natural forest, Mae Nam Phachi wildlife sanctuary, Ratchaburi Province, Thailand. The dead leaves were the main component consumed of the surface biomass with coverage higher than 90% in volume and mass. The dead leaves load was 342 ± 190 g∙m−2 and followed by a little mass load of twig, 100 g∙m−2. The chemical analysis of the dead leaves showed that the carbon content in the experimental biomass fuel was 45.81 ± 0.04%. From the field experiments, it was found that 88.38 ± 2.02% of the carbon input was converted to carbon released to the atmosphere, while less than 10% were left in the form of residues, and returned to soil. The quantity of dead leaves consumed to produce each gram of carbon released was 2.40 ± 0.02 gdry biomass burned. From the study, the emissions factor of carbon dioxide, carbon monoxide, particulate matter (PM2.5 and black carbon amounted 1329, 90, 26.19 and 2.83 g∙kg−1dry biomass burned, respectively. In Thailand, the amount of black carbon emissions from dry dipterocarp forest fires amounted 17.43 tonnes∙y−1.

  20. Effect of carbon-black treatment by radiation emulsion polymerization on temperature dependence of resistivity of carbon-black-filled polymer blends

    Energy Technology Data Exchange (ETDEWEB)

    Jia Shaojin [Key Lab of Insulation and Thermal of Aging of Shanghai, Department of Polymer Engineering and Science, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240 (China) and Department of Chemical Engineering, Shanghai University, Chengzhong Road 20, Shanghai 201800 (China)]. E-mail: jiashaojin2@yahoo.com.cn; Jiang Pingkai [Key Lab of Insulation and Thermal of Aging of Shanghai, Department of Polymer Engineering and Science, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240 (China); Zhang Zhicheng [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang Zhongguang [Key Lab of Insulation and Thermal of Aging of Shanghai, Department of Polymer Engineering and Science, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240 (China)

    2006-04-15

    High dispersibility and stability of carbon black particles in low-density-polyethylene (LDPE) matrix were obtained by radiation emulsion polymerization on carbon particles surface, and electrical resistivities of its simple were examined. First carbon particles treatment on radiation emulsion polymerization on surface were synthesized by the reaction with a polymer-emulsion systems containing reactive group in the molecular unit, carbon particles and emulsifier. Then, the carbon particles treatment on radiation emulsion polymerization on surface was dispersed into LDPE, and its composites were prepared for electrical measurements. The effect of radiation crosslinking of the composite on the Positive temperature coefficient (PTC) and negative temperature coefficient (NTC) phenomenon was investigated. The experimental results showed that PTC and NTC effects of the composites were obviously influenced by the irradiation dose. Various microstructure-exploring means were used to study the conductive composite, such as scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM)

  1. Effect of carbon-black treatment by radiation emulsion polymerization on temperature dependence of resistivity of carbon-black-filled polymer blends

    Science.gov (United States)

    Shaojin, Jia; Pingkai, Jiang; Zhicheng, Zhang; Zhongguang, Wang

    2006-04-01

    High dispersibility and stability of carbon black particles in low-density-polyethylene (LDPE) matrix were obtained by radiation emulsion polymerization on carbon particles surface, and electrical resistivities of its simple were examined. First carbon particles treatment on radiation emulsion polymerization on surface were synthesized by the reaction with a polymer-emulsion systems containing reactive group in the molecular unit, carbon particles and emulsifier. Then, the carbon particles treatment on radiation emulsion polymerization on surface was dispersed into LDPE, and its composites were prepared for electrical measurements. The effect of radiation crosslinking of the composite on the Positive temperature coefficient (PTC) and negative temperature coefficient (NTC) phenomenon was investigated. The experimental results showed that PTC and NTC effects of the composites were obviously influenced by the irradiation dose. Various microstructure-exploring means were used to study the conductive composite, such as scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM).

  2. Hairy black holes in the general Skyrme model

    CERN Document Server

    Adam, C; Shnir, Ya; Wereszczynski, A

    2016-01-01

    We study the existence of hairy black holes in the generalized Einstein-Skyrme model. It is proven that in the BPS model limit there are no hairy black hole solutions, although the model admits gravitating (and flat space) solitons. Furthermore, we find strong evidence that a necessary condition for the existence of black holes with Skyrmionic hair is the inclusion of the Skyrme term $\\mathcal{L}_4$. As an example, we show that there are no hairy black holes in the $\\mathcal{L}_2+\\mathcal{L}_6+\\mathcal{L}_0$ model and present a new kind of black hole solutions with compact Skyrmion hair in the $\\mathcal{L}_4+\\mathcal{L}_6+\\mathcal{L}_0$ model.

  3. Quantitative Analysis of Major Factors Affecting Black Carbon Transport and Concentrations in the Unique Atmospheric Structures of Urban Environment

    Science.gov (United States)

    Liang, Marissa Shuang

    combined contribution from both traffic and atmospheric circulation accounted for observed spatiotemporal variability in PM2.5 concentrations. Based on these experimental and quantitative analyses, a three-dimensional model is proposed for contaminant's transport in highly urbanized Cincinnati region. Furthermore this dissertation explored implications on roadside pollutant evaluation, and on the risk analysis of future fuel substitution using biodiesel. The Gaussian-type models are poor in determining the effective emission factor particularly under nocturnal thermal inversion for which the effective emission factor is a function of lapse rate in the morning. The Gaussian models are applicable in daytime after the breakdown of thermal inversion. Lastly, among three types of fuels examined, the proposed butanol-added biodiesel-diesel blend (D80B15Bu5) yielded a good compromise between black carbon and NOx emissions while maintaining proper combustion properties. It is also found that the emission contained less black carbon and had higher organic carbon (OC) and elemental (EC) ratio than tested petroleum diesel. As demonstrated in other parts of this study, the OC-enriched emission will likely affect the black carbon occurrence and PM concentrations in the urban environments. Overall, it is suggested that urban formation and biofuel usage define the environmental impacts of black carbon, and are the focus for climate change mitigation and adaptation.

  4. A global gas flaring black carbon emission rate dataset from 1994 to 2012

    Science.gov (United States)

    Huang, Kan; Fu, Joshua S.

    2016-11-01

    Global flaring of associated petroleum gas is a potential emission source of particulate matters (PM) and could be notable in some specific regions that are in urgent need of mitigation. PM emitted from gas flaring is mainly in the form of black carbon (BC), which is a strong short-lived climate forcer. However, BC from gas flaring has been neglected in most global/regional emission inventories and is rarely considered in climate modeling. Here we present a global gas flaring BC emission rate dataset for the period 1994-2012 in a machine-readable format. We develop a region-dependent gas flaring BC emission factor database based on the chemical compositions of associated petroleum gas at various oil fields. Gas flaring BC emission rates are estimated using this emission factor database and flaring volumes retrieved from satellite imagery. Evaluation using a chemical transport model suggests that consideration of gas flaring emissions can improve model performance. This dataset will benefit and inform a broad range of research topics, e.g., carbon budget, air quality/climate modeling, and environmental/human exposure.

  5. Adsorption removal of acid black 1 from aqueous solution using ordered mesoporous carbon

    Science.gov (United States)

    Peng, Xiaoming; Hu, Xijun; Fu, Dafang; Lam, Frank L. Y.

    2014-03-01

    A novel ordered mesoporous carbon CMK-3 and synthetic CMK-3 containing nitrogen functional groups by ammonia-treated were applied for acid black 1(AB1) dye adsorption. The ammonia-treated(chemical vapor deposition method) before and after CMK-3 were characterized by using a Micrometitics ASAP 2020 surface area analyzer (ASAP 2020), Fourier transform infrared spectrophotometer (FT-IR), X-ray Photoelectron Spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscope (SEM) and equilibrium studies. This result indicates that the prepared CMK-3 and modified CMK-3 were almost uniform, as rope-like domains and their uniform mesopore with diameter centered at 3.2 nm and 3.7 nm. The FIIR analysis depicted that the presence of a variety of new basic functional groups on the modified CMK-3 surface. Several effect variables of pH, dye concentration and temperature were studied. The pseudo second-order model showed the fitter well to agree with the kinetic data. The experimental data were analyzed by the Langmuir and Freundlich models, with the latter found to closely the isotherm model. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The results show that CMK-3 using ammonia gas modified by thermal treatment system is an effective method to improvement capacity as it shows the highest adsorption capacity of AB1, as compared to the unmodified CMK-3 and the bamboo-based carbon, respectively.

  6. Black hole thermalization rate from brane anti-brane model

    CERN Document Server

    Lifschytz, G

    2004-01-01

    We develop the quasi-particle picture for Schwarzchild and far from extremal black holes. We show that the thermalization equations of the black hole is recovered from the model of branes and anti-branes. This can also be viewed as a field theory explanation of the relationship between area and entropy for these black holes. As a by product the annihilation rate of branes and anti-branes is computed.

  7. Black hole thermalization rate from brane anti-brane model

    Energy Technology Data Exchange (ETDEWEB)

    Lifschytz, Gilad E-mail: giladl@research.haifa.ac.il

    2004-08-01

    We develop the quasi-particle picture for Schwarzchild and far from extremal black holes. We show that the thermalization equations of the black hole is recovered from the model of branes and anti-branes. This can also be viewed as a field theory explanation of the relationship between area and entropy for these black holes. As a by product the annihilation rate of branes and anti-branes is computed. (author)

  8. BTZ black hole entropy: a spin foam model description

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Islas, J Manuel [Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, UNAM, A Postal 20-726, 01000, Mexico DF (Mexico)], E-mail: jmgislas@leibniz.iimas.unam.mx

    2008-12-21

    We present a microscopical explanation of the entropy of the BTZ black hole using discrete spin foam models of quantum gravity. The entropy of a black hole is given in geometrical terms which led us to think that its statistical description must be given in terms of a quantum geometry. In this paper we present it in terms of spin foam geometrical observables at the horizon of the black hole.

  9. Evaluating the climate impacts of stratospheric Sulphate, Titania and Black-Carbon injection scenarios using HadGEM2-CCS

    Science.gov (United States)

    Jones, Anthony; Haywood, James; Jones, Andy; Hardimann, Steven

    2015-04-01

    Stratospheric Aerosol Injection (SAI) has emerged as a possible method for ameliorating future global warming. Although most SAI modelling studies have simulated Sulphate injection scenarios (in-line with the natural analogue of volcanic eruptions), various research has identified advantages of using alternative aerosols to sulphate (e.g. Tang et al 2014). In particular, minerals with optimal refractive indices (such as Titania) and sunlight-absorbing aerosols (such as Black-Carbon) have been identified as candidate particles. In this talk, I will present the results of 80-year integrations of HadGEM2-CCS (N96L60) with injection of either sulphate, titania or black-carbon initiated in 2020 and continued until 2100. Aerosol is injected at such a rate as to balance top of the atmosphere (TOA) radiative fluxes in the RCP8.5 scenario, akin to the G3 design of the GeoMIP project. I will compare the climate changes in the baseline scenario (RCP8.5) with the geoengineering scenarios for the 2090s period, and attribute these changes to optical properties of the aerosol species used. Stratospheric dynamical and radiative changes impact the underlying tropical overturning circulation, affecting precipitation, with the magnitude and distribution of impacts dependent on the aerosol species used. Black carbon in particular causes stratospheric heating of >40K, impacting the hydrological cycle and reducing global mean annual precipitation by ~0.25mm/day compared to a historical period. The efficiency of solar-absorption by black carbon means that the injection-rate required to balance TOA fluxes in RCP8.5 is shown to be approximately 1/20th of the mass needed of sulphate and 1/5th of the mass needed of titania. Despite similar global-mean temperature evolution in the geoengineering scenarios (a relative stabilisation), the distribution of high-latitude residual warming and tropical cooling in the sulphate and titania simulations is opposite to the high-latitude cooling and low

  10. Aerosol organic carbon to black carbon ratios: Analysis ofpublished data and implications for climate forcing

    Energy Technology Data Exchange (ETDEWEB)

    Novakov, T.; Menon, S.; Kirchstetter, T.W.; Koch, D.; Hansen, J.E.

    2005-07-11

    Measurements of organic carbon (OC) and black carbon (BC)concentrations over a variety of locations worldwide, have been analyzed to infer the spatial distributions of the ratios of OC to BC. Since these ratios determine the relative amounts of scattering and absorption, they are often used to estimate the radiative forcing due to aerosols. An artifact in the protocol for filter measurements of OC has led to widespread overestimates of the ratio of OC to BC in atmospheric aerosols. We developed a criterion to correct for this artifact and analyze corrected OC to BC ratios. The OC to BC ratios, ranging from 1.3to 2.4, appear relatively constant and are generally unaffected by seasonality, sources or technology changes, at the locations considered here. The ratios compare well with emission inventories over Europe and China but are a factor of two lower in other regions. The reduced estimate for OC/BC in aerosols strengthens the argument that reduction of soot emissions maybe a useful approach to slow global warming.

  11. Black carbon-mediated reduction of 2,4-dinitrotoluene by dithiothreitol.

    Science.gov (United States)

    Oh, Seok-Young; Son, Jong-Gil; Hur, Seung Hyun; Chung, Jin Suk; Chiu, Pei C

    2013-01-01

    By using various types of black carbon (BC), including chemically converted graphene (CCG), multiwalled carbon nanotubes (MWCNT), and granular activated carbon (GAC), BC-mediated reduction was investigated with 2,4-dinitrotoluene (DNT), a model nitroaromatic compound. We hypothesized that by providing sorption and electron transfer sites, BC can be used as a catalyst to accelerate DNT reduction by dithiothreitol (DTL), a thiol reductant. Results from batch experiments showed that CCG, MWCNT, and GAC could promote reduction of DNT by DTL. The yield ratio of the two aminonitro intermediates was approximately 1:1, which was consistent with that in a graphite system. However, fullerene did not significantly enhance the reduction of DNT, likely due to being a π acceptor. Kinetic data analysis showed that removal of DNT in the presence of BC and DTL was linearly proportional to the electrical conductivity of BC, suggesting that the graphitic structure of BC may be responsible for DNT removal. Our results indicate that the presence of BC materials may affect the fate of nitroaromatic compounds under electron-rich conditions.

  12. Personal black carbon exposure influences ambulatory blood pressure: air pollution and cardiometabolic disease (AIRCMD-China) study.

    Science.gov (United States)

    Zhao, Xiaoyi; Sun, Zhichao; Ruan, Yanping; Yan, Jianhua; Mukherjee, Bhramar; Yang, Fumo; Duan, Fengkui; Sun, Lixian; Liang, Ruijuan; Lian, Hui; Zhang, Shuyang; Fang, Quan; Gu, Dongfeng; Brook, Jeffrey R; Sun, Qinghua; Brook, Robert D; Rajagopalan, Sanjay; Fan, Zhongjie

    2014-04-01

    Few prospective studies have assessed the blood pressure effect of extremely high air pollution encountered in Asia's megacities. The objective of this study was to evaluate the association between combustion-related air pollution with ambulatory blood pressure and autonomic function. During February to July 2012, personal black carbon was determined for 5 consecutive days using microaethalometers in patients with metabolic syndrome in Beijing, China. Simultaneous ambient fine particulate matter concentration was obtained from the Beijing Municipal Environmental Monitoring Center and the US Embassy. Twenty-four-hour ambulatory blood pressure and heart rate variability were measured from day 4. Arterial stiffness and endothelial function were obtained at the end of day 5. For statistical analysis, we used generalized additive mixed models for repeated outcomes and generalized linear models for single/summary outcomes. Mean (SD) of personal black carbon and fine particulate matter during 24 hours was 4.66 (2.89) and 64.2 (36.9) μg/m(3). Exposure to high levels of black carbon in the preceding hours was associated significantly with adverse cardiovascular responses. A unit increase in personal black carbon during the previous 10 hours was associated with an increase in systolic blood pressure of 0.53 mm Hg and diastolic blood pressure of 0.37 mm Hg (95% confidence interval, 0.17-0.89 and 0.10-0.65 mm Hg, respectively), a percentage change in low frequency to high frequency ratio of 5.11 and mean interbeat interval of -0.06 (95% confidence interval, 0.62-9.60 and -0.11 to -0.01, respectively). These findings highlight the public health effect of air pollution and the importance of reducing air pollution.

  13. Thickness effect on electric resistivity on polystyrene and carbon black- based composites

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Lopez, S; Vigueras-Santiago, E [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA) Facultad de Quimica, Paseo Colon Esquina con Paseo Tollocan, s/n, CP 50000, Toluca (Mexico); Mayorga-Rojas, M; Reyes-Contreras, D, E-mail: eviguerass@uaemex.m [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico. Av. Instituto Literario 100 Ote. C. P. 50000, Toluca (Mexico)

    2009-05-01

    Changes on electrical resistivity were experimentally studied for polystyrene and carbon black-based composites respect to the temperature. 22% w/w carbon black composite films at 30{mu}m, 2mm y 1cm thick were submitted to thermal heating-cooling cycles from room temperature to 100 deg. C, slightly up to T{sub g} of the composite. For each cycle changes on electrical resistivity constituent a hysteresis loop that depends on the sample thickness. The changes during the heating stage could be explained as a consequence of the thermal expansion and mobility of the polymer chains at T{sub g}, producing a disconnecting of the electrical contacts among carbon black particles and an important increasing (200%) of the electrical resistivity. For each cycle, the hysteresis loop was observed in thicker samples, whereas for 30 mu m thickness sample the hysteresis loop was lost after four cycles.

  14. Influence of γ-ray Irradiation on the PTC Effect of EPDM/Carbon Black Composite

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ Introduction The positive temperature coefficient(PTC) effect is characterized by an increase of resistivity with an elevated temperature.The PTC effect of carbon black(CB) filled polymers is useful for self-regulation heaters,over-current protectors,sensors,etc.Much work has been done on the PTC effect of the carbon black filled crystalline polymer composite[1-4],whereas carbon black filled amorphous polymers have not drawn researchers much attention because the PTC effect in these composites is small or cannot be detected[5-7].In this work,the influence of γ-ray irradiation on the PTC effect of CB filled amorphous ethylene-propylene-diene terpolymer(EPDM) composites was studied.

  15. Electric anisotropy in high density polyethylene + carbon black composites induced by mechanical deformation

    Energy Technology Data Exchange (ETDEWEB)

    Vigueras-Santiago, E; Hernandez-Lopez, S; Camacho-Lopez, M A; Lara-Sanjuan, O, E-mail: eviguerass@uaemex.m [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Quimica, UAEM. Paseo Colon esq. con Paseo Tollocan, s/n. C.P. 50000, Toluca (Mexico)

    2009-05-01

    High density polyethylene + carbon black composites with electrical anisotropy was studied. Electrical anisotropy was induced by uniaxial mechanical deformation and injection moulding. We show that anisotropy depends on the carbon black concentration and percentage deformation. Resistivity had the highest anisotropy resistivity around the percolation threshold. Perpendicular resistivity showed two magnitude orders higher than parallel resistivity for injected samples, whereas resistivity showed an inverse behaviour for 100% tensile samples. Both directions were set respect to the deformation axe. Anisotropy could be explained in terms of the molecular deformation (alignment) of the polymer chains as a response of the deformation process originating a redistribution of the carbon black particles in both directions. Alignment of the polymer chains was evidenced by polarized Raman spectroscopy.

  16. Individual particle morphology, coatings, and impurities of black carbon aerosols in Antarctic ice and tropical rainfall

    Science.gov (United States)

    Ellis, Aja; Edwards, Ross; Saunders, Martin; Chakrabarty, Rajan K.; Subramanian, R.; Timms, Nicholas E.; Riessen, Arie; Smith, Andrew M.; Lambrinidis, Dionisia; Nunes, Laurie J.; Vallelonga, Paul; Goodwin, Ian D.; Moy, Andrew D.; Curran, Mark A. J.; Ommen, Tas D.

    2016-11-01

    Black carbon (BC) aerosols are a large source of climate warming, impact atmospheric chemistry, and are implicated in large-scale changes in atmospheric circulation. Inventories of BC emissions suggest significant changes in the global BC aerosol distribution due to human activity. However, little is known regarding BC's atmospheric distribution or aged particle characteristics before the twentieth century. Here we investigate the prevalence and structural properties of BC particles in Antarctic ice cores from 1759, 1838, and 1930 Common Era (C.E.) using transmission electron microscopy and energy-dispersive X-ray spectroscopy. The study revealed an unexpected diversity in particle morphology, insoluble coatings, and association with metals. In addition to conventionally occurring BC aggregates, we observed single BC monomers, complex aggregates with internally, and externally mixed metal and mineral impurities, tar balls, and organonitrogen coatings. The results of the study show BC particles in the remote Antarctic atmosphere exhibit complexity that is unaccounted for in atmospheric models of BC.

  17. NONLINEAR CURRENT-VOLTAGE CHARACTERISTICS OF CONDUCTIVE POLYETHYLENE COMPOSITES WITH CARBON BLACK FILLED PET MICROFIBRILS

    Institute of Scientific and Technical Information of China (English)

    Qian-ying Chen; Jing Gao; Kun Dai; Huan Pang; Jia-zhuang Xu; Jian-hua Tang; Zhong-ming Li

    2013-01-01

    Current-voltage electrical behavior of in situ microfibrillar carbon black (CB)/poly(ethylene terephthalate)(PET)/polyethylene (PE) (m-CB/PET/PE) composites with various CB concentrations at ambient temperatures was studied under a direct-current electric field.The current-voltage (Ⅰ-Ⅴ) curves exhibited nonlinearity beyond a critical value of voltage.The dynamic random resistor network (DRRN) model was adopted to semi-qualitatively explain the nonlinear conduction behavior of m-CB/PET/PE composites.Macroscopic nonlinearity originated from the interracial interactions between CB/PET micro fibrils and additional conduction channels.Combined with the special conductive networks,an illustration was proposed to interpret the nonlinear Ⅰ-Ⅴ characteristics by a field emission or tunneling mechanism between CB particles in the CB/PET microfibers intersections.

  18. A global 3-D CTM evaluation of black carbon in the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    C. He

    2014-03-01

    Full Text Available We evaluate the black carbon (BC simulations for 2006 over the Tibetan Plateau by a global 3-D chemical transport model using surface observations of BC in surface air and in snow and BC absorption aerosol optical depth (AAOD. Using updated Asian anthropogenic BC emissions (Lu et al., 2011; Zhang et al., 2009 and global biomass burning emissions (Randerson et al., 2012; van der Werf et al., 2010, model results of both surface BC and BC in snow are statistically in good agreement with observations (biases < 15%. Model results capture the seasonal variation of surface BC concentration, but the observed wintertime high values at rural sites in the Indo-Gangetic Plain are absent in the model. Model results are in general agreement with observations (within a factor of two at remote sites. Model simulated BC concentrations in snow are spatiotemporally consistent with observations at most sites. We find that modeled BC AAOD are significantly lower than observations to the northwest of the Plateau and along the southern slopes of the Himalayas during winter and spring, reflecting model deficiencies in emissions, topography and BC mixing state. We find that anthropogenic emissions strongly affect surface BC concentration and AAOD, while the BC aging mainly affects BC in snow over the Plateau.

  19. Commuter exposure to black carbon, carbon monoxide, and noise in the mass transport khlong boats of Bangkok, Thailand

    Science.gov (United States)

    Ziegler, A. D.; Velasco, E.; Ho, K. J.

    2013-12-01

    Khlong (canal) boats are a unique mass transport alternative in the congested city of Bangkok. Canals and rivers provide exclusive transit-ways for reducing the commuting time of thousands of city residents daily. However, as a consequence of the service characteristics and boats design and state of repair, they can represent a potential public health risk and an important source of black carbon and greenhouse gases. This work quantifies commuter exposure to black carbon, CO and noise when waiting for and travelling in these diesel fueled boats. Exposure to toxic pollutants and acute noise is similar or worse than for other transportation modes. Mean black carbon concentrations observed at one busy pier and along the main canal were much higher than ambient concentrations at sites impacted by vehicular traffic. Concentrations of CO were similar to those reported for roadside areas of Bangkok. The equivalent continuous sound levels registered at the landing pier were similar to those reported for roadsides, but values recorded inside the boats were significantly higher. We believe that the boat service is a viable alternative mode of mass transport, but public safety could be improved to provide a high quality service, comparable to modern rail systems or emerging bus rapid transit systems. These investments would also contribute to reduce the emission of black carbon and other greenhouse and toxic pollutants.

  20. Resolution of Adsorption and Partition Components of Organic Compounds on Black Carbons.

    Science.gov (United States)

    Chiou, Cary T; Cheng, Jianzhong; Hung, Wei-Nung; Chen, Baoliang; Lin, Tsair-Fuh

    2015-08-04

    Black carbons (BCs) may sequester non-ionic organic compounds by adsorption and/or partition to varying extents. Up to now, no experimental method has been developed to accurately resolve the combined adsorption and partition capacity of a compound on a BC. In this study, a unique "adsorptive displacement method" is introduced to reliably resolve the adsorption and partition components for a solute-BC system. It estimates the solute adsorption on a BC by the use of an adsorptive displacer to displace the adsorbed target solute into the solution phase. The method is validated by tests with uses of activated carbon as the model carbonaceous adsorbent, soil organic matter as the model carbonaceous partition phase, o-xylene and 1,2,3-trichlorobenzene as the reference solutes, and p-nitrophenol as the adsorptive displacer. Thereafter, the adsorption-partition resolution was completed for the two solutes on selected model BCs: four biochars and two National Institute of Standards and Technology (NIST) standard soots (SRM-2975 and SRM-1650b). The adsorption and partition components resolved for selected solutes with given BCs and their dependences upon solute properties enable one to cross-check the sorption data of other solutes on the same BCs. The resolved components also provide a theoretical basis for exploring the potential modes and extents of different solute uptakes by given BCs in natural systems.

  1. Gas flaring and resultant air pollution: A review focusing on black carbon.

    Science.gov (United States)

    Fawole, Olusegun G; Cai, X-M; MacKenzie, A R

    2016-09-01

    Gas flaring is a prominent source of VOCs, CO, CO2, SO2, PAH, NOX and soot (black carbon), all of which are important pollutants which interact, directly and indirectly, in the Earth's climatic processes. Globally, over 130 billion cubic metres of gas are flared annually. We review the contribution of gas flaring to air pollution on local, regional and global scales, with special emphasis on black carbon (BC, "soot"). The temporal and spatial characteristics of gas flaring distinguishes it from mobile combustion sources (transport), while the open-flame nature of gas flaring distinguishes it from industrial point-sources; the high temperature, flame control, and spatial compactness distinguishes gas flaring from both biomass burning and domestic fuel-use. All of these distinguishing factors influence the quantity and characteristics of BC production from gas flaring, so that it is important to consider this source separately in emissions inventories and environmental field studies. Estimate of the yield of pollutants from gas flaring have, to date, paid little or no attention to the emission of BC with the assumption often being made that flaring produces a smokeless flame. In gas flares, soot yield is known to depend on a number of factors, and there is a need to develop emission estimates and modelling frameworks that take these factors into consideration. Hence, emission inventories, especially of the soot yield from gas flaring should give adequate consideration to the variation of fuel gas composition, and to combustion characteristics, which are strong determinants of the nature and quantity of pollutants emitted. The buoyant nature of gas flaring plume, often at temperatures in the range of 2000 K, coupled with the height of the stack enables some of the pollutants to escape further into the free troposphere aiding their long-range transport, which is often not well-captured by model studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Chaos in matrix models and black hole evaporation

    Science.gov (United States)

    Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan

    2016-12-01

    Is the evaporation of a black hole described by a unitary theory? In order to shed light on this question—especially aspects of this question such as a black hole's negative specific heat—we consider the real-time dynamics of a solitonic object in matrix quantum mechanics, which can be interpreted as a black hole (black zero-brane) via holography. We point out that the chaotic nature of the system combined with the flat directions of its potential naturally leads to the emission of D0-branes from the black brane, which is suppressed in the large N limit. Simple arguments show that the black zero-brane, like the Schwarzschild black hole, has negative specific heat, in the sense that the temperature goes up when it evaporates by emitting D0-branes. While the largest Lyapunov exponent grows during the evaporation, the Kolmogorov-Sinai entropy decreases. These are consequences of the generic properties of matrix models and gauge theory. Based on these results, we give a possible geometric interpretation of the eigenvalue distribution of matrices in terms of gravity. Applying the same argument in the M-theory parameter region, we provide a scenario to derive the Hawking radiation of massless particles from the Schwarzschild black hole. Finally, we suggest that by adding a fraction of the quantum effects to the classical theory, we can obtain a matrix model whose classical time evolution mimics the entire life of the black brane, from its formation to the evaporation.

  3. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Directory of Open Access Journals (Sweden)

    Aron eStubbins

    2015-10-01

    Full Text Available Wildfires have produced black carbon (BC since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC. The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon were analyzed for dissolved organic carbon (DOC, colored dissolved organic matter (CDOM, and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254. Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  4. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Science.gov (United States)

    Stubbins, Aron; Spencer, Robert; Mann, Paul; Holmes, R.; McClelland, James; Niggemann, Jutta; Dittmar, Thorsten

    2015-10-01

    Wildfires have produced black carbon (BC) since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC). The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon) were analyzed for dissolved organic carbon (DOC), colored dissolved organic matter (CDOM), and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254). Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  5. Black hole Skyrmion in a generalized Skyrme model

    CERN Document Server

    Gudnason, Sven Bjarke; Sawado, Nobuyuki

    2016-01-01

    We study a Skyrme-like model with the Skyrme term and a sixth-order derivative term as higher-order terms, coupled to gravity and we construct Schwarzschild black hole Skyrme hair. We find, surprisingly, that the sixth-order derivative term alone cannot stabilize the black hole hair solutions; the Skyrme term with a large enough coefficient is a necessity.

  6. Nanohybrid TiO2/carbon black sensor for NO2 gas

    Institute of Scientific and Technical Information of China (English)

    Wei-Jen Liou; Hong-Ming Lin

    2007-01-01

    A nanohybrid sensor of nanosized TiO2-coated carbon black particles, prepared by sol-gel technology for the detection of NO2 gas, has been developed. The response of the electric resistance of the hybrid sensor to NO2 concentration is investigated, showing that the sensitivity of the hybrid sensor is raised as certain ratio of the TiO2 content in the sensor. Easy and cheap to fabricate, the hybrid TiO2/carbon black promises to be a practical sensor for detecting NO2 gas.

  7. Carbon black networking in elastomers monitored by simultaneous rheological and dielectric investigations

    Science.gov (United States)

    Steinhauser, Dagmar; Möwes, Markus; Klüppel, Manfred

    2016-12-01

    The rheo-dielectric response of carbon black filled elastomer melts is investigated by dielectric relaxation spectroscopy in the frequency range from 0.1 Hz up to 10 MHz during oszillatory shearing in a plate-plate rheometer. Various concentrations and types of carbon blacks dispersed in a non-crosslinked EPDM melt are considered. It is demonstrated that during heat treatment at low strain amplitude a pronounced flocculation of filler particles takes place leading to a successive increase of the shear modulus and conductivity. Followed up by a strain sweep, the filler network breaks up and both quantities decrease simultaneously with increasing strain amplitude. Two relaxation times, obtained from a Cole-Cole fit of the dielectric spectra, are identified, which both decrease strongly with increasing flocculation time. This behaviour is analyzed in the frame of fractal network models, describing the effect of structural disorder of the conducting carbon black network on the diffusive charge transport. Significant deviations from the predictions of percolation theory are observed, which are traced back to a superimposed cluster-cluster aggregation process (CCA). During flocculation, a universal scaling behaviour holds between the conductivity and the corresponding high frequency relaxation time, which fits all the measured data. The scaling exponent agrees fairly well with the prediction obtained from CCA. It is demonstrated that the underlying basic mechanism is a change of the correlation length of the filler network, i.e. the size of the fractal heterogeneities. This decreases during flocculation due to the formation of additional conductive paths, making the system more homogeneous. An addition less pronounced effect is found from nanoscopic gaps between adjacent filler particles, which decrease during flocculation. The same universal scaling behaviour, as obtained for flocculation, is found for temperature-dependent dielectric measurements of the cured

  8. Quantifying Black Carbon Deposition Over the Greenland Ice Sheet from Forest Fires in Canada

    Science.gov (United States)

    Thomas, J. L.; Polashenski, C. M.; Soja, Amber J.; Marelle, L.; Casey, K. A.; Choi, H. D.; Raut, J.-C.; Wiedinmyer, C.; Emmons, L. K.; Fast, J. D.; hide

    2017-01-01

    Black carbon (BC) concentrations observed in 22 snowpits sampled in the northwest sector of the Greenland ice sheet in April 2014 have allowed us to identify a strong and widespread BC aerosol deposition event, which was dated to have accumulated in the pits from two snow storms between 27 July and 2 August 2013. This event comprises a significant portion (57 on average across all pits) of total BC deposition over 10 months (July 2013 to April 2014). Here we link this deposition event to forest fires burning in Canada during summer 2013 using modeling and remote sensing tools. Aerosols were detected by both the Cloud-Aerosol Lidar with Orthogonal Polarization (on board CALIPSO) and Moderate Resolution Imaging Spectroradiometer (Aqua) instruments during transport between Canada and Greenland. We use high-resolution regional chemical transport modeling (WRF-Chem) combined with high-resolution fire emissions (FINNv1.5) to study aerosol emissions, transport, and deposition during this event. The model captures the timing of the BC deposition event and shows that fires in Canada were the main source of deposited BC. However, the model underpredicts BC deposition compared to measurements at all sites by a factor of 2100. Underprediction of modeled BC deposition originates from uncertainties in fire emissions and model treatment of wet removal of aerosols. Improvements in model descriptions of precipitation scavenging and emissions from wildfires are needed to correctly predict deposition, which is critical for determining the climate impacts of aerosols that originate from fires.

  9. Arctic Black Carbon Loading and Profile Using the Single-Particle Soot Photometer (SP2) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, Arthur J [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    One of the major issues confronting aerosol climate simulations of the Arctic and Antarctic cryospheres is the lack of detailed data on the vertical and spatial distribution of aerosols with which to test these models. This is due, in part, to the inherent difficulty of conducting such measurements in extreme environments. However given the pronounced sensitivity of the polar regions to radiative balance perturbations, it is incumbent upon our community to better understand and quantify these perturbations, and their unique feedbacks, so that robust model predictions of this region can be realized. One class of under-measured radiative forcing agents in the polar region is the absorbing aerosol—black carbon and brown carbon. Black carbon (BC; also referred to as light-absorbing carbon [LAC], refractory black carbon [rBC], and soot) is second only to CO2 as a positive forcing agent. Roughly 60% of BC emissions can be attributed to anthropogenic sources (fossil fuel combustion and open-pit cooking), with the remaining fraction being due to biomass burning. Brown carbon (BrC), a major component of biomass burning, collectively refers to non-BC carbonaceous aerosols that typically possess minimal light absorption at visible wavelengths but exhibit pronounced light absorption in the near-ultraviolet (UV) spectrum. Both species can be sourced locally or be remotely transported to the Arctic region and are expected to perturb the radiative balance. The work conducted in this field campaign addresses one of the more glaring deficiencies currently limiting improved quantification of the impact of BC radiative forcing in the cryosphere: the paucity of data on the vertical and spatial distributions of BC. By expanding the Gulfstream aircraft (G-1) payload for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility-sponsored ACME-V campaign to include the Single-Particle Soot Photometer (SP2)) and leveraging the ACME-V campaign

  10. Central Asian supra-glacier snow melt enhanced by anthropogenic black carbon

    Science.gov (United States)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Farinotti, Daniel; Zhang, Qianggong; Guo, Junming; Li, Yang; Lawrence, Mark; Schwikowski, Margit

    2016-04-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. Densely populated areas near lower-lying mountain ranges are particularly vulnerable and a recent study showed that the region might lose 50 % of its glacier mass by 2050. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and snow melt. 218 snow samples were taken on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental carbon, mineral dust and iron among other parameters. We find the elemental carbon concentration to be at the higher end of the range reported for neighboring mountain ranges between 70 and 502 ng g-1 (interquartile range). To investigate the origin of the snow impurities, we used a Lagrangian particle dispersion model, LAGRANTO. Back trajectory ensembles of 40 members with varied starting points to capture the meteorological spread were released every 6 hours for the covered period at all sites. "Footprints" were calculated and combined with emission inventories to estimate the relative contribution of anthropogenic and natural BC to deposited aerosol on the glaciers. We find that more than 94 % of BC is of anthropogenic origin and the major source region is Central Asia followed by the Middle East. Further exploring the implications of mineral dust and BC deposition, we calculate the snow albedo reduction with the Snow-Ice-Aerosol-Radiative model (SNICAR). Even though mineral dust concentrations were up to a factor of 50 higher than BC concentrations, BC dominates the albedo reduction. Using these results we calculate the snow melt induced by

  11. Solid phase extraction method for the study of black carbon cycling in dissolved organic carbon using radiocarbon

    OpenAIRE

    2015-01-01

    © 2015 Elsevier B.V.. Radiocarbon analysis is a powerful tool for understanding the cycling of individual components within carbon pools, such as black carbon (BC) in dissolved organic carbon (DOC). Radiocarbon (δ14C) measurements of BC in DOC provide insight into one source of aged, recalcitrant DOC. We report a modified solid phase extraction (SPE) method to concentrate 43±6% of DOC (SPE-DOC) from seawater. We used the Benzene Polycarboxylic Acid (BPCA) method to isolate BC from SPE-DOC (SP...

  12. Effect of the secondary organic aerosol coatings on black carbon water uptake, cloud condensation nuclei activity, and particle collapse

    Science.gov (United States)

    The ability of black carbon aerosols to absorb water and act as a cloud condensation nuclei (CCN) directly controls their lifetime in the atmosphere as well as their impact on cloud formation, thus impacting the earth’s climate. Black carbon emitted from most combustion pro...

  13. Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available The effects of carbon blacks on vulcanization and mechanical properties of filled ethylene-propylene-diene rubber (EPDM are investigated, by comparing with five types of rubber-grade carbon blacks. Curing kinetics is studied by rheometer and the results indicate that the curing characteristics are influenced by combination of surface area of carbon black and sulphur content on the filler surface, because the former one enhances the physical cross-linking and the latter one introduces the additional chemical cross-linking. Both the degree of cross-linking and cure rate increase with increasing surface area and sulphur content, whereas the optimum cure time and scorch time decrease. The reinforcing nature of the carbon black is assessed from mechanical measurements. It is suggested that the surface area of carbon blacks strongly affects the physical properties of EPDM/carbon black composites. Conductive carbon black (N472 can be used as desirable reinforcing filler due to the higher degree of cross-linking of EPDM with N472 than other EPDM/carbon black composites. The morphology and distribution of particles are studied by using scanning electron microscope. The sound reinforcing ability of N472 is also supported by scanning electron microscope due to the notable dispersibility of N472 within EPDM matrix. N472 ensures the EPDM/N472 composite the most conductive sample among the five composites.

  14. Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near surface temperature changes

    Science.gov (United States)

    Jones, G. S.; Christidis, N.; Stott, P. A.

    2011-01-01

    Past research has shown that the dominant influence on recent global climate changes is from anthropogenic greenhouse gas increases with implications for future increases in global temperatures. One mitigation proposal is to reduce black carbon aerosol emissions. How much warming can be offset by controlling black carbon is unclear, especially as its influence on past climate has not been previously unambiguously detected. In this study observations of near-surface warming over the last century are compared with simulations using a climate model, HadGEM1. In the simulations black carbon, from fossil fuel and bio-fuel sources (fBC), produces a positive radiative forcing of about +0.25 Wm-2 over the 20th century, compared with +2.52 Wm-2 for well mixed greenhouse gases. A simulated warming of global mean near-surface temperatures over the twentieth century from fBC of 0.14 ± 0.1 K compares with 1.06 ± 0.07 K from greenhouse gases, -0.58 ± 0.10 K from anthropogenic aerosols, ozone and land use changes and 0.09 ± 0.09 K from natural influences. Using a detection and attribution methodology, the observed warming since 1900 has detectable influences from anthropogenic and natural factors. Fossil fuel and bio-fuel black carbon is found to have a detectable contribution to the warming over the last 50 yr of the 20th century, although the results are sensitive to the period being examined as fBC is not detected for the later fifty year period ending in 2006. The attributed warming of fBC was found to be consistent with the warming from fBC unscaled by the detection analysis. This study suggests that there is a possible significant influence from fBC on global temperatures, but its influence is small compared to that from greenhouse gas emissions.

  15. A full annual cycle modeling framework for American black ducks

    Science.gov (United States)

    Robinson, Orin J.; McGowan, Conor; Devers, Patrick K.; Brook, Rodney W.; Huang, Min; Jones, Malcom; McAuley, Daniel G.; Zimmerman, Guthrie

    2016-01-01

    American black ducks (Anas rubripes) are a harvested, international migratory waterfowl species in eastern North America. Despite an extended period of restrictive harvest regulations, the black duck population is still below the population goal identified in the North American Waterfowl Management Plan (NAWMP). It has been hypothesized that density-dependent factors restrict population growth in the black duck population and that habitat management (increases, improvements, etc.) may be a key component of growing black duck populations and reaching the prescribed NAWMP population goal. Using banding data from 1951 to 2011 and breeding population survey data from 1990 to 2014, we developed a full annual cycle population model for the American black duck. This model uses the seven management units as set by the Black Duck Joint Venture, allows movement into and out of each unit during each season, and models survival and fecundity for each region separately. We compare model population trajectories with observed population data and abundance estimates from the breeding season counts to show the accuracy of this full annual cycle model. With this model, we then show how to simulate the effects of habitat management on the continental black duck population.

  16. Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse

    Directory of Open Access Journals (Sweden)

    T. C. Bond

    2011-02-01

    Full Text Available Climatic effects of short-lived climate forcers (SLCFs differ from those of long-lived greenhouse gases, because they occur rapidly after emission and because they depend upon the region of emission. The distinctive temporal and spatial nature of these impacts is not captured by measures that rely on global averages or long time integrations. Here, we propose a simple measure, the Specific Forcing Pulse (SFP, to quantify climate warming or cooling by these pollutants, where we define "immediate" as occurring primarily within the first year after emission. SFP is the amount of energy added to or removed from a receptor region in the Earth-atmosphere system by a chemical species, per mass of emission in a source region. We limit the application of SFP to species that remain in the atmosphere for less than one year. Metrics used in policy discussions, such as total forcing or global warming potential, are easily derived from SFP. However, SFP conveys purely physical information without incurring the policy implications of choosing a time horizon for the global warming potential.

    Using one model (Community Atmosphere Model, or CAM, we calculate values of SFP for black carbon (BC and organic matter (OM emitted from 23 source-region combinations. Global SFP for both atmosphere and cryosphere impacts is divided among receptor latitudes. SFP is usually greater for open-burning emissions than for energy-related (fossil-fuel and biofuel emissions because of the timing of emission. Global SFP for BC varies by about 45% for energy-related emissions from different regions. This variation would be larger except for compensating effects. When emitted aerosol has larger cryosphere forcing, it often has lower atmosphere forcing because of less deep convection and a shorter atmospheric lifetime.

    A single model result is insufficient to capture uncertainty. We develop a best estimate and uncertainties for SFP by combining forcing results from

  17. Automatic Method for Controlling the Iodine Adsorption Number in Carbon Black Oil Furnaces

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2008-12-01

    Full Text Available There are numerous of different inlet process factors in carbon black oil furnaces which must be continuously and automatically adjusted, due to stable quality of final product. The most important six inlet process factors in carbon black oil-furnaces are:1. volume flow of process air for combustion2. temperature of process air for combustion3. volume flow of natural gas for insurance the necessary heat for thermal reaction of conversionthe hydrocarbon oil feedstock in oil-furnace carbon black4. mass flow rate of hydrocarbon oil feedstock5. type and quantity of additive for adjustment the structure of oil-furnace carbon black6. quantity and position of the quench water for cooling the reaction of oil-furnace carbon black.The control of oil-furnace carbon black adsorption capacity is made with mass flow rate of hydrocarbon feedstock, which is the most important inlet process factor. Oil-furnace carbon black adsorption capacity in industrial process is determined with laboratory analyze of iodine adsorption number. It is shown continuously and automatically method for controlling iodine adsorption number in carbon black oil-furnaces to get as much as possible efficient control of adsorption capacity. In the proposed method it can be seen the correlation between qualitatively-quantitatively composition of the process tail gasses in the production of oil-furnace carbon black and relationship between air for combustion and hydrocarbon feedstock. It is shown that the ratio between air for combustion and hydrocarbon oil feedstock is depended of adsorption capacity summarized by iodine adsorption number, regarding to BMCI index of hydrocarbon oil feedstock.The mentioned correlation can be seen through the figures from 1. to 4. From the whole composition of the process tail gasses the best correlation for continuously and automatically control of iodine adsorption number is show the volume fraction of methane. The volume fraction of methane in the

  18. Simulated Carbon Cycling in a Model Microbial Mat.

    Science.gov (United States)

    Decker, K. L.; Potter, C. S.

    2006-12-01

    We present here the novel addition of detailed organic carbon cycling to our model of a hypersaline microbial mat ecosystem. This ecosystem model, MBGC (Microbial BioGeoChemistry), simulates carbon fixation through oxygenic and anoxygenic photosynthesis, and the release of C and electrons for microbial heterotrophs via cyanobacterial exudates and also via a pool of dead cells. Previously in MBGC, the organic portion of the carbon cycle was simplified into a black-box rate of accumulation of simple and complex organic compounds based on photosynthesis and mortality rates. We will discuss the novel inclusion of fermentation as a source of carbon and electrons for use in methanogenesis and sulfate reduction, and the influence of photorespiration on labile carbon exudation rates in cyanobacteria. We will also discuss the modeling of decomposition of dead cells and the ultimate release of inorganic carbon. The detailed modeling of organic carbon cycling is important to the accurate representation of inorganic carbon flux through the mat, as well as to accurate representation of growth models of the heterotrophs under different environmental conditions. Because the model ecosystem is an analog of ancient microbial mats that had huge impacts on the atmosphere of early earth, this MBGC can be useful as a biological component to either early earth models or models of other planets that potentially harbor life.

  19. Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J. L.; Polashenski, Christopher M.; Soja, Amber J.; Marelle, L.; Casey, Kimberly A.; Choi, Hyundeok; Raut, Jean-Christophe; Wiedinmyer, Christine; Emmons, L.; Fast, Jerome D.; Pelon, J.; Law, K. S.; Flanner, M. G.; Dibb, Jack E.

    2017-06-19

    We identify an important Black Carbon (BC) aerosol deposition event that was observed in snow stratigraphy and dated to between 27 July 2013 – 2 August 2013. This event comprises a significant portion (∼60%) of total deposition over a 10 month period (July 2013 – April 2014). Here we link this event to forest fires burning in Canada during summer 2013 using modeling and remote sensing tools. Aerosols were detected by both the CALIOP and MODIS instruments during transport between Canada and Greenland, confirming that this event involved emissions from forest fires in Canada. We use high-resolution regional chemical transport mod-eling (WRF-Chem) combined with high-resolution fire emissions (FINNv1.5) to study aerosol emissions, transport, and deposition during this event. The model accurately captures the timing of the BC deposition event and shows that the major contribution to deposition during this event is emissions originating from fires in Canada. However, the model under-predicts aerosol deposition compared to measurements at all sites by a factor of 2–100. Under-prediction of modeled BC deposition originates from uncertainties in fire emissions combined with uncertainties in aerosol scavenging by clouds. This study suggests that it is possible to describe the transport of an exceptional smoke event on regional and continental scales. Improvements in model descriptions of precipitation scavenging and emissions from wildfires are needed to correctly predict deposition, which is critical for determining the climate impacts of aerosols that originate from fires.

  20. Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau

    Science.gov (United States)

    Kopacz, M.; Mauzerall, D. L.; Wang, J.; Leibensperger, E. M.; Henze, D. K.; Singh, K.

    2011-03-01

    The remote and high elevation regions of central Asia are influenced by black carbon (BC) emissions from a variety of locations. BC deposition contributes to melting of glaciers and questions exist, of both scientific and policy interest, as to the origin of the BC reaching the glaciers. We use the adjoint of the GEOS-Chem model to identify the location from which BC arriving at a variety of locations in the Himalayas and Tibetan Plateau originates. We then calculate its direct and snow-albedo radiative forcing. We analyze the seasonal variation in the origin of BC using an adjoint sensitivity analysis, which provides a detailed map of the location of emissions that directly contribute to black carbon concentrations at receptor locations. We find that emissions from northern India and central China contribute the majority of BC to the Himalayas, although the precise location varies with season. The Tibetan Plateau receives most BC from western and central China, as well as from India, Nepal, the Middle East, Pakistan and other countries. The magnitude of contribution from each region varies with season and receptor location. We find that sources as varied as African biomass burning and Middle Eastern fossil fuel combustion can significantly contribute to the BC reaching the Himalayas and Tibetan Plateau. We compute radiative forcing in the snow-covered regions and find the forcing due to the BC induced snow-albedo effect to vary from 5-15 W m-2 within the region, an order of magnitude larger than radiative forcing due to the direct effect, and with significant seasonal variation in the northern Tibetan Plateau. Radiative forcing from reduced snow albedo likely accelerates glacier melting. Our analysis may help inform mitigation efforts to slow the rate of glacial melt by identifying regions that make the largest contributions to BC deposition in the Himalayas and Tibetan Plateau.

  1. Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    M. Kopacz

    2011-03-01

    Full Text Available The remote and high elevation regions of central Asia are influenced by black carbon (BC emissions from a variety of locations. BC deposition contributes to melting of glaciers and questions exist, of both scientific and policy interest, as to the origin of the BC reaching the glaciers. We use the adjoint of the GEOS-Chem model to identify the location from which BC arriving at a variety of locations in the Himalayas and Tibetan Plateau originates. We then calculate its direct and snow-albedo radiative forcing. We analyze the seasonal variation in the origin of BC using an adjoint sensitivity analysis, which provides a detailed map of the location of emissions that directly contribute to black carbon concentrations at receptor locations. We find that emissions from northern India and central China contribute the majority of BC to the Himalayas, although the precise location varies with season. The Tibetan Plateau receives most BC from western and central China, as well as from India, Nepal, the Middle East, Pakistan and other countries. The magnitude of contribution from each region varies with season and receptor location. We find that sources as varied as African biomass burning and Middle Eastern fossil fuel combustion can significantly contribute to the BC reaching the Himalayas and Tibetan Plateau. We compute radiative forcing in the snow-covered regions and find the forcing due to the BC induced snow-albedo effect to vary from 5–15 W m−2 within the region, an order of magnitude larger than radiative forcing due to the direct effect, and with significant seasonal variation in the northern Tibetan Plateau. Radiative forcing from reduced snow albedo likely accelerates glacier melting. Our analysis may help inform mitigation efforts to slow the rate of glacial melt by identifying regions that make the largest contributions to BC deposition in the Himalayas and Tibetan Plateau.

  2. Impact of California's Air Pollution Laws on Black Carbon and their Implications for Direct Radiative Forcing

    Science.gov (United States)

    Bahadur, R.; Feng, Y.; Russell, L. M.; Ramanathan, V.

    2010-12-01

    We examine the temporal and the spatial trends in the concentrations of black carbon (BC) - recorded by the IMPROVE monitoring network for the past 20 years - in California. Annual average BC concentrations in California have decreased by about 50% from 0.46 μg m-3 in 1989 to 0.24 μgm-3 in 2008 compared to a corresponding reductions in diesel BC emissions (also about 50%) from a peak of 0.013 Tg Yr-1 in 1990 to 0.006 Tg Yr-1 by 2008. We attribute the observed negative trends to the deployment of diesel particulate filters. Our conclusion that the reduction in diesel emissions is the primary cause of the observed BC reduction is also substantiated by a significant decrease in the ratio of BC to non-BC aerosols. The absorption efficiency of aerosols at visible wavelengths - determined from the observed scattering coefficient and the observed BC - also decreased by about 50% leading to a model-inferred negative direct radiative forcing (a cooling effect) of -1.4 Wm-2 (±60%) over California. Figure 1 (a) Annual means of measured Black Carbon (left axis) and BC fossil fuel emissions (right axis) in California from 1985 to 2008. Error bars correspond to standard deviation between measurements at each station. Dashed lines indicate a linear fit. Aerosol measurements from the IMPROVE network, emission inventories from (1) CARB, (2) [Ito and Penner, 2005] (b) Annual means of BC measured in Southern (South of 35 N), Northern (North of 38 N), and Central California (c) Annual means of measured Sulfate, Nitrate, and OC from IMPROVE network.

  3. Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    M. Kopacz

    2010-09-01

    Full Text Available The remote and high elevation regions of central Asia are influenced by black carbon (BC emissions from a variety of locations. BC deposition contributes to melting of glaciers and questions exist, of both scientific and policy interest, as to the origin of the BC reaching the glaciers. We use the adjoint of the GEOS-Chem model to identify the location from which BC arriving at a variety of locations in the Himalayas and Tibetan Plateau originates. We then calculate its direct and snow-albedo radiative forcing. We analyze the seasonal variation in the origin of BC using an adjoint sensitivity analysis, which provides a detailed map of the location of emissions that directly contribute to black carbon concentrations at receptor locations. We find that emissions from northern India and central China contribute the majority of BC to the Himalayas, although the precise location varies with season. The Tibetan Plateau receives most BC from western and central China, as well as from India, Nepal, the Middle East, Pakistan and other countries. The magnitude of contribution from each region varies with season and receptor location. We find that sources as varied as African biomass burning and Middle Eastern fossil fuel combustion can significantly contribute to the BC reaching the Himalayas and Tibetan Plateau. We compute radiative forcing in the snow-covered regions and estimate the forcing due to the BC induced snow-albedo effect at about 5–15 W m−2 within the region, an order of magnitude larger than radiative forcing due to the direct effect, and with significant seasonal variation in the northern Tibetan Plateau. Radiative forcing from reduced snow albedo accelerates glacier melting. Our analysis can help inform mitigation efforts to slow the rate of glacial melt by identifying regions that make the largest contributions to BC deposition in the Himalayas and Tibetan Plateau.

  4. Sorption and Desorption of Phenanthrene to Black Carbon on Crop Soil from the South-North Water Diversion Project in China

    Directory of Open Access Journals (Sweden)

    Rong Hao

    2014-07-01

    Full Text Available The water quality of South-North Water Diversion Project (SNWDP has attracted more and more attention. Polycyclic Aromatic Hydrocarbons (PAHs in soils strongly sorb to black carbon. In this study, adsorption and desorption characteristics and isotherm of phenanthrene to black carbon in SNWDP crop soils were studied extensively. The results showed that the sorption and desorption of phenanthrene to black carbon were nonlinear. Freundlich model could fit the sorption and desorption data of BC well. Meantime, desorption process exhibited varied apparent sorption-desorption hysteresis. It can be inferred that BC of crop soils in SNWDP plays a significant role in reducing the bioavailability and toxicity of phenanthrene through sorption capacity and desorption hysteresis.

  5. Canonical Ensemble Model for Black Hole Horizon of Schwarzschild–de Sitter Black Holes Quantum Tunnelling Radiation

    Indian Academy of Sciences (India)

    W. X. Zhong

    2014-09-01

    In this paper, we use the canonical ensemble model to discuss the radiation of a Schwarzschild–de Sitter black hole on the black hole horizon. Using this model, we calculate the probability distribution from function of the emission shell. And the statistical meaning which compare with the distribution function is used to investigate the black hole tunnelling radiation spectrum.We also discuss the mechanism of information flowing from the black hole.

  6. Improvement of the Rotary Dryers of Wet Pelletized Oil-Furnace Carbon Blacks

    Directory of Open Access Journals (Sweden)

    Zečević, M

    2010-05-01

    Full Text Available Due to the demand for higher production capacity and natural-gas energy savings, improvements were made to the rotary dryers in the drying process of wet pelletized oil-furnace carbon blacks. Since the rotary dryers were originally designed for drying semi-wet pelletized oil-furnace carbon blacks, they did not entirely satisfy optimal conditions for drying wet pelletized oil-furnace carbon blacks. Figure 1 shows the drying principle with key dimensions. The energy for drying the wet pelletized oil-furnace carbon blacks was provided by natural gas combustion in an open-furnace system with an uncontrolled feed of combustion air. Improvements on the rotary dryers were carried out by adjusting the excess oxygen in the gases passing through the butterfly valve on the dryer exhaust stack. By regulating the butterfly valve on the dryer exhaust stack, and applying the prescribed operations for drying wet pelletized oil furnace carbon blacks, the excess oxygen in the tail gases was adjusted in the range of φ = 3.0 % and 5.0 %, depending on the type of oil-furnace carbon blacks. Suggested also is installation of a direct-reverse automatic butterfly valve on the dryer exhaust stack to automatically determine the volume fraction of oxygen in the tail gas, and the volume flow rate of natural gas for combustion. The results the improvements carried out are shown in Tables 3 to 5. Table 2 shows the thermal calculations for the hood of the rotary dryer. Preheating of the process water in the temperature range of 70 °C and 80 °C is also recommended using the net heat from the oil-furnace process for wet pelletization. The results of preheating the process water are shown in Table 1. Depending on the type of oil-furnace carbon black, the aforementioned improvements resulted in natural gas energy savings ranging from 25 % to 35 % in relation to the average natural gas requirement in the drying process, and thus a reduction in carbon emissions of up to 40

  7. Seasonal and diurnal variations of black carbon and organic carbon aerosols in Bangkok

    Science.gov (United States)

    Sahu, L. K.; Kondo, Y.; Miyazaki, Y.; Pongkiatkul, Prapat; Kim Oanh, N. T.

    2011-08-01

    Measurements of black carbon (BC) and organic carbon (OC) were conducted in Bangkok during 2007-2008. Annual trends of BC and OC show strong seasonality with lower and higher concentrations during wet and dry seasons, respectively. Flow of cleaner air, wet removal, and negligible biomass burning resulted in the lowest concentrations of aerosols in the wet season. In addition to anthropogenic sources, long-range transport and biomass burning caused higher concentrations in the dry and hot seasons, respectively. Despite extensive biomass burning in the hot season, moderate levels of aerosols were due to the mixing with air masses from the Pacific Ocean. Diurnal distributions exhibit peaks during rush hour marked by minima in the OC/BC ratio and stagnant wind flow. The lowest concentrations in the afternoon hours could be due to deeper planetary boundary layer and reduced traffic. Overall, the concentrations of both BC and OC decrease with the increase in wind speed. The weekend effects, due to reduced emission during weekends, in the concentrations of both BC and OC were significant. Therefore, stricter abatement in vehicular emissions could substantially reduce pollution. A slope of ΔBC/ΔCO of 9.8 ngm-3 ppbv-1 for the wet season represents the emission ratio from vehicular sources. The highest of ΔOC/ΔBC (3 μg μg-1) in the hot season was due to the predominant influence of biomass burning and significant formation of secondary OC. The levels of BC and OC in Bangkok fall within the ranges of their concentrations measured in the major cities of East Asia.

  8. Black carbon and carbon monoxide over Bay of Bengal during W_ICARB: Source characteristics

    Science.gov (United States)

    Girach, I. A.; Nair, Vijayakumar S.; Babu, S. Suresh; Nair, Prabha R.

    2014-09-01

    The ship borne measurements of near-surface black carbon (BC) and carbon monoxide (CO) were carried out over Bay of Bengal (BoB) during the winter period of 2009 under W_ICARB, the second phase of ‘Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB)'. The CO mixing ratio and BC mass concentration varied in the ranges of 80-480 ppbv and 75-10,000 ng m-3, respectively over this marine region. The BC and CO showed similar variations over northern BoB where airmass from Indo-Gangetic Plain (IGP) region prevailed during the observations period leading to a very strong positive correlation. The association of BC and CO was poor over the eastern and southern part of BoB could be due to the removal of BC aerosols by rain and/or processes of dilution and mixing while transported over to BoB. The highest value of CO observed over eastern BoB was partially due to biomass burning over East Asia. The BC/CO ratio for IGP airmass found to be 20.3 ng m-3 ppb-1 and ∼16 ng m-3 ppb-1 during winter and pre-monsoon, respectively which indicate the role of biomass burning as the source of BC over the region. Based on the emission flux of CO from various inventories and observed BC/CO ratios during pre-monsoon and winter, the BC emission for India is estimated to be in the range of 0.78-1.23 Tg year-1. The analysis of scavenging of BC revealed the loss rate of BC due to relative humidity 0.39 ± 0.08 ng m-3 ppb-1 RH (%)-1 over northern BoB and 0.53 ± 0.04 ng m-3 ppb-1 RH (%)-1 over the southern-BoB during winter.

  9. Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black

    KAUST Repository

    Zhang, Xiaoyuan

    2014-02-04

    Activated carbon (AC) is a useful and environmentally sustainable catalyst for oxygen reduction in air-cathode microbial fuel cells (MFCs), but there is great interest in improving its performance and longevity. To enhance the performance of AC cathodes, carbon black (CB) was added into AC at CB:AC ratios of 0, 2, 5, 10, and 15 wt % to increase electrical conductivity and facilitate electron transfer. AC cathodes were then evaluated in both MFCs and electrochemical cells and compared to reactors with cathodes made with Pt. Maximum power densities of MFCs were increased by 9-16% with CB compared to the plain AC in the first week. The optimal CB:AC ratio was 10% based on both MFC polarization tests and three electrode electrochemical tests. The maximum power density of the 10% CB cathode was initially 1560 ± 40 mW/m2 and decreased by only 7% after 5 months of operation compared to a 61% decrease for the control (Pt catalyst, 570 ± 30 mW/m2 after 5 months). The catalytic activities of Pt and AC (plain or with 10% CB) were further examined in rotating disk electrode (RDE) tests that minimized mass transfer limitations. The RDE tests showed that the limiting current of the AC with 10% CB was improved by up to 21% primarily due to a decrease in charge transfer resistance (25%). These results show that blending CB in AC is a simple and effective strategy to enhance AC cathode performance in MFCs and that further improvement in performance could be obtained by reducing mass transfer limitations. © 2014 American Chemical Society.

  10. Black carbon emission reduction strategies in healthcare industry for effective global climate change management.

    Science.gov (United States)

    Raila, Emilia Mmbando; Anderson, David O

    2017-04-01

    Climate change remains one of the biggest threats to life on earth to date with black carbon (BC) emissions or smoke being the strongest cause after carbon dioxide (CO2). Surprisingly, scientific evidence about black carbon emissions reduction in healthcare settings is sparse. This paper presents new research findings on the reduction of black carbon emissions from an observational study conducted at the UN Peacekeeping Operations (MINUSTAH) in Haiti in 2014. Researchers observed 20 incineration cycles, 30 minutes for each cycle of plastic and cardboard sharps healthcare waste (HCW) containers ranged from 3 to 14.6 kg. The primary aim was to determine if black carbon emissions from healthcare waste incineration can be lowered by mainstreaming the use of cardboard sharps healthcare waste containers instead of plastic sharps healthcare waste containers. Similarly, the study looks into whether burning temperature was associated with the smoke levels for each case or not. Independent samples t-tests demonstrated significantly lower black carbon emissions during the incineration of cardboard sharps containers (6.81 ± 4.79% smoke) than in plastic containers (17.77 ± 8.38% smoke); a statistically significant increase of 10.96% smoke (95% Confidence Interval ( CI) [4.4 to 17.5% smoke], p = 0.003). Correspondingly, lower bottom burner temperatures occurred during the incineration of cardboard sharps containers than in plastic (95% Cl [16 to 126°C], p = 0.014). Finally, we expect the application of the new quantitative evidence to form the basis for policy formulation, mainstream the use of cardboard sharps containers and opt for non-incineration disposal technologies as urgent steps for going green in healthcare waste management.

  11. Black Carbon Flux Across the Himalaya through the Kali Gandaki Valley in Nepal

    Science.gov (United States)

    Dhungel, S.; Panday, A. K.; Mahata, K. S.

    2013-12-01

    Significant increases in black carbon concentration have been observed in the recent years over the Indo-Gangetic plain, the foothills of the Himalaya, as well as the high Himalaya and the Tibetan Plateau. The concentration of increased black carbon can be significantly correlated to the albedo effect and the warming of atmosphere at high altitudes due to the deposition of black carbon in the snow clad mountains. It is hypothesized that this deposition contributes to increased melting of Himalayan glaciers and snowfields. Satellite images show increasing amounts of aerosol haze over the Indo-Gangetic plains which penetrate into the Himalayan valleys. But how does it reach the high altitude of the Himalayan cryosphere? To date, mechanisms of transport upwind of the valley from the Indo-Gangetic plains up to the Himalaya have not been thoroughly investigated. We hypothesize that wind systems in the deep river valleys that cut across the Himalaya, such as the Arun valley and Kali Gandaki valley, serve as important pathways for pollutant transport. In 2010 the University of Virginia, in collaboration with ICIMOD and Nepal Wireless, established an atmospheric research station in Jomsom, Nepal (28.78N, 83.42E, 2900 m.a.s.l.). The station is equipped to measure black carbon (BC), carbon monoxide (CO), and ozone concentrations. It also has an automated weather station, a filter sampler, and a NASA Aeronet Sunphotometer. Here we use our observations in Jomsom to present an estimate of the annual flux of black carbon from the Indo-Gangetic plains to the Tibetan Plateau through the Kali Gandaki valley. In this way, we gain insight into the significance of deep valleys and their role as pathways for pollutant transport.

  12. Penelitian pengaruh naphthenic oil dan carbon black terhadap sifat kekerasan lis kaca mobil

    Directory of Open Access Journals (Sweden)

    Any Setyaningsih

    1999-07-01

    Full Text Available This research have a purpose to know influence naphthenic oil and car bon black about properties hardness weather strip for auto mobile. Compound wea ther strip for auto mobile make for Natural Rubber (RSS and sintetic rubber (SBR 1502 with in creasing ingrediens such plasticizer, activator, filler, anti oxidant, accelerator and vulkanizing agent. Compount formula making variation naphthenic oil 3,5 and 7 part along with carbon black 45,50 and 55 part result hardness test with value 67 shore A for compount with naphthenic oil 7 part and carbon black 50 part and after perform make in to fill requrements SNI 1490 – 89 A weather strip auto mobile.

  13. The dynamical model and quantization of the Schwarzschild black hole

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The mass of the Schwarzschild black hole, an observable quantity, is defined as a dynamical variable, while the corresponding conjugate is considered as a general- ized momentum. Then a two-dimensional phase space is composed of the two variables. In the two-dimensional phase space, a harmonic oscillator model of the Schwarzschild black hole is obtained by a canonical transformation. By this model, the mass spectrum of the Schwarzschild black hole is firstly obtained. Further the horizon area operator, quantum area spectrum and entropy are obtained in the Fock representation. Lastly, the wave function of the horizon area is derived also.

  14. Near-horizon states of black holes and Calogero models

    Indian Academy of Sciences (India)

    B Basu-Mallick; Pijush K Ghosh; Kumar S Gupta

    2004-03-01

    We find self-adjoint extensions of the rational Calogero model in the presence of the harmonic interaction. The corresponding eigenfunctions may describe the near-horizon quantum states of certain types of black holes.

  15. Habitat suitability index model for black bear (Ursus americanus)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This descriptive model applies only to black bear in the coastal forests and adjacent vegetative communities, which extend from Afognak Island and the shores of...

  16. Temporal variations of black carbon during haze and non-haze days in Beijing

    Science.gov (United States)

    Liu, Qingyang; Ma, Tangming; Olson, Michael R.; Liu, Yanju; Zhang, Tingting; Wu, Yu; Schauer, James J.

    2016-09-01

    Black carbon (BC) aerosol has been identified as one of key factors responsible for air quality in Beijing. BC emissions abatement could help slow regional climate change while providing benefits for public health. In order to quantify its variations and contribution to air pollution, we systematically studied real-time measurements of equivalent black carbon (eBC) in PM2.5 aerosols at an urban site in Beijing from 2010 to 2014. Equivalent black carbon (eBC) is used instead of black carbon (BC) for data derived from Aethalometer-31 measurement. Equivalent BC concentrations showed significant temporal variations with seasonal mean concentration varying between 2.13 and 5.97 μg m‑3. The highest concentrations of eBC were found during autumn and winter, and the lowest concentrations occurred in spring. We assessed the temporal variations of eBC concentration during haze days versus non-haze days and found significantly lower eBC fractions in PM2.5 on haze days compared to those on non-haze days. Finally, we observed a clear inverse relationship between eBC and wind speed. Our results show that wind disperses PM2.5 more efficiently than eBC; so, secondary aerosols are not formed to the same degree as primary aerosols over the same transport distance during windy conditions.

  17. Analysis of the Interphase on Carbon Black Formed in High Voltage Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza; Christiansen, Ane Sælland; Scipioni, Roberto

    2015-01-01

    Carbon black (CB) additives commonly used to increase the electrical conductivity of electrodes in Li-ion batteries are generally believed to be electrochemically inert additives in cathodes. Decomposition of electrolyte in the surface region of CB in Li-ion cells at high voltages up to 4.9 V...

  18. Quantification methods of Black Carbon: Comparison of Rock-Eval analysis with traditional methods

    NARCIS (Netherlands)

    Poot, A.; Quik, J.T.K.; Veld, H.; Koelmans, A.A.

    2009-01-01

    Black Carbon (BC) quantification methods are reviewed, including new Rock-Eval 6 data on BC reference materials. BC has been reported to have major impacts on climate, human health and environmental quality. Especially for risk assessment of persistent organic pollutants (POPs) it is important to ac

  19. Effects of prenatal exposure to nanoparticles titanium dioxide and carbon black on female germline DNA stability

    DEFF Research Database (Denmark)

    Boisen, Anne Mette Zenner

    are actively dividing. The aim of this PhD study was to determine if two widely used nanoparticles titanium dioxide UV-Titan and carbon black Printex 90 induce ESTR mutations in the germ cells of prenatally exposed females. Pregnant generation P mice were exposed to ~42 mg UV-Titan/m3/1 h/d during gestation...

  20. Influence of nanoclay-carbon black hybrid fillers on cure and properties of natural rubber compounds

    NARCIS (Netherlands)

    Sapkota, J.; Poikelispää, M.; Das, A.; Dierkes, W.K.; Vuorinen, J.

    2013-01-01

    The influence of organically modified nanoclay-carbon black (CB) hybrid filler on the curing behavior of natural rubber (NR) was explored in this investigation. Here an effort was paid to understand the curing kinetics of organomodified nanoclay filled rubber compounds. On the basis of two different

  1. Electrical Percolation of Carbon Black Filled Poly (ethylene oxide) Composites in Relation to the Matrix Morphology

    Institute of Scientific and Technical Information of China (English)

    Gen Shui CHENG; Ji Wen HU; Ming Qiu ZHANG; Ming Wei LI; Ding Shu XIAO; Min Zhi RONG

    2004-01-01

    The present work studies the electrical conduction performance of carbon black (CB)filled poly(ethylene oxide) (PEO) composites. The addition of CB leads to reduced matrix crystallinity as the fillers which are partly situated inside the lamellae and hinder the growth of PEO crystallites. As a result, the electrical percolation behavior is related with the matrix morphology.

  2. Evaluation of Methods for the Determination of Black Carbon Emissions from an Aircraft Gas Turbine Engine

    Science.gov (United States)

    The emissions from aircraft gas turbine engines consist of nanometer size black carbon (BC) particles plus gas-phase sulfur and organic compounds which undergo gas-to-particle conversion downstream of the engine as the plume cools and dilutes. In this study, four BC measurement ...

  3. Investigation of reinforcement of the modified carbon black from wasted tires by nuclear magnetic resonance

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jie; YANG Yong-rong; REN Xiao-hong; STAPF Siegfried

    2006-01-01

    Pyrolysis has the potential of transforming waste into recyclable products. Pyrolytic carbon black (PCB) is one of the most important products from the pyrolysis of used tires. Techniques for surface modifications of PCB have been developed. One of the most significant applications for modified PCB is to reinforce the rubber matrix to obtain high added values. The transverse relaxation and the chain dynamics of vulcanized rubber networks with PCB and modified PCB were studied and compared with those of the commercial carbon blacks using selective 1H transverse relaxation (T2) experiments and dipolar correlation effect (DCE) experiments on the stimulated echo. Demineralization and coupling agent modification not only intensified the interactions between the modified PCB and the neighboring polyisoprene chains, but also increased the chemical cross-link density of the vulcanized rubber with modified PCB. The mechanical testing of the rubbers with different kinds of carbon blacks showed that the maximum strain of the rubber with modified PCB was improved greatly. The mechanical testing results confirmed the conclusion obtained by nuclear magnetic resonance (NMR). PCB modified by the demineralization and NDZ-105 titanate coupling agent could be used to replace the commercial semi-reinforcing carbon black.

  4. Temporal variations of black carbon during haze and non-haze days in Beijing.

    Science.gov (United States)

    Liu, Qingyang; Ma, Tangming; Olson, Michael R; Liu, Yanju; Zhang, Tingting; Wu, Yu; Schauer, James J

    2016-09-16

    Black carbon (BC) aerosol has been identified as one of key factors responsible for air quality in Beijing. BC emissions abatement could help slow regional climate change while providing benefits for public health. In order to quantify its variations and contribution to air pollution, we systematically studied real-time measurements of equivalent black carbon (eBC) in PM2.5 aerosols at an urban site in Beijing from 2010 to 2014. Equivalent black carbon (eBC) is used instead of black carbon (BC) for data derived from Aethalometer-31 measurement. Equivalent BC concentrations showed significant temporal variations with seasonal mean concentration varying between 2.13 and 5.97 μg m(-3). The highest concentrations of eBC were found during autumn and winter, and the lowest concentrations occurred in spring. We assessed the temporal variations of eBC concentration during haze days versus non-haze days and found significantly lower eBC fractions in PM2.5 on haze days compared to those on non-haze days. Finally, we observed a clear inverse relationship between eBC and wind speed. Our results show that wind disperses PM2.5 more efficiently than eBC; so, secondary aerosols are not formed to the same degree as primary aerosols over the same transport distance during windy conditions.

  5. Black carbon and polycyclic aromatic hydrocarbons (PAHs) in surface sediments of China's marginal seas

    Science.gov (United States)

    Kang, Yanju; Wang, Xuchen; Dai, Minhan; Feng, Huan; Li, Anchun; Song, Qian

    2009-05-01

    This study investigates the distribution of black carbon (BC) and its correlation with total polycyclic aromatic hydrocarbons (ΣPAH) in the surface sediments of China’s marginal seas. BC content ranges from cycling in China’s marginal seas.

  6. Nanoscale Interactions between Engineered Nanomaterials and Black Carbon (Biochar) in Soil

    Science.gov (United States)

    An understanding of the interactions between engineered nanomaterials (NMs) and soil constituents, and a comprehension of how these interactions may affect biological uptake and toxicity are currently lacking. Charcoal black carbon is a normal constituent of soils due to fire history, and can be pre...

  7. Effects of occupational exposure to carbon black on peripheral white blood cell counts and lymphocyte subsets

    NARCIS (Netherlands)

    Dai, Yufei; Niu, Yong; Duan, Huawei; Bassig, Bryan A; Ye, Meng; Zhang, Xiao; Meng, Tao; Bin, Ping; Jia, Xiaowei; Shen, Meili; Zhang, Rong; Hu, Wei; Yang, Xiaofa; Vermeulen, Roel; Silverman, Debra; Rothman, Nathaniel; Lan, Qing; Yu, Shanfa; Zheng, Yuxin

    2016-01-01

    The International Agency for Research on Cancer has classified carbon black (CB) as a possible (Group 2B) human carcinogen. Given that most CB manufacturing processes result in the emission of various types of chemicals, it is uncertain if the adverse health effects that have been observed in CB-exp

  8. Effect of carbon black nanoparticles on methane/air explosions: Influence at low initial turbulence

    Science.gov (United States)

    Torrado, David; Glaude, Pierre-Alexandre; Dufaud, Olivier

    2017-06-01

    Nanoparticles are widely used in industrial applications as additives to modify materials properties such as resistance, surface, rheology or UV-radiation. As a consequence, the quantification and characterization of nanoparticles have become almost compulsory, including the understanding of the risks associated to their use. Since a few years ago, several studies of dust explosion properties involving nano-sized powder have been published. During the production and industrial use of nanoparticles, simultaneous presence of gas / vapor / solvents and dispersed nanoparticles mixtures might be obtained, increasing the risk of a hybrid mixture explosion. The aim of this work is to study the severity of the explosion of carbon black nanoparticles/methane mixtures and understand the influence of adding nanopowders on the behavior of the gas explosions. These results are also useful to understand the influence of soot on the efficiency of the gas combustion. Two grades of carbon black nanoparticles (ranging from 20 to 300 nm average diameter) have been mixed with methane. Tests have been performed on these mixtures in a standard 20 L explosion sphere. Regarding the scale precision, the lowest concentration of carbon black nanoparticles was set at 0.5 g.m-3. Tests were also performed at 2.5 g.m-3, which is still far below 60 g.m-3, the minimum explosive concentration of such powders previously determined in our laboratory. The influence of carbon black particles on the severity of the explosions has been compared to that of pure gas. It appears that the use of carbon black nanoparticles increases the explosion overpressure for lean methane mixtures at low initial turbulences by c. 10%. Similar results were obtained for high initial turbulent systems. Therefore, it seems that carbon black nanoparticles have an impact on the severity of the explosion even for quiescent systems, as opposed to systems involving micro-sized powders that require dispersion at high turbulence

  9. Simulation of black carbon aerosol distribution over India: A sensitivity study to different convective schemes

    Science.gov (United States)

    Ghosh, Sudipta; Dey, Sagnik; Das, Sushant; Venkataraman, Chandra; Patil, Nitin U.

    2017-04-01

    Black carbon (BC) aerosols absorb solar radiation, thereby causing a warming at the top-of-the-atmosphere (TOA) in contrast to most of the other aerosol species that scatter radiation causing a cooling at TOA. BC is considered to be an important contributor of global warming, second only to CO2 with a net radiative forcing of 1.1 w/m2. They have important regional climate effects, because of their spatially non-uniform heating and cooling. So it is very important to understand the spatio-temporal distribution of BC over India. In this study, we have used a regional climate model RegCM4.5 to simulate BC distribution over India with a focus on the BC estimation. The importance of incorporation of regional emission inventory has been shown and the sensitivity of BC distribution to various convective schemes in the model has been explored. The model output has been validated with in-situ observations. It is quite evident that regional inventory is capturing larger columnar burden of BC and OC than the global inventory. The difference in BC burden is clear at many places with the largest difference (in the order from 2 x 10-11 kg m-2 sec-1 in global inventory to 4 x 10-11 kg m-2 sec-1 in regional inventory) being observed over the Indo-Gangetic Basin. This difference is mainly attributed to the local sources like kerosene lamp burning, residential cooking on solid biomass fuel and agricultural residue burning etc., that are not considered in the global inventory. The difference is also noticeable for OC. Thus BC burden has increased with incorporation of regional emission inventory in the model, suggesting the importance of regional inventory in improved simulation and estimation of aerosols in this region. BC distribution is also sensitive to choice of scheme with Emanuel scheme capturing a comparatively smaller BC burden during the monsoon than Tiedtke scheme. Further long-term simulation with customized model is required to examine impact of BC. Keywords: Black

  10. Modelling Sublimation of Carbon Dioxide

    Science.gov (United States)

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  11. Modelling Sublimation of Carbon Dioxide

    Science.gov (United States)

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  12. Impact of snow darkening via dust, black carbon, and organic carbon on boreal spring climate in the Earth system

    Science.gov (United States)

    Yasunari, Teppei J.; Koster, Randal D.; Lau, William K. M.; Kim, Kyu-Myong

    2015-06-01

    Dust, black carbon (BC), and organic carbon (OC) aerosols, when deposited onto snow, are known to reduce the albedo of the snow (i.e., snow darkening effect (SDE)). Here using the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) with aerosol tracers and a state-of-the-art snow darkening module (GOddard SnoW Impurity Module: GOSWIM) for the land surface, we examine the role of SDE on climate in the boreal spring snowmelt season. SDE is found to produce significant surface warming (over 15 W m-2) over broad areas in midlatitudes, with dust being the most important contributor to the warming in central Asia and the western Himalayas and with BC having larger impact in the Europe, eastern Himalayas, East Asia, and North America. The contribution of OC to the warming is generally low but still significant mainly over southeastern Siberia, northeastern East Asia, and western Canada (~19% of the total solar visible absorption by these snow impurities). The simulations suggest that SDE strengthens the boreal spring water cycle in East Asia through water recycling and moisture advection from the ocean and contributes to the maintenance of dry conditions in parts of a region spanning Europe to central Asia, partially through feedback on the model's background climatology. Overall, our study suggests that the existence of SDE in the Earth system associated with dust, BC, and OC contributes significantly to enhanced surface warming over continents in northern hemisphere midlatitudes during boreal spring, raising the surface skin temperature by approximately 3-6 K near the snowline.

  13. Morphology and Optical Properties of Black-Carbon Particles Relevant to Engine Emissions

    Science.gov (United States)

    Michelsen, H. A.; Bambha, R.; Dansson, M. A.; Schrader, P. E.

    2013-12-01

    Black-carbon particles are believed to have a large influence on climate through direct radiative forcing, reduction of surface albedo of snow and ice in the cryosphere, and interaction with clouds. The optical properties and morphology of atmospheric particles containing black carbon are uncertain, and characterization of black carbon resulting from engines emissions is needed. Refractory black-carbon particles found in the atmosphere are often coated with unburned fuel, sulfuric acid, water, ash, and other combustion by-products and atmospheric constituents. Coatings can alter the optical and physical properties of the particles and therefore change their optical properties and cloud interactions. Details of particle morphology and coating state can also have important effects on the interpretation of optical diagnostics. A more complete understanding of how coatings affect extinction, absorption, and incandescence measurements is needed before these techniques can be applied reliably to a wide range of particles. We have investigated the effects of coatings on the optical and physical properties of combustion-generated black-carbon particles using a range of standard particle diagnostics, extinction, and time-resolved laser-induced incandescence (LII) measurements. Particles were generated in a co-flow diffusion flame, extracted, cooled, and coated with oleic acid. The diffusion flame produces highly dendritic soot aggregates with similar properties to those produced in diesel engines, diffusion flames, and most natural combustion processes. A thermodenuder was used to remove the coating. A scanning mobility particle sizer (SMPS) was used to monitor aggregate sizes; a centrifugal particle mass analyzer (CPMA) was used to measure coating mass fractions, and transmission electron microscopy (TEM) was used to characterize particle morphologies. The results demonstrate important differences in optical measurements between coated and uncoated particles.

  14. Changes in Snow Albedo Resulting from Snow Darkening Caused by Black Carbon

    Science.gov (United States)

    Engels, J.; Kloster, S.; Bourgeois, Q.

    2014-12-01

    We investigate the potential impact of snow darkening caused by pre-industrial and present-day black carbon (BC) emissions on snow albedo and subsequently climate. To assess this impact, we implemented the effect of snow darkening caused by BC emitted from natural as well as anthropogenic sources into the Max Planck Institute for Meteorology Earth System Model (MPI-M ESM). Considerable amounts of BC are emitted e.g. from fires and are transported through the atmosphere for several days before being removed by rain or snow precipitation in snow covered regions. Already very small quantities of BC reduce the snow reflectance significantly, with consequences for snow melting and snow spatial coverage. We implemented the snow albedo reduction caused by BC contamination and snow aging in the one layer land surface component (JSBACH) of the atmospheric general circulation model ECHAM6, developed at MPI-M. For this we used the single-layer simulator of the SNow, Ice, and Aerosol Radiation (SNICAR-Online (Flanner et al., 2007); http://snow.engin.umich.edu) model to derive snow albedo values for BC in snow concentrations ranging between 0 and 1500 ng(BC)/g(snow) for different snow grain sizes for the visible (0.3 - 0.7 μm) and near infrared range (0.7 - 1.5 μm). As snow grains grow over time, we assign different snow ages to different snow grain sizes (50, 150, 500, and 1000 μm). Here, a radius of 50 μm corresponds to new snow, whereas a radius of 1000 μm corresponds to old snow. The deposition rates of BC on snow are prescribed from previous ECHAM6-HAM simulations for two time periods, pre-industrial (1880-1889) and present-day (2000-2009), respectively. We perform a sensitivity study regarding the scavenging of BC by snow melt. To evaluate the newly implemented albedo scheme we will compare the modeled black carbon in snow concentrations to observed ones. Moreover, we will show the impact of the BC contamination and snow aging on the simulated snow albedo. The

  15. Tensor Network Models of Unitary Black Hole Evaporation

    CERN Document Server

    Leutheusser, Samuel

    2016-01-01

    We introduce a general class of toy models to study the quantum information-theoretic properties of black hole radiation. The models are governed by a set of isometries that specify how microstates of the black hole at a given energy evolve to entangled states of a tensor product black-hole/radiation Hilbert space. The final state of the black hole radiation is conveniently summarized by a tensor network built from these isometries. We introduce a set of quantities generalizing the Renyi entropies that provide a complete set of bipartite/multipartite entanglement measures, and give a general formula for the average of these over initial black hole states in terms of the isometries defining the model. For models where the dimension of the final tensor product radiation Hilbert space is the same as that of the space of initial black hole microstates, the entanglement structure is universal, independent of the choice of isometries. In the more general case, we find that models which best capture the "information...

  16. Fine Particulate Matter in São Paulo During the Winter Months: Concentrations and Black Carbon Comparison Between Techniques and Equipments

    Science.gov (United States)

    Miranda, R. M.; Andrade, M. D. F.

    2014-12-01

    During the winter months in São Paulo, Brazil, particulate matter and black carbon were monitored using a Dust Trak (TSI model 8533), a Black Carbon monitor (MAAP-Thermo) and a PM2.5 sampler (Partisol-Thermo). The concentrations were obtained every 5 minutes, from June to August 2014, for the first and second and every 12 hours for the third. The experiment took place in a site at the University of São Paulo which is located in the Southeast part of the Metropolitan Area of São Paulo (MASP). MASP is one of the biggest urban centers of the world, with more than 20 million inhabitants, 10 million vehicles and high values of some regulated pollutants, as particulate matter, especially in winter. Ambient fine particles associated with vehicle emissions have been linked to adverse health effects. Black carbon has a significant share of particulate mass concentrations. Previous studies showed a contribution of more than 30% for São Paulo. This year the climate was atypical in São Paulo. The summer was the driest of the last 30 years. The winter was hot and also dry. Dust trak monitor showed peaks of more than 120 μg/m3 for PM2.5. For a specific period, black carbon concentrations from the MAAP monitor were compared to black carbon measured by optical reflectance on teflon filters collected by the Partisol sampler. Monitor values were around 30% higher, but specific characteristics can influence this value. In the past, optical reflectance and thermal techniques for black carbon were compared. The reflectance technique showed higher results for the fine fraction than the thermal method. Now, reflectance is being compared to instrument measurements and results are also satisfactory.

  17. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2013-09-01

    Full Text Available Arctic haze is a seasonal phenomenon with high concentrations of accumulation-mode aerosols occurring in the Arctic in winter and early spring. Chemistry transport models and climate chemistry models struggle to reproduce this phenomenon, and this has recently prompted changes in aerosol removal schemes to remedy the modeling problems. In this paper, we show that shortcomings in current emission data sets are at least as important. We perform a 3 yr model simulation of black carbon (BC with the Lagrangian particle dispersion model FLEXPART. The model is driven with a new emission data set ("ECLIPSE emissions" which includes emissions from gas flaring. While gas flaring is estimated to contribute less than 3% of global BC emissions in this data set, flaring dominates the estimated BC emissions in the Arctic (north of 66° N. Putting these emissions into our model, we find that flaring contributes 42% to the annual mean BC surface concentrations in the Arctic. In March, flaring even accounts for 52% of all Arctic BC near the surface. Most of the flaring BC remains close to the surface in the Arctic, so that the flaring contribution to BC in the middle and upper troposphere is small. Another important factor determining simulated BC concentrations is the seasonal variation of BC emissions from residential combustion (often also called domestic combustion, which is used synonymously in this paper. We have calculated daily residential combustion emissions using the heating degree day (HDD concept based on ambient air temperature and compare results from model simulations using emissions with daily, monthly and annual time resolution. In January, the Arctic-mean surface concentrations of BC due to residential combustion emissions are 150% higher when using daily emissions than when using annually constant emissions. While there are concentration reductions in summer, they are smaller than the winter increases, leading to a systematic increase of

  18. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions

    Science.gov (United States)

    Stohl, A.; Klimont, Z.; Eckhardt, S.; Kupiainen, K.; Shevchenko, V. P.; Kopeikin, V. M.; Novigatsky, A. N.

    2013-09-01

    Arctic haze is a seasonal phenomenon with high concentrations of accumulation-mode aerosols occurring in the Arctic in winter and early spring. Chemistry transport models and climate chemistry models struggle to reproduce this phenomenon, and this has recently prompted changes in aerosol removal schemes to remedy the modeling problems. In this paper, we show that shortcomings in current emission data sets are at least as important. We perform a 3 yr model simulation of black carbon (BC) with the Lagrangian particle dispersion model FLEXPART. The model is driven with a new emission data set ("ECLIPSE emissions") which includes emissions from gas flaring. While gas flaring is estimated to contribute less than 3% of global BC emissions in this data set, flaring dominates the estimated BC emissions in the Arctic (north of 66° N). Putting these emissions into our model, we find that flaring contributes 42% to the annual mean BC surface concentrations in the Arctic. In March, flaring even accounts for 52% of all Arctic BC near the surface. Most of the flaring BC remains close to the surface in the Arctic, so that the flaring contribution to BC in the middle and upper troposphere is small. Another important factor determining simulated BC concentrations is the seasonal variation of BC emissions from residential combustion (often also called domestic combustion, which is used synonymously in this paper). We have calculated daily residential combustion emissions using the heating degree day (HDD) concept based on ambient air temperature and compare results from model simulations using emissions with daily, monthly and annual time resolution. In January, the Arctic-mean surface concentrations of BC due to residential combustion emissions are 150% higher when using daily emissions than when using annually constant emissions. While there are concentration reductions in summer, they are smaller than the winter increases, leading to a systematic increase of annual mean Arctic

  19. Heterogeneous atoms in laser-induced synthesis of carbon black

    Science.gov (United States)

    Popovici, E.; Gavrila Florescu, L.; Soare, I.; Scarisoreanu, M.; Sandu, I.; Prodan, G.; Fleaca, C. T.; Morjan, I.; Voicu, I.

    2009-03-01

    Based on a high temperature hydrocarbon/heterogeneous atoms system of well-established composition, the formation of carbon nanostructures by laser-induced pyrolysis is related to the presence of heteroatoms in the reactants. In this paper, the goal is to underline the influence of some heteroatoms on the morphology and functionalizing nanostructured carbon materials by changing both gas composition and experimental parameters, with the focus to drive these materials into a regime where they can naturally interface with the surrounding matter. To investigate, in the versatile laser pyrolysis method, how to in situ modulate - through the presence of heterogeneous atoms - the characteristics of carbon nanopowders claimed by specific application is a challenge. Some preliminary results confirm experimentally their particular behavior during interaction with polymer matrices of some nanocomposites.

  20. Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon

    Directory of Open Access Journals (Sweden)

    D. A. Lack

    2010-01-01

    Full Text Available The presence of clear coatings on atmospheric black carbon (BC particles is known to enhance the magnitude of light absorption by the BC cores. Based on calculations using core/shell Mie theory, we demonstrate the enhancement of light absorption (EAbs by atmospheric black carbon (BC when coated in mildly absorbing material (CBrown is reduced, relative to the enhancement by non-absorbing coatings (CClear. This reduction, sensitive to CBrown shell thickness and imaginary refractive index (RI, can be up to 50% for 400 nm radiation and 25% averaged across the visible radiation spectrum for reasonable core/shell diameters. The enhanced direct radiative forcing possible due to the enhancement effect of CClear is therefore reduced if the coating is absorbing. Additionally, the need to explicitly treat BC as an internal, as opposed to external, mixture with CBrown is shown to be important to the calculated single scatter albedo only whensub models treat BC as large spherical cores (>50 nm. For smaller BC cores (or fractal agglomerates consideration of the BC and CBrown as an external mixture leads to relatively small errors in the particle single scatter albedo of <0.03. It is often assumed that observation of an absorption Angstrom exponent (AAE >1 indicates non-BC absorption. Here, it is shown that BC cores coated in CClearcan reasonably have an AAE of up to 1.6, a result that complicates the attribution of observed light absorption to CBrown within ambient particles. However, an AAE<1.6 does not exclude the possibility of CBrown, rather CBrown cannot be confidently assigned unless AAE>1.6. Comparison of these results to some ambient AAE data shows that large-scale attribution of CBrown is a challenging task using current in-situ measurement methods. We suggest that coincident measurements of particle core and

  1. Release model for black liquor droplet; Mustalipeaepisaran vapautumismalli

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, J. [VTT Energy, Espoo (Finland)

    1997-10-01

    The release of sodium, potassium, chlorine and sulphur from black liquor droplets during pyrolysis, combustion and gasification is studied by modelling work. A model for drying, pyrolysis and swelling of black liquor has been developed earlier. A submodel for the release of sulphur, which takes place at temperatures below 500 deg C has been incorporated to this model. A previous model for the combustion and gasification of char particles has been further developed to account for the effect of sodium, potassium and chlorine. A model for the release of these components as function of time has been developed. (orig.)

  2. An overview of black carbon deposition and its radiative forcing over the Arctic

    Directory of Open Access Journals (Sweden)

    Ting-Feng Dou

    2016-09-01

    Full Text Available This paper gives an overview of the current understanding of the observations of black carbon (BC in snow and ice, and the estimates of BC deposition and its radiative forcing over the Arctic. Both of the observations and model results show that, in spring, the average BC concentration and the resulting radiative forcing in Russian Arctic > Canadian and Alaskan Arctic > Arctic Ocean and Greenland. The observed BC concentration presented a significant decrease trend from the Arctic coastal regions to the center of Arctic Ocean. In summer, due to the combined effects of BC accumulation and enlarged snow grain size, the averaged radiative forcing per unit area over the Arctic Ocean is larger than that over each sector of the Arctic in spring. However, because summer sea ice is always covered by a large fraction of melt ponds, the role of BC in sea ice albedo evolution during this period is secondary. Multi-model mean results indicate that the annual mean radiative forcing from all sources of BC in snow and ice over the Arctic was ∼0.17 W m−2. Wet deposition is the dominant removal mechanism in the Arctic, which accounts for more than 90% of the total deposition. In the last part, we discuss the uncertainties in present modeling studies, and suggest potential approaches to reduce the uncertainties.

  3. Climate response to externally mixed black carbon as a function of altitude

    Science.gov (United States)

    Samset, B. H.; Myhre, G.

    2015-04-01

    The climate response to the presence of black carbon (BC) aerosol at a given altitude in the atmosphere is investigated using a global circulation model. The vertical dependence of the efficiency with which BC exerts radiative forcing (RF) through the direct aerosol effect has previously been extensively studied. Here we use the Community Atmosphere Model version 4 atmospheric component of the National Center for Atmospheric Research Community Earth System model version 1.03 to calculate the three-dimensional response to a BC layer inserted at various altitudes. Simulations have been performed both for fixed sea surface temperatures and using a slab ocean setup to include the surface temperature response. We investigate the vertical profiles of RF exerted per gram of externally mixed BC due to both the direct and semidirect aerosol effects. Associated changes in cloud cover, relative humidity, and precipitation are discussed. The precipitation response to BC is decomposed into a fast, stability-related change and a slow, temperature-driven component. We find that while the efficiency of BC to exert positive RF due to the direct effect strengthens with altitude, as in previous studies, it is strongly offset by a negative semidirect effect. The net radiative perturbation of BC at top of atmosphere is found to be positive everywhere below the tropopause and negative above. The global, annual mean precipitation response to BC, after equilibration of a slab ocean, is found to be positive between the surface and 900 hPa but negative at all other altitudes.

  4. Design and synthesis of palladium/graphitic carbon nitride/carbon black hybrids as high-performance catalysts for formic acid and methanol electrooxidation

    Science.gov (United States)

    Qian, Huayu; Huang, Huajie; Wang, Xin

    2015-02-01

    Here we report a facile two-step method to synthesize high-performance palladium/graphitic carbon nitride/carbon black (Pd/g-C3N4/carbon black) hybrids for electrooxidizing formic acid and methanol. The coating of g-C3N4 on carbon black surface is realized by a low-temperature heating treatment, followed by the uniform deposition of palladium nanoparticles (Pd NPs) via a wet chemistry route. Owning to the significant synergistic effects of the individual components, the preferred Pd/g-C3N4/carbon black electrocatalyst exhibits exceptional forward peak current densities as high as 2155 and 1720 mA mg-1Pd for formic acid oxidation in acid media and methanol oxidation in alkaline media, respectively, far outperforming the commercial Pd-C catalyst. The catalyst also shows reliable stability, demonstrating that the newly-designed hybrids have great promise in constructing high-performance portable fuel cell systems.

  5. Soil Organic Carbon, Black Carbon, and Enzyme Activity Under Long-Term Fertilization

    Institute of Scientific and Technical Information of China (English)

    SHAO Xing-hua; ZHENG Jian-wei

    2014-01-01

    The present study aims to understand the effects of long-term fertilization on soil organic carbon (SOC), black carbon (BC), enzyme activity, and the relationships among these parameters. Paddy ifeld was continuously fertilized over 30 yr with nine different fertilizer treatments including N, P, K, NP, NK, NPK, 2NPK (two-fold NPK), NPK+manure (NPKM), and CK (no fertilization), N, 90 kg urea-N ha-1 yr-1; P, 45 kg triple superphosphate-P2O5 ha-1 yr-1; K, 75 kg potassium chloride-K2O ha-1 yr-1;and pig manure, 22 500 kg ha-1 yr-1. Soil samples were collected and determined for SOC, BC content, and enzyme activity. The results showed that the SOC in the NPKM treatment was signiifcantly higher than those in the K, P, and CK treatments. The lowest SOC content was found in the CK treatment. SOC content was similar in the N, NP, NK, NPK, 2NPK, and NPKM treatments. There was no signiifcant difference in BC content among different treatments. The BC-to-SOC ratios (BC/SOC) ranged from 0.50 to 0.63, suggesting that BC might originate from the same source. Regarding enzyme activity, NPK treatment had higher urease activity than NPKM treatment. The urease activity of NPKM treatment was signiifcantly higher than that of 2NPK, NP, N, P, K, CK, and NPKM treatment which produced higher activities of acid phosphatase, catalase, and invertase than all other treatments. Our results indicated that long-term fertilization did not signiifcantly affect BC content. Concurrent application of manure and mineral fertilizers increased SOC content and signiifcantly enhanced soil enzyme activities. Correlation analysis showed that catalase activity was signiifcantly associated with invertase activity, but SOC, BC, and enzyme activity levels were not signiifcantly correlated with one another. No signiifcant correlations were observed between BC and soil enzymes. It is unknown whether soil enzymes play a role in the decomposition of BC.

  6. Hydrogen production using thermocatalytic decomposition of methane on Ni30/activated carbon and Ni30/carbon black.

    Science.gov (United States)

    Srilatha, K; Viditha, V; Srinivasulu, D; Ramakrishna, S U B; Himabindu, V

    2016-05-01

    Hydrogen is an energy carrier of the future need. It could be produced from different sources and used for power generation or as a transport fuel which mainly in association with fuel cells. The primary challenge for hydrogen production is reducing the cost of production technologies to make the resulting hydrogen cost competitive with conventional fuels. Thermocatalytic decomposition (TCD) of methane is one of the most advantageous processes, which will meet the future demand, hence an attractive route for COx free environment. The present study deals with the production of hydrogen with 30 wt% of Ni impregnated in commercially available activated carbon and carbon black catalysts (samples coded as Ni30/AC and Ni30/CB, respectively). These combined catalysts were not attempted by previous studies. Pure form of hydrogen is produced at 850 °C and volume hourly space velocity (VHSV) of 1.62 L/h g on the activity of both the catalysts. The analysis (X-ray diffraction (XRD)) of the catalysts reveals moderately crystalline peaks of Ni, which might be responsible for the increase in catalytic life along with formation of carbon fibers. The activity of carbon black is sustainable for a longer time compared to that of activated carbon which has been confirmed by life time studies (850 °C and 54 sccm of methane).

  7. Comparison Between Elemental Carbon Measured Using Thermal-Optical Analysis and Black Carbon Measurements Using A Novel Cellphone-Based System

    Science.gov (United States)

    Ramanathan, N.; Khan, B.; Leong, I.; Lukac, M.

    2011-12-01

    Black carbon (BC) is produced through the incomplete combustion of fossil and solid fuels. Current BC emissions inventories have large uncertainties of factors of 2 or more due to sparse measurements and because BC is often emitted by local sources that vary over time and space (Bond et al, 2004). Those uncertainties are major sources of error in air pollution models. Emissions from a variety of improved cookstove/fuel/combustion conditions were collected on pre-conditioned 47 mm quartz-fiber filters and analyzed for organic carbon (OC) and elemental carbon (EC) using thermal-optical analysis (TOA). The samples were then analyzed for BC concentration by using cellphone-based instrumentation developed by Ramanathan et al., 2011. The cellphone-based monitoring system (CBMS) is a wireless, low-cost, low-power system that monitors BC emissions. The CBMS is comprised of an aerosol filter sampler containing a battery-powered air pump and a 25mm filter holder that draws air in through a quartz-fiber filter. As black carbon deposits increase, the filter darkens--the darkest color representing the highest loading. A cellphone photograph of the filter with the black carbon deposit is taken and relayed to an analytics unit for comparison to a reference scale to estimate airborne BC concentration. The BC concentration can then be compared to the thermally derived EC concentration. TOA was conducted on a Sunset Laboratory Dual Optics Carbon Analyzer using a modified version of the Birch and Cary (1996) NIOSH 5040 protocol. The dual-optical instrument permitted simultaneous monitoring of the transmission (TOT) and reflectance (TOR). 619 samples were collected; EC was obtained using NIOSH TOT and NIOSH TOR methods, and BC was obtained using the CBMS analytics unit. The mean BC value reported by the CBMS agrees within 20% of the reference values for EC, confirming the findings in Ramanathan et al. (2011) based on samples from India. Given this accuracy, we conclude that the CBMS

  8. Chaos in Matrix Models and Black Hole Evaporation

    CERN Document Server

    Berkowitz, Evan; Maltz, Jonathan

    2016-01-01

    Is the evaporation of a black hole described by a unitary theory? In order to shed light on this question ---especially aspects of this question such as a black hole's negative specific heat---we consider the real-time dynamics of a solitonic object in matrix quantum mechanics, which can be interpreted as a black hole (black zero-brane) via holography. We point out that the chaotic nature of the system combined with the flat directions of its potential naturally leads to the emission of D0-branes from the black brane, which is suppressed in the large $N$ limit. Simple arguments show that the black zero-brane, like the Schwarzschild black hole, has negative specific heat, in the sense that the temperature goes up when it evaporates by emitting D0-branes. While the largest Lyapunov exponent grows during the evaporation, the Kolmogorov-Sinai entropy decreases. These are consequences of the generic properties of matrix models and gauge theory. Based on these results, we give a possible geometric interpretation of...

  9. Bohr's semiclassical model of the black hole thermodynamics

    Directory of Open Access Journals (Sweden)

    Panković V.

    2008-01-01

    Full Text Available We propose a simple procedure for evaluating the main attributes of a Schwarzschild's black hole: Bekenstein-Hawking entropy, Hawking temperature and Bekenstein's quantization of the surface area. We make use of the condition that the circumference of a great circle on the black hole horizon contains finite and whole number of the corresponding reduced Compton's wavelength. It is essentially analogous to Bohr's quantization postulate in Bohr's atomic model interpreted by de Broglie's relation. It implies the standard meaning of the black hole entropy corresponding to surface of the quantum variation of the great circles on the black hole horizon surface area. We present black hole radiation in the form conceptually analogous to Bohr's postulate on the photon emission by discrete quantum jump of the electron within the Old quantum theory. This enables us, in accordance with Heisenberg's uncertainty relation and Bohr's correspondence principle, to make a rough estimate of the time interval for black hole evaporation, which turns out very close to time interval predicted by the standard Hawking's theory. Our calculations confirm Bekenstein's semiclassical result for the energy quantization, in variance with Frasca's (2005 calculations. Finally we speculate about the possible source-energy distribution within the black hole horizon.

  10. Hydrogen and Carbon Black Production from the Degradation of Methane by Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Leila Cottet

    2014-05-01

    Full Text Available Methane gas (CH4 is the main inducer of the so called greenhouse gases effect. Recent scientific research aims to minimize the accumulation of this gas in the atmosphere and to develop processes capable of producing stable materials with added value. Thermal plasma technology is a promising alternative to these applications, since it allows obtaining H2 and solid carbon from CH4, without the parallel formation of byproducts such as CO2 and NOx. In this work, CH4 was degraded by thermal plasma in order to produce hydrogen (H2 and carbon black. The degradation efficiency of CH4, selectivity for H2 production as well as the characterization of carbon black were studied. The best results were obtained in the CH4 flow rate of 5 L min-1 the degradation percentage and the selectivity for H2 production reached 98.8 % and 48.4 %, respectively. At flow rates of less than 5 L min-1 the selectivity for H2 production increases and reaches 91.9 %. The carbon black has obtained amorphous with hydrophobic characteristics and can be marketed to be used in composite material, and can also be activated chemically and/or physically and used as adsorbent material.

  11. Thermally Altered Biomass (Black Carbon) in Soils: Formation, Analysis, Distribution, and Implications

    Science.gov (United States)

    Schmidt, M. W.

    2002-12-01

    Black Carbon (BC), formed during biomass burning, is a chemically heterogeneous, biologically refractory class of carbon compounds (1, 5). BC is purely terrestrial in origin and occurs ubiquitously in soils and terrestrial sediments and is coupled to a common marine fate via atmospheric and fluvial transport, potentially representing a significant reservoir of extremely slowly cycling carbon (1). However, because of its physicochemical heterogeneity and a lack of established analytical techniques, the geochemistry and quantitative importance of BC in the global carbon cycle remains largely undescribed. Existing methods rely on operational definitions with clear-cut but different boundaries inherently designed to analytically determine different parts of the BC continuum (1, 2, 3). In a set of German chernozemic soils, BC from biomass burning makes up 15 to 45 percent of the soil organic carbon (SOC), as determined via UV-high energy photooxidation combined with 13C NMR (4, 6). High resolution microscopy and spectroscopy unambiguously confirmed the presence of submicron BC particles with short-range variability in elemental composition, and two sometimes coexisting modifications, i. e. amorphous char-BC from pyrolized cellulose and graphitic soot-BC. BC, up to 3990 years older than bulk SOC, is 1160 to 5040 carbon-14 years old, indicating significant residence times of BC in soils. These results suggest three major implications: First, it seems that besides climate, vegetation and ioturbation, fire also plays an important role in the pedogenesis of Chernozems (4, 5). Second, BC can be a useful tracer for prehistoric human slash-and-burn activities, and thus represent a novel type of archaeological evidence (7). Third, the concept that BC from biomass burning is the source of the chemically stable aromatic components of soil organic matter, and point toward a different understanding of the large quantitative importance and longevity of BC in the terrestrial system (3

  12. 1 Mixing state and absorbing properties of black carbon during Arctic haze

    Science.gov (United States)

    Zanatta, Marco; Gysel, Martin; Eleftheriadis, Kosas; Laj, Paolo; Hans-Werner, Jacobi

    2016-04-01

    The Arctic atmosphere is periodically affected by the Arctic haze occurring in spring. One of its particulate components is the black carbon (BC), which is considered to be an important contributor to climate change in the Arctic region. Beside BC-cloud interaction and albedo reduction of snow, BC may influence Arctic climate interacting directly with the solar radiation, warming the corresponding aerosol layer (Flanner, 2013). Such warming depends on BC atmospheric burden and also on the efficiency of BC to absorb light, in fact the light absorption is enhanced by mixing of BC with other atmospheric non-absorbing materials (lensing effect) (Bond et al., 2013). The BC reaching the Arctic is evilly processed, due to long range transport. Aging promote internal mixing and thus absorption enhancement. Such modification of mixing and is quantification after long range transport have been observed in the Atlantic ocean (China et al., 2015) but never investigated in the Arctic. During field experiments conducted at the Zeppelin research site in Svalbard during the 2012 Arctic spring, we investigated the relative precision of different BC measuring techniques; a single particle soot photometer was then used to assess the coating of Arctic black carbon. This allowed quantifying the absorption enhancement induced by internal mixing via optical modelling; the optical assessment of aged black carbon in the arctic will be of major interest for future radiative forcing assessment.Optical characterization of the total aerosol indicated that in 2012 no extreme smoke events took place and that the aerosol population was dominated by fine and non-absorbing particles. Low mean concentration of rBC was found (30 ng m-3), with a mean mass equivalent diameter above 200 nm. rBC concentration detected with the continuous soot monitoring system and the single particle soot photometer was agreeing within 15%. Combining absorption coefficient observed with an aethalometer and rBC mass

  13. A dense Black Carbon network in the region of Paris, France: Implementation, objectives, and first results

    Science.gov (United States)

    Sciare, Jean; Petit, Jean-Eudes; Sarda-Esteve, Roland; Bonnaire, Nicolas; Gros, Valérie; Pernot, Pierre; Ghersi, Véronique; Ampe, Christophe; Songeur, Charlotte; Brugge, Benjamin; Debert, Christophe; Favez, Olivier; Le Priol, Tiphaine; Mocnik, Grisa

    2013-04-01

    Motivations. Road traffic and domestic wood burning emissions are two major contributors of particulate pollution in our cities. These two sources emit ultra-fine, soot containing, particles in the atmosphere, affecting health adversely, increasing morbidity and mortality from cardiovascular and respiratory conditions and casing lung cancer. A better characterization of soot containing aerosol sources in our major cities provides useful information for policy makers for assessment, implementation and monitoring of strategies to tackle air pollution issues affecting human health with additional benefits for climate change. Objectives. This study on local sources of primary Particulate Matter (PM) in the megacity of Paris is a follow-up of several programs (incl. EU-FP7-MEGAPOLI) that have shown that fine PM - in the Paris background atmosphere - is mostly secondary and imported. A network of 14 stations of Black Carbon has been implemented in the larger region of Paris to provide highly spatially resolved long term survey of local combustion aerosols. To our best knowledge, this is the first time that such densely BC network is operating over a large urban area, providing novel information on the spatial/temporal distribution of combustion aerosols within a post-industrialized megacity. Experimental. As part of the PRIMEQUAL "PREQUALIF" project, a dense Black Carbon network (of 14 stations) has been installed over the city of Paris beginning of 2012 in order to produce spatially resolved Equivalent Black Carbon (EBC) concentration maps with high time resolution through modeling and data assimilation. This network is composed of various real-time instruments (Multi-Angle Absorption Photometer, MAAP by THERMO; Multi-wavelength Aethalometers by MAGEE Scientific) implemented in contrasted sites (rural background, urban background, traffic) complementing the regulated measurements (PM, NOx) in the local air quality network AIRPARIF (http

  14. Abundance, distribution, and isotopic composition of particulate black carbon in the northern Gulf of Mexico

    Science.gov (United States)

    Yang, Weifeng; Guo, Laodong

    2014-11-01

    There exists increasing evidence supporting the important role of black carbon in global carbon cycles. Particulate black carbon (PBC) is allochthonous and has distinct reactivities compared to the bulk particulate organic carbon (tot-POC) in marine environments. However, the abundance, geochemical behavior of PBC and its importance in oceanic carbon budget remain poorly understood. Here we report the abundance, distribution, and stable isotopic signatures of BC derived from the chemo-thermal oxidation (CTO-375) method (BCCTO) in the Gulf of Mexico. Our results show that BCCTO abundance decreased from shelf to basin, and more than a half of riverine BCCTO could be removed over the shelf. Moreover, BCCTO is much more refractory compared to the tot-POC and has δ13C values lower than those of BC-excluded POC. These results highlight the significance of PBC in marine carbon cycles and potentially suggest the need for a new end-member term in quantifying POC sources in the ocean.

  15. A potential large and persistent black carbon forcing over Northern Pacific inferred from satellite observations

    Science.gov (United States)

    Li, Zhongshu; Liu, Junfeng; Mauzerall, Denise L.; Li, Xiaoyuan; Fan, Songmiao; Horowitz, Larry W.; He, Cenlin; Yi, Kan; Tao, Shu

    2017-03-01

    Black carbon (BC) aerosol strongly absorbs solar radiation, which warms climate. However, accurate estimation of BC’s climate effect is limited by the uncertainties of its spatiotemporal distribution, especially over remote oceanic areas. The HIAPER Pole-to-Pole Observation (HIPPO) program from 2009 to 2011 intercepted multiple snapshots of BC profiles over Pacific in various seasons, and revealed a 2 to 5 times overestimate of BC by current global models. In this study, we compared the measurements from aircraft campaigns and satellites, and found a robust association between BC concentrations and satellite-retrieved CO, tropospheric NO2, and aerosol optical depth (AOD) (R2 > 0.8). This establishes a basis to construct a satellite-based column BC approximation (sBC*) over remote oceans. The inferred sBC* shows that Asian outflows in spring bring much more BC aerosols to the mid-Pacific than those occurring in other seasons. In addition, inter-annual variability of sBC* is seen over the Northern Pacific, with abundances varying consistently with the springtime Pacific/North American (PNA) index. Our sBC* dataset infers a widespread overestimation of BC loadings and BC Direct Radiative Forcing by current models over North Pacific, which further suggests that large uncertainties exist on aerosol-climate interactions over other remote oceanic areas beyond Pacific.

  16. Distinguishing black carbon from biogenic humic substances in soil clay fractions

    Science.gov (United States)

    Laird, D.A.; Chappell, M.A.; Martens, D.A.; Wershaw, R. L.; Thompson, M.

    2008-01-01

    Most models of soil humic substances include a substantial component of aromatic C either as the backbone of humic heteropolymers or as a significant component of supramolecular aggregates of degraded biopolymers. We physically separated coarse (0.2-2.0????m e.s.d.), medium (0.02-0.2????m e.s.d.), and fine (> 0.02????m e.s.d.) clay subfractions from three Midwestern soils and characterized the organic material associated with these subfractions using 13C-CPMAS-NMR, DTG, SEM-EDX, incubations, and radiocarbon age. Most of the C in the coarse clay subfraction was present as discrete particles (0.2-5????m as seen in SEM images) of black carbon (BC) and consisted of approximately 60% aromatic C, with the remainder being a mixture of aliphatic, anomeric and carboxylic C. We hypothesize that BC particles were originally charcoal formed during prairie fires. As the BC particles aged in soil their surfaces were oxidized to form carboxylic groups and anomeric and aliphatic C accumulated in the BC particles either by adsorption of dissolved biogenic compounds from the soil solution or by direct deposition of biogenic materials from microbes living within the BC particles. The biogenic soil organic matter was physically separated with the medium and fine clay subfractions and was dominated by aliphatic, anomeric, and carboxylic C. The results indicate that the biogenic humic materials in our soils have little aromatic C, which is inconsistent with the traditional heteropolymer model of humic substances.

  17. Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection

    Directory of Open Access Journals (Sweden)

    A. C. Jones

    2015-11-01

    Full Text Available In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020–2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all 3 aerosol-injection scenarios, though there are a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature-response is much lower, the severity of stratospheric temperature changes (> +70 °C and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation producing a significant stratospheric warming (> +20 °C. As injection rates for titania are close to those for sulfate, there appears little benefit of using titania when compared to injection of sulfur dioxide, which has the added benefit of being well modelled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions.

  18. Black Carbon Sources Constrained by Observations in the Russian High Arctic.

    Science.gov (United States)

    Popovicheva, Olga B; Evangeliou, Nikolaos; Eleftheriadis, Konstantinos; Kalogridis, Athina C; Sitnikov, Nikolay; Eckhardt, Sabine; Stohl, Andreas

    2017-04-04

    Understanding the role of short-lived climate forcers such as black carbon (BC) at high northern latitudes in climate change is hampered by the scarcity of surface observations in the Russian Arctic. In this study, highly time-resolved Equivalent BC (EBC) measurements during a ship campaign in the White, Barents, and Kara Seas in October 2015 are presented. The measured EBC concentrations are compared with BC concentrations simulated with a Lagrangian particle dispersion model coupled with a recently completed global emission inventory to quantify the origin of the Arctic BC. EBC showed increased values (100-400 ng m(-3)) in the Kara Strait, Kara Sea, and Kola Peninsula and an extremely high concentration (1000 ng m(-3)) in the White Sea. Assessment of BC origin throughout the expedition showed that gas-flaring emissions from the Yamal-Khanty-Mansiysk and Nenets-Komi regions contributed the most when the ship was close to the Kara Strait, north of 70° N. Near Arkhangelsk (White Sea), biomass burning in mid-latitudes, surface transportation, and residential and commercial combustion from Central and Eastern Europe were found to be important BC sources. The model reproduced observed EBC concentrations efficiently, building credibility in the emission inventory for BC emissions at high northern latitudes.

  19. Source Attribution of Arctic Black Carbon Constrained by Surface and Aircraft measurements

    Science.gov (United States)

    Xu, J.; Martin, R.; Morrow, A.; Sharma, S.; Leaitch, R.; Huang, L.; Burkart, J.; Willis, M. D.; Henze, D. K.; Lee, C. J.; Herber, A. B.; Abbatt, J.

    2016-12-01

    The Arctic has warmed rapidly over the last decades with a substantial contribution from black carbon (BC), however sources of Arctic BC and their contributions are highly uncertain. We use the GEOS-Chem global chemical transport model to interpret measurements of Arctic BC from the ground at Alert (2009-2014), Barrow (2009-2015) and Zeppelin (2009-2014), and from aircraft performed by the NETCARE campaign in 2015 and the PAMARCMiP campaigns in 2009 and 2011. Our simulated BC concentrations are consistent with the ground-based measurements to within 40% for Alert and Barrow, and with the aircraft measurements to within 18%. Excluding flaring emissions from the model would increase the bias versus both the ground and aircraft measurements by up to 25% except at Zeppelin where the bias would decrease. Our simulations reveal spatial and seasonal variations in sources of Arctic BC. In winter and early spring, Europe, northern Asia and eastern Asia are comparable sources of BC at Alert and Barrow, whereas at Zeppelin, Europe is the predominant contributor (52%). In summer, biomass burning is the major source of BC at all stations. North America has a minor influence (gas flaring emissions in West Siberia in January and to industrial emissions in eastern China in April.

  20. A potential large and persistent black carbon forcing over Northern Pacific inferred from satellite observations

    Science.gov (United States)

    Li, Zhongshu; Liu, Junfeng; Mauzerall, Denise L.; Li, Xiaoyuan; Fan, Songmiao; Horowitz, Larry W.; He, Cenlin; Yi, Kan; Tao, Shu

    2017-01-01

    Black carbon (BC) aerosol strongly absorbs solar radiation, which warms climate. However, accurate estimation of BC’s climate effect is limited by the uncertainties of its spatiotemporal distribution, especially over remote oceanic areas. The HIAPER Pole-to-Pole Observation (HIPPO) program from 2009 to 2011 intercepted multiple snapshots of BC profiles over Pacific in various seasons, and revealed a 2 to 5 times overestimate of BC by current global models. In this study, we compared the measurements from aircraft campaigns and satellites, and found a robust association between BC concentrations and satellite-retrieved CO, tropospheric NO2, and aerosol optical depth (AOD) (R2 > 0.8). This establishes a basis to construct a satellite-based column BC approximation (sBC*) over remote oceans. The inferred sBC* shows that Asian outflows in spring bring much more BC aerosols to the mid-Pacific than those occurring in other seasons. In addition, inter-annual variability of sBC* is seen over the Northern Pacific, with abundances varying consistently with the springtime Pacific/North American (PNA) index. Our sBC* dataset infers a widespread overestimation of BC loadings and BC Direct Radiative Forcing by current models over North Pacific, which further suggests that large uncertainties exist on aerosol-climate interactions over other remote oceanic areas beyond Pacific. PMID:28266532

  1. Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection

    Science.gov (United States)

    Jones, Anthony C.; Haywood, James M.; Jones, Andy

    2016-03-01

    In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020-2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all three aerosol-injection scenarios, though there is a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature response is much lower, the severity of stratospheric temperature changes (> +70 °C) and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation producing a significant stratospheric warming (> +20 °C). As injection rates and climatic impacts for titania are close to those for sulfate, there appears to be little benefit in terms of climatic influence of using titania when compared to the injection of sulfur dioxide, which has the added benefit of being well-modeled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions.

  2. Black carbon in seasonal snow across northern Xinjiang in northwestern China

    Science.gov (United States)

    Ye, Hao; Zhang, Rudong; Shi, Jinsen; Huang, Jianping; Warren, Stephen G.; Fu, Qiang

    2012-12-01

    Black carbon (BC) particles in snow can significantly reduce the snow albedo and enhance the absorption of solar radiation, with important impacts on climate and the hydrological cycle. A field campaign was carried out to measure the BC content in seasonal snow in Qinghai and Xinjiang provinces of western China, in January and February 2012. 284 snow samples were collected at 38 sites, 6 in Qinghai and 32 in Xinjiang. The observational results at the sites in Xinjiang, where the absorbing impurities in snow are dominated by BC particles, are reported in this work. The BC mass fractions in seasonal snow across northern Xinjiang have a median value of ˜70 ng g-1, much lower than those in northeast China. The estimated concentration of BC at the cleanest site in Xinjiang is 20 ng g-1, which is similar to that found along the coast of the Arctic Ocean. It is found that the BC content of snow decreases with altitude. Taking into account this altitude dependence, our measured BC contents in snow are consistent with a recent measurement of BC in winter snow on Tianshan glacier. The data from this field campaign should be useful for testing transport models and climate models for the simulated BC in snow.

  3. Black carbon semi-direct effects on cloud cover: review and synthesis

    Directory of Open Access Journals (Sweden)

    D. Koch

    2010-08-01

    Full Text Available Absorbing aerosols (AAs such as black carbon (BC or dust absorb incoming solar radiation, perturb the temperature structure of the atmosphere, and influence cloud cover. Previous studies have described conditions under which AAs either increase or decrease cloud cover. The effect depends on several factors, including the altitude of the AA relative to the cloud and the cloud type. We attempt to categorize the effects into several likely regimes. Cloud cover is decreased if the AAs are embedded in the cloud layer. AAs below cloud may enhance convection and cloud cover. AAs above cloud top stabilize the underlying layer and tend to enhance stratocumulus clouds but may reduce cumulus clouds. AAs can also promote cloud cover in convergent regions as they enhance deep convection and low level convergence as it draws in moisture from ocean to land regions. Most global model studies indicate a regional variation in the cloud response but generally increased cloud cover over oceans and some land regions, with net increased low-level and/or reduced upper level cloud cover. The result is a net negative semi-direct effect feedback from the cloud response to AAs. In some of these climate model studies, the cooling effect of BC due to cloud changes is strong enough to essentially cancel the warming direct effects.

  4. Street characteristics and traffic factors determining road users' exposure to black carbon.

    Science.gov (United States)

    Dons, Evi; Temmerman, Philip; Van Poppel, Martine; Bellemans, Tom; Wets, Geert; Int Panis, Luc

    2013-03-01

    Many studies nowadays make the effort of determining personal exposure rather than estimating exposure at the residential address only. While intra-urban air pollution can be modeled quite easily using interpolation methods, estimating exposure in transport is more challenging. The aim of this study is to investigate which factors determine black carbon (BC) concentrations in transport microenvironments. Therefore personal exposure measurements are carried out using portable aethalometers, trip diaries and GPS devices. More than 1500 trips, both by active modes and by motorized transport, are evaluated in Flanders, Belgium. GPS coordinates are assigned to road segments to allow BC concentrations to be linked with trip and road characteristics (trip duration, degree of urbanization, road type, traffic intensity, travel speed and road speed). Average BC concentrations on highways (10.7μg/m(3)) are comparable to concentrations on urban roads (9.6μg/m(3)), but levels are significantly higher than concentrations on rural roads (6.1μg/m(3)). Highways yield higher BC exposures for motorists compared to exposure on major roads and local roads. Overall BC concentrations are elevated at lower speeds (cyclists and pedestrians the range in BC exposure is smaller and models are less predictive; for active modes exposure seems to be influenced by timing and degree of urbanization only.

  5. Optical properties of black carbon aggregates with non-absorptive coating

    Science.gov (United States)

    Liu, Chao; Li, Ji; Yin, Yan; Zhu, Bin; Feng, Qian

    2017-01-01

    This study develops an idealized model to account for the effects of non-absorptive coating on the optical properties of black carbon (BC) aggregates. The classic fractal aggregate is applied to represent realistic BC particles, and the coating is assumed to be spherical. To accelerate the single-scattering simulation, BC monomers that were overlapped with coating sphere (not those completely inside the coating) are slightly moved to avoid overlapping. The multiple-sphere T-matrix method (MSTM) becomes applicable to calculate the optical properties of inhomogeneous particles with any coating amount, and is generally two orders of magnitude faster than the discrete-dipole approximation for particles we considered. Furthermore, the simple spherical coating is found to have similar effects on the optical properties to those based on more complicated coating structure. With the simple particle model and the efficient MSTM, it becomes possible to consider the influence of coating with much more details. The non-absorptive coating of BC aggregates can significantly enhance BC extinction and absorption, which is consistent with previous studies. The absorption of coated aggregates can be over two times stronger than that of BC particles without coating. Besides the coating volume, the relative position between the mass centers of BC aggregate and coating also plays an important role on the optical properties, and should obviously be considered in further studies.

  6. Dissolved black carbon along the land to ocean continuum of Paraiba do Sul River, Brazil

    Science.gov (United States)

    Marques da Silva Junior, Jomar; Dittmar, Thorsten; Niggemann, Jutta; Gomes de Almeida, Marcelo; de Rezende, Carlos Eduardo

    2016-04-01

    Rivers annually carry 25-28 Tg of pyrogenic dissolved organic matter (or dissolved black carbon, DBC) into the ocean, which is equivalent to about 10% of the entire land-ocean flux of dissolved organic carbon (Jaffé et al., Science 340, 345-347). Objective of this study was to identify the main processes behind the release and turnover of DBC on a riverine catchment scale. As model system we chose the land to ocean continuum of Paraíba do Sul River (Brazil), the only river system for which long-term DBC flux data exist (Dittmar, Rezende et al., Nature Geoscience 5, 618-622). The catchment was originally covered by Atlantic rain forest (mainly C3 plants) which was almost completely destroyed over the past centuries by slash-and-burn. As a result, large amounts of wood-derived charcoal reside in the soils. Today, fire-managed pasture and sugar cane (both dominated by C4 plants) cover most of the catchment. Water samples were collected at 24 sites along the main channel of the river, at 14 sites of the main tributaries and at 21 sites along the salinity gradient in the estuary and up to 35 km offshore. Sampling was performed in the wet seasons of 2013 and 2014, and the dry season of 2013. DBC was determined on a molecular level as benzenepolycarboxylic acids after nitric acid oxidation (Dittmar, Limnology and Oceanography: Methods 6, 230-235). Stable carbon isotopes (δ13C) were determined in solid phase extractable dissolved organic carbon (SPE-DOC) to distinguish C4 and C3 sources. Our results clearly show a relationship between hydrology and DBC concentrations in the river, with highest DBC concentrations in the wet season and lowest in the dry season. This relationship indicates that DBC is mainly mobilized from the upper soil horizons during heavy rainfalls. A significant correlation between DBC concentrations and δ13C-SPE-DOC indicated that most of DBC in the river system originates from C3 plants, i.e. from the historic burning event of the Atlantic rain

  7. Conductive additive content balance in Li-ion battery cathodes: Commercial carbon blacks vs. in situ carbon from LiFePO{sub 4}/C composites

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, Veronica; Goni, Aintzane; Muro, Izaskun Gil de; Rojo, Teofilo [Departamento de Quimica Inorganica, Universidad del Pais Vasco UPV/EHU, P.O. Box. 644, 48080, Bilbao (Spain); de Meatza, Iratxe; Bengoechea, Miguel [Energy Department, CIDETEC-IK4, P Miramon 196, Parque Tecnologico de San Sebastian, 20009, San Sebastian (Spain); Cantero, Igor [Departamento I+D+i Nuevas Tecnologias, CEGASA, Artapadura, 11, 01013 Vitoria-Gasteiz (Spain)

    2010-11-15

    Two samples of commercial conducting carbon black and the carbon generated in situ during LiFePO{sub 4}/C composite synthesis from citric acid are studied, with the aim of finding out whether carbon from the composite can fulfil the same function as carbon black in the electrode blend for a Li-ion battery. For this purpose, the carbon samples are analyzed by several techniques, such as X-ray diffraction, Raman spectroscopy, transmission electron microscopy, granulometry, BET specific area and conductivity measurements. Different cathode compositions and component proportions are tested for pellet and cast electrodes. Electrochemical results show that a moderate reduction of commercial carbon black content in both kinds of cathodes, by adding more LiFePO{sub 4}/C composite, enhanced the electrochemical behaviour by around 10%. In situ generated carbon can partially replace commercial conducting carbon black because its high specific surface probably enhances electrolyte penetration into the cathode, but it is always necessary to maintain a minimum amount of carbon black that provides better conductivity in order to obtain a good electrochemical response. (author)

  8. Confronting the Global Climate Response to Black Carbon Aerosols with its Uncertainty

    Science.gov (United States)

    Mahajan, S.; Kovilakam, M.

    2015-12-01

    Black carbon aerosols (BC) modulate global temperatures and the hydrological cycle as well as regional climate. However, their radiative forcing is not well-constrained observationally and recent estimates of just the direct forcing ranges from 0.08 to 1.27 W/m2 - the upper limits of which puts BC second only to carbon dioxide in terms of radiative forcing. Consequently, the climate impacts of these heterogeneous short-lived forcing agents are highly uncertain. To establish the uncertainty in the climate response to BC, we conduct a suite of idealized experiments with the DOE/NCAR CESM1.0 model with the atmosphere component (CAM4) coupled to a Slab Ocean Model (SOM) forced separately with increasing BC concentrations covering a large swath of the estimated range of current BC radiative forcing. We find that the increase in BC results in global warming - with a sensitivity of 0.22 K/W/m2 including the semi-direct effects, decrease in global precipitation - despite the increase in global temperatures, a northwards shift of the ITCZ - along with an increase in cross-equatorial southwards energy transport, tropical expansion in the Northern Hemisphere - associated with BC induced mid-latitude warming, and an increase in precipitation during the Indian Monsoons - with the enhancement of the meridional tropospheric gradient, among other responses. Further, these global responses are near-linear functions of the increase in BC concentration, suggesting that the climate response to BC aerosols can be readily estimated if the uncertainty in BC can be constrained.

  9. Biomass burning contribution to black carbon in the western United States mountain ranges

    Directory of Open Access Journals (Sweden)

    Y. Mao

    2011-05-01

    Full Text Available Forest fires are an important source to carbonaceous aerosols in the western United States (WUS. We quantify the relative contribution of biomass burning to black carbon (BC in the WUS mountain ranges by analyzing surface BC observations for 2006 from the Interagency Monitoring of PROtected Visual Environment (IMPROVE network using the GEOS-Chem global chemical transport model. Observed surface BC concentrations show broad maxima during late June to early November. Enhanced potassium concentrations and potassium/sulfur ratios observed during the high-BC events indicate a dominant biomass burning influence during the peak fire season. Model surface BC reproduces the observed day-to-day and synoptic variabilities in regions downwind of and near urban centers. Major discrepancies are found at elevated mountainous sites during the July–October when simulated BC concentrations are biased low by a factor of two. We attribute these biases largely to the underestimated and temporally misplaced biomass burning emissions of BC in the model. Additionally, we find that the biomass burning contribution to surface BC concentrations in the US likely was underestimated in a previous study using GEOS-Chem (Park et al., 2003, because of the unusually low planetary boundary layer (PBL heights and weak precipitation in the GEOS-3 meteorological reanalysis data used to drive the model. PBL heights from GEOS-4 and GEOS-5 reanalysis data are comparable to those from the North American Regional Reanalysis (NARR. Model simulations show improved agreements with the observations when driven by GEOS-5 reanalysis data, but model results are still biased low. The use of biomass burning emissions with diurnal cycle, synoptic variability, and plume injection has relatively small impact on the simulated surface BC concentrations in the WUS.

  10. Biomass burning contribution to black carbon in the Western United States Mountain Ranges

    Directory of Open Access Journals (Sweden)

    Y. H. Mao

    2011-11-01

    Full Text Available Forest fires are an important source to carbonaceous aerosols in the Western United States (WUS. We quantify the relative contribution of biomass burning to black carbon (BC in the WUS m